Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/bpf.h>
  4#include <bpf/bpf_helpers.h>
  5#include "bpf_misc.h"
  6
  7/* Check that precision marks propagate through scalar IDs.
  8 * Registers r{0,1,2} have the same scalar ID.
  9 * Range information is propagated for scalars sharing same ID.
 10 * Check that precision mark for r0 causes precision marks for r{1,2}
 11 * when range information is propagated for 'if <reg> <op> <const>' insn.
 12 */
 13SEC("socket")
 14__success __log_level(2)
 15/* first 'if' branch */
 16__msg("6: (0f) r3 += r0")
 17__msg("frame0: regs=r0 stack= before 4: (25) if r1 > 0x7 goto pc+0")
 18__msg("frame0: parent state regs=r0,r1,r2 stack=:")
 19__msg("frame0: regs=r0,r1,r2 stack= before 3: (bf) r2 = r0")
 20/* second 'if' branch */
 21__msg("from 4 to 5: ")
 22__msg("6: (0f) r3 += r0")
 23__msg("frame0: regs=r0 stack= before 5: (bf) r3 = r10")
 24__msg("frame0: regs=r0 stack= before 4: (25) if r1 > 0x7 goto pc+0")
 25/* parent state already has r{0,1,2} as precise */
 26__msg("frame0: parent state regs= stack=:")
 27__flag(BPF_F_TEST_STATE_FREQ)
 28__naked void linked_regs_bpf_k(void)
 29{
 30	asm volatile (
 31	/* r0 = random number up to 0xff */
 32	"call %[bpf_ktime_get_ns];"
 33	"r0 &= 0xff;"
 34	/* tie r0.id == r1.id == r2.id */
 35	"r1 = r0;"
 36	"r2 = r0;"
 37	"if r1 > 7 goto +0;"
 38	/* force r0 to be precise, this eventually marks r1 and r2 as
 39	 * precise as well because of shared IDs
 40	 */
 41	"r3 = r10;"
 42	"r3 += r0;"
 43	"r0 = 0;"
 44	"exit;"
 45	:
 46	: __imm(bpf_ktime_get_ns)
 47	: __clobber_all);
 48}
 49
 50/* Registers r{0,1,2} share same ID when 'if r1 > ...' insn is processed,
 51 * check that verifier marks r{1,2} as precise while backtracking
 52 * 'if r1 > ...' with r0 already marked.
 53 */
 54SEC("socket")
 55__success __log_level(2)
 
 
 
 
 
 
 
 
 
 56__flag(BPF_F_TEST_STATE_FREQ)
 57__msg("frame0: regs=r0 stack= before 5: (2d) if r1 > r3 goto pc+0")
 58__msg("frame0: parent state regs=r0,r1,r2,r3 stack=:")
 59__msg("frame0: regs=r0,r1,r2,r3 stack= before 4: (b7) r3 = 7")
 60__naked void linked_regs_bpf_x_src(void)
 61{
 62	asm volatile (
 63	/* r0 = random number up to 0xff */
 64	"call %[bpf_ktime_get_ns];"
 65	"r0 &= 0xff;"
 66	/* tie r0.id == r1.id == r2.id */
 67	"r1 = r0;"
 68	"r2 = r0;"
 69	"r3 = 7;"
 70	"if r1 > r3 goto +0;"
 71	/* force r0 to be precise, this eventually marks r1 and r2 as
 72	 * precise as well because of shared IDs
 73	 */
 74	"r4 = r10;"
 75	"r4 += r0;"
 76	"r0 = 0;"
 77	"exit;"
 78	:
 79	: __imm(bpf_ktime_get_ns)
 80	: __clobber_all);
 81}
 82
 83/* Registers r{0,1,2} share same ID when 'if r1 > r3' insn is processed,
 84 * check that verifier marks r{0,1,2} as precise while backtracking
 85 * 'if r1 > r3' with r3 already marked.
 86 */
 87SEC("socket")
 88__success __log_level(2)
 
 
 
 
 
 
 89__flag(BPF_F_TEST_STATE_FREQ)
 90__msg("frame0: regs=r3 stack= before 5: (2d) if r1 > r3 goto pc+0")
 91__msg("frame0: parent state regs=r0,r1,r2,r3 stack=:")
 92__msg("frame0: regs=r0,r1,r2,r3 stack= before 4: (b7) r3 = 7")
 93__naked void linked_regs_bpf_x_dst(void)
 94{
 95	asm volatile (
 96	/* r0 = random number up to 0xff */
 97	"call %[bpf_ktime_get_ns];"
 98	"r0 &= 0xff;"
 99	/* tie r0.id == r1.id == r2.id */
100	"r1 = r0;"
101	"r2 = r0;"
102	"r3 = 7;"
103	"if r1 > r3 goto +0;"
104	/* force r0 to be precise, this eventually marks r1 and r2 as
 
 
105	 * precise as well because of shared IDs
106	 */
107	"r4 = r10;"
108	"r4 += r3;"
109	"r0 = 0;"
110	"exit;"
111	:
112	: __imm(bpf_ktime_get_ns)
113	: __clobber_all);
114}
115
116/* Same as linked_regs_bpf_k, but break one of the
117 * links, note that r1 is absent from regs=... in __msg below.
118 */
119SEC("socket")
120__success __log_level(2)
121__msg("7: (0f) r3 += r0")
122__msg("frame0: regs=r0 stack= before 6: (bf) r3 = r10")
123__msg("frame0: parent state regs=r0 stack=:")
124__msg("frame0: regs=r0 stack= before 5: (25) if r0 > 0x7 goto pc+0")
125__msg("frame0: parent state regs=r0,r2 stack=:")
 
 
 
 
 
 
126__flag(BPF_F_TEST_STATE_FREQ)
127__naked void linked_regs_broken_link(void)
128{
129	asm volatile (
130	/* r0 = random number up to 0xff */
131	"call %[bpf_ktime_get_ns];"
132	"r0 &= 0xff;"
133	/* tie r0.id == r1.id == r2.id */
134	"r1 = r0;"
135	"r2 = r0;"
 
 
 
 
 
