Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright IBM Corp. 2012
4 *
5 * Author(s):
6 * Jan Glauber <jang@linux.vnet.ibm.com>
7 *
8 * The System z PCI code is a rewrite from a prototype by
9 * the following people (Kudoz!):
10 * Alexander Schmidt
11 * Christoph Raisch
12 * Hannes Hering
13 * Hoang-Nam Nguyen
14 * Jan-Bernd Themann
15 * Stefan Roscher
16 * Thomas Klein
17 */
18
19#define KMSG_COMPONENT "zpci"
20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22#include <linux/kernel.h>
23#include <linux/slab.h>
24#include <linux/err.h>
25#include <linux/export.h>
26#include <linux/delay.h>
27#include <linux/seq_file.h>
28#include <linux/jump_label.h>
29#include <linux/pci.h>
30#include <linux/printk.h>
31#include <linux/lockdep.h>
32#include <linux/list_sort.h>
33
34#include <asm/isc.h>
35#include <asm/airq.h>
36#include <asm/facility.h>
37#include <asm/pci_insn.h>
38#include <asm/pci_clp.h>
39#include <asm/pci_dma.h>
40
41#include "pci_bus.h"
42#include "pci_iov.h"
43
44/* list of all detected zpci devices */
45static LIST_HEAD(zpci_list);
46static DEFINE_SPINLOCK(zpci_list_lock);
47
48static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
49static DEFINE_SPINLOCK(zpci_domain_lock);
50
51#define ZPCI_IOMAP_ENTRIES \
52 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \
53 ZPCI_IOMAP_MAX_ENTRIES)
54
55unsigned int s390_pci_no_rid;
56
57static DEFINE_SPINLOCK(zpci_iomap_lock);
58static unsigned long *zpci_iomap_bitmap;
59struct zpci_iomap_entry *zpci_iomap_start;
60EXPORT_SYMBOL_GPL(zpci_iomap_start);
61
62DEFINE_STATIC_KEY_FALSE(have_mio);
63
64static struct kmem_cache *zdev_fmb_cache;
65
66/* AEN structures that must be preserved over KVM module re-insertion */
67union zpci_sic_iib *zpci_aipb;
68EXPORT_SYMBOL_GPL(zpci_aipb);
69struct airq_iv *zpci_aif_sbv;
70EXPORT_SYMBOL_GPL(zpci_aif_sbv);
71
72struct zpci_dev *get_zdev_by_fid(u32 fid)
73{
74 struct zpci_dev *tmp, *zdev = NULL;
75
76 spin_lock(&zpci_list_lock);
77 list_for_each_entry(tmp, &zpci_list, entry) {
78 if (tmp->fid == fid) {
79 zdev = tmp;
80 zpci_zdev_get(zdev);
81 break;
82 }
83 }
84 spin_unlock(&zpci_list_lock);
85 return zdev;
86}
87
88void zpci_remove_reserved_devices(void)
89{
90 struct zpci_dev *tmp, *zdev;
91 enum zpci_state state;
92 LIST_HEAD(remove);
93
94 spin_lock(&zpci_list_lock);
95 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
96 if (zdev->state == ZPCI_FN_STATE_STANDBY &&
97 !clp_get_state(zdev->fid, &state) &&
98 state == ZPCI_FN_STATE_RESERVED)
99 list_move_tail(&zdev->entry, &remove);
100 }
101 spin_unlock(&zpci_list_lock);
102
103 list_for_each_entry_safe(zdev, tmp, &remove, entry)
104 zpci_device_reserved(zdev);
105}
106
107int pci_domain_nr(struct pci_bus *bus)
108{
109 return ((struct zpci_bus *) bus->sysdata)->domain_nr;
110}
111EXPORT_SYMBOL_GPL(pci_domain_nr);
112
113int pci_proc_domain(struct pci_bus *bus)
114{
115 return pci_domain_nr(bus);
116}
117EXPORT_SYMBOL_GPL(pci_proc_domain);
118
119/* Modify PCI: Register I/O address translation parameters */
120int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
121 u64 base, u64 limit, u64 iota, u8 *status)
122{
123 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
124 struct zpci_fib fib = {0};
125 u8 cc;
126
127 WARN_ON_ONCE(iota & 0x3fff);
128 fib.pba = base;
129 /* Work around off by one in ISM virt device */
130 if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base)
131 fib.pal = limit + (1 << 12);
132 else
133 fib.pal = limit;
134 fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
135 fib.gd = zdev->gisa;
136 cc = zpci_mod_fc(req, &fib, status);
137 if (cc)
138 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
139 return cc;
140}
141EXPORT_SYMBOL_GPL(zpci_register_ioat);
142
143/* Modify PCI: Unregister I/O address translation parameters */
144int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
145{
146 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
147 struct zpci_fib fib = {0};
148 u8 cc, status;
149
150 fib.gd = zdev->gisa;
151
152 cc = zpci_mod_fc(req, &fib, &status);
153 if (cc)
154 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
155 return cc;
156}
157
158/* Modify PCI: Set PCI function measurement parameters */
159int zpci_fmb_enable_device(struct zpci_dev *zdev)
160{
161 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
162 struct zpci_iommu_ctrs *ctrs;
163 struct zpci_fib fib = {0};
164 unsigned long flags;
165 u8 cc, status;
166
167 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
168 return -EINVAL;
169
170 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
171 if (!zdev->fmb)
172 return -ENOMEM;
173 WARN_ON((u64) zdev->fmb & 0xf);
174
175 /* reset software counters */
176 spin_lock_irqsave(&zdev->dom_lock, flags);
177 ctrs = zpci_get_iommu_ctrs(zdev);
178 if (ctrs) {
179 atomic64_set(&ctrs->mapped_pages, 0);
180 atomic64_set(&ctrs->unmapped_pages, 0);
181 atomic64_set(&ctrs->global_rpcits, 0);
182 atomic64_set(&ctrs->sync_map_rpcits, 0);
183 atomic64_set(&ctrs->sync_rpcits, 0);
184 }
185 spin_unlock_irqrestore(&zdev->dom_lock, flags);
186
187
188 fib.fmb_addr = virt_to_phys(zdev->fmb);
189 fib.gd = zdev->gisa;
190 cc = zpci_mod_fc(req, &fib, &status);
191 if (cc) {
192 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
193 zdev->fmb = NULL;
194 }
195 return cc ? -EIO : 0;
196}
197
198/* Modify PCI: Disable PCI function measurement */
199int zpci_fmb_disable_device(struct zpci_dev *zdev)
200{
201 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
202 struct zpci_fib fib = {0};
203 u8 cc, status;
204
205 if (!zdev->fmb)
206 return -EINVAL;
207
208 fib.gd = zdev->gisa;
209
210 /* Function measurement is disabled if fmb address is zero */
211 cc = zpci_mod_fc(req, &fib, &status);
212 if (cc == 3) /* Function already gone. */
213 cc = 0;
214
215 if (!cc) {
216 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
217 zdev->fmb = NULL;
218 }
219 return cc ? -EIO : 0;
220}
221
222static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
223{
224 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
225 u64 data;
226 int rc;
227
228 rc = __zpci_load(&data, req, offset);
229 if (!rc) {
230 data = le64_to_cpu((__force __le64) data);
231 data >>= (8 - len) * 8;
232 *val = (u32) data;
233 } else
234 *val = 0xffffffff;
235 return rc;
236}
237
238static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
239{
240 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
241 u64 data = val;
242 int rc;
243
244 data <<= (8 - len) * 8;
245 data = (__force u64) cpu_to_le64(data);
246 rc = __zpci_store(data, req, offset);
247 return rc;
248}
249
250resource_size_t pcibios_align_resource(void *data, const struct resource *res,
251 resource_size_t size,
252 resource_size_t align)
253{
254 return 0;
255}
256
257void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
258 unsigned long prot)
259{
260 /*
261 * When PCI MIO instructions are unavailable the "physical" address
262 * encodes a hint for accessing the PCI memory space it represents.
263 * Just pass it unchanged such that ioread/iowrite can decode it.
264 */
265 if (!static_branch_unlikely(&have_mio))
266 return (void __iomem *)phys_addr;
267
268 return generic_ioremap_prot(phys_addr, size, __pgprot(prot));
269}
270EXPORT_SYMBOL(ioremap_prot);
271
272void iounmap(volatile void __iomem *addr)
273{
274 if (static_branch_likely(&have_mio))
275 generic_iounmap(addr);
276}
277EXPORT_SYMBOL(iounmap);
278
279/* Create a virtual mapping cookie for a PCI BAR */
280static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
281 unsigned long offset, unsigned long max)
282{
283 struct zpci_dev *zdev = to_zpci(pdev);
284 int idx;
285
286 idx = zdev->bars[bar].map_idx;
287 spin_lock(&zpci_iomap_lock);
288 /* Detect overrun */
289 WARN_ON(!++zpci_iomap_start[idx].count);
290 zpci_iomap_start[idx].fh = zdev->fh;
291 zpci_iomap_start[idx].bar = bar;
292 spin_unlock(&zpci_iomap_lock);
293
294 return (void __iomem *) ZPCI_ADDR(idx) + offset;
295}
296
297static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
298 unsigned long offset,
299 unsigned long max)
300{
301 unsigned long barsize = pci_resource_len(pdev, bar);
302 struct zpci_dev *zdev = to_zpci(pdev);
303 void __iomem *iova;
304
305 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
306 return iova ? iova + offset : iova;
307}
308
309void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
310 unsigned long offset, unsigned long max)
311{
312 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
313 return NULL;
314
315 if (static_branch_likely(&have_mio))
316 return pci_iomap_range_mio(pdev, bar, offset, max);
317 else
318 return pci_iomap_range_fh(pdev, bar, offset, max);
319}
320EXPORT_SYMBOL(pci_iomap_range);
321
322void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
323{
324 return pci_iomap_range(dev, bar, 0, maxlen);
325}
326EXPORT_SYMBOL(pci_iomap);
327
328static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
329 unsigned long offset, unsigned long max)
330{
331 unsigned long barsize = pci_resource_len(pdev, bar);
332 struct zpci_dev *zdev = to_zpci(pdev);
333 void __iomem *iova;
334
335 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
336 return iova ? iova + offset : iova;
337}
338
339void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
340 unsigned long offset, unsigned long max)
341{
342 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
343 return NULL;
344
345 if (static_branch_likely(&have_mio))
346 return pci_iomap_wc_range_mio(pdev, bar, offset, max);
347 else
348 return pci_iomap_range_fh(pdev, bar, offset, max);
349}
350EXPORT_SYMBOL(pci_iomap_wc_range);
351
352void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
353{
354 return pci_iomap_wc_range(dev, bar, 0, maxlen);
355}
356EXPORT_SYMBOL(pci_iomap_wc);
357
358static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
359{
360 unsigned int idx = ZPCI_IDX(addr);
361
362 spin_lock(&zpci_iomap_lock);
363 /* Detect underrun */
364 WARN_ON(!zpci_iomap_start[idx].count);
365 if (!--zpci_iomap_start[idx].count) {
366 zpci_iomap_start[idx].fh = 0;
367 zpci_iomap_start[idx].bar = 0;
368 }
369 spin_unlock(&zpci_iomap_lock);
370}
371
372static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
373{
374 iounmap(addr);
375}
376
377void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
378{
379 if (static_branch_likely(&have_mio))
380 pci_iounmap_mio(pdev, addr);
381 else
382 pci_iounmap_fh(pdev, addr);
383}
384EXPORT_SYMBOL(pci_iounmap);
385
386static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
387 int size, u32 *val)
388{
389 struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
390
391 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
392}
393
394static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
395 int size, u32 val)
396{
397 struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
398
399 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
400}
401
402static struct pci_ops pci_root_ops = {
403 .read = pci_read,
404 .write = pci_write,
405};
406
407static void zpci_map_resources(struct pci_dev *pdev)
408{
409 struct zpci_dev *zdev = to_zpci(pdev);
410 resource_size_t len;
411 int i;
412
413 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
414 len = pci_resource_len(pdev, i);
415 if (!len)
416 continue;
417
418 if (zpci_use_mio(zdev))
419 pdev->resource[i].start =
420 (resource_size_t __force) zdev->bars[i].mio_wt;
421 else
422 pdev->resource[i].start = (resource_size_t __force)
423 pci_iomap_range_fh(pdev, i, 0, 0);
424 pdev->resource[i].end = pdev->resource[i].start + len - 1;
425 }
426
427 zpci_iov_map_resources(pdev);
428}
429
430static void zpci_unmap_resources(struct pci_dev *pdev)
431{
432 struct zpci_dev *zdev = to_zpci(pdev);
433 resource_size_t len;
434 int i;
435
436 if (zpci_use_mio(zdev))
437 return;
438
439 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
440 len = pci_resource_len(pdev, i);
441 if (!len)
442 continue;
443 pci_iounmap_fh(pdev, (void __iomem __force *)
444 pdev->resource[i].start);
445 }
446}
447
448static int zpci_alloc_iomap(struct zpci_dev *zdev)
449{
450 unsigned long entry;
451
452 spin_lock(&zpci_iomap_lock);
453 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
454 if (entry == ZPCI_IOMAP_ENTRIES) {
455 spin_unlock(&zpci_iomap_lock);
456 return -ENOSPC;
457 }
458 set_bit(entry, zpci_iomap_bitmap);
459 spin_unlock(&zpci_iomap_lock);
460 return entry;
461}
462
463static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
464{
465 spin_lock(&zpci_iomap_lock);
466 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
467 clear_bit(entry, zpci_iomap_bitmap);
468 spin_unlock(&zpci_iomap_lock);
469}
470
471static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
472{
473 int bar, idx;
474
475 spin_lock(&zpci_iomap_lock);
476 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
477 if (!zdev->bars[bar].size)
478 continue;
479 idx = zdev->bars[bar].map_idx;
480 if (!zpci_iomap_start[idx].count)
481 continue;
482 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
483 }
484 spin_unlock(&zpci_iomap_lock);
485}
486
487void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
488{
489 if (!fh || zdev->fh == fh)
490 return;
491
492 zdev->fh = fh;
493 if (zpci_use_mio(zdev))
494 return;
495 if (zdev->has_resources && zdev_enabled(zdev))
496 zpci_do_update_iomap_fh(zdev, fh);
497}
498
499static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
500 unsigned long size, unsigned long flags)
501{
502 struct resource *r;
503
504 r = kzalloc(sizeof(*r), GFP_KERNEL);
505 if (!r)
506 return NULL;
507
508 r->start = start;
509 r->end = r->start + size - 1;
510 r->flags = flags;
511 r->name = zdev->res_name;
512
513 if (request_resource(&iomem_resource, r)) {
514 kfree(r);
515 return NULL;
516 }
517 return r;
518}
519
520int zpci_setup_bus_resources(struct zpci_dev *zdev)
521{
522 unsigned long addr, size, flags;
523 struct resource *res;
524 int i, entry;
525
526 snprintf(zdev->res_name, sizeof(zdev->res_name),
527 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
528
529 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
530 if (!zdev->bars[i].size)
531 continue;
532 entry = zpci_alloc_iomap(zdev);
533 if (entry < 0)
534 return entry;
535 zdev->bars[i].map_idx = entry;
536
537 /* only MMIO is supported */
538 flags = IORESOURCE_MEM;
539 if (zdev->bars[i].val & 8)
540 flags |= IORESOURCE_PREFETCH;
541 if (zdev->bars[i].val & 4)
542 flags |= IORESOURCE_MEM_64;
543
544 if (zpci_use_mio(zdev))
545 addr = (unsigned long) zdev->bars[i].mio_wt;
546 else
547 addr = ZPCI_ADDR(entry);
548 size = 1UL << zdev->bars[i].size;
549
550 res = __alloc_res(zdev, addr, size, flags);
551 if (!res) {
552 zpci_free_iomap(zdev, entry);
553 return -ENOMEM;
554 }
555 zdev->bars[i].res = res;
556 }
557 zdev->has_resources = 1;
558
559 return 0;
560}
561
562static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
563{
564 struct resource *res;
565 int i;
566
567 pci_lock_rescan_remove();
568 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
569 res = zdev->bars[i].res;
570 if (!res)
571 continue;
572
573 release_resource(res);
574 pci_bus_remove_resource(zdev->zbus->bus, res);
575 zpci_free_iomap(zdev, zdev->bars[i].map_idx);
576 zdev->bars[i].res = NULL;
577 kfree(res);
578 }
579 zdev->has_resources = 0;
580 pci_unlock_rescan_remove();
581}
582
583int pcibios_device_add(struct pci_dev *pdev)
584{
585 struct zpci_dev *zdev = to_zpci(pdev);
586 struct resource *res;
587 int i;
588
589 /* The pdev has a reference to the zdev via its bus */
590 zpci_zdev_get(zdev);
591 if (pdev->is_physfn)
592 pdev->no_vf_scan = 1;
593
594 zpci_map_resources(pdev);
595
596 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
597 res = &pdev->resource[i];
598 if (res->parent || !res->flags)
599 continue;
600 pci_claim_resource(pdev, i);
601 }
602
603 return 0;
604}
605
606void pcibios_release_device(struct pci_dev *pdev)
607{
608 struct zpci_dev *zdev = to_zpci(pdev);
609
610 zpci_unmap_resources(pdev);
611 zpci_zdev_put(zdev);
612}
613
614int pcibios_enable_device(struct pci_dev *pdev, int mask)
615{
616 struct zpci_dev *zdev = to_zpci(pdev);
617
618 zpci_debug_init_device(zdev, dev_name(&pdev->dev));
619 zpci_fmb_enable_device(zdev);
620
621 return pci_enable_resources(pdev, mask);
622}
623
624void pcibios_disable_device(struct pci_dev *pdev)
625{
626 struct zpci_dev *zdev = to_zpci(pdev);
627
628 zpci_fmb_disable_device(zdev);
629 zpci_debug_exit_device(zdev);
630}
631
632static int __zpci_register_domain(int domain)
633{
634 spin_lock(&zpci_domain_lock);
635 if (test_bit(domain, zpci_domain)) {
636 spin_unlock(&zpci_domain_lock);
637 pr_err("Domain %04x is already assigned\n", domain);
638 return -EEXIST;
639 }
640 set_bit(domain, zpci_domain);
641 spin_unlock(&zpci_domain_lock);
642 return domain;
643}
644
645static int __zpci_alloc_domain(void)
646{
647 int domain;
648
649 spin_lock(&zpci_domain_lock);
650 /*
651 * We can always auto allocate domains below ZPCI_NR_DEVICES.
652 * There is either a free domain or we have reached the maximum in
653 * which case we would have bailed earlier.
654 */
655 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
656 set_bit(domain, zpci_domain);
657 spin_unlock(&zpci_domain_lock);
658 return domain;
659}
660
661int zpci_alloc_domain(int domain)
662{
663 if (zpci_unique_uid) {
664 if (domain)
665 return __zpci_register_domain(domain);
666 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
667 update_uid_checking(false);
668 }
669 return __zpci_alloc_domain();
670}
671
672void zpci_free_domain(int domain)
673{
674 spin_lock(&zpci_domain_lock);
675 clear_bit(domain, zpci_domain);
676 spin_unlock(&zpci_domain_lock);
677}
678
679
680int zpci_enable_device(struct zpci_dev *zdev)
681{
682 u32 fh = zdev->fh;
683 int rc = 0;
684
685 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
686 rc = -EIO;
687 else
688 zpci_update_fh(zdev, fh);
689 return rc;
690}
691EXPORT_SYMBOL_GPL(zpci_enable_device);
692
693int zpci_disable_device(struct zpci_dev *zdev)
694{
695 u32 fh = zdev->fh;
696 int cc, rc = 0;
697
698 cc = clp_disable_fh(zdev, &fh);
699 if (!cc) {
700 zpci_update_fh(zdev, fh);
701 } else if (cc == CLP_RC_SETPCIFN_ALRDY) {
702 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
703 zdev->fid);
704 /* Function is already disabled - update handle */
705 rc = clp_refresh_fh(zdev->fid, &fh);
706 if (!rc) {
707 zpci_update_fh(zdev, fh);
708 rc = -EINVAL;
709 }
710 } else {
711 rc = -EIO;
712 }
713 return rc;
714}
715EXPORT_SYMBOL_GPL(zpci_disable_device);
716
717/**
718 * zpci_hot_reset_device - perform a reset of the given zPCI function
719 * @zdev: the slot which should be reset
720 *
721 * Performs a low level reset of the zPCI function. The reset is low level in
722 * the sense that the zPCI function can be reset without detaching it from the
723 * common PCI subsystem. The reset may be performed while under control of
724 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
725 * table is reinstated at the end of the reset.
726 *
727 * After the reset the functions internal state is reset to an initial state
728 * equivalent to its state during boot when first probing a driver.
729 * Consequently after reset the PCI function requires re-initialization via the
730 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
731 * and enabling the function via e.g. pci_enable_device_flags(). The caller
732 * must guard against concurrent reset attempts.
733 *
734 * In most cases this function should not be called directly but through
735 * pci_reset_function() or pci_reset_bus() which handle the save/restore and
736 * locking - asserted by lockdep.
737 *
738 * Return: 0 on success and an error value otherwise
739 */
740int zpci_hot_reset_device(struct zpci_dev *zdev)
741{
742 u8 status;
743 int rc;
744
745 lockdep_assert_held(&zdev->state_lock);
746 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
747 if (zdev_enabled(zdev)) {
748 /* Disables device access, DMAs and IRQs (reset state) */
749 rc = zpci_disable_device(zdev);
750 /*
751 * Due to a z/VM vs LPAR inconsistency in the error state the
752 * FH may indicate an enabled device but disable says the
753 * device is already disabled don't treat it as an error here.
754 */
755 if (rc == -EINVAL)
756 rc = 0;
757 if (rc)
758 return rc;
759 }
760
761 rc = zpci_enable_device(zdev);
762 if (rc)
763 return rc;
764
765 if (zdev->dma_table)
766 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
767 virt_to_phys(zdev->dma_table), &status);
768 if (rc) {
769 zpci_disable_device(zdev);
770 return rc;
771 }
772
773 return 0;
774}
775
776/**
777 * zpci_create_device() - Create a new zpci_dev and add it to the zbus
778 * @fid: Function ID of the device to be created
779 * @fh: Current Function Handle of the device to be created
780 * @state: Initial state after creation either Standby or Configured
781 *
782 * Allocates a new struct zpci_dev and queries the platform for its details.
783 * If successful the device can subsequently be added to the zPCI subsystem
784 * using zpci_add_device().
785 *
786 * Returns: the zdev on success or an error pointer otherwise
787 */
788struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
789{
790 struct zpci_dev *zdev;
791 int rc;
792
793 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
794 if (!zdev)
795 return ERR_PTR(-ENOMEM);
796
797 /* FID and Function Handle are the static/dynamic identifiers */
798 zdev->fid = fid;
799 zdev->fh = fh;
800
801 /* Query function properties and update zdev */
802 rc = clp_query_pci_fn(zdev);
803 if (rc)
804 goto error;
805 zdev->state = state;
806
807 mutex_init(&zdev->state_lock);
808 mutex_init(&zdev->fmb_lock);
809 mutex_init(&zdev->kzdev_lock);
810
811 return zdev;
812
813error:
814 zpci_dbg(0, "crt fid:%x, rc:%d\n", fid, rc);
815 kfree(zdev);
816 return ERR_PTR(rc);
817}
818
819/**
820 * zpci_add_device() - Add a previously created zPCI device to the zPCI subsystem
821 * @zdev: The zPCI device to be added
822 *
823 * A struct zpci_dev is added to the zPCI subsystem and to a virtual PCI bus creating
824 * a new one as necessary. A hotplug slot is created and events start to be handled.
825 * If successful from this point on zpci_zdev_get() and zpci_zdev_put() must be used.
826 * If adding the struct zpci_dev fails the device was not added and should be freed.
827 *
828 * Return: 0 on success, or an error code otherwise
829 */
830int zpci_add_device(struct zpci_dev *zdev)
831{
832 int rc;
833
834 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", zdev->fid, zdev->fh, zdev->state);
835 rc = zpci_init_iommu(zdev);
836 if (rc)
837 goto error;
838
839 rc = zpci_bus_device_register(zdev, &pci_root_ops);
840 if (rc)
841 goto error_destroy_iommu;
842
843 kref_init(&zdev->kref);
844 spin_lock(&zpci_list_lock);
845 list_add_tail(&zdev->entry, &zpci_list);
846 spin_unlock(&zpci_list_lock);
847 return 0;
848
849error_destroy_iommu:
850 zpci_destroy_iommu(zdev);
851error:
852 zpci_dbg(0, "add fid:%x, rc:%d\n", zdev->fid, rc);
853 return rc;
854}
855
856bool zpci_is_device_configured(struct zpci_dev *zdev)
857{
858 enum zpci_state state = zdev->state;
859
860 return state != ZPCI_FN_STATE_RESERVED &&
861 state != ZPCI_FN_STATE_STANDBY;
862}
863
864/**
865 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
866 * @zdev: The zpci_dev to be configured
867 * @fh: The general function handle supplied by the platform
868 *
869 * Given a device in the configuration state Configured, enables, scans and
870 * adds it to the common code PCI subsystem if possible. If any failure occurs,
871 * the zpci_dev is left disabled.
