Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
   4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
   5 */
   6 
   7/* Does not work. Warning may block system in capture mode */
   8/* #define USE_VAR48KRATE */
   9
  10#include <linux/io.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/init.h>
  14#include <linux/pci.h>
  15#include <linux/slab.h>
  16#include <linux/gameport.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <sound/core.h>
  20#include <sound/info.h>
  21#include <sound/control.h>
  22#include <sound/pcm.h>
  23#include <sound/rawmidi.h>
  24#include <sound/mpu401.h>
  25#include <sound/opl3.h>
  26#include <sound/sb.h>
  27#include <sound/asoundef.h>
  28#include <sound/initval.h>
  29
  30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
  31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
  32MODULE_LICENSE("GPL");
  33
  34#if IS_REACHABLE(CONFIG_GAMEPORT)
  35#define SUPPORT_JOYSTICK 1
  36#endif
  37
  38static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
  39static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
  40static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
  41static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
  42static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  43static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  44#ifdef SUPPORT_JOYSTICK
  45static int joystick_port[SNDRV_CARDS];
  46#endif
  47
  48module_param_array(index, int, NULL, 0444);
  49MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
  50module_param_array(id, charp, NULL, 0444);
  51MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
  52module_param_array(enable, bool, NULL, 0444);
  53MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
  54module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
  55MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
  56module_param_hw_array(fm_port, long, ioport, NULL, 0444);
  57MODULE_PARM_DESC(fm_port, "FM port.");
  58module_param_array(soft_ac3, bool, NULL, 0444);
  59MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
  60#ifdef SUPPORT_JOYSTICK
  61module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
  62MODULE_PARM_DESC(joystick_port, "Joystick port address.");
  63#endif
  64
  65/*
  66 * CM8x38 registers definition
  67 */
  68
  69#define CM_REG_FUNCTRL0		0x00
  70#define CM_RST_CH1		0x00080000
  71#define CM_RST_CH0		0x00040000
  72#define CM_CHEN1		0x00020000	/* ch1: enable */
  73#define CM_CHEN0		0x00010000	/* ch0: enable */
  74#define CM_PAUSE1		0x00000008	/* ch1: pause */
  75#define CM_PAUSE0		0x00000004	/* ch0: pause */
  76#define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
  77#define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
  78
  79#define CM_REG_FUNCTRL1		0x04
  80#define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
  81#define CM_DSFC_SHIFT		13
  82#define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
  83#define CM_ASFC_SHIFT		10
  84#define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
  85#define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
  86#define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
  87#define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
  88#define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
  89#define CM_BREQ			0x00000010	/* bus master enabled */
  90#define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
  91#define CM_UART_EN		0x00000004	/* legacy UART */
  92#define CM_JYSTK_EN		0x00000002	/* legacy joystick */
  93#define CM_ZVPORT		0x00000001	/* ZVPORT */
  94
  95#define CM_REG_CHFORMAT		0x08
  96
  97#define CM_CHB3D5C		0x80000000	/* 5,6 channels */
  98#define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
  99#define CM_CHB3D		0x20000000	/* 4 channels */
 100
 101#define CM_CHIP_MASK1		0x1f000000
 102#define CM_CHIP_037		0x01000000
 103#define CM_SETLAT48		0x00800000	/* set latency timer 48h */
 104#define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
 105#define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
 106#define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
 107#define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
 108#define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
 109/* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
 110
 111#define CM_ADCBITLEN_MASK	0x0000C000	
 112#define CM_ADCBITLEN_16		0x00000000
 113#define CM_ADCBITLEN_15		0x00004000
 114#define CM_ADCBITLEN_14		0x00008000
 115#define CM_ADCBITLEN_13		0x0000C000
 116
 117#define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
 118#define CM_ADCDACLEN_060	0x00000000
 119#define CM_ADCDACLEN_066	0x00001000
 120#define CM_ADCDACLEN_130	0x00002000
 121#define CM_ADCDACLEN_280	0x00003000
 122
 123#define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
 124#define CM_ADCDLEN_ORIGINAL	0x00000000
 125#define CM_ADCDLEN_EXTRA	0x00001000
 126#define CM_ADCDLEN_24K		0x00002000
 127#define CM_ADCDLEN_WEIGHT	0x00003000
 128
 129#define CM_CH1_SRATE_176K	0x00000800
 130#define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
 131#define CM_CH1_SRATE_88K	0x00000400
 132#define CM_CH0_SRATE_176K	0x00000200
 133#define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
 134#define CM_CH0_SRATE_88K	0x00000100
 135#define CM_CH0_SRATE_128K	0x00000300
 136#define CM_CH0_SRATE_MASK	0x00000300
 137
 138#define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
 139#define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
 140#define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
 141#define CM_SPDLOCKED		0x00000010
 142
 143#define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
 144#define CM_CH1FMT_SHIFT		2
 145#define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
 146#define CM_CH0FMT_SHIFT		0
 147
 148#define CM_REG_INT_HLDCLR	0x0C
 149#define CM_CHIP_MASK2		0xff000000
 150#define CM_CHIP_8768		0x20000000
 151#define CM_CHIP_055		0x08000000
 152#define CM_CHIP_039		0x04000000
 153#define CM_CHIP_039_6CH		0x01000000
 154#define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
 155#define CM_TDMA_INT_EN		0x00040000
 156#define CM_CH1_INT_EN		0x00020000
 157#define CM_CH0_INT_EN		0x00010000
 158
 159#define CM_REG_INT_STATUS	0x10
 160#define CM_INTR			0x80000000
 161#define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
 162#define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
 163#define CM_UARTINT		0x00010000
 164#define CM_LTDMAINT		0x00008000
 165#define CM_HTDMAINT		0x00004000
 166#define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
 167#define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
 168#define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
 169#define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
 170#define CM_CH1BUSY		0x00000008
 171#define CM_CH0BUSY		0x00000004
 172#define CM_CHINT1		0x00000002
 173#define CM_CHINT0		0x00000001
 174
 175#define CM_REG_LEGACY_CTRL	0x14
 176#define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
 177#define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
 178#define CM_VMPU_330		0x00000000
 179#define CM_VMPU_320		0x20000000
 180#define CM_VMPU_310		0x40000000
 181#define CM_VMPU_300		0x60000000
 182#define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
 183#define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
 184#define CM_VSBSEL_220		0x00000000
 185#define CM_VSBSEL_240		0x04000000
 186#define CM_VSBSEL_260		0x08000000
 187#define CM_VSBSEL_280		0x0C000000
 188#define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
 189#define CM_FMSEL_388		0x00000000
 190#define CM_FMSEL_3C8		0x01000000
 191#define CM_FMSEL_3E0		0x02000000
 192#define CM_FMSEL_3E8		0x03000000
 193#define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
 194#define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
 195#define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
 196#define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
 197#define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
 198#define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
 199#define CM_C_EECS		0x00040000
 200#define CM_C_EEDI46		0x00020000
 201#define CM_C_EECK46		0x00010000
 202#define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
 203#define CM_CENTR2LIN		0x00004000	/* line-in as center out */
 204#define CM_BASE2LIN		0x00002000	/* line-in as bass out */
 205#define CM_EXBASEN		0x00001000	/* external bass input enable */
 206
 207#define CM_REG_MISC_CTRL	0x18
 208#define CM_PWD			0x80000000	/* power down */
 209#define CM_RESET		0x40000000
 210#define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
 211#define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
 212#define CM_TXVX			0x08000000	/* model 037? */
 213#define CM_N4SPK3D		0x04000000	/* copy front to rear */
 214#define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
 215#define CM_SPDIF48K		0x01000000	/* write */
 216#define CM_SPATUS48K		0x01000000	/* read */
 217#define CM_ENDBDAC		0x00800000	/* enable double dac */
 218#define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
 219#define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
 220#define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
 221#define CM_FM_EN		0x00080000	/* enable legacy FM */
 222#define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
 223#define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
 224#define CM_VIDWPDSB		0x00010000	/* model 037? */
 225#define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
 226#define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
 227#define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
 228#define CM_VIDWPPRT		0x00002000	/* model 037? */
 229#define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
 230#define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
 231#define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
 232#define CM_ENCENTER		0x00000080
 233#define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
 234#define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
 235#define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
 236#define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
 237#define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
 238#define CM_UPDDMA_2048		0x00000000
 239#define CM_UPDDMA_1024		0x00000004
 240#define CM_UPDDMA_512		0x00000008
 241#define CM_UPDDMA_256		0x0000000C		
 242#define CM_TWAIT_MASK		0x00000003	/* model 037 */
 243#define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
 244#define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
 245
 246#define CM_REG_TDMA_POSITION	0x1C
 247#define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
 248#define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
 249
 250	/* byte */
 251#define CM_REG_MIXER0		0x20
 252#define CM_REG_SBVR		0x20		/* write: sb16 version */
 253#define CM_REG_DEV		0x20		/* read: hardware device version */
 254
 255#define CM_REG_MIXER21		0x21
 256#define CM_UNKNOWN_21_MASK	0x78		/* ? */
 257#define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
 258#define CM_PROINV		0x02		/* SBPro left/right channel switching */
 259#define CM_X_SB16		0x01		/* SB16 compatible */
 260
 261#define CM_REG_SB16_DATA	0x22
 262#define CM_REG_SB16_ADDR	0x23
 263
 264#define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
 265#define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
 266#define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
 267#define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
 268
 269#define CM_REG_MIXER1		0x24
 270#define CM_FMMUTE		0x80	/* mute FM */
 271#define CM_FMMUTE_SHIFT		7
 272#define CM_WSMUTE		0x40	/* mute PCM */
 273#define CM_WSMUTE_SHIFT		6
 274#define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
 275#define CM_REAR2LIN_SHIFT	5
 276#define CM_REAR2FRONT		0x10	/* exchange rear/front */
 277#define CM_REAR2FRONT_SHIFT	4
 278#define CM_WAVEINL		0x08	/* digital wave rec. left chan */
 279#define CM_WAVEINL_SHIFT	3
 280#define CM_WAVEINR		0x04	/* digical wave rec. right */
 281#define CM_WAVEINR_SHIFT	2
 282#define CM_X3DEN		0x02	/* 3D surround enable */
 283#define CM_X3DEN_SHIFT		1
 284#define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
 285#define CM_CDPLAY_SHIFT		0
 286
 287#define CM_REG_MIXER2		0x25
 288#define CM_RAUXREN		0x80	/* AUX right capture */
 289#define CM_RAUXREN_SHIFT	7
 290#define CM_RAUXLEN		0x40	/* AUX left capture */
 291#define CM_RAUXLEN_SHIFT	6
 292#define CM_VAUXRM		0x20	/* AUX right mute */
 293#define CM_VAUXRM_SHIFT		5
 294#define CM_VAUXLM		0x10	/* AUX left mute */
 295#define CM_VAUXLM_SHIFT		4
 296#define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
 297#define CM_VADMIC_SHIFT		1
 298#define CM_MICGAINZ		0x01	/* mic boost */
 299#define CM_MICGAINZ_SHIFT	0
 300
 301#define CM_REG_AUX_VOL		0x26
 302#define CM_VAUXL_MASK		0xf0
 303#define CM_VAUXR_MASK		0x0f
 304
 305#define CM_REG_MISC		0x27
 306#define CM_UNKNOWN_27_MASK	0xd8	/* ? */
 307#define CM_XGPO1		0x20
 308// #define CM_XGPBIO		0x04
 309#define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
 310#define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
 311#define CM_SPDVALID		0x02	/* spdif input valid check */
 312#define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
 313
 314#define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
 315/*
 316 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 317 * or identical with AC97 codec?
 318 */
 319#define CM_REG_EXTERN_CODEC	CM_REG_AC97
 320
 321/*
 322 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 323 */
 324#define CM_REG_MPU_PCI		0x40
 325
 326/*
 327 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 328 */
 329#define CM_REG_FM_PCI		0x50
 330
 331/*
 332 * access from SB-mixer port
 333 */
 334#define CM_REG_EXTENT_IND	0xf0
 335#define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
 336#define CM_VPHONE_SHIFT		5
 337#define CM_VPHOM		0x10	/* Phone mute control */
 338#define CM_VSPKM		0x08	/* Speaker mute control, default high */
 339#define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
 340#define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
 341#define CM_VADMIC3		0x01	/* Mic record boost */
 342
 343/*
 344 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 345 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 346 * unit (readonly?).
 347 */
 348#define CM_REG_PLL		0xf8
 349
 350/*
 351 * extended registers
 352 */
 353#define CM_REG_CH0_FRAME1	0x80	/* write: base address */
 354#define CM_REG_CH0_FRAME2	0x84	/* read: current address */
 355#define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
 356#define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
 357
 358#define CM_REG_EXT_MISC		0x90
 359#define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
 360#define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
 361#define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
 362#define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
 363#define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
 364#define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
 365#define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
 366#define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
 367
 368/*
 369 * size of i/o region
 370 */
 371#define CM_EXTENT_CODEC	  0x100
 372#define CM_EXTENT_MIDI	  0x2
 373#define CM_EXTENT_SYNTH	  0x4
 374
 375
 376/*
 377 * channels for playback / capture
 378 */
 379#define CM_CH_PLAY	0
 380#define CM_CH_CAPT	1
 381
 382/*
 383 * flags to check device open/close
 384 */
 385#define CM_OPEN_NONE	0
 386#define CM_OPEN_CH_MASK	0x01
 387#define CM_OPEN_DAC	0x10
 388#define CM_OPEN_ADC	0x20
 389#define CM_OPEN_SPDIF	0x40
 390#define CM_OPEN_MCHAN	0x80
 391#define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
 392#define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
 393#define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
 394#define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
 395#define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
 396#define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
 397
 398
 399#if CM_CH_PLAY == 1
 400#define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
 401#define CM_PLAYBACK_SPDF	CM_SPDF_1
 402#define CM_CAPTURE_SPDF		CM_SPDF_0
 403#else
 404#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
 405#define CM_PLAYBACK_SPDF	CM_SPDF_0
 406#define CM_CAPTURE_SPDF		CM_SPDF_1
 407#endif
 408
 409
 410/*
 411 * driver data
 412 */
 413
 414struct cmipci_pcm {
 415	struct snd_pcm_substream *substream;
 416	u8 running;		/* dac/adc running? */
 417	u8 fmt;			/* format bits */
 418	u8 is_dac;
 419	u8 needs_silencing;
 420	unsigned int dma_size;	/* in frames */
 421	unsigned int shift;
 422	unsigned int ch;	/* channel (0/1) */
 423	unsigned int offset;	/* physical address of the buffer */
 424};
 425
 426/* mixer elements toggled/resumed during ac3 playback */
 427struct cmipci_mixer_auto_switches {
 428	const char *name;	/* switch to toggle */
 429	int toggle_on;		/* value to change when ac3 mode */
 430};
 431static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
 432	{"PCM Playback Switch", 0},
 433	{"IEC958 Output Switch", 1},
 434	{"IEC958 Mix Analog", 0},
 435	// {"IEC958 Out To DAC", 1}, // no longer used
 436	{"IEC958 Loop", 0},
 437};
 438#define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
 439
 440struct cmipci {
 441	struct snd_card *card;
 442
 443	struct pci_dev *pci;
 444	unsigned int device;	/* device ID */
 445	int irq;
 446
 447	unsigned long iobase;
 448	unsigned int ctrl;	/* FUNCTRL0 current value */
 449
 450	struct snd_pcm *pcm;		/* DAC/ADC PCM */
 451	struct snd_pcm *pcm2;	/* 2nd DAC */
 452	struct snd_pcm *pcm_spdif;	/* SPDIF */
 453
 454	int chip_version;
 455	int max_channels;
 456	unsigned int can_ac3_sw: 1;
 457	unsigned int can_ac3_hw: 1;
 458	unsigned int can_multi_ch: 1;
 459	unsigned int can_96k: 1;	/* samplerate above 48k */
 460	unsigned int do_soft_ac3: 1;
 461
 462	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
 463	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
 464	int spdif_counter;	/* for software AC3 */
 465
 466	unsigned int dig_status;
 467	unsigned int dig_pcm_status;
 468
 469	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
 470
 471	int opened[2];	/* open mode */
 472	struct mutex open_mutex;
 473
 474	unsigned int mixer_insensitive: 1;
 475	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
 476	int mixer_res_status[CM_SAVED_MIXERS];
 477
 478	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
 479
 480	/* external MIDI */
 481	struct snd_rawmidi *rmidi;
 482
 483#ifdef SUPPORT_JOYSTICK
 484	struct gameport *gameport;
 485#endif
 486
 487	spinlock_t reg_lock;
 488
 
 489	unsigned int saved_regs[0x20];
 490	unsigned char saved_mixers[0x20];
 
 491};
 492
 493
 494/* read/write operations for dword register */
 495static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
 496{
 497	outl(data, cm->iobase + cmd);
 498}
 499
 500static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
 501{
 502	return inl(cm->iobase + cmd);
 503}
 504
 505/* read/write operations for word register */
 506static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
 507{
 508	outw(data, cm->iobase + cmd);
 509}
 510
 511static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
 512{
 513	return inw(cm->iobase + cmd);
 514}
 515
 516/* read/write operations for byte register */
 517static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
 518{
 519	outb(data, cm->iobase + cmd);
 520}
 521
 522static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
 523{
 524	return inb(cm->iobase + cmd);
 525}
 526
 527/* bit operations for dword register */
 528static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 529{
 530	unsigned int val, oval;
 531	val = oval = inl(cm->iobase + cmd);
 532	val |= flag;
 533	if (val == oval)
 534		return 0;
 535	outl(val, cm->iobase + cmd);
 536	return 1;
 537}
 538
 539static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 540{
 541	unsigned int val, oval;
 542	val = oval = inl(cm->iobase + cmd);
 543	val &= ~flag;
 544	if (val == oval)
 545		return 0;
 546	outl(val, cm->iobase + cmd);
 547	return 1;
 548}
 549
 550/* bit operations for byte register */
 551static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 552{
 553	unsigned char val, oval;
 554	val = oval = inb(cm->iobase + cmd);
 555	val |= flag;
 556	if (val == oval)
 557		return 0;
 558	outb(val, cm->iobase + cmd);
 559	return 1;
 560}
 561
 562static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 563{
 564	unsigned char val, oval;
 565	val = oval = inb(cm->iobase + cmd);
 566	val &= ~flag;
 567	if (val == oval)
 568		return 0;
 569	outb(val, cm->iobase + cmd);
 570	return 1;
 571}
 572
 573
 574/*
 575 * PCM interface
 576 */
 577
 578/*
 579 * calculate frequency
 580 */
 581
 582static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
 583
 584static unsigned int snd_cmipci_rate_freq(unsigned int rate)
 585{
 586	unsigned int i;
 587
 588	for (i = 0; i < ARRAY_SIZE(rates); i++) {
 589		if (rates[i] == rate)
 590			return i;
 591	}
 592	snd_BUG();
 593	return 0;
 594}
 595
 596#ifdef USE_VAR48KRATE
 597/*
 598 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 599 * does it this way .. maybe not.  Never get any information from C-Media about
 600 * that <werner@suse.de>.
 601 */
 602static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
 603{
 604	unsigned int delta, tolerance;
 605	int xm, xn, xr;
 606
 607	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
 608		rate <<= 1;
 609	*n = -1;
 610	if (*r > 0xff)
 611		goto out;
 612	tolerance = rate*CM_TOLERANCE_RATE;
 613
 614	for (xn = (1+2); xn < (0x1f+2); xn++) {
 615		for (xm = (1+2); xm < (0xff+2); xm++) {
 616			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
 617
 618			if (xr < rate)
 619				delta = rate - xr;
 620			else
 621				delta = xr - rate;
 622
 623			/*
 624			 * If we found one, remember this,
 625			 * and try to find a closer one
 626			 */
 627			if (delta < tolerance) {
 628				tolerance = delta;
 629				*m = xm - 2;
 630				*n = xn - 2;
 631			}
 632		}
 633	}
 634out:
 635	return (*n > -1);
 636}
 637
 638/*
 639 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
 640 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
 641 * at the register CM_REG_FUNCTRL1 (0x04).
 642 * Problem: other ways are also possible (any information about that?)
 643 */
 644static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
 645{
 646	unsigned int reg = CM_REG_PLL + slot;
 647	/*
 648	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
 649	 * for DSFC/ASFC (000 up to 111).
 650	 */
 651
 652	/* FIXME: Init (Do we've to set an other register first before programming?) */
 653
 654	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
 655	snd_cmipci_write_b(cm, reg, rate>>8);
 656	snd_cmipci_write_b(cm, reg, rate&0xff);
 657
 658	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
 659}
 660#endif /* USE_VAR48KRATE */
 661
 662static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
 663					  struct snd_pcm_hw_params *hw_params)
 664{
 665	struct cmipci *cm = snd_pcm_substream_chip(substream);
 666	if (params_channels(hw_params) > 2) {
 667		mutex_lock(&cm->open_mutex);
 668		if (cm->opened[CM_CH_PLAY]) {
 669			mutex_unlock(&cm->open_mutex);
 670			return -EBUSY;
 671		}
 672		/* reserve the channel A */
 673		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
 674		mutex_unlock(&cm->open_mutex);
 675	}
 676	return 0;
 677}
 678
 679static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
 680{
 681	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
 682	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 683	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 684	udelay(10);
 685}
 686
 687
 688/*
 689 */
 690
 691static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
 692static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
 693	.count = 3,
 694	.list = hw_channels,
 695	.mask = 0,
 696};
 697static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
 698	.count = 4,
 699	.list = hw_channels,
 700	.mask = 0,
 701};
 702static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
 703	.count = 5,
 704	.list = hw_channels,
 705	.mask = 0,
 706};
 707
 708static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
 709{
 710	if (channels > 2) {
 711		if (!cm->can_multi_ch || !rec->ch)
 712			return -EINVAL;
 713		if (rec->fmt != 0x03) /* stereo 16bit only */
 714			return -EINVAL;
 715	}
 716
 717	if (cm->can_multi_ch) {
 718		spin_lock_irq(&cm->reg_lock);
 719		if (channels > 2) {
 720			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 721			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 722		} else {
 723			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 724			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 725		}
 726		if (channels == 8)
 727			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 728		else
 729			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 730		if (channels == 6) {
 731			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 732			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 733		} else {
 734			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 735			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 736		}
 737		if (channels == 4)
 738			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 739		else
 740			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 741		spin_unlock_irq(&cm->reg_lock);
 742	}
 743	return 0;
 744}
 745
 746
 747/*
 748 * prepare playback/capture channel
 749 * channel to be used must have been set in rec->ch.
