Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory bandwidth monitoring and allocation library
4 *
5 * Copyright (C) 2018 Intel Corporation
6 *
7 * Authors:
8 * Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>,
9 * Fenghua Yu <fenghua.yu@intel.com>
10 */
11#include "resctrl.h"
12
13#define UNCORE_IMC "uncore_imc"
14#define READ_FILE_NAME "events/cas_count_read"
15#define DYN_PMU_PATH "/sys/bus/event_source/devices"
16#define SCALE 0.00006103515625
17#define MAX_IMCS 20
18#define MAX_TOKENS 5
19
20#define CON_MBM_LOCAL_BYTES_PATH \
21 "%s/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
22
23struct membw_read_format {
24 __u64 value; /* The value of the event */
25 __u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
26 __u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
27 __u64 id; /* if PERF_FORMAT_ID */
28};
29
30struct imc_counter_config {
31 __u32 type;
32 __u64 event;
33 __u64 umask;
34 struct perf_event_attr pe;
35 struct membw_read_format return_value;
36 int fd;
37};
38
39static char mbm_total_path[1024];
40static int imcs;
41static struct imc_counter_config imc_counters_config[MAX_IMCS];
42static const struct resctrl_test *current_test;
43
44static void read_mem_bw_initialize_perf_event_attr(int i)
45{
46 memset(&imc_counters_config[i].pe, 0,
47 sizeof(struct perf_event_attr));
48 imc_counters_config[i].pe.type = imc_counters_config[i].type;
49 imc_counters_config[i].pe.size = sizeof(struct perf_event_attr);
50 imc_counters_config[i].pe.disabled = 1;
51 imc_counters_config[i].pe.inherit = 1;
52 imc_counters_config[i].pe.exclude_guest = 0;
53 imc_counters_config[i].pe.config =
54 imc_counters_config[i].umask << 8 |
55 imc_counters_config[i].event;
56 imc_counters_config[i].pe.sample_type = PERF_SAMPLE_IDENTIFIER;
57 imc_counters_config[i].pe.read_format =
58 PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING;
59}
60
61static void read_mem_bw_ioctl_perf_event_ioc_reset_enable(int i)
62{
63 ioctl(imc_counters_config[i].fd, PERF_EVENT_IOC_RESET, 0);
64 ioctl(imc_counters_config[i].fd, PERF_EVENT_IOC_ENABLE, 0);
65}
66
67static void read_mem_bw_ioctl_perf_event_ioc_disable(int i)
68{
69 ioctl(imc_counters_config[i].fd, PERF_EVENT_IOC_DISABLE, 0);
70}
71
72/*
73 * get_read_event_and_umask: Parse config into event and umask
74 * @cas_count_cfg: Config
75 * @count: iMC number
76 */
77static void get_read_event_and_umask(char *cas_count_cfg, int count)
78{
79 char *token[MAX_TOKENS];
80 int i = 0;
81
82 token[0] = strtok(cas_count_cfg, "=,");
83
84 for (i = 1; i < MAX_TOKENS; i++)
85 token[i] = strtok(NULL, "=,");
86
87 for (i = 0; i < MAX_TOKENS - 1; i++) {
88 if (!token[i])
89 break;
90 if (strcmp(token[i], "event") == 0)
91 imc_counters_config[count].event = strtol(token[i + 1], NULL, 16);
92 if (strcmp(token[i], "umask") == 0)
93 imc_counters_config[count].umask = strtol(token[i + 1], NULL, 16);
94 }
95}
96
97static int open_perf_read_event(int i, int cpu_no)
98{
99 imc_counters_config[i].fd =
100 perf_event_open(&imc_counters_config[i].pe, -1, cpu_no, -1,
101 PERF_FLAG_FD_CLOEXEC);
102
103 if (imc_counters_config[i].fd == -1) {
104 fprintf(stderr, "Error opening leader %llx\n",
105 imc_counters_config[i].pe.config);
106
107 return -1;
108 }
109
110 return 0;
111}
112
113/* Get type and config of an iMC counter's read event. */
114static int read_from_imc_dir(char *imc_dir, int count)
115{
116 char cas_count_cfg[1024], imc_counter_cfg[1024], imc_counter_type[1024];
117 FILE *fp;
118
119 /* Get type of iMC counter */
120 sprintf(imc_counter_type, "%s%s", imc_dir, "type");
121 fp = fopen(imc_counter_type, "r");
122 if (!fp) {
123 ksft_perror("Failed to open iMC counter type file");
124
125 return -1;
126 }
127 if (fscanf(fp, "%u", &imc_counters_config[count].type) <= 0) {
128 ksft_perror("Could not get iMC type");
129 fclose(fp);
130
131 return -1;
132 }
133 fclose(fp);
134
135 /* Get read config */
136 sprintf(imc_counter_cfg, "%s%s", imc_dir, READ_FILE_NAME);
137 fp = fopen(imc_counter_cfg, "r");
138 if (!fp) {
139 ksft_perror("Failed to open iMC config file");
140
141 return -1;
142 }
143 if (fscanf(fp, "%1023s", cas_count_cfg) <= 0) {
144 ksft_perror("Could not get iMC cas count read");
145 fclose(fp);
146
147 return -1;
148 }
149 fclose(fp);
150
151 get_read_event_and_umask(cas_count_cfg, count);
152
153 return 0;
154}
155
156/*
157 * A system can have 'n' number of iMC (Integrated Memory Controller)
158 * counters, get that 'n'. Discover the properties of the available
159 * counters in support of needed performance measurement via perf.
160 * For each iMC counter get it's type and config. Also obtain each
161 * counter's event and umask for the memory read events that will be
162 * measured.
163 *
164 * Enumerate all these details into an array of structures.
165 *
166 * Return: >= 0 on success. < 0 on failure.
167 */
168static int num_of_imcs(void)
169{
170 char imc_dir[512], *temp;
171 unsigned int count = 0;
172 struct dirent *ep;
173 int ret;
174 DIR *dp;
175
176 dp = opendir(DYN_PMU_PATH);
177 if (dp) {
178 while ((ep = readdir(dp))) {
179 temp = strstr(ep->d_name, UNCORE_IMC);
180 if (!temp)
181 continue;
182
183 /*
184 * imc counters are named as "uncore_imc_<n>", hence
185 * increment the pointer to point to <n>. Note that
186 * sizeof(UNCORE_IMC) would count for null character as
187 * well and hence the last underscore character in
188 * uncore_imc'_' need not be counted.
189 */
190 temp = temp + sizeof(UNCORE_IMC);
191
192 /*
193 * Some directories under "DYN_PMU_PATH" could have
194 * names like "uncore_imc_free_running", hence, check if
195 * first character is a numerical digit or not.
196 */
197 if (temp[0] >= '0' && temp[0] <= '9') {
198 sprintf(imc_dir, "%s/%s/", DYN_PMU_PATH,
199 ep->d_name);
200 ret = read_from_imc_dir(imc_dir, count);
201 if (ret) {
202 closedir(dp);
203
204 return ret;
205 }
206 count++;
207 }
208 }
209 closedir(dp);
210 if (count == 0) {
211 ksft_print_msg("Unable to find iMC counters\n");
212
213 return -1;
214 }
215 } else {
216 ksft_perror("Unable to open PMU directory");
217
218 return -1;
219 }
220
221 return count;
222}
223
224int initialize_read_mem_bw_imc(void)
225{
226 int imc;
227
228 imcs = num_of_imcs();
229 if (imcs <= 0)
230 return imcs;
231
232 /* Initialize perf_event_attr structures for all iMC's */
233 for (imc = 0; imc < imcs; imc++)
234 read_mem_bw_initialize_perf_event_attr(imc);
235
236 return 0;
237}
238
239static void perf_close_imc_read_mem_bw(void)
240{
241 int mc;
242
243 for (mc = 0; mc < imcs; mc++) {
244 if (imc_counters_config[mc].fd != -1)
245 close(imc_counters_config[mc].fd);
246 }
247}
248
249/*
250 * perf_open_imc_read_mem_bw - Open perf fds for IMCs
251 * @cpu_no: CPU number that the benchmark PID is bound to
252 *
253 * Return: = 0 on success. < 0 on failure.
254 */
255static int perf_open_imc_read_mem_bw(int cpu_no)
256{
257 int imc, ret;
258
259 for (imc = 0; imc < imcs; imc++)
260 imc_counters_config[imc].fd = -1;
261
262 for (imc = 0; imc < imcs; imc++) {
263 ret = open_perf_read_event(imc, cpu_no);
264 if (ret)
265 goto close_fds;
266 }
267
268 return 0;
269
270close_fds:
271 perf_close_imc_read_mem_bw();
272 return -1;
273}
274
275/*
276 * do_imc_read_mem_bw_test - Perform memory bandwidth test
277 *
278 * Runs memory bandwidth test over one second period. Also, handles starting
279 * and stopping of the IMC perf counters around the test.
280 */
281static void do_imc_read_mem_bw_test(void)
282{
283 int imc;
284
285 for (imc = 0; imc < imcs; imc++)
286 read_mem_bw_ioctl_perf_event_ioc_reset_enable(imc);
287
288 sleep(1);
289
290 /* Stop counters after a second to get results. */
291 for (imc = 0; imc < imcs; imc++)
292 read_mem_bw_ioctl_perf_event_ioc_disable(imc);
293}
294
295/*
296 * get_read_mem_bw_imc - Memory read bandwidth as reported by iMC counters
297 *
298 * Memory read bandwidth utilized by a process on a socket can be calculated
299 * using iMC counters' read events. Perf events are used to read these
300 * counters.
301 *
302 * Return: = 0 on success. < 0 on failure.
303 */
304static int get_read_mem_bw_imc(float *bw_imc)
305{
306 float reads = 0, of_mul_read = 1;
307 int imc;
308
309 /*
310 * Log read event values from all iMC counters into
311 * struct imc_counter_config.
312 * Take overflow into consideration before calculating total bandwidth.
313 */
314 for (imc = 0; imc < imcs; imc++) {
315 struct imc_counter_config *r =
316 &imc_counters_config[imc];
317
318 if (read(r->fd, &r->return_value,
319 sizeof(struct membw_read_format)) == -1) {
320 ksft_perror("Couldn't get read bandwidth through iMC");
321 return -1;
322 }
323
324 __u64 r_time_enabled = r->return_value.time_enabled;
325 __u64 r_time_running = r->return_value.time_running;
326
327 if (r_time_enabled != r_time_running)
328 of_mul_read = (float)r_time_enabled /
329 (float)r_time_running;
330
331 reads += r->return_value.value * of_mul_read * SCALE;
332 }
333
334 *bw_imc = reads;
335 return 0;
336}
337
338/*
339 * initialize_mem_bw_resctrl: Appropriately populate "mbm_total_path"
340 * @param: Parameters passed to resctrl_val()
341 * @domain_id: Domain ID (cache ID; for MB, L3 cache ID)
342 */
343void initialize_mem_bw_resctrl(const struct resctrl_val_param *param,
344 int domain_id)
345{
346 sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
347 param->ctrlgrp, domain_id);
348}
349
350/*
351 * Open file to read MBM local bytes from resctrl FS
352 */
353static FILE *open_mem_bw_resctrl(const char *mbm_bw_file)
354{
355 FILE *fp;
356
357 fp = fopen(mbm_bw_file, "r");
358 if (!fp)
359 ksft_perror("Failed to open total memory bandwidth file");
360
361 return fp;
362}
363
364/*
365 * Get MBM Local bytes as reported by resctrl FS
366 */
367static int get_mem_bw_resctrl(FILE *fp, unsigned long *mbm_total)
368{
369 if (fscanf(fp, "%lu\n", mbm_total) <= 0) {
370 ksft_perror("Could not get MBM local bytes");
371 return -1;
372 }
373 return 0;
374}
375
376static pid_t bm_pid;
377
378void ctrlc_handler(int signum, siginfo_t *info, void *ptr)
379{
380 /* Only kill child after bm_pid is set after fork() */
381 if (bm_pid)
382 kill(bm_pid, SIGKILL);
383 umount_resctrlfs();
384 if (current_test && current_test->cleanup)
385 current_test->cleanup();
386 ksft_print_msg("Ending\n\n");
387
388 exit(EXIT_SUCCESS);
389}
390
391/*
392 * Register CTRL-C handler for parent, as it has to kill
393 * child process before exiting.
394 */
395int signal_handler_register(const struct resctrl_test *test)
396{
397 struct sigaction sigact = {};
398 int ret = 0;
399
400 bm_pid = 0;
401
402 current_test = test;
403 sigact.sa_sigaction = ctrlc_handler;
404 sigemptyset(&sigact.sa_mask);
405 sigact.sa_flags = SA_SIGINFO;
406 if (sigaction(SIGINT, &sigact, NULL) ||
407 sigaction(SIGTERM, &sigact, NULL) ||
408 sigaction(SIGHUP, &sigact, NULL)) {
409 ksft_perror("sigaction");
410 ret = -1;
411 }
412 return ret;
413}
414
415/*
416 * Reset signal handler to SIG_DFL.
417 * Non-Value return because the caller should keep
418 * the error code of other path even if sigaction fails.
419 */
420void signal_handler_unregister(void)
421{
422 struct sigaction sigact = {};
423
424 current_test = NULL;
425 sigact.sa_handler = SIG_DFL;
426 sigemptyset(&sigact.sa_mask);
427 if (sigaction(SIGINT, &sigact, NULL) ||
428 sigaction(SIGTERM, &sigact, NULL) ||
429 sigaction(SIGHUP, &sigact, NULL)) {
430 ksft_perror("sigaction");
431 }
432}
433
434/*
435 * print_results_bw: the memory bandwidth results are stored in a file
436 * @filename: file that stores the results
437 * @bm_pid: child pid that runs benchmark
438 * @bw_imc: perf imc counter value
439 * @bw_resc: memory bandwidth value
440 *
441 * Return: 0 on success, < 0 on error.
442 */
443static int print_results_bw(char *filename, pid_t bm_pid, float bw_imc,
444 unsigned long bw_resc)
445{
446 unsigned long diff = fabs(bw_imc - bw_resc);
447 FILE *fp;
448
449 if (strcmp(filename, "stdio") == 0 || strcmp(filename, "stderr") == 0) {
450 printf("Pid: %d \t Mem_BW_iMC: %f \t ", (int)bm_pid, bw_imc);
451 printf("Mem_BW_resc: %lu \t Difference: %lu\n", bw_resc, diff);
452 } else {
453 fp = fopen(filename, "a");
454 if (!fp) {
455 ksft_perror("Cannot open results file");
456
457 return -1;
458 }
459 if (fprintf(fp, "Pid: %d \t Mem_BW_iMC: %f \t Mem_BW_resc: %lu \t Difference: %lu\n",
460 (int)bm_pid, bw_imc, bw_resc, diff) <= 0) {
461 ksft_print_msg("Could not log results\n");
462 fclose(fp);
463
464 return -1;
465 }
466 fclose(fp);
467 }
468
469 return 0;
470}
471
472/*
473 * measure_read_mem_bw - Measures read memory bandwidth numbers while benchmark runs
474 * @uparams: User supplied parameters
475 * @param: Parameters passed to resctrl_val()
476 * @bm_pid: PID that runs the benchmark
477 *
478 * Measure memory bandwidth from resctrl and from another source which is
479 * perf imc value or could be something else if perf imc event is not
480 * available. Compare the two values to validate resctrl value. It takes
481 * 1 sec to measure the data.
482 * resctrl does not distinguish between read and write operations so
483 * its data includes all memory operations.
484 */
485int measure_read_mem_bw(const struct user_params *uparams,
486 struct resctrl_val_param *param, pid_t bm_pid)
487{
488 unsigned long bw_resc, bw_resc_start, bw_resc_end;
489 FILE *mem_bw_fp;
490 float bw_imc;
491 int ret;
492
493 mem_bw_fp = open_mem_bw_resctrl(mbm_total_path);
494 if (!mem_bw_fp)
495 return -1;
496
497 ret = perf_open_imc_read_mem_bw(uparams->cpu);
498 if (ret < 0)
499 goto close_fp;
500
501 ret = get_mem_bw_resctrl(mem_bw_fp, &bw_resc_start);
502 if (ret < 0)
503 goto close_imc;
504
505 rewind(mem_bw_fp);
506
507 do_imc_read_mem_bw_test();
508
509 ret = get_mem_bw_resctrl(mem_bw_fp, &bw_resc_end);
510 if (ret < 0)
511 goto close_imc;
512
513 ret = get_read_mem_bw_imc(&bw_imc);
514 if (ret < 0)
515 goto close_imc;
516
517 perf_close_imc_read_mem_bw();
518 fclose(mem_bw_fp);
519
520 bw_resc = (bw_resc_end - bw_resc_start) / MB;
521
522 return print_results_bw(param->filename, bm_pid, bw_imc, bw_resc);
523
524close_imc:
525 perf_close_imc_read_mem_bw();
526close_fp:
527 fclose(mem_bw_fp);
528 return ret;
529}
530
531/*
532 * resctrl_val: execute benchmark and measure memory bandwidth on
533 * the benchmark
534 * @test: test information structure
535 * @uparams: user supplied parameters
536 * @param: parameters passed to resctrl_val()
537 *
538 * Return: 0 when the test was run, < 0 on error.
539 */
540int resctrl_val(const struct resctrl_test *test,
541 const struct user_params *uparams,
542 struct resctrl_val_param *param)
543{
544 unsigned char *buf = NULL;
545 cpu_set_t old_affinity;
546 int domain_id;
547 int ret = 0;
548 pid_t ppid;
549
550 if (strcmp(param->filename, "") == 0)
551 sprintf(param->filename, "stdio");
552
553 ret = get_domain_id(test->resource, uparams->cpu, &domain_id);
554 if (ret < 0) {
555 ksft_print_msg("Could not get domain ID\n");
556 return ret;
557 }
558
559 ppid = getpid();
560
561 /* Taskset test to specified CPU. */
562 ret = taskset_benchmark(ppid, uparams->cpu, &old_affinity);
563 if (ret)
564 return ret;
565
566 /* Write test to specified control & monitoring group in resctrl FS. */
567 ret = write_bm_pid_to_resctrl(ppid, param->ctrlgrp, param->mongrp);
568 if (ret)
569 goto reset_affinity;
570
571 if (param->init) {
572 ret = param->init(param, domain_id);
573 if (ret)
574 goto reset_affinity;
575 }
576
577 /*
578 * If not running user provided benchmark, run the default
579 * "fill_buf". First phase of "fill_buf" is to prepare the
580 * buffer that the benchmark will operate on. No measurements
581 * are needed during this phase and prepared memory will be
582 * passed to next part of benchmark via copy-on-write thus
583 * no impact on the benchmark that relies on reading from
584 * memory only.
585 */
586 if (param->fill_buf) {
587 buf = alloc_buffer(param->fill_buf->buf_size,
588 param->fill_buf->memflush);
589 if (!buf) {
590 ret = -ENOMEM;
591 goto reset_affinity;
592 }
593 }
594
595 fflush(stdout);
596 bm_pid = fork();
597 if (bm_pid == -1) {
598 ret = -errno;
599 ksft_perror("Unable to fork");
600 goto free_buf;
601 }
602
603 /*
604 * What needs to be measured runs in separate process until
605 * terminated.
606 */
607 if (bm_pid == 0) {
608 if (param->fill_buf)
609 fill_cache_read(buf, param->fill_buf->buf_size, false);
610 else if (uparams->benchmark_cmd[0])
611 execvp(uparams->benchmark_cmd[0], (char **)uparams->benchmark_cmd);
612 exit(EXIT_SUCCESS);
613 }
614
615 ksft_print_msg("Benchmark PID: %d\n", (int)bm_pid);
616
617 /* Give benchmark enough time to fully run. */
618 sleep(1);
619
620 /* Test runs until the callback setup() tells the test to stop. */
621 while (1) {
622 ret = param->setup(test, uparams, param);
623 if (ret == END_OF_TESTS) {
624 ret = 0;
625 break;
626 }
627 if (ret < 0)
628 break;
629
630 ret = param->measure(uparams, param, bm_pid);
631 if (ret)
632 break;
633 }
634
635 kill(bm_pid, SIGKILL);
636free_buf:
637 free(buf);
638reset_affinity:
639 taskset_restore(ppid, &old_affinity);
640 return ret;
641}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory bandwidth monitoring and allocation library
4 *
5 * Copyright (C) 2018 Intel Corporation
6 *
7 * Authors:
8 * Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>,
9 * Fenghua Yu <fenghua.yu@intel.com>
10 */
11#include "resctrl.h"
12
13#define UNCORE_IMC "uncore_imc"
14#define READ_FILE_NAME "events/cas_count_read"
15#define WRITE_FILE_NAME "events/cas_count_write"
16#define DYN_PMU_PATH "/sys/bus/event_source/devices"
17#define SCALE 0.00006103515625
18#define MAX_IMCS 20
19#define MAX_TOKENS 5
20#define READ 0
21#define WRITE 1
22#define CON_MON_MBM_LOCAL_BYTES_PATH \
23 "%s/%s/mon_groups/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
24
25#define CON_MBM_LOCAL_BYTES_PATH \
26 "%s/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
27
28#define MON_MBM_LOCAL_BYTES_PATH \
29 "%s/mon_groups/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
30
31#define MBM_LOCAL_BYTES_PATH \
32 "%s/mon_data/mon_L3_%02d/mbm_local_bytes"
33
34#define CON_MON_LCC_OCCUP_PATH \
35 "%s/%s/mon_groups/%s/mon_data/mon_L3_%02d/llc_occupancy"
36
37#define CON_LCC_OCCUP_PATH \
38 "%s/%s/mon_data/mon_L3_%02d/llc_occupancy"
39
40#define MON_LCC_OCCUP_PATH \
41 "%s/mon_groups/%s/mon_data/mon_L3_%02d/llc_occupancy"
42
43#define LCC_OCCUP_PATH \
44 "%s/mon_data/mon_L3_%02d/llc_occupancy"
45
46struct membw_read_format {
47 __u64 value; /* The value of the event */
48 __u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
49 __u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
50 __u64 id; /* if PERF_FORMAT_ID */
51};
52
53struct imc_counter_config {
54 __u32 type;
55 __u64 event;
56 __u64 umask;
57 struct perf_event_attr pe;
58 struct membw_read_format return_value;
59 int fd;
60};
61
62static char mbm_total_path[1024];
63static int imcs;
64static struct imc_counter_config imc_counters_config[MAX_IMCS][2];
65
66void membw_initialize_perf_event_attr(int i, int j)
67{
68 memset(&imc_counters_config[i][j].pe, 0,
69 sizeof(struct perf_event_attr));
70 imc_counters_config[i][j].pe.type = imc_counters_config[i][j].type;
71 imc_counters_config[i][j].pe.size = sizeof(struct perf_event_attr);
72 imc_counters_config[i][j].pe.disabled = 1;
73 imc_counters_config[i][j].pe.inherit = 1;
74 imc_counters_config[i][j].pe.exclude_guest = 0;
75 imc_counters_config[i][j].pe.config =
76 imc_counters_config[i][j].umask << 8 |
77 imc_counters_config[i][j].event;
78 imc_counters_config[i][j].pe.sample_type = PERF_SAMPLE_IDENTIFIER;
79 imc_counters_config[i][j].pe.read_format =
80 PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING;
81}
82
83void membw_ioctl_perf_event_ioc_reset_enable(int i, int j)
84{
85 ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_RESET, 0);
86 ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_ENABLE, 0);
87}
88
89void membw_ioctl_perf_event_ioc_disable(int i, int j)
90{
91 ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_DISABLE, 0);
92}
93
94/*
95 * get_event_and_umask: Parse config into event and umask
96 * @cas_count_cfg: Config
97 * @count: iMC number
98 * @op: Operation (read/write)
99 */
100void get_event_and_umask(char *cas_count_cfg, int count, bool op)
101{
102 char *token[MAX_TOKENS];
103 int i = 0;
104
105 strcat(cas_count_cfg, ",");
106 token[0] = strtok(cas_count_cfg, "=,");
107
108 for (i = 1; i < MAX_TOKENS; i++)
109 token[i] = strtok(NULL, "=,");
110
111 for (i = 0; i < MAX_TOKENS; i++) {
112 if (!token[i])
113 break;
114 if (strcmp(token[i], "event") == 0) {
115 if (op == READ)
116 imc_counters_config[count][READ].event =
117 strtol(token[i + 1], NULL, 16);
118 else
119 imc_counters_config[count][WRITE].event =
120 strtol(token[i + 1], NULL, 16);
121 }
122 if (strcmp(token[i], "umask") == 0) {
123 if (op == READ)
124 imc_counters_config[count][READ].umask =
125 strtol(token[i + 1], NULL, 16);
126 else
127 imc_counters_config[count][WRITE].umask =
128 strtol(token[i + 1], NULL, 16);
129 }
130 }
131}
132
133static int open_perf_event(int i, int cpu_no, int j)
134{
135 imc_counters_config[i][j].fd =
136 perf_event_open(&imc_counters_config[i][j].pe, -1, cpu_no, -1,
137 PERF_FLAG_FD_CLOEXEC);
138
139 if (imc_counters_config[i][j].fd == -1) {
140 fprintf(stderr, "Error opening leader %llx\n",
141 imc_counters_config[i][j].pe.config);
142
143 return -1;
144 }
145
146 return 0;
147}
148
149/* Get type and config (read and write) of an iMC counter */
150static int read_from_imc_dir(char *imc_dir, int count)
151{
152 char cas_count_cfg[1024], imc_counter_cfg[1024], imc_counter_type[1024];
153 FILE *fp;
154
155 /* Get type of iMC counter */
156 sprintf(imc_counter_type, "%s%s", imc_dir, "type");
157 fp = fopen(imc_counter_type, "r");
158 if (!fp) {
159 perror("Failed to open imc counter type file");
160
161 return -1;
162 }
163 if (fscanf(fp, "%u", &imc_counters_config[count][READ].type) <= 0) {
164 perror("Could not get imc type");
165 fclose(fp);
166
167 return -1;
168 }
169 fclose(fp);
170
171 imc_counters_config[count][WRITE].type =
172 imc_counters_config[count][READ].type;
173
174 /* Get read config */
175 sprintf(imc_counter_cfg, "%s%s", imc_dir, READ_FILE_NAME);
176 fp = fopen(imc_counter_cfg, "r");
177 if (!fp) {
178 perror("Failed to open imc config file");
179
180 return -1;
181 }
182 if (fscanf(fp, "%s", cas_count_cfg) <= 0) {
183 perror("Could not get imc cas count read");
184 fclose(fp);
185
186 return -1;
187 }
188 fclose(fp);
189
190 get_event_and_umask(cas_count_cfg, count, READ);
191
192 /* Get write config */
193 sprintf(imc_counter_cfg, "%s%s", imc_dir, WRITE_FILE_NAME);
194 fp = fopen(imc_counter_cfg, "r");
195 if (!fp) {
196 perror("Failed to open imc config file");
197
198 return -1;
199 }
200 if (fscanf(fp, "%s", cas_count_cfg) <= 0) {
201 perror("Could not get imc cas count write");
202 fclose(fp);
203
204 return -1;
205 }
206 fclose(fp);
207
208 get_event_and_umask(cas_count_cfg, count, WRITE);
209
210 return 0;
211}
212
213/*
214 * A system can have 'n' number of iMC (Integrated Memory Controller)
215 * counters, get that 'n'. For each iMC counter get it's type and config.
216 * Also, each counter has two configs, one for read and the other for write.
217 * A config again has two parts, event and umask.
218 * Enumerate all these details into an array of structures.
219 *
220 * Return: >= 0 on success. < 0 on failure.
221 */
222static int num_of_imcs(void)
223{
224 char imc_dir[512], *temp;
225 unsigned int count = 0;
226 struct dirent *ep;
227 int ret;
228 DIR *dp;
229
230 dp = opendir(DYN_PMU_PATH);
231 if (dp) {
232 while ((ep = readdir(dp))) {
233 temp = strstr(ep->d_name, UNCORE_IMC);
234 if (!temp)
235 continue;
236
237 /*
238 * imc counters are named as "uncore_imc_<n>", hence
239 * increment the pointer to point to <n>. Note that
240 * sizeof(UNCORE_IMC) would count for null character as
241 * well and hence the last underscore character in
242 * uncore_imc'_' need not be counted.
243 */
244 temp = temp + sizeof(UNCORE_IMC);
245
246 /*
247 * Some directories under "DYN_PMU_PATH" could have
248 * names like "uncore_imc_free_running", hence, check if
249 * first character is a numerical digit or not.
250 */
251 if (temp[0] >= '0' && temp[0] <= '9') {
252 sprintf(imc_dir, "%s/%s/", DYN_PMU_PATH,
253 ep->d_name);
254 ret = read_from_imc_dir(imc_dir, count);
255 if (ret) {
256 closedir(dp);
257
258 return ret;
259 }
260 count++;
261 }
262 }
263 closedir(dp);
264 if (count == 0) {
265 perror("Unable find iMC counters!\n");
266
267 return -1;
268 }
269 } else {
270 perror("Unable to open PMU directory!\n");
271
272 return -1;
273 }
274
275 return count;
276}
277
278static int initialize_mem_bw_imc(void)
279{
280 int imc, j;
281
282 imcs = num_of_imcs();
283 if (imcs <= 0)
284 return imcs;
285
286 /* Initialize perf_event_attr structures for all iMC's */
287 for (imc = 0; imc < imcs; imc++) {
288 for (j = 0; j < 2; j++)
289 membw_initialize_perf_event_attr(imc, j);
290 }
291
292 return 0;
293}
294
295/*
296 * get_mem_bw_imc: Memory band width as reported by iMC counters
297 * @cpu_no: CPU number that the benchmark PID is binded to
298 * @bw_report: Bandwidth report type (reads, writes)
299 *
300 * Memory B/W utilized by a process on a socket can be calculated using
301 * iMC counters. Perf events are used to read these counters.
302 *
303 * Return: = 0 on success. < 0 on failure.
