Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
  10 */
  11
  12#define pr_fmt(fmt) "LSM: " fmt
  13
  14#include <linux/bpf.h>
  15#include <linux/capability.h>
  16#include <linux/dcache.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/kernel_read_file.h>
  21#include <linux/lsm_hooks.h>
 
 
 
 
  22#include <linux/mman.h>
  23#include <linux/mount.h>
  24#include <linux/personality.h>
  25#include <linux/backing-dev.h>
  26#include <linux/string.h>
  27#include <linux/xattr.h>
  28#include <linux/msg.h>
  29#include <linux/overflow.h>
  30#include <linux/perf_event.h>
  31#include <linux/fs.h>
  32#include <net/flow.h>
  33#include <net/sock.h>
  34
  35#define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
 
  36
  37/*
  38 * Identifier for the LSM static calls.
  39 * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
  40 * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
  41 */
  42#define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
  43
  44/*
  45 * Call the macro M for each LSM hook MAX_LSM_COUNT times.
  46 */
  47#define LSM_LOOP_UNROLL(M, ...) 		\
  48do {						\
  49	UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)	\
  50} while (0)
  51
  52#define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
 
  53
  54/*
  55 * These are descriptions of the reasons that can be passed to the
  56 * security_locked_down() LSM hook. Placing this array here allows
  57 * all security modules to use the same descriptions for auditing
  58 * purposes.
  59 */
  60const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
  61	[LOCKDOWN_NONE] = "none",
  62	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  63	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  64	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  65	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
  66	[LOCKDOWN_HIBERNATION] = "hibernation",
  67	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  68	[LOCKDOWN_IOPORT] = "raw io port access",
  69	[LOCKDOWN_MSR] = "raw MSR access",
  70	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  71	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
  72	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  73	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  74	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  75	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  76	[LOCKDOWN_DEBUGFS] = "debugfs access",
  77	[LOCKDOWN_XMON_WR] = "xmon write access",
  78	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
  79	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
  80	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
  81	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
  82	[LOCKDOWN_KCORE] = "/proc/kcore access",
  83	[LOCKDOWN_KPROBES] = "use of kprobes",
  84	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
  85	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
  86	[LOCKDOWN_PERF] = "unsafe use of perf",
  87	[LOCKDOWN_TRACEFS] = "use of tracefs",
  88	[LOCKDOWN_XMON_RW] = "xmon read and write access",
  89	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
  90	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  91};
  92
 
  93static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  94
  95static struct kmem_cache *lsm_file_cache;
  96static struct kmem_cache *lsm_inode_cache;
  97
  98char *lsm_names;
  99static struct lsm_blob_sizes blob_sizes __ro_after_init;
 100
 101/* Boot-time LSM user choice */
 102static __initdata const char *chosen_lsm_order;
 103static __initdata const char *chosen_major_lsm;
 104
 105static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
 106
 107/* Ordered list of LSMs to initialize. */
 108static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
 109static __initdata struct lsm_info *exclusive;
 110
 111#ifdef CONFIG_HAVE_STATIC_CALL
 112#define LSM_HOOK_TRAMP(NAME, NUM) \
 113	&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
 114#else
 115#define LSM_HOOK_TRAMP(NAME, NUