Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright 2019 NXP
   3
   4#include <linux/atomic.h>
   5#include <linux/clk.h>
   6#include <linux/device.h>
   7#include <linux/dma-mapping.h>
   8#include <linux/firmware.h>
   9#include <linux/interrupt.h>
  10#include <linux/kobject.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/miscdevice.h>
  14#include <linux/of.h>
  15#include <linux/of_address.h>
  16#include <linux/of_irq.h>
  17#include <linux/of_platform.h>
  18#include <linux/pm_runtime.h>
  19#include <linux/regmap.h>
  20#include <linux/sched/signal.h>
  21#include <linux/sysfs.h>
  22#include <linux/types.h>
  23#include <linux/gcd.h>
  24#include <sound/dmaengine_pcm.h>
  25#include <sound/pcm.h>
  26#include <sound/pcm_params.h>
  27#include <sound/soc.h>
  28#include <sound/tlv.h>
  29#include <sound/core.h>
  30
  31#include "fsl_easrc.h"
  32#include "imx-pcm.h"
  33
  34#define FSL_EASRC_FORMATS       (SNDRV_PCM_FMTBIT_S16_LE | \
  35				 SNDRV_PCM_FMTBIT_U16_LE | \
  36				 SNDRV_PCM_FMTBIT_S24_LE | \
  37				 SNDRV_PCM_FMTBIT_S24_3LE | \
  38				 SNDRV_PCM_FMTBIT_U24_LE | \
  39				 SNDRV_PCM_FMTBIT_U24_3LE | \
  40				 SNDRV_PCM_FMTBIT_S32_LE | \
  41				 SNDRV_PCM_FMTBIT_U32_LE | \
  42				 SNDRV_PCM_FMTBIT_S20_3LE | \
  43				 SNDRV_PCM_FMTBIT_U20_3LE | \
  44				 SNDRV_PCM_FMTBIT_FLOAT_LE)
  45
  46static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol,
  47				     struct snd_ctl_elem_value *ucontrol)
  48{
  49	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
  50	struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
  51	struct fsl_easrc_priv *easrc_priv = easrc->private;
  52	struct soc_mreg_control *mc =
  53		(struct soc_mreg_control *)kcontrol->private_value;
  54	unsigned int regval = ucontrol->value.integer.value[0];
  55
  56	easrc_priv->bps_iec958[mc->regbase] = regval;
  57
  58	return 0;
  59}
  60
  61static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol,
  62				     struct snd_ctl_elem_value *ucontrol)
  63{
  64	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
  65	struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
  66	struct fsl_easrc_priv *easrc_priv = easrc->private;
  67	struct soc_mreg_control *mc =
  68		(struct soc_mreg_control *)kcontrol->private_value;
  69
  70	ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase];
  71
  72	return 0;
  73}
  74
  75static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol,
  76			     struct snd_ctl_elem_value *ucontrol)
  77{
  78	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
  79	struct soc_mreg_control *mc =
  80		(struct soc_mreg_control *)kcontrol->private_value;
  81	unsigned int regval;
  82
  83	regval = snd_soc_component_read(component, mc->regbase);
  84
  85	ucontrol->value.integer.value[0] = regval;
  86
  87	return 0;
  88}
  89
  90static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol,
  91			     struct snd_ctl_elem_value *ucontrol)
  92{
  93	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
  94	struct soc_mreg_control *mc =
  95		(struct soc_mreg_control *)kcontrol->private_value;
  96	unsigned int regval = ucontrol->value.integer.value[0];
  97	int ret;
  98
  99	ret = snd_soc_component_write(component, mc->regbase, regval);
 100	if (ret < 0)
 101		return ret;
 102
 103	return 0;
 104}
 105
 106#define SOC_SINGLE_REG_RW(xname, xreg) \
 107{	.iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
 108	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
 109	.info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \
 110	.put = fsl_easrc_set_reg, \
 111	.private_value = (unsigned long)&(struct soc_mreg_control) \
 112		{ .regbase = xreg, .regcount = 1, .nbits = 32, \
 113		  .invert = 0, .min = 0, .max = 0xffffffff, } }
 114
 115#define SOC_SINGLE_VAL_RW(xname, xreg) \
 116{	.iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
 117	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
 118	.info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \
 119	.put = fsl_easrc_iec958_put_bits, \
 120	.private_value = (unsigned long)&(struct soc_mreg_control) \
 121		{ .regbase = xreg, .regcount = 1, .nbits = 32, \
 122		  .invert = 0, .min = 0, .max = 2, } }
 123
 124static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = {
 125	SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0),
 126	SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0),
 127	SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0),
 128	SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0),
 129
 130	SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0),
 131	SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0),
 132	SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0),
 133	SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0),
 134
 135	SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0),
 136	SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1),
 137	SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2),
 138	SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3),
 139
 140	SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)),
 141	SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)),
 142	SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)),
 143	SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)),
 144	SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)),
 145	SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)),
 146	SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)),
 147	SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)),
 148	SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)),
 149	SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)),
 150	SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)),
 151	SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)),
 152	SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)),
 153	SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)),
 154	SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)),
 155	SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)),
 156	SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)),
 157	SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)),
 158	SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)),
 159	SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)),
 160	SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)),
 161	SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)),
 162	SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)),
 163	SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)),
 164};
 165
 166/*
 167 * fsl_easrc_set_rs_ratio
 168 *
 169 * According to the resample taps, calculate the resample ratio
 170 * ratio = in_rate / out_rate
 171 */
 172static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx)
 173{
 174	struct fsl_asrc *easrc = ctx->asrc;
 175	struct fsl_easrc_priv *easrc_priv = easrc->private;
 176	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 177	unsigned int in_rate = ctx_priv->in_params.norm_rate;
 178	unsigned int out_rate = ctx_priv->out_params.norm_rate;
 179	unsigned int frac_bits;
 180	u64 val;
 181	u32 *r;
 182
 183	switch (easrc_priv->rs_num_taps) {
 184	case EASRC_RS_32_TAPS:
 185		/* integer bits = 5; */
 186		frac_bits = 39;
 187		break;
 188	case EASRC_RS_64_TAPS:
 189		/* integer bits = 6; */
 190		frac_bits = 38;
 191		break;
 192	case EASRC_RS_128_TAPS:
 193		/* integer bits = 7; */
 194		frac_bits = 37;
 195		break;
 196	default:
 197		return -EINVAL;
 198	}
 199
 200	val = (u64)in_rate << frac_bits;
 201	do_div(val, out_rate);
 202	r = (uint32_t *)&val;
 203
 204	if (r[1] & 0xFFFFF000) {
 205		dev_err(&easrc->pdev->dev, "ratio exceed range\n");
 206		return -EINVAL;
 207	}
 208
 209	regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index),
 210		     EASRC_RRL_RS_RL(r[0]));
 211	regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index),
 212		     EASRC_RRH_RS_RH(r[1]));
 213
 214	return 0;
 215}
 216
 217/* Normalize input and output sample rates */
 218static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx)
 219{
 220	struct fsl_easrc_ctx_priv *ctx_priv;
 221	int a, b;
 222
 223	if (!ctx)
 224		return;
 225
 226	ctx_priv = ctx->private;
 227
 228	a = ctx_priv->in_params.sample_rate;
 229	b = ctx_priv->out_params.sample_rate;
 230
 231	a = gcd(a, b);
 232
 233	/* Divide by gcd to normalize the rate */
 234	ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a;
 235	ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a;
 236}
 237
 238/* Resets the pointer of the coeff memory pointers */
 239static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc,
 240					 unsigned int ctx_id, int mem_type)
 241{
 242	struct device *dev;
 243	u32 reg, mask, val;
 244
 245	if (!easrc)
 246		return -ENODEV;
 247
 248	dev = &easrc->pdev->dev;
 249
 250	switch (mem_type) {
 251	case EASRC_PF_COEFF_MEM:
 252		/* This resets the prefilter memory pointer addr */
 253		if (ctx_id >= EASRC_CTX_MAX_NUM) {
 254			dev_err(dev, "Invalid context id[%d]\n", ctx_id);
 255			return -EINVAL;
 256		}
 257
 258		reg = REG_EASRC_CCE1(ctx_id);
 259		mask = EASRC_CCE1_COEF_MEM_RST_MASK;
 260		val = EASRC_CCE1_COEF_MEM_RST;
 261		break;
 262	case EASRC_RS_COEFF_MEM:
 263		/* This resets the resampling memory pointer addr */
 264		reg = REG_EASRC_CRCC;
 265		mask = EASRC_CRCC_RS_CPR_MASK;
 266		val = EASRC_CRCC_RS_CPR;
 267		break;
 268	default:
 269		dev_err(dev, "Unknown memory type\n");
 270		return -EINVAL;
 271	}
 272
 273	/*
 274	 * To reset the write pointer back to zero, the register field
 275	 * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from
 276	 * 0x0 to 0x1 to 0x0.
 277	 */
 278	regmap_update_bits(easrc->regmap, reg, mask, 0);
 279	regmap_update_bits(easrc->regmap, reg, mask, val);
 280	regmap_update_bits(easrc->regmap, reg, mask, 0);
 281
 282	return 0;
 283}
 284
 285static inline uint32_t bits_taps_to_val(unsigned int t)
 286{
 287	switch (t) {
 288	case EASRC_RS_32_TAPS:
 289		return 32;
 290	case EASRC_RS_64_TAPS:
 291		return 64;
 292	case EASRC_RS_128_TAPS:
 293		return 128;
 294	}
 295
 296	return 0;
 297}
 298
 299static int fsl_easrc_resampler_config(struct fsl_asrc *easrc)
 300{
 301	struct device *dev = &easrc->pdev->dev;
 302	struct fsl_easrc_priv *easrc_priv = easrc->private;
 303	struct asrc_firmware_hdr *hdr =  easrc_priv->firmware_hdr;
 304	struct interp_params *interp = easrc_priv->interp;
 305	struct interp_params *selected_interp = NULL;
 306	unsigned int num_coeff;
 307	unsigned int i;
 308	u64 *coef;
 309	u32 *r;
 310	int ret;
 311
 312	if (!hdr) {
 313		dev_err(dev, "firmware not loaded!\n");
 314		return -ENODEV;
 315	}
 316
 317	for (i = 0; i < hdr->interp_scen; i++) {
 318		if ((interp[i].num_taps - 1) !=
 319		    bits_taps_to_val(easrc_priv->rs_num_taps))
 320			continue;
 321
 322		coef = interp[i].coeff;
 323		selected_interp = &interp[i];
 324		dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n",
 325			selected_interp->num_taps,
 326			selected_interp->num_phases);
 327		break;
 328	}
 329
 330	if (!selected_interp) {
 331		dev_err(dev, "failed to get interpreter configuration\n");
 332		return -EINVAL;
 333	}
 334
 335	/*
 336	 * RS_LOW - first half of center tap of the sinc function
 337	 * RS_HIGH - second half of center tap of the sinc function
 338	 * This is due to the fact the resampling function must be
 339	 * symetrical - i.e. odd number of taps
 340	 */
 341	r = (uint32_t *)&selected_interp->center_tap;
 342	regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0]));
 343	regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1]));
 344
 345	/*
 346	 * Write Number of Resampling Coefficient Taps
 347	 * 00b - 32-Tap Resampling Filter
 348	 * 01b - 64-Tap Resampling Filter
 349	 * 10b - 128-Tap Resampling Filter
 350	 * 11b - N/A
 351	 */
 352	regmap_update_bits(easrc->regmap, REG_EASRC_CRCC,
 353			   EASRC_CRCC_RS_TAPS_MASK,
 354			   EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps));
 355
 356	/* Reset prefilter coefficient pointer back to 0 */
 357	ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM);
 358	if (ret)
 359		return ret;
 360
 361	/*
 362	 * When the filter is programmed to run in:
 363	 * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase
 364	 * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase
 365	 * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase
 366	 * This means the number of writes is constant no matter
 367	 * the mode we are using
 368	 */
 369	num_coeff = 16 * 128 * 4;
 370
 371	for (i = 0; i < num_coeff; i++) {
 372		r = (uint32_t *)&coef[i];
 373		regmap_write(easrc->regmap, REG_EASRC_CRCM,
 374			     EASRC_CRCM_RS_CWD(r[0]));
 375		regmap_write(easrc->regmap, REG_EASRC_CRCM,
 376			     EASRC_CRCM_RS_CWD(r[1]));
 377	}
 378
 379	return 0;
 380}
 381
 382/**
 383 *  fsl_easrc_normalize_filter - Scale filter coefficients (64 bits float)
 384 *  For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]:
 385 *      scale it by multiplying filter coefficients by 2^31
 386 *  For input int[16, 24, 32] -> output float32
 387 *      scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31
 388 *  input:
 389 *      @easrc:  Structure pointer of fsl_asrc
 390 *      @infilter : Pointer to non-scaled input filter
 391 *      @shift:  The multiply factor
 392 *  output:
 393 *      @outfilter: scaled filter
 394 */
 395static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc,
 396				      u64 *infilter,
 397				      u64 *outfilter,
 398				      int shift)
 399{
 400	struct device *dev = &easrc->pdev->dev;
 401	u64 coef = *infilter;
 402	s64 exp  = (coef & 0x7ff0000000000000ll) >> 52;
 403	u64 outcoef;
 404
 405	/*
 406	 * If exponent is zero (value == 0), or 7ff (value == NaNs)
 407	 * dont touch the content
 408	 */
 409	if (exp == 0 || exp == 0x7ff) {
 410		*outfilter = coef;
 411		return 0;
 412	}
 413
 414	/* coef * 2^shift ==> exp + shift */
 415	exp += shift;
 416
 417	if ((shift > 0 && exp >= 0x7ff) || (shift < 0 && exp <= 0)) {
 418		dev_err(dev, "coef out of range\n");
 419		return -EINVAL;
 420	}
 421
 422	outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) + ((u64)exp << 52);
 423	*outfilter = outcoef;
 424
 425	return 0;
 426}
 427
 428static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id,
 429					u64 *coef, int n_taps, int shift)
 430{
 431	struct device *dev = &easrc->pdev->dev;
 432	int ret = 0;
 433	int i;
 434	u32 *r;
 435	u64 tmp;
 436
 437	/* If STx_NUM_TAPS is set to 0x0 then return */
 438	if (!n_taps)
 439		return 0;
 440
 441	if (!coef) {
 442		dev_err(dev, "coef table is NULL\n");
 443		return -EINVAL;
 444	}
 445
 446	/*
 447	 * When switching between stages, the address pointer
 448	 * should be reset back to 0x0 before performing a write
 449	 */
 450	ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM);
 451	if (ret)
 452		return ret;
 453
 454	for (i = 0; i < (n_taps + 1) / 2; i++) {
 455		ret = fsl_easrc_normalize_filter(easrc, &coef[i], &tmp, shift);
 456		if (ret)
 457			return ret;
 458
 459		r = (uint32_t *)&tmp;
 460		regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
 461			     EASRC_PCF_CD(r[0]));
 462		regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
 463			     EASRC_PCF_CD(r[1]));
 464	}
 465
 466	return 0;
 467}
 468
 469static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc,
 470				      unsigned int ctx_id)
 471{
 472	struct prefil_params *prefil, *selected_prefil = NULL;
 473	struct fsl_easrc_ctx_priv *ctx_priv;
 474	struct fsl_easrc_priv *easrc_priv;
 475	struct asrc_firmware_hdr *hdr;
 476	struct fsl_asrc_pair *ctx;
 477	struct device *dev;
 478	u32 inrate, outrate, offset = 0;
 479	u32 in_s_rate, out_s_rate;
 480	snd_pcm_format_t in_s_fmt, out_s_fmt;
 481	int ret, i;
 482
 483	if (!easrc)
 484		return -ENODEV;
 485
 486	dev = &easrc->pdev->dev;
 487
 488	if (ctx_id >= EASRC_CTX_MAX_NUM) {
 489		dev_err(dev, "Invalid context id[%d]\n", ctx_id);
 490		return -EINVAL;
 491	}
 492
 493	easrc_priv = easrc->private;
 494
 495	ctx = easrc->pair[ctx_id];
 496	ctx_priv = ctx->private;
 497
 498	in_s_rate = ctx_priv->in_params.sample_rate;
 499	out_s_rate = ctx_priv->out_params.sample_rate;
 500	in_s_fmt = ctx_priv->in_params.sample_format;
 501	out_s_fmt = ctx_priv->out_params.sample_format;
 502
 503	ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2;
 504	ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
 505
 506	ctx_priv->st1_num_taps = 0;
 507	ctx_priv->st2_num_taps = 0;
 508
 509	regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0);
 510	regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0);
 511
 512	/*
 513	 * The audio float point data range is (-1, 1), the asrc would output
 514	 * all zero for float point input and integer output case, that is to
 515	 * drop the fractional part of the data directly.
 516	 *
 517	 * In order to support float to int conversion or int to float
 518	 * conversion we need to do special operation on the coefficient to
 519	 * enlarge/reduce the data to the expected range.
 520	 *
 521	 * For float to int case:
 522	 * Up sampling:
 523	 * 1. Create a 1 tap filter with center tap (only tap) of 2^31
 524	 *    in 64 bits floating point.
 525	 *    double value = (double)(((uint64_t)1) << 31)
 526	 * 2. Program 1 tap prefilter with center tap above.
 527	 *
 528	 * Down sampling,
 529	 * 1. If the filter is single stage filter, add "shift" to the exponent
 530	 *    of stage 1 coefficients.
 531	 * 2. If the filter is two stage filter , add "shift" to the exponent
 532	 *    of stage 2 coefficients.
 533	 *
 534	 * The "shift" is 31, same for int16, int24, int32 case.
 535	 *
 536	 * For int to float case:
 537	 * Up sampling:
 538	 * 1. Create a 1 tap filter with center tap (only tap) of 2^-31
 539	 *    in 64 bits floating point.
 540	 * 2. Program 1 tap prefilter with center tap above.
 541	 *
 542	 * Down sampling,
 543	 * 1. If the filter is single stage filter, subtract "shift" to the
 544	 *    exponent of stage 1 coefficients.
 545	 * 2. If the filter is two stage filter , subtract "shift" to the
 546	 *    exponent of stage 2 coefficients.
 547	 *
 548	 * The "shift" is 15,23,31, different for int16, int24, int32 case.