304 */
305static int get_mem_bw_imc(int cpu_no, char *bw_report, float *bw_imc)
306{
307 float reads, writes, of_mul_read, of_mul_write;
308 int imc, j, ret;
309
310 /* Start all iMC counters to log values (both read and write) */
311 reads = 0, writes = 0, of_mul_read = 1, of_mul_write = 1;
312 for (imc = 0; imc < imcs; imc++) {
313 for (j = 0; j < 2; j++) {
314 ret = open_perf_event(imc, cpu_no, j);
315 if (ret)
316 return -1;
317 }
318 for (j = 0; j < 2; j++)
319 membw_ioctl_perf_event_ioc_reset_enable(imc, j);
320 }
321
322 sleep(1);
323
324 /* Stop counters after a second to get results (both read and write) */
325 for (imc = 0; imc < imcs; imc++) {
326 for (j = 0; j < 2; j++)
327 membw_ioctl_perf_event_ioc_disable(imc, j);
328 }
329
330 /*
331 * Get results which are stored in struct type imc_counter_config
332 * Take over flow into consideration before calculating total b/w
333 */
334 for (imc = 0; imc < imcs; imc++) {
335 struct imc_counter_config *r =
336 &imc_counters_config[imc][READ];
337 struct imc_counter_config *w =
338 &imc_counters_config[imc][WRITE];
339
340 if (read(r->fd, &r->return_value,
341 sizeof(struct membw_read_format)) == -1) {
342 perror("Couldn't get read b/w through iMC");
343
344 return -1;
345 }
346
347 if (read(w->fd, &w->return_value,
348 sizeof(struct membw_read_format)) == -1) {
349 perror("Couldn't get write bw through iMC");
350
351 return -1;
352 }
353
354 __u64 r_time_enabled = r->return_value.time_enabled;
355 __u64 r_time_running = r->return_value.time_running;
356
357 if (r_time_enabled != r_time_running)
358 of_mul_read = (float)r_time_enabled /
359 (float)r_time_running;
360
361 __u64 w_time_enabled = w->return_value.time_enabled;
362 __u64 w_time_running = w->return_value.time_running;
363
364 if (w_time_enabled != w_time_running)
365 of_mul_write = (float)w_time_enabled /
366 (float)w_time_running;
367 reads += r->return_value.value * of_mul_read * SCALE;
368 writes += w->return_value.value * of_mul_write * SCALE;
369 }
370
371 for (imc = 0; imc < imcs; imc++) {
372 close(imc_counters_config[imc][READ].fd);
373 close(imc_counters_config[imc][WRITE].fd);
374 }
375
376 if (strcmp(bw_report, "reads") == 0) {
377 *bw_imc = reads;
378 return 0;
379 }
380
381 if (strcmp(bw_report, "writes") == 0) {
382 *bw_imc = writes;
383 return 0;
384 }
385
386 *bw_imc = reads + writes;
387 return 0;
388}
389
390void set_mbm_path(const char *ctrlgrp, const char *mongrp, int resource_id)
391{
392 if (ctrlgrp && mongrp)
393 sprintf(mbm_total_path, CON_MON_MBM_LOCAL_BYTES_PATH,
394 RESCTRL_PATH, ctrlgrp, mongrp, resource_id);
395 else if (!ctrlgrp && mongrp)
396 sprintf(mbm_total_path, MON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
397 mongrp, resource_id);
398 else if (ctrlgrp && !mongrp)
399 sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
400 ctrlgrp, resource_id);
401 else if (!ctrlgrp && !mongrp)
402 sprintf(mbm_total_path, MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
403 resource_id);
404}
405
406/*
407 * initialize_mem_bw_resctrl: Appropriately populate "mbm_total_path"
408 * @ctrlgrp: Name of the control monitor group (con_mon grp)
409 * @mongrp: Name of the monitor group (mon grp)
410 * @cpu_no: CPU number that the benchmark PID is binded to
411 * @resctrl_val: Resctrl feature (Eg: mbm, mba.. etc)
412 */
413static void initialize_mem_bw_resctrl(const char *ctrlgrp, const char *mongrp,
414 int cpu_no, char *resctrl_val)
415{
416 int resource_id;
417
418 if (get_resource_id(cpu_no, &resource_id) < 0) {
419 perror("Could not get resource_id");
420 return;
421 }
422
423 if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)))
424 set_mbm_path(ctrlgrp, mongrp, resource_id);
425
426 if (!strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) {
427 if (ctrlgrp)
428 sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH,
429 RESCTRL_PATH, ctrlgrp, resource_id);
430 else
431 sprintf(mbm_total_path, MBM_LOCAL_BYTES_PATH,
432 RESCTRL_PATH, resource_id);
433 }
434}
435
436/*
437 * Get MBM Local bytes as reported by resctrl FS
438 * For MBM,
439 * 1. If con_mon grp and mon grp are given, then read from con_mon grp's mon grp
440 * 2. If only con_mon grp is given, then read from con_mon grp
441 * 3. If both are not given, then read from root con_mon grp
442 * For MBA,
443 * 1. If con_mon grp is given, then read from it
444 * 2. If con_mon grp is not given, then read from root con_mon grp
445 */
446static int get_mem_bw_resctrl(unsigned long *mbm_total)
447{
448 FILE *fp;
449
450 fp = fopen(mbm_total_path, "r");
451 if (!fp) {
452 perror("Failed to open total bw file");
453
454 return -1;
455 }
456 if (fscanf(fp, "%lu", mbm_total) <= 0) {
457 perror("Could not get mbm local bytes");
458 fclose(fp);
459
460 return -1;
461 }
462 fclose(fp);
463
464 return 0;
465}
466
467pid_t bm_pid, ppid;
468
469void ctrlc_handler(int signum, siginfo_t *info, void *ptr)
470{
471 /* Only kill child after bm_pid is set after fork() */
472 if (bm_pid)
473 kill(bm_pid, SIGKILL);
474 umount_resctrlfs();
475 tests_cleanup();
476 ksft_print_msg("Ending\n\n");
477
478 exit(EXIT_SUCCESS);
479}
480
481/*
482 * Register CTRL-C handler for parent, as it has to kill
483 * child process before exiting.