872 *
873 * Return: 0 on success, or an error code otherwise
874 */
875int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
876{
877 zpci_update_fh(zdev, fh);
878 return zpci_bus_scan_device(zdev);
879}
880
881/**
882 * zpci_deconfigure_device() - Deconfigure a zpci_dev
883 * @zdev: The zpci_dev to configure
884 *
885 * Deconfigure a zPCI function that is currently configured and possibly known
886 * to the common code PCI subsystem.
887 * If any failure occurs the device is left as is.
888 *
889 * Return: 0 on success, or an error code otherwise
890 */
891int zpci_deconfigure_device(struct zpci_dev *zdev)
892{
893 int rc;
894
895 lockdep_assert_held(&zdev->state_lock);
896 if (zdev->state != ZPCI_FN_STATE_CONFIGURED)
897 return 0;
898
899 if (zdev->zbus->bus)
900 zpci_bus_remove_device(zdev, false);
901
902 if (zdev_enabled(zdev)) {
903 rc = zpci_disable_device(zdev);
904 if (rc)
905 return rc;
906 }
907
908 rc = sclp_pci_deconfigure(zdev->fid);
909 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
910 if (rc)
911 return rc;
912 zdev->state = ZPCI_FN_STATE_STANDBY;
913
914 return 0;
915}
916
917/**
918 * zpci_device_reserved() - Mark device as reserved
919 * @zdev: the zpci_dev that was reserved
920 *
921 * Handle the case that a given zPCI function was reserved by another system.
922 * After a call to this function the zpci_dev can not be found via
923 * get_zdev_by_fid() anymore but may still be accessible via existing
924 * references though it will not be functional anymore.
925 */
926void zpci_device_reserved(struct zpci_dev *zdev)
927{
928 /*
929 * Remove device from zpci_list as it is going away. This also
930 * makes sure we ignore subsequent zPCI events for this device.
931 */
932 spin_lock(&zpci_list_lock);
933 list_del(&zdev->entry);
934 spin_unlock(&zpci_list_lock);
935 zdev->state = ZPCI_FN_STATE_RESERVED;
936 zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
937 zpci_zdev_put(zdev);
938}
939
940void zpci_release_device(struct kref *kref)
941{
942 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
943
944 WARN_ON(zdev->state != ZPCI_FN_STATE_RESERVED);
945
946 if (zdev->zbus->bus)
947 zpci_bus_remove_device(zdev, false);
948
949 if (zdev_enabled(zdev))
950 zpci_disable_device(zdev);
951
952 if (zdev->has_hp_slot)
953 zpci_exit_slot(zdev);
954
955 if (zdev->has_resources)
956 zpci_cleanup_bus_resources(zdev);
957
958 zpci_bus_device_unregister(zdev);
959 zpci_destroy_iommu(zdev);
960 zpci_dbg(3, "rem fid:%x\n", zdev->fid);
961 kfree_rcu(zdev, rcu);
962}
963
964int zpci_report_error(struct pci_dev *pdev,
965 struct zpci_report_error_header *report)
966{
967 struct zpci_dev *zdev = to_zpci(pdev);
968
969 return sclp_pci_report(report, zdev->fh, zdev->fid);
970}
971EXPORT_SYMBOL(zpci_report_error);
972
973/**
974 * zpci_clear_error_state() - Clears the zPCI error state of the device
975 * @zdev: The zdev for which the zPCI error state should be reset
976 *
977 * Clear the zPCI error state of the device. If clearing the zPCI error state
978 * fails the device is left in the error state. In this case it may make sense
979 * to call zpci_io_perm_failure() on the associated pdev if it exists.
980 *
981 * Returns: 0 on success, -EIO otherwise
982 */
983int zpci_clear_error_state(struct zpci_dev *zdev)
984{
985 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
986 struct zpci_fib fib = {0};
987 u8 status;
988 int cc;
989
990 cc = zpci_mod_fc(req, &fib, &status);
991 if (cc) {
992 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
993 return -EIO;
994 }
995
996 return 0;
997}
998
999/**
1000 * zpci_reset_load_store_blocked() - Re-enables L/S from error state
1001 * @zdev: The zdev for which to unblock load/store access
1002 *
1003 * Re-enables load/store access for a PCI function in the error state while
1004 * keeping DMA blocked. In this state drivers can poke MMIO space to determine
1005 * if error recovery is possible while catching any rogue DMA access from the
1006 * device.
1007 *
1008 * Returns: 0 on success, -EIO otherwise
1009 */
1010int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1011{
1012 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1013 struct zpci_fib fib = {0};
1014 u8 status;
1015 int cc;
1016
1017 cc = zpci_mod_fc(req, &fib, &status);
1018 if (cc) {
1019 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1020 return -EIO;
1021 }
1022
1023 return 0;
1024}
1025
1026static int zpci_mem_init(void)
1027{
1028 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1029 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1030
1031 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1032 __alignof__(struct zpci_fmb), 0, NULL);
1033 if (!zdev_fmb_cache)
1034 goto error_fmb;
1035
1036 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1037 sizeof(*zpci_iomap_start), GFP_KERNEL);
1038 if (!zpci_iomap_start)
1039 goto error_iomap;
1040
1041 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1042 sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1043 if (!zpci_iomap_bitmap)
1044 goto error_iomap_bitmap;
1045
1046 if (static_branch_likely(&have_mio))
1047 clp_setup_writeback_mio();
1048
1049 return 0;
1050error_iomap_bitmap:
1051 kfree(zpci_iomap_start);
1052error_iomap:
1053 kmem_cache_destroy(zdev_fmb_cache);
1054error_fmb:
1055 return -ENOMEM;
1056}
1057
1058static void zpci_mem_exit(void)
1059{
1060 kfree(zpci_iomap_bitmap);
1061 kfree(zpci_iomap_start);
1062 kmem_cache_destroy(zdev_fmb_cache);
1063}
1064
1065static unsigned int s390_pci_probe __initdata = 1;
1066unsigned int s390_pci_force_floating __initdata;
1067static unsigned int s390_pci_initialized;
1068
1069char * __init pcibios_setup(char *str)
1070{
1071 if (!strcmp(str, "off")) {
1072 s390_pci_probe = 0;
1073 return NULL;
1074 }
1075 if (!strcmp(str, "nomio")) {
1076 get_lowcore()->machine_flags &= ~MACHINE_FLAG_PCI_MIO;
1077 return NULL;
1078 }
1079 if (!strcmp(str, "force_floating")) {
1080 s390_pci_force_floating = 1;
1081 return NULL;
1082 }
1083 if (!strcmp(str, "norid")) {
1084 s390_pci_no_rid = 1;
1085 return NULL;
1086 }
1087 return str;
1088}
1089
1090bool zpci_is_enabled(void)
1091{
1092 return s390_pci_initialized;
1093}
1094
1095static int zpci_cmp_rid(void *priv, const struct list_head *a,
1096 const struct list_head *b)
1097{
1098 struct zpci_dev *za = container_of(a, struct zpci_dev, entry);
1099 struct zpci_dev *zb = container_of(b, struct zpci_dev, entry);
1100
1101 /*
1102 * PCI functions without RID available maintain original order
1103 * between themselves but sort before those with RID.
1104 */
1105 if (za->rid == zb->rid)
1106 return za->rid_available > zb->rid_available;
1107 /*
1108 * PCI functions with RID sort by RID ascending.