 549	 *
 550	 */
 551	if (out_s_rate >= in_s_rate) {
 552		if (out_s_rate == in_s_rate)
 553			regmap_update_bits(easrc->regmap,
 554					   REG_EASRC_CCE1(ctx_id),
 555					   EASRC_CCE1_RS_BYPASS_MASK,
 556					   EASRC_CCE1_RS_BYPASS);
 557
 558		ctx_priv->st1_num_taps = 1;
 559		ctx_priv->st1_coeff    = &easrc_priv->const_coeff;
 560		ctx_priv->st1_num_exp  = 1;
 561		ctx_priv->st2_num_taps = 0;
 562
 563		if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
 564		    out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE)
 565			ctx_priv->st1_addexp = 31;
 566		else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
 567			 out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE)
 568			ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
 569	} else {
 570		inrate = ctx_priv->in_params.norm_rate;
 571		outrate = ctx_priv->out_params.norm_rate;
 572
 573		hdr = easrc_priv->firmware_hdr;
 574		prefil = easrc_priv->prefil;
 575
 576		for (i = 0; i < hdr->prefil_scen; i++) {
 577			if (inrate == prefil[i].insr &&
 578			    outrate == prefil[i].outsr) {
 579				selected_prefil = &prefil[i];
 580				dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n",
 581					selected_prefil->insr,
 582					selected_prefil->outsr,
 583					selected_prefil->st1_taps,
 584					selected_prefil->st2_taps);
 585				break;
 586			}
 587		}
 588
 589		if (!selected_prefil) {
 590			dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n",
 591				in_s_rate, inrate,
 592				out_s_rate, outrate);
 593			return -EINVAL;
 594		}
 595
 596		/*
 597		 * In prefilter coeff array, first st1_num_taps represent the
 598		 * stage1 prefilter coefficients followed by next st2_num_taps
 599		 * representing stage 2 coefficients
 600		 */
 601		ctx_priv->st1_num_taps = selected_prefil->st1_taps;
 602		ctx_priv->st1_coeff    = selected_prefil->coeff;
 603		ctx_priv->st1_num_exp  = selected_prefil->st1_exp;
 604
 605		offset = ((selected_prefil->st1_taps + 1) / 2);
 606		ctx_priv->st2_num_taps = selected_prefil->st2_taps;
 607		ctx_priv->st2_coeff    = selected_prefil->coeff + offset;
 608
 609		if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
 610		    out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) {
 611			/* only change stage2 coefficient for 2 stage case */
 612			if (ctx_priv->st2_num_taps > 0)
 613				ctx_priv->st2_addexp = 31;
 614			else
 615				ctx_priv->st1_addexp = 31;
 616		} else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
 617			   out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) {
 618			if (ctx_priv->st2_num_taps > 0)
 619				ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp;
 620			else
 621				ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
 622		}
 623	}
 624
 625	ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp +
 626				  ctx_priv->st2_num_taps / 2;
 627	ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
 628
 629	if (ctx_priv->in_filled_sample * out_s_rate % in_s_rate != 0)
 630		ctx_priv->out_missed_sample += 1;
 631	/*
 632	 * To modify the value of a prefilter coefficient, the user must
 633	 * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA]
 634	 * while the respective context RUN_EN bit is set to 0b0
 635	 */
 636	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
 637			   EASRC_CC_EN_MASK, 0);
 638
 639	if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
 640		dev_err(dev, "ST1 taps [%d] mus be lower than %d\n",
 641			ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS);
 642		ret = -EINVAL;
 643		goto ctx_error;
 644	}
 645
 646	/* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */
 647	regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
 648			   EASRC_CCE2_ST1_TAPS_MASK,
 649			   EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1));
 650
 651	/* Prefilter Coefficient Write Select to write in ST1 coeff */
 652	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 653			   EASRC_CCE1_COEF_WS_MASK,
 654			   EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
 655
 656	ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
 657					   ctx_priv->st1_coeff,
 658					   ctx_priv->st1_num_taps,
 659					   ctx_priv->st1_addexp);
 660	if (ret)
 661		goto ctx_error;
 662
 663	if (ctx_priv->st2_num_taps > 0) {
 664		if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
 665			dev_err(dev, "ST2 taps [%d] mus be lower than %d\n",
 666				ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS);
 667			ret = -EINVAL;
 668			goto ctx_error;
 669		}
 670
 671		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 672				   EASRC_CCE1_PF_TSEN_MASK,
 673				   EASRC_CCE1_PF_TSEN);
 674		/*
 675		 * Enable prefilter stage1 writeback floating point
 676		 * which is used for FLOAT_LE case
 677		 */
 678		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 679				   EASRC_CCE1_PF_ST1_WBFP_MASK,
 680				   EASRC_CCE1_PF_ST1_WBFP);
 681
 682		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 683				   EASRC_CCE1_PF_EXP_MASK,
 684				   EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1));
 685
 686		/* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */
 687		regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
 688				   EASRC_CCE2_ST2_TAPS_MASK,
 689				   EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1));
 690
 691		/* Prefilter Coefficient Write Select to write in ST2 coeff */
 692		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 693				   EASRC_CCE1_COEF_WS_MASK,
 694				   EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
 695
 696		ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
 697						   ctx_priv->st2_coeff,
 698						   ctx_priv->st2_num_taps,
 699						   ctx_priv->st2_addexp);
 700		if (ret)
 701			goto ctx_error;
 702	}
 703
 704	return 0;
 705
 706ctx_error:
 707	return ret;
 708}
 709
 710static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx,
 711				     struct fsl_easrc_slot *slot)
 712{
 713	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 714	int st1_mem_alloc = 0, st2_mem_alloc = 0;
 715	int pf_mem_alloc = 0;
 716	int max_channels = 8 - slot->num_channel;
 717	int channels = 0;
 718
 719	if (ctx_priv->st1_num_taps > 0) {
 720		if (ctx_priv->st2_num_taps > 0)
 721			st1_mem_alloc =
 722				(ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1;
 723		else
 724			st1_mem_alloc = ctx_priv->st1_num_taps;
 725	}
 726
 727	if (ctx_priv->st2_num_taps > 0)
 728		st2_mem_alloc = ctx_priv->st2_num_taps;
 729
 730	pf_mem_alloc = st1_mem_alloc + st2_mem_alloc;
 731
 732	if (pf_mem_alloc != 0)
 733		channels = (6144 - slot->pf_mem_used) / pf_mem_alloc;
 734	else
 735		channels = 8;
 736
 737	if (channels < max_channels)
 738		max_channels = channels;
 739
 740	return max_channels;
 741}
 742
 743static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx,
 744				     struct fsl_easrc_slot *slot,
 745				     unsigned int slot_ctx_idx,
 746				     unsigned int *req_channels,
 747				     unsigned int *start_channel,
 748				     unsigned int *avail_channel)
 749{
 750	struct fsl_asrc *easrc = ctx->asrc;
 751	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 752	int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc;
 753	unsigned int reg0, reg1, reg2, reg3;
 754	unsigned int addr;
 755
 756	if (slot->slot_index == 0) {
 757		reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx);
 758		reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx);
 759		reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx);
 760		reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx);
 761	} else {
 762		reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx);
 763		reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx);
 764		reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx);
 765		reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx);
 766	}
 767
 768	if (*req_channels <= *avail_channel) {
 769		slot->num_channel = *req_channels;
 770		*req_channels = 0;
 771	} else {
 772		slot->num_channel = *avail_channel;
 773		*req_channels -= *avail_channel;
 774	}
 775
 776	slot->min_channel = *start_channel;
 777	slot->max_channel = *start_channel + slot->num_channel - 1;
 778	slot->ctx_index = ctx->index;
 779	slot->busy = true;
 780	*start_channel += slot->num_channel;
 781
 782	regmap_update_bits(easrc->regmap, reg0,
 783			   EASRC_DPCS0R0_MAXCH_MASK,
 784			   EASRC_DPCS0R0_MAXCH(slot->max_channel));
 785
 786	regmap_update_bits(easrc->regmap, reg0,
 787			   EASRC_DPCS0R0_MINCH_MASK,
 788			   EASRC_DPCS0R0_MINCH(slot->min_channel));
 789
 790	regmap_update_bits(easrc->regmap, reg0,
 791			   EASRC_DPCS0R0_NUMCH_MASK,
 792			   EASRC_DPCS0R0_NUMCH(slot->num_channel - 1));
 793
 794	regmap_update_bits(easrc->regmap, reg0,
 795			   EASRC_DPCS0R0_CTXNUM_MASK,
 796			   EASRC_DPCS0R0_CTXNUM(slot->ctx_index));
 797
 798	if (ctx_priv->st1_num_taps > 0) {
 799		if (ctx_priv->st2_num_taps > 0)
 800			st1_mem_alloc =
 801				(ctx_priv->st1_num_taps - 1) * slot->num_channel *
 802				ctx_priv->st1_num_exp + slot->num_channel;
 803		else
 804			st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel;
 805
 806		slot->pf_mem_used = st1_mem_alloc;
 807		regmap_update_bits(easrc->regmap, reg2,
 808				   EASRC_DPCS0R2_ST1_MA_MASK,
 809				   EASRC_DPCS0R2_ST1_MA(st1_mem_alloc));
 810
 811		if (slot->slot_index == 1)
 812			addr = PREFILTER_MEM_LEN - st1_mem_alloc;
 813		else
 814			addr = 0;
 815
 816		regmap_update_bits(easrc->regmap, reg2,
 817				   EASRC_DPCS0R2_ST1_SA_MASK,
 818				   EASRC_DPCS0R2_ST1_SA(addr));
 819	}
 820
 821	if (ctx_priv->st2_num_taps > 0) {
 822		st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1);
 823
 824		regmap_update_bits(easrc->regmap, reg1,
 825				   EASRC_DPCS0R1_ST1_EXP_MASK,
 826				   EASRC_DPCS0R1_ST1_EXP(st1_chanxexp));
 827
 828		st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps;
 829		slot->pf_mem_used += st2_mem_alloc;
 830		regmap_update_bits(easrc->regmap, reg3,
 831				   EASRC_DPCS0R3_ST2_MA_MASK,
 832				   EASRC_DPCS0R3_ST2_MA(st2_mem_alloc));
 833
 834		if (slot->slot_index == 1)
 835			addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc;
 836		else
 837			addr = st1_mem_alloc;
 838
 839		regmap_update_bits(easrc->regmap, reg3,
 840				   EASRC_DPCS0R3_ST2_SA_MASK,
 841				   EASRC_DPCS0R3_ST2_SA(addr));
 842	}
 843
 844	regmap_update_bits(easrc->regmap, reg0,
 845			   EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN);
 846
 847	return 0;
 848}
 849
 850/*
 851 * fsl_easrc_config_slot
 852 *
 853 * A single context can be split amongst any of the 4 context processing pipes
 854 * in the design.
 855 * The total number of channels consumed within the context processor must be
 856 * less than or equal to 8. if a single context is configured to contain more
 857 * than 8 channels then it must be distributed across multiple context
 858 * processing pipe slots.
 859 *
 860 */
 861static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
 862{
 863	struct fsl_easrc_priv *easrc_priv = easrc->private;
 864	struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
 865	int req_channels = ctx->channels;
 866	int start_channel = 0, avail_channel;
 867	struct fsl_easrc_slot *slot0, *slot1;
 868	struct fsl_easrc_slot *slota, *slotb;
 869	int i, ret;
 870
 871	if (req_channels <= 0)
 872		return -EINVAL;
 873
 874	for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
 875		slot0 = &easrc_priv->slot[i][0];
 876		slot1 = &easrc_priv->slot[i][1];
 877
 878		if (slot0->busy && slot1->busy) {
 879			continue;
 880		} else if ((slot0->busy && slot0->ctx_index == ctx->index) ||
 881			 (slot1->busy && slot1->ctx_index == ctx->index)) {
 882			continue;
 883		} else if (!slot0->busy) {
 884			slota = slot0;
 885			slotb = slot1;
 886			slota->slot_index = 0;
 887		} else if (!slot1->busy) {
 888			slota = slot1;
 889			slotb = slot0;
 890			slota->slot_index = 1;
 891		}
 892
 893		if (!slota || !slotb)
 894			continue;
 895
 896		avail_channel = fsl_easrc_max_ch_for_slot(ctx, slotb);
 897		if (avail_channel <= 0)
 898			continue;
 899
 900		ret = fsl_easrc_config_one_slot(ctx, slota, i, &req_channels,
 901						&start_channel, &avail_channel);
 902		if (ret)
 903			return ret;
 904
 905		if (req_channels > 0)
 906			continue;
 907		else
 908			break;
 909	}
 910
 911	if (req_channels > 0) {
 912		dev_err(&easrc->pdev->dev, "no avail slot.\n");
 913		return -EINVAL;
 914	}
 915
 916	return 0;
 917}
 918
 919/*
 920 * fsl_easrc_release_slot
 921 *
 922 * Clear the slot configuration
 923 */
 924static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
 925{
 926	struct fsl_easrc_priv *easrc_priv = easrc->private;
 927	struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
 928	int i;
 929
 930	for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
 931		if (easrc_priv->slot[i][0].busy &&
 932		    easrc_priv->slot[i][0].ctx_index == ctx->index) {
 933			easrc_priv->slot[i][0].busy = false;
 934			easrc_priv->slot[i][0].num_channel = 0;
 935			easrc_priv->slot[i][0].pf_mem_used = 0;
 936			/* set registers */
 937			regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0);
 938			regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0);
 939			regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0);
 940			regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0);
 941		}
 942
 943		if (easrc_priv->slot[i][1].busy &&
 944		    easrc_priv->slot[i][1].ctx_index == ctx->index) {
 945			easrc_priv->slot[i][1].busy = false;
 946			easrc_priv->slot[i][1].num_channel = 0;
 947			easrc_priv->slot[i][1].pf_mem_used = 0;
 948			/* set registers */
 949			regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0);
 950			regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0);
 951			regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0);
 952			regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0);
 953		}
 954	}
 955
 956	return 0;
 957}
 958
 959/*
 960 * fsl_easrc_config_context
 961 *
 962 * Configure the register relate with context.
 963 */
 964static int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id)
 965{
 966	struct fsl_easrc_ctx_priv *ctx_priv;
 967	struct fsl_asrc_pair *ctx;
 968	struct device *dev;
 969	unsigned long lock_flags;
 970	int ret;
 971
 972	if (!easrc)
 973		return -ENODEV;
 974
 975	dev = &easrc->pdev->dev;
 976
 977	if (ctx_id >= EASRC_CTX_MAX_NUM) {
 978		dev_err(dev, "Invalid context id[%d]\n", ctx_id);
 979		return -EINVAL;
 980	}
 981
 982	ctx = easrc->pair[ctx_id];
 983
 984	ctx_priv = ctx->private;
 985
 986	fsl_easrc_normalize_rates(ctx);
 987
 988	ret = fsl_easrc_set_rs_ratio(ctx);
 989	if (ret)
 990		return ret;
 991
 992	/* Initialize the context coeficients */
 993	ret = fsl_easrc_prefilter_config(easrc, ctx->index);
 994	if (ret)
 995		return ret;
 996
 997	spin_lock_irqsave(&easrc->lock, lock_flags);
 998	ret = fsl_easrc_config_slot(easrc, ctx->index);
 999	spin_unlock_irqrestore(&easrc->lock, lock_flags);
1000	if (ret)
1001		return ret;
1002
1003	/*
1004	 * Both prefilter and resampling filters can use following
1005	 * initialization modes:
1006	 * 2 - zero-fil mode
1007	 * 1 - replication mode
1008	 * 0 - software control
1009	 */
1010	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
1011			   EASRC_CCE1_RS_INIT_MASK,
1012			   EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode));
1013
1014	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
1015			   EASRC_CCE1_PF_INIT_MASK,
1016			   EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode));
1017
1018	/*
1019	 * Context Input FIFO Watermark
1020	 * DMA request is generated when input FIFO < FIFO_WTMK
1021	 */
1022	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
1023			   EASRC_CC_FIFO_WTMK_MASK,
1024			   EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk));
1025
1026	/*
1027	 * Context Output FIFO Watermark
1028	 * DMA request is generated when output FIFO > FIFO_WTMK
1029	 * So we set fifo_wtmk -1 to register.
1030	 */
1031	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id),
1032			   EASRC_COC_FIFO_WTMK_MASK,
1033			   EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1));
1034
1035	/* Number of channels */
1036	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
1037			   EASRC_CC_CHEN_MASK,
1038			   EASRC_CC_CHEN(ctx->channels - 1));
1039	return 0;
1040}
1041
1042static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx,
1043				    struct fsl_easrc_data_fmt *fmt,
1044				    snd_pcm_format_t raw_fmt)
1045{
1046	struct fsl_asrc *easrc = ctx->asrc;
1047	struct fsl_easrc_priv *easrc_priv = easrc->private;
1048	int ret;
1049
1050	if (!fmt)
1051		return -EINVAL;
1052
1053	/*
1054	 * Context Input Floating Point Format
1055	 * 0 - Integer Format
1056	 * 1 - Single Precision FP Format
1057	 */
1058	fmt->floating_point = !snd_pcm_format_linear(raw_fmt);
1059	fmt->sample_pos = 0;
1060	fmt->iec958 = 0;
1061
1062	/* Get the data width */
1063	switch (snd_pcm_format_width(raw_fmt)) {
1064	case 16:
1065		fmt->width = EASRC_WIDTH_16_BIT;
1066		fmt->addexp = 15;
1067		break;
1068	case 20:
1069		fmt->width = EASRC_WIDTH_20_BIT;
1070		fmt->addexp = 19;
1071		break;
1072	case 24:
1073		fmt->width = EASRC_WIDTH_24_BIT;
1074		fmt->addexp = 23;
1075		break;
1076	case 32:
1077		fmt->width = EASRC_WIDTH_32_BIT;
1078		fmt->addexp = 31;
1079		break;
1080	default:
1081		return -EINVAL;
1082	}
1083
1084	switch (raw_fmt) {
1085	case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE:
1086		fmt->width = easrc_priv->bps_iec958[ctx->index];
1087		fmt->iec958 = 1;
1088		fmt->floating_point = 0;
1089		if (fmt->width == EASRC_WIDTH_16_BIT) {
1090			fmt->sample_pos = 12;
1091			fmt->addexp = 15;
1092		} else if (fmt->width == EASRC_WIDTH_20_BIT) {
1093			fmt->sample_pos = 8;
1094			fmt->addexp = 19;
1095		} else if (fmt->width == EASRC_WIDTH_24_BIT) {
1096			fmt->sample_pos = 4;
1097			fmt->addexp = 23;
1098		}
1099		break;
1100	default:
1101		break;
1102	}
1103
1104	/*
1105	 * Data Endianness
1106	 * 0 - Little-Endian
1107	 * 1 - Big-Endian
1108	 */
1109	ret = snd_pcm_format_big_endian(raw_fmt);
1110	if (ret < 0)
1111		return ret;
1112
1113	fmt->endianness = ret;
1114
1115	/*
1116	 * Input Data sign
1117	 * 0b - Signed Format
1118	 * 1b - Unsigned Format
1119	 */
1120	fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0;
1121
1122	return 0;
1123}
1124
1125static int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx,
1126				    snd_pcm_format_t *in_raw_format,
1127				    snd_pcm_format_t *out_raw_format)
1128{
1129	struct fsl_asrc *easrc = ctx->asrc;
1130	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
1131	struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt;
1132	struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt;
1133	int ret = 0;
1134
1135	/* Get the bitfield values for input data format */
1136	if (in_raw_format && out_raw_format) {
1137		ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format);
1138		if (ret)
1139			return ret;
1140	}
1141
1142	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1143			   EASRC_CC_BPS_MASK,
1144			   EASRC_CC_BPS(in_fmt->width));
1145	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1146			   EASRC_CC_ENDIANNESS_MASK,
1147			   in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT);
1148	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1149			   EASRC_CC_FMT_MASK,
1150			   in_fmt->floating_point << EASRC_CC_FMT_SHIFT);
1151	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1152			   EASRC_CC_INSIGN_MASK,
1153			   in_fmt->unsign << EASRC_CC_INSIGN_SHIFT);
1154
1155	/* In Sample Position */
1156	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1157			   EASRC_CC_SAMPLE_POS_MASK,
1158			   EASRC_CC_SAMPLE_POS(in_fmt->sample_pos));
1159
1160	/* Get the bitfield values for input data format */
1161	if (in_raw_format && out_raw_format) {
1162		ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format);
1163		if (ret)
1164			return ret;
1165	}
1166
1167	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1168			   EASRC_COC_BPS_MASK,
1169			   EASRC_COC_BPS(out_fmt->width));
1170	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1171			   EASRC_COC_ENDIANNESS_MASK,
1172			   out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT);
1173	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1174			   EASRC_COC_FMT_MASK,
1175			   out_fmt->floating_point << EASRC_COC_FMT_SHIFT);
1176	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1177			   EASRC_COC_OUTSIGN_MASK,
1178			   out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT);
1179
1180	/* Out Sample Position */
1181	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1182			   EASRC_COC_SAMPLE_POS_MASK,
1183			   EASRC_COC_SAMPLE_POS(out_fmt->sample_pos));
1184
1185	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1186			   EASRC_COC_IEC_EN_MASK,
1187			   out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT);
1188
1189	return ret;
1190}
1191
1192/*
1193 * The ASRC provides interleaving support in hardware to ensure that a
1194 * variety of sample sources can be internally combined
1195 * to conform with this format. Interleaving parameters are accessed
1196 * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers
1197 */
1198static int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx)
1199{
1200	struct fsl_easrc_ctx_priv *ctx_priv;
1201	struct fsl_asrc *easrc;
1202
1203	if (!ctx)
1204		return -ENODEV;
1205
1206	easrc = ctx->asrc;
1207	ctx_priv = ctx->private;
1208
1209	/* input interleaving parameters */
1210	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1211			   EASRC_CIA_ITER_MASK,
1212			   EASRC_CIA_ITER(ctx_priv->in_params.iterations));
1213	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1214			   EASRC_CIA_GRLEN_MASK,
1215			   EASRC_CIA_GRLEN(ctx_priv->in_params.group_len));
1216	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1217			   EASRC_CIA_ACCLEN_MASK,
1218			   EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len));
1219
1220	/* output interleaving parameters */
1221	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1222			   EASRC_COA_ITER_MASK,
1223			   EASRC_COA_ITER(ctx_priv->out_params.iterations));
1224	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1225			   EASRC_COA_GRLEN_MASK,
1226			   EASRC_COA_GRLEN(ctx_priv->out_params.group_len));
1227	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1228			   EASRC_COA_ACCLEN_MASK,
1229			   EASRC_COA_ACCLEN(ctx_priv->out_params.access_len));
1230
1231	return 0;
1232}
1233
1234/*
1235 * Request one of the available contexts
1236 *
1237 * Returns a negative number on error and >=0 as context id
1238 * on success
1239 */
1240static int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx)
1241{
1242	enum asrc_pair_index index = ASRC_INVALID_PAIR;
1243	struct fsl_asrc *easrc = ctx->asrc;
1244	struct device *dev;
1245	unsigned long lock_flags;
1246	int ret = 0;
1247	int i;
1248
1249	dev = &easrc->pdev->dev;
1250
1251	spin_lock_irqsave(&easrc->lock, lock_flags);
1252
1253	for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
1254		if (easrc->pair[i])
1255			continue;
1256
1257		index = i;
1258		break;
1259	}
1260
1261	if (index == ASRC_INVALID_PAIR) {
1262		dev_err(dev, "all contexts are busy\n");
1263		ret = -EBUSY;
1264	} else if (channels > easrc->channel_avail) {
1265		dev_err(dev, "can't give the required channels: %d\n",
1266			channels);
1267		ret = -EINVAL;
1268	} else {
1269		ctx->index = index;
1270		ctx->channels = channels;
1271		easrc->pair[index] = ctx;
1272		easrc->channel_avail -= channels;
1273	}
1274
1275	spin_unlock_irqrestore(&easrc->lock, lock_flags);
1276
1277	return ret;
1278}
1279
1280/*
1281 * Release the context
1282 *
1283 * This funciton is mainly doing the revert thing in request context
1284 */
1285static void fsl_easrc_release_context(struct fsl_asrc_pair *ctx)
1286{
1287	unsigned long lock_flags;
1288	struct fsl_asrc *easrc;
1289
1290	if (!ctx)
1291		return;
1292
1293	easrc = ctx->asrc;
1294
1295	spin_lock_irqsave(&easrc->lock, lock_flags);
1296
1297	fsl_easrc_release_slot(easrc, ctx->index);
1298
1299	easrc->channel_avail += ctx->channels;
1300	easrc->pair[ctx->index] = NULL;
1301
1302	spin_unlock_irqrestore(&easrc->lock, lock_flags);
1303}
1304
1305/*
1306 * Start the context
1307 *
1308 * Enable the DMA request and context
1309 */
1310static int fsl_easrc_start_context(struct fsl_asrc_pair *ctx)
1311{
1312	struct fsl_asrc *easrc = ctx->asrc;
1313
1314	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1315			   EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE);
1316	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1317			   EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE);
1318	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1319			   EASRC_CC_EN_MASK, EASRC_CC_EN);
1320	return 0;
1321}
1322
1323/*
1324 * Stop the context
1325 *
1326 * Disable the DMA request and context
1327 */
1328static int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx)
1329{
1330	struct fsl_asrc *easrc = ctx->asrc;
1331	int val, i;
1332	int size;
1333	int retry = 200;
1334
1335	regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val);
1336
1337	if (val & EASRC_CC_EN_MASK) {
1338		regmap_update_bits(easrc->regmap,
1339				   REG_EASRC_CC(ctx->index),
1340				   EASRC_CC_STOP_MASK, EASRC_CC_STOP);
1341		do {
1342			regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val);
1343			val &= EASRC_SFS_NSGO_MASK;
1344			size = val >> EASRC_SFS_NSGO_SHIFT;
1345
1346			/* Read FIFO, drop the data */
1347			for (i = 0; i < size * ctx->channels; i++)
1348				regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val);
1349			/* Check RUN_STOP_DONE */
1350			regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
1351			if (val & EASRC_IRQF_RSD(1 << ctx->index)) {
1352				/*Clear RUN_STOP_DONE*/
1353				regmap_write_bits(easrc->regmap,
1354						  REG_EASRC_IRQF,
1355						  EASRC_IRQF_RSD(1 << ctx->index),
1356						  EASRC_IRQF_RSD(1 << ctx->index));
1357				break;
1358			}
1359			udelay(100);
1360		} while (--retry);
1361
1362		if (retry == 0)
1363			dev_warn(&easrc->pdev->dev, "RUN STOP fail\n");
1364	}
1365
1366	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1367			   EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0);
1368	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1369			   EASRC_CC_FWMDE_MASK, 0);
1370	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1371			   EASRC_COC_FWMDE_MASK, 0);
1372	return 0;
1373}
1374
1375static struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx,
1376						  bool dir)
1377{
1378	struct fsl_asrc *easrc = ctx->asrc;
1379	enum asrc_pair_index index = ctx->index;
1380	char name[8];
1381
1382	/* Example of dma name: ctx0_rx */
1383	sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't');
1384
1385	return dma_request_slave_channel(&easrc->pdev->dev, name);
1386};
1387
1388static const unsigned int easrc_rates[] = {
1389	8000, 11025, 12000, 16000,
1390	22050, 24000, 32000, 44100,
1391	48000, 64000, 88200, 96000,
1392	128000, 176400, 192000, 256000,
1393	352800, 384000, 705600, 768000,
1394};
1395
1396static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = {
1397	.count = ARRAY_SIZE(easrc_rates),
1398	.list = easrc_rates,
1399};
1400
1401static int fsl_easrc_startup(struct snd_pcm_substream *substream,
1402			     struct snd_soc_dai *dai)
1403{
1404	return snd_pcm_hw_constraint_list(substream->runtime, 0,
1405					  SNDRV_PCM_HW_PARAM_RATE,
1406					  &easrc_rate_constraints);
1407}
1408
1409static int fsl_easrc_trigger(struct snd_pcm_substream *substream,
1410			     int cmd, struct snd_soc_dai *dai)
1411{
1412	struct snd_pcm_runtime *runtime = substream->runtime;
1413	struct fsl_asrc_pair *ctx = runtime->private_data;
1414	int ret;
1415
1416	switch (cmd) {
1417	case SNDRV_PCM_TRIGGER_START:
1418	case SNDRV_PCM_TRIGGER_RESUME:
1419	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1420		ret = fsl_easrc_start_context(ctx);
1421		if (ret)
1422			return ret;
1423		break;
1424	case SNDRV_PCM_TRIGGER_STOP:
1425	case SNDRV_PCM_TRIGGER_SUSPEND:
1426	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1427		ret = fsl_easrc_stop_context(ctx);
1428		if (ret)
1429			return ret;
1430		break;
1431	default:
1432		return -EINVAL;
1433	}
1434
1435	return 0;
1436}
1437
1438static int fsl_easrc_hw_params(struct snd_pcm_substream *substream,
1439			       struct snd_pcm_hw_params *params,
1440			       struct snd_soc_dai *dai)
1441{
1442	struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai);
1443	struct snd_pcm_runtime *runtime = substream->runtime;
1444	struct device *dev = &easrc->pdev->dev;
1445	struct fsl_asrc_pair *ctx = runtime->private_data;
1446	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
1447	unsigned int channels = params_channels(params);
1448	unsigned int rate = params_rate(params);
1449	snd_pcm_format_t format = params_format(params);
1450	int ret;
1451
1452	ret = fsl_easrc_request_context(channels, ctx);
1453	if (ret) {
1454		dev_err(dev, "failed to request context\n");
1455		return ret;
1456	}
1457
1458	ctx_priv->ctx_streams |= BIT(substream->stream);
1459
1460	/*
1461	 * Set the input and output ratio so we can compute
1462	 * the resampling ratio in RS_LOW/HIGH
1463	 */
1464	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1465		ctx_priv->in_params.sample_rate = rate;
1466		ctx_priv->in_params.sample_format = format;
1467		ctx_priv->out_params.sample_rate = easrc->asrc_rate;
1468		ctx_priv->out_params.sample_format = easrc->asrc_format;
1469	} else {
1470		ctx_priv->out_params.sample_rate = rate;
1471		ctx_priv->out_params.sample_format = format;
1472		ctx_priv->in_params.sample_rate = easrc->asrc_rate;
1473		ctx_priv->in_params.sample_format = easrc->asrc_format;
1474	}
1475
1476	ctx->channels = channels;
1477	ctx_priv->in_params.fifo_wtmk  = 0x20;
1478	ctx_priv->out_params.fifo_wtmk = 0x20;
1479
1480	/*
1481	 * Do only rate conversion and keep the same format for input
1482	 * and output data
1483	 */
1484	ret = fsl_easrc_set_ctx_format(ctx,
1485				       &ctx_priv->in_params.sample_format,
1486				       &ctx_priv->out_params.sample_format);
1487	if (ret) {
1488		dev_err(dev, "failed to set format %d", ret);
1489		return ret;
1490	}
1491
1492	ret = fsl_easrc_config_context(easrc, ctx->index);
1493	if (ret) {
1494		dev_err(dev, "failed to config context\n");
1495		return ret;
1496	}
1497
1498	ctx_priv->in_params.iterations = 1;
1499	ctx_priv->in_params.group_len = ctx->channels;
1500	ctx_priv->in_params.access_len = ctx->channels;
1501	ctx_priv->out_params.iterations = 1;
1502	ctx_priv->out_params.group_len = ctx->channels;
1503	ctx_priv->out_params.access_len = ctx->channels;
1504
1505	ret = fsl_easrc_set_ctx_organziation(ctx);
1506	if (ret) {
1507		dev_err(dev, "failed to set fifo organization\n");
1508		return ret;
1509	}
1510
1511	return 0;
1512}
1513
1514static int fsl_easrc_hw_free(struct snd_pcm_substream *substream,
1515			     struct snd_soc_dai *dai)
1516{
1517	struct snd_pcm_runtime *runtime = substream->runtime;
1518	struct fsl_asrc_pair *ctx = runtime->private_data;
1519	struct fsl_easrc_ctx_priv *ctx_priv;
1520
1521	if (!ctx)
1522		return -EINVAL;
1523
1524	ctx_priv = ctx->private;
1525
1526	if (ctx_priv->ctx_streams & BIT(substream->stream)) {
1527		ctx_priv->ctx_streams &= ~BIT(substream->stream);
1528		fsl_easrc_release_context(ctx);
1529	}
1530
1531	return 0;
1532}
1533
1534static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai)
1535{
1536	struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev);
1537
1538	snd_soc_dai_init_dma_data(cpu_dai,
1539				  &easrc->dma_params_tx,
1540				  &easrc->dma_params_rx);
1541	return 0;
1542}
1543
1544static const struct snd_soc_dai_ops fsl_easrc_dai_ops = {
1545	.probe		= fsl_easrc_dai_probe,
1546	.startup	= fsl_easrc_startup,
1547	.trigger	= fsl_easrc_trigger,
1548	.hw_params	= fsl_easrc_hw_params,
1549	.hw_free	= fsl_easrc_hw_free,
1550};
1551
1552static struct snd_soc_dai_driver fsl_easrc_dai = {
1553	.playback = {
1554		.stream_name = "ASRC-Playback",
1555		.channels_min = 1,
1556		.channels_max = 32,
1557		.rate_min = 8000,
1558		.rate_max = 768000,
1559		.rates = SNDRV_PCM_RATE_KNOT,
1560		.formats = FSL_EASRC_FORMATS,
1561	},
1562	.capture = {
1563		.stream_name = "ASRC-Capture",
1564		.channels_min = 1,
1565		.channels_max = 32,
1566		.rate_min = 8000,
1567		.rate_max = 768000,
1568		.rates = SNDRV_PCM_RATE_KNOT,
1569		.formats = FSL_EASRC_FORMATS |
1570			   SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1571	},
1572	.ops = &fsl_easrc_dai_ops,
1573};
1574
1575static const struct snd_soc_component_driver fsl_easrc_component = {
1576	.name			= "fsl-easrc-dai",
1577	.controls		= fsl_easrc_snd_controls,
1578	.num_controls		= ARRAY_SIZE(fsl_easrc_snd_controls),
1579	.legacy_dai_naming	= 1,
1580};
1581
1582static const struct reg_default fsl_easrc_reg_defaults[] = {
1583	{REG_EASRC_WRFIFO(0),	0x00000000},
1584	{REG_EASRC_WRFIFO(1),	0x00000000},
1585	{REG_EASRC_WRFIFO(2),	0x00000000},
1586	{REG_EASRC_WRFIFO(3),	0x00000000},
1587	{REG_EASRC_RDFIFO(0),	0x00000000},
1588	{REG_EASRC_RDFIFO(1),	0x00000000},
1589	{REG_EASRC_RDFIFO(2),	0x00000000},
1590	{REG_EASRC_RDFIFO(3),	0x00000000},
1591	{REG_EASRC_CC(0),	0x00000000},
1592	{REG_EASRC_CC(1),	0x00000000},
1593	{REG_EASRC_CC(2),	0x00000000},
1594	{REG_EASRC_CC(3),	0x00000000},