 750 */
 751static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
 752				 struct snd_pcm_substream *substream)
 753{
 754	unsigned int reg, freq, freq_ext, val;
 755	unsigned int period_size;
 756	struct snd_pcm_runtime *runtime = substream->runtime;
 757
 758	rec->fmt = 0;
 759	rec->shift = 0;
 760	if (snd_pcm_format_width(runtime->format) >= 16) {
 761		rec->fmt |= 0x02;
 762		if (snd_pcm_format_width(runtime->format) > 16)
 763			rec->shift++; /* 24/32bit */
 764	}
 765	if (runtime->channels > 1)
 766		rec->fmt |= 0x01;
 767	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
 768		dev_dbg(cm->card->dev, "cannot set dac channels\n");
 769		return -EINVAL;
 770	}
 771
 772	rec->offset = runtime->dma_addr;
 773	/* buffer and period sizes in frame */
 774	rec->dma_size = runtime->buffer_size << rec->shift;
 775	period_size = runtime->period_size << rec->shift;
 776	if (runtime->channels > 2) {
 777		/* multi-channels */
 778		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
 779		period_size = (period_size * runtime->channels) / 2;
 780	}
 781
 782	spin_lock_irq(&cm->reg_lock);
 783
 784	/* set buffer address */
 785	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 786	snd_cmipci_write(cm, reg, rec->offset);
 787	/* program sample counts */
 788	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 789	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
 790	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
 791
 792	/* set adc/dac flag */
 793	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
 794	if (rec->is_dac)
 795		cm->ctrl &= ~val;
 796	else
 797		cm->ctrl |= val;
 798	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 799	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
 800
 801	/* set sample rate */
 802	freq = 0;
 803	freq_ext = 0;
 804	if (runtime->rate > 48000)
 805		switch (runtime->rate) {
 806		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
 807		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
 808		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
 809		default:     snd_BUG(); break;
 810		}
 811	else
 812		freq = snd_cmipci_rate_freq(runtime->rate);
 813	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
 814	if (rec->ch) {
 815		val &= ~CM_DSFC_MASK;
 816		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
 817	} else {
 818		val &= ~CM_ASFC_MASK;
 819		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
 820	}
 821	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
 822	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
 823
 824	/* set format */
 825	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
 826	if (rec->ch) {
 827		val &= ~CM_CH1FMT_MASK;
 828		val |= rec->fmt << CM_CH1FMT_SHIFT;
 829	} else {
 830		val &= ~CM_CH0FMT_MASK;
 831		val |= rec->fmt << CM_CH0FMT_SHIFT;
 832	}
 833	if (cm->can_96k) {
 834		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
 835		val |= freq_ext << (rec->ch * 2);
 836	}
 837	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
 838	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
 839
 840	if (!rec->is_dac && cm->chip_version) {
 841		if (runtime->rate > 44100)
 842			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 843		else
 844			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 845	}
 846
 847	rec->running = 0;
 848	spin_unlock_irq(&cm->reg_lock);
 849
 850	return 0;
 851}
 852
 853/*
 854 * PCM trigger/stop
 855 */
 856static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
 857				  int cmd)
 858{
 859	unsigned int inthld, chen, reset, pause;
 860	int result = 0;
 861
 862	inthld = CM_CH0_INT_EN << rec->ch;
 863	chen = CM_CHEN0 << rec->ch;
 864	reset = CM_RST_CH0 << rec->ch;
 865	pause = CM_PAUSE0 << rec->ch;
 866
 867	spin_lock(&cm->reg_lock);
 868	switch (cmd) {
 869	case SNDRV_PCM_TRIGGER_START:
 870		rec->running = 1;
 871		/* set interrupt */
 872		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
 873		cm->ctrl |= chen;
 874		/* enable channel */
 875		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 876		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
 877		break;
 878	case SNDRV_PCM_TRIGGER_STOP:
 879		rec->running = 0;
 880		/* disable interrupt */
 881		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
 882		/* reset */
 883		cm->ctrl &= ~chen;
 884		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 885		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 886		rec->needs_silencing = rec->is_dac;
 887		break;
 888	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 889	case SNDRV_PCM_TRIGGER_SUSPEND:
 890		cm->ctrl |= pause;
 891		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 892		break;
 893	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 894	case SNDRV_PCM_TRIGGER_RESUME:
 895		cm->ctrl &= ~pause;
 896		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 897		break;
 898	default:
 899		result = -EINVAL;
 900		break;
 901	}
 902	spin_unlock(&cm->reg_lock);
 903	return result;
 904}
 905
 906/*
 907 * return the current pointer
 908 */
 909static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
 910						struct snd_pcm_substream *substream)
 911{
 912	size_t ptr;
 913	unsigned int reg, rem, tries;
 914
 915	if (!rec->running)
 916		return 0;
 917#if 1 // this seems better..
 918	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 919	for (tries = 0; tries < 3; tries++) {
 920		rem = snd_cmipci_read_w(cm, reg);
 921		if (rem < rec->dma_size)
 922			goto ok;
 923	} 
 924	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
 925	return SNDRV_PCM_POS_XRUN;
 926ok:
 927	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
 928#else
 929	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 930	ptr = snd_cmipci_read(cm, reg) - rec->offset;
 931	ptr = bytes_to_frames(substream->runtime, ptr);
 932#endif
 933	if (substream->runtime->channels > 2)
 934		ptr = (ptr * 2) / substream->runtime->channels;
 935	return ptr;
 936}
 937
 938/*
 939 * playback
 940 */
 941
 942static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
 943				       int cmd)
 944{
 945	struct cmipci *cm = snd_pcm_substream_chip(substream);
 946	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
 947}
 948
 949static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
 950{
 951	struct cmipci *cm = snd_pcm_substream_chip(substream);
 952	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
 953}
 954
 955
 956
 957/*
 958 * capture
 959 */
 960
 961static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
 962				     int cmd)
 963{
 964	struct cmipci *cm = snd_pcm_substream_chip(substream);
 965	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
 966}
 967
 968static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
 969{
 970	struct cmipci *cm = snd_pcm_substream_chip(substream);
 971	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
 972}
 973
 974
 975/*
 976 * hw preparation for spdif
 977 */
 978
 979static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
 980					 struct snd_ctl_elem_info *uinfo)
 981{
 982	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
 983	uinfo->count = 1;
 984	return 0;
 985}
 986
 987static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
 988					struct snd_ctl_elem_value *ucontrol)
 989{
 990	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
 991	int i;
 992
 993	spin_lock_irq(&chip->reg_lock);
 994	for (i = 0; i < 4; i++)
 995		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
 996	spin_unlock_irq(&chip->reg_lock);
 997	return 0;
 998}
 999
1000static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1001					 struct snd_ctl_elem_value *ucontrol)
1002{
1003	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1004	int i, change;
1005	unsigned int val;
1006
1007	val = 0;
1008	spin_lock_irq(&chip->reg_lock);
1009	for (i = 0; i < 4; i++)
1010		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1011	change = val != chip->dig_status;
1012	chip->dig_status = val;
1013	spin_unlock_irq(&chip->reg_lock);
1014	return change;
1015}
1016
1017static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1018{
1019	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1020	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1021	.info =		snd_cmipci_spdif_default_info,
1022	.get =		snd_cmipci_spdif_default_get,
1023	.put =		snd_cmipci_spdif_default_put
1024};
1025
1026static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1027				      struct snd_ctl_elem_info *uinfo)
1028{
1029	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1030	uinfo->count = 1;
1031	return 0;
1032}
1033
1034static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1035				     struct snd_ctl_elem_value *ucontrol)
1036{
1037	ucontrol->value.iec958.status[0] = 0xff;
1038	ucontrol->value.iec958.status[1] = 0xff;
1039	ucontrol->value.iec958.status[2] = 0xff;
1040	ucontrol->value.iec958.status[3] = 0xff;
1041	return 0;
1042}
1043
1044static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1045{
1046	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1047	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1048	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1049	.info =		snd_cmipci_spdif_mask_info,
1050	.get =		snd_cmipci_spdif_mask_get,
1051};
1052
1053static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1054					struct snd_ctl_elem_info *uinfo)
1055{
1056	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1057	uinfo->count = 1;
1058	return 0;
1059}
1060
1061static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1062				       struct snd_ctl_elem_value *ucontrol)
1063{
1064	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1065	int i;
1066
1067	spin_lock_irq(&chip->reg_lock);
1068	for (i = 0; i < 4; i++)
1069		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1070	spin_unlock_irq(&chip->reg_lock);
1071	return 0;
1072}
1073
1074static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1075				       struct snd_ctl_elem_value *ucontrol)
1076{
1077	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1078	int i, change;
1079	unsigned int val;
1080
1081	val = 0;
1082	spin_lock_irq(&chip->reg_lock);
1083	for (i = 0; i < 4; i++)
1084		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1085	change = val != chip->dig_pcm_status;
1086	chip->dig_pcm_status = val;
1087	spin_unlock_irq(&chip->reg_lock);
1088	return change;
1089}
1090
1091static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1092{
1093	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1094	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1095	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1096	.info =		snd_cmipci_spdif_stream_info,
1097	.get =		snd_cmipci_spdif_stream_get,
1098	.put =		snd_cmipci_spdif_stream_put
1099};
1100
1101/*
1102 */
1103
1104/* save mixer setting and mute for AC3 playback */
1105static int save_mixer_state(struct cmipci *cm)
1106{
1107	if (! cm->mixer_insensitive) {
1108		struct snd_ctl_elem_value *val;
1109		unsigned int i;
1110
1111		val = kmalloc(sizeof(*val), GFP_KERNEL);
1112		if (!val)
1113			return -ENOMEM;
1114		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1115			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1116			if (ctl) {
1117				int event;
1118				memset(val, 0, sizeof(*val));
1119				ctl->get(ctl, val);
1120				cm->mixer_res_status[i] = val->value.integer.value[0];
1121				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1122				event = SNDRV_CTL_EVENT_MASK_INFO;
1123				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1124					ctl->put(ctl, val); /* toggle */
1125					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1126				}
1127				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1128				snd_ctl_notify(cm->card, event, &ctl->id);
1129			}
1130		}
1131		kfree(val);
1132		cm->mixer_insensitive = 1;
1133	}
1134	return 0;
1135}
1136
1137
1138/* restore the previously saved mixer status */
1139static void restore_mixer_state(struct cmipci *cm)
1140{
1141	if (cm->mixer_insensitive) {
1142		struct snd_ctl_elem_value *val;
1143		unsigned int i;
1144
1145		val = kmalloc(sizeof(*val), GFP_KERNEL);
1146		if (!val)
1147			return;
1148		cm->mixer_insensitive = 0; /* at first clear this;
1149					      otherwise the changes will be ignored */
1150		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1151			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1152			if (ctl) {
1153				int event;
1154
1155				memset(val, 0, sizeof(*val));
1156				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1157				ctl->get(ctl, val);
1158				event = SNDRV_CTL_EVENT_MASK_INFO;
1159				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1160					val->value.integer.value[0] = cm->mixer_res_status[i];
1161					ctl->put(ctl, val);
1162					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1163				}
1164				snd_ctl_notify(cm->card, event, &ctl->id);
1165			}
1166		}
1167		kfree(val);
1168	}
1169}
1170
1171/* spinlock held! */
1172static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1173{
1174	if (do_ac3) {
1175		/* AC3EN for 037 */
1176		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1177		/* AC3EN for 039 */
1178		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1179	
1180		if (cm->can_ac3_hw) {
1181			/* SPD24SEL for 037, 0x02 */
1182			/* SPD24SEL for 039, 0x20, but cannot be set */
1183			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1184			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1185		} else { /* can_ac3_sw */
1186			/* SPD32SEL for 037 & 039, 0x20 */
1187			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1188			/* set 176K sample rate to fix 033 HW bug */
1189			if (cm->chip_version == 33) {
1190				if (rate >= 48000) {
1191					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1192				} else {
1193					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1194				}
1195			}
1196		}
1197
1198	} else {
1199		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1200		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1201
1202		if (cm->can_ac3_hw) {
1203			/* chip model >= 37 */
1204			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1205				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1206				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1207			} else {
1208				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1209				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1210			}
1211		} else {
1212			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1213			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1214			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1215		}
1216	}
1217}
1218
1219static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1220{
1221	int rate, err;
1222
1223	rate = subs->runtime->rate;
1224
1225	if (up && do_ac3) {
1226		err = save_mixer_state(cm);
1227		if (err < 0)
1228			return err;
1229	}
1230
1231	spin_lock_irq(&cm->reg_lock);
1232	cm->spdif_playback_avail = up;
1233	if (up) {
1234		/* they are controlled via "IEC958 Output Switch" */
1235		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1236		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1237		if (cm->spdif_playback_enabled)
1238			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1239		setup_ac3(cm, subs, do_ac3, rate);
1240
1241		if (rate == 48000 || rate == 96000)
1242			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1243		else
1244			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1245		if (rate > 48000)
1246			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1247		else
1248			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1249	} else {
1250		/* they are controlled via "IEC958 Output Switch" */
1251		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1252		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1253		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1254		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1255		setup_ac3(cm, subs, 0, 0);
1256	}
1257	spin_unlock_irq(&cm->reg_lock);
1258	return 0;
1259}
1260
1261
1262/*
1263 * preparation
1264 */
1265
1266/* playback - enable spdif only on the certain condition */
1267static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1268{
1269	struct cmipci *cm = snd_pcm_substream_chip(substream);
1270	int rate = substream->runtime->rate;
1271	int err, do_spdif, do_ac3 = 0;
1272
1273	do_spdif = (rate >= 44100 && rate <= 96000 &&
1274		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1275		    substream->runtime->channels == 2);
1276	if (do_spdif && cm->can_ac3_hw) 
1277		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1278	err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
1279	if (err < 0)
1280		return err;
1281	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1282}
1283
1284/* playback  (via device #2) - enable spdif always */
1285static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1286{
1287	struct cmipci *cm = snd_pcm_substream_chip(substream);
1288	int err, do_ac3;
1289
1290	if (cm->can_ac3_hw) 
1291		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1292	else
1293		do_ac3 = 1; /* doesn't matter */
1294	err = setup_spdif_playback(cm, substream, 1, do_ac3);
1295	if (err < 0)
1296		return err;
1297	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1298}
1299
1300/*
1301 * Apparently, the samples last played on channel A stay in some buffer, even
1302 * after the channel is reset, and get added to the data for the rear DACs when
1303 * playing a multichannel stream on channel B.  This is likely to generate
1304 * wraparounds and thus distortions.
1305 * To avoid this, we play at least one zero sample after the actual stream has
1306 * stopped.
1307 */
1308static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1309{
1310	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1311	unsigned int reg, val;
1312
1313	if (rec->needs_silencing && runtime && runtime->dma_area) {
1314		/* set up a small silence buffer */
1315		memset(runtime->dma_area, 0, PAGE_SIZE);
1316		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1317		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1318		snd_cmipci_write(cm, reg, val);
1319	
1320		/* configure for 16 bits, 2 channels, 8 kHz */
1321		if (runtime->channels > 2)
1322			set_dac_channels(cm, rec, 2);
1323		spin_lock_irq(&cm->reg_lock);
1324		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1325		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1326		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1327		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1328		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1329		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1330		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1331		if (cm->can_96k)
1332			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1333		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1334	
1335		/* start stream (we don't need interrupts) */
1336		cm->ctrl |= CM_CHEN0 << rec->ch;
1337		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1338		spin_unlock_irq(&cm->reg_lock);
1339
1340		msleep(1);
1341
1342		/* stop and reset stream */
1343		spin_lock_irq(&cm->reg_lock);
1344		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1345		val = CM_RST_CH0 << rec->ch;
1346		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1347		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1348		spin_unlock_irq(&cm->reg_lock);
1349
1350		rec->needs_silencing = 0;
1351	}
1352}
1353
1354static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1355{
1356	struct cmipci *cm = snd_pcm_substream_chip(substream);
1357	setup_spdif_playback(cm, substream, 0, 0);
1358	restore_mixer_state(cm);
1359	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1360	return 0;
1361}
1362
1363static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1364{
1365	struct cmipci *cm = snd_pcm_substream_chip(substream);
1366	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1367	return 0;
1368}
1369
1370/* capture */
1371static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1372{
1373	struct cmipci *cm = snd_pcm_substream_chip(substream);
1374	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1375}
1376
1377/* capture with spdif (via device #2) */
1378static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1379{
1380	struct cmipci *cm = snd_pcm_substream_chip(substream);
1381
1382	spin_lock_irq(&cm->reg_lock);
1383	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1384	if (cm->can_96k) {
1385		if (substream->runtime->rate > 48000)
1386			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1387		else
1388			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1389	}
1390	if (snd_pcm_format_width(substream->runtime->format) > 16)
1391		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1392	else
1393		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1394
1395	spin_unlock_irq(&cm->reg_lock);
1396
1397	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1398}
1399
1400static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1401{
1402	struct cmipci *cm = snd_pcm_substream_chip(subs);
1403
1404	spin_lock_irq(&cm->reg_lock);
1405	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1406	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1407	spin_unlock_irq(&cm->reg_lock);
1408
1409	return 0;
1410}
1411
1412
1413/*
1414 * interrupt handler
1415 */
1416static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1417{
1418	struct cmipci *cm = dev_id;
1419	unsigned int status, mask = 0;
1420	
1421	/* fastpath out, to ease interrupt sharing */
1422	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1423	if (!(status & CM_INTR))
1424		return IRQ_NONE;
1425
1426	/* acknowledge interrupt */
1427	spin_lock(&cm->reg_lock);
1428	if (status & CM_CHINT0)
1429		mask |= CM_CH0_INT_EN;
1430	if (status & CM_CHINT1)
1431		mask |= CM_CH1_INT_EN;
1432	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1433	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1434	spin_unlock(&cm->reg_lock);
1435
1436	if (cm->rmidi && (status & CM_UARTINT))
1437		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1438
1439	if (cm->pcm) {
1440		if ((status & CM_CHINT0) && cm->channel[0].running)
1441			snd_pcm_period_elapsed(cm->channel[0].substream);
1442		if ((status & CM_CHINT1) && cm->channel[1].running)
1443			snd_pcm_period_elapsed(cm->channel[1].substream);
1444	}
1445	return IRQ_HANDLED;
1446}
1447
1448/*
1449 * h/w infos
1450 */
1451
1452/* playback on channel A */
1453static const struct snd_pcm_hardware snd_cmipci_playback =
1454{
1455	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1456				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1457				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1458	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1459	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1460	.rate_min =		5512,
1461	.rate_max =		48000,
1462	.channels_min =		1,
1463	.channels_max =		2,
1464	.buffer_bytes_max =	(128*1024),
1465	.period_bytes_min =	64,
1466	.period_bytes_max =	(128*1024),
1467	.periods_min =		2,
1468	.periods_max =		1024,
1469	.fifo_size =		0,
1470};
1471
1472/* capture on channel B */
1473static const struct snd_pcm_hardware snd_cmipci_capture =
1474{
1475	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1476				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1477				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1478	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1479	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1480	.rate_min =		5512,
1481	.rate_max =		48000,
1482	.channels_min =		1,
1483	.channels_max =		2,
1484	.buffer_bytes_max =	(128*1024),
1485	.period_bytes_min =	64,
1486	.period_bytes_max =	(128*1024),
1487	.periods_min =		2,
1488	.periods_max =		1024,
1489	.fifo_size =		0,
1490};
1491
1492/* playback on channel B - stereo 16bit only? */
1493static const struct snd_pcm_hardware snd_cmipci_playback2 =
1494{
1495	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1496				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1497				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1498	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1499	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1500	.rate_min =		5512,
1501	.rate_max =		48000,
1502	.channels_min =		2,
1503	.channels_max =		2,
1504	.buffer_bytes_max =	(128*1024),
1505	.period_bytes_min =	64,
1506	.period_bytes_max =	(128*1024),
1507	.periods_min =		2,
1508	.periods_max =		1024,
1509	.fifo_size =		0,
1510};
1511
1512/* spdif playback on channel A */
1513static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1514{
1515	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1516				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1517				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1518	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1519	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1520	.rate_min =		44100,
1521	.rate_max =		48000,
1522	.channels_min =		2,
1523	.channels_max =		2,
1524	.buffer_bytes_max =	(128*1024),
1525	.period_bytes_min =	64,
1526	.period_bytes_max =	(128*1024),
1527	.periods_min =		2,
1528	.periods_max =		1024,
1529	.fifo_size =		0,
1530};
1531
1532/* spdif playback on channel A (32bit, IEC958 subframes) */
1533static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1534{
1535	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1536				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1537				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1538	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1539	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1540	.rate_min =		44100,
1541	.rate_max =		48000,
1542	.channels_min =		2,
1543	.channels_max =		2,
1544	.buffer_bytes_max =	(128*1024),
1545	.period_bytes_min =	64,
1546	.period_bytes_max =	(128*1024),
1547	.periods_min =		2,
1548	.periods_max =		1024,
1549	.fifo_size =		0,
1550};
1551
1552/* spdif capture on channel B */
1553static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1554{
1555	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1556				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1557				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1558	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1559				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1560	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1561	.rate_min =		44100,
1562	.rate_max =		48000,
1563	.channels_min =		2,
1564	.channels_max =		2,
1565	.buffer_bytes_max =	(128*1024),
1566	.period_bytes_min =	64,
1567	.period_bytes_max =	(128*1024),
1568	.periods_min =		2,
1569	.periods_max =		1024,
1570	.fifo_size =		0,
1571};
1572
 
 
 
 
 
 
 
 
1573/*
1574 * check device open/close
1575 */
1576static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1577{
1578	int ch = mode & CM_OPEN_CH_MASK;
1579
1580	/* FIXME: a file should wait until the device becomes free
1581	 * when it's opened on blocking mode.  however, since the current
1582	 * pcm framework doesn't pass file pointer before actually opened,
1583	 * we can't know whether blocking mode or not in open callback..