 
136	/* break link for r1, this is the only line that differs
137	 * compared to the previous test
138	 */
139	"r1 = 0;"
140	"if r0 > 7 goto +0;"
141	/* force r0 to be precise,
142	 * this eventually marks r2 as precise because of shared IDs
143	 */
144	"r3 = r10;"
145	"r3 += r0;"
146	"r0 = 0;"
147	"exit;"
148	:
149	: __imm(bpf_ktime_get_ns)
150	: __clobber_all);
151}
152
153/* Check that precision marks propagate through scalar IDs.
154 * Use the same scalar ID in multiple stack frames, check that
155 * precision information is propagated up the call stack.
156 */
157SEC("socket")
158__success __log_level(2)
159__msg("12: (0f) r2 += r1")
160/* Current state */
161__msg("frame2: last_idx 12 first_idx 11 subseq_idx -1 ")
162__msg("frame2: regs=r1 stack= before 11: (bf) r2 = r10")
163__msg("frame2: parent state regs=r1 stack=")
164__msg("frame1: parent state regs= stack=")
165__msg("frame0: parent state regs= stack=")
166/* Parent state */
167__msg("frame2: last_idx 10 first_idx 10 subseq_idx 11 ")
168__msg("frame2: regs=r1 stack= before 10: (25) if r1 > 0x7 goto pc+0")
169__msg("frame2: parent state regs=r1 stack=")
170/* frame1.r{6,7} are marked because mark_precise_scalar_ids()
171 * looks for all registers with frame2.r1.id in the current state
172 */
173__msg("frame1: parent state regs=r6,r7 stack=")
174__msg("frame0: parent state regs=r6 stack=")
175/* Parent state */
176__msg("frame2: last_idx 8 first_idx 8 subseq_idx 10")
177__msg("frame2: regs=r1 stack= before 8: (85) call pc+1")
178/* frame1.r1 is marked because of backtracking of call instruction */
179__msg("frame1: parent state regs=r1,r6,r7 stack=")
180__msg("frame0: parent state regs=r6 stack=")
181/* Parent state */
182__msg("frame1: last_idx 7 first_idx 6 subseq_idx 8")
183__msg("frame1: regs=r1,r6,r7 stack= before 7: (bf) r7 = r1")
184__msg("frame1: regs=r1,r6 stack= before 6: (bf) r6 = r1")
185__msg("frame1: parent state regs=r1 stack=")
186__msg("frame0: parent state regs=r6 stack=")
187/* Parent state */
188__msg("frame1: last_idx 4 first_idx 4 subseq_idx 6")
189__msg("frame1: regs=r1 stack= before 4: (85) call pc+1")
190__msg("frame0: parent state regs=r1,r6 stack=")
191/* Parent state */
192__msg("frame0: last_idx 3 first_idx 1 subseq_idx 4")
193__msg("frame0: regs=r1,r6 stack= before 3: (bf) r6 = r0")
194__msg("frame0: regs=r0,r1 stack= before 2: (bf) r1 = r0")
195__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
196__flag(BPF_F_TEST_STATE_FREQ)
197__naked void precision_many_frames(void)
198{
199	asm volatile (
200	/* r0 = random number up to 0xff */
201	"call %[bpf_ktime_get_ns];"
202	"r0 &= 0xff;"
203	/* tie r0.id == r1.id == r6.id */
204	"r1 = r0;"
205	"r6 = r0;"
206	"call precision_many_frames__foo;"
207	"exit;"
208	:
209	: __imm(bpf_ktime_get_ns)
210	: __clobber_all);
211}
212
213static __naked __noinline __used
214void precision_many_frames__foo(void)
215{
216	asm volatile (
217	/* conflate one of the register numbers (r6) with outer frame,
218	 * to verify that those are tracked independently
219	 */
220	"r6 = r1;"
221	"r7 = r1;"
222	"call precision_many_frames__bar;"
223	"exit"
224	::: __clobber_all);
225}
226
227static __naked __noinline __used
228void precision_many_frames__bar(void)
229{
230	asm volatile (
231	"if r1 > 7 goto +0;"
232	/* force r1 to be precise, this eventually marks:
233	 * - bar frame r1
234	 * - foo frame r{1,6,7}
235	 * - main frame r{1,6}
236	 */
237	"r2 = r10;"
238	"r2 += r1;"
239	"r0 = 0;"
240	"exit;"
241	::: __clobber_all);
242}
243
244/* Check that scalars with the same IDs are marked precise on stack as
245 * well as in registers.
246 */
247SEC("socket")
248__success __log_level(2)
249__msg("11: (0f) r2 += r1")
250/* foo frame */
251__msg("frame1: regs=r1 stack= before 10: (bf) r2 = r10")
252__msg("frame1: regs=r1 stack= before 9: (25) if r1 > 0x7 goto pc+0")
253__msg("frame1: regs=r1 stack=-8,-16 before 8: (7b) *(u64 *)(r10 -16) = r1")
254__msg("frame1: regs=r1 stack=-8 before 7: (7b) *(u64 *)(r10 -8) = r1")
255__msg("frame1: regs=r1 stack= before 4: (85) call pc+2")
256/* main frame */
257__msg("frame0: regs=r1 stack=-8 before 3: (7b) *(u64 *)(r10 -8) = r1")
258__msg("frame0: regs=r1 stack= before 2: (bf) r1 = r0")
259__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
260__flag(BPF_F_TEST_STATE_FREQ)
261__naked void precision_stack(void)
262{
263	asm volatile (
264	/* r0 = random number up to 0xff */
265	"call %[bpf_ktime_get_ns];"
266	"r0 &= 0xff;"
267	/* tie r0.id == r1.id == fp[-8].id */
268	"r1 = r0;"
269	"*(u64*)(r10 - 8) = r1;"
270	"call precision_stack__foo;"
271	"r0 = 0;"
272	"exit;"
273	:
274	: __imm(bpf_ktime_get_ns)
275	: __clobber_all);
276}
277
278static __naked __noinline __used
279void precision_stack__foo(void)
280{
281	asm volatile (
282	/* conflate one of the register numbers (r6) with outer frame,
283	 * to verify that those are tracked independently
284	 */
285	"*(u64*)(r10 - 8) = r1;"
286	"*(u64*)(r10 - 16) = r1;"
287	"if r1 > 7 goto +0;"
288	/* force r1 to be precise, this eventually marks:
289	 * - foo frame r1,fp{-8,-16}
290	 * - main frame r1,fp{-8}
291	 */
292	"r2 = r10;"
293	"r2 += r1;"
294	"exit"
295	::: __clobber_all);
296}
297
298/* Use two separate scalar IDs to check that these are propagated
299 * independently.
300 */
301SEC("socket")
302__success __log_level(2)
303/* r{6,7} */
304__msg("12: (0f) r3 += r7")
305__msg("frame0: regs=r7 stack= before 11: (bf) r3 = r10")
306__msg("frame0: regs=r7 stack= before 9: (25) if r7 > 0x7 goto pc+0")
307/* ... skip some insns ... */
308__msg("frame0: regs=r6,r7 stack= before 3: (bf) r7 = r0")
309__msg("frame0: regs=r0,r6 stack= before 2: (bf) r6 = r0")
310/* r{8,9} */
311__msg("13: (0f) r3 += r9")
312__msg("frame0: regs=r9 stack= before 12: (0f) r3 += r7")
313/* ... skip some insns ... */
314__msg("frame0: regs=r9 stack= before 10: (25) if r9 > 0x7 goto pc+0")
315__msg("frame0: regs=r8,r9 stack= before 7: (bf) r9 = r0")
316__msg("frame0: regs=r0,r8 stack= before 6: (bf) r8 = r0")
317__flag(BPF_F_TEST_STATE_FREQ)
318__naked void precision_two_ids(void)
319{
320	asm volatile (
321	/* r6 = random number up to 0xff
322	 * r6.id == r7.id
323	 */
324	"call %[bpf_ktime_get_ns];"
325	"r0 &= 0xff;"
326	"r6 = r0;"
327	"r7 = r0;"
328	/* same, but for r{8,9} */
329	"call %[bpf_ktime_get_ns];"
330	"r0 &= 0xff;"
331	"r8 = r0;"
332	"r9 = r0;"
333	/* clear r0 id */
334	"r0 = 0;"
335	/* propagate equal scalars precision */
336	"if r7 > 7 goto +0;"
337	"if r9 > 7 goto +0;"
338	"r3 = r10;"
339	/* force r7 to be precise, this also marks r6 */
340	"r3 += r7;"
341	/* force r9 to be precise, this also marks r8 */
342	"r3 += r9;"
343	"exit;"
344	:
345	: __imm(bpf_ktime_get_ns)
346	: __clobber_all);
347}
348
349SEC("socket")
350__success __log_level(2)
351__flag(BPF_F_TEST_STATE_FREQ)
352/* check thar r0 and r6 have different IDs after 'if',