1595	{REG_EASRC_CCE1(0),	0x00000000},
1596	{REG_EASRC_CCE1(1),	0x00000000},
1597	{REG_EASRC_CCE1(2),	0x00000000},
1598	{REG_EASRC_CCE1(3),	0x00000000},
1599	{REG_EASRC_CCE2(0),	0x00000000},
1600	{REG_EASRC_CCE2(1),	0x00000000},
1601	{REG_EASRC_CCE2(2),	0x00000000},
1602	{REG_EASRC_CCE2(3),	0x00000000},
1603	{REG_EASRC_CIA(0),	0x00000000},
1604	{REG_EASRC_CIA(1),	0x00000000},
1605	{REG_EASRC_CIA(2),	0x00000000},
1606	{REG_EASRC_CIA(3),	0x00000000},
1607	{REG_EASRC_DPCS0R0(0),	0x00000000},
1608	{REG_EASRC_DPCS0R0(1),	0x00000000},
1609	{REG_EASRC_DPCS0R0(2),	0x00000000},
1610	{REG_EASRC_DPCS0R0(3),	0x00000000},
1611	{REG_EASRC_DPCS0R1(0),	0x00000000},
1612	{REG_EASRC_DPCS0R1(1),	0x00000000},
1613	{REG_EASRC_DPCS0R1(2),	0x00000000},
1614	{REG_EASRC_DPCS0R1(3),	0x00000000},
1615	{REG_EASRC_DPCS0R2(0),	0x00000000},
1616	{REG_EASRC_DPCS0R2(1),	0x00000000},
1617	{REG_EASRC_DPCS0R2(2),	0x00000000},
1618	{REG_EASRC_DPCS0R2(3),	0x00000000},
1619	{REG_EASRC_DPCS0R3(0),	0x00000000},
1620	{REG_EASRC_DPCS0R3(1),	0x00000000},
1621	{REG_EASRC_DPCS0R3(2),	0x00000000},
1622	{REG_EASRC_DPCS0R3(3),	0x00000000},
1623	{REG_EASRC_DPCS1R0(0),	0x00000000},
1624	{REG_EASRC_DPCS1R0(1),	0x00000000},
1625	{REG_EASRC_DPCS1R0(2),	0x00000000},
1626	{REG_EASRC_DPCS1R0(3),	0x00000000},
1627	{REG_EASRC_DPCS1R1(0),	0x00000000},
1628	{REG_EASRC_DPCS1R1(1),	0x00000000},
1629	{REG_EASRC_DPCS1R1(2),	0x00000000},
1630	{REG_EASRC_DPCS1R1(3),	0x00000000},
1631	{REG_EASRC_DPCS1R2(0),	0x00000000},
1632	{REG_EASRC_DPCS1R2(1),	0x00000000},
1633	{REG_EASRC_DPCS1R2(2),	0x00000000},
1634	{REG_EASRC_DPCS1R2(3),	0x00000000},
1635	{REG_EASRC_DPCS1R3(0),	0x00000000},
1636	{REG_EASRC_DPCS1R3(1),	0x00000000},
1637	{REG_EASRC_DPCS1R3(2),	0x00000000},
1638	{REG_EASRC_DPCS1R3(3),	0x00000000},
1639	{REG_EASRC_COC(0),	0x00000000},
1640	{REG_EASRC_COC(1),	0x00000000},
1641	{REG_EASRC_COC(2),	0x00000000},
1642	{REG_EASRC_COC(3),	0x00000000},
1643	{REG_EASRC_COA(0),	0x00000000},
1644	{REG_EASRC_COA(1),	0x00000000},
1645	{REG_EASRC_COA(2),	0x00000000},
1646	{REG_EASRC_COA(3),	0x00000000},
1647	{REG_EASRC_SFS(0),	0x00000000},
1648	{REG_EASRC_SFS(1),	0x00000000},
1649	{REG_EASRC_SFS(2),	0x00000000},
1650	{REG_EASRC_SFS(3),	0x00000000},
1651	{REG_EASRC_RRL(0),	0x00000000},
1652	{REG_EASRC_RRL(1),	0x00000000},
1653	{REG_EASRC_RRL(2),	0x00000000},
1654	{REG_EASRC_RRL(3),	0x00000000},
1655	{REG_EASRC_RRH(0),	0x00000000},
1656	{REG_EASRC_RRH(1),	0x00000000},
1657	{REG_EASRC_RRH(2),	0x00000000},
1658	{REG_EASRC_RRH(3),	0x00000000},
1659	{REG_EASRC_RUC(0),	0x00000000},
1660	{REG_EASRC_RUC(1),	0x00000000},
1661	{REG_EASRC_RUC(2),	0x00000000},
1662	{REG_EASRC_RUC(3),	0x00000000},
1663	{REG_EASRC_RUR(0),	0x7FFFFFFF},
1664	{REG_EASRC_RUR(1),	0x7FFFFFFF},
1665	{REG_EASRC_RUR(2),	0x7FFFFFFF},
1666	{REG_EASRC_RUR(3),	0x7FFFFFFF},
1667	{REG_EASRC_RCTCL,	0x00000000},
1668	{REG_EASRC_RCTCH,	0x00000000},
1669	{REG_EASRC_PCF(0),	0x00000000},
1670	{REG_EASRC_PCF(1),	0x00000000},
1671	{REG_EASRC_PCF(2),	0x00000000},
1672	{REG_EASRC_PCF(3),	0x00000000},
1673	{REG_EASRC_CRCM,	0x00000000},
1674	{REG_EASRC_CRCC,	0x00000000},
1675	{REG_EASRC_IRQC,	0x00000FFF},
1676	{REG_EASRC_IRQF,	0x00000000},
1677	{REG_EASRC_CS0(0),	0x00000000},
1678	{REG_EASRC_CS0(1),	0x00000000},
1679	{REG_EASRC_CS0(2),	0x00000000},
1680	{REG_EASRC_CS0(3),	0x00000000},
1681	{REG_EASRC_CS1(0),	0x00000000},
1682	{REG_EASRC_CS1(1),	0x00000000},
1683	{REG_EASRC_CS1(2),	0x00000000},
1684	{REG_EASRC_CS1(3),	0x00000000},
1685	{REG_EASRC_CS2(0),	0x00000000},
1686	{REG_EASRC_CS2(1),	0x00000000},
1687	{REG_EASRC_CS2(2),	0x00000000},
1688	{REG_EASRC_CS2(3),	0x00000000},
1689	{REG_EASRC_CS3(0),	0x00000000},
1690	{REG_EASRC_CS3(1),	0x00000000},
1691	{REG_EASRC_CS3(2),	0x00000000},
1692	{REG_EASRC_CS3(3),	0x00000000},
1693	{REG_EASRC_CS4(0),	0x00000000},
1694	{REG_EASRC_CS4(1),	0x00000000},
1695	{REG_EASRC_CS4(2),	0x00000000},
1696	{REG_EASRC_CS4(3),	0x00000000},
1697	{REG_EASRC_CS5(0),	0x00000000},
1698	{REG_EASRC_CS5(1),	0x00000000},
1699	{REG_EASRC_CS5(2),	0x00000000},
1700	{REG_EASRC_CS5(3),	0x00000000},
1701	{REG_EASRC_DBGC,	0x00000000},
1702	{REG_EASRC_DBGS,	0x00000000},
1703};
1704
1705static const struct regmap_range fsl_easrc_readable_ranges[] = {
1706	regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH),
1707	regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)),
1708	regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS),
1709};
1710
1711static const struct regmap_access_table fsl_easrc_readable_table = {
1712	.yes_ranges = fsl_easrc_readable_ranges,
1713	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges),
1714};
1715
1716static const struct regmap_range fsl_easrc_writeable_ranges[] = {
1717	regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)),
1718	regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)),
1719	regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH),
1720	regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC),
1721};
1722
1723static const struct regmap_access_table fsl_easrc_writeable_table = {
1724	.yes_ranges = fsl_easrc_writeable_ranges,
1725	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges),
1726};
1727
1728static const struct regmap_range fsl_easrc_volatileable_ranges[] = {
1729	regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)),
1730	regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)),
1731	regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF),
1732	regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS),
1733};
1734
1735static const struct regmap_access_table fsl_easrc_volatileable_table = {
1736	.yes_ranges = fsl_easrc_volatileable_ranges,
1737	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges),
1738};
1739
1740static const struct regmap_config fsl_easrc_regmap_config = {
1741	.reg_bits = 32,
1742	.reg_stride = 4,
1743	.val_bits = 32,
1744
1745	.max_register = REG_EASRC_DBGS,
1746	.reg_defaults = fsl_easrc_reg_defaults,
1747	.num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults),
1748	.rd_table = &fsl_easrc_readable_table,
1749	.wr_table = &fsl_easrc_writeable_table,
1750	.volatile_table = &fsl_easrc_volatileable_table,
1751	.cache_type = REGCACHE_MAPLE,
1752};
1753
1754#ifdef DEBUG
1755static void fsl_easrc_dump_firmware(struct fsl_asrc *easrc)
1756{
1757	struct fsl_easrc_priv *easrc_priv = easrc->private;
1758	struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr;
1759	struct interp_params *interp = easrc_priv->interp;
1760	struct prefil_params *prefil = easrc_priv->prefil;
1761	struct device *dev = &easrc->pdev->dev;
1762	int i;
1763
1764	if (firm->magic != FIRMWARE_MAGIC) {
1765		dev_err(dev, "Wrong magic. Something went wrong!");
1766		return;
1767	}
1768
1769	dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version);
1770	dev_dbg(dev, "Num prefilter scenarios: %u\n", firm->prefil_scen);
1771	dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen);
1772	dev_dbg(dev, "\nInterpolation scenarios:\n");
1773
1774	for (i = 0; i < firm->interp_scen; i++) {
1775		if (interp[i].magic != FIRMWARE_MAGIC) {
1776			dev_dbg(dev, "%d. wrong interp magic: %x\n",
1777				i, interp[i].magic);
1778			continue;
1779		}
1780		dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i,
1781			interp[i].num_taps, interp[i].num_phases,
1782			interp[i].center_tap);
1783	}
1784
1785	for (i = 0; i < firm->prefil_scen; i++) {
1786		if (prefil[i].magic != FIRMWARE_MAGIC) {
1787			dev_dbg(dev, "%d. wrong prefil magic: %x\n",
1788				i, prefil[i].magic);
1789			continue;
1790		}
1791		dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i,
1792			prefil[i].insr, prefil[i].outsr,
1793			prefil[i].st1_taps, prefil[i].st2_taps);
1794	}
1795
1796	dev_dbg(dev, "end of firmware dump\n");
1797}
1798#endif
1799
1800static int fsl_easrc_get_firmware(struct fsl_asrc *easrc)
1801{
1802	struct fsl_easrc_priv *easrc_priv;
1803	const struct firmware **fw_p;
1804	u32 pnum, inum, offset;
1805	const u8 *data;
1806	int ret;
1807
1808	if (!easrc)
1809		return -EINVAL;
1810
1811	easrc_priv = easrc->private;
1812	fw_p = &easrc_priv->fw;
1813
1814	ret = request_firmware(fw_p, easrc_priv->fw_name, &easrc->pdev->dev);
1815	if (ret)
1816		return ret;
1817
1818	data = easrc_priv->fw->data;
1819
1820	easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)data;
1821	pnum = easrc_priv->firmware_hdr->prefil_scen;
1822	inum = easrc_priv->firmware_hdr->interp_scen;
1823
1824	if (inum) {
1825		offset = sizeof(struct asrc_firmware_hdr);
1826		easrc_priv->interp = (struct interp_params *)(data + offset);
1827	}
1828
1829	if (pnum) {
1830		offset = sizeof(struct asrc_firmware_hdr) +
1831				inum * sizeof(struct interp_params);
1832		easrc_priv->prefil = (struct prefil_params *)(data + offset);
1833	}
1834
1835#ifdef DEBUG
1836	fsl_easrc_dump_firmware(easrc);
1837#endif
1838
1839	return 0;
1840}
1841
1842static irqreturn_t fsl_easrc_isr(int irq, void *dev_id)
1843{
1844	struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id;
1845	struct device *dev = &easrc->pdev->dev;
1846	int val;
1847
1848	regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
1849
1850	if (val & EASRC_IRQF_OER_MASK)
1851		dev_dbg(dev, "output FIFO underflow\n");
1852
1853	if (val & EASRC_IRQF_IFO_MASK)
1854		dev_dbg(dev, "input FIFO overflow\n");
1855
1856	return IRQ_HANDLED;
1857}
1858
1859static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index)
1860{
1861	return REG_EASRC_FIFO(dir, index);
1862}
1863
1864static const struct of_device_id fsl_easrc_dt_ids[] = {
1865	{ .compatible = "fsl,imx8mn-easrc",},
1866	{}
1867};
1868MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids);
1869
1870static int fsl_easrc_probe(struct platform_device *pdev)
1871{
1872	struct fsl_easrc_priv *easrc_priv;
1873	struct device *dev = &pdev->dev;
1874	struct fsl_asrc *easrc;
1875	struct resource *res;
1876	struct device_node *np;
1877	void __iomem *regs;
1878	u32 asrc_fmt = 0;
1879	int ret, irq;
1880
1881	easrc = devm_kzalloc(dev, sizeof(*easrc), GFP_KERNEL);
1882	if (!easrc)
1883		return -ENOMEM;
1884
1885	easrc_priv = devm_kzalloc(dev, sizeof(*easrc_priv), GFP_KERNEL);
1886	if (!easrc_priv)
1887		return -ENOMEM;
1888
1889	easrc->pdev = pdev;
1890	easrc->private = easrc_priv;
1891	np = dev->of_node;
1892
1893	regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1894	if (IS_ERR(regs))
1895		return PTR_ERR(regs);
1896
1897	easrc->paddr = res->start;
1898
1899	easrc->regmap = devm_regmap_init_mmio(dev, regs, &fsl_easrc_regmap_config);
1900	if (IS_ERR(easrc->regmap)) {
1901		dev_err(dev, "failed to init regmap");
1902		return PTR_ERR(easrc->regmap);
1903	}
1904
1905	irq = platform_get_irq(pdev, 0);
1906	if (irq < 0)
1907		return irq;
1908
1909	ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0,
1910			       dev_name(dev), easrc);
1911	if (ret) {
1912		dev_err(dev, "failed to claim irq %u: %d\n", irq, ret);
1913		return ret;
1914	}
1915
1916	easrc->mem_clk = devm_clk_get(dev, "mem");
1917	if (IS_ERR(easrc->mem_clk)) {
1918		dev_err(dev, "failed to get mem clock\n");
1919		return PTR_ERR(easrc->mem_clk);
1920	}
1921
1922	/* Set default value */
1923	easrc->channel_avail = 32;
1924	easrc->get_dma_channel = fsl_easrc_get_dma_channel;
1925	easrc->request_pair = fsl_easrc_request_context;
1926	easrc->release_pair = fsl_easrc_release_context;
1927	easrc->get_fifo_addr = fsl_easrc_get_fifo_addr;
1928	easrc->pair_priv_size = sizeof(struct fsl_easrc_ctx_priv);
1929
1930	easrc_priv->rs_num_taps = EASRC_RS_32_TAPS;
1931	easrc_priv->const_coeff = 0x3FF0000000000000;
1932
1933	ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate);
1934	if (ret) {
1935		dev_err(dev, "failed to asrc rate\n");
1936		return ret;
1937	}
1938
1939	ret = of_property_read_u32(np, "fsl,asrc-format", &asrc_fmt);
1940	easrc->asrc_format = (__force snd_pcm_format_t)asrc_fmt;
1941	if (ret) {
1942		dev_err(dev, "failed to asrc format\n");
1943		return ret;
1944	}
1945
1946	if (!(FSL_EASRC_FORMATS & (pcm_format_to_bits(easrc->asrc_format)))) {
1947		dev_warn(dev, "unsupported format, switching to S24_LE\n");
1948		easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE;
1949	}
1950
1951	ret = of_property_read_string(np, "firmware-name",
1952				      &easrc_priv->fw_name);
1953	if (ret) {
1954		dev_err(dev, "failed to get firmware name\n");
1955		return ret;
1956	}
1957
1958	platform_set_drvdata(pdev, easrc);
1959	pm_runtime_enable(dev);
1960
1961	spin_lock_init(&easrc->lock);
1962
1963	regcache_cache_only(easrc->regmap, true);
1964
1965	ret = devm_snd_soc_register_component(dev, &fsl_easrc_component,
1966					      &fsl_easrc_dai, 1);
1967	if (ret) {
1968		dev_err(dev, "failed to register ASoC DAI\n");
1969		goto err_pm_disable;
1970	}
1971
1972	ret = devm_snd_soc_register_component(dev, &fsl_asrc_component,
1973					      NULL, 0);
1974	if (ret) {
1975		dev_err(&pdev->dev, "failed to register ASoC platform\n");
1976		goto err_pm_disable;
1977	}
1978
1979	return 0;
1980
1981err_pm_disable:
1982	pm_runtime_disable(&pdev->dev);
1983	return ret;
1984}
1985
1986static void fsl_easrc_remove(struct platform_device *pdev)
1987{
1988	pm_runtime_disable(&pdev->dev);
1989}
1990
1991static int fsl_easrc_runtime_suspend(struct device *dev)
1992{
1993	struct fsl_asrc *easrc = dev_get_drvdata(dev);
1994	struct fsl_easrc_priv *easrc_priv = easrc->private;
1995	unsigned long lock_flags;
1996
1997	regcache_cache_only(easrc->regmap, true);
1998
1999	clk_disable_unprepare(easrc->mem_clk);
2000
2001	spin_lock_irqsave(&easrc->lock, lock_flags);
2002	easrc_priv->firmware_loaded = 0;
2003	spin_unlock_irqrestore(&easrc->lock, lock_flags);
2004
2005	return 0;
2006}
2007
2008static int fsl_easrc_runtime_resume(struct device *dev)
2009{
2010	struct fsl_asrc *easrc = dev_get_drvdata(dev);
2011	struct fsl_easrc_priv *easrc_priv = easrc->private;
2012	struct fsl_easrc_ctx_priv *ctx_priv;
2013	struct fsl_asrc_pair *ctx;
2014	unsigned long lock_flags;
2015	int ret;
2016	int i;
2017
2018	ret = clk_prepare_enable(easrc->mem_clk);
2019	if (ret)
2020		return ret;
2021
2022	regcache_cache_only(easrc->regmap, false);
2023	regcache_mark_dirty(easrc->regmap);
2024	regcache_sync(easrc->regmap);
2025
2026	spin_lock_irqsave(&easrc->lock, lock_flags);
2027	if (easrc_priv->firmware_loaded) {
2028		spin_unlock_irqrestore(&easrc->lock, lock_flags);
2029		goto skip_load;
2030	}
2031	easrc_priv->firmware_loaded = 1;
2032	spin_unlock_irqrestore(&easrc->lock, lock_flags);
2033
2034	ret = fsl_easrc_get_firmware(easrc);
2035	if (ret) {
2036		dev_err(dev, "failed to get firmware\n");
2037		goto disable_mem_clk;
2038	}
2039
2040	/*
2041	 * Write Resampling Coefficients
2042	 * The coefficient RAM must be configured prior to beginning of
2043	 * any context processing within the ASRC
2044	 */
2045	ret = fsl_easrc_resampler_config(easrc);
2046	if (ret) {
2047		dev_err(dev, "resampler config failed\n");
2048		goto disable_mem_clk;
2049	}
2050
2051	for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
2052		ctx = easrc->pair[i];
2053		if (!ctx)
2054			continue;
2055
2056		ctx_priv = ctx->private;
2057		fsl_easrc_set_rs_ratio(ctx);
2058		ctx_priv->out_missed_sample = ctx_priv->in_filled_sample *
2059					      ctx_priv->out_params.sample_rate /
2060					      ctx_priv->in_params.sample_rate;
2061		if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate
2062		    % ctx_priv->in_params.sample_rate != 0)
2063			ctx_priv->out_missed_sample += 1;
2064
2065		ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
2066						   ctx_priv->st1_coeff,
2067						   ctx_priv->st1_num_taps,
2068						   ctx_priv->st1_addexp);
2069		if (ret)
2070			goto disable_mem_clk;
2071
2072		ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
2073						   ctx_priv->st2_coeff,
2074						   ctx_priv->st2_num_taps,
2075						   ctx_priv->st2_addexp);
2076		if (ret)
2077			goto disable_mem_clk;
2078	}
2079
2080skip_load:
2081	return 0;
2082
2083disable_mem_clk:
2084	clk_disable_unprepare(easrc->mem_clk);
2085	return ret;
2086}
2087
2088static const struct dev_pm_ops fsl_easrc_pm_ops = {
2089	RUNTIME_PM_OPS(fsl_easrc_runtime_suspend, fsl_easrc_runtime_resume, NULL)
 
 
2090	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2091				pm_runtime_force_resume)
2092};
2093
2094static struct platform_driver fsl_easrc_driver = {
2095	.probe = fsl_easrc_probe,
2096	.remove = fsl_easrc_remove,
2097	.driver = {
2098		.name = "fsl-easrc",
2099		.pm = pm_ptr(&fsl_easrc_pm_ops),
2100		.of_match_table = fsl_easrc_dt_ids,
2101	},
2102};
2103module_platform_driver(fsl_easrc_driver);
2104
2105MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver");
2106MODULE_LICENSE("GPL v2");
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright 2019 NXP
   3
   4#include <linux/atomic.h>
   5#include <linux/clk.h>
   6#include <linux/device.h>
   7#include <linux/dma-mapping.h>
   8#include <linux/firmware.h>
   9#include <linux/interrupt.h>
  10#include <linux/kobject.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/miscdevice.h>
  14#include <linux/of.h>
  15#include <linux/of_address.h>
  16#include <linux/of_irq.h>
  17#include <linux/of_platform.h>
  18#include <linux/pm_runtime.h>
  19#include <linux/regmap.h>
  20#include <linux/sched/signal.h>
  21#include <linux/sysfs.h>
  22#include <linux/types.h>
  23#include <linux/gcd.h>
  24#include <sound/dmaengine_pcm.h>
  25#include <sound/pcm.h>
  26#include <sound/pcm_params.h>
  27#include <sound/soc.h>
  28#include <sound/tlv.h>