484 */
485int signal_handler_register(void)
486{
487 struct sigaction sigact = {};
488 int ret = 0;
489
490 bm_pid = 0;
491
492 sigact.sa_sigaction = ctrlc_handler;
493 sigemptyset(&sigact.sa_mask);
494 sigact.sa_flags = SA_SIGINFO;
495 if (sigaction(SIGINT, &sigact, NULL) ||
496 sigaction(SIGTERM, &sigact, NULL) ||
497 sigaction(SIGHUP, &sigact, NULL)) {
498 perror("# sigaction");
499 ret = -1;
500 }
501 return ret;
502}
503
504/*
505 * Reset signal handler to SIG_DFL.
506 * Non-Value return because the caller should keep
507 * the error code of other path even if sigaction fails.
508 */
509void signal_handler_unregister(void)
510{
511 struct sigaction sigact = {};
512
513 sigact.sa_handler = SIG_DFL;
514 sigemptyset(&sigact.sa_mask);
515 if (sigaction(SIGINT, &sigact, NULL) ||
516 sigaction(SIGTERM, &sigact, NULL) ||
517 sigaction(SIGHUP, &sigact, NULL)) {
518 perror("# sigaction");
519 }
520}
521
522/*
523 * print_results_bw: the memory bandwidth results are stored in a file
524 * @filename: file that stores the results
525 * @bm_pid: child pid that runs benchmark
526 * @bw_imc: perf imc counter value
527 * @bw_resc: memory bandwidth value
528 *
529 * Return: 0 on success. non-zero on failure.
530 */
531static int print_results_bw(char *filename, int bm_pid, float bw_imc,
532 unsigned long bw_resc)
533{
534 unsigned long diff = fabs(bw_imc - bw_resc);
535 FILE *fp;
536
537 if (strcmp(filename, "stdio") == 0 || strcmp(filename, "stderr") == 0) {
538 printf("Pid: %d \t Mem_BW_iMC: %f \t ", bm_pid, bw_imc);
539 printf("Mem_BW_resc: %lu \t Difference: %lu\n", bw_resc, diff);
540 } else {
541 fp = fopen(filename, "a");
542 if (!fp) {
543 perror("Cannot open results file");
544
545 return errno;
546 }
547 if (fprintf(fp, "Pid: %d \t Mem_BW_iMC: %f \t Mem_BW_resc: %lu \t Difference: %lu\n",
548 bm_pid, bw_imc, bw_resc, diff) <= 0) {
549 fclose(fp);
550 perror("Could not log results.");
551
552 return errno;
553 }
554 fclose(fp);
555 }
556
557 return 0;
558}
559
560static void set_cmt_path(const char *ctrlgrp, const char *mongrp, char sock_num)
561{
562 if (strlen(ctrlgrp) && strlen(mongrp))
563 sprintf(llc_occup_path, CON_MON_LCC_OCCUP_PATH, RESCTRL_PATH,
564 ctrlgrp, mongrp, sock_num);
565 else if (!strlen(ctrlgrp) && strlen(mongrp))
566 sprintf(llc_occup_path, MON_LCC_OCCUP_PATH, RESCTRL_PATH,
567 mongrp, sock_num);
568 else if (strlen(ctrlgrp) && !strlen(mongrp))
569 sprintf(llc_occup_path, CON_LCC_OCCUP_PATH, RESCTRL_PATH,
570 ctrlgrp, sock_num);
571 else if (!strlen(ctrlgrp) && !strlen(mongrp))
572 sprintf(llc_occup_path, LCC_OCCUP_PATH, RESCTRL_PATH, sock_num);
573}
574
575/*
576 * initialize_llc_occu_resctrl: Appropriately populate "llc_occup_path"
577 * @ctrlgrp: Name of the control monitor group (con_mon grp)
578 * @mongrp: Name of the monitor group (mon grp)
579 * @cpu_no: CPU number that the benchmark PID is binded to
580 * @resctrl_val: Resctrl feature (Eg: cat, cmt.. etc)
581 */
582static void initialize_llc_occu_resctrl(const char *ctrlgrp, const char *mongrp,
583 int cpu_no, char *resctrl_val)
584{
585 int resource_id;
586
587 if (get_resource_id(cpu_no, &resource_id) < 0) {
588 perror("# Unable to resource_id");
589 return;
590 }
591
592 if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR)))
593 set_cmt_path(ctrlgrp, mongrp, resource_id);
594}
595
596static int
597measure_vals(struct resctrl_val_param *param, unsigned long *bw_resc_start)
598{
599 unsigned long bw_resc, bw_resc_end;
600 float bw_imc;
601 int ret;
602
603 /*
604 * Measure memory bandwidth from resctrl and from
605 * another source which is perf imc value or could
606 * be something else if perf imc event is not available.
607 * Compare the two values to validate resctrl value.
608 * It takes 1sec to measure the data.
609 */
610 ret = get_mem_bw_imc(param->cpu_no, param->bw_report, &bw_imc);
611 if (ret < 0)
612 return ret;
613
614 ret = get_mem_bw_resctrl(&bw_resc_end);
615 if (ret < 0)
616 return ret;
617
618 bw_resc = (bw_resc_end - *bw_resc_start) / MB;
619 ret = print_results_bw(param->filename, bm_pid, bw_imc, bw_resc);
620 if (ret)
621 return ret;
622
623 *bw_resc_start = bw_resc_end;
624
625 return 0;
626}
627
628/*
629 * run_benchmark - Run a specified benchmark or fill_buf (default benchmark)
630 * in specified signal. Direct benchmark stdio to /dev/null.