353 * collect_linked_regs() can't tie more than 6 registers for a single insn.
354 */
355__msg("8: (25) if r0 > 0x7 goto pc+0         ; R0=scalar(id=1")
356__msg("9: (bf) r6 = r6                       ; R6_w=scalar(id=2")
357/* check that r{0-5} are marked precise after 'if' */
358__msg("frame0: regs=r0 stack= before 8: (25) if r0 > 0x7 goto pc+0")
359__msg("frame0: parent state regs=r0,r1,r2,r3,r4,r5 stack=:")
360__naked void linked_regs_too_many_regs(void)
361{
362	asm volatile (
363	/* r0 = random number up to 0xff */
364	"call %[bpf_ktime_get_ns];"
365	"r0 &= 0xff;"
366	/* tie r{0-6} IDs */
367	"r1 = r0;"
368	"r2 = r0;"
369	"r3 = r0;"
370	"r4 = r0;"
371	"r5 = r0;"
372	"r6 = r0;"
373	/* propagate range for r{0-6} */
374	"if r0 > 7 goto +0;"
375	/* make r6 appear in the log */
376	"r6 = r6;"
377	/* force r0 to be precise,
378	 * this would cause r{0-4} to be precise because of shared IDs
379	 */
380	"r7 = r10;"
381	"r7 += r0;"
382	"r0 = 0;"
383	"exit;"
384	:
385	: __imm(bpf_ktime_get_ns)
386	: __clobber_all);
387}
388
389SEC("socket")
390__failure __log_level(2)
391__flag(BPF_F_TEST_STATE_FREQ)
392__msg("regs=r7 stack= before 5: (3d) if r8 >= r0")
393__msg("parent state regs=r0,r7,r8")
394__msg("regs=r0,r7,r8 stack= before 4: (25) if r0 > 0x1")
395__msg("div by zero")
396__naked void linked_regs_broken_link_2(void)
397{
398	asm volatile (
399	"call %[bpf_get_prandom_u32];"
400	"r7 = r0;"
401	"r8 = r0;"
402	"call %[bpf_get_prandom_u32];"
403	"if r0 > 1 goto +0;"
404	/* r7.id == r8.id,
405	 * thus r7 precision implies r8 precision,
406	 * which implies r0 precision because of the conditional below.
407	 */
408	"if r8 >= r0 goto 1f;"
409	/* break id relation between r7 and r8 */
410	"r8 += r8;"
411	/* make r7 precise */
412	"if r7 == 0 goto 1f;"
413	"r0 /= 0;"
414"1:"
415	"r0 = 42;"
416	"exit;"
417	:
418	: __imm(bpf_get_prandom_u32)
419	: __clobber_all);
420}
421
422/* Check that mark_chain_precision() for one of the conditional jump
423 * operands does not trigger equal scalars precision propagation.
424 */
425SEC("socket")
426__success __log_level(2)
427__msg("3: (25) if r1 > 0x100 goto pc+0")
428__msg("frame0: regs=r1 stack= before 2: (bf) r1 = r0")
429__naked void cjmp_no_linked_regs_trigger(void)
430{
431	asm volatile (
432	/* r0 = random number up to 0xff */
433	"call %[bpf_ktime_get_ns];"
434	"r0 &= 0xff;"
435	/* tie r0.id == r1.id */
436	"r1 = r0;"
437	/* the jump below would be predicted, thus r1 would be marked precise,
438	 * this should not imply precision mark for r0
439	 */
440	"if r1 > 256 goto +0;"
441	"r0 = 0;"
442	"exit;"
443	:
444	: __imm(bpf_ktime_get_ns)
445	: __clobber_all);
446}
447
448/* Verify that check_ids() is used by regsafe() for scalars.
449 *
450 * r9 = ... some pointer with range X ...
451 * r6 = ... unbound scalar ID=a ...
452 * r7 = ... unbound scalar ID=b ...
453 * if (r6 > r7) goto +1
454 * r7 = r6
455 * if (r7 > X) goto exit
456 * r9 += r6
457 * ... access memory using r9 ...
458 *
459 * The memory access is safe only if r7 is bounded,
460 * which is true for one branch and not true for another.
461 */
462SEC("socket")
463__failure __msg("register with unbounded min value")
464__flag(BPF_F_TEST_STATE_FREQ)
465__naked void check_ids_in_regsafe(void)
466{
467	asm volatile (
468	/* Bump allocated stack */
469	"r1 = 0;"
470	"*(u64*)(r10 - 8) = r1;"
471	/* r9 = pointer to stack */
472	"r9 = r10;"
473	"r9 += -8;"
474	/* r7 = ktime_get_ns() */
475	"call %[bpf_ktime_get_ns];"
476	"r7 = r0;"
477	/* r6 = ktime_get_ns() */
478	"call %[bpf_ktime_get_ns];"
479	"r6 = r0;"
480	/* if r6 > r7 is an unpredictable jump */
481	"if r6 > r7 goto l1_%=;"
482	"r7 = r6;"
483"l1_%=:"
484	/* if r7 > 4 ...; transfers range to r6 on one execution path
485	 * but does not transfer on another
486	 */
487	"if r7 > 4 goto l2_%=;"
488	/* Access memory at r9[r6], r6 is not always bounded */
489	"r9 += r6;"
490	"r0 = *(u8*)(r9 + 0);"
491"l2_%=:"
492	"r0 = 0;"
493	"exit;"
494	:
495	: __imm(bpf_ktime_get_ns)
496	: __clobber_all);
497}
498
499/* Similar to check_ids_in_regsafe.
500 * The l0 could be reached in two states:
501 *
502 *   (1) r6{.id=A}, r7{.id=A}, r8{.id=B}
503 *   (2) r6{.id=B}, r7{.id=A}, r8{.id=B}
504 *
505 * Where (2) is not safe, as "r7 > 4" check won't propagate range for it.
506 * This example would be considered safe without changes to
507 * mark_chain_precision() to track scalar values with equal IDs.
508 */
509SEC("socket")
510__failure __msg("register with unbounded min value")
511__flag(BPF_F_TEST_STATE_FREQ)
512__naked void check_ids_in_regsafe_2(void)
513{
514	asm volatile (
515	/* Bump allocated stack */
516	"r1 = 0;"
517	"*(u64*)(r10 - 8) = r1;"
518	/* r9 = pointer to stack */
519	"r9 = r10;"
520	"r9 += -8;"
521	/* r8 = ktime_get_ns() */
522	"call %[bpf_ktime_get_ns];"
523	"r8 = r0;"
524	/* r7 = ktime_get_ns() */
525	"call %[bpf_ktime_get_ns];"
526	"r7 = r0;"
527	/* r6 = ktime_get_ns() */
528	"call %[bpf_ktime_get_ns];"
529	"r6 = r0;"
530	/* scratch .id from r0 */
531	"r0 = 0;"
532	/* if r6 > r7 is an unpredictable jump */
533	"if r6 > r7 goto l1_%=;"
534	/* tie r6 and r7 .id */
535	"r6 = r7;"
536"l0_%=:"
537	/* if r7 > 4 exit(0) */
538	"if r7 > 4 goto l2_%=;"
539	/* Access memory at r9[r6] */
540	"r9 += r6;"
541	"r0 = *(u8*)(r9 + 0);"
542"l2_%=:"
543	"r0 = 0;"
544	"exit;"
545"l1_%=:"
546	/* tie r6 and r8 .id */
547	"r6 = r8;"
548	"goto l0_%=;"
549	:
550	: __imm(bpf_ktime_get_ns)
551	: __clobber_all);
552}
553
554/* Check that scalar IDs *are not* generated on register to register
555 * assignments if source register is a constant.
556 *
557 * If such IDs *are* generated the 'l1' below would be reached in
558 * two states:
559 *
560 *   (1) r1{.id=A}, r2{.id=A}
561 *   (2) r1{.id=C}, r2{.id=C}
562 *
563 * Thus forcing 'if r1 == r2' verification twice.
564 */
565SEC("socket")
566__success __log_level(2)
567__msg("11: (1d) if r3 == r4 goto pc+0")
568__msg("frame 0: propagating r3,r4")
569__msg("11: safe")
570__msg("processed 15 insns")
571__flag(BPF_F_TEST_STATE_FREQ)
572__naked void no_scalar_id_for_const(void)
573{
574	asm volatile (
575	"call %[bpf_ktime_get_ns];"
576	/* unpredictable jump */
577	"if r0 > 7 goto l0_%=;"
578	/* possibly generate same scalar ids for r3 and r4 */
579	"r1 = 0;"
580	"r1 = r1;"
581	"r3 = r1;"
582	"r4 = r1;"
583	"goto l1_%=;"
584"l0_%=:"
585	/* possibly generate different scalar ids for r3 and r4 */
586	"r1 = 0;"
587	"r2 = 0;"
588	"r3 = r1;"
589	"r4 = r2;"
590"l1_%=:"
591	/* predictable jump, marks r3 and r4 precise */
592	"if r3 == r4 goto +0;"
593	"r0 = 0;"
594	"exit;"
595	:
596	: __imm(bpf_ktime_get_ns)
597	: __clobber_all);
598}
599
600/* Same as no_scalar_id_for_const() but for 32-bit values */
601SEC("socket")
602__success __log_level(2)
603__msg("11: (1e) if w3 == w4 goto pc+0")
604__msg("frame 0: propagating r3,r4")
605__msg("11: safe")
606__msg("processed 15 insns")