  29#include <sound/core.h>
  30
  31#include "fsl_easrc.h"
  32#include "imx-pcm.h"
  33
  34#define FSL_EASRC_FORMATS       (SNDRV_PCM_FMTBIT_S16_LE | \
  35				 SNDRV_PCM_FMTBIT_U16_LE | \
  36				 SNDRV_PCM_FMTBIT_S24_LE | \
  37				 SNDRV_PCM_FMTBIT_S24_3LE | \
  38				 SNDRV_PCM_FMTBIT_U24_LE | \
  39				 SNDRV_PCM_FMTBIT_U24_3LE | \
  40				 SNDRV_PCM_FMTBIT_S32_LE | \
  41				 SNDRV_PCM_FMTBIT_U32_LE | \
  42				 SNDRV_PCM_FMTBIT_S20_3LE | \
  43				 SNDRV_PCM_FMTBIT_U20_3LE | \
  44				 SNDRV_PCM_FMTBIT_FLOAT_LE)
  45
  46static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol,
  47				     struct snd_ctl_elem_value *ucontrol)
  48{
  49	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
  50	struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
  51	struct fsl_easrc_priv *easrc_priv = easrc->private;
  52	struct soc_mreg_control *mc =
  53		(struct soc_mreg_control *)kcontrol->private_value;
  54	unsigned int regval = ucontrol->value.integer.value[0];
  55
  56	easrc_priv->bps_iec958[mc->regbase] = regval;
  57
  58	return 0;
  59}
  60
  61static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol,
  62				     struct snd_ctl_elem_value *ucontrol)
  63{
  64	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
  65	struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
  66	struct fsl_easrc_priv *easrc_priv = easrc->private;
  67	struct soc_mreg_control *mc =
  68		(struct soc_mreg_control *)kcontrol->private_value;
  69
  70	ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase];
  71
  72	return 0;
  73}
  74
  75static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol,
  76			     struct snd_ctl_elem_value *ucontrol)
  77{
  78	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
  79	struct soc_mreg_control *mc =
  80		(struct soc_mreg_control *)kcontrol->private_value;
  81	unsigned int regval;
  82
  83	regval = snd_soc_component_read(component, mc->regbase);
  84
  85	ucontrol->value.integer.value[0] = regval;
  86
  87	return 0;
  88}
  89
  90static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol,
  91			     struct snd_ctl_elem_value *ucontrol)
  92{
  93	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
  94	struct soc_mreg_control *mc =
  95		(struct soc_mreg_control *)kcontrol->private_value;
  96	unsigned int regval = ucontrol->value.integer.value[0];
  97	int ret;
  98
  99	ret = snd_soc_component_write(component, mc->regbase, regval);
 100	if (ret < 0)
 101		return ret;
 102
 103	return 0;
 104}
 105
 106#define SOC_SINGLE_REG_RW(xname, xreg) \
 107{	.iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
 108	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
 109	.info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \
 110	.put = fsl_easrc_set_reg, \
 111	.private_value = (unsigned long)&(struct soc_mreg_control) \
 112		{ .regbase = xreg, .regcount = 1, .nbits = 32, \
 113		  .invert = 0, .min = 0, .max = 0xffffffff, } }
 114
 115#define SOC_SINGLE_VAL_RW(xname, xreg) \
 116{	.iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
 117	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
 118	.info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \
 119	.put = fsl_easrc_iec958_put_bits, \
 120	.private_value = (unsigned long)&(struct soc_mreg_control) \
 121		{ .regbase = xreg, .regcount = 1, .nbits = 32, \
 122		  .invert = 0, .min = 0, .max = 2, } }
 123
 124static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = {
 125	SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0),
 126	SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0),
 127	SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0),
 128	SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0),
 129
 130	SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0),
 131	SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0),
 132	SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0),
 133	SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0),
 134
 135	SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0),
 136	SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1),
 137	SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2),
 138	SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3),
 139
 140	SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)),
 141	SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)),
 142	SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)),
 143	SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)),
 144	SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)),
 145	SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)),
 146	SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)),
 147	SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)),
 148	SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)),
 149	SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)),
 150	SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)),
 151	SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)),
 152	SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)),
 153	SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)),
 154	SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)),
 155	SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)),
 156	SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)),
 157	SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)),
 158	SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)),
 159	SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)),
 160	SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)),
 161	SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)),
 162	SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)),
 163	SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)),
 164};
 165
 166/*
 167 * fsl_easrc_set_rs_ratio
 168 *
 169 * According to the resample taps, calculate the resample ratio
 170 * ratio = in_rate / out_rate
 171 */
 172static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx)
 173{
 174	struct fsl_asrc *easrc = ctx->asrc;
 175	struct fsl_easrc_priv *easrc_priv = easrc->private;
 176	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 177	unsigned int in_rate = ctx_priv->in_params.norm_rate;
 178	unsigned int out_rate = ctx_priv->out_params.norm_rate;
 179	unsigned int frac_bits;
 180	u64 val;
 181	u32 *r;
 182
 183	switch (easrc_priv->rs_num_taps) {
 184	case EASRC_RS_32_TAPS:
 185		/* integer bits = 5; */
 186		frac_bits = 39;
 187		break;
 188	case EASRC_RS_64_TAPS:
 189		/* integer bits = 6; */
 190		frac_bits = 38;
 191		break;
 192	case EASRC_RS_128_TAPS:
 193		/* integer bits = 7; */
 194		frac_bits = 37;
 195		break;
 196	default:
 197		return -EINVAL;
 198	}
 199
 200	val = (u64)in_rate << frac_bits;
 201	do_div(val, out_rate);
 202	r = (uint32_t *)&val;
 203
 204	if (r[1] & 0xFFFFF000) {
 205		dev_err(&easrc->pdev->dev, "ratio exceed range\n");
 206		return -EINVAL;
 207	}
 208
 209	regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index),
 210		     EASRC_RRL_RS_RL(r[0]));
 211	regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index),
 212		     EASRC_RRH_RS_RH(r[1]));
 213
 214	return 0;
 215}
 216
 217/* Normalize input and output sample rates */
 218static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx)
 219{
 220	struct fsl_easrc_ctx_priv *ctx_priv;
 221	int a, b;
 222
 223	if (!ctx)
 224		return;
 225
 226	ctx_priv = ctx->private;
 227
 228	a = ctx_priv->in_params.sample_rate;
 229	b = ctx_priv->out_params.sample_rate;
 230
 231	a = gcd(a, b);
 232
 233	/* Divide by gcd to normalize the rate */
 234	ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a;
 235	ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a;
 236}
 237
 238/* Resets the pointer of the coeff memory pointers */
 239static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc,
 240					 unsigned int ctx_id, int mem_type)
 241{
 242	struct device *dev;
 243	u32 reg, mask, val;
 244
 245	if (!easrc)
 246		return -ENODEV;
 247
 248	dev = &easrc->pdev->dev;
 249
 250	switch (mem_type) {
 251	case EASRC_PF_COEFF_MEM:
 252		/* This resets the prefilter memory pointer addr */
 253		if (ctx_id >= EASRC_CTX_MAX_NUM) {
 254			dev_err(dev, "Invalid context id[%d]\n", ctx_id);
 255			return -EINVAL;
 256		}
 257
 258		reg = REG_EASRC_CCE1(ctx_id);
 259		mask = EASRC_CCE1_COEF_MEM_RST_MASK;
 260		val = EASRC_CCE1_COEF_MEM_RST;
 261		break;
 262	case EASRC_RS_COEFF_MEM:
 263		/* This resets the resampling memory pointer addr */
 264		reg = REG_EASRC_CRCC;
 265		mask = EASRC_CRCC_RS_CPR_MASK;
 266		val = EASRC_CRCC_RS_CPR;
 267		break;
 268	default:
 269		dev_err(dev, "Unknown memory type\n");
 270		return -EINVAL;
 271	}
 272
 273	/*
 274	 * To reset the write pointer back to zero, the register field
 275	 * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from
 276	 * 0x0 to 0x1 to 0x0.
 277	 */
 278	regmap_update_bits(easrc->regmap, reg, mask, 0);
 279	regmap_update_bits(easrc->regmap, reg, mask, val);
 280	regmap_update_bits(easrc->regmap, reg, mask, 0);
 281
 282	return 0;
 283}
 284
 285static inline uint32_t bits_taps_to_val(unsigned int t)
 286{
 287	switch (t) {
 288	case EASRC_RS_32_TAPS:
 289		return 32;
 290	case EASRC_RS_64_TAPS:
 291		return 64;
 292	case EASRC_RS_128_TAPS:
 293		return 128;
 294	}
 295
 296	return 0;
 297}
 298
 299static int fsl_easrc_resampler_config(struct fsl_asrc *easrc)
 300{
 301	struct device *dev = &easrc->pdev->dev;
 302	struct fsl_easrc_priv *easrc_priv = easrc->private;
 303	struct asrc_firmware_hdr *hdr =  easrc_priv->firmware_hdr;
 304	struct interp_params *interp = easrc_priv->interp;
 305	struct interp_params *selected_interp = NULL;
 306	unsigned int num_coeff;
 307	unsigned int i;
 308	u64 *coef;
 309	u32 *r;
 310	int ret;
 311
 312	if (!hdr) {
 313		dev_err(dev, "firmware not loaded!\n");
 314		return -ENODEV;
 315	}
 316
 317	for (i = 0; i < hdr->interp_scen; i++) {
 318		if ((interp[i].num_taps - 1) !=
 319		    bits_taps_to_val(easrc_priv->rs_num_taps))
 320			continue;
 321
 322		coef = interp[i].coeff;
 323		selected_interp = &interp[i];
 324		dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n",
 325			selected_interp->num_taps,
 326			selected_interp->num_phases);
 327		break;
 328	}
 329
 330	if (!selected_interp) {
 331		dev_err(dev, "failed to get interpreter configuration\n");
 332		return -EINVAL;
 333	}
 334
 335	/*
 336	 * RS_LOW - first half of center tap of the sinc function
 337	 * RS_HIGH - second half of center tap of the sinc function
 338	 * This is due to the fact the resampling function must be
 339	 * symetrical - i.e. odd number of taps
 340	 */
 341	r = (uint32_t *)&selected_interp->center_tap;
 342	regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0]));
 343	regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1]));
 344
 345	/*
 346	 * Write Number of Resampling Coefficient Taps
 347	 * 00b - 32-Tap Resampling Filter
 348	 * 01b - 64-Tap Resampling Filter
 349	 * 10b - 128-Tap Resampling Filter
 350	 * 11b - N/A
 351	 */
 352	regmap_update_bits(easrc->regmap, REG_EASRC_CRCC,
 353			   EASRC_CRCC_RS_TAPS_MASK,
 354			   EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps));
 355
 356	/* Reset prefilter coefficient pointer back to 0 */
 357	ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM);
 358	if (ret)
 359		return ret;
 360
 361	/*
 362	 * When the filter is programmed to run in:
 363	 * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase
 364	 * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase
 365	 * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase
 366	 * This means the number of writes is constant no matter
 367	 * the mode we are using
 368	 */
 369	num_coeff = 16 * 128 * 4;
 370
 371	for (i = 0; i < num_coeff; i++) {
 372		r = (uint32_t *)&coef[i];
 373		regmap_write(easrc->regmap, REG_EASRC_CRCM,
 374			     EASRC_CRCM_RS_CWD(r[0]));
 375		regmap_write(easrc->regmap, REG_EASRC_CRCM,
 376			     EASRC_CRCM_RS_CWD(r[1]));
 377	}
 378
 379	return 0;
 380}
 381
 382/**
 383 *  fsl_easrc_normalize_filter - Scale filter coefficients (64 bits float)
 384 *  For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]:
 385 *      scale it by multiplying filter coefficients by 2^31
 386 *  For input int[16, 24, 32] -> output float32
 387 *      scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31
 388 *  input:
 389 *      @easrc:  Structure pointer of fsl_asrc
 390 *      @infilter : Pointer to non-scaled input filter
 391 *      @shift:  The multiply factor
 392 *  output:
 393 *      @outfilter: scaled filter
 394 */
 395static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc,
 396				      u64 *infilter,
 397				      u64 *outfilter,
 398				      int shift)
 399{
 400	struct device *dev = &easrc->pdev->dev;
 401	u64 coef = *infilter;
 402	s64 exp  = (coef & 0x7ff0000000000000ll) >> 52;
 403	u64 outcoef;
 404
 405	/*
 406	 * If exponent is zero (value == 0), or 7ff (value == NaNs)
 407	 * dont touch the content
 408	 */
 409	if (exp == 0 || exp == 0x7ff) {
 410		*outfilter = coef;
 411		return 0;
 412	}
 413
 414	/* coef * 2^shift ==> exp + shift */
 415	exp += shift;
 416
 417	if ((shift > 0 && exp >= 0x7ff) || (shift < 0 && exp <= 0)) {
 418		dev_err(dev, "coef out of range\n");
 419		return -EINVAL;
 420	}
 421
 422	outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) + ((u64)exp << 52);
 423	*outfilter = outcoef;
 424
 425	return 0;
 426}
 427
 428static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id,
 429					u64 *coef, int n_taps, int shift)
 430{
 431	struct device *dev = &easrc->pdev->dev;
 432	int ret = 0;
 433	int i;
 434	u32 *r;
 435	u64 tmp;
 436
 437	/* If STx_NUM_TAPS is set to 0x0 then return */
 438	if (!n_taps)
 439		return 0;
 440
 441	if (!coef) {
 442		dev_err(dev, "coef table is NULL\n");
 443		return -EINVAL;
 444	}
 445
 446	/*
 447	 * When switching between stages, the address pointer
 448	 * should be reset back to 0x0 before performing a write
 449	 */
 450	ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM);
 451	if (ret)
 452		return ret;
 453
 454	for (i = 0; i < (n_taps + 1) / 2; i++) {
 455		ret = fsl_easrc_normalize_filter(easrc, &coef[i], &tmp, shift);
 456		if (ret)
 457			return ret;
 458
 459		r = (uint32_t *)&tmp;
 460		regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
 461			     EASRC_PCF_CD(r[0]));
 462		regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
 463			     EASRC_PCF_CD(r[1]));
 464	}
 465
 466	return 0;
 467}
 468
 469static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc,
 470				      unsigned int ctx_id)
 471{
 472	struct prefil_params *prefil, *selected_prefil = NULL;
 473	struct fsl_easrc_ctx_priv *ctx_priv;
 474	struct fsl_easrc_priv *easrc_priv;
 475	struct asrc_firmware_hdr *hdr;
 476	struct fsl_asrc_pair *ctx;
 477	struct device *dev;
 478	u32 inrate, outrate, offset = 0;
 479	u32 in_s_rate, out_s_rate;
 480	snd_pcm_format_t in_s_fmt, out_s_fmt;
 481	int ret, i;
 482
 483	if (!easrc)
 484		return -ENODEV;
 485
 486	dev = &easrc->pdev->dev;
 487
 488	if (ctx_id >= EASRC_CTX_MAX_NUM) {
 489		dev_err(dev, "Invalid context id[%d]\n", ctx_id);
 490		return -EINVAL;
 491	}
 492
 493	easrc_priv = easrc->private;
 494
 495	ctx = easrc->pair[ctx_id];
 496	ctx_priv = ctx->private;
 497
 498	in_s_rate = ctx_priv->in_params.sample_rate;
 499	out_s_rate = ctx_priv->out_params.sample_rate;
 500	in_s_fmt = ctx_priv->in_params.sample_format;
 501	out_s_fmt = ctx_priv->out_params.sample_format;
 502
 503	ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2;
 504	ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
 505
 506	ctx_priv->st1_num_taps = 0;
 507	ctx_priv->st2_num_taps = 0;
 508
 509	regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0);
 510	regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0);
 511
 512	/*
 513	 * The audio float point data range is (-1, 1), the asrc would output
 514	 * all zero for float point input and integer output case, that is to
 515	 * drop the fractional part of the data directly.
 516	 *
 517	 * In order to support float to int conversion or int to float
 518	 * conversion we need to do special operation on the coefficient to
 519	 * enlarge/reduce the data to the expected range.
 520	 *
 521	 * For float to int case:
 522	 * Up sampling:
 523	 * 1. Create a 1 tap filter with center tap (only tap) of 2^31
 524	 *    in 64 bits floating point.
 525	 *    double value = (double)(((uint64_t)1) << 31)
 526	 * 2. Program 1 tap prefilter with center tap above.
 527	 *
 528	 * Down sampling,
 529	 * 1. If the filter is single stage filter, add "shift" to the exponent
 530	 *    of stage 1 coefficients.
 531	 * 2. If the filter is two stage filter , add "shift" to the exponent
 532	 *    of stage 2 coefficients.
 533	 *
 534	 * The "shift" is 31, same for int16, int24, int32 case.
 535	 *
 536	 * For int to float case:
 537	 * Up sampling:
 538	 * 1. Create a 1 tap filter with center tap (only tap) of 2^-31
 539	 *    in 64 bits floating point.
 540	 * 2. Program 1 tap prefilter with center tap above.
 541	 *
 542	 * Down sampling,
 543	 * 1. If the filter is single stage filter, subtract "shift" to the
 544	 *    exponent of stage 1 coefficients.
 545	 * 2. If the filter is two stage filter , subtract "shift" to the
 546	 *    exponent of stage 2 coefficients.
 547	 *
 548	 * The "shift" is 15,23,31, different for int16, int24, int32 case.