1109 */
1110 return za->rid > zb->rid;
1111}
1112
1113static void zpci_add_devices(struct list_head *scan_list)
1114{
1115 struct zpci_dev *zdev, *tmp;
1116
1117 list_sort(NULL, scan_list, &zpci_cmp_rid);
1118 list_for_each_entry_safe(zdev, tmp, scan_list, entry) {
1119 list_del_init(&zdev->entry);
1120 if (zpci_add_device(zdev))
1121 kfree(zdev);
1122 }
1123}
1124
1125int zpci_scan_devices(void)
1126{
1127 LIST_HEAD(scan_list);
1128 int rc;
1129
1130 rc = clp_scan_pci_devices(&scan_list);
1131 if (rc)
1132 return rc;
1133
1134 zpci_add_devices(&scan_list);
1135 zpci_bus_scan_busses();
1136 return 0;
1137}
1138
1139static int __init pci_base_init(void)
1140{
1141 int rc;
1142
1143 if (!s390_pci_probe)
1144 return 0;
1145
1146 if (!test_facility(69) || !test_facility(71)) {
1147 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1148 return 0;
1149 }
1150
1151 if (MACHINE_HAS_PCI_MIO) {
1152 static_branch_enable(&have_mio);
1153 system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT);
1154 }
1155
1156 rc = zpci_debug_init();
1157 if (rc)
1158 goto out;
1159
1160 rc = zpci_mem_init();
1161 if (rc)
1162 goto out_mem;
1163
1164 rc = zpci_irq_init();
1165 if (rc)
1166 goto out_irq;
1167
1168 rc = zpci_scan_devices();
1169 if (rc)
1170 goto out_find;
1171
1172 s390_pci_initialized = 1;
1173 return 0;
1174
1175out_find:
1176 zpci_irq_exit();
1177out_irq:
1178 zpci_mem_exit();
1179out_mem:
1180 zpci_debug_exit();
1181out:
1182 return rc;
1183}
1184subsys_initcall_sync(pci_base_init);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright IBM Corp. 2012
4 *
5 * Author(s):
6 * Jan Glauber <jang@linux.vnet.ibm.com>
7 *
8 * The System z PCI code is a rewrite from a prototype by
9 * the following people (Kudoz!):
10 * Alexander Schmidt
11 * Christoph Raisch
12 * Hannes Hering
13 * Hoang-Nam Nguyen
14 * Jan-Bernd Themann
15 * Stefan Roscher
16 * Thomas Klein
17 */
18
19#define KMSG_COMPONENT "zpci"
20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22#include <linux/kernel.h>
23#include <linux/slab.h>
24#include <linux/err.h>
25#include <linux/export.h>
26#include <linux/delay.h>
27#include <linux/seq_file.h>
28#include <linux/jump_label.h>
29#include <linux/pci.h>
30#include <linux/printk.h>
31#include <linux/lockdep.h>
32
33#include <asm/isc.h>
34#include <asm/airq.h>
35#include <asm/facility.h>
36#include <asm/pci_insn.h>
37#include <asm/pci_clp.h>
38#include <asm/pci_dma.h>
39
40#include "pci_bus.h"
41#include "pci_iov.h"
42
43/* list of all detected zpci devices */
44static LIST_HEAD(zpci_list);
45static DEFINE_SPINLOCK(zpci_list_lock);
46
47static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
48static DEFINE_SPINLOCK(zpci_domain_lock);
49
50#define ZPCI_IOMAP_ENTRIES \
51 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \
52 ZPCI_IOMAP_MAX_ENTRIES)
53
54unsigned int s390_pci_no_rid;
55
56static DEFINE_SPINLOCK(zpci_iomap_lock);
57static unsigned long *zpci_iomap_bitmap;
58struct zpci_iomap_entry *zpci_iomap_start;
59EXPORT_SYMBOL_GPL(zpci_iomap_start);
60
61DEFINE_STATIC_KEY_FALSE(have_mio);
62
63static struct kmem_cache *zdev_fmb_cache;
64
65/* AEN structures that must be preserved over KVM module re-insertion */
66union zpci_sic_iib *zpci_aipb;
67EXPORT_SYMBOL_GPL(zpci_aipb);
68struct airq_iv *zpci_aif_sbv;
69EXPORT_SYMBOL_GPL(zpci_aif_sbv);
70
71struct zpci_dev *get_zdev_by_fid(u32 fid)
72{
73 struct zpci_dev *tmp, *zdev = NULL;
74
75 spin_lock(&zpci_list_lock);
76 list_for_each_entry(tmp, &zpci_list, entry) {
77 if (tmp->fid == fid) {
78 zdev = tmp;
79 zpci_zdev_get(zdev);
80 break;
81 }
82 }
83 spin_unlock(&zpci_list_lock);
84 return zdev;
85}
86
87void zpci_remove_reserved_devices(void)
88{
89 struct zpci_dev *tmp, *zdev;
90 enum zpci_state state;
91 LIST_HEAD(remove);
92
93 spin_lock(&zpci_list_lock);
94 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
95 if (zdev->state == ZPCI_FN_STATE_STANDBY &&
96 !clp_get_state(zdev->fid, &state) &&
97 state == ZPCI_FN_STATE_RESERVED)
98 list_move_tail(&zdev->entry, &remove);
99 }
100 spin_unlock(&zpci_list_lock);
101
102 list_for_each_entry_safe(zdev, tmp, &remove, entry)
103 zpci_device_reserved(zdev);
104}
105
106int pci_domain_nr(struct pci_bus *bus)
107{
108 return ((struct zpci_bus *) bus->sysdata)->domain_nr;
109}
110EXPORT_SYMBOL_GPL(pci_domain_nr);
111
112int pci_proc_domain(struct pci_bus *bus)
113{
114 return pci_domain_nr(bus);
115}
116EXPORT_SYMBOL_GPL(pci_proc_domain);
117
118/* Modify PCI: Register I/O address translation parameters */
119int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
120 u64 base, u64 limit, u64 iota, u8 *status)
121{
122 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
123 struct zpci_fib fib = {0};
124 u8 cc;
125
126 WARN_ON_ONCE(iota & 0x3fff);
127 fib.pba = base;
128 /* Work around off by one in ISM virt device */
129 if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base)
130 fib.pal = limit + (1 << 12);
131 else
132 fib.pal = limit;
133 fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
134 fib.gd = zdev->gisa;
135 cc = zpci_mod_fc(req, &fib, status);
136 if (cc)
137 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
138 return cc;
139}
140EXPORT_SYMBOL_GPL(zpci_register_ioat);
141
142/* Modify PCI: Unregister I/O address translation parameters */
143int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
144{
145 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
146 struct zpci_fib fib = {0};
147 u8 cc, status;
148
149 fib.gd = zdev->gisa;
150
151 cc = zpci_mod_fc(req, &fib, &status);
152 if (cc)
153 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
154 return cc;
155}
156
157/* Modify PCI: Set PCI function measurement parameters */
158int zpci_fmb_enable_device(struct zpci_dev *zdev)
159{
160 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
161 struct zpci_iommu_ctrs *ctrs;
162 struct zpci_fib fib = {0};
163 u8 cc, status;
164
165 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
166 return -EINVAL;
167
168 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
169 if (!zdev->fmb)
170 return -ENOMEM;
171 WARN_ON((u64) zdev->fmb & 0xf);
172
173 /* reset software counters */
174 ctrs = zpci_get_iommu_ctrs(zdev);
175 if (ctrs) {
176 atomic64_set(&ctrs->mapped_pages, 0);
177 atomic64_set(&ctrs->unmapped_pages, 0);
178 atomic64_set(&ctrs->global_rpcits, 0);
179 atomic64_set(&ctrs->sync_map_rpcits, 0);
180 atomic64_set(&ctrs->sync_rpcits, 0);
181 }
182
183
184 fib.fmb_addr = virt_to_phys(zdev->fmb);
185 fib.gd = zdev->gisa;
186 cc = zpci_mod_fc(req, &fib, &status);
187 if (cc) {
188 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
189 zdev->fmb = NULL;
190 }
191 return cc ? -EIO : 0;
192}
193
194/* Modify PCI: Disable PCI function measurement */
195int zpci_fmb_disable_device(struct zpci_dev *zdev)
196{
197 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
198 struct zpci_fib fib = {0};
199 u8 cc, status;
200
201 if (!zdev->fmb)
202 return -EINVAL;
203
204 fib.gd = zdev->gisa;
205
206 /* Function measurement is disabled if fmb address is zero */
207 cc = zpci_mod_fc(req, &fib, &status);
208 if (cc == 3) /* Function already gone. */
209 cc = 0;
210
211 if (!cc) {
212 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
213 zdev->fmb = NULL;
214 }
215 return cc ? -EIO : 0;
216}
217
218static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
219{
220 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
221 u64 data;
222 int rc;
223
224 rc = __zpci_load(&data, req, offset);
225 if (!rc) {
226 data = le64_to_cpu((__force __le64) data);
227 data >>= (8 - len) * 8;
228 *val = (u32) data;
229 } else
230 *val = 0xffffffff;
231 return rc;
232}
233
234static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
235{
236 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
237 u64 data = val;
238 int rc;
239
240 data <<= (8 - len) * 8;
241 data = (__force u64) cpu_to_le64(data);
242 rc = __zpci_store(data, req, offset);
243 return rc;
244}
245
246resource_size_t pcibios_align_resource(void *data, const struct resource *res,
247 resource_size_t size,
248 resource_size_t align)
249{
250 return 0;
251}
252
253/* combine single writes by using store-block insn */
254void __iowrite64_copy(void __iomem *to, const void *from, size_t count)
255{
256 zpci_memcpy_toio(to, from, count * 8);
257}
258
259void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
260 unsigned long prot)
261{
262 /*
263 * When PCI MIO instructions are unavailable the "physical" address
264 * encodes a hint for accessing the PCI memory space it represents.