1584	 */
1585	mutex_lock(&cm->open_mutex);
1586	if (cm->opened[ch]) {
1587		mutex_unlock(&cm->open_mutex);
1588		return -EBUSY;
1589	}
1590	cm->opened[ch] = mode;
1591	cm->channel[ch].substream = subs;
1592	if (! (mode & CM_OPEN_DAC)) {
1593		/* disable dual DAC mode */
1594		cm->channel[ch].is_dac = 0;
1595		spin_lock_irq(&cm->reg_lock);
1596		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1597		spin_unlock_irq(&cm->reg_lock);
1598	}
1599	mutex_unlock(&cm->open_mutex);
1600	return 0;
1601}
1602
1603static void close_device_check(struct cmipci *cm, int mode)
1604{
1605	int ch = mode & CM_OPEN_CH_MASK;
1606
1607	mutex_lock(&cm->open_mutex);
1608	if (cm->opened[ch] == mode) {
1609		if (cm->channel[ch].substream) {
1610			snd_cmipci_ch_reset(cm, ch);
1611			cm->channel[ch].running = 0;
1612			cm->channel[ch].substream = NULL;
1613		}
1614		cm->opened[ch] = 0;
1615		if (! cm->channel[ch].is_dac) {
1616			/* enable dual DAC mode again */
1617			cm->channel[ch].is_dac = 1;
1618			spin_lock_irq(&cm->reg_lock);
1619			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1620			spin_unlock_irq(&cm->reg_lock);
1621		}
1622	}
1623	mutex_unlock(&cm->open_mutex);
1624}
1625
1626/*
1627 */
1628
1629static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1630{
1631	struct cmipci *cm = snd_pcm_substream_chip(substream);
1632	struct snd_pcm_runtime *runtime = substream->runtime;
1633	int err;
1634
1635	err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
1636	if (err < 0)
1637		return err;
1638	runtime->hw = snd_cmipci_playback;
1639	if (cm->chip_version == 68) {
1640		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1641				     SNDRV_PCM_RATE_96000;
1642		runtime->hw.rate_max = 96000;
1643	} else if (cm->chip_version == 55) {
1644		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1645				     SNDRV_PCM_RATE_96000 |
1646				     SNDRV_PCM_RATE_128000;
 
 
1647		runtime->hw.rate_max = 128000;
1648	}
1649	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1650	cm->dig_pcm_status = cm->dig_status;
1651	return 0;
1652}
1653
1654static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1655{
1656	struct cmipci *cm = snd_pcm_substream_chip(substream);
1657	struct snd_pcm_runtime *runtime = substream->runtime;
1658	int err;
1659
1660	err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
1661	if (err < 0)
1662		return err;
1663	runtime->hw = snd_cmipci_capture;
1664	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1665		runtime->hw.rate_min = 41000;
1666		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1667	} else if (cm->chip_version == 55) {
1668		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1669				     SNDRV_PCM_RATE_96000 |
1670				     SNDRV_PCM_RATE_128000;
 
 
1671		runtime->hw.rate_max = 128000;
1672	}
1673	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1674	return 0;
1675}
1676
1677static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1678{
1679	struct cmipci *cm = snd_pcm_substream_chip(substream);
1680	struct snd_pcm_runtime *runtime = substream->runtime;
1681	int err;
1682
1683	/* use channel B */
1684	err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
1685	if (err < 0)
1686		return err;
1687	runtime->hw = snd_cmipci_playback2;
1688	mutex_lock(&cm->open_mutex);
1689	if (! cm->opened[CM_CH_PLAY]) {
1690		if (cm->can_multi_ch) {
1691			runtime->hw.channels_max = cm->max_channels;
1692			if (cm->max_channels == 4)
1693				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1694			else if (cm->max_channels == 6)
1695				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1696			else if (cm->max_channels == 8)
1697				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1698		}
1699	}
1700	mutex_unlock(&cm->open_mutex);
1701	if (cm->chip_version == 68) {
1702		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1703				     SNDRV_PCM_RATE_96000;
1704		runtime->hw.rate_max = 96000;
1705	} else if (cm->chip_version == 55) {
1706		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1707				     SNDRV_PCM_RATE_96000 |
1708				     SNDRV_PCM_RATE_128000;
 
 
1709		runtime->hw.rate_max = 128000;
1710	}
1711	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1712	return 0;
1713}
1714
1715static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1716{
1717	struct cmipci *cm = snd_pcm_substream_chip(substream);
1718	struct snd_pcm_runtime *runtime = substream->runtime;
1719	int err;
1720
1721	/* use channel A */
1722	err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
1723	if (err < 0)
1724		return err;
1725	if (cm->can_ac3_hw) {
1726		runtime->hw = snd_cmipci_playback_spdif;
1727		if (cm->chip_version >= 37) {
1728			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1729			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1730		}
1731		if (cm->can_96k) {
1732			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1733					     SNDRV_PCM_RATE_96000;
1734			runtime->hw.rate_max = 96000;
1735		}
1736	} else {
1737		runtime->hw = snd_cmipci_playback_iec958_subframe;
1738	}
1739	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1740	cm->dig_pcm_status = cm->dig_status;
1741	return 0;
1742}
1743
1744static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1745{
1746	struct cmipci *cm = snd_pcm_substream_chip(substream);
1747	struct snd_pcm_runtime *runtime = substream->runtime;
1748	int err;
1749
1750	/* use channel B */
1751	err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
1752	if (err < 0)
1753		return err;
1754	runtime->hw = snd_cmipci_capture_spdif;
1755	if (cm->can_96k && !(cm->chip_version == 68)) {
1756		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1757				     SNDRV_PCM_RATE_96000;
1758		runtime->hw.rate_max = 96000;
1759	}
1760	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1761	return 0;
1762}
1763
1764
1765/*
1766 */
1767
1768static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1769{
1770	struct cmipci *cm = snd_pcm_substream_chip(substream);
1771	close_device_check(cm, CM_OPEN_PLAYBACK);
1772	return 0;
1773}
1774
1775static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1776{
1777	struct cmipci *cm = snd_pcm_substream_chip(substream);
1778	close_device_check(cm, CM_OPEN_CAPTURE);
1779	return 0;
1780}
1781
1782static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1783{
1784	struct cmipci *cm = snd_pcm_substream_chip(substream);
1785	close_device_check(cm, CM_OPEN_PLAYBACK2);
1786	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1787	return 0;
1788}
1789
1790static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1791{
1792	struct cmipci *cm = snd_pcm_substream_chip(substream);
1793	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1794	return 0;
1795}
1796
1797static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1798{
1799	struct cmipci *cm = snd_pcm_substream_chip(substream);
1800	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1801	return 0;
1802}
1803
1804
1805/*
1806 */
1807
1808static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1809	.open =		snd_cmipci_playback_open,
1810	.close =	snd_cmipci_playback_close,
1811	.hw_free =	snd_cmipci_playback_hw_free,
1812	.prepare =	snd_cmipci_playback_prepare,
1813	.trigger =	snd_cmipci_playback_trigger,
1814	.pointer =	snd_cmipci_playback_pointer,
1815};
1816
1817static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1818	.open =		snd_cmipci_capture_open,
1819	.close =	snd_cmipci_capture_close,
1820	.prepare =	snd_cmipci_capture_prepare,
1821	.trigger =	snd_cmipci_capture_trigger,
1822	.pointer =	snd_cmipci_capture_pointer,
1823};
1824
1825static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1826	.open =		snd_cmipci_playback2_open,
1827	.close =	snd_cmipci_playback2_close,
1828	.hw_params =	snd_cmipci_playback2_hw_params,
1829	.hw_free =	snd_cmipci_playback2_hw_free,
1830	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1831	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1832	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1833};
1834
1835static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1836	.open =		snd_cmipci_playback_spdif_open,
1837	.close =	snd_cmipci_playback_spdif_close,
1838	.hw_free =	snd_cmipci_playback_hw_free,
1839	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1840	.trigger =	snd_cmipci_playback_trigger,
1841	.pointer =	snd_cmipci_playback_pointer,
1842};
1843
1844static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1845	.open =		snd_cmipci_capture_spdif_open,
1846	.close =	snd_cmipci_capture_spdif_close,
1847	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1848	.prepare =	snd_cmipci_capture_spdif_prepare,
1849	.trigger =	snd_cmipci_capture_trigger,
1850	.pointer =	snd_cmipci_capture_pointer,
1851};
1852
1853
1854/*
1855 */
1856
1857static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1858{
1859	struct snd_pcm *pcm;
1860	int err;
1861
1862	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1863	if (err < 0)
1864		return err;
1865
1866	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1867	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1868
1869	pcm->private_data = cm;
1870	pcm->info_flags = 0;
1871	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1872	cm->pcm = pcm;
1873
1874	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1875				       &cm->pci->dev, 64*1024, 128*1024);
1876
1877	return 0;
1878}
1879
1880static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1881{
1882	struct snd_pcm *pcm;
1883	int err;
1884
1885	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1886	if (err < 0)
1887		return err;
1888
1889	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1890
1891	pcm->private_data = cm;
1892	pcm->info_flags = 0;
1893	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1894	cm->pcm2 = pcm;
1895
1896	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1897				       &cm->pci->dev, 64*1024, 128*1024);
1898
1899	return 0;
1900}
1901
1902static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1903{
1904	struct snd_pcm *pcm;
1905	int err;
1906
1907	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1908	if (err < 0)
1909		return err;
1910
1911	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1912	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1913
1914	pcm->private_data = cm;
1915	pcm->info_flags = 0;
1916	strcpy(pcm->name, "C-Media PCI IEC958");
1917	cm->pcm_spdif = pcm;
1918
1919	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1920				       &cm->pci->dev, 64*1024, 128*1024);
1921
1922	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1923				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1924				     NULL);
1925	if (err < 0)
1926		return err;
1927
1928	return 0;
1929}
1930
1931/*
1932 * mixer interface:
1933 * - CM8338/8738 has a compatible mixer interface with SB16, but
1934 *   lack of some elements like tone control, i/o gain and AGC.
1935 * - Access to native registers:
1936 *   - A 3D switch
1937 *   - Output mute switches
1938 */
1939
1940static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1941{
1942	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1943	outb(data, s->iobase + CM_REG_SB16_DATA);
1944}
1945
1946static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1947{
1948	unsigned char v;
1949
1950	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1951	v = inb(s->iobase + CM_REG_SB16_DATA);
1952	return v;
1953}
1954
1955/*
1956 * general mixer element
1957 */
1958struct cmipci_sb_reg {
1959	unsigned int left_reg, right_reg;
1960	unsigned int left_shift, right_shift;
1961	unsigned int mask;
1962	unsigned int invert: 1;
1963	unsigned int stereo: 1;
1964};
1965
1966#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1967 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1968
1969#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1970{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1971  .info = snd_cmipci_info_volume, \
1972  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1973  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1974}
1975
1976#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1977#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1978#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1979#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1980
1981static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1982{
1983	r->left_reg = val & 0xff;
1984	r->right_reg = (val >> 8) & 0xff;
1985	r->left_shift = (val >> 16) & 0x07;
1986	r->right_shift = (val >> 19) & 0x07;
1987	r->invert = (val >> 22) & 1;
1988	r->stereo = (val >> 23) & 1;
1989	r->mask = (val >> 24) & 0xff;
1990}
1991
1992static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
1993				  struct snd_ctl_elem_info *uinfo)
1994{
1995	struct cmipci_sb_reg reg;
1996
1997	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1998	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1999	uinfo->count = reg.stereo + 1;
2000	uinfo->value.integer.min = 0;
2001	uinfo->value.integer.max = reg.mask;
2002	return 0;
2003}
2004 
2005static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2006				 struct snd_ctl_elem_value *ucontrol)
2007{
2008	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2009	struct cmipci_sb_reg reg;
2010	int val;
2011
2012	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2013	spin_lock_irq(&cm->reg_lock);
2014	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2015	if (reg.invert)
2016		val = reg.mask - val;
2017	ucontrol->value.integer.value[0] = val;
2018	if (reg.stereo) {
2019		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2020		if (reg.invert)
2021			val = reg.mask - val;
2022		ucontrol->value.integer.value[1] = val;
2023	}
2024	spin_unlock_irq(&cm->reg_lock);
2025	return 0;
2026}
2027
2028static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2029				 struct snd_ctl_elem_value *ucontrol)
2030{
2031	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2032	struct cmipci_sb_reg reg;
2033	int change;
2034	int left, right, oleft, oright;
2035
2036	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2037	left = ucontrol->value.integer.value[0] & reg.mask;
2038	if (reg.invert)
2039		left = reg.mask - left;
2040	left <<= reg.left_shift;
2041	if (reg.stereo) {
2042		right = ucontrol->value.integer.value[1] & reg.mask;
2043		if (reg.invert)
2044			right = reg.mask - right;
2045		right <<= reg.right_shift;
2046	} else
2047		right = 0;
2048	spin_lock_irq(&cm->reg_lock);
2049	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2050	left |= oleft & ~(reg.mask << reg.left_shift);
2051	change = left != oleft;
2052	if (reg.stereo) {
2053		if (reg.left_reg != reg.right_reg) {
2054			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2055			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2056		} else
2057			oright = left;
2058		right |= oright & ~(reg.mask << reg.right_shift);
2059		change |= right != oright;
2060		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2061	} else
2062		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2063	spin_unlock_irq(&cm->reg_lock);
2064	return change;
2065}
2066
2067/*
2068 * input route (left,right) -> (left,right)
2069 */
2070#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2071{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2072  .info = snd_cmipci_info_input_sw, \
2073  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2074  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2075}
2076
2077static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2078				    struct snd_ctl_elem_info *uinfo)
2079{
2080	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2081	uinfo->count = 4;
2082	uinfo->value.integer.min = 0;
2083	uinfo->value.integer.max = 1;
2084	return 0;
2085}
2086 
2087static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2088				   struct snd_ctl_elem_value *ucontrol)
2089{
2090	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2091	struct cmipci_sb_reg reg;
2092	int val1, val2;
2093
2094	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2095	spin_lock_irq(&cm->reg_lock);
2096	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2097	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2098	spin_unlock_irq(&cm->reg_lock);
2099	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2100	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2101	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2102	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2103	return 0;
2104}
2105
2106static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2107				   struct snd_ctl_elem_value *ucontrol)
2108{
2109	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2110	struct cmipci_sb_reg reg;
2111	int change;
2112	int val1, val2, oval1, oval2;
2113
2114	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2115	spin_lock_irq(&cm->reg_lock);
2116	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2117	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2118	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2119	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2120	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2121	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2122	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2123	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2124	change = val1 != oval1 || val2 != oval2;
2125	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2126	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2127	spin_unlock_irq(&cm->reg_lock);
2128	return change;
2129}
2130
2131/*
2132 * native mixer switches/volumes
2133 */
2134
2135#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2136{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2137  .info = snd_cmipci_info_native_mixer, \
2138  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2139  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2140}
2141
2142#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2143{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2144  .info = snd_cmipci_info_native_mixer, \
2145  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2146  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2147}
2148
2149#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2150{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2151  .info = snd_cmipci_info_native_mixer, \
2152  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2153  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2154}
2155
2156#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2157{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2158  .info = snd_cmipci_info_native_mixer, \
2159  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2160  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2161}
2162
2163static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2164					struct snd_ctl_elem_info *uinfo)
2165{
2166	struct cmipci_sb_reg reg;
2167
2168	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2169	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2170	uinfo->count = reg.stereo + 1;
2171	uinfo->value.integer.min = 0;
2172	uinfo->value.integer.max = reg.mask;
2173	return 0;
2174
2175}
2176
2177static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2178				       struct snd_ctl_elem_value *ucontrol)
2179{
2180	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2181	struct cmipci_sb_reg reg;
2182	unsigned char oreg, val;
2183
2184	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2185	spin_lock_irq(&cm->reg_lock);
2186	oreg = inb(cm->iobase + reg.left_reg);
2187	val = (oreg >> reg.left_shift) & reg.mask;
2188	if (reg.invert)
2189		val = reg.mask - val;
2190	ucontrol->value.integer.value[0] = val;
2191	if (reg.stereo) {
2192		val = (oreg >> reg.right_shift) & reg.mask;
2193		if (reg.invert)
2194			val = reg.mask - val;
2195		ucontrol->value.integer.value[1] = val;
2196	}
2197	spin_unlock_irq(&cm->reg_lock);
2198	return 0;
2199}
2200
2201static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2202				       struct snd_ctl_elem_value *ucontrol)
2203{
2204	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2205	struct cmipci_sb_reg reg;
2206	unsigned char oreg, nreg, val;
2207
2208	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2209	spin_lock_irq(&cm->reg_lock);
2210	oreg = inb(cm->iobase + reg.left_reg);
2211	val = ucontrol->value.integer.value[0] & reg.mask;
2212	if (reg.invert)
2213		val = reg.mask - val;
2214	nreg = oreg & ~(reg.mask << reg.left_shift);
2215	nreg |= (val << reg.left_shift);
2216	if (reg.stereo) {
2217		val = ucontrol->value.integer.value[1] & reg.mask;
2218		if (reg.invert)
2219			val = reg.mask - val;
2220		nreg &= ~(reg.mask << reg.right_shift);
2221		nreg |= (val << reg.right_shift);
2222	}
2223	outb(nreg, cm->iobase + reg.left_reg);
2224	spin_unlock_irq(&cm->reg_lock);
2225	return (nreg != oreg);
2226}
2227
2228/*
2229 * special case - check mixer sensitivity
2230 */
2231static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2232						 struct snd_ctl_elem_value *ucontrol)
2233{
2234	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2235	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2236}
2237
2238static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2239						 struct snd_ctl_elem_value *ucontrol)
2240{
2241	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2242	if (cm->mixer_insensitive) {
2243		/* ignored */
2244		return 0;
2245	}
2246	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2247}
2248
2249
2250static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2251	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2252	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2253	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2254	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2255	{ /* switch with sensitivity */
2256		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2257		.name = "PCM Playback Switch",
2258		.info = snd_cmipci_info_native_mixer,
2259		.get = snd_cmipci_get_native_mixer_sensitive,
2260		.put = snd_cmipci_put_native_mixer_sensitive,
2261		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2262	},
2263	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2264	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2265	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2266	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2267	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2268	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2269	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2270	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2271	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2272	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2273	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2274	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2275	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2276	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2277	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2278	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2279	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2280	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2281	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2282	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2283	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2284	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2285	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2286};
2287
2288/*
2289 * other switches
2290 */
2291
2292struct cmipci_switch_args {
2293	int reg;		/* register index */
2294	unsigned int mask;	/* mask bits */
2295	unsigned int mask_on;	/* mask bits to turn on */
2296	unsigned int is_byte: 1;		/* byte access? */
2297	unsigned int ac3_sensitive: 1;	/* access forbidden during
2298					 * non-audio operation?
2299					 */
2300};
2301
2302#define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2303
2304static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2305				   struct snd_ctl_elem_value *ucontrol,
2306				   struct cmipci_switch_args *args)
2307{
2308	unsigned int val;
2309	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2310
2311	spin_lock_irq(&cm->reg_lock);
2312	if (args->ac3_sensitive && cm->mixer_insensitive) {
2313		ucontrol->value.integer.value[0] = 0;
2314		spin_unlock_irq(&cm->reg_lock);
2315		return 0;
2316	}
2317	if (args->is_byte)
2318		val = inb(cm->iobase + args->reg);
2319	else
2320		val = snd_cmipci_read(cm, args->reg);
2321	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2322	spin_unlock_irq(&cm->reg_lock);
2323	return 0;
2324}
2325
2326static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2327				  struct snd_ctl_elem_value *ucontrol)
2328{
2329	struct cmipci_switch_args *args;
2330	args = (struct cmipci_switch_args *)kcontrol->private_value;
2331	if (snd_BUG_ON(!args))
2332		return -EINVAL;
2333	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2334}
2335
2336static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2337				   struct snd_ctl_elem_value *ucontrol,
2338				   struct cmipci_switch_args *args)
2339{
2340	unsigned int val;
2341	int change;
2342	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2343
2344	spin_lock_irq(&cm->reg_lock);
2345	if (args->ac3_sensitive && cm->mixer_insensitive) {
2346		/* ignored */
2347		spin_unlock_irq(&cm->reg_lock);
2348		return 0;
2349	}
2350	if (args->is_byte)
2351		val = inb(cm->iobase + args->reg);
2352	else
2353		val = snd_cmipci_read(cm, args->reg);
2354	change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2355			args->mask_on : (args->mask & ~args->mask_on));
2356	if (change) {
2357		val &= ~args->mask;
2358		if (ucontrol->value.integer.value[0])
2359			val |= args->mask_on;
2360		else
2361			val |= (args->mask & ~args->mask_on);
2362		if (args->is_byte)
2363			outb((unsigned char)val, cm->iobase + args->reg);
2364		else
2365			snd_cmipci_write(cm, args->reg, val);
2366	}
2367	spin_unlock_irq(&cm->reg_lock);
2368	return change;
2369}
2370
2371static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2372				  struct snd_ctl_elem_value *ucontrol)
2373{
2374	struct cmipci_switch_args *args;
2375	args = (struct cmipci_switch_args *)kcontrol->private_value;
2376	if (snd_BUG_ON(!args))
2377		return -EINVAL;
2378	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2379}
2380
2381#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2382static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2383  .reg = xreg, \
2384  .mask = xmask, \
2385  .mask_on = xmask_on, \
2386  .is_byte = xis_byte, \
2387  .ac3_sensitive = xac3, \
2388}
2389	
2390#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2391	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2392
2393#if 0 /* these will be controlled in pcm device */
2394DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2395DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2396#endif
2397DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2398DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2399DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2400DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2401DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2402DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2403DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2404DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2405// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2406DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2407DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2408/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2409DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2410DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2411#if CM_CH_PLAY == 1
2412DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2413#else
2414DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2415#endif
2416DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2417// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2418// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2419// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2420DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2421
2422#define DEFINE_SWITCH(sname, stype, sarg) \
2423{ .name = sname, \
2424  .iface = stype, \
2425  .info = snd_cmipci_uswitch_info, \
2426  .get = snd_cmipci_uswitch_get, \
2427  .put = snd_cmipci_uswitch_put, \
2428  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2429}
2430
2431#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2432#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2433
2434
2435/*
2436 * callbacks for spdif output switch
2437 * needs toggle two registers..