 549	 *
 550	 */
 551	if (out_s_rate >= in_s_rate) {
 552		if (out_s_rate == in_s_rate)
 553			regmap_update_bits(easrc->regmap,
 554					   REG_EASRC_CCE1(ctx_id),
 555					   EASRC_CCE1_RS_BYPASS_MASK,
 556					   EASRC_CCE1_RS_BYPASS);
 557
 558		ctx_priv->st1_num_taps = 1;
 559		ctx_priv->st1_coeff    = &easrc_priv->const_coeff;
 560		ctx_priv->st1_num_exp  = 1;
 561		ctx_priv->st2_num_taps = 0;
 562
 563		if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
 564		    out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE)
 565			ctx_priv->st1_addexp = 31;
 566		else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
 567			 out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE)
 568			ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
 569	} else {
 570		inrate = ctx_priv->in_params.norm_rate;
 571		outrate = ctx_priv->out_params.norm_rate;
 572
 573		hdr = easrc_priv->firmware_hdr;
 574		prefil = easrc_priv->prefil;
 575
 576		for (i = 0; i < hdr->prefil_scen; i++) {
 577			if (inrate == prefil[i].insr &&
 578			    outrate == prefil[i].outsr) {
 579				selected_prefil = &prefil[i];
 580				dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n",
 581					selected_prefil->insr,
 582					selected_prefil->outsr,
 583					selected_prefil->st1_taps,
 584					selected_prefil->st2_taps);
 585				break;
 586			}
 587		}
 588
 589		if (!selected_prefil) {
 590			dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n",
 591				in_s_rate, inrate,
 592				out_s_rate, outrate);
 593			return -EINVAL;
 594		}
 595
 596		/*
 597		 * In prefilter coeff array, first st1_num_taps represent the
 598		 * stage1 prefilter coefficients followed by next st2_num_taps
 599		 * representing stage 2 coefficients
 600		 */
 601		ctx_priv->st1_num_taps = selected_prefil->st1_taps;
 602		ctx_priv->st1_coeff    = selected_prefil->coeff;
 603		ctx_priv->st1_num_exp  = selected_prefil->st1_exp;
 604
 605		offset = ((selected_prefil->st1_taps + 1) / 2);
 606		ctx_priv->st2_num_taps = selected_prefil->st2_taps;
 607		ctx_priv->st2_coeff    = selected_prefil->coeff + offset;
 608
 609		if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
 610		    out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) {
 611			/* only change stage2 coefficient for 2 stage case */
 612			if (ctx_priv->st2_num_taps > 0)
 613				ctx_priv->st2_addexp = 31;
 614			else
 615				ctx_priv->st1_addexp = 31;
 616		} else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
 617			   out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) {
 618			if (ctx_priv->st2_num_taps > 0)
 619				ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp;
 620			else
 621				ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
 622		}
 623	}
 624
 625	ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp +
 626				  ctx_priv->st2_num_taps / 2;
 627	ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
 628
 629	if (ctx_priv->in_filled_sample * out_s_rate % in_s_rate != 0)
 630		ctx_priv->out_missed_sample += 1;
 631	/*
 632	 * To modify the value of a prefilter coefficient, the user must
 633	 * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA]
 634	 * while the respective context RUN_EN bit is set to 0b0
 635	 */
 636	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
 637			   EASRC_CC_EN_MASK, 0);
 638
 639	if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
 640		dev_err(dev, "ST1 taps [%d] mus be lower than %d\n",
 641			ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS);
 642		ret = -EINVAL;
 643		goto ctx_error;
 644	}
 645
 646	/* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */
 647	regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
 648			   EASRC_CCE2_ST1_TAPS_MASK,
 649			   EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1));
 650
 651	/* Prefilter Coefficient Write Select to write in ST1 coeff */
 652	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 653			   EASRC_CCE1_COEF_WS_MASK,
 654			   EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
 655
 656	ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
 657					   ctx_priv->st1_coeff,
 658					   ctx_priv->st1_num_taps,
 659					   ctx_priv->st1_addexp);
 660	if (ret)
 661		goto ctx_error;
 662
 663	if (ctx_priv->st2_num_taps > 0) {
 664		if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
 665			dev_err(dev, "ST2 taps [%d] mus be lower than %d\n",
 666				ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS);
 667			ret = -EINVAL;
 668			goto ctx_error;
 669		}
 670
 671		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 672				   EASRC_CCE1_PF_TSEN_MASK,
 673				   EASRC_CCE1_PF_TSEN);
 674		/*
 675		 * Enable prefilter stage1 writeback floating point
 676		 * which is used for FLOAT_LE case
 677		 */
 678		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 679				   EASRC_CCE1_PF_ST1_WBFP_MASK,
 680				   EASRC_CCE1_PF_ST1_WBFP);
 681
 682		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 683				   EASRC_CCE1_PF_EXP_MASK,
 684				   EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1));
 685
 686		/* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */
 687		regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
 688				   EASRC_CCE2_ST2_TAPS_MASK,
 689				   EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1));
 690
 691		/* Prefilter Coefficient Write Select to write in ST2 coeff */
 692		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 693				   EASRC_CCE1_COEF_WS_MASK,
 694				   EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
 695
 696		ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
 697						   ctx_priv->st2_coeff,
 698						   ctx_priv->st2_num_taps,
 699						   ctx_priv->st2_addexp);
 700		if (ret)
 701			goto ctx_error;
 702	}
 703
 704	return 0;
 705
 706ctx_error:
 707	return ret;
 708}
 709
 710static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx,
 711				     struct fsl_easrc_slot *slot)
 712{
 713	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 714	int st1_mem_alloc = 0, st2_mem_alloc = 0;
 715	int pf_mem_alloc = 0;
 716	int max_channels = 8 - slot->num_channel;
 717	int channels = 0;
 718
 719	if (ctx_priv->st1_num_taps > 0) {
 720		if (ctx_priv->st2_num_taps > 0)
 721			st1_mem_alloc =
 722				(ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1;
 723		else
 724			st1_mem_alloc = ctx_priv->st1_num_taps;
 725	}
 726
 727	if (ctx_priv->st2_num_taps > 0)
 728		st2_mem_alloc = ctx_priv->st2_num_taps;
 729
 730	pf_mem_alloc = st1_mem_alloc + st2_mem_alloc;
 731
 732	if (pf_mem_alloc != 0)
 733		channels = (6144 - slot->pf_mem_used) / pf_mem_alloc;
 734	else
 735		channels = 8;
 736
 737	if (channels < max_channels)
 738		max_channels = channels;
 739
 740	return max_channels;
 741}
 742
 743static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx,
 744				     struct fsl_easrc_slot *slot,
 745				     unsigned int slot_ctx_idx,
 746				     unsigned int *req_channels,
 747				     unsigned int *start_channel,
 748				     unsigned int *avail_channel)
 749{
 750	struct fsl_asrc *easrc = ctx->asrc;
 751	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 752	int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc;
 753	unsigned int reg0, reg1, reg2, reg3;
 754	unsigned int addr;
 755
 756	if (slot->slot_index == 0) {
 757		reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx);
 758		reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx);
 759		reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx);
 760		reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx);
 761	} else {
 762		reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx);
 763		reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx);
 764		reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx);
 765		reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx);
 766	}
 767
 768	if (*req_channels <= *avail_channel) {
 769		slot->num_channel = *req_channels;
 770		*req_channels = 0;
 771	} else {
 772		slot->num_channel = *avail_channel;
 773		*req_channels -= *avail_channel;
 774	}
 775
 776	slot->min_channel = *start_channel;
 777	slot->max_channel = *start_channel + slot->num_channel - 1;
 778	slot->ctx_index = ctx->index;
 779	slot->busy = true;
 780	*start_channel += slot->num_channel;
 781
 782	regmap_update_bits(easrc->regmap, reg0,
 783			   EASRC_DPCS0R0_MAXCH_MASK,
 784			   EASRC_DPCS0R0_MAXCH(slot->max_channel));
 785
 786	regmap_update_bits(easrc->regmap, reg0,
 787			   EASRC_DPCS0R0_MINCH_MASK,
 788			   EASRC_DPCS0R0_MINCH(slot->min_channel));
 789
 790	regmap_update_bits(easrc->regmap, reg0,
 791			   EASRC_DPCS0R0_NUMCH_MASK,
 792			   EASRC_DPCS0R0_NUMCH(slot->num_channel - 1));
 793
 794	regmap_update_bits(easrc->regmap, reg0,
 795			   EASRC_DPCS0R0_CTXNUM_MASK,
 796			   EASRC_DPCS0R0_CTXNUM(slot->ctx_index));
 797
 798	if (ctx_priv->st1_num_taps > 0) {
 799		if (ctx_priv->st2_num_taps > 0)
 800			st1_mem_alloc =
 801				(ctx_priv->st1_num_taps - 1) * slot->num_channel *
 802				ctx_priv->st1_num_exp + slot->num_channel;
 803		else
 804			st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel;
 805
 806		slot->pf_mem_used = st1_mem_alloc;
 807		regmap_update_bits(easrc->regmap, reg2,
 808				   EASRC_DPCS0R2_ST1_MA_MASK,
 809				   EASRC_DPCS0R2_ST1_MA(st1_mem_alloc));
 810
 811		if (slot->slot_index == 1)
 812			addr = PREFILTER_MEM_LEN - st1_mem_alloc;
 813		else
 814			addr = 0;
 815
 816		regmap_update_bits(easrc->regmap, reg2,
 817				   EASRC_DPCS0R2_ST1_SA_MASK,
 818				   EASRC_DPCS0R2_ST1_SA(addr));
 819	}
 820
 821	if (ctx_priv->st2_num_taps > 0) {
 822		st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1);
 823
 824		regmap_update_bits(easrc->regmap, reg1,
 825				   EASRC_DPCS0R1_ST1_EXP_MASK,
 826				   EASRC_DPCS0R1_ST1_EXP(st1_chanxexp));
 827
 828		st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps;
 829		slot->pf_mem_used += st2_mem_alloc;
 830		regmap_update_bits(easrc->regmap, reg3,
 831				   EASRC_DPCS0R3_ST2_MA_MASK,
 832				   EASRC_DPCS0R3_ST2_MA(st2_mem_alloc));
 833
 834		if (slot->slot_index == 1)
 835			addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc;
 836		else
 837			addr = st1_mem_alloc;
 838
 839		regmap_update_bits(easrc->regmap, reg3,
 840				   EASRC_DPCS0R3_ST2_SA_MASK,
 841				   EASRC_DPCS0R3_ST2_SA(addr));
 842	}
 843
 844	regmap_update_bits(easrc->regmap, reg0,
 845			   EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN);
 846
 847	return 0;
 848}
 849
 850/*
 851 * fsl_easrc_config_slot
 852 *
 853 * A single context can be split amongst any of the 4 context processing pipes
 854 * in the design.
 855 * The total number of channels consumed within the context processor must be
 856 * less than or equal to 8. if a single context is configured to contain more
 857 * than 8 channels then it must be distributed across multiple context
 858 * processing pipe slots.
 859 *
 860 */
 861static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
 862{
 863	struct fsl_easrc_priv *easrc_priv = easrc->private;
 864	struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
 865	int req_channels = ctx->channels;
 866	int start_channel = 0, avail_channel;
 867	struct fsl_easrc_slot *slot0, *slot1;
 868	struct fsl_easrc_slot *slota, *slotb;
 869	int i, ret;
 870
 871	if (req_channels <= 0)
 872		return -EINVAL;
 873
 874	for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
 875		slot0 = &easrc_priv->slot[i][0];
 876		slot1 = &easrc_priv->slot[i][1];
 877
 878		if (slot0->busy && slot1->busy) {
 879			continue;
 880		} else if ((slot0->busy && slot0->ctx_index == ctx->index) ||
 881			 (slot1->busy && slot1->ctx_index == ctx->index)) {
 882			continue;
 883		} else if (!slot0->busy) {
 884			slota = slot0;
 885			slotb = slot1;
 886			slota->slot_index = 0;
 887		} else if (!slot1->busy) {
 888			slota = slot1;
 889			slotb = slot0;
 890			slota->slot_index = 1;
 891		}
 892
 893		if (!slota || !slotb)
 894			continue;
 895
 896		avail_channel = fsl_easrc_max_ch_for_slot(ctx, slotb);
 897		if (avail_channel <= 0)
 898			continue;
 899
 900		ret = fsl_easrc_config_one_slot(ctx, slota, i, &req_channels,
 901						&start_channel, &avail_channel);
 902		if (ret)
 903			return ret;
 904
 905		if (req_channels > 0)
 906			continue;
 907		else
 908			break;
 909	}
 910
 911	if (req_channels > 0) {
 912		dev_err(&easrc->pdev->dev, "no avail slot.\n");
 913		return -EINVAL;
 914	}
 915
 916	return 0;
 917}
 918
 919/*
 920 * fsl_easrc_release_slot
 921 *
 922 * Clear the slot configuration
 923 */
 924static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
 925{
 926	struct fsl_easrc_priv *easrc_priv = easrc->private;
 927	struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
 928	int i;
 929
 930	for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
 931		if (easrc_priv->slot[i][0].busy &&
 932		    easrc_priv->slot[i][0].ctx_index == ctx->index) {
 933			easrc_priv->slot[i][0].busy = false;
 934			easrc_priv->slot[i][0].num_channel = 0;
 935			easrc_priv->slot[i][0].pf_mem_used = 0;
 936			/* set registers */
 937			regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0);
 938			regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0);
 939			regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0);
 940			regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0);
 941		}
 942
 943		if (easrc_priv->slot[i][1].busy &&
 944		    easrc_priv->slot[i][1].ctx_index == ctx->index) {
 945			easrc_priv->slot[i][1].busy = false;
 946			easrc_priv->slot[i][1].num_channel = 0;
 947			easrc_priv->slot[i][1].pf_mem_used = 0;
 948			/* set registers */
 949			regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0);
 950			regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0);
 951			regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0);
 952			regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0);
 953		}
 954	}
 955
 956	return 0;
 957}
 958
 959/*
 960 * fsl_easrc_config_context
 961 *
 962 * Configure the register relate with context.
 963 */
 964static int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id)
 965{
 966	struct fsl_easrc_ctx_priv *ctx_priv;
 967	struct fsl_asrc_pair *ctx;
 968	struct device *dev;
 969	unsigned long lock_flags;
 970	int ret;
 971
 972	if (!easrc)
 973		return -ENODEV;
 974
 975	dev = &easrc->pdev->dev;
 976
 977	if (ctx_id >= EASRC_CTX_MAX_NUM) {
 978		dev_err(dev, "Invalid context id[%d]\n", ctx_id);
 979		return -EINVAL;
 980	}
 981
 982	ctx = easrc->pair[ctx_id];
 983
 984	ctx_priv = ctx->private;
 985
 986	fsl_easrc_normalize_rates(ctx);
 987
 988	ret = fsl_easrc_set_rs_ratio(ctx);
 989	if (ret)
 990		return ret;
 991
 992	/* Initialize the context coeficients */
 993	ret = fsl_easrc_prefilter_config(easrc, ctx->index);
 994	if (ret)
 995		return ret;
 996
 997	spin_lock_irqsave(&easrc->lock, lock_flags);
 998	ret = fsl_easrc_config_slot(easrc, ctx->index);
 999	spin_unlock_irqrestore(&easrc->lock, lock_flags);
1000	if (ret)
1001		return ret;
1002
1003	/*
1004	 * Both prefilter and resampling filters can use following
1005	 * initialization modes:
1006	 * 2 - zero-fil mode
1007	 * 1 - replication mode
1008	 * 0 - software control
1009	 */
1010	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
1011			   EASRC_CCE1_RS_INIT_MASK,
1012			   EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode));
1013
1014	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
1015			   EASRC_CCE1_PF_INIT_MASK,
1016			   EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode));
1017
1018	/*
1019	 * Context Input FIFO Watermark
1020	 * DMA request is generated when input FIFO < FIFO_WTMK
1021	 */
1022	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
1023			   EASRC_CC_FIFO_WTMK_MASK,
1024			   EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk));
1025
1026	/*
1027	 * Context Output FIFO Watermark
1028	 * DMA request is generated when output FIFO > FIFO_WTMK
1029	 * So we set fifo_wtmk -1 to register.