265 * Just pass it unchanged such that ioread/iowrite can decode it.
266 */
267 if (!static_branch_unlikely(&have_mio))
268 return (void __iomem *)phys_addr;
269
270 return generic_ioremap_prot(phys_addr, size, __pgprot(prot));
271}
272EXPORT_SYMBOL(ioremap_prot);
273
274void iounmap(volatile void __iomem *addr)
275{
276 if (static_branch_likely(&have_mio))
277 generic_iounmap(addr);
278}
279EXPORT_SYMBOL(iounmap);
280
281/* Create a virtual mapping cookie for a PCI BAR */
282static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
283 unsigned long offset, unsigned long max)
284{
285 struct zpci_dev *zdev = to_zpci(pdev);
286 int idx;
287
288 idx = zdev->bars[bar].map_idx;
289 spin_lock(&zpci_iomap_lock);
290 /* Detect overrun */
291 WARN_ON(!++zpci_iomap_start[idx].count);
292 zpci_iomap_start[idx].fh = zdev->fh;
293 zpci_iomap_start[idx].bar = bar;
294 spin_unlock(&zpci_iomap_lock);
295
296 return (void __iomem *) ZPCI_ADDR(idx) + offset;
297}
298
299static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
300 unsigned long offset,
301 unsigned long max)
302{
303 unsigned long barsize = pci_resource_len(pdev, bar);
304 struct zpci_dev *zdev = to_zpci(pdev);
305 void __iomem *iova;
306
307 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
308 return iova ? iova + offset : iova;
309}
310
311void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
312 unsigned long offset, unsigned long max)
313{
314 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
315 return NULL;
316
317 if (static_branch_likely(&have_mio))
318 return pci_iomap_range_mio(pdev, bar, offset, max);
319 else
320 return pci_iomap_range_fh(pdev, bar, offset, max);
321}
322EXPORT_SYMBOL(pci_iomap_range);
323
324void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
325{
326 return pci_iomap_range(dev, bar, 0, maxlen);
327}
328EXPORT_SYMBOL(pci_iomap);
329
330static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
331 unsigned long offset, unsigned long max)
332{
333 unsigned long barsize = pci_resource_len(pdev, bar);
334 struct zpci_dev *zdev = to_zpci(pdev);
335 void __iomem *iova;
336
337 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
338 return iova ? iova + offset : iova;
339}
340
341void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
342 unsigned long offset, unsigned long max)
343{
344 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
345 return NULL;
346
347 if (static_branch_likely(&have_mio))
348 return pci_iomap_wc_range_mio(pdev, bar, offset, max);
349 else
350 return pci_iomap_range_fh(pdev, bar, offset, max);
351}
352EXPORT_SYMBOL(pci_iomap_wc_range);
353
354void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
355{
356 return pci_iomap_wc_range(dev, bar, 0, maxlen);
357}
358EXPORT_SYMBOL(pci_iomap_wc);
359
360static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
361{
362 unsigned int idx = ZPCI_IDX(addr);
363
364 spin_lock(&zpci_iomap_lock);
365 /* Detect underrun */
366 WARN_ON(!zpci_iomap_start[idx].count);
367 if (!--zpci_iomap_start[idx].count) {
368 zpci_iomap_start[idx].fh = 0;
369 zpci_iomap_start[idx].bar = 0;
370 }
371 spin_unlock(&zpci_iomap_lock);
372}
373
374static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
375{
376 iounmap(addr);
377}
378
379void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
380{
381 if (static_branch_likely(&have_mio))
382 pci_iounmap_mio(pdev, addr);
383 else
384 pci_iounmap_fh(pdev, addr);
385}
386EXPORT_SYMBOL(pci_iounmap);
387
388static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
389 int size, u32 *val)
390{
391 struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
392
393 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
394}
395
396static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
397 int size, u32 val)
398{
399 struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
400
401 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
402}
403
404static struct pci_ops pci_root_ops = {
405 .read = pci_read,
406 .write = pci_write,
407};
408
409static void zpci_map_resources(struct pci_dev *pdev)
410{
411 struct zpci_dev *zdev = to_zpci(pdev);
412 resource_size_t len;
413 int i;
414
415 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
416 len = pci_resource_len(pdev, i);
417 if (!len)
418 continue;
419
420 if (zpci_use_mio(zdev))
421 pdev->resource[i].start =
422 (resource_size_t __force) zdev->bars[i].mio_wt;
423 else
424 pdev->resource[i].start = (resource_size_t __force)
425 pci_iomap_range_fh(pdev, i, 0, 0);
426 pdev->resource[i].end = pdev->resource[i].start + len - 1;
427 }
428
429 zpci_iov_map_resources(pdev);
430}
431
432static void zpci_unmap_resources(struct pci_dev *pdev)
433{
434 struct zpci_dev *zdev = to_zpci(pdev);
435 resource_size_t len;
436 int i;
437
438 if (zpci_use_mio(zdev))
439 return;
440
441 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
442 len = pci_resource_len(pdev, i);
443 if (!len)
444 continue;
445 pci_iounmap_fh(pdev, (void __iomem __force *)
446 pdev->resource[i].start);
447 }
448}
449
450static int zpci_alloc_iomap(struct zpci_dev *zdev)
451{
452 unsigned long entry;
453
454 spin_lock(&zpci_iomap_lock);
455 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
456 if (entry == ZPCI_IOMAP_ENTRIES) {
457 spin_unlock(&zpci_iomap_lock);
458 return -ENOSPC;
459 }
460 set_bit(entry, zpci_iomap_bitmap);
461 spin_unlock(&zpci_iomap_lock);
462 return entry;
463}
464
465static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
466{
467 spin_lock(&zpci_iomap_lock);
468 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
469 clear_bit(entry, zpci_iomap_bitmap);
470 spin_unlock(&zpci_iomap_lock);
471}
472
473static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
474{
475 int bar, idx;
476
477 spin_lock(&zpci_iomap_lock);
478 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
479 if (!zdev->bars[bar].size)
480 continue;
481 idx = zdev->bars[bar].map_idx;
482 if (!zpci_iomap_start[idx].count)
483 continue;
484 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
485 }
486 spin_unlock(&zpci_iomap_lock);
487}
488
489void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
490{
491 if (!fh || zdev->fh == fh)
492 return;
493
494 zdev->fh = fh;
495 if (zpci_use_mio(zdev))
496 return;
497 if (zdev->has_resources && zdev_enabled(zdev))
498 zpci_do_update_iomap_fh(zdev, fh);
499}
500
501static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
502 unsigned long size, unsigned long flags)
503{
504 struct resource *r;
505
506 r = kzalloc(sizeof(*r), GFP_KERNEL);
507 if (!r)
508 return NULL;
509
510 r->start = start;
511 r->end = r->start + size - 1;
512 r->flags = flags;
513 r->name = zdev->res_name;
514
515 if (request_resource(&iomem_resource, r)) {
516 kfree(r);
517 return NULL;
518 }
519 return r;
520}
521
522int zpci_setup_bus_resources(struct zpci_dev *zdev)
523{
524 unsigned long addr, size, flags;
525 struct resource *res;
526 int i, entry;
527
528 snprintf(zdev->res_name, sizeof(zdev->res_name),
529 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
530
531 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
532 if (!zdev->bars[i].size)
533 continue;
534 entry = zpci_alloc_iomap(zdev);
535 if (entry < 0)
536 return entry;
537 zdev->bars[i].map_idx = entry;
538
539 /* only MMIO is supported */
540 flags = IORESOURCE_MEM;
541 if (zdev->bars[i].val & 8)
542 flags |= IORESOURCE_PREFETCH;
543 if (zdev->bars[i].val & 4)
544 flags |= IORESOURCE_MEM_64;
545
546 if (zpci_use_mio(zdev))
547 addr = (unsigned long) zdev->bars[i].mio_wt;
548 else
549 addr = ZPCI_ADDR(entry);
550 size = 1UL << zdev->bars[i].size;
551
552 res = __alloc_res(zdev, addr, size, flags);
553 if (!res) {
554 zpci_free_iomap(zdev, entry);
555 return -ENOMEM;
556 }
557 zdev->bars[i].res = res;
558 }
559 zdev->has_resources = 1;
560
561 return 0;
562}
563
564static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
565{
566 struct resource *res;