2438 */
2439static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2440					struct snd_ctl_elem_value *ucontrol)
2441{
2442	int changed;
2443	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2444	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2445	return changed;
2446}
2447
2448static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2449					struct snd_ctl_elem_value *ucontrol)
2450{
2451	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2452	int changed;
2453	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2454	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2455	if (changed) {
2456		if (ucontrol->value.integer.value[0]) {
2457			if (chip->spdif_playback_avail)
2458				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2459		} else {
2460			if (chip->spdif_playback_avail)
2461				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2462		}
2463	}
2464	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2465	return changed;
2466}
2467
2468
2469static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2470					struct snd_ctl_elem_info *uinfo)
2471{
2472	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2473	static const char *const texts[3] = {
2474		"Line-In", "Rear Output", "Bass Output"
2475	};
2476
2477	return snd_ctl_enum_info(uinfo, 1,
2478				 cm->chip_version >= 39 ? 3 : 2, texts);
2479}
2480
2481static inline unsigned int get_line_in_mode(struct cmipci *cm)
2482{
2483	unsigned int val;
2484	if (cm->chip_version >= 39) {
2485		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2486		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2487			return 2;
2488	}
2489	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2490	if (val & CM_REAR2LIN)
2491		return 1;
2492	return 0;
2493}
2494
2495static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2496				       struct snd_ctl_elem_value *ucontrol)
2497{
2498	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2499
2500	spin_lock_irq(&cm->reg_lock);
2501	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2502	spin_unlock_irq(&cm->reg_lock);
2503	return 0;
2504}
2505
2506static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2507				       struct snd_ctl_elem_value *ucontrol)
2508{
2509	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2510	int change;
2511
2512	spin_lock_irq(&cm->reg_lock);
2513	if (ucontrol->value.enumerated.item[0] == 2)
2514		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2515	else
2516		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2517	if (ucontrol->value.enumerated.item[0] == 1)
2518		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2519	else
2520		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2521	spin_unlock_irq(&cm->reg_lock);
2522	return change;
2523}
2524
2525static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2526				       struct snd_ctl_elem_info *uinfo)
2527{
2528	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2529
2530	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2531}
2532
2533static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2534				      struct snd_ctl_elem_value *ucontrol)
2535{
2536	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2537	/* same bit as spdi_phase */
2538	spin_lock_irq(&cm->reg_lock);
2539	ucontrol->value.enumerated.item[0] = 
2540		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2541	spin_unlock_irq(&cm->reg_lock);
2542	return 0;
2543}
2544
2545static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2546				      struct snd_ctl_elem_value *ucontrol)
2547{
2548	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2549	int change;
2550
2551	spin_lock_irq(&cm->reg_lock);
2552	if (ucontrol->value.enumerated.item[0])
2553		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2554	else
2555		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2556	spin_unlock_irq(&cm->reg_lock);
2557	return change;
2558}
2559
2560/* both for CM8338/8738 */
2561static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2562	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2563	{
2564		.name = "Line-In Mode",
2565		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2566		.info = snd_cmipci_line_in_mode_info,
2567		.get = snd_cmipci_line_in_mode_get,
2568		.put = snd_cmipci_line_in_mode_put,
2569	},
2570};
2571
2572/* for non-multichannel chips */
2573static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2574DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2575
2576/* only for CM8738 */
2577static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2578#if 0 /* controlled in pcm device */
2579	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2580	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2581	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2582#endif
2583	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2584	{ .name = "IEC958 Output Switch",
2585	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2586	  .info = snd_cmipci_uswitch_info,
2587	  .get = snd_cmipci_spdout_enable_get,
2588	  .put = snd_cmipci_spdout_enable_put,
2589	},
2590	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2591	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2592	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2593//	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2594	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2595	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2596};
2597
2598/* only for model 033/037 */
2599static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2600	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2601	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2602	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2603};
2604
2605/* only for model 039 or later */
2606static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2607	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2608	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2609	{
2610		.name = "Mic-In Mode",
2611		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2612		.info = snd_cmipci_mic_in_mode_info,
2613		.get = snd_cmipci_mic_in_mode_get,
2614		.put = snd_cmipci_mic_in_mode_put,
2615	}
2616};
2617
2618/* card control switches */
2619static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2620DEFINE_CARD_SWITCH("Modem", modem);
2621
2622
2623static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2624{
2625	struct snd_card *card;
2626	const struct snd_kcontrol_new *sw;
2627	struct snd_kcontrol *kctl;
2628	unsigned int idx;
2629	int err;
2630
2631	if (snd_BUG_ON(!cm || !cm->card))
2632		return -EINVAL;
2633
2634	card = cm->card;
2635
2636	strcpy(card->mixername, "CMedia PCI");
2637
2638	spin_lock_irq(&cm->reg_lock);
2639	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2640	spin_unlock_irq(&cm->reg_lock);
2641
2642	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2643		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2644			if (!strcmp(snd_cmipci_mixers[idx].name,
2645				"PCM Playback Volume"))
2646				continue;
2647		}
2648		err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
2649		if (err < 0)
2650			return err;
2651	}
2652
2653	/* mixer switches */
2654	sw = snd_cmipci_mixer_switches;
2655	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2656		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2657		if (err < 0)
2658			return err;
2659	}
2660	if (! cm->can_multi_ch) {
2661		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2662		if (err < 0)
2663			return err;
2664	}
2665	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2666	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2667		sw = snd_cmipci_8738_mixer_switches;
2668		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2669			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2670			if (err < 0)
2671				return err;
2672		}
2673		if (cm->can_ac3_hw) {
2674			kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
2675			kctl->id.device = pcm_spdif_device;
2676			err = snd_ctl_add(card, kctl);
2677			if (err < 0)
2678				return err;
2679			kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
2680			kctl->id.device = pcm_spdif_device;
2681			err = snd_ctl_add(card, kctl);
2682			if (err < 0)
2683				return err;
2684			kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
2685			kctl->id.device = pcm_spdif_device;
2686			err = snd_ctl_add(card, kctl);
2687			if (err < 0)
2688				return err;
2689		}
2690		if (cm->chip_version <= 37) {
2691			sw = snd_cmipci_old_mixer_switches;
2692			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2693				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2694				if (err < 0)
2695					return err;
2696			}
2697		}
2698	}
2699	if (cm->chip_version >= 39) {
2700		sw = snd_cmipci_extra_mixer_switches;
2701		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2702			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2703			if (err < 0)
2704				return err;
2705		}
2706	}
2707
2708	/* card switches */
2709	/*
2710	 * newer chips don't have the register bits to force modem link
2711	 * detection; the bit that was FLINKON now mutes CH1
2712	 */
2713	if (cm->chip_version < 39) {
2714		err = snd_ctl_add(cm->card,
2715				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2716		if (err < 0)
2717			return err;
2718	}
2719
2720	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2721		struct snd_kcontrol *ctl;
2722		ctl = snd_ctl_find_id_mixer(cm->card, cm_saved_mixer[idx].name);
2723		if (ctl)
2724			cm->mixer_res_ctl[idx] = ctl;
2725	}
2726
2727	return 0;
2728}
2729
2730
2731/*
2732 * proc interface
2733 */
2734
2735static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2736				 struct snd_info_buffer *buffer)
2737{
2738	struct cmipci *cm = entry->private_data;
2739	int i, v;
2740	
2741	snd_iprintf(buffer, "%s\n", cm->card->longname);
2742	for (i = 0; i < 0x94; i++) {
2743		if (i == 0x28)
2744			i = 0x90;
2745		v = inb(cm->iobase + i);
2746		if (i % 4 == 0)
2747			snd_iprintf(buffer, "\n%02x:", i);
2748		snd_iprintf(buffer, " %02x", v);
2749	}
2750	snd_iprintf(buffer, "\n");
2751}
2752
2753static void snd_cmipci_proc_init(struct cmipci *cm)
2754{
2755	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2756}
2757
2758static const struct pci_device_id snd_cmipci_ids[] = {
2759	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2760	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2761	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2762	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2763	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2764	{0,},
2765};
2766
2767
2768/*
2769 * check chip version and capabilities
2770 * driver name is modified according to the chip model
2771 */
2772static void query_chip(struct cmipci *cm)
2773{
2774	unsigned int detect;
2775
2776	/* check reg 0Ch, bit 24-31 */
2777	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2778	if (! detect) {
2779		/* check reg 08h, bit 24-28 */
2780		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2781		switch (detect) {
2782		case 0:
2783			cm->chip_version = 33;
2784			if (cm->do_soft_ac3)
2785				cm->can_ac3_sw = 1;
2786			else
2787				cm->can_ac3_hw = 1;
2788			break;
2789		case CM_CHIP_037:
2790			cm->chip_version = 37;
2791			cm->can_ac3_hw = 1;
2792			break;
2793		default:
2794			cm->chip_version = 39;
2795			cm->can_ac3_hw = 1;
2796			break;
2797		}
2798		cm->max_channels = 2;
2799	} else {
2800		if (detect & CM_CHIP_039) {
2801			cm->chip_version = 39;
2802			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2803				cm->max_channels = 6;
2804			else
2805				cm->max_channels = 4;
2806		} else if (detect & CM_CHIP_8768) {
2807			cm->chip_version = 68;
2808			cm->max_channels = 8;
2809			cm->can_96k = 1;
2810		} else {
2811			cm->chip_version = 55;
2812			cm->max_channels = 6;
2813			cm->can_96k = 1;
2814		}
2815		cm->can_ac3_hw = 1;
2816		cm->can_multi_ch = 1;
2817	}
2818}
2819
2820#ifdef SUPPORT_JOYSTICK
2821static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2822{
2823	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2824	struct gameport *gp;
2825	struct resource *r = NULL;
2826	int i, io_port = 0;
2827
2828	if (joystick_port[dev] == 0)
2829		return -ENODEV;
2830
2831	if (joystick_port[dev] == 1) { /* auto-detect */
2832		for (i = 0; ports[i]; i++) {
2833			io_port = ports[i];
2834			r = devm_request_region(&cm->pci->dev, io_port, 1,
2835						"CMIPCI gameport");
2836			if (r)
2837				break;
2838		}
2839	} else {
2840		io_port = joystick_port[dev];
2841		r = devm_request_region(&cm->pci->dev, io_port, 1,
2842					"CMIPCI gameport");
2843	}
2844
2845	if (!r) {
2846		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2847		return -EBUSY;
2848	}
2849
2850	cm->gameport = gp = gameport_allocate_port();
2851	if (!gp) {
2852		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2853		return -ENOMEM;
2854	}
2855	gameport_set_name(gp, "C-Media Gameport");
2856	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2857	gameport_set_dev_parent(gp, &cm->pci->dev);
2858	gp->io = io_port;
2859
2860	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2861
2862	gameport_register_port(cm->gameport);
2863
2864	return 0;
2865}
2866
2867static void snd_cmipci_free_gameport(struct cmipci *cm)
2868{
2869	if (cm->gameport) {
2870		gameport_unregister_port(cm->gameport);
2871		cm->gameport = NULL;
2872
2873		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2874	}
2875}
2876#else
2877static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2878static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2879#endif
2880
2881static void snd_cmipci_free(struct snd_card *card)
2882{
2883	struct cmipci *cm = card->private_data;
2884
2885	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2886	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2887	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2888	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2889	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2890	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2891	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2892
2893	/* reset mixer */
2894	snd_cmipci_mixer_write(cm, 0, 0);
2895
2896	snd_cmipci_free_gameport(cm);
2897}
2898
2899static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2900{
2901	long iosynth;
2902	unsigned int val;
2903	struct snd_opl3 *opl3;
2904	int err;
2905
2906	if (!fm_port)
2907		goto disable_fm;
2908
2909	if (cm->chip_version >= 39) {
2910		/* first try FM regs in PCI port range */
2911		iosynth = cm->iobase + CM_REG_FM_PCI;
2912		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2913				      OPL3_HW_OPL3, 1, &opl3);
2914	} else {
2915		err = -EIO;
2916	}
2917	if (err < 0) {
2918		/* then try legacy ports */
2919		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2920		iosynth = fm_port;
2921		switch (iosynth) {
2922		case 0x3E8: val |= CM_FMSEL_3E8; break;
2923		case 0x3E0: val |= CM_FMSEL_3E0; break;
2924		case 0x3C8: val |= CM_FMSEL_3C8; break;
2925		case 0x388: val |= CM_FMSEL_388; break;
2926		default:
2927			goto disable_fm;
2928		}
2929		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2930		/* enable FM */
2931		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2932
2933		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2934				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2935			dev_err(cm->card->dev,
2936				"no OPL device at %#lx, skipping...\n",
2937				iosynth);
2938			goto disable_fm;
2939		}
2940	}
2941	err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
2942	if (err < 0) {
2943		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2944		return err;
2945	}
2946	return 0;
2947
2948 disable_fm:
2949	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2950	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2951	return 0;
2952}
2953
2954static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2955			     int dev)
2956{
2957	struct cmipci *cm = card->private_data;
2958	int err;
2959	unsigned int val;
2960	long iomidi = 0;
2961	int integrated_midi = 0;
2962	char modelstr[16];
2963	int pcm_index, pcm_spdif_index;
2964	static const struct pci_device_id intel_82437vx[] = {
2965		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2966		{ },
2967	};
2968
2969	err = pcim_enable_device(pci);
2970	if (err < 0)
2971		return err;
2972
2973	spin_lock_init(&cm->reg_lock);
2974	mutex_init(&cm->open_mutex);
2975	cm->device = pci->device;
2976	cm->card = card;
2977	cm->pci = pci;
2978	cm->irq = -1;
2979	cm->channel[0].ch = 0;
2980	cm->channel[1].ch = 1;
2981	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2982
2983	err = pci_request_regions(pci, card->driver);
2984	if (err < 0)
2985		return err;
2986	cm->iobase = pci_resource_start(pci, 0);
2987
2988	if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt,
2989			     IRQF_SHARED, KBUILD_MODNAME, cm)) {
2990		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
2991		return -EBUSY;
2992	}
2993	cm->irq = pci->irq;
2994	card->sync_irq = cm->irq;
2995	card->private_free = snd_cmipci_free;
2996
2997	pci_set_master(cm->pci);
2998
2999	/*
3000	 * check chip version, max channels and capabilities
3001	 */
3002
3003	cm->chip_version = 0;
3004	cm->max_channels = 2;
3005	cm->do_soft_ac3 = soft_ac3[dev];
3006
3007	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3008	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3009		query_chip(cm);
3010	/* added -MCx suffix for chip supporting multi-channels */
3011	if (cm->can_multi_ch)
3012		sprintf(cm->card->driver + strlen(cm->card->driver),
3013			"-MC%d", cm->max_channels);
3014	else if (cm->can_ac3_sw)
3015		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3016
3017	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3018	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3019
3020#if CM_CH_PLAY == 1
3021	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3022#else
3023	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3024#endif
3025
3026	/* initialize codec registers */
3027	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3028	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3029	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3030	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3031	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3032	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3033	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3034
3035	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3036	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3037#if CM_CH_PLAY == 1
3038	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3039#else
3040	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3041#endif
3042	if (cm->chip_version) {
3043		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3044		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3045	}
3046	/* Set Bus Master Request */
3047	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3048
3049	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3050	switch (pci->device) {
3051	case PCI_DEVICE_ID_CMEDIA_CM8738:
3052	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3053		if (!pci_dev_present(intel_82437vx)) 
3054			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3055		break;
3056	default:
3057		break;
3058	}
3059
3060	if (cm->chip_version < 68) {
3061		val = pci->device < 0x110 ? 8338 : 8738;
3062	} else {
3063		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3064		case 0:
3065			val = 8769;
3066			break;
3067		case 2:
3068			val = 8762;
3069			break;
3070		default:
3071			switch ((pci->subsystem_vendor << 16) |
3072				pci->subsystem_device) {
3073			case 0x13f69761:
3074			case 0x584d3741:
3075			case 0x584d3751:
3076			case 0x584d3761:
3077			case 0x584d3771:
3078			case 0x72848384:
3079				val = 8770;
3080				break;
3081			default:
3082				val = 8768;
3083				break;
3084			}
3085		}
3086	}
3087	sprintf(card->shortname, "C-Media CMI%d", val);
3088	if (cm->chip_version < 68)
3089		scnprintf(modelstr, sizeof(modelstr),
3090			  " (model %d)", cm->chip_version);
3091	else
3092		modelstr[0] = '\0';
3093	scnprintf(card->longname, sizeof(card->longname),
3094		  "%s%s at %#lx, irq %i",
3095		  card->shortname, modelstr, cm->iobase, cm->irq);
3096
3097	if (cm->chip_version >= 39) {
3098		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3099		if (val != 0x00 && val != 0xff) {
3100			if (mpu_port[dev])
3101				iomidi = cm->iobase + CM_REG_MPU_PCI;
3102			integrated_midi = 1;
3103		}
3104	}
3105	if (!integrated_midi) {
3106		val = 0;
3107		iomidi = mpu_port[dev];
3108		switch (iomidi) {
3109		case 0x320: val = CM_VMPU_320; break;
3110		case 0x310: val = CM_VMPU_310; break;
3111		case 0x300: val = CM_VMPU_300; break;
3112		case 0x330: val = CM_VMPU_330; break;
3113		default:
3114			    iomidi = 0; break;
3115		}
3116		if (iomidi > 0) {
3117			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3118			/* enable UART */
3119			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3120			if (inb(iomidi + 1) == 0xff) {
3121				dev_err(cm->card->dev,
3122					"cannot enable MPU-401 port at %#lx\n",
3123					iomidi);
3124				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3125						     CM_UART_EN);
3126				iomidi = 0;
3127			}
3128		}
3129	}
3130
3131	if (cm->chip_version < 68) {
3132		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3133		if (err < 0)
3134			return err;
3135	}
3136
3137	/* reset mixer */
3138	snd_cmipci_mixer_write(cm, 0, 0);
3139
3140	snd_cmipci_proc_init(cm);
3141
3142	/* create pcm devices */
3143	pcm_index = pcm_spdif_index = 0;
3144	err = snd_cmipci_pcm_new(cm, pcm_index);
3145	if (err < 0)
3146		return err;
3147	pcm_index++;
3148	err = snd_cmipci_pcm2_new(cm, pcm_index);
3149	if (err < 0)
3150		return err;
3151	pcm_index++;
3152	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3153		pcm_spdif_index = pcm_index;
3154		err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
3155		if (err < 0)
3156			return err;
3157	}
3158
3159	/* create mixer interface & switches */
3160	err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
3161	if (err < 0)
3162		return err;
3163
3164	if (iomidi > 0) {
3165		err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3166					  iomidi,
3167					  (integrated_midi ?