1030	 */
1031	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id),
1032			   EASRC_COC_FIFO_WTMK_MASK,
1033			   EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1));
1034
1035	/* Number of channels */
1036	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
1037			   EASRC_CC_CHEN_MASK,
1038			   EASRC_CC_CHEN(ctx->channels - 1));
1039	return 0;
1040}
1041
1042static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx,
1043				    struct fsl_easrc_data_fmt *fmt,
1044				    snd_pcm_format_t raw_fmt)
1045{
1046	struct fsl_asrc *easrc = ctx->asrc;
1047	struct fsl_easrc_priv *easrc_priv = easrc->private;
1048	int ret;
1049
1050	if (!fmt)
1051		return -EINVAL;
1052
1053	/*
1054	 * Context Input Floating Point Format
1055	 * 0 - Integer Format
1056	 * 1 - Single Precision FP Format
1057	 */
1058	fmt->floating_point = !snd_pcm_format_linear(raw_fmt);
1059	fmt->sample_pos = 0;
1060	fmt->iec958 = 0;
1061
1062	/* Get the data width */
1063	switch (snd_pcm_format_width(raw_fmt)) {
1064	case 16:
1065		fmt->width = EASRC_WIDTH_16_BIT;
1066		fmt->addexp = 15;
1067		break;
1068	case 20:
1069		fmt->width = EASRC_WIDTH_20_BIT;
1070		fmt->addexp = 19;
1071		break;
1072	case 24:
1073		fmt->width = EASRC_WIDTH_24_BIT;
1074		fmt->addexp = 23;
1075		break;
1076	case 32:
1077		fmt->width = EASRC_WIDTH_32_BIT;
1078		fmt->addexp = 31;
1079		break;
1080	default:
1081		return -EINVAL;
1082	}
1083
1084	switch (raw_fmt) {
1085	case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE:
1086		fmt->width = easrc_priv->bps_iec958[ctx->index];
1087		fmt->iec958 = 1;
1088		fmt->floating_point = 0;
1089		if (fmt->width == EASRC_WIDTH_16_BIT) {
1090			fmt->sample_pos = 12;
1091			fmt->addexp = 15;
1092		} else if (fmt->width == EASRC_WIDTH_20_BIT) {
1093			fmt->sample_pos = 8;
1094			fmt->addexp = 19;
1095		} else if (fmt->width == EASRC_WIDTH_24_BIT) {
1096			fmt->sample_pos = 4;
1097			fmt->addexp = 23;
1098		}
1099		break;
1100	default:
1101		break;
1102	}
1103
1104	/*
1105	 * Data Endianness
1106	 * 0 - Little-Endian
1107	 * 1 - Big-Endian
1108	 */
1109	ret = snd_pcm_format_big_endian(raw_fmt);
1110	if (ret < 0)
1111		return ret;
1112
1113	fmt->endianness = ret;
1114
1115	/*
1116	 * Input Data sign
1117	 * 0b - Signed Format
1118	 * 1b - Unsigned Format
1119	 */
1120	fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0;
1121
1122	return 0;
1123}
1124
1125static int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx,
1126				    snd_pcm_format_t *in_raw_format,
1127				    snd_pcm_format_t *out_raw_format)
1128{
1129	struct fsl_asrc *easrc = ctx->asrc;
1130	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
1131	struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt;
1132	struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt;
1133	int ret = 0;
1134
1135	/* Get the bitfield values for input data format */
1136	if (in_raw_format && out_raw_format) {
1137		ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format);
1138		if (ret)
1139			return ret;
1140	}
1141
1142	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1143			   EASRC_CC_BPS_MASK,
1144			   EASRC_CC_BPS(in_fmt->width));
1145	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1146			   EASRC_CC_ENDIANNESS_MASK,
1147			   in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT);
1148	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1149			   EASRC_CC_FMT_MASK,
1150			   in_fmt->floating_point << EASRC_CC_FMT_SHIFT);
1151	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1152			   EASRC_CC_INSIGN_MASK,
1153			   in_fmt->unsign << EASRC_CC_INSIGN_SHIFT);
1154
1155	/* In Sample Position */
1156	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1157			   EASRC_CC_SAMPLE_POS_MASK,
1158			   EASRC_CC_SAMPLE_POS(in_fmt->sample_pos));
1159
1160	/* Get the bitfield values for input data format */
1161	if (in_raw_format && out_raw_format) {
1162		ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format);
1163		if (ret)
1164			return ret;
1165	}
1166
1167	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1168			   EASRC_COC_BPS_MASK,
1169			   EASRC_COC_BPS(out_fmt->width));
1170	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1171			   EASRC_COC_ENDIANNESS_MASK,
1172			   out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT);
1173	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1174			   EASRC_COC_FMT_MASK,
1175			   out_fmt->floating_point << EASRC_COC_FMT_SHIFT);
1176	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1177			   EASRC_COC_OUTSIGN_MASK,
1178			   out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT);
1179
1180	/* Out Sample Position */
1181	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1182			   EASRC_COC_SAMPLE_POS_MASK,
1183			   EASRC_COC_SAMPLE_POS(out_fmt->sample_pos));
1184
1185	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1186			   EASRC_COC_IEC_EN_MASK,
1187			   out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT);
1188
1189	return ret;
1190}
1191
1192/*
1193 * The ASRC provides interleaving support in hardware to ensure that a
1194 * variety of sample sources can be internally combined
1195 * to conform with this format. Interleaving parameters are accessed
1196 * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers
1197 */
1198static int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx)
1199{
1200	struct fsl_easrc_ctx_priv *ctx_priv;
1201	struct fsl_asrc *easrc;
1202
1203	if (!ctx)
1204		return -ENODEV;
1205
1206	easrc = ctx->asrc;
1207	ctx_priv = ctx->private;
1208
1209	/* input interleaving parameters */
1210	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1211			   EASRC_CIA_ITER_MASK,
1212			   EASRC_CIA_ITER(ctx_priv->in_params.iterations));
1213	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1214			   EASRC_CIA_GRLEN_MASK,
1215			   EASRC_CIA_GRLEN(ctx_priv->in_params.group_len));
1216	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1217			   EASRC_CIA_ACCLEN_MASK,
1218			   EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len));
1219
1220	/* output interleaving parameters */
1221	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1222			   EASRC_COA_ITER_MASK,
1223			   EASRC_COA_ITER(ctx_priv->out_params.iterations));
1224	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1225			   EASRC_COA_GRLEN_MASK,
1226			   EASRC_COA_GRLEN(ctx_priv->out_params.group_len));
1227	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1228			   EASRC_COA_ACCLEN_MASK,
1229			   EASRC_COA_ACCLEN(ctx_priv->out_params.access_len));
1230
1231	return 0;
1232}
1233
1234/*
1235 * Request one of the available contexts
1236 *
1237 * Returns a negative number on error and >=0 as context id
1238 * on success
1239 */
1240static int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx)
1241{
1242	enum asrc_pair_index index = ASRC_INVALID_PAIR;
1243	struct fsl_asrc *easrc = ctx->asrc;
1244	struct device *dev;
1245	unsigned long lock_flags;
1246	int ret = 0;
1247	int i;
1248
1249	dev = &easrc->pdev->dev;
1250
1251	spin_lock_irqsave(&easrc->lock, lock_flags);
1252
1253	for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
1254		if (easrc->pair[i])
1255			continue;
1256
1257		index = i;
1258		break;
1259	}
1260
1261	if (index == ASRC_INVALID_PAIR) {
1262		dev_err(dev, "all contexts are busy\n");
1263		ret = -EBUSY;
1264	} else if (channels > easrc->channel_avail) {
1265		dev_err(dev, "can't give the required channels: %d\n",
1266			channels);
1267		ret = -EINVAL;
1268	} else {
1269		ctx->index = index;
1270		ctx->channels = channels;
1271		easrc->pair[index] = ctx;
1272		easrc->channel_avail -= channels;
1273	}
1274
1275	spin_unlock_irqrestore(&easrc->lock, lock_flags);
1276
1277	return ret;
1278}
1279
1280/*
1281 * Release the context
1282 *
1283 * This funciton is mainly doing the revert thing in request context
1284 */
1285static void fsl_easrc_release_context(struct fsl_asrc_pair *ctx)
1286{
1287	unsigned long lock_flags;
1288	struct fsl_asrc *easrc;
1289
1290	if (!ctx)
1291		return;
1292
1293	easrc = ctx->asrc;
1294
1295	spin_lock_irqsave(&easrc->lock, lock_flags);
1296
1297	fsl_easrc_release_slot(easrc, ctx->index);
1298
1299	easrc->channel_avail += ctx->channels;
1300	easrc->pair[ctx->index] = NULL;
1301
1302	spin_unlock_irqrestore(&easrc->lock, lock_flags);
1303}
1304
1305/*
1306 * Start the context
1307 *
1308 * Enable the DMA request and context
1309 */
1310static int fsl_easrc_start_context(struct fsl_asrc_pair *ctx)
1311{
1312	struct fsl_asrc *easrc = ctx->asrc;
1313
1314	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1315			   EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE);
1316	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1317			   EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE);
1318	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1319			   EASRC_CC_EN_MASK, EASRC_CC_EN);
1320	return 0;
1321}
1322
1323/*
1324 * Stop the context
1325 *
1326 * Disable the DMA request and context
1327 */
1328static int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx)
1329{
1330	struct fsl_asrc *easrc = ctx->asrc;
1331	int val, i;
1332	int size;
1333	int retry = 200;
1334
1335	regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val);
1336
1337	if (val & EASRC_CC_EN_MASK) {
1338		regmap_update_bits(easrc->regmap,
1339				   REG_EASRC_CC(ctx->index),
1340				   EASRC_CC_STOP_MASK, EASRC_CC_STOP);
1341		do {
1342			regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val);
1343			val &= EASRC_SFS_NSGO_MASK;
1344			size = val >> EASRC_SFS_NSGO_SHIFT;
1345
1346			/* Read FIFO, drop the data */
1347			for (i = 0; i < size * ctx->channels; i++)
1348				regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val);
1349			/* Check RUN_STOP_DONE */
1350			regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
1351			if (val & EASRC_IRQF_RSD(1 << ctx->index)) {
1352				/*Clear RUN_STOP_DONE*/
1353				regmap_write_bits(easrc->regmap,
1354						  REG_EASRC_IRQF,
1355						  EASRC_IRQF_RSD(1 << ctx->index),
1356						  EASRC_IRQF_RSD(1 << ctx->index));
1357				break;
1358			}
1359			udelay(100);
1360		} while (--retry);
1361
1362		if (retry == 0)
1363			dev_warn(&easrc->pdev->dev, "RUN STOP fail\n");
1364	}
1365
1366	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1367			   EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0);
1368	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1369			   EASRC_CC_FWMDE_MASK, 0);
1370	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1371			   EASRC_COC_FWMDE_MASK, 0);
1372	return 0;
1373}
1374
1375static struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx,
1376						  bool dir)
1377{
1378	struct fsl_asrc *easrc = ctx->asrc;
1379	enum asrc_pair_index index = ctx->index;
1380	char name[8];
1381
1382	/* Example of dma name: ctx0_rx */
1383	sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't');
1384
1385	return dma_request_slave_channel(&easrc->pdev->dev, name);
1386};
1387
1388static const unsigned int easrc_rates[] = {
1389	8000, 11025, 12000, 16000,
1390	22050, 24000, 32000, 44100,
1391	48000, 64000, 88200, 96000,
1392	128000, 176400, 192000, 256000,
1393	352800, 384000, 705600, 768000,
1394};
1395
1396static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = {
1397	.count = ARRAY_SIZE(easrc_rates),
1398	.list = easrc_rates,
1399};
1400
1401static int fsl_easrc_startup(struct snd_pcm_substream *substream,
1402			     struct snd_soc_dai *dai)
1403{
1404	return snd_pcm_hw_constraint_list(substream->runtime, 0,
1405					  SNDRV_PCM_HW_PARAM_RATE,
1406					  &easrc_rate_constraints);
1407}
1408
1409static int fsl_easrc_trigger(struct snd_pcm_substream *substream,
1410			     int cmd, struct snd_soc_dai *dai)
1411{
1412	struct snd_pcm_runtime *runtime = substream->runtime;
1413	struct fsl_asrc_pair *ctx = runtime->private_data;
1414	int ret;
1415
1416	switch (cmd) {
1417	case SNDRV_PCM_TRIGGER_START:
1418	case SNDRV_PCM_TRIGGER_RESUME:
1419	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1420		ret = fsl_easrc_start_context(ctx);
1421		if (ret)
1422			return ret;
1423		break;
1424	case SNDRV_PCM_TRIGGER_STOP:
1425	case SNDRV_PCM_TRIGGER_SUSPEND:
1426	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1427		ret = fsl_easrc_stop_context(ctx);
1428		if (ret)
1429			return ret;
1430		break;
1431	default:
1432		return -EINVAL;
1433	}
1434
1435	return 0;
1436}
1437
1438static int fsl_easrc_hw_params(struct snd_pcm_substream *substream,
1439			       struct snd_pcm_hw_params *params,
1440			       struct snd_soc_dai *dai)
1441{
1442	struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai);
1443	struct snd_pcm_runtime *runtime = substream->runtime;
1444	struct device *dev = &easrc->pdev->dev;
1445	struct fsl_asrc_pair *ctx = runtime->private_data;
1446	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
1447	unsigned int channels = params_channels(params);
1448	unsigned int rate = params_rate(params);
1449	snd_pcm_format_t format = params_format(params);
1450	int ret;
1451
1452	ret = fsl_easrc_request_context(channels, ctx);
1453	if (ret) {
1454		dev_err(dev, "failed to request context\n");
1455		return ret;
1456	}
1457
1458	ctx_priv->ctx_streams |= BIT(substream->stream);
1459
1460	/*
1461	 * Set the input and output ratio so we can compute
1462	 * the resampling ratio in RS_LOW/HIGH
1463	 */
1464	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1465		ctx_priv->in_params.sample_rate = rate;
1466		ctx_priv->in_params.sample_format = format;
1467		ctx_priv->out_params.sample_rate = easrc->asrc_rate;
1468		ctx_priv->out_params.sample_format = easrc->asrc_format;
1469	} else {
1470		ctx_priv->out_params.sample_rate = rate;
1471		ctx_priv->out_params.sample_format = format;
1472		ctx_priv->in_params.sample_rate = easrc->asrc_rate;
1473		ctx_priv->in_params.sample_format = easrc->asrc_format;
1474	}
1475
1476	ctx->channels = channels;
1477	ctx_priv->in_params.fifo_wtmk  = 0x20;
1478	ctx_priv->out_params.fifo_wtmk = 0x20;
1479
1480	/*
1481	 * Do only rate conversion and keep the same format for input
1482	 * and output data
1483	 */
1484	ret = fsl_easrc_set_ctx_format(ctx,
1485				       &ctx_priv->in_params.sample_format,
1486				       &ctx_priv->out_params.sample_format);
1487	if (ret) {
1488		dev_err(dev, "failed to set format %d", ret);
1489		return ret;
1490	}
1491
1492	ret = fsl_easrc_config_context(easrc, ctx->index);
1493	if (ret) {
1494		dev_err(dev, "failed to config context\n");
1495		return ret;
1496	}
1497
1498	ctx_priv->in_params.iterations = 1;
1499	ctx_priv->in_params.group_len = ctx->channels;
1500	ctx_priv->in_params.access_len = ctx->channels;
1501	ctx_priv->out_params.iterations = 1;
1502	ctx_priv->out_params.group_len = ctx->channels;
1503	ctx_priv->out_params.access_len = ctx->channels;
1504
1505	ret = fsl_easrc_set_ctx_organziation(ctx);
1506	if (ret) {
1507		dev_err(dev, "failed to set fifo organization\n");
1508		return ret;
1509	}
1510
1511	return 0;
1512}
1513
1514static int fsl_easrc_hw_free(struct snd_pcm_substream *substream,
1515			     struct snd_soc_dai *dai)
1516{
1517	struct snd_pcm_runtime *runtime = substream->runtime;
1518	struct fsl_asrc_pair *ctx = runtime->private_data;
1519	struct fsl_easrc_ctx_priv *ctx_priv;
1520
1521	if (!ctx)
1522		return -EINVAL;
1523
1524	ctx_priv = ctx->private;
1525
1526	if (ctx_priv->ctx_streams & BIT(substream->stream)) {
1527		ctx_priv->ctx_streams &= ~BIT(substream->stream);
1528		fsl_easrc_release_context(ctx);
1529	}
1530
1531	return 0;
1532}
1533
1534static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai)
1535{
1536	struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev);
1537
1538	snd_soc_dai_init_dma_data(cpu_dai,
1539				  &easrc->dma_params_tx,
1540				  &easrc->dma_params_rx);
1541	return 0;
1542}
1543
1544static const struct snd_soc_dai_ops fsl_easrc_dai_ops = {
1545	.probe		= fsl_easrc_dai_probe,
1546	.startup	= fsl_easrc_startup,
1547	.trigger	= fsl_easrc_trigger,
1548	.hw_params	= fsl_easrc_hw_params,
1549	.hw_free	= fsl_easrc_hw_free,
1550};
1551
1552static struct snd_soc_dai_driver fsl_easrc_dai = {
1553	.playback = {
1554		.stream_name = "ASRC-Playback",
1555		.channels_min = 1,
1556		.channels_max = 32,
1557		.rate_min = 8000,
1558		.rate_max = 768000,
1559		.rates = SNDRV_PCM_RATE_KNOT,
1560		.formats = FSL_EASRC_FORMATS,
1561	},
1562	.capture = {
1563		.stream_name = "ASRC-Capture",
1564		.channels_min = 1,
1565		.channels_max = 32,
1566		.rate_min = 8000,
1567		.rate_max = 768000,
1568		.rates = SNDRV_PCM_RATE_KNOT,
1569		.formats = FSL_EASRC_FORMATS |
1570			   SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1571	},
1572	.ops = &fsl_easrc_dai_ops,
1573};
1574
1575static const struct snd_soc_component_driver fsl_easrc_component = {
1576	.name			= "fsl-easrc-dai",
1577	.controls		= fsl_easrc_snd_controls,
1578	.num_controls		= ARRAY_SIZE(fsl_easrc_snd_controls),
1579	.legacy_dai_naming	= 1,
1580};
1581
1582static const struct reg_default fsl_easrc_reg_defaults[] = {
1583	{REG_EASRC_WRFIFO(0),	0x00000000},
1584	{REG_EASRC_WRFIFO(1),	0x00000000},