631 * @signum: signal number
632 * @info: signal info
633 * @ucontext: user context in signal handling
634 */
635static void run_benchmark(int signum, siginfo_t *info, void *ucontext)
636{
637 int operation, ret, memflush;
638 char **benchmark_cmd;
639 size_t span;
640 bool once;
641 FILE *fp;
642
643 benchmark_cmd = info->si_ptr;
644
645 /*
646 * Direct stdio of child to /dev/null, so that only parent writes to
647 * stdio (console)
648 */
649 fp = freopen("/dev/null", "w", stdout);
650 if (!fp)
651 PARENT_EXIT("Unable to direct benchmark status to /dev/null");
652
653 if (strcmp(benchmark_cmd[0], "fill_buf") == 0) {
654 /* Execute default fill_buf benchmark */
655 span = strtoul(benchmark_cmd[1], NULL, 10);
656 memflush = atoi(benchmark_cmd[2]);
657 operation = atoi(benchmark_cmd[3]);
658 if (!strcmp(benchmark_cmd[4], "true"))
659 once = true;
660 else if (!strcmp(benchmark_cmd[4], "false"))
661 once = false;
662 else
663 PARENT_EXIT("Invalid once parameter");
664
665 if (run_fill_buf(span, memflush, operation, once))
666 fprintf(stderr, "Error in running fill buffer\n");
667 } else {
668 /* Execute specified benchmark */
669 ret = execvp(benchmark_cmd[0], benchmark_cmd);
670 if (ret)
671 perror("wrong\n");
672 }
673
674 fclose(stdout);
675 PARENT_EXIT("Unable to run specified benchmark");
676}
677
678/*
679 * resctrl_val: execute benchmark and measure memory bandwidth on
680 * the benchmark
681 * @benchmark_cmd: benchmark command and its arguments
682 * @param: parameters passed to resctrl_val()
683 *
684 * Return: 0 on success. non-zero on failure.
685 */
686int resctrl_val(const char * const *benchmark_cmd, struct resctrl_val_param *param)
687{
688 char *resctrl_val = param->resctrl_val;
689 unsigned long bw_resc_start = 0;
690 struct sigaction sigact;
691 int ret = 0, pipefd[2];
692 char pipe_message = 0;
693 union sigval value;
694
695 if (strcmp(param->filename, "") == 0)
696 sprintf(param->filename, "stdio");
697
698 if (!strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR)) ||
699 !strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR))) {
700 ret = validate_bw_report_request(param->bw_report);
701 if (ret)
702 return ret;
703 }
704
705 /*
706 * If benchmark wasn't successfully started by child, then child should
707 * kill parent, so save parent's pid
708 */
709 ppid = getpid();
710
711 if (pipe(pipefd)) {
712 perror("# Unable to create pipe");
713
714 return -1;
715 }
716
717 /*
718 * Fork to start benchmark, save child's pid so that it can be killed
719 * when needed
720 */
721 fflush(stdout);
722 bm_pid = fork();
723 if (bm_pid == -1) {
724 perror("# Unable to fork");
725
726 return -1;
727 }
728
729 if (bm_pid == 0) {
730 /*
731 * Mask all signals except SIGUSR1, parent uses SIGUSR1 to
732 * start benchmark
733 */
734 sigfillset(&sigact.sa_mask);
735 sigdelset(&sigact.sa_mask, SIGUSR1);
736
737 sigact.sa_sigaction = run_benchmark;
738 sigact.sa_flags = SA_SIGINFO;
739
740 /* Register for "SIGUSR1" signal from parent */
741 if (sigaction(SIGUSR1, &sigact, NULL))
742 PARENT_EXIT("Can't register child for signal");
743
744 /* Tell parent that child is ready */
745 close(pipefd[0]);
746 pipe_message = 1;
747 if (write(pipefd[1], &pipe_message, sizeof(pipe_message)) <
748 sizeof(pipe_message)) {
749 perror("# failed signaling parent process");
750 close(pipefd[1]);
751 return -1;
752 }
753 close(pipefd[1]);
754
755 /* Suspend child until delivery of "SIGUSR1" from parent */
756 sigsuspend(&sigact.sa_mask);
757
758 PARENT_EXIT("Child is done");
759 }
760
761 ksft_print_msg("Benchmark PID: %d\n", bm_pid);
762
763 /*
764 * The cast removes constness but nothing mutates benchmark_cmd within
765 * the context of this process. At the receiving process, it becomes
766 * argv, which is mutable, on exec() but that's after fork() so it
767 * doesn't matter for the process running the tests.
768 */
769 value.sival_ptr = (void *)benchmark_cmd;
770
771 /* Taskset benchmark to specified cpu */
772 ret = taskset_benchmark(bm_pid, param->cpu_no);
773 if (ret)
774 goto out;
775
776 /* Write benchmark to specified control&monitoring grp in resctrl FS */
777 ret = write_bm_pid_to_resctrl(bm_pid, param->ctrlgrp, param->mongrp,
778 resctrl_val);
779 if (ret)
780 goto out;
781
782 if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)) ||
783 !strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) {
784 ret = initialize_mem_bw_imc();
785 if (ret)
786 goto out;
787
788 initialize_mem_bw_resctrl(param->ctrlgrp, param->mongrp,
789 param->cpu_no, resctrl_val);
790 } else if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR)))
791 initialize_llc_occu_resctrl(param->ctrlgrp, param->mongrp,
792 param->cpu_no, resctrl_val);
793
794 /* Parent waits for child to be ready. */
795 close(pipefd[1]);
796 while (pipe_message != 1) {
797 if (read(pipefd[0], &pipe_message, sizeof(pipe_message)) <
798 sizeof(pipe_message)) {
799 perror("# failed reading message from child process");
800 close(pipefd[0]);
801 goto out;
802 }
803 }
804 close(pipefd[0]);
805
806 /* Signal child to start benchmark */
807 if (sigqueue(bm_pid, SIGUSR1, value) == -1) {
808 perror("# sigqueue SIGUSR1 to child");
809 ret = errno;
810 goto out;
811 }
812
813 /* Give benchmark enough time to fully run */
814 sleep(1);
815
816 /* Test runs until the callback setup() tells the test to stop. */
817 while (1) {
818 ret = param->setup(param);
819 if (ret == END_OF_TESTS) {
820 ret = 0;
821 break;
822 }
823 if (ret < 0)
824 break;
825
826 if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)) ||
827 !strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) {
828 ret = measure_vals(param, &bw_resc_start);
829 if (ret)
830 break;
831 } else if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR))) {
832 sleep(1);
833 ret = measure_cache_vals(param, bm_pid);
834 if (ret)
835 break;
836 }
837 }
838
839out:
840 kill(bm_pid, SIGKILL);
841
842 return ret;
843}