3168					   MPU401_INFO_INTEGRATED : 0) |
3169					  MPU401_INFO_IRQ_HOOK,
3170					  -1, &cm->rmidi);
3171		if (err < 0)
3172			dev_err(cm->card->dev,
3173				"no UART401 device at 0x%lx\n", iomidi);
3174	}
3175
3176#ifdef USE_VAR48KRATE
3177	for (val = 0; val < ARRAY_SIZE(rates); val++)
3178		snd_cmipci_set_pll(cm, rates[val], val);
3179
3180	/*
3181	 * (Re-)Enable external switch spdo_48k
3182	 */
3183	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3184#endif /* USE_VAR48KRATE */
3185
3186	if (snd_cmipci_create_gameport(cm, dev) < 0)
3187		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3188
3189	return 0;
3190}
3191
3192/*
3193 */
3194
3195MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3196
3197static int snd_cmipci_probe(struct pci_dev *pci,
3198			    const struct pci_device_id *pci_id)
3199{
3200	static int dev;
3201	struct snd_card *card;
3202	int err;
3203
3204	if (dev >= SNDRV_CARDS)
3205		return -ENODEV;
3206	if (! enable[dev]) {
3207		dev++;
3208		return -ENOENT;
3209	}
3210
3211	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3212				sizeof(struct cmipci), &card);
3213	if (err < 0)
3214		return err;
3215	
3216	switch (pci->device) {
3217	case PCI_DEVICE_ID_CMEDIA_CM8738:
3218	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3219		strcpy(card->driver, "CMI8738");
3220		break;
3221	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3222	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3223		strcpy(card->driver, "CMI8338");
3224		break;
3225	default:
3226		strcpy(card->driver, "CMIPCI");
3227		break;
3228	}
3229
3230	err = snd_cmipci_create(card, pci, dev);
3231	if (err < 0)
3232		goto error;
3233
3234	err = snd_card_register(card);
3235	if (err < 0)
3236		goto error;
3237
3238	pci_set_drvdata(pci, card);
3239	dev++;
3240	return 0;
3241
3242 error:
3243	snd_card_free(card);
3244	return err;
3245}
3246
 
3247/*
3248 * power management
3249 */
3250static const unsigned char saved_regs[] = {
3251	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3252	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3253	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3254	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3255	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3256};
3257
3258static const unsigned char saved_mixers[] = {
3259	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3260	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3261	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3262	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3263	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3264	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3265	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3266	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3267};
3268
3269static int snd_cmipci_suspend(struct device *dev)
3270{
3271	struct snd_card *card = dev_get_drvdata(dev);
3272	struct cmipci *cm = card->private_data;
3273	int i;
3274
3275	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3276	
3277	/* save registers */
3278	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3279		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3280	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3281		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3282
3283	/* disable ints */
3284	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3285	return 0;
3286}
3287
3288static int snd_cmipci_resume(struct device *dev)
3289{
3290	struct snd_card *card = dev_get_drvdata(dev);
3291	struct cmipci *cm = card->private_data;
3292	int i;
3293
3294	/* reset / initialize to a sane state */
3295	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3296	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3297	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3298	snd_cmipci_mixer_write(cm, 0, 0);
3299
3300	/* restore registers */
3301	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3302		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3303	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3304		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3305
3306	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3307	return 0;
3308}
3309
3310static DEFINE_SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
 
 
 
 
3311
3312static struct pci_driver cmipci_driver = {
3313	.name = KBUILD_MODNAME,
3314	.id_table = snd_cmipci_ids,
3315	.probe = snd_cmipci_probe,
3316	.driver = {
3317		.pm = &snd_cmipci_pm,
3318	},
3319};
3320	
3321module_pci_driver(cmipci_driver);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
   4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
   5 */
   6 
   7/* Does not work. Warning may block system in capture mode */
   8/* #define USE_VAR48KRATE */
   9
  10#include <linux/io.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/init.h>
  14#include <linux/pci.h>
  15#include <linux/slab.h>
  16#include <linux/gameport.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <sound/core.h>
  20#include <sound/info.h>
  21#include <sound/control.h>
  22#include <sound/pcm.h>
  23#include <sound/rawmidi.h>
  24#include <sound/mpu401.h>
  25#include <sound/opl3.h>
  26#include <sound/sb.h>
  27#include <sound/asoundef.h>
  28#include <sound/initval.h>
  29
  30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
  31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
  32MODULE_LICENSE("GPL");
  33
  34#if IS_REACHABLE(CONFIG_GAMEPORT)
  35#define SUPPORT_JOYSTICK 1
  36#endif
  37
  38static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
  39static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
  40static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
  41static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
  42static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  43static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  44#ifdef SUPPORT_JOYSTICK
  45static int joystick_port[SNDRV_CARDS];
  46#endif
  47
  48module_param_array(index, int, NULL, 0444);
  49MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
  50module_param_array(id, charp, NULL, 0444);
  51MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
  52module_param_array(enable, bool, NULL, 0444);
  53MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
  54module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
  55MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
  56module_param_hw_array(fm_port, long, ioport, NULL, 0444);
  57MODULE_PARM_DESC(fm_port, "FM port.");
  58module_param_array(soft_ac3, bool, NULL, 0444);
  59MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
  60#ifdef SUPPORT_JOYSTICK
  61module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
  62MODULE_PARM_DESC(joystick_port, "Joystick port address.");
  63#endif
  64
  65/*
  66 * CM8x38 registers definition
  67 */
  68
  69#define CM_REG_FUNCTRL0		0x00
  70#define CM_RST_CH1		0x00080000
  71#define CM_RST_CH0		0x00040000
  72#define CM_CHEN1		0x00020000	/* ch1: enable */
  73#define CM_CHEN0		0x00010000	/* ch0: enable */
  74#define CM_PAUSE1		0x00000008	/* ch1: pause */
  75#define CM_PAUSE0		0x00000004	/* ch0: pause */
  76#define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
  77#define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
  78
  79#define CM_REG_FUNCTRL1		0x04
  80#define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
  81#define CM_DSFC_SHIFT		13
  82#define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
  83#define CM_ASFC_SHIFT		10
  84#define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
  85#define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
  86#define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
  87#define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
  88#define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
  89#define CM_BREQ			0x00000010	/* bus master enabled */
  90#define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
  91#define CM_UART_EN		0x00000004	/* legacy UART */
  92#define CM_JYSTK_EN		0x00000002	/* legacy joystick */
  93#define CM_ZVPORT		0x00000001	/* ZVPORT */
  94
  95#define CM_REG_CHFORMAT		0x08
  96
  97#define CM_CHB3D5C		0x80000000	/* 5,6 channels */
  98#define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
  99#define CM_CHB3D		0x20000000	/* 4 channels */
 100
 101#define CM_CHIP_MASK1		0x1f000000
 102#define CM_CHIP_037		0x01000000
 103#define CM_SETLAT48		0x00800000	/* set latency timer 48h */
 104#define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
 105#define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
 106#define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
 107#define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
 108#define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
 109/* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
 110
 111#define CM_ADCBITLEN_MASK	0x0000C000	
 112#define CM_ADCBITLEN_16		0x00000000
 113#define CM_ADCBITLEN_15		0x00004000
 114#define CM_ADCBITLEN_14		0x00008000
 115#define CM_ADCBITLEN_13		0x0000C000
 116
 117#define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
 118#define CM_ADCDACLEN_060	0x00000000
 119#define CM_ADCDACLEN_066	0x00001000
 120#define CM_ADCDACLEN_130	0x00002000
 121#define CM_ADCDACLEN_280	0x00003000
 122
 123#define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
 124#define CM_ADCDLEN_ORIGINAL	0x00000000
 125#define CM_ADCDLEN_EXTRA	0x00001000
 126#define CM_ADCDLEN_24K		0x00002000
 127#define CM_ADCDLEN_WEIGHT	0x00003000
 128
 129#define CM_CH1_SRATE_176K	0x00000800
 130#define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
 131#define CM_CH1_SRATE_88K	0x00000400
 132#define CM_CH0_SRATE_176K	0x00000200
 133#define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
 134#define CM_CH0_SRATE_88K	0x00000100
 135#define CM_CH0_SRATE_128K	0x00000300
 136#define CM_CH0_SRATE_MASK	0x00000300
 137
 138#define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
 139#define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
 140#define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
 141#define CM_SPDLOCKED		0x00000010
 142
 143#define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
 144#define CM_CH1FMT_SHIFT		2
 145#define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
 146#define CM_CH0FMT_SHIFT		0
 147
 148#define CM_REG_INT_HLDCLR	0x0C
 149#define CM_CHIP_MASK2		0xff000000
 150#define CM_CHIP_8768		0x20000000
 151#define CM_CHIP_055		0x08000000
 152#define CM_CHIP_039		0x04000000
 153#define CM_CHIP_039_6CH		0x01000000
 154#define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
 155#define CM_TDMA_INT_EN		0x00040000
 156#define CM_CH1_INT_EN		0x00020000
 157#define CM_CH0_INT_EN		0x00010000
 158
 159#define CM_REG_INT_STATUS	0x10
 160#define CM_INTR			0x80000000
 161#define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
 162#define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
 163#define CM_UARTINT		0x00010000
 164#define CM_LTDMAINT		0x00008000
 165#define CM_HTDMAINT		0x00004000
 166#define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
 167#define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
 168#define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
 169#define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
 170#define CM_CH1BUSY		0x00000008
 171#define CM_CH0BUSY		0x00000004
 172#define CM_CHINT1		0x00000002
 173#define CM_CHINT0		0x00000001
 174
 175#define CM_REG_LEGACY_CTRL	0x14
 176#define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
 177#define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
 178#define CM_VMPU_330		0x00000000
 179#define CM_VMPU_320		0x20000000
 180#define CM_VMPU_310		0x40000000
 181#define CM_VMPU_300		0x60000000
 182#define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
 183#define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
 184#define CM_VSBSEL_220		0x00000000
 185#define CM_VSBSEL_240		0x04000000
 186#define CM_VSBSEL_260		0x08000000
 187#define CM_VSBSEL_280		0x0C000000
 188#define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
 189#define CM_FMSEL_388		0x00000000
 190#define CM_FMSEL_3C8		0x01000000
 191#define CM_FMSEL_3E0		0x02000000
 192#define CM_FMSEL_3E8		0x03000000
 193#define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
 194#define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
 195#define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
 196#define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
 197#define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
 198#define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
 199#define CM_C_EECS		0x00040000
 200#define CM_C_EEDI46		0x00020000
 201#define CM_C_EECK46		0x00010000
 202#define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
 203#define CM_CENTR2LIN		0x00004000	/* line-in as center out */
 204#define CM_BASE2LIN		0x00002000	/* line-in as bass out */
 205#define CM_EXBASEN		0x00001000	/* external bass input enable */
 206
 207#define CM_REG_MISC_CTRL	0x18
 208#define CM_PWD			0x80000000	/* power down */
 209#define CM_RESET		0x40000000
 210#define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
 211#define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
 212#define CM_TXVX			0x08000000	/* model 037? */
 213#define CM_N4SPK3D		0x04000000	/* copy front to rear */
 214#define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
 215#define CM_SPDIF48K		0x01000000	/* write */
 216#define CM_SPATUS48K		0x01000000	/* read */
 217#define CM_ENDBDAC		0x00800000	/* enable double dac */
 218#define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
 219#define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
 220#define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
 221#define CM_FM_EN		0x00080000	/* enable legacy FM */
 222#define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
 223#define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
 224#define CM_VIDWPDSB		0x00010000	/* model 037? */
 225#define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
 226#define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
 227#define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
 228#define CM_VIDWPPRT		0x00002000	/* model 037? */
 229#define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
 230#define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
 231#define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
 232#define CM_ENCENTER		0x00000080
 233#define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
 234#define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
 235#define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
 236#define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
 237#define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
 238#define CM_UPDDMA_2048		0x00000000
 239#define CM_UPDDMA_1024		0x00000004
 240#define CM_UPDDMA_512		0x00000008
 241#define CM_UPDDMA_256		0x0000000C		
 242#define CM_TWAIT_MASK		0x00000003	/* model 037 */
 243#define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
 244#define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
 245
 246#define CM_REG_TDMA_POSITION	0x1C
 247#define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
 248#define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
 249
 250	/* byte */
 251#define CM_REG_MIXER0		0x20
 252#define CM_REG_SBVR		0x20		/* write: sb16 version */
 253#define CM_REG_DEV		0x20		/* read: hardware device version */
 254
 255#define CM_REG_MIXER21		0x21
 256#define CM_UNKNOWN_21_MASK	0x78		/* ? */
 257#define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
 258#define CM_PROINV		0x02		/* SBPro left/right channel switching */
 259#define CM_X_SB16		0x01		/* SB16 compatible */
 260
 261#define CM_REG_SB16_DATA	0x22
 262#define CM_REG_SB16_ADDR	0x23
 263
 264#define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
 265#define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
 266#define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
 267#define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
 268
 269#define CM_REG_MIXER1		0x24
 270#define CM_FMMUTE		0x80	/* mute FM */
 271#define CM_FMMUTE_SHIFT		7
 272#define CM_WSMUTE		0x40	/* mute PCM */
 273#define CM_WSMUTE_SHIFT		6
 274#define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
 275#define CM_REAR2LIN_SHIFT	5
 276#define CM_REAR2FRONT		0x10	/* exchange rear/front */
 277#define CM_REAR2FRONT_SHIFT	4
 278#define CM_WAVEINL		0x08	/* digital wave rec. left chan */
 279#define CM_WAVEINL_SHIFT	3
 280#define CM_WAVEINR		0x04	/* digical wave rec. right */
 281#define CM_WAVEINR_SHIFT	2
 282#define CM_X3DEN		0x02	/* 3D surround enable */
 283#define CM_X3DEN_SHIFT		1
 284#define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
 285#define CM_CDPLAY_SHIFT		0
 286
 287#define CM_REG_MIXER2		0x25
 288#define CM_RAUXREN		0x80	/* AUX right capture */
 289#define CM_RAUXREN_SHIFT	7
 290#define CM_RAUXLEN		0x40	/* AUX left capture */
 291#define CM_RAUXLEN_SHIFT	6
 292#define CM_VAUXRM		0x20	/* AUX right mute */
 293#define CM_VAUXRM_SHIFT		5
 294#define CM_VAUXLM		0x10	/* AUX left mute */
 295#define CM_VAUXLM_SHIFT		4
 296#define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
 297#define CM_VADMIC_SHIFT		1
 298#define CM_MICGAINZ		0x01	/* mic boost */
 299#define CM_MICGAINZ_SHIFT	0
 300
 301#define CM_REG_AUX_VOL		0x26
 302#define CM_VAUXL_MASK		0xf0
 303#define CM_VAUXR_MASK		0x0f
 304
 305#define CM_REG_MISC		0x27
 306#define CM_UNKNOWN_27_MASK	0xd8	/* ? */
 307#define CM_XGPO1		0x20
 308// #define CM_XGPBIO		0x04
 309#define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
 310#define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
 311#define CM_SPDVALID		0x02	/* spdif input valid check */
 312#define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
 313
 314#define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
 315/*
 316 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 317 * or identical with AC97 codec?
 318 */
 319#define CM_REG_EXTERN_CODEC	CM_REG_AC97
 320
 321/*
 322 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 323 */
 324#define CM_REG_MPU_PCI		0x40
 325
 326/*
 327 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 328 */
 329#define CM_REG_FM_PCI		0x50
 330
 331/*
 332 * access from SB-mixer port
 333 */
 334#define CM_REG_EXTENT_IND	0xf0
 335#define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
 336#define CM_VPHONE_SHIFT		5
 337#define CM_VPHOM		0x10	/* Phone mute control */
 338#define CM_VSPKM		0x08	/* Speaker mute control, default high */
 339#define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
 340#define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
 341#define CM_VADMIC3		0x01	/* Mic record boost */
 342
 343/*
 344 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 345 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 346 * unit (readonly?).
 347 */
 348#define CM_REG_PLL		0xf8
 349
 350/*
 351 * extended registers
 352 */
 353#define CM_REG_CH0_FRAME1	0x80	/* write: base address */
 354#define CM_REG_CH0_FRAME2	0x84	/* read: current address */
 355#define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
 356#define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
 357
 358#define CM_REG_EXT_MISC		0x90
 359#define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
 360#define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
 361#define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
 362#define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
 363#define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
 364#define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
 365#define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
 366#define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
 367
 368/*
 369 * size of i/o region
 370 */
 371#define CM_EXTENT_CODEC	  0x100
 372#define CM_EXTENT_MIDI	  0x2
 373#define CM_EXTENT_SYNTH	  0x4
 374
 375
 376/*
 377 * channels for playback / capture
 378 */
 379#define CM_CH_PLAY	0
 380#define CM_CH_CAPT	1
 381
 382/*
 383 * flags to check device open/close
 384 */
 385#define CM_OPEN_NONE	0
 386#define CM_OPEN_CH_MASK	0x01
 387#define CM_OPEN_DAC	0x10
 388#define CM_OPEN_ADC	0x20
 389#define CM_OPEN_SPDIF	0x40
 390#define CM_OPEN_MCHAN	0x80
 391#define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
 392#define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
 393#define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
 394#define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
 395#define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
 396#define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
 397
 398
 399#if CM_CH_PLAY == 1
 400#define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
 401#define CM_PLAYBACK_SPDF	CM_SPDF_1
 402#define CM_CAPTURE_SPDF		CM_SPDF_0
 403#else
 404#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
 405#define CM_PLAYBACK_SPDF	CM_SPDF_0
 406#define CM_CAPTURE_SPDF		CM_SPDF_1
 407#endif
 408
 409
 410/*
 411 * driver data
 412 */
 413
 414struct cmipci_pcm {
 415	struct snd_pcm_substream *substream;
 416	u8 running;		/* dac/adc running? */
 417	u8 fmt;			/* format bits */
 418	u8 is_dac;
 419	u8 needs_silencing;
 420	unsigned int dma_size;	/* in frames */
 421	unsigned int shift;
 422	unsigned int ch;	/* channel (0/1) */
 423	unsigned int offset;	/* physical address of the buffer */
 424};
 425
 426/* mixer elements toggled/resumed during ac3 playback */
 427struct cmipci_mixer_auto_switches {
 428	const char *name;	/* switch to toggle */
 429	int toggle_on;		/* value to change when ac3 mode */
 430};
 431static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
 432	{"PCM Playback Switch", 0},
 433	{"IEC958 Output Switch", 1},
 434	{"IEC958 Mix Analog", 0},
 435	// {"IEC958 Out To DAC", 1}, // no longer used
 436	{"IEC958 Loop", 0},
 437};
 438#define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
 439
 440struct cmipci {
 441	struct snd_card *card;
 442
 443	struct pci_dev *pci;
 444	unsigned int device;	/* device ID */
 445	int irq;
 446
 447	unsigned long iobase;
 448	unsigned int ctrl;	/* FUNCTRL0 current value */
 449
 450	struct snd_pcm *pcm;		/* DAC/ADC PCM */
 451	struct snd_pcm *pcm2;	/* 2nd DAC */
 452	struct snd_pcm *pcm_spdif;	/* SPDIF */
 453
 454	int chip_version;
 455	int max_channels;
 456	unsigned int can_ac3_sw: 1;
 457	unsigned int can_ac3_hw: 1;
 458	unsigned int can_multi_ch: 1;
 459	unsigned int can_96k: 1;	/* samplerate above 48k */
 460	unsigned int do_soft_ac3: 1;
 461
 462	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
 463	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
 464	int spdif_counter;	/* for software AC3 */
 465
 466	unsigned int dig_status;
 467	unsigned int dig_pcm_status;
 468
 469	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
 470
 471	int opened[2];	/* open mode */
 472	struct mutex open_mutex;
 473
 474	unsigned int mixer_insensitive: 1;
 475	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
 476	int mixer_res_status[CM_SAVED_MIXERS];
 477
 478	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
 479
 480	/* external MIDI */
 481	struct snd_rawmidi *rmidi;
 482
 483#ifdef SUPPORT_JOYSTICK
 484	struct gameport *gameport;
 485#endif
 486
 487	spinlock_t reg_lock;
 488
 489#ifdef CONFIG_PM_SLEEP
 490	unsigned int saved_regs[0x20];
 491	unsigned char saved_mixers[0x20];
 492#endif
 493};
 494
 495
 496/* read/write operations for dword register */
 497static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
 498{
 499	outl(data, cm->iobase + cmd);
 500}
 501
 502static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
 503{
 504	return inl(cm->iobase + cmd);
 505}
 506
 507/* read/write operations for word register */
 508static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
 509{
 510	outw(data, cm->iobase + cmd);
 511}
 512
 513static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
 514{
 515	return inw(cm->iobase + cmd);
 516}
 517
 518/* read/write operations for byte register */
 519static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
 520{
 521	outb(data, cm->iobase + cmd);
 522}
 523
 524static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
 525{
 526	return inb(cm->iobase + cmd);
 527}
 528
 529/* bit operations for dword register */
 530static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 531{
 532	unsigned int val, oval;
 533	val = oval = inl(cm->iobase + cmd);
 534	val |= flag;
 535	if (val == oval)
 536		return 0;
 537	outl(val, cm->iobase + cmd);
 538	return 1;
 539}
 540
 541static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 542{
 543	unsigned int val, oval;
 544	val = oval = inl(cm->iobase + cmd);
 545	val &= ~flag;
 546	if (val == oval)
 547		return 0;
 548	outl(val, cm->iobase + cmd);
 549	return 1;
 550}
 551
 552/* bit operations for byte register */
 553static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 554{
 555	unsigned char val, oval;
 556	val = oval = inb(cm->iobase + cmd);
 557	val |= flag;
 558	if (val == oval)
 559		return 0;
 560	outb(val, cm->iobase + cmd);
 561	return 1;
 562}
 563
 564static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 565{
 566	unsigned char val, oval;
 567	val = oval = inb(cm->iobase + cmd);
 568	val &= ~flag;
 569	if (val == oval)
 570		return 0;
 571	outb(val, cm->iobase + cmd);
 572	return 1;
 573}
 574
 575
 576/*
 577 * PCM interface
 578 */
 579
 580/*
 581 * calculate frequency
 582 */
 583
 584static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
 585
 586static unsigned int snd_cmipci_rate_freq(unsigned int rate)
 587{
 588	unsigned int i;
 589
 590	for (i = 0; i < ARRAY_SIZE(rates); i++) {
 591		if (rates[i] == rate)
 592			return i;
 593	}
 594	snd_BUG();
 595	return 0;
 596}
 597
 598#ifdef USE_VAR48KRATE
 599/*
 600 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 601 * does it this way .. maybe not.  Never get any information from C-Media about
 602 * that <werner@suse.de>.
 603 */
 604static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
 605{
 606	unsigned int delta, tolerance;
 607	int xm, xn, xr;
 608
 609	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
 610		rate <<= 1;
 611	*n = -1;
 612	if (*r > 0xff)
 613		goto out;
 614	tolerance = rate*CM_TOLERANCE_RATE;
 615
 616	for (xn = (1+2); xn < (0x1f+2); xn++) {
 617		for (xm = (1+2); xm < (0xff+2); xm++) {
 618			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
 619
 620			if (xr < rate)
 621				delta = rate - xr;
 622			else
 623				delta = xr - rate;
 624
 625			/*
 626			 * If we found one, remember this,
 627			 * and try to find a closer one
 628			 */
 629			if (delta < tolerance) {
 630				tolerance = delta;
 631				*m = xm - 2;
 632				*n = xn - 2;
 633			}
 634		}
 635	}
 636out:
 637	return (*n > -1);
 638}
 639
 640/*
 641 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
 642 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
 643 * at the register CM_REG_FUNCTRL1 (0x04).
 644 * Problem: other ways are also possible (any information about that?)
 645 */
 646static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
 647{
 648	unsigned int reg = CM_REG_PLL + slot;
 649	/*
 650	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
 651	 * for DSFC/ASFC (000 up to 111).
 652	 */
 653
 654	/* FIXME: Init (Do we've to set an other register first before programming?) */
 655
 656	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
 657	snd_cmipci_write_b(cm, reg, rate>>8);
 658	snd_cmipci_write_b(cm, reg, rate&0xff);
 659
 660	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
 661}
 662#endif /* USE_VAR48KRATE */
 663
 664static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
 665					  struct snd_pcm_hw_params *hw_params)
 666{
 667	struct cmipci *cm = snd_pcm_substream_chip(substream);
 668	if (params_channels(hw_params) > 2) {
 669		mutex_lock(&cm->open_mutex);
 670		if (cm->opened[CM_CH_PLAY]) {
 671			mutex_unlock(&cm->open_mutex);
 672			return -EBUSY;
 673		}
 674		/* reserve the channel A */
 675		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
 676		mutex_unlock(&cm->open_mutex);
 677	}
 678	return 0;
 679}
 680
 681static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
 682{
 683	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
 684	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 685	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 686	udelay(10);
 687}
 688
 689
 690/*
 691 */
 692
 693static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
 694static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
 695	.count = 3,
 696	.list = hw_channels,
 697	.mask = 0,
 698};
 699static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
 700	.count = 4,
 701	.list = hw_channels,
 702	.mask = 0,
 703};
 704static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
 705	.count = 5,
 706	.list = hw_channels,
 707	.mask = 0,
 708};
 709
 710static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
 711{
 712	if (channels > 2) {
 713		if (!cm->can_multi_ch || !rec->ch)
 714			return -EINVAL;
 715		if (rec->fmt != 0x03) /* stereo 16bit only */
 716			return -EINVAL;
 717	}
 718
 719	if (cm->can_multi_ch) {
 720		spin_lock_irq(&cm->reg_lock);
 721		if (channels > 2) {
 722			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 723			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 724		} else {
 725			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 726			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 727		}
 728		if (channels == 8)
 729			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 730		else
 731			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 732		if (channels == 6) {
 733			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 734			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 735		} else {
 736			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 737			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 738		}
 739		if (channels == 4)
 740			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 741		else
 742			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 743		spin_unlock_irq(&cm->reg_lock);
 744	}
 745	return 0;
 746}
 747
 748
 749/*
 750 * prepare playback/capture channel
 751 * channel to be used must have been set in rec->ch.