607__flag(BPF_F_TEST_STATE_FREQ)
608__naked void no_scalar_id_for_const32(void)
609{
610	asm volatile (
611	"call %[bpf_ktime_get_ns];"
612	/* unpredictable jump */
613	"if r0 > 7 goto l0_%=;"
614	/* possibly generate same scalar ids for r3 and r4 */
615	"w1 = 0;"
616	"w1 = w1;"
617	"w3 = w1;"
618	"w4 = w1;"
619	"goto l1_%=;"
620"l0_%=:"
621	/* possibly generate different scalar ids for r3 and r4 */
622	"w1 = 0;"
623	"w2 = 0;"
624	"w3 = w1;"
625	"w4 = w2;"
626"l1_%=:"
627	/* predictable jump, marks r1 and r2 precise */
628	"if w3 == w4 goto +0;"
629	"r0 = 0;"
630	"exit;"
631	:
632	: __imm(bpf_ktime_get_ns)
633	: __clobber_all);
634}
635
636/* Check that unique scalar IDs are ignored when new verifier state is
637 * compared to cached verifier state. For this test:
638 * - cached state has no id on r1
639 * - new state has a unique id on r1
640 */
641SEC("socket")
642__success __log_level(2)
643__msg("6: (25) if r6 > 0x7 goto pc+1")
644__msg("7: (57) r1 &= 255")
645__msg("8: (bf) r2 = r10")
646__msg("from 6 to 8: safe")
647__msg("processed 12 insns")
648__flag(BPF_F_TEST_STATE_FREQ)
649__naked void ignore_unique_scalar_ids_cur(void)
650{
651	asm volatile (
652	"call %[bpf_ktime_get_ns];"
653	"r6 = r0;"
654	"call %[bpf_ktime_get_ns];"
655	"r0 &= 0xff;"
656	/* r1.id == r0.id */
657	"r1 = r0;"
658	/* make r1.id unique */
659	"r0 = 0;"
660	"if r6 > 7 goto l0_%=;"
661	/* clear r1 id, but keep the range compatible */
662	"r1 &= 0xff;"
663"l0_%=:"
664	/* get here in two states:
665	 * - first: r1 has no id (cached state)
666	 * - second: r1 has a unique id (should be considered equivalent)
667	 */
668	"r2 = r10;"
669	"r2 += r1;"
670	"exit;"
671	:
672	: __imm(bpf_ktime_get_ns)
673	: __clobber_all);
674}
675
676/* Check that unique scalar IDs are ignored when new verifier state is
677 * compared to cached verifier state. For this test:
678 * - cached state has a unique id on r1
679 * - new state has no id on r1
680 */
681SEC("socket")
682__success __log_level(2)
683__msg("6: (25) if r6 > 0x7 goto pc+1")
684__msg("7: (05) goto pc+1")
685__msg("9: (bf) r2 = r10")
686__msg("9: safe")
687__msg("processed 13 insns")
688__flag(BPF_F_TEST_STATE_FREQ)
689__naked void ignore_unique_scalar_ids_old(void)
690{
691	asm volatile (
692	"call %[bpf_ktime_get_ns];"
693	"r6 = r0;"
694	"call %[bpf_ktime_get_ns];"
695	"r0 &= 0xff;"
696	/* r1.id == r0.id */
697	"r1 = r0;"
698	/* make r1.id unique */
699	"r0 = 0;"
700	"if r6 > 7 goto l1_%=;"
701	"goto l0_%=;"
702"l1_%=:"
703	/* clear r1 id, but keep the range compatible */
704	"r1 &= 0xff;"
705"l0_%=:"
706	/* get here in two states:
707	 * - first: r1 has a unique id (cached state)
708	 * - second: r1 has no id (should be considered equivalent)
709	 */
710	"r2 = r10;"
711	"r2 += r1;"
712	"exit;"
713	:
714	: __imm(bpf_ktime_get_ns)
715	: __clobber_all);
716}
717
718/* Check that two different scalar IDs in a verified state can't be
719 * mapped to the same scalar ID in current state.
720 */
721SEC("socket")
722__success __log_level(2)
723/* The exit instruction should be reachable from two states,
724 * use two matches and "processed .. insns" to ensure this.
725 */
726__msg("13: (95) exit")
727__msg("13: (95) exit")
728__msg("processed 18 insns")
729__flag(BPF_F_TEST_STATE_FREQ)
730__naked void two_old_ids_one_cur_id(void)
731{
732	asm volatile (
733	/* Give unique scalar IDs to r{6,7} */
734	"call %[bpf_ktime_get_ns];"
735	"r0 &= 0xff;"
736	"r6 = r0;"
737	"call %[bpf_ktime_get_ns];"
738	"r0 &= 0xff;"
739	"r7 = r0;"
740	"r0 = 0;"
741	/* Maybe make r{6,7} IDs identical */
742	"if r6 > r7 goto l0_%=;"
743	"goto l1_%=;"
744"l0_%=:"
745	"r6 = r7;"
746"l1_%=:"
747	/* Mark r{6,7} precise.
748	 * Get here in two states:
749	 * - first:  r6{.id=A}, r7{.id=B} (cached state)
750	 * - second: r6{.id=A}, r7{.id=A}
751	 * Currently we don't want to consider such states equivalent.
752	 * Thus "exit;" would be verified twice.
753	 */
754	"r2 = r10;"
755	"r2 += r6;"
756	"r2 += r7;"
757	"exit;"
758	:
759	: __imm(bpf_ktime_get_ns)
760	: __clobber_all);
761}
762
763SEC("socket")
764/* Note the flag, see verifier.c:opt_subreg_zext_lo32_rnd_hi32() */
765__flag(BPF_F_TEST_RND_HI32)
766__success
767/* This test was added because of a bug in verifier.c:sync_linked_regs(),
768 * upon range propagation it destroyed subreg_def marks for registers.
769 * The subreg_def mark is used to decide whether zero extension instructions
770 * are needed when register is read. When BPF_F_TEST_RND_HI32 is set it
771 * also causes generation of statements to randomize upper halves of
772 * read registers.
773 *
774 * The test is written in a way to return an upper half of a register
775 * that is affected by range propagation and must have it's subreg_def
776 * preserved. This gives a return value of 0 and leads to undefined
777 * return value if subreg_def mark is not preserved.
778 */
779__retval(0)
780/* Check that verifier believes r1/r0 are zero at exit */
781__log_level(2)
782__msg("4: (77) r1 >>= 32                     ; R1_w=0")
783__msg("5: (bf) r0 = r1                       ; R0_w=0 R1_w=0")
784__msg("6: (95) exit")
785__msg("from 3 to 4")
786__msg("4: (77) r1 >>= 32                     ; R1_w=0")
787__msg("5: (bf) r0 = r1                       ; R0_w=0 R1_w=0")
788__msg("6: (95) exit")
789/* Verify that statements to randomize upper half of r1 had not been
790 * generated.
791 */
792__xlated("call unknown")
793__xlated("r0 &= 2147483647")
794__xlated("w1 = w0")
795/* This is how disasm.c prints BPF_ZEXT_REG at the moment, x86 and arm
796 * are the only CI archs that do not need zero extension for subregs.
797 */
798#if !defined(__TARGET_ARCH_x86) && !defined(__TARGET_ARCH_arm64)
799__xlated("w1 = w1")
800#endif
801__xlated("if w0 < 0xa goto pc+0")
802__xlated("r1 >>= 32")
803__xlated("r0 = r1")
804__xlated("exit")
805__naked void linked_regs_and_subreg_def(void)
806{
807	asm volatile (
808	"call %[bpf_ktime_get_ns];"
809	/* make sure r0 is in 32-bit range, otherwise w1 = w0 won't
810	 * assign same IDs to registers.
811	 */
812	"r0 &= 0x7fffffff;"
813	/* link w1 and w0 via ID */
814	"w1 = w0;"
815	/* 'if' statement propagates range info from w0 to w1,
816	 * but should not affect w1->subreg_def property.
817	 */
818	"if w0 < 10 goto +0;"
819	/* r1 is read here, on archs that require subreg zero
820	 * extension this would cause zext patch generation.
821	 */
822	"r1 >>= 32;"
823	"r0 = r1;"
824	"exit;"
825	:
826	: __imm(bpf_ktime_get_ns)
827	: __clobber_all);
828}
829
830char _license[] SEC("license") = "GPL";
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/bpf.h>
  4#include <bpf/bpf_helpers.h>
  5#include "bpf_misc.h"
  6
  7/* Check that precision marks propagate through scalar IDs.
  8 * Registers r{0,1,2} have the same scalar ID at the moment when r0 is
  9 * marked to be precise, this mark is immediately propagated to r{1,2}.
 