567 int i;
568
569 pci_lock_rescan_remove();
570 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
571 res = zdev->bars[i].res;
572 if (!res)
573 continue;
574
575 release_resource(res);
576 pci_bus_remove_resource(zdev->zbus->bus, res);
577 zpci_free_iomap(zdev, zdev->bars[i].map_idx);
578 zdev->bars[i].res = NULL;
579 kfree(res);
580 }
581 zdev->has_resources = 0;
582 pci_unlock_rescan_remove();
583}
584
585int pcibios_device_add(struct pci_dev *pdev)
586{
587 struct zpci_dev *zdev = to_zpci(pdev);
588 struct resource *res;
589 int i;
590
591 /* The pdev has a reference to the zdev via its bus */
592 zpci_zdev_get(zdev);
593 if (pdev->is_physfn)
594 pdev->no_vf_scan = 1;
595
596 pdev->dev.groups = zpci_attr_groups;
597 zpci_map_resources(pdev);
598
599 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
600 res = &pdev->resource[i];
601 if (res->parent || !res->flags)
602 continue;
603 pci_claim_resource(pdev, i);
604 }
605
606 return 0;
607}
608
609void pcibios_release_device(struct pci_dev *pdev)
610{
611 struct zpci_dev *zdev = to_zpci(pdev);
612
613 zpci_unmap_resources(pdev);
614 zpci_zdev_put(zdev);
615}
616
617int pcibios_enable_device(struct pci_dev *pdev, int mask)
618{
619 struct zpci_dev *zdev = to_zpci(pdev);
620
621 zpci_debug_init_device(zdev, dev_name(&pdev->dev));
622 zpci_fmb_enable_device(zdev);
623
624 return pci_enable_resources(pdev, mask);
625}
626
627void pcibios_disable_device(struct pci_dev *pdev)
628{
629 struct zpci_dev *zdev = to_zpci(pdev);
630
631 zpci_fmb_disable_device(zdev);
632 zpci_debug_exit_device(zdev);
633}
634
635static int __zpci_register_domain(int domain)
636{
637 spin_lock(&zpci_domain_lock);
638 if (test_bit(domain, zpci_domain)) {
639 spin_unlock(&zpci_domain_lock);
640 pr_err("Domain %04x is already assigned\n", domain);
641 return -EEXIST;
642 }
643 set_bit(domain, zpci_domain);
644 spin_unlock(&zpci_domain_lock);
645 return domain;
646}
647
648static int __zpci_alloc_domain(void)
649{
650 int domain;
651
652 spin_lock(&zpci_domain_lock);
653 /*
654 * We can always auto allocate domains below ZPCI_NR_DEVICES.
655 * There is either a free domain or we have reached the maximum in
656 * which case we would have bailed earlier.
657 */
658 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
659 set_bit(domain, zpci_domain);
660 spin_unlock(&zpci_domain_lock);
661 return domain;
662}
663
664int zpci_alloc_domain(int domain)
665{
666 if (zpci_unique_uid) {
667 if (domain)
668 return __zpci_register_domain(domain);
669 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
670 update_uid_checking(false);
671 }
672 return __zpci_alloc_domain();
673}
674
675void zpci_free_domain(int domain)
676{
677 spin_lock(&zpci_domain_lock);
678 clear_bit(domain, zpci_domain);
679 spin_unlock(&zpci_domain_lock);
680}
681
682
683int zpci_enable_device(struct zpci_dev *zdev)
684{
685 u32 fh = zdev->fh;
686 int rc = 0;
687
688 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
689 rc = -EIO;
690 else
691 zpci_update_fh(zdev, fh);
692 return rc;
693}
694EXPORT_SYMBOL_GPL(zpci_enable_device);
695
696int zpci_disable_device(struct zpci_dev *zdev)
697{
698 u32 fh = zdev->fh;
699 int cc, rc = 0;
700
701 cc = clp_disable_fh(zdev, &fh);
702 if (!cc) {
703 zpci_update_fh(zdev, fh);
704 } else if (cc == CLP_RC_SETPCIFN_ALRDY) {
705 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
706 zdev->fid);
707 /* Function is already disabled - update handle */
708 rc = clp_refresh_fh(zdev->fid, &fh);
709 if (!rc) {
710 zpci_update_fh(zdev, fh);
711 rc = -EINVAL;
712 }
713 } else {
714 rc = -EIO;
715 }
716 return rc;
717}
718EXPORT_SYMBOL_GPL(zpci_disable_device);
719
720/**
721 * zpci_hot_reset_device - perform a reset of the given zPCI function
722 * @zdev: the slot which should be reset
723 *
724 * Performs a low level reset of the zPCI function. The reset is low level in
725 * the sense that the zPCI function can be reset without detaching it from the
726 * common PCI subsystem. The reset may be performed while under control of
727 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
728 * table is reinstated at the end of the reset.
729 *
730 * After the reset the functions internal state is reset to an initial state
731 * equivalent to its state during boot when first probing a driver.
732 * Consequently after reset the PCI function requires re-initialization via the
733 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
734 * and enabling the function via e.g. pci_enable_device_flags(). The caller
735 * must guard against concurrent reset attempts.
736 *
737 * In most cases this function should not be called directly but through
738 * pci_reset_function() or pci_reset_bus() which handle the save/restore and
739 * locking - asserted by lockdep.
740 *
741 * Return: 0 on success and an error value otherwise
742 */
743int zpci_hot_reset_device(struct zpci_dev *zdev)
744{
745 u8 status;
746 int rc;
747
748 lockdep_assert_held(&zdev->state_lock);
749 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
750 if (zdev_enabled(zdev)) {
751 /* Disables device access, DMAs and IRQs (reset state) */
752 rc = zpci_disable_device(zdev);
753 /*
754 * Due to a z/VM vs LPAR inconsistency in the error state the
755 * FH may indicate an enabled device but disable says the
756 * device is already disabled don't treat it as an error here.
757 */
758 if (rc == -EINVAL)
759 rc = 0;
760 if (rc)
761 return rc;
762 }
763
764 rc = zpci_enable_device(zdev);
765 if (rc)
766 return rc;
767
768 if (zdev->dma_table)
769 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
770 virt_to_phys(zdev->dma_table), &status);
771 if (rc) {
772 zpci_disable_device(zdev);
773 return rc;
774 }
775
776 return 0;
777}
778
779/**
780 * zpci_create_device() - Create a new zpci_dev and add it to the zbus
781 * @fid: Function ID of the device to be created
782 * @fh: Current Function Handle of the device to be created
783 * @state: Initial state after creation either Standby or Configured
784 *
785 * Creates a new zpci device and adds it to its, possibly newly created, zbus
786 * as well as zpci_list.
787 *
788 * Returns: the zdev on success or an error pointer otherwise
789 */
790struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
791{
792 struct zpci_dev *zdev;
793 int rc;
794
795 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state);
796 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
797 if (!zdev)
798 return ERR_PTR(-ENOMEM);
799
800 /* FID and Function Handle are the static/dynamic identifiers */
801 zdev->fid = fid;
802 zdev->fh = fh;
803
804 /* Query function properties and update zdev */
805 rc = clp_query_pci_fn(zdev);
806 if (rc)
807 goto error;
808 zdev->state = state;
809
810 kref_init(&zdev->kref);
811 mutex_init(&zdev->state_lock);
812 mutex_init(&zdev->fmb_lock);
813 mutex_init(&zdev->kzdev_lock);
814
815 rc = zpci_init_iommu(zdev);
816 if (rc)
817 goto error;
818
819 rc = zpci_bus_device_register(zdev, &pci_root_ops);
820 if (rc)
821 goto error_destroy_iommu;
822
823 spin_lock(&zpci_list_lock);
824 list_add_tail(&zdev->entry, &zpci_list);
825 spin_unlock(&zpci_list_lock);
826
827 return zdev;
828
829error_destroy_iommu:
830 zpci_destroy_iommu(zdev);
831error:
832 zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc);
833 kfree(zdev);
834 return ERR_PTR(rc);
835}
836
837bool zpci_is_device_configured(struct zpci_dev *zdev)
838{
839 enum zpci_state state = zdev->state;
840
841 return state != ZPCI_FN_STATE_RESERVED &&
842 state != ZPCI_FN_STATE_STANDBY;
843}
844
845/**
846 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
847 * @zdev: The zpci_dev to be configured
848 * @fh: The general function handle supplied by the platform
849 *
850 * Given a device in the configuration state Configured, enables, scans and
851 * adds it to the common code PCI subsystem if possible. If any failure occurs,
852 * the zpci_dev is left disabled.