 752 */
 753static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
 754				 struct snd_pcm_substream *substream)
 755{
 756	unsigned int reg, freq, freq_ext, val;
 757	unsigned int period_size;
 758	struct snd_pcm_runtime *runtime = substream->runtime;
 759
 760	rec->fmt = 0;
 761	rec->shift = 0;
 762	if (snd_pcm_format_width(runtime->format) >= 16) {
 763		rec->fmt |= 0x02;
 764		if (snd_pcm_format_width(runtime->format) > 16)
 765			rec->shift++; /* 24/32bit */
 766	}
 767	if (runtime->channels > 1)
 768		rec->fmt |= 0x01;
 769	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
 770		dev_dbg(cm->card->dev, "cannot set dac channels\n");
 771		return -EINVAL;
 772	}
 773
 774	rec->offset = runtime->dma_addr;
 775	/* buffer and period sizes in frame */
 776	rec->dma_size = runtime->buffer_size << rec->shift;
 777	period_size = runtime->period_size << rec->shift;
 778	if (runtime->channels > 2) {
 779		/* multi-channels */
 780		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
 781		period_size = (period_size * runtime->channels) / 2;
 782	}
 783
 784	spin_lock_irq(&cm->reg_lock);
 785
 786	/* set buffer address */
 787	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 788	snd_cmipci_write(cm, reg, rec->offset);
 789	/* program sample counts */
 790	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 791	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
 792	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
 793
 794	/* set adc/dac flag */
 795	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
 796	if (rec->is_dac)
 797		cm->ctrl &= ~val;
 798	else
 799		cm->ctrl |= val;
 800	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 801	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
 802
 803	/* set sample rate */
 804	freq = 0;
 805	freq_ext = 0;
 806	if (runtime->rate > 48000)
 807		switch (runtime->rate) {
 808		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
 809		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
 810		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
 811		default:     snd_BUG(); break;
 812		}
 813	else
 814		freq = snd_cmipci_rate_freq(runtime->rate);
 815	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
 816	if (rec->ch) {
 817		val &= ~CM_DSFC_MASK;
 818		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
 819	} else {
 820		val &= ~CM_ASFC_MASK;
 821		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
 822	}
 823	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
 824	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
 825
 826	/* set format */
 827	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
 828	if (rec->ch) {
 829		val &= ~CM_CH1FMT_MASK;
 830		val |= rec->fmt << CM_CH1FMT_SHIFT;
 831	} else {
 832		val &= ~CM_CH0FMT_MASK;
 833		val |= rec->fmt << CM_CH0FMT_SHIFT;
 834	}
 835	if (cm->can_96k) {
 836		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
 837		val |= freq_ext << (rec->ch * 2);
 838	}
 839	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
 840	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
 841
 842	if (!rec->is_dac && cm->chip_version) {
 843		if (runtime->rate > 44100)
 844			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 845		else
 846			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 847	}
 848
 849	rec->running = 0;
 850	spin_unlock_irq(&cm->reg_lock);
 851
 852	return 0;
 853}
 854
 855/*
 856 * PCM trigger/stop
 857 */
 858static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
 859				  int cmd)
 860{
 861	unsigned int inthld, chen, reset, pause;
 862	int result = 0;
 863
 864	inthld = CM_CH0_INT_EN << rec->ch;
 865	chen = CM_CHEN0 << rec->ch;
 866	reset = CM_RST_CH0 << rec->ch;
 867	pause = CM_PAUSE0 << rec->ch;
 868
 869	spin_lock(&cm->reg_lock);
 870	switch (cmd) {
 871	case SNDRV_PCM_TRIGGER_START:
 872		rec->running = 1;
 873		/* set interrupt */
 874		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
 875		cm->ctrl |= chen;
 876		/* enable channel */
 877		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 878		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
 879		break;
 880	case SNDRV_PCM_TRIGGER_STOP:
 881		rec->running = 0;
 882		/* disable interrupt */
 883		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
 884		/* reset */
 885		cm->ctrl &= ~chen;
 886		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 887		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 888		rec->needs_silencing = rec->is_dac;
 889		break;
 890	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 891	case SNDRV_PCM_TRIGGER_SUSPEND:
 892		cm->ctrl |= pause;
 893		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 894		break;
 895	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 896	case SNDRV_PCM_TRIGGER_RESUME:
 897		cm->ctrl &= ~pause;
 898		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 899		break;
 900	default:
 901		result = -EINVAL;
 902		break;
 903	}
 904	spin_unlock(&cm->reg_lock);
 905	return result;
 906}
 907
 908/*
 909 * return the current pointer
 910 */
 911static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
 912						struct snd_pcm_substream *substream)
 913{
 914	size_t ptr;
 915	unsigned int reg, rem, tries;
 916
 917	if (!rec->running)
 918		return 0;
 919#if 1 // this seems better..
 920	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 921	for (tries = 0; tries < 3; tries++) {
 922		rem = snd_cmipci_read_w(cm, reg);
 923		if (rem < rec->dma_size)
 924			goto ok;
 925	} 
 926	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
 927	return SNDRV_PCM_POS_XRUN;
 928ok:
 929	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
 930#else
 931	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 932	ptr = snd_cmipci_read(cm, reg) - rec->offset;
 933	ptr = bytes_to_frames(substream->runtime, ptr);
 934#endif
 935	if (substream->runtime->channels > 2)
 936		ptr = (ptr * 2) / substream->runtime->channels;
 937	return ptr;
 938}
 939
 940/*
 941 * playback
 942 */
 943
 944static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
 945				       int cmd)
 946{
 947	struct cmipci *cm = snd_pcm_substream_chip(substream);
 948	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
 949}
 950
 951static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
 952{
 953	struct cmipci *cm = snd_pcm_substream_chip(substream);
 954	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
 955}
 956
 957
 958
 959/*
 960 * capture
 961 */
 962
 963static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
 964				     int cmd)
 965{
 966	struct cmipci *cm = snd_pcm_substream_chip(substream);
 967	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
 968}
 969
 970static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
 971{
 972	struct cmipci *cm = snd_pcm_substream_chip(substream);
 973	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
 974}
 975
 976
 977/*
 978 * hw preparation for spdif
 979 */
 980
 981static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
 982					 struct snd_ctl_elem_info *uinfo)
 983{
 984	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
 985	uinfo->count = 1;
 986	return 0;
 987}
 988
 989static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
 990					struct snd_ctl_elem_value *ucontrol)
 991{
 992	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
 993	int i;
 994
 995	spin_lock_irq(&chip->reg_lock);
 996	for (i = 0; i < 4; i++)
 997		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
 998	spin_unlock_irq(&chip->reg_lock);
 999	return 0;
1000}
1001
1002static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1003					 struct snd_ctl_elem_value *ucontrol)
1004{
1005	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1006	int i, change;
1007	unsigned int val;
1008
1009	val = 0;
1010	spin_lock_irq(&chip->reg_lock);
1011	for (i = 0; i < 4; i++)
1012		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1013	change = val != chip->dig_status;
1014	chip->dig_status = val;
1015	spin_unlock_irq(&chip->reg_lock);
1016	return change;
1017}
1018
1019static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1020{
1021	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1022	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1023	.info =		snd_cmipci_spdif_default_info,
1024	.get =		snd_cmipci_spdif_default_get,
1025	.put =		snd_cmipci_spdif_default_put
1026};
1027
1028static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1029				      struct snd_ctl_elem_info *uinfo)
1030{
1031	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1032	uinfo->count = 1;
1033	return 0;
1034}
1035
1036static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1037				     struct snd_ctl_elem_value *ucontrol)
1038{
1039	ucontrol->value.iec958.status[0] = 0xff;
1040	ucontrol->value.iec958.status[1] = 0xff;
1041	ucontrol->value.iec958.status[2] = 0xff;
1042	ucontrol->value.iec958.status[3] = 0xff;
1043	return 0;
1044}
1045
1046static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1047{
1048	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1049	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1050	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1051	.info =		snd_cmipci_spdif_mask_info,
1052	.get =		snd_cmipci_spdif_mask_get,
1053};
1054
1055static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1056					struct snd_ctl_elem_info *uinfo)
1057{
1058	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1059	uinfo->count = 1;
1060	return 0;
1061}
1062
1063static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1064				       struct snd_ctl_elem_value *ucontrol)
1065{
1066	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1067	int i;
1068
1069	spin_lock_irq(&chip->reg_lock);
1070	for (i = 0; i < 4; i++)
1071		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1072	spin_unlock_irq(&chip->reg_lock);
1073	return 0;
1074}
1075
1076static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1077				       struct snd_ctl_elem_value *ucontrol)
1078{
1079	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1080	int i, change;
1081	unsigned int val;
1082
1083	val = 0;
1084	spin_lock_irq(&chip->reg_lock);
1085	for (i = 0; i < 4; i++)
1086		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1087	change = val != chip->dig_pcm_status;
1088	chip->dig_pcm_status = val;
1089	spin_unlock_irq(&chip->reg_lock);
1090	return change;
1091}
1092
1093static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1094{
1095	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1096	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1097	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1098	.info =		snd_cmipci_spdif_stream_info,
1099	.get =		snd_cmipci_spdif_stream_get,
1100	.put =		snd_cmipci_spdif_stream_put
1101};
1102
1103/*
1104 */
1105
1106/* save mixer setting and mute for AC3 playback */
1107static int save_mixer_state(struct cmipci *cm)
1108{
1109	if (! cm->mixer_insensitive) {
1110		struct snd_ctl_elem_value *val;
1111		unsigned int i;
1112
1113		val = kmalloc(sizeof(*val), GFP_KERNEL);
1114		if (!val)
1115			return -ENOMEM;
1116		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1117			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1118			if (ctl) {
1119				int event;
1120				memset(val, 0, sizeof(*val));
1121				ctl->get(ctl, val);
1122				cm->mixer_res_status[i] = val->value.integer.value[0];
1123				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1124				event = SNDRV_CTL_EVENT_MASK_INFO;
1125				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1126					ctl->put(ctl, val); /* toggle */
1127					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1128				}
1129				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1130				snd_ctl_notify(cm->card, event, &ctl->id);
1131			}
1132		}
1133		kfree(val);
1134		cm->mixer_insensitive = 1;
1135	}
1136	return 0;
1137}
1138
1139
1140/* restore the previously saved mixer status */
1141static void restore_mixer_state(struct cmipci *cm)
1142{
1143	if (cm->mixer_insensitive) {
1144		struct snd_ctl_elem_value *val;
1145		unsigned int i;
1146
1147		val = kmalloc(sizeof(*val), GFP_KERNEL);
1148		if (!val)
1149			return;
1150		cm->mixer_insensitive = 0; /* at first clear this;
1151					      otherwise the changes will be ignored */
1152		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1153			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1154			if (ctl) {
1155				int event;
1156
1157				memset(val, 0, sizeof(*val));
1158				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159				ctl->get(ctl, val);
1160				event = SNDRV_CTL_EVENT_MASK_INFO;
1161				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1162					val->value.integer.value[0] = cm->mixer_res_status[i];
1163					ctl->put(ctl, val);
1164					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1165				}
1166				snd_ctl_notify(cm->card, event, &ctl->id);
1167			}
1168		}
1169		kfree(val);
1170	}
1171}
1172
1173/* spinlock held! */
1174static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1175{
1176	if (do_ac3) {
1177		/* AC3EN for 037 */
1178		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1179		/* AC3EN for 039 */
1180		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1181	
1182		if (cm->can_ac3_hw) {
1183			/* SPD24SEL for 037, 0x02 */
1184			/* SPD24SEL for 039, 0x20, but cannot be set */
1185			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1186			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1187		} else { /* can_ac3_sw */
1188			/* SPD32SEL for 037 & 039, 0x20 */
1189			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1190			/* set 176K sample rate to fix 033 HW bug */
1191			if (cm->chip_version == 33) {
1192				if (rate >= 48000) {
1193					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1194				} else {
1195					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1196				}
1197			}
1198		}
1199
1200	} else {
1201		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1202		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1203
1204		if (cm->can_ac3_hw) {
1205			/* chip model >= 37 */
1206			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1207				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1208				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1209			} else {
1210				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1211				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1212			}
1213		} else {
1214			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1215			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1216			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1217		}
1218	}
1219}
1220
1221static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1222{
1223	int rate, err;
1224
1225	rate = subs->runtime->rate;
1226
1227	if (up && do_ac3) {
1228		err = save_mixer_state(cm);
1229		if (err < 0)
1230			return err;
1231	}
1232
1233	spin_lock_irq(&cm->reg_lock);
1234	cm->spdif_playback_avail = up;
1235	if (up) {
1236		/* they are controlled via "IEC958 Output Switch" */
1237		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1238		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1239		if (cm->spdif_playback_enabled)
1240			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1241		setup_ac3(cm, subs, do_ac3, rate);
1242
1243		if (rate == 48000 || rate == 96000)
1244			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1245		else
1246			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1247		if (rate > 48000)
1248			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1249		else
1250			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1251	} else {
1252		/* they are controlled via "IEC958 Output Switch" */
1253		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1254		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1255		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1256		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1257		setup_ac3(cm, subs, 0, 0);
1258	}
1259	spin_unlock_irq(&cm->reg_lock);
1260	return 0;
1261}
1262
1263
1264/*
1265 * preparation
1266 */
1267
1268/* playback - enable spdif only on the certain condition */
1269static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1270{
1271	struct cmipci *cm = snd_pcm_substream_chip(substream);
1272	int rate = substream->runtime->rate;
1273	int err, do_spdif, do_ac3 = 0;
1274
1275	do_spdif = (rate >= 44100 && rate <= 96000 &&
1276		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1277		    substream->runtime->channels == 2);
1278	if (do_spdif && cm->can_ac3_hw) 
1279		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1280	err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
1281	if (err < 0)
1282		return err;
1283	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1284}
1285
1286/* playback  (via device #2) - enable spdif always */
1287static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1288{
1289	struct cmipci *cm = snd_pcm_substream_chip(substream);
1290	int err, do_ac3;
1291
1292	if (cm->can_ac3_hw) 
1293		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1294	else
1295		do_ac3 = 1; /* doesn't matter */
1296	err = setup_spdif_playback(cm, substream, 1, do_ac3);
1297	if (err < 0)
1298		return err;
1299	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1300}
1301
1302/*
1303 * Apparently, the samples last played on channel A stay in some buffer, even
1304 * after the channel is reset, and get added to the data for the rear DACs when
1305 * playing a multichannel stream on channel B.  This is likely to generate
1306 * wraparounds and thus distortions.
1307 * To avoid this, we play at least one zero sample after the actual stream has
1308 * stopped.
1309 */
1310static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1311{
1312	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1313	unsigned int reg, val;
1314
1315	if (rec->needs_silencing && runtime && runtime->dma_area) {
1316		/* set up a small silence buffer */
1317		memset(runtime->dma_area, 0, PAGE_SIZE);
1318		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1319		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1320		snd_cmipci_write(cm, reg, val);
1321	
1322		/* configure for 16 bits, 2 channels, 8 kHz */
1323		if (runtime->channels > 2)
1324			set_dac_channels(cm, rec, 2);
1325		spin_lock_irq(&cm->reg_lock);
1326		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1327		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1328		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1329		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1330		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1331		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1332		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1333		if (cm->can_96k)
1334			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1335		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1336	
1337		/* start stream (we don't need interrupts) */
1338		cm->ctrl |= CM_CHEN0 << rec->ch;
1339		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1340		spin_unlock_irq(&cm->reg_lock);
1341
1342		msleep(1);
1343
1344		/* stop and reset stream */
1345		spin_lock_irq(&cm->reg_lock);
1346		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1347		val = CM_RST_CH0 << rec->ch;
1348		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1349		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1350		spin_unlock_irq(&cm->reg_lock);
1351
1352		rec->needs_silencing = 0;
1353	}
1354}
1355
1356static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1357{
1358	struct cmipci *cm = snd_pcm_substream_chip(substream);
1359	setup_spdif_playback(cm, substream, 0, 0);
1360	restore_mixer_state(cm);
1361	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1362	return 0;
1363}
1364
1365static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1366{
1367	struct cmipci *cm = snd_pcm_substream_chip(substream);
1368	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1369	return 0;
1370}
1371
1372/* capture */
1373static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1374{
1375	struct cmipci *cm = snd_pcm_substream_chip(substream);
1376	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1377}
1378
1379/* capture with spdif (via device #2) */
1380static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1381{
1382	struct cmipci *cm = snd_pcm_substream_chip(substream);
1383
1384	spin_lock_irq(&cm->reg_lock);
1385	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1386	if (cm->can_96k) {
1387		if (substream->runtime->rate > 48000)
1388			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1389		else
1390			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1391	}
1392	if (snd_pcm_format_width(substream->runtime->format) > 16)
1393		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1394	else
1395		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1396
1397	spin_unlock_irq(&cm->reg_lock);
1398
1399	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1400}
1401
1402static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1403{
1404	struct cmipci *cm = snd_pcm_substream_chip(subs);
1405
1406	spin_lock_irq(&cm->reg_lock);
1407	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1408	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1409	spin_unlock_irq(&cm->reg_lock);
1410
1411	return 0;
1412}
1413
1414
1415/*
1416 * interrupt handler
1417 */
1418static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1419{
1420	struct cmipci *cm = dev_id;
1421	unsigned int status, mask = 0;
1422	
1423	/* fastpath out, to ease interrupt sharing */
1424	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1425	if (!(status & CM_INTR))
1426		return IRQ_NONE;
1427
1428	/* acknowledge interrupt */
1429	spin_lock(&cm->reg_lock);
1430	if (status & CM_CHINT0)
1431		mask |= CM_CH0_INT_EN;
1432	if (status & CM_CHINT1)
1433		mask |= CM_CH1_INT_EN;
1434	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1435	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1436	spin_unlock(&cm->reg_lock);
1437
1438	if (cm->rmidi && (status & CM_UARTINT))
1439		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1440
1441	if (cm->pcm) {
1442		if ((status & CM_CHINT0) && cm->channel[0].running)
1443			snd_pcm_period_elapsed(cm->channel[0].substream);
1444		if ((status & CM_CHINT1) && cm->channel[1].running)
1445			snd_pcm_period_elapsed(cm->channel[1].substream);
1446	}
1447	return IRQ_HANDLED;
1448}
1449
1450/*
1451 * h/w infos
1452 */
1453
1454/* playback on channel A */
1455static const struct snd_pcm_hardware snd_cmipci_playback =
1456{
1457	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1458				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1459				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1460	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1461	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1462	.rate_min =		5512,
1463	.rate_max =		48000,
1464	.channels_min =		1,
1465	.channels_max =		2,
1466	.buffer_bytes_max =	(128*1024),
1467	.period_bytes_min =	64,
1468	.period_bytes_max =	(128*1024),
1469	.periods_min =		2,
1470	.periods_max =		1024,
1471	.fifo_size =		0,
1472};
1473
1474/* capture on channel B */
1475static const struct snd_pcm_hardware snd_cmipci_capture =
1476{
1477	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1478				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1479				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1480	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1481	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1482	.rate_min =		5512,
1483	.rate_max =		48000,
1484	.channels_min =		1,
1485	.channels_max =		2,
1486	.buffer_bytes_max =	(128*1024),
1487	.period_bytes_min =	64,
1488	.period_bytes_max =	(128*1024),
1489	.periods_min =		2,
1490	.periods_max =		1024,
1491	.fifo_size =		0,
1492};
1493
1494/* playback on channel B - stereo 16bit only? */
1495static const struct snd_pcm_hardware snd_cmipci_playback2 =
1496{
1497	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1498				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1499				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1500	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1501	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1502	.rate_min =		5512,
1503	.rate_max =		48000,
1504	.channels_min =		2,
1505	.channels_max =		2,
1506	.buffer_bytes_max =	(128*1024),
1507	.period_bytes_min =	64,
1508	.period_bytes_max =	(128*1024),
1509	.periods_min =		2,
1510	.periods_max =		1024,
1511	.fifo_size =		0,
1512};
1513
1514/* spdif playback on channel A */
1515static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1516{
1517	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1518				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1519				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1520	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1521	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1522	.rate_min =		44100,
1523	.rate_max =		48000,
1524	.channels_min =		2,
1525	.channels_max =		2,
1526	.buffer_bytes_max =	(128*1024),
1527	.period_bytes_min =	64,
1528	.period_bytes_max =	(128*1024),
1529	.periods_min =		2,
1530	.periods_max =		1024,
1531	.fifo_size =		0,
1532};
1533
1534/* spdif playback on channel A (32bit, IEC958 subframes) */
1535static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1536{
1537	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1538				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1539				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1540	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1541	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1542	.rate_min =		44100,
1543	.rate_max =		48000,
1544	.channels_min =		2,
1545	.channels_max =		2,
1546	.buffer_bytes_max =	(128*1024),
1547	.period_bytes_min =	64,
1548	.period_bytes_max =	(128*1024),
1549	.periods_min =		2,
1550	.periods_max =		1024,
1551	.fifo_size =		0,
1552};
1553
1554/* spdif capture on channel B */
1555static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1556{
1557	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1558				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1559				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1560	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1561				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1562	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1563	.rate_min =		44100,
1564	.rate_max =		48000,
1565	.channels_min =		2,
1566	.channels_max =		2,
1567	.buffer_bytes_max =	(128*1024),
1568	.period_bytes_min =	64,
1569	.period_bytes_max =	(128*1024),
1570	.periods_min =		2,
1571	.periods_max =		1024,
1572	.fifo_size =		0,
1573};
1574
1575static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1576			32000, 44100, 48000, 88200, 96000, 128000 };
1577static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1578		.count = ARRAY_SIZE(rate_constraints),
1579		.list = rate_constraints,
1580		.mask = 0,
1581};
1582
1583/*
1584 * check device open/close
1585 */
1586static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1587{
1588	int ch = mode & CM_OPEN_CH_MASK;
1589
1590	/* FIXME: a file should wait until the device becomes free
1591	 * when it's opened on blocking mode.  however, since the current
1592	 * pcm framework doesn't pass file pointer before actually opened,
1593	 * we can't know whether blocking mode or not in open callback..