1585	{REG_EASRC_WRFIFO(2),	0x00000000},
1586	{REG_EASRC_WRFIFO(3),	0x00000000},
1587	{REG_EASRC_RDFIFO(0),	0x00000000},
1588	{REG_EASRC_RDFIFO(1),	0x00000000},
1589	{REG_EASRC_RDFIFO(2),	0x00000000},
1590	{REG_EASRC_RDFIFO(3),	0x00000000},
1591	{REG_EASRC_CC(0),	0x00000000},
1592	{REG_EASRC_CC(1),	0x00000000},
1593	{REG_EASRC_CC(2),	0x00000000},
1594	{REG_EASRC_CC(3),	0x00000000},
1595	{REG_EASRC_CCE1(0),	0x00000000},
1596	{REG_EASRC_CCE1(1),	0x00000000},
1597	{REG_EASRC_CCE1(2),	0x00000000},
1598	{REG_EASRC_CCE1(3),	0x00000000},
1599	{REG_EASRC_CCE2(0),	0x00000000},
1600	{REG_EASRC_CCE2(1),	0x00000000},
1601	{REG_EASRC_CCE2(2),	0x00000000},
1602	{REG_EASRC_CCE2(3),	0x00000000},
1603	{REG_EASRC_CIA(0),	0x00000000},
1604	{REG_EASRC_CIA(1),	0x00000000},
1605	{REG_EASRC_CIA(2),	0x00000000},
1606	{REG_EASRC_CIA(3),	0x00000000},
1607	{REG_EASRC_DPCS0R0(0),	0x00000000},
1608	{REG_EASRC_DPCS0R0(1),	0x00000000},
1609	{REG_EASRC_DPCS0R0(2),	0x00000000},
1610	{REG_EASRC_DPCS0R0(3),	0x00000000},
1611	{REG_EASRC_DPCS0R1(0),	0x00000000},
1612	{REG_EASRC_DPCS0R1(1),	0x00000000},
1613	{REG_EASRC_DPCS0R1(2),	0x00000000},
1614	{REG_EASRC_DPCS0R1(3),	0x00000000},
1615	{REG_EASRC_DPCS0R2(0),	0x00000000},
1616	{REG_EASRC_DPCS0R2(1),	0x00000000},
1617	{REG_EASRC_DPCS0R2(2),	0x00000000},
1618	{REG_EASRC_DPCS0R2(3),	0x00000000},
1619	{REG_EASRC_DPCS0R3(0),	0x00000000},
1620	{REG_EASRC_DPCS0R3(1),	0x00000000},
1621	{REG_EASRC_DPCS0R3(2),	0x00000000},
1622	{REG_EASRC_DPCS0R3(3),	0x00000000},
1623	{REG_EASRC_DPCS1R0(0),	0x00000000},
1624	{REG_EASRC_DPCS1R0(1),	0x00000000},
1625	{REG_EASRC_DPCS1R0(2),	0x00000000},
1626	{REG_EASRC_DPCS1R0(3),	0x00000000},
1627	{REG_EASRC_DPCS1R1(0),	0x00000000},
1628	{REG_EASRC_DPCS1R1(1),	0x00000000},
1629	{REG_EASRC_DPCS1R1(2),	0x00000000},
1630	{REG_EASRC_DPCS1R1(3),	0x00000000},
1631	{REG_EASRC_DPCS1R2(0),	0x00000000},
1632	{REG_EASRC_DPCS1R2(1),	0x00000000},
1633	{REG_EASRC_DPCS1R2(2),	0x00000000},
1634	{REG_EASRC_DPCS1R2(3),	0x00000000},
1635	{REG_EASRC_DPCS1R3(0),	0x00000000},
1636	{REG_EASRC_DPCS1R3(1),	0x00000000},
1637	{REG_EASRC_DPCS1R3(2),	0x00000000},
1638	{REG_EASRC_DPCS1R3(3),	0x00000000},
1639	{REG_EASRC_COC(0),	0x00000000},
1640	{REG_EASRC_COC(1),	0x00000000},
1641	{REG_EASRC_COC(2),	0x00000000},
1642	{REG_EASRC_COC(3),	0x00000000},
1643	{REG_EASRC_COA(0),	0x00000000},
1644	{REG_EASRC_COA(1),	0x00000000},
1645	{REG_EASRC_COA(2),	0x00000000},
1646	{REG_EASRC_COA(3),	0x00000000},
1647	{REG_EASRC_SFS(0),	0x00000000},
1648	{REG_EASRC_SFS(1),	0x00000000},
1649	{REG_EASRC_SFS(2),	0x00000000},
1650	{REG_EASRC_SFS(3),	0x00000000},
1651	{REG_EASRC_RRL(0),	0x00000000},
1652	{REG_EASRC_RRL(1),	0x00000000},
1653	{REG_EASRC_RRL(2),	0x00000000},
1654	{REG_EASRC_RRL(3),	0x00000000},
1655	{REG_EASRC_RRH(0),	0x00000000},
1656	{REG_EASRC_RRH(1),	0x00000000},
1657	{REG_EASRC_RRH(2),	0x00000000},
1658	{REG_EASRC_RRH(3),	0x00000000},
1659	{REG_EASRC_RUC(0),	0x00000000},
1660	{REG_EASRC_RUC(1),	0x00000000},
1661	{REG_EASRC_RUC(2),	0x00000000},
1662	{REG_EASRC_RUC(3),	0x00000000},
1663	{REG_EASRC_RUR(0),	0x7FFFFFFF},
1664	{REG_EASRC_RUR(1),	0x7FFFFFFF},
1665	{REG_EASRC_RUR(2),	0x7FFFFFFF},
1666	{REG_EASRC_RUR(3),	0x7FFFFFFF},
1667	{REG_EASRC_RCTCL,	0x00000000},
1668	{REG_EASRC_RCTCH,	0x00000000},
1669	{REG_EASRC_PCF(0),	0x00000000},
1670	{REG_EASRC_PCF(1),	0x00000000},
1671	{REG_EASRC_PCF(2),	0x00000000},
1672	{REG_EASRC_PCF(3),	0x00000000},
1673	{REG_EASRC_CRCM,	0x00000000},
1674	{REG_EASRC_CRCC,	0x00000000},
1675	{REG_EASRC_IRQC,	0x00000FFF},
1676	{REG_EASRC_IRQF,	0x00000000},
1677	{REG_EASRC_CS0(0),	0x00000000},
1678	{REG_EASRC_CS0(1),	0x00000000},
1679	{REG_EASRC_CS0(2),	0x00000000},
1680	{REG_EASRC_CS0(3),	0x00000000},
1681	{REG_EASRC_CS1(0),	0x00000000},
1682	{REG_EASRC_CS1(1),	0x00000000},
1683	{REG_EASRC_CS1(2),	0x00000000},
1684	{REG_EASRC_CS1(3),	0x00000000},
1685	{REG_EASRC_CS2(0),	0x00000000},
1686	{REG_EASRC_CS2(1),	0x00000000},
1687	{REG_EASRC_CS2(2),	0x00000000},
1688	{REG_EASRC_CS2(3),	0x00000000},
1689	{REG_EASRC_CS3(0),	0x00000000},
1690	{REG_EASRC_CS3(1),	0x00000000},
1691	{REG_EASRC_CS3(2),	0x00000000},
1692	{REG_EASRC_CS3(3),	0x00000000},
1693	{REG_EASRC_CS4(0),	0x00000000},
1694	{REG_EASRC_CS4(1),	0x00000000},
1695	{REG_EASRC_CS4(2),	0x00000000},
1696	{REG_EASRC_CS4(3),	0x00000000},
1697	{REG_EASRC_CS5(0),	0x00000000},
1698	{REG_EASRC_CS5(1),	0x00000000},
1699	{REG_EASRC_CS5(2),	0x00000000},
1700	{REG_EASRC_CS5(3),	0x00000000},
1701	{REG_EASRC_DBGC,	0x00000000},
1702	{REG_EASRC_DBGS,	0x00000000},
1703};
1704
1705static const struct regmap_range fsl_easrc_readable_ranges[] = {
1706	regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH),
1707	regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)),
1708	regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS),
1709};
1710
1711static const struct regmap_access_table fsl_easrc_readable_table = {
1712	.yes_ranges = fsl_easrc_readable_ranges,
1713	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges),
1714};
1715
1716static const struct regmap_range fsl_easrc_writeable_ranges[] = {
1717	regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)),
1718	regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)),
1719	regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH),
1720	regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC),
1721};
1722
1723static const struct regmap_access_table fsl_easrc_writeable_table = {
1724	.yes_ranges = fsl_easrc_writeable_ranges,
1725	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges),
1726};
1727
1728static const struct regmap_range fsl_easrc_volatileable_ranges[] = {
1729	regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)),
1730	regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)),
1731	regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF),
1732	regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS),
1733};
1734
1735static const struct regmap_access_table fsl_easrc_volatileable_table = {
1736	.yes_ranges = fsl_easrc_volatileable_ranges,
1737	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges),
1738};
1739
1740static const struct regmap_config fsl_easrc_regmap_config = {
1741	.reg_bits = 32,
1742	.reg_stride = 4,
1743	.val_bits = 32,
1744
1745	.max_register = REG_EASRC_DBGS,
1746	.reg_defaults = fsl_easrc_reg_defaults,
1747	.num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults),
1748	.rd_table = &fsl_easrc_readable_table,
1749	.wr_table = &fsl_easrc_writeable_table,
1750	.volatile_table = &fsl_easrc_volatileable_table,
1751	.cache_type = REGCACHE_RBTREE,
1752};
1753
1754#ifdef DEBUG
1755static void fsl_easrc_dump_firmware(struct fsl_asrc *easrc)
1756{
1757	struct fsl_easrc_priv *easrc_priv = easrc->private;
1758	struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr;
1759	struct interp_params *interp = easrc_priv->interp;
1760	struct prefil_params *prefil = easrc_priv->prefil;
1761	struct device *dev = &easrc->pdev->dev;
1762	int i;
1763
1764	if (firm->magic != FIRMWARE_MAGIC) {
1765		dev_err(dev, "Wrong magic. Something went wrong!");
1766		return;
1767	}
1768
1769	dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version);
1770	dev_dbg(dev, "Num prefilter scenarios: %u\n", firm->prefil_scen);
1771	dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen);
1772	dev_dbg(dev, "\nInterpolation scenarios:\n");
1773
1774	for (i = 0; i < firm->interp_scen; i++) {
1775		if (interp[i].magic != FIRMWARE_MAGIC) {
1776			dev_dbg(dev, "%d. wrong interp magic: %x\n",
1777				i, interp[i].magic);
1778			continue;
1779		}
1780		dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i,
1781			interp[i].num_taps, interp[i].num_phases,
1782			interp[i].center_tap);
1783	}
1784
1785	for (i = 0; i < firm->prefil_scen; i++) {
1786		if (prefil[i].magic != FIRMWARE_MAGIC) {
1787			dev_dbg(dev, "%d. wrong prefil magic: %x\n",
1788				i, prefil[i].magic);
1789			continue;
1790		}
1791		dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i,
1792			prefil[i].insr, prefil[i].outsr,
1793			prefil[i].st1_taps, prefil[i].st2_taps);
1794	}
1795
1796	dev_dbg(dev, "end of firmware dump\n");
1797}
1798#endif
1799
1800static int fsl_easrc_get_firmware(struct fsl_asrc *easrc)
1801{
1802	struct fsl_easrc_priv *easrc_priv;
1803	const struct firmware **fw_p;
1804	u32 pnum, inum, offset;
1805	const u8 *data;
1806	int ret;
1807
1808	if (!easrc)
1809		return -EINVAL;
1810
1811	easrc_priv = easrc->private;
1812	fw_p = &easrc_priv->fw;
1813
1814	ret = request_firmware(fw_p, easrc_priv->fw_name, &easrc->pdev->dev);
1815	if (ret)
1816		return ret;
1817
1818	data = easrc_priv->fw->data;
1819
1820	easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)data;
1821	pnum = easrc_priv->firmware_hdr->prefil_scen;
1822	inum = easrc_priv->firmware_hdr->interp_scen;
1823
1824	if (inum) {
1825		offset = sizeof(struct asrc_firmware_hdr);
1826		easrc_priv->interp = (struct interp_params *)(data + offset);
1827	}
1828
1829	if (pnum) {
1830		offset = sizeof(struct asrc_firmware_hdr) +
1831				inum * sizeof(struct interp_params);
1832		easrc_priv->prefil = (struct prefil_params *)(data + offset);
1833	}
1834
1835#ifdef DEBUG
1836	fsl_easrc_dump_firmware(easrc);
1837#endif
1838
1839	return 0;
1840}
1841
1842static irqreturn_t fsl_easrc_isr(int irq, void *dev_id)
1843{
1844	struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id;
1845	struct device *dev = &easrc->pdev->dev;
1846	int val;
1847
1848	regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
1849
1850	if (val & EASRC_IRQF_OER_MASK)
1851		dev_dbg(dev, "output FIFO underflow\n");
1852
1853	if (val & EASRC_IRQF_IFO_MASK)
1854		dev_dbg(dev, "input FIFO overflow\n");
1855
1856	return IRQ_HANDLED;
1857}
1858
1859static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index)
1860{
1861	return REG_EASRC_FIFO(dir, index);
1862}
1863
1864static const struct of_device_id fsl_easrc_dt_ids[] = {
1865	{ .compatible = "fsl,imx8mn-easrc",},
1866	{}
1867};
1868MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids);
1869
1870static int fsl_easrc_probe(struct platform_device *pdev)
1871{
1872	struct fsl_easrc_priv *easrc_priv;
1873	struct device *dev = &pdev->dev;
1874	struct fsl_asrc *easrc;
1875	struct resource *res;
1876	struct device_node *np;
1877	void __iomem *regs;
1878	u32 asrc_fmt = 0;
1879	int ret, irq;
1880
1881	easrc = devm_kzalloc(dev, sizeof(*easrc), GFP_KERNEL);
1882	if (!easrc)
1883		return -ENOMEM;
1884
1885	easrc_priv = devm_kzalloc(dev, sizeof(*easrc_priv), GFP_KERNEL);
1886	if (!easrc_priv)
1887		return -ENOMEM;
1888
1889	easrc->pdev = pdev;
1890	easrc->private = easrc_priv;
1891	np = dev->of_node;
1892
1893	regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1894	if (IS_ERR(regs))
1895		return PTR_ERR(regs);
1896
1897	easrc->paddr = res->start;
1898
1899	easrc->regmap = devm_regmap_init_mmio(dev, regs, &fsl_easrc_regmap_config);
1900	if (IS_ERR(easrc->regmap)) {
1901		dev_err(dev, "failed to init regmap");
1902		return PTR_ERR(easrc->regmap);
1903	}
1904
1905	irq = platform_get_irq(pdev, 0);
1906	if (irq < 0)
1907		return irq;
1908
1909	ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0,
1910			       dev_name(dev), easrc);
1911	if (ret) {
1912		dev_err(dev, "failed to claim irq %u: %d\n", irq, ret);
1913		return ret;
1914	}
1915
1916	easrc->mem_clk = devm_clk_get(dev, "mem");
1917	if (IS_ERR(easrc->mem_clk)) {
1918		dev_err(dev, "failed to get mem clock\n");
1919		return PTR_ERR(easrc->mem_clk);
1920	}
1921
1922	/* Set default value */
1923	easrc->channel_avail = 32;
1924	easrc->get_dma_channel = fsl_easrc_get_dma_channel;
1925	easrc->request_pair = fsl_easrc_request_context;
1926	easrc->release_pair = fsl_easrc_release_context;
1927	easrc->get_fifo_addr = fsl_easrc_get_fifo_addr;
1928	easrc->pair_priv_size = sizeof(struct fsl_easrc_ctx_priv);
1929
1930	easrc_priv->rs_num_taps = EASRC_RS_32_TAPS;
1931	easrc_priv->const_coeff = 0x3FF0000000000000;
1932
1933	ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate);
1934	if (ret) {
1935		dev_err(dev, "failed to asrc rate\n");
1936		return ret;
1937	}
1938
1939	ret = of_property_read_u32(np, "fsl,asrc-format", &asrc_fmt);
1940	easrc->asrc_format = (__force snd_pcm_format_t)asrc_fmt;
1941	if (ret) {
1942		dev_err(dev, "failed to asrc format\n");
1943		return ret;
1944	}
1945
1946	if (!(FSL_EASRC_FORMATS & (pcm_format_to_bits(easrc->asrc_format)))) {
1947		dev_warn(dev, "unsupported format, switching to S24_LE\n");
1948		easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE;
1949	}
1950
1951	ret = of_property_read_string(np, "firmware-name",
1952				      &easrc_priv->fw_name);
1953	if (ret) {
1954		dev_err(dev, "failed to get firmware name\n");
1955		return ret;
1956	}
1957
1958	platform_set_drvdata(pdev, easrc);
1959	pm_runtime_enable(dev);
1960
1961	spin_lock_init(&easrc->lock);
1962
1963	regcache_cache_only(easrc->regmap, true);
1964
1965	ret = devm_snd_soc_register_component(dev, &fsl_easrc_component,
1966					      &fsl_easrc_dai, 1);
1967	if (ret) {
1968		dev_err(dev, "failed to register ASoC DAI\n");
1969		goto err_pm_disable;
1970	}
1971
1972	ret = devm_snd_soc_register_component(dev, &fsl_asrc_component,
1973					      NULL, 0);
1974	if (ret) {
1975		dev_err(&pdev->dev, "failed to register ASoC platform\n");
1976		goto err_pm_disable;
1977	}
1978
1979	return 0;
1980
1981err_pm_disable:
1982	pm_runtime_disable(&pdev->dev);
1983	return ret;
1984}
1985
1986static void fsl_easrc_remove(struct platform_device *pdev)
1987{
1988	pm_runtime_disable(&pdev->dev);
1989}
1990
1991static __maybe_unused int fsl_easrc_runtime_suspend(struct device *dev)
1992{
1993	struct fsl_asrc *easrc = dev_get_drvdata(dev);
1994	struct fsl_easrc_priv *easrc_priv = easrc->private;
1995	unsigned long lock_flags;
1996
1997	regcache_cache_only(easrc->regmap, true);
1998
1999	clk_disable_unprepare(easrc->mem_clk);
2000
2001	spin_lock_irqsave(&easrc->lock, lock_flags);
2002	easrc_priv->firmware_loaded = 0;
2003	spin_unlock_irqrestore(&easrc->lock, lock_flags);
2004
2005	return 0;
2006}
2007
2008static __maybe_unused int fsl_easrc_runtime_resume(struct device *dev)
2009{
2010	struct fsl_asrc *easrc = dev_get_drvdata(dev);
2011	struct fsl_easrc_priv *easrc_priv = easrc->private;
2012	struct fsl_easrc_ctx_priv *ctx_priv;
2013	struct fsl_asrc_pair *ctx;
2014	unsigned long lock_flags;
2015	int ret;
2016	int i;
2017
2018	ret = clk_prepare_enable(easrc->mem_clk);
2019	if (ret)
2020		return ret;
2021
2022	regcache_cache_only(easrc->regmap, false);
2023	regcache_mark_dirty(easrc->regmap);
2024	regcache_sync(easrc->regmap);
2025
2026	spin_lock_irqsave(&easrc->lock, lock_flags);
2027	if (easrc_priv->firmware_loaded) {
2028		spin_unlock_irqrestore(&easrc->lock, lock_flags);
2029		goto skip_load;
2030	}
2031	easrc_priv->firmware_loaded = 1;
2032	spin_unlock_irqrestore(&easrc->lock, lock_flags);
2033
2034	ret = fsl_easrc_get_firmware(easrc);
2035	if (ret) {
2036		dev_err(dev, "failed to get firmware\n");
2037		goto disable_mem_clk;
2038	}
2039
2040	/*
2041	 * Write Resampling Coefficients
2042	 * The coefficient RAM must be configured prior to beginning of
2043	 * any context processing within the ASRC
2044	 */
2045	ret = fsl_easrc_resampler_config(easrc);
2046	if (ret) {
2047		dev_err(dev, "resampler config failed\n");
2048		goto disable_mem_clk;
2049	}
2050
2051	for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
2052		ctx = easrc->pair[i];
2053		if (!ctx)
2054			continue;
2055
2056		ctx_priv = ctx->private;
2057		fsl_easrc_set_rs_ratio(ctx);
2058		ctx_priv->out_missed_sample = ctx_priv->in_filled_sample *
2059					      ctx_priv->out_params.sample_rate /
2060					      ctx_priv->in_params.sample_rate;
2061		if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate
2062		    % ctx_priv->in_params.sample_rate != 0)
2063			ctx_priv->out_missed_sample += 1;
2064
2065		ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
2066						   ctx_priv->st1_coeff,
2067						   ctx_priv->st1_num_taps,
2068						   ctx_priv->st1_addexp);
2069		if (ret)
2070			goto disable_mem_clk;
2071
2072		ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
2073						   ctx_priv->st2_coeff,
2074						   ctx_priv->st2_num_taps,
2075						   ctx_priv->st2_addexp);
2076		if (ret)
2077			goto disable_mem_clk;
2078	}
2079
2080skip_load:
2081	return 0;
2082
2083disable_mem_clk:
2084	clk_disable_unprepare(easrc->mem_clk);
2085	return ret;
2086}
2087
2088static const struct dev_pm_ops fsl_easrc_pm_ops = {
2089	SET_RUNTIME_PM_OPS(fsl_easrc_runtime_suspend,
2090			   fsl_easrc_runtime_resume,
2091			   NULL)
2092	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2093				pm_runtime_force_resume)
2094};
2095
2096static struct platform_driver fsl_easrc_driver = {
2097	.probe = fsl_easrc_probe,
2098	.remove_new = fsl_easrc_remove,
2099	.driver = {
2100		.name = "fsl-easrc",
2101		.pm = &fsl_easrc_pm_ops,
2102		.of_match_table = fsl_easrc_dt_ids,
2103	},
2104};
2105module_platform_driver(fsl_easrc_driver);
2106
2107MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver");
2108MODULE_LICENSE("GPL v2");