853 *
854 * Return: 0 on success, or an error code otherwise
855 */
856int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
857{
858 zpci_update_fh(zdev, fh);
859 return zpci_bus_scan_device(zdev);
860}
861
862/**
863 * zpci_deconfigure_device() - Deconfigure a zpci_dev
864 * @zdev: The zpci_dev to configure
865 *
866 * Deconfigure a zPCI function that is currently configured and possibly known
867 * to the common code PCI subsystem.
868 * If any failure occurs the device is left as is.
869 *
870 * Return: 0 on success, or an error code otherwise
871 */
872int zpci_deconfigure_device(struct zpci_dev *zdev)
873{
874 int rc;
875
876 lockdep_assert_held(&zdev->state_lock);
877 if (zdev->state != ZPCI_FN_STATE_CONFIGURED)
878 return 0;
879
880 if (zdev->zbus->bus)
881 zpci_bus_remove_device(zdev, false);
882
883 if (zdev_enabled(zdev)) {
884 rc = zpci_disable_device(zdev);
885 if (rc)
886 return rc;
887 }
888
889 rc = sclp_pci_deconfigure(zdev->fid);
890 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
891 if (rc)
892 return rc;
893 zdev->state = ZPCI_FN_STATE_STANDBY;
894
895 return 0;
896}
897
898/**
899 * zpci_device_reserved() - Mark device as reserved
900 * @zdev: the zpci_dev that was reserved
901 *
902 * Handle the case that a given zPCI function was reserved by another system.
903 * After a call to this function the zpci_dev can not be found via
904 * get_zdev_by_fid() anymore but may still be accessible via existing
905 * references though it will not be functional anymore.
906 */
907void zpci_device_reserved(struct zpci_dev *zdev)
908{
909 /*
910 * Remove device from zpci_list as it is going away. This also
911 * makes sure we ignore subsequent zPCI events for this device.
912 */
913 spin_lock(&zpci_list_lock);
914 list_del(&zdev->entry);
915 spin_unlock(&zpci_list_lock);
916 zdev->state = ZPCI_FN_STATE_RESERVED;
917 zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
918 zpci_zdev_put(zdev);
919}
920
921void zpci_release_device(struct kref *kref)
922{
923 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
924 int ret;
925
926 if (zdev->has_hp_slot)
927 zpci_exit_slot(zdev);
928
929 if (zdev->zbus->bus)
930 zpci_bus_remove_device(zdev, false);
931
932 if (zdev_enabled(zdev))
933 zpci_disable_device(zdev);
934
935 switch (zdev->state) {
936 case ZPCI_FN_STATE_CONFIGURED:
937 ret = sclp_pci_deconfigure(zdev->fid);
938 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret);
939 fallthrough;
940 case ZPCI_FN_STATE_STANDBY:
941 if (zdev->has_hp_slot)
942 zpci_exit_slot(zdev);
943 spin_lock(&zpci_list_lock);
944 list_del(&zdev->entry);
945 spin_unlock(&zpci_list_lock);
946 zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
947 fallthrough;
948 case ZPCI_FN_STATE_RESERVED:
949 if (zdev->has_resources)
950 zpci_cleanup_bus_resources(zdev);
951 zpci_bus_device_unregister(zdev);
952 zpci_destroy_iommu(zdev);
953 fallthrough;
954 default:
955 break;
956 }
957 zpci_dbg(3, "rem fid:%x\n", zdev->fid);
958 kfree_rcu(zdev, rcu);
959}
960
961int zpci_report_error(struct pci_dev *pdev,
962 struct zpci_report_error_header *report)
963{
964 struct zpci_dev *zdev = to_zpci(pdev);
965
966 return sclp_pci_report(report, zdev->fh, zdev->fid);
967}
968EXPORT_SYMBOL(zpci_report_error);
969
970/**
971 * zpci_clear_error_state() - Clears the zPCI error state of the device
972 * @zdev: The zdev for which the zPCI error state should be reset
973 *
974 * Clear the zPCI error state of the device. If clearing the zPCI error state
975 * fails the device is left in the error state. In this case it may make sense
976 * to call zpci_io_perm_failure() on the associated pdev if it exists.
977 *
978 * Returns: 0 on success, -EIO otherwise
979 */
980int zpci_clear_error_state(struct zpci_dev *zdev)
981{
982 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
983 struct zpci_fib fib = {0};
984 u8 status;
985 int cc;
986
987 cc = zpci_mod_fc(req, &fib, &status);
988 if (cc) {
989 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
990 return -EIO;
991 }
992
993 return 0;
994}
995
996/**
997 * zpci_reset_load_store_blocked() - Re-enables L/S from error state
998 * @zdev: The zdev for which to unblock load/store access
999 *
1000 * Re-enables load/store access for a PCI function in the error state while
1001 * keeping DMA blocked. In this state drivers can poke MMIO space to determine
1002 * if error recovery is possible while catching any rogue DMA access from the
1003 * device.
1004 *
1005 * Returns: 0 on success, -EIO otherwise
1006 */
1007int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1008{
1009 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1010 struct zpci_fib fib = {0};
1011 u8 status;
1012 int cc;
1013
1014 cc = zpci_mod_fc(req, &fib, &status);
1015 if (cc) {
1016 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1017 return -EIO;
1018 }
1019
1020 return 0;
1021}
1022
1023static int zpci_mem_init(void)
1024{
1025 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1026 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1027
1028 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1029 __alignof__(struct zpci_fmb), 0, NULL);
1030 if (!zdev_fmb_cache)
1031 goto error_fmb;
1032
1033 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1034 sizeof(*zpci_iomap_start), GFP_KERNEL);
1035 if (!zpci_iomap_start)
1036 goto error_iomap;
1037
1038 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1039 sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1040 if (!zpci_iomap_bitmap)
1041 goto error_iomap_bitmap;
1042
1043 if (static_branch_likely(&have_mio))
1044 clp_setup_writeback_mio();
1045
1046 return 0;
1047error_iomap_bitmap:
1048 kfree(zpci_iomap_start);
1049error_iomap:
1050 kmem_cache_destroy(zdev_fmb_cache);
1051error_fmb:
1052 return -ENOMEM;
1053}
1054
1055static void zpci_mem_exit(void)
1056{
1057 kfree(zpci_iomap_bitmap);
1058 kfree(zpci_iomap_start);
1059 kmem_cache_destroy(zdev_fmb_cache);
1060}
1061
1062static unsigned int s390_pci_probe __initdata = 1;
1063unsigned int s390_pci_force_floating __initdata;
1064static unsigned int s390_pci_initialized;
1065
1066char * __init pcibios_setup(char *str)
1067{
1068 if (!strcmp(str, "off")) {
1069 s390_pci_probe = 0;
1070 return NULL;
1071 }
1072 if (!strcmp(str, "nomio")) {
1073 S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO;
1074 return NULL;
1075 }
1076 if (!strcmp(str, "force_floating")) {
1077 s390_pci_force_floating = 1;
1078 return NULL;
1079 }
1080 if (!strcmp(str, "norid")) {
1081 s390_pci_no_rid = 1;
1082 return NULL;
1083 }
1084 return str;
1085}
1086
1087bool zpci_is_enabled(void)
1088{
1089 return s390_pci_initialized;
1090}
1091
1092static int __init pci_base_init(void)
1093{
1094 int rc;
1095
1096 if (!s390_pci_probe)
1097 return 0;
1098
1099 if (!test_facility(69) || !test_facility(71)) {
1100 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1101 return 0;
1102 }
1103
1104 if (MACHINE_HAS_PCI_MIO) {
1105 static_branch_enable(&have_mio);
1106 system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT);
1107 }
1108
1109 rc = zpci_debug_init();
1110 if (rc)
1111 goto out;
1112
1113 rc = zpci_mem_init();
1114 if (rc)
1115 goto out_mem;
1116
1117 rc = zpci_irq_init();
1118 if (rc)
1119 goto out_irq;
1120
1121 rc = clp_scan_pci_devices();
1122 if (rc)
1123 goto out_find;
1124 zpci_bus_scan_busses();
1125
1126 s390_pci_initialized = 1;
1127 return 0;
1128
1129out_find:
1130 zpci_irq_exit();
1131out_irq:
1132 zpci_mem_exit();
1133out_mem:
1134 zpci_debug_exit();
1135out:
1136 return rc;
1137}
1138subsys_initcall_sync(pci_base_init);