 
 10 */
 11SEC("socket")
 12__success __log_level(2)
 13__msg("frame0: regs=r0,r1,r2 stack= before 4: (bf) r3 = r10")
 
 
 
 14__msg("frame0: regs=r0,r1,r2 stack= before 3: (bf) r2 = r0")
 15__msg("frame0: regs=r0,r1 stack= before 2: (bf) r1 = r0")
 16__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
 17__msg("frame0: regs=r0 stack= before 0: (85) call bpf_ktime_get_ns")
 
 
 
 
 18__flag(BPF_F_TEST_STATE_FREQ)
 19__naked void precision_same_state(void)
 20{
 21	asm volatile (
 22	/* r0 = random number up to 0xff */
 23	"call %[bpf_ktime_get_ns];"
 24	"r0 &= 0xff;"
 25	/* tie r0.id == r1.id == r2.id */
 26	"r1 = r0;"
 27	"r2 = r0;"
 28	/* force r0 to be precise, this immediately marks r1 and r2 as
 
 29	 * precise as well because of shared IDs
 30	 */
 31	"r3 = r10;"
 32	"r3 += r0;"
 33	"r0 = 0;"
 34	"exit;"
 35	:
 36	: __imm(bpf_ktime_get_ns)
 37	: __clobber_all);
 38}
 39
 40/* Same as precision_same_state, but mark propagates through state /
 41 * parent state boundary.
 
 42 */
 43SEC("socket")
 44__success __log_level(2)
 45__msg("frame0: last_idx 6 first_idx 5 subseq_idx -1")
 46__msg("frame0: regs=r0,r1,r2 stack= before 5: (bf) r3 = r10")
 47__msg("frame0: parent state regs=r0,r1,r2 stack=:")
 48__msg("frame0: regs=r0,r1,r2 stack= before 4: (05) goto pc+0")
 49__msg("frame0: regs=r0,r1,r2 stack= before 3: (bf) r2 = r0")
 50__msg("frame0: regs=r0,r1 stack= before 2: (bf) r1 = r0")
 51__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
 52__msg("frame0: parent state regs=r0 stack=:")
 53__msg("frame0: regs=r0 stack= before 0: (85) call bpf_ktime_get_ns")
 54__flag(BPF_F_TEST_STATE_FREQ)
 55__naked void precision_cross_state(void)
 
 
 
 56{
 57	asm volatile (
 58	/* r0 = random number up to 0xff */
 59	"call %[bpf_ktime_get_ns];"
 60	"r0 &= 0xff;"
 61	/* tie r0.id == r1.id == r2.id */
 62	"r1 = r0;"
 63	"r2 = r0;"
 64	/* force checkpoint */
 65	"goto +0;"
 66	/* force r0 to be precise, this immediately marks r1 and r2 as
 67	 * precise as well because of shared IDs
 68	 */
 69	"r3 = r10;"
 70	"r3 += r0;"
 71	"r0 = 0;"
 72	"exit;"
 73	:
 74	: __imm(bpf_ktime_get_ns)
 75	: __clobber_all);
 76}
 77
 78/* Same as precision_same_state, but break one of the
 79 * links, note that r1 is absent from regs=... in __msg below.
 