1594	 */
1595	mutex_lock(&cm->open_mutex);
1596	if (cm->opened[ch]) {
1597		mutex_unlock(&cm->open_mutex);
1598		return -EBUSY;
1599	}
1600	cm->opened[ch] = mode;
1601	cm->channel[ch].substream = subs;
1602	if (! (mode & CM_OPEN_DAC)) {
1603		/* disable dual DAC mode */
1604		cm->channel[ch].is_dac = 0;
1605		spin_lock_irq(&cm->reg_lock);
1606		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1607		spin_unlock_irq(&cm->reg_lock);
1608	}
1609	mutex_unlock(&cm->open_mutex);
1610	return 0;
1611}
1612
1613static void close_device_check(struct cmipci *cm, int mode)
1614{
1615	int ch = mode & CM_OPEN_CH_MASK;
1616
1617	mutex_lock(&cm->open_mutex);
1618	if (cm->opened[ch] == mode) {
1619		if (cm->channel[ch].substream) {
1620			snd_cmipci_ch_reset(cm, ch);
1621			cm->channel[ch].running = 0;
1622			cm->channel[ch].substream = NULL;
1623		}
1624		cm->opened[ch] = 0;
1625		if (! cm->channel[ch].is_dac) {
1626			/* enable dual DAC mode again */
1627			cm->channel[ch].is_dac = 1;
1628			spin_lock_irq(&cm->reg_lock);
1629			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1630			spin_unlock_irq(&cm->reg_lock);
1631		}
1632	}
1633	mutex_unlock(&cm->open_mutex);
1634}
1635
1636/*
1637 */
1638
1639static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1640{
1641	struct cmipci *cm = snd_pcm_substream_chip(substream);
1642	struct snd_pcm_runtime *runtime = substream->runtime;
1643	int err;
1644
1645	err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
1646	if (err < 0)
1647		return err;
1648	runtime->hw = snd_cmipci_playback;
1649	if (cm->chip_version == 68) {
1650		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1651				     SNDRV_PCM_RATE_96000;
1652		runtime->hw.rate_max = 96000;
1653	} else if (cm->chip_version == 55) {
1654		err = snd_pcm_hw_constraint_list(runtime, 0,
1655			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1656		if (err < 0)
1657			return err;
1658		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1659		runtime->hw.rate_max = 128000;
1660	}
1661	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1662	cm->dig_pcm_status = cm->dig_status;
1663	return 0;
1664}
1665
1666static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1667{
1668	struct cmipci *cm = snd_pcm_substream_chip(substream);
1669	struct snd_pcm_runtime *runtime = substream->runtime;
1670	int err;
1671
1672	err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
1673	if (err < 0)
1674		return err;
1675	runtime->hw = snd_cmipci_capture;
1676	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1677		runtime->hw.rate_min = 41000;
1678		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1679	} else if (cm->chip_version == 55) {
1680		err = snd_pcm_hw_constraint_list(runtime, 0,
1681			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1682		if (err < 0)
1683			return err;
1684		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1685		runtime->hw.rate_max = 128000;
1686	}
1687	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1688	return 0;
1689}
1690
1691static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1692{
1693	struct cmipci *cm = snd_pcm_substream_chip(substream);
1694	struct snd_pcm_runtime *runtime = substream->runtime;
1695	int err;
1696
1697	/* use channel B */
1698	err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
1699	if (err < 0)
1700		return err;
1701	runtime->hw = snd_cmipci_playback2;
1702	mutex_lock(&cm->open_mutex);
1703	if (! cm->opened[CM_CH_PLAY]) {
1704		if (cm->can_multi_ch) {
1705			runtime->hw.channels_max = cm->max_channels;
1706			if (cm->max_channels == 4)
1707				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1708			else if (cm->max_channels == 6)
1709				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1710			else if (cm->max_channels == 8)
1711				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1712		}
1713	}
1714	mutex_unlock(&cm->open_mutex);
1715	if (cm->chip_version == 68) {
1716		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1717				     SNDRV_PCM_RATE_96000;
1718		runtime->hw.rate_max = 96000;
1719	} else if (cm->chip_version == 55) {
1720		err = snd_pcm_hw_constraint_list(runtime, 0,
1721			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1722		if (err < 0)
1723			return err;
1724		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1725		runtime->hw.rate_max = 128000;
1726	}
1727	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1728	return 0;
1729}
1730
1731static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1732{
1733	struct cmipci *cm = snd_pcm_substream_chip(substream);
1734	struct snd_pcm_runtime *runtime = substream->runtime;
1735	int err;
1736
1737	/* use channel A */
1738	err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
1739	if (err < 0)
1740		return err;
1741	if (cm->can_ac3_hw) {
1742		runtime->hw = snd_cmipci_playback_spdif;
1743		if (cm->chip_version >= 37) {
1744			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1745			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1746		}
1747		if (cm->can_96k) {
1748			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1749					     SNDRV_PCM_RATE_96000;
1750			runtime->hw.rate_max = 96000;
1751		}
1752	} else {
1753		runtime->hw = snd_cmipci_playback_iec958_subframe;
1754	}
1755	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1756	cm->dig_pcm_status = cm->dig_status;
1757	return 0;
1758}
1759
1760static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1761{
1762	struct cmipci *cm = snd_pcm_substream_chip(substream);
1763	struct snd_pcm_runtime *runtime = substream->runtime;
1764	int err;
1765
1766	/* use channel B */
1767	err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
1768	if (err < 0)
1769		return err;
1770	runtime->hw = snd_cmipci_capture_spdif;
1771	if (cm->can_96k && !(cm->chip_version == 68)) {
1772		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1773				     SNDRV_PCM_RATE_96000;
1774		runtime->hw.rate_max = 96000;
1775	}
1776	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1777	return 0;
1778}
1779
1780
1781/*
1782 */
1783
1784static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1785{
1786	struct cmipci *cm = snd_pcm_substream_chip(substream);
1787	close_device_check(cm, CM_OPEN_PLAYBACK);
1788	return 0;
1789}
1790
1791static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1792{
1793	struct cmipci *cm = snd_pcm_substream_chip(substream);
1794	close_device_check(cm, CM_OPEN_CAPTURE);
1795	return 0;
1796}
1797
1798static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1799{
1800	struct cmipci *cm = snd_pcm_substream_chip(substream);
1801	close_device_check(cm, CM_OPEN_PLAYBACK2);
1802	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1803	return 0;
1804}
1805
1806static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1807{
1808	struct cmipci *cm = snd_pcm_substream_chip(substream);
1809	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1810	return 0;
1811}
1812
1813static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1814{
1815	struct cmipci *cm = snd_pcm_substream_chip(substream);
1816	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1817	return 0;
1818}
1819
1820
1821/*
1822 */
1823
1824static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1825	.open =		snd_cmipci_playback_open,
1826	.close =	snd_cmipci_playback_close,
1827	.hw_free =	snd_cmipci_playback_hw_free,
1828	.prepare =	snd_cmipci_playback_prepare,
1829	.trigger =	snd_cmipci_playback_trigger,
1830	.pointer =	snd_cmipci_playback_pointer,
1831};
1832
1833static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1834	.open =		snd_cmipci_capture_open,
1835	.close =	snd_cmipci_capture_close,
1836	.prepare =	snd_cmipci_capture_prepare,
1837	.trigger =	snd_cmipci_capture_trigger,
1838	.pointer =	snd_cmipci_capture_pointer,
1839};
1840
1841static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1842	.open =		snd_cmipci_playback2_open,
1843	.close =	snd_cmipci_playback2_close,
1844	.hw_params =	snd_cmipci_playback2_hw_params,
1845	.hw_free =	snd_cmipci_playback2_hw_free,
1846	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1847	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1848	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1849};
1850
1851static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1852	.open =		snd_cmipci_playback_spdif_open,
1853	.close =	snd_cmipci_playback_spdif_close,
1854	.hw_free =	snd_cmipci_playback_hw_free,
1855	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1856	.trigger =	snd_cmipci_playback_trigger,
1857	.pointer =	snd_cmipci_playback_pointer,
1858};
1859
1860static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1861	.open =		snd_cmipci_capture_spdif_open,
1862	.close =	snd_cmipci_capture_spdif_close,
1863	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1864	.prepare =	snd_cmipci_capture_spdif_prepare,
1865	.trigger =	snd_cmipci_capture_trigger,
1866	.pointer =	snd_cmipci_capture_pointer,
1867};
1868
1869
1870/*
1871 */
1872
1873static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1874{
1875	struct snd_pcm *pcm;
1876	int err;
1877
1878	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1879	if (err < 0)
1880		return err;
1881
1882	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1883	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1884
1885	pcm->private_data = cm;
1886	pcm->info_flags = 0;
1887	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1888	cm->pcm = pcm;
1889
1890	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1891				       &cm->pci->dev, 64*1024, 128*1024);
1892
1893	return 0;
1894}
1895
1896static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1897{
1898	struct snd_pcm *pcm;
1899	int err;
1900
1901	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1902	if (err < 0)
1903		return err;
1904
1905	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1906
1907	pcm->private_data = cm;
1908	pcm->info_flags = 0;
1909	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1910	cm->pcm2 = pcm;
1911
1912	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1913				       &cm->pci->dev, 64*1024, 128*1024);
1914
1915	return 0;
1916}
1917
1918static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1919{
1920	struct snd_pcm *pcm;
1921	int err;
1922
1923	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1924	if (err < 0)
1925		return err;
1926
1927	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1928	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1929
1930	pcm->private_data = cm;
1931	pcm->info_flags = 0;
1932	strcpy(pcm->name, "C-Media PCI IEC958");
1933	cm->pcm_spdif = pcm;
1934
1935	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1936				       &cm->pci->dev, 64*1024, 128*1024);
1937
1938	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1939				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1940				     NULL);
1941	if (err < 0)
1942		return err;
1943
1944	return 0;
1945}
1946
1947/*
1948 * mixer interface:
1949 * - CM8338/8738 has a compatible mixer interface with SB16, but
1950 *   lack of some elements like tone control, i/o gain and AGC.
1951 * - Access to native registers:
1952 *   - A 3D switch
1953 *   - Output mute switches
1954 */
1955
1956static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1957{
1958	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1959	outb(data, s->iobase + CM_REG_SB16_DATA);
1960}
1961
1962static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1963{
1964	unsigned char v;
1965
1966	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1967	v = inb(s->iobase + CM_REG_SB16_DATA);
1968	return v;
1969}
1970
1971/*
1972 * general mixer element
1973 */
1974struct cmipci_sb_reg {
1975	unsigned int left_reg, right_reg;
1976	unsigned int left_shift, right_shift;
1977	unsigned int mask;
1978	unsigned int invert: 1;
1979	unsigned int stereo: 1;
1980};
1981
1982#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1983 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1984
1985#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1986{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1987  .info = snd_cmipci_info_volume, \
1988  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1989  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1990}
1991
1992#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1993#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1994#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1995#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1996
1997static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1998{
1999	r->left_reg = val & 0xff;
2000	r->right_reg = (val >> 8) & 0xff;
2001	r->left_shift = (val >> 16) & 0x07;
2002	r->right_shift = (val >> 19) & 0x07;
2003	r->invert = (val >> 22) & 1;
2004	r->stereo = (val >> 23) & 1;
2005	r->mask = (val >> 24) & 0xff;
2006}
2007
2008static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2009				  struct snd_ctl_elem_info *uinfo)
2010{
2011	struct cmipci_sb_reg reg;
2012
2013	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2014	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2015	uinfo->count = reg.stereo + 1;
2016	uinfo->value.integer.min = 0;
2017	uinfo->value.integer.max = reg.mask;
2018	return 0;
2019}
2020 
2021static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2022				 struct snd_ctl_elem_value *ucontrol)
2023{
2024	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2025	struct cmipci_sb_reg reg;
2026	int val;
2027
2028	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2029	spin_lock_irq(&cm->reg_lock);
2030	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2031	if (reg.invert)
2032		val = reg.mask - val;
2033	ucontrol->value.integer.value[0] = val;
2034	if (reg.stereo) {
2035		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2036		if (reg.invert)
2037			val = reg.mask - val;
2038		ucontrol->value.integer.value[1] = val;
2039	}
2040	spin_unlock_irq(&cm->reg_lock);
2041	return 0;
2042}
2043
2044static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2045				 struct snd_ctl_elem_value *ucontrol)
2046{
2047	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2048	struct cmipci_sb_reg reg;
2049	int change;
2050	int left, right, oleft, oright;
2051
2052	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2053	left = ucontrol->value.integer.value[0] & reg.mask;
2054	if (reg.invert)
2055		left = reg.mask - left;
2056	left <<= reg.left_shift;
2057	if (reg.stereo) {
2058		right = ucontrol->value.integer.value[1] & reg.mask;
2059		if (reg.invert)
2060			right = reg.mask - right;
2061		right <<= reg.right_shift;
2062	} else
2063		right = 0;
2064	spin_lock_irq(&cm->reg_lock);
2065	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2066	left |= oleft & ~(reg.mask << reg.left_shift);
2067	change = left != oleft;
2068	if (reg.stereo) {
2069		if (reg.left_reg != reg.right_reg) {
2070			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2071			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2072		} else
2073			oright = left;
2074		right |= oright & ~(reg.mask << reg.right_shift);
2075		change |= right != oright;
2076		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2077	} else
2078		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2079	spin_unlock_irq(&cm->reg_lock);
2080	return change;
2081}
2082
2083/*
2084 * input route (left,right) -> (left,right)
2085 */
2086#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2087{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2088  .info = snd_cmipci_info_input_sw, \
2089  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2090  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2091}
2092
2093static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2094				    struct snd_ctl_elem_info *uinfo)
2095{
2096	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2097	uinfo->count = 4;
2098	uinfo->value.integer.min = 0;
2099	uinfo->value.integer.max = 1;
2100	return 0;
2101}
2102 
2103static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2104				   struct snd_ctl_elem_value *ucontrol)
2105{
2106	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2107	struct cmipci_sb_reg reg;
2108	int val1, val2;
2109
2110	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2111	spin_lock_irq(&cm->reg_lock);
2112	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2113	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2114	spin_unlock_irq(&cm->reg_lock);
2115	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2116	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2117	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2118	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2119	return 0;
2120}
2121
2122static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2123				   struct snd_ctl_elem_value *ucontrol)
2124{
2125	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2126	struct cmipci_sb_reg reg;
2127	int change;
2128	int val1, val2, oval1, oval2;
2129
2130	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2131	spin_lock_irq(&cm->reg_lock);
2132	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2133	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2134	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2135	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2136	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2137	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2138	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2139	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2140	change = val1 != oval1 || val2 != oval2;
2141	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2142	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2143	spin_unlock_irq(&cm->reg_lock);
2144	return change;
2145}
2146
2147/*
2148 * native mixer switches/volumes
2149 */
2150
2151#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2152{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2153  .info = snd_cmipci_info_native_mixer, \
2154  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2155  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2156}
2157
2158#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2159{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2160  .info = snd_cmipci_info_native_mixer, \
2161  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2162  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2163}
2164
2165#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2166{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167  .info = snd_cmipci_info_native_mixer, \
2168  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2170}
2171
2172#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2173{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2174  .info = snd_cmipci_info_native_mixer, \
2175  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2176  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2177}
2178
2179static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2180					struct snd_ctl_elem_info *uinfo)
2181{
2182	struct cmipci_sb_reg reg;
2183
2184	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2185	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2186	uinfo->count = reg.stereo + 1;
2187	uinfo->value.integer.min = 0;
2188	uinfo->value.integer.max = reg.mask;
2189	return 0;
2190
2191}
2192
2193static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2194				       struct snd_ctl_elem_value *ucontrol)
2195{
2196	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2197	struct cmipci_sb_reg reg;
2198	unsigned char oreg, val;
2199
2200	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2201	spin_lock_irq(&cm->reg_lock);
2202	oreg = inb(cm->iobase + reg.left_reg);
2203	val = (oreg >> reg.left_shift) & reg.mask;
2204	if (reg.invert)
2205		val = reg.mask - val;
2206	ucontrol->value.integer.value[0] = val;
2207	if (reg.stereo) {
2208		val = (oreg >> reg.right_shift) & reg.mask;
2209		if (reg.invert)
2210			val = reg.mask - val;
2211		ucontrol->value.integer.value[1] = val;
2212	}
2213	spin_unlock_irq(&cm->reg_lock);
2214	return 0;
2215}
2216
2217static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2218				       struct snd_ctl_elem_value *ucontrol)
2219{
2220	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2221	struct cmipci_sb_reg reg;
2222	unsigned char oreg, nreg, val;
2223
2224	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2225	spin_lock_irq(&cm->reg_lock);
2226	oreg = inb(cm->iobase + reg.left_reg);
2227	val = ucontrol->value.integer.value[0] & reg.mask;
2228	if (reg.invert)
2229		val = reg.mask - val;
2230	nreg = oreg & ~(reg.mask << reg.left_shift);
2231	nreg |= (val << reg.left_shift);
2232	if (reg.stereo) {
2233		val = ucontrol->value.integer.value[1] & reg.mask;
2234		if (reg.invert)
2235			val = reg.mask - val;
2236		nreg &= ~(reg.mask << reg.right_shift);
2237		nreg |= (val << reg.right_shift);
2238	}
2239	outb(nreg, cm->iobase + reg.left_reg);
2240	spin_unlock_irq(&cm->reg_lock);
2241	return (nreg != oreg);
2242}
2243
2244/*
2245 * special case - check mixer sensitivity
2246 */
2247static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2248						 struct snd_ctl_elem_value *ucontrol)
2249{
2250	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2251	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2252}
2253
2254static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2255						 struct snd_ctl_elem_value *ucontrol)
2256{
2257	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2258	if (cm->mixer_insensitive) {
2259		/* ignored */
2260		return 0;
2261	}
2262	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2263}
2264
2265
2266static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2267	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2268	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2269	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2270	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2271	{ /* switch with sensitivity */
2272		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2273		.name = "PCM Playback Switch",
2274		.info = snd_cmipci_info_native_mixer,
2275		.get = snd_cmipci_get_native_mixer_sensitive,
2276		.put = snd_cmipci_put_native_mixer_sensitive,
2277		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2278	},
2279	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2280	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2281	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2282	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2283	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2284	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2285	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2286	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2287	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2288	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2289	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2290	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2291	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2292	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2293	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2294	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2295	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2296	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2297	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2298	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2299	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2300	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2301	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2302};
2303
2304/*
2305 * other switches
2306 */
2307
2308struct cmipci_switch_args {
2309	int reg;		/* register index */
2310	unsigned int mask;	/* mask bits */
2311	unsigned int mask_on;	/* mask bits to turn on */
2312	unsigned int is_byte: 1;		/* byte access? */
2313	unsigned int ac3_sensitive: 1;	/* access forbidden during
2314					 * non-audio operation?
2315					 */
2316};
2317
2318#define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2319
2320static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2321				   struct snd_ctl_elem_value *ucontrol,
2322				   struct cmipci_switch_args *args)
2323{
2324	unsigned int val;
2325	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2326
2327	spin_lock_irq(&cm->reg_lock);
2328	if (args->ac3_sensitive && cm->mixer_insensitive) {
2329		ucontrol->value.integer.value[0] = 0;
2330		spin_unlock_irq(&cm->reg_lock);
2331		return 0;
2332	}
2333	if (args->is_byte)
2334		val = inb(cm->iobase + args->reg);
2335	else
2336		val = snd_cmipci_read(cm, args->reg);
2337	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2338	spin_unlock_irq(&cm->reg_lock);
2339	return 0;
2340}
2341
2342static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2343				  struct snd_ctl_elem_value *ucontrol)
2344{
2345	struct cmipci_switch_args *args;
2346	args = (struct cmipci_switch_args *)kcontrol->private_value;
2347	if (snd_BUG_ON(!args))
2348		return -EINVAL;
2349	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2350}
2351
2352static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2353				   struct snd_ctl_elem_value *ucontrol,
2354				   struct cmipci_switch_args *args)
2355{
2356	unsigned int val;
2357	int change;
2358	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2359
2360	spin_lock_irq(&cm->reg_lock);
2361	if (args->ac3_sensitive && cm->mixer_insensitive) {
2362		/* ignored */
2363		spin_unlock_irq(&cm->reg_lock);
2364		return 0;
2365	}
2366	if (args->is_byte)
2367		val = inb(cm->iobase + args->reg);
2368	else
2369		val = snd_cmipci_read(cm, args->reg);
2370	change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2371			args->mask_on : (args->mask & ~args->mask_on));
2372	if (change) {
2373		val &= ~args->mask;
2374		if (ucontrol->value.integer.value[0])
2375			val |= args->mask_on;
2376		else
2377			val |= (args->mask & ~args->mask_on);
2378		if (args->is_byte)
2379			outb((unsigned char)val, cm->iobase + args->reg);
2380		else
2381			snd_cmipci_write(cm, args->reg, val);
2382	}
2383	spin_unlock_irq(&cm->reg_lock);
2384	return change;
2385}
2386
2387static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2388				  struct snd_ctl_elem_value *ucontrol)
2389{
2390	struct cmipci_switch_args *args;
2391	args = (struct cmipci_switch_args *)kcontrol->private_value;
2392	if (snd_BUG_ON(!args))
2393		return -EINVAL;
2394	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2395}
2396
2397#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2398static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2399  .reg = xreg, \
2400  .mask = xmask, \
2401  .mask_on = xmask_on, \
2402  .is_byte = xis_byte, \
2403  .ac3_sensitive = xac3, \
2404}
2405	
2406#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2407	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2408
2409#if 0 /* these will be controlled in pcm device */
2410DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2411DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2412#endif
2413DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2414DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2415DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2416DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2417DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2418DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2419DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2420DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2421// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2422DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2423DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2424/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2425DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2426DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2427#if CM_CH_PLAY == 1
2428DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2429#else
2430DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2431#endif
2432DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2433// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2434// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2435// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2436DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2437
2438#define DEFINE_SWITCH(sname, stype, sarg) \
2439{ .name = sname, \
2440  .iface = stype, \
2441  .info = snd_cmipci_uswitch_info, \
2442  .get = snd_cmipci_uswitch_get, \
2443  .put = snd_cmipci_uswitch_put, \
2444  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2445}
2446
2447#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2448#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2449
2450
2451/*
2452 * callbacks for spdif output switch
2453 * needs toggle two registers..