 80 */
 81SEC("socket")
 82__success __log_level(2)
 83__msg("frame0: regs=r0,r2 stack= before 5: (bf) r3 = r10")
 84__msg("frame0: regs=r0,r2 stack= before 4: (b7) r1 = 0")
 85__msg("frame0: regs=r0,r2 stack= before 3: (bf) r2 = r0")
 86__msg("frame0: regs=r0 stack= before 2: (bf) r1 = r0")
 87__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
 88__msg("frame0: regs=r0 stack= before 0: (85) call bpf_ktime_get_ns")
 89__flag(BPF_F_TEST_STATE_FREQ)
 90__naked void precision_same_state_broken_link(void)
 
 
 
 91{
 92	asm volatile (
 93	/* r0 = random number up to 0xff */
 94	"call %[bpf_ktime_get_ns];"
 95	"r0 &= 0xff;"
 96	/* tie r0.id == r1.id == r2.id */
 97	"r1 = r0;"
 98	"r2 = r0;"
 99	/* break link for r1, this is the only line that differs
100	 * compared to the previous test
101	 */
102	"r1 = 0;"
103	/* force r0 to be precise, this immediately marks r1 and r2 as
104	 * precise as well because of shared IDs
105	 */
106	"r3 = r10;"
107	"r3 += r0;"
108	"r0 = 0;"
109	"exit;"
110	:
111	: __imm(bpf_ktime_get_ns)
112	: __clobber_all);
113}
114
115/* Same as precision_same_state_broken_link, but with state /
116 * parent state boundary.
117 */
118SEC("socket")
119__success __log_level(2)
120__msg("frame0: regs=r0,r2 stack= before 6: (bf) r3 = r10")
121__msg("frame0: regs=r0,r2 stack= before 5: (b7) r1 = 0")
 
 
122__msg("frame0: parent state regs=r0,r2 stack=:")
123__msg("frame0: regs=r0,r1,r2 stack= before 4: (05) goto pc+0")
124__msg("frame0: regs=r0,r1,r2 stack= before 3: (bf) r2 = r0")
125__msg("frame0: regs=r0,r1 stack= before 2: (bf) r1 = r0")
126__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
127__msg("frame0: parent state regs=r0 stack=:")
128__msg("frame0: regs=r0 stack= before 0: (85) call bpf_ktime_get_ns")
129__flag(BPF_F_TEST_STATE_FREQ)
130__naked void precision_cross_state_broken_link(void)
131{
132	asm volatile (
133	/* r0 = random number up to 0xff */
134	"call %[bpf_ktime_get_ns];"
135	"r0 &= 0xff;"
136	/* tie r0.id == r1.id == r2.id */
137	"r1 = r0;"
138	"r2 = r0;"
139	/* force checkpoint, although link between r1 and r{0,2} is
140	 * broken by the next statement current precision tracking
141	 * algorithm can't react to it and propagates mark for r1 to
142	 * the parent state.
143	 */
144	"goto +0;"
145	/* break link for r1, this is the only line that differs
146	 * compared to precision_cross_state()
147	 */
148	"r1 = 0;"
149	/* force r0 to be precise, this immediately marks r1 and r2 as
150	 * precise as well because of shared IDs
 
151	 */
152	"r3 = r10;"
153	"r3 += r0;"
154	"r0 = 0;"
155	"exit;"
156	:
157	: __imm(bpf_ktime_get_ns)
158	: __clobber_all);
159}
160
161/* Check that precision marks propagate through scalar IDs.
162 * Use the same scalar ID in multiple stack frames, check that
163 * precision information is propagated up the call stack.
164 */
165SEC("socket")
166__success __log_level(2)
167__msg("11: (0f) r2 += r1")
168/* Current state */
169__msg("frame2: last_idx 11 first_idx 10 subseq_idx -1")
170__msg("frame2: regs=r1 stack= before 10: (bf) r2 = r10")
 
 
 
 
 
 
171__msg("frame2: parent state regs=r1 stack=")
172/* frame1.r{6,7} are marked because mark_precise_scalar_ids()
173 * looks for all registers with frame2.r1.id in the current state
174 */
175__msg("frame1: parent state regs=r6,r7 stack=")
176__msg("frame0: parent state regs=r6 stack=")
177/* Parent state */
178__msg("frame2: last_idx 8 first_idx 8 subseq_idx 10")
179__msg("frame2: regs=r1 stack= before 8: (85) call pc+1")
180/* frame1.r1 is marked because of backtracking of call instruction */
181__msg("frame1: parent state regs=r1,r6,r7 stack=")
182__msg("frame0: parent state regs=r6 stack=")
183/* Parent state */
184__msg("frame1: last_idx 7 first_idx 6 subseq_idx 8")
185__msg("frame1: regs=r1,r6,r7 stack= before 7: (bf) r7 = r1")
186__msg("frame1: regs=r1,r6 stack= before 6: (bf) r6 = r1")
187__msg("frame1: parent state regs=r1 stack=")
188__msg("frame0: parent state regs=r6 stack=")
189/* Parent state */
190__msg("frame1: last_idx 4 first_idx 4 subseq_idx 6")
191__msg("frame1: regs=r1 stack= before 4: (85) call pc+1")
192__msg("frame0: parent state regs=r1,r6 stack=")
193/* Parent state */
194__msg("frame0: last_idx 3 first_idx 1 subseq_idx 4")
195__msg("frame0: regs=r0,r1,r6 stack= before 3: (bf) r6 = r0")
196__msg("frame0: regs=r0,r1 stack= before 2: (bf) r1 = r0")
197__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
198__flag(BPF_F_TEST_STATE_FREQ)
199__naked void precision_many_frames(void)
200{
201	asm volatile (
202	/* r0 = random number up to 0xff */
203	"call %[bpf_ktime_get_ns];"
204	"r0 &= 0xff;"
205	/* tie r0.id == r1.id == r6.id */
206	"r1 = r0;"
207	"r6 = r0;"
208	"call precision_many_frames__foo;"
209	"exit;"
210	:
211	: __imm(bpf_ktime_get_ns)
212	: __clobber_all);
213}
214
215static __naked __noinline __used
216void precision_many_frames__foo(void)
217{
218	asm volatile (
219	/* conflate one of the register numbers (r6) with outer frame,
220	 * to verify that those are tracked independently
221	 */
222	"r6 = r1;"
223	"r7 = r1;"
224	"call precision_many_frames__bar;"
225	"exit"
226	::: __clobber_all);
227}
228
229static __naked __noinline __used
230void precision_many_frames__bar(void)
231{
232	asm volatile (
233	/* force r1 to be precise, this immediately marks:
 
234	 * - bar frame r1
235	 * - foo frame r{1,6,7}
236	 * - main frame r{1,6}
237	 */
238	"r2 = r10;"
239	"r2 += r1;"
240	"r0 = 0;"
241	"exit;"
242	::: __clobber_all);
243}
244
245/* Check that scalars with the same IDs are marked precise on stack as
246 * well as in registers.
247 */
248SEC("socket")
249__success __log_level(2)
 
250/* foo frame */
251__msg("frame1: regs=r1 stack=-8,-16 before 9: (bf) r2 = r10")
 
252__msg("frame1: regs=r1 stack=-8,-16 before 8: (7b) *(u64 *)(r10 -16) = r1")
253__msg("frame1: regs=r1 stack=-8 before 7: (7b) *(u64 *)(r10 -8) = r1")
254__msg("frame1: regs=r1 stack= before 4: (85) call pc+2")
255/* main frame */
256__msg("frame0: regs=r0,r1 stack=-8 before 3: (7b) *(u64 *)(r10 -8) = r1")
257__msg("frame0: regs=r0,r1 stack= before 2: (bf) r1 = r0")
258__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
259__flag(BPF_F_TEST_STATE_FREQ)
260__naked void precision_stack(void)
261{
262	asm volatile (
263	/* r0 = random number up to 0xff */
264	"call %[bpf_ktime_get_ns];"
265	"r0 &= 0xff;"
266	/* tie r0.id == r1.id == fp[-8].id */
267	"r1 = r0;"
268	"*(u64*)(r10 - 8) = r1;"
269	"call precision_stack__foo;"
270	"r0 = 0;"
271	"exit;"
272	:
273	: __imm(bpf_ktime_get_ns)
274	: __clobber_all);
275}
276
277static __naked __noinline __used
278void precision_stack__foo(void)
279{
280	asm volatile (
281	/* conflate one of the register numbers (r6) with outer frame,
282	 * to verify that those are tracked independently
283	 */
284	"*(u64*)(r10 - 8) = r1;"
285	"*(u64*)(r10 - 16) = r1;"
286	/* force r1 to be precise, this immediately marks:
 
287	 * - foo frame r1,fp{-8,-16}
288	 * - main frame r1,fp{-8}
289	 */
290	"r2 = r10;"
291	"r2 += r1;"
292	"exit"
293	::: __clobber_all);
294}
295
296/* Use two separate scalar IDs to check that these are propagated
297 * independently.
298 */
299SEC("socket")
300__success __log_level(2)
301/* r{6,7} */
302__msg("11: (0f) r3 += r7")
303__msg("frame0: regs=r6,r7 stack= before 10: (bf) r3 = r10")
 
304/* ... skip some insns ... */
305__msg("frame0: regs=r6,r7 stack= before 3: (bf) r7 = r0")
306__msg("frame0: regs=r0,r6 stack= before 2: (bf) r6 = r0")
307/* r{8,9} */
308__msg("12: (0f) r3 += r9")
309__msg("frame0: regs=r8,r9 stack= before 11: (0f) r3 += r7")
310/* ... skip some insns ... */
 
311__msg("frame0: regs=r8,r9 stack= before 7: (bf) r9 = r0")
312__msg("frame0: regs=r0,r8 stack= before 6: (bf) r8 = r0")
313__flag(BPF_F_TEST_STATE_FREQ)
314__naked void precision_two_ids(void)
315{
316	asm volatile (
317	/* r6 = random number up to 0xff
318	 * r6.id == r7.id
319	 */
320	"call %[bpf_ktime_get_ns];"
321	"r0 &= 0xff;"
322	"r6 = r0;"
323	"r7 = r0;"
324	/* same, but for r{8,9} */
325	"call %[bpf_ktime_get_ns];"
326	"r0 &= 0xff;"
327	"r8 = r0;"
328	"r9 = r0;"
329	/* clear r0 id */
330	"r0 = 0;"
331	/* force checkpoint */
332	"goto +0;"
 