2454 */
2455static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2456					struct snd_ctl_elem_value *ucontrol)
2457{
2458	int changed;
2459	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2460	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2461	return changed;
2462}
2463
2464static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2465					struct snd_ctl_elem_value *ucontrol)
2466{
2467	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2468	int changed;
2469	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2470	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2471	if (changed) {
2472		if (ucontrol->value.integer.value[0]) {
2473			if (chip->spdif_playback_avail)
2474				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2475		} else {
2476			if (chip->spdif_playback_avail)
2477				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2478		}
2479	}
2480	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2481	return changed;
2482}
2483
2484
2485static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2486					struct snd_ctl_elem_info *uinfo)
2487{
2488	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2489	static const char *const texts[3] = {
2490		"Line-In", "Rear Output", "Bass Output"
2491	};
2492
2493	return snd_ctl_enum_info(uinfo, 1,
2494				 cm->chip_version >= 39 ? 3 : 2, texts);
2495}
2496
2497static inline unsigned int get_line_in_mode(struct cmipci *cm)
2498{
2499	unsigned int val;
2500	if (cm->chip_version >= 39) {
2501		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2502		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2503			return 2;
2504	}
2505	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2506	if (val & CM_REAR2LIN)
2507		return 1;
2508	return 0;
2509}
2510
2511static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2512				       struct snd_ctl_elem_value *ucontrol)
2513{
2514	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2515
2516	spin_lock_irq(&cm->reg_lock);
2517	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2518	spin_unlock_irq(&cm->reg_lock);
2519	return 0;
2520}
2521
2522static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2523				       struct snd_ctl_elem_value *ucontrol)
2524{
2525	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2526	int change;
2527
2528	spin_lock_irq(&cm->reg_lock);
2529	if (ucontrol->value.enumerated.item[0] == 2)
2530		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2531	else
2532		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2533	if (ucontrol->value.enumerated.item[0] == 1)
2534		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2535	else
2536		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2537	spin_unlock_irq(&cm->reg_lock);
2538	return change;
2539}
2540
2541static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2542				       struct snd_ctl_elem_info *uinfo)
2543{
2544	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2545
2546	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2547}
2548
2549static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2550				      struct snd_ctl_elem_value *ucontrol)
2551{
2552	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2553	/* same bit as spdi_phase */
2554	spin_lock_irq(&cm->reg_lock);
2555	ucontrol->value.enumerated.item[0] = 
2556		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2557	spin_unlock_irq(&cm->reg_lock);
2558	return 0;
2559}
2560
2561static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2562				      struct snd_ctl_elem_value *ucontrol)
2563{
2564	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2565	int change;
2566
2567	spin_lock_irq(&cm->reg_lock);
2568	if (ucontrol->value.enumerated.item[0])
2569		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2570	else
2571		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2572	spin_unlock_irq(&cm->reg_lock);
2573	return change;
2574}
2575
2576/* both for CM8338/8738 */
2577static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2578	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2579	{
2580		.name = "Line-In Mode",
2581		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2582		.info = snd_cmipci_line_in_mode_info,
2583		.get = snd_cmipci_line_in_mode_get,
2584		.put = snd_cmipci_line_in_mode_put,
2585	},
2586};
2587
2588/* for non-multichannel chips */
2589static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2590DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2591
2592/* only for CM8738 */
2593static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2594#if 0 /* controlled in pcm device */
2595	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2596	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2597	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2598#endif
2599	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2600	{ .name = "IEC958 Output Switch",
2601	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2602	  .info = snd_cmipci_uswitch_info,
2603	  .get = snd_cmipci_spdout_enable_get,
2604	  .put = snd_cmipci_spdout_enable_put,
2605	},
2606	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2607	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2608	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2609//	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2610	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2611	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2612};
2613
2614/* only for model 033/037 */
2615static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2616	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2617	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2618	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2619};
2620
2621/* only for model 039 or later */
2622static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2623	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2624	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2625	{
2626		.name = "Mic-In Mode",
2627		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2628		.info = snd_cmipci_mic_in_mode_info,
2629		.get = snd_cmipci_mic_in_mode_get,
2630		.put = snd_cmipci_mic_in_mode_put,
2631	}
2632};
2633
2634/* card control switches */
2635static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2636DEFINE_CARD_SWITCH("Modem", modem);
2637
2638
2639static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2640{
2641	struct snd_card *card;
2642	const struct snd_kcontrol_new *sw;
2643	struct snd_kcontrol *kctl;
2644	unsigned int idx;
2645	int err;
2646
2647	if (snd_BUG_ON(!cm || !cm->card))
2648		return -EINVAL;
2649
2650	card = cm->card;
2651
2652	strcpy(card->mixername, "CMedia PCI");
2653
2654	spin_lock_irq(&cm->reg_lock);
2655	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2656	spin_unlock_irq(&cm->reg_lock);
2657
2658	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2659		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2660			if (!strcmp(snd_cmipci_mixers[idx].name,
2661				"PCM Playback Volume"))
2662				continue;
2663		}
2664		err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
2665		if (err < 0)
2666			return err;
2667	}
2668
2669	/* mixer switches */
2670	sw = snd_cmipci_mixer_switches;
2671	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2672		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2673		if (err < 0)
2674			return err;
2675	}
2676	if (! cm->can_multi_ch) {
2677		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2678		if (err < 0)
2679			return err;
2680	}
2681	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2682	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2683		sw = snd_cmipci_8738_mixer_switches;
2684		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2685			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2686			if (err < 0)
2687				return err;
2688		}
2689		if (cm->can_ac3_hw) {
2690			kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
2691			kctl->id.device = pcm_spdif_device;
2692			err = snd_ctl_add(card, kctl);
2693			if (err < 0)
2694				return err;
2695			kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
2696			kctl->id.device = pcm_spdif_device;
2697			err = snd_ctl_add(card, kctl);
2698			if (err < 0)
2699				return err;
2700			kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
2701			kctl->id.device = pcm_spdif_device;
2702			err = snd_ctl_add(card, kctl);
2703			if (err < 0)
2704				return err;
2705		}
2706		if (cm->chip_version <= 37) {
2707			sw = snd_cmipci_old_mixer_switches;
2708			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2709				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2710				if (err < 0)
2711					return err;
2712			}
2713		}
2714	}
2715	if (cm->chip_version >= 39) {
2716		sw = snd_cmipci_extra_mixer_switches;
2717		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2718			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2719			if (err < 0)
2720				return err;
2721		}
2722	}
2723
2724	/* card switches */
2725	/*
2726	 * newer chips don't have the register bits to force modem link
2727	 * detection; the bit that was FLINKON now mutes CH1
2728	 */
2729	if (cm->chip_version < 39) {
2730		err = snd_ctl_add(cm->card,
2731				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2732		if (err < 0)
2733			return err;
2734	}
2735
2736	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2737		struct snd_kcontrol *ctl;
2738		ctl = snd_ctl_find_id_mixer(cm->card, cm_saved_mixer[idx].name);
2739		if (ctl)
2740			cm->mixer_res_ctl[idx] = ctl;
2741	}
2742
2743	return 0;
2744}
2745
2746
2747/*
2748 * proc interface
2749 */
2750
2751static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2752				 struct snd_info_buffer *buffer)
2753{
2754	struct cmipci *cm = entry->private_data;
2755	int i, v;
2756	
2757	snd_iprintf(buffer, "%s\n", cm->card->longname);
2758	for (i = 0; i < 0x94; i++) {
2759		if (i == 0x28)
2760			i = 0x90;
2761		v = inb(cm->iobase + i);
2762		if (i % 4 == 0)
2763			snd_iprintf(buffer, "\n%02x:", i);
2764		snd_iprintf(buffer, " %02x", v);
2765	}
2766	snd_iprintf(buffer, "\n");
2767}
2768
2769static void snd_cmipci_proc_init(struct cmipci *cm)
2770{
2771	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2772}
2773
2774static const struct pci_device_id snd_cmipci_ids[] = {
2775	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2776	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2777	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2778	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2779	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2780	{0,},
2781};
2782
2783
2784/*
2785 * check chip version and capabilities
2786 * driver name is modified according to the chip model
2787 */
2788static void query_chip(struct cmipci *cm)
2789{
2790	unsigned int detect;
2791
2792	/* check reg 0Ch, bit 24-31 */
2793	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2794	if (! detect) {
2795		/* check reg 08h, bit 24-28 */
2796		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2797		switch (detect) {
2798		case 0:
2799			cm->chip_version = 33;
2800			if (cm->do_soft_ac3)
2801				cm->can_ac3_sw = 1;
2802			else
2803				cm->can_ac3_hw = 1;
2804			break;
2805		case CM_CHIP_037:
2806			cm->chip_version = 37;
2807			cm->can_ac3_hw = 1;
2808			break;
2809		default:
2810			cm->chip_version = 39;
2811			cm->can_ac3_hw = 1;
2812			break;
2813		}
2814		cm->max_channels = 2;
2815	} else {
2816		if (detect & CM_CHIP_039) {
2817			cm->chip_version = 39;
2818			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2819				cm->max_channels = 6;
2820			else
2821				cm->max_channels = 4;
2822		} else if (detect & CM_CHIP_8768) {
2823			cm->chip_version = 68;
2824			cm->max_channels = 8;
2825			cm->can_96k = 1;
2826		} else {
2827			cm->chip_version = 55;
2828			cm->max_channels = 6;
2829			cm->can_96k = 1;
2830		}
2831		cm->can_ac3_hw = 1;
2832		cm->can_multi_ch = 1;
2833	}
2834}
2835
2836#ifdef SUPPORT_JOYSTICK
2837static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2838{
2839	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2840	struct gameport *gp;
2841	struct resource *r = NULL;
2842	int i, io_port = 0;
2843
2844	if (joystick_port[dev] == 0)
2845		return -ENODEV;
2846
2847	if (joystick_port[dev] == 1) { /* auto-detect */
2848		for (i = 0; ports[i]; i++) {
2849			io_port = ports[i];
2850			r = devm_request_region(&cm->pci->dev, io_port, 1,
2851						"CMIPCI gameport");
2852			if (r)
2853				break;
2854		}
2855	} else {
2856		io_port = joystick_port[dev];
2857		r = devm_request_region(&cm->pci->dev, io_port, 1,
2858					"CMIPCI gameport");
2859	}
2860
2861	if (!r) {
2862		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2863		return -EBUSY;
2864	}
2865
2866	cm->gameport = gp = gameport_allocate_port();
2867	if (!gp) {
2868		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2869		return -ENOMEM;
2870	}
2871	gameport_set_name(gp, "C-Media Gameport");
2872	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2873	gameport_set_dev_parent(gp, &cm->pci->dev);
2874	gp->io = io_port;
2875
2876	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2877
2878	gameport_register_port(cm->gameport);
2879
2880	return 0;
2881}
2882
2883static void snd_cmipci_free_gameport(struct cmipci *cm)
2884{
2885	if (cm->gameport) {
2886		gameport_unregister_port(cm->gameport);
2887		cm->gameport = NULL;
2888
2889		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2890	}
2891}
2892#else
2893static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2894static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2895#endif
2896
2897static void snd_cmipci_free(struct snd_card *card)
2898{
2899	struct cmipci *cm = card->private_data;
2900
2901	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2902	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2903	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2904	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2905	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2906	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2907	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2908
2909	/* reset mixer */
2910	snd_cmipci_mixer_write(cm, 0, 0);
2911
2912	snd_cmipci_free_gameport(cm);
2913}
2914
2915static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2916{
2917	long iosynth;
2918	unsigned int val;
2919	struct snd_opl3 *opl3;
2920	int err;
2921
2922	if (!fm_port)
2923		goto disable_fm;
2924
2925	if (cm->chip_version >= 39) {
2926		/* first try FM regs in PCI port range */
2927		iosynth = cm->iobase + CM_REG_FM_PCI;
2928		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2929				      OPL3_HW_OPL3, 1, &opl3);
2930	} else {
2931		err = -EIO;
2932	}
2933	if (err < 0) {
2934		/* then try legacy ports */
2935		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2936		iosynth = fm_port;
2937		switch (iosynth) {
2938		case 0x3E8: val |= CM_FMSEL_3E8; break;
2939		case 0x3E0: val |= CM_FMSEL_3E0; break;
2940		case 0x3C8: val |= CM_FMSEL_3C8; break;
2941		case 0x388: val |= CM_FMSEL_388; break;
2942		default:
2943			goto disable_fm;
2944		}
2945		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2946		/* enable FM */
2947		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2948
2949		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2950				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2951			dev_err(cm->card->dev,
2952				"no OPL device at %#lx, skipping...\n",
2953				iosynth);
2954			goto disable_fm;
2955		}
2956	}
2957	err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
2958	if (err < 0) {
2959		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2960		return err;
2961	}
2962	return 0;
2963
2964 disable_fm:
2965	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2966	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2967	return 0;
2968}
2969
2970static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2971			     int dev)
2972{
2973	struct cmipci *cm = card->private_data;
2974	int err;
2975	unsigned int val;
2976	long iomidi = 0;
2977	int integrated_midi = 0;
2978	char modelstr[16];
2979	int pcm_index, pcm_spdif_index;
2980	static const struct pci_device_id intel_82437vx[] = {
2981		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2982		{ },
2983	};
2984
2985	err = pcim_enable_device(pci);
2986	if (err < 0)
2987		return err;
2988
2989	spin_lock_init(&cm->reg_lock);
2990	mutex_init(&cm->open_mutex);
2991	cm->device = pci->device;
2992	cm->card = card;
2993	cm->pci = pci;
2994	cm->irq = -1;
2995	cm->channel[0].ch = 0;
2996	cm->channel[1].ch = 1;
2997	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2998
2999	err = pci_request_regions(pci, card->driver);
3000	if (err < 0)
3001		return err;
3002	cm->iobase = pci_resource_start(pci, 0);
3003
3004	if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt,
3005			     IRQF_SHARED, KBUILD_MODNAME, cm)) {
3006		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3007		return -EBUSY;
3008	}
3009	cm->irq = pci->irq;
3010	card->sync_irq = cm->irq;
3011	card->private_free = snd_cmipci_free;
3012
3013	pci_set_master(cm->pci);
3014
3015	/*
3016	 * check chip version, max channels and capabilities
3017	 */
3018
3019	cm->chip_version = 0;
3020	cm->max_channels = 2;
3021	cm->do_soft_ac3 = soft_ac3[dev];
3022
3023	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3024	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3025		query_chip(cm);
3026	/* added -MCx suffix for chip supporting multi-channels */
3027	if (cm->can_multi_ch)
3028		sprintf(cm->card->driver + strlen(cm->card->driver),
3029			"-MC%d", cm->max_channels);
3030	else if (cm->can_ac3_sw)
3031		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3032
3033	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3034	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3035
3036#if CM_CH_PLAY == 1
3037	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3038#else
3039	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3040#endif
3041
3042	/* initialize codec registers */
3043	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3044	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3045	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3046	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3047	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3048	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3049	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3050
3051	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3052	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3053#if CM_CH_PLAY == 1
3054	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3055#else
3056	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3057#endif
3058	if (cm->chip_version) {
3059		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3060		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3061	}
3062	/* Set Bus Master Request */
3063	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3064
3065	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3066	switch (pci->device) {
3067	case PCI_DEVICE_ID_CMEDIA_CM8738:
3068	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3069		if (!pci_dev_present(intel_82437vx)) 
3070			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3071		break;
3072	default:
3073		break;
3074	}
3075
3076	if (cm->chip_version < 68) {
3077		val = pci->device < 0x110 ? 8338 : 8738;
3078	} else {
3079		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3080		case 0:
3081			val = 8769;
3082			break;
3083		case 2:
3084			val = 8762;
3085			break;
3086		default:
3087			switch ((pci->subsystem_vendor << 16) |
3088				pci->subsystem_device) {
3089			case 0x13f69761:
3090			case 0x584d3741:
3091			case 0x584d3751:
3092			case 0x584d3761:
3093			case 0x584d3771:
3094			case 0x72848384:
3095				val = 8770;
3096				break;
3097			default:
3098				val = 8768;
3099				break;
3100			}
3101		}
3102	}
3103	sprintf(card->shortname, "C-Media CMI%d", val);
3104	if (cm->chip_version < 68)
3105		scnprintf(modelstr, sizeof(modelstr),
3106			  " (model %d)", cm->chip_version);
3107	else
3108		modelstr[0] = '\0';
3109	scnprintf(card->longname, sizeof(card->longname),
3110		  "%s%s at %#lx, irq %i",
3111		  card->shortname, modelstr, cm->iobase, cm->irq);
3112
3113	if (cm->chip_version >= 39) {
3114		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3115		if (val != 0x00 && val != 0xff) {
3116			if (mpu_port[dev])
3117				iomidi = cm->iobase + CM_REG_MPU_PCI;
3118			integrated_midi = 1;
3119		}
3120	}
3121	if (!integrated_midi) {
3122		val = 0;
3123		iomidi = mpu_port[dev];
3124		switch (iomidi) {
3125		case 0x320: val = CM_VMPU_320; break;
3126		case 0x310: val = CM_VMPU_310; break;
3127		case 0x300: val = CM_VMPU_300; break;
3128		case 0x330: val = CM_VMPU_330; break;
3129		default:
3130			    iomidi = 0; break;
3131		}
3132		if (iomidi > 0) {
3133			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3134			/* enable UART */
3135			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3136			if (inb(iomidi + 1) == 0xff) {
3137				dev_err(cm->card->dev,
3138					"cannot enable MPU-401 port at %#lx\n",
3139					iomidi);
3140				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3141						     CM_UART_EN);
3142				iomidi = 0;
3143			}
3144		}
3145	}
3146
3147	if (cm->chip_version < 68) {
3148		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3149		if (err < 0)
3150			return err;
3151	}
3152
3153	/* reset mixer */
3154	snd_cmipci_mixer_write(cm, 0, 0);
3155
3156	snd_cmipci_proc_init(cm);
3157
3158	/* create pcm devices */
3159	pcm_index = pcm_spdif_index = 0;
3160	err = snd_cmipci_pcm_new(cm, pcm_index);
3161	if (err < 0)
3162		return err;
3163	pcm_index++;
3164	err = snd_cmipci_pcm2_new(cm, pcm_index);
3165	if (err < 0)
3166		return err;
3167	pcm_index++;
3168	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3169		pcm_spdif_index = pcm_index;
3170		err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
3171		if (err < 0)
3172			return err;
3173	}
3174
3175	/* create mixer interface & switches */
3176	err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
3177	if (err < 0)
3178		return err;
3179
3180	if (iomidi > 0) {
3181		err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3182					  iomidi,
3183					  (integrated_midi ?
3184					   MPU401_INFO_INTEGRATED : 0) |
3185					  MPU401_INFO_IRQ_HOOK,
3186					  -1, &cm->rmidi);
3187		if (err < 0)
3188			dev_err(cm->card->dev,
3189				"no UART401 device at 0x%lx\n", iomidi);
3190	}
3191
3192#ifdef USE_VAR48KRATE
3193	for (val = 0; val < ARRAY_SIZE(rates); val++)
3194		snd_cmipci_set_pll(cm, rates[val], val);
3195
3196	/*
3197	 * (Re-)Enable external switch spdo_48k
3198	 */
3199	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3200#endif /* USE_VAR48KRATE */
3201
3202	if (snd_cmipci_create_gameport(cm, dev) < 0)
3203		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3204
3205	return 0;
3206}
3207
3208/*
3209 */
3210
3211MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3212
3213static int snd_cmipci_probe(struct pci_dev *pci,
3214			    const struct pci_device_id *pci_id)
3215{
3216	static int dev;
3217	struct snd_card *card;
3218	int err;
3219
3220	if (dev >= SNDRV_CARDS)
3221		return -ENODEV;
3222	if (! enable[dev]) {
3223		dev++;
3224		return -ENOENT;
3225	}
3226
3227	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3228				sizeof(struct cmipci), &card);
3229	if (err < 0)
3230		return err;
3231	
3232	switch (pci->device) {
3233	case PCI_DEVICE_ID_CMEDIA_CM8738:
3234	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3235		strcpy(card->driver, "CMI8738");
3236		break;
3237	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3238	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3239		strcpy(card->driver, "CMI8338");
3240		break;
3241	default:
3242		strcpy(card->driver, "CMIPCI");
3243		break;
3244	}
3245
3246	err = snd_cmipci_create(card, pci, dev);
3247	if (err < 0)
3248		goto error;
3249
3250	err = snd_card_register(card);
3251	if (err < 0)
3252		goto error;
3253
3254	pci_set_drvdata(pci, card);
3255	dev++;
3256	return 0;
3257
3258 error:
3259	snd_card_free(card);
3260	return err;
3261}
3262
3263#ifdef CONFIG_PM_SLEEP
3264/*
3265 * power management
3266 */
3267static const unsigned char saved_regs[] = {
3268	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3269	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3270	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3271	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3272	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3273};
3274
3275static const unsigned char saved_mixers[] = {
3276	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3277	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3278	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3279	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3280	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3281	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3282	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3283	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3284};
3285
3286static int snd_cmipci_suspend(struct device *dev)
3287{
3288	struct snd_card *card = dev_get_drvdata(dev);
3289	struct cmipci *cm = card->private_data;
3290	int i;
3291
3292	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3293	
3294	/* save registers */
3295	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3296		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3297	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3298		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3299
3300	/* disable ints */
3301	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3302	return 0;
3303}
3304
3305static int snd_cmipci_resume(struct device *dev)
3306{
3307	struct snd_card *card = dev_get_drvdata(dev);
3308	struct cmipci *cm = card->private_data;
3309	int i;
3310
3311	/* reset / initialize to a sane state */
3312	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3313	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3314	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3315	snd_cmipci_mixer_write(cm, 0, 0);
3316
3317	/* restore registers */
3318	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3319		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3320	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3321		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3322
3323	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3324	return 0;
3325}
3326
3327static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3328#define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
3329#else
3330#define SND_CMIPCI_PM_OPS	NULL
3331#endif /* CONFIG_PM_SLEEP */
3332
3333static struct pci_driver cmipci_driver = {
3334	.name = KBUILD_MODNAME,
3335	.id_table = snd_cmipci_ids,
3336	.probe = snd_cmipci_probe,
3337	.driver = {
3338		.pm = SND_CMIPCI_PM_OPS,
3339	},
3340};
3341	
3342module_pci_driver(cmipci_driver);