333	"r3 = r10;"
334	/* force r7 to be precise, this also marks r6 */
335	"r3 += r7;"
336	/* force r9 to be precise, this also marks r8 */
337	"r3 += r9;"
338	"exit;"
339	:
340	: __imm(bpf_ktime_get_ns)
341	: __clobber_all);
342}
343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
344/* Verify that check_ids() is used by regsafe() for scalars.
345 *
346 * r9 = ... some pointer with range X ...
347 * r6 = ... unbound scalar ID=a ...
348 * r7 = ... unbound scalar ID=b ...
349 * if (r6 > r7) goto +1
350 * r7 = r6
351 * if (r7 > X) goto exit
352 * r9 += r6
353 * ... access memory using r9 ...
354 *
355 * The memory access is safe only if r7 is bounded,
356 * which is true for one branch and not true for another.
357 */
358SEC("socket")
359__failure __msg("register with unbounded min value")
360__flag(BPF_F_TEST_STATE_FREQ)
361__naked void check_ids_in_regsafe(void)
362{
363	asm volatile (
364	/* Bump allocated stack */
365	"r1 = 0;"
366	"*(u64*)(r10 - 8) = r1;"
367	/* r9 = pointer to stack */
368	"r9 = r10;"
369	"r9 += -8;"
370	/* r7 = ktime_get_ns() */
371	"call %[bpf_ktime_get_ns];"
372	"r7 = r0;"
373	/* r6 = ktime_get_ns() */
374	"call %[bpf_ktime_get_ns];"
375	"r6 = r0;"
376	/* if r6 > r7 is an unpredictable jump */
377	"if r6 > r7 goto l1_%=;"
378	"r7 = r6;"
379"l1_%=:"
380	/* if r7 > 4 ...; transfers range to r6 on one execution path
381	 * but does not transfer on another
382	 */
383	"if r7 > 4 goto l2_%=;"
384	/* Access memory at r9[r6], r6 is not always bounded */
385	"r9 += r6;"
386	"r0 = *(u8*)(r9 + 0);"
387"l2_%=:"
388	"r0 = 0;"
389	"exit;"
390	:
391	: __imm(bpf_ktime_get_ns)
392	: __clobber_all);
393}
394
395/* Similar to check_ids_in_regsafe.
396 * The l0 could be reached in two states:
397 *
398 *   (1) r6{.id=A}, r7{.id=A}, r8{.id=B}
399 *   (2) r6{.id=B}, r7{.id=A}, r8{.id=B}
400 *
401 * Where (2) is not safe, as "r7 > 4" check won't propagate range for it.
402 * This example would be considered safe without changes to
403 * mark_chain_precision() to track scalar values with equal IDs.
404 */
405SEC("socket")
406__failure __msg("register with unbounded min value")
407__flag(BPF_F_TEST_STATE_FREQ)
408__naked void check_ids_in_regsafe_2(void)
409{
410	asm volatile (
411	/* Bump allocated stack */
412	"r1 = 0;"
413	"*(u64*)(r10 - 8) = r1;"
414	/* r9 = pointer to stack */
415	"r9 = r10;"
416	"r9 += -8;"
417	/* r8 = ktime_get_ns() */
418	"call %[bpf_ktime_get_ns];"
419	"r8 = r0;"
420	/* r7 = ktime_get_ns() */
421	"call %[bpf_ktime_get_ns];"
422	"r7 = r0;"
423	/* r6 = ktime_get_ns() */
424	"call %[bpf_ktime_get_ns];"
425	"r6 = r0;"
426	/* scratch .id from r0 */
427	"r0 = 0;"
428	/* if r6 > r7 is an unpredictable jump */
429	"if r6 > r7 goto l1_%=;"
430	/* tie r6 and r7 .id */
431	"r6 = r7;"
432"l0_%=:"
433	/* if r7 > 4 exit(0) */
434	"if r7 > 4 goto l2_%=;"
435	/* Access memory at r9[r6] */
436	"r9 += r6;"
437	"r0 = *(u8*)(r9 + 0);"
438"l2_%=:"
439	"r0 = 0;"
440	"exit;"
441"l1_%=:"
442	/* tie r6 and r8 .id */
443	"r6 = r8;"
444	"goto l0_%=;"
445	:
446	: __imm(bpf_ktime_get_ns)
447	: __clobber_all);
448}
449
450/* Check that scalar IDs *are not* generated on register to register
451 * assignments if source register is a constant.
452 *
453 * If such IDs *are* generated the 'l1' below would be reached in
454 * two states:
455 *
456 *   (1) r1{.id=A}, r2{.id=A}
457 *   (2) r1{.id=C}, r2{.id=C}
458 *
459 * Thus forcing 'if r1 == r2' verification twice.
460 */
461SEC("socket")
462__success __log_level(2)
463__msg("11: (1d) if r3 == r4 goto pc+0")
464__msg("frame 0: propagating r3,r4")
465__msg("11: safe")
466__msg("processed 15 insns")
467__flag(BPF_F_TEST_STATE_FREQ)
468__naked void no_scalar_id_for_const(void)
469{
470	asm volatile (
471	"call %[bpf_ktime_get_ns];"
472	/* unpredictable jump */
473	"if r0 > 7 goto l0_%=;"
474	/* possibly generate same scalar ids for r3 and r4 */
475	"r1 = 0;"
476	"r1 = r1;"
477	"r3 = r1;"
478	"r4 = r1;"
479	"goto l1_%=;"
480"l0_%=:"
481	/* possibly generate different scalar ids for r3 and r4 */
482	"r1 = 0;"
483	"r2 = 0;"
484	"r3 = r1;"
485	"r4 = r2;"
486"l1_%=:"
487	/* predictable jump, marks r3 and r4 precise */
488	"if r3 == r4 goto +0;"
489	"r0 = 0;"
490	"exit;"
491	:
492	: __imm(bpf_ktime_get_ns)
493	: __clobber_all);
494}
495
496/* Same as no_scalar_id_for_const() but for 32-bit values */
497SEC("socket")
498__success __log_level(2)
499__msg("11: (1e) if w3 == w4 goto pc+0")
500__msg("frame 0: propagating r3,r4")
501__msg("11: safe")
502__msg("processed 15 insns")
503__flag(BPF_F_TEST_STATE_FREQ)
504__naked void no_scalar_id_for_const32(void)
505{
506	asm volatile (
507	"call %[bpf_ktime_get_ns];"
508	/* unpredictable jump */
509	"if r0 > 7 goto l0_%=;"
510	/* possibly generate same scalar ids for r3 and r4 */
511	"w1 = 0;"
512	"w1 = w1;"
513	"w3 = w1;"
514	"w4 = w1;"
515	"goto l1_%=;"
516"l0_%=:"
517	/* possibly generate different scalar ids for r3 and r4 */
518	"w1 = 0;"
519	"w2 = 0;"
520	"w3 = w1;"
521	"w4 = w2;"
522"l1_%=:"
523	/* predictable jump, marks r1 and r2 precise */
524	"if w3 == w4 goto +0;"
525	"r0 = 0;"
526	"exit;"
527	:
528	: __imm(bpf_ktime_get_ns)
529	: __clobber_all);
530}
531
532/* Check that unique scalar IDs are ignored when new verifier state is
533 * compared to cached verifier state. For this test:
534 * - cached state has no id on r1
535 * - new state has a unique id on r1
536 */
537SEC("socket")
538__success __log_level(2)
539__msg("6: (25) if r6 > 0x7 goto pc+1")
540__msg("7: (57) r1 &= 255")
541__msg("8: (bf) r2 = r10")
542__msg("from 6 to 8: safe")
543__msg("processed 12 insns")
544__flag(BPF_F_TEST_STATE_FREQ)
545__naked void ignore_unique_scalar_ids_cur(void)
546{
547	asm volatile (
548	"call %[bpf_ktime_get_ns];"
549	"r6 = r0;"
550	"call %[bpf_ktime_get_ns];"
551	"r0 &= 0xff;"
552	/* r1.id == r0.id */
553	"r1 = r0;"
554	/* make r1.id unique */
555	"r0 = 0;"
556	"if r6 > 7 goto l0_%=;"
557	/* clear r1 id, but keep the range compatible */
558	"r1 &= 0xff;"
559"l0_%=:"
560	/* get here in two states:
561	 * - first: r1 has no id (cached state)
562	 * - second: r1 has a unique id (should be considered equivalent)
563	 */
564	"r2 = r10;"
565	"r2 += r1;"
566	"exit;"
567	:
568	: __imm(bpf_ktime_get_ns)
569	: __clobber_all);
570}
571
572/* Check that unique scalar IDs are ignored when new verifier state is
573 * compared to cached verifier state. For this test:
574 * - cached state has a unique id on r1
575 * - new state has no id on r1
576 */
577SEC("socket")
578__success __log_level(2)
579__msg("6: (25) if r6 > 0x7 goto pc+1")
580__msg("7: (05) goto pc+1")
581__msg("9: (bf) r2 = r10")
582__msg("9: safe")
583__msg("processed 13 insns")
584__flag(BPF_F_TEST_STATE_FREQ)
585__naked void ignore_unique_scalar_ids_old(void)
586{
587	asm volatile (
588	"call %[bpf_ktime_get_ns];"
589	"r6 = r0;"
590	"call %[bpf_ktime_get_ns];"
591	"r0 &= 0xff;"
592	/* r1.id == r0.id */
593	"r1 = r0;"
594	/* make r1.id unique */
595	"r0 = 0;"
596	"if r6 > 7 goto l1_%=;"
597	"goto l0_%=;"
598"l1_%=:"
599	/* clear r1 id, but keep the range compatible */
600	"r1 &= 0xff;"
601"l0_%=:"
602	/* get here in two states:
603	 * - first: r1 has a unique id (cached state)
604	 * - second: r1 has no id (should be considered equivalent)
605	 */
606	"r2 = r10;"
607	"r2 += r1;"
608	"exit;"
609	:
610	: __imm(bpf_ktime_get_ns)
611	: __clobber_all);
612}
613
614/* Check that two different scalar IDs in a verified state can't be
615 * mapped to the same scalar ID in current state.
616 */
617SEC("socket")
618__success __log_level(2)
619/* The exit instruction should be reachable from two states,
620 * use two matches and "processed .. insns" to ensure this.
621 */
622__msg("13: (95) exit")
623__msg("13: (95) exit")
624__msg("processed 18 insns")
625__flag(BPF_F_TEST_STATE_FREQ)
626__naked void two_old_ids_one_cur_id(void)
627{
628	asm volatile (
629	/* Give unique scalar IDs to r{6,7} */
630	"call %[bpf_ktime_get_ns];"
631	"r0 &= 0xff;"
632	"r6 = r0;"
633	"call %[bpf_ktime_get_ns];"
634	"r0 &= 0xff;"
635	"r7 = r0;"
636	"r0 = 0;"
637	/* Maybe make r{6,7} IDs identical */
638	"if r6 > r7 goto l0_%=;"
639	"goto l1_%=;"
640"l0_%=:"
641	"r6 = r7;"
642"l1_%=:"
643	/* Mark r{6,7} precise.
644	 * Get here in two states:
645	 * - first:  r6{.id=A}, r7{.id=B} (cached state)
646	 * - second: r6{.id=A}, r7{.id=A}
647	 * Currently we don't want to consider such states equivalent.
648	 * Thus "exit;" would be verified twice.
649	 */
650	"r2 = r10;"
651	"r2 += r6;"
652	"r2 += r7;"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
653	"exit;"
654	:
655	: __imm(bpf_ktime_get_ns)
656	: __clobber_all);
657}
658
659char _license[] SEC("license") = "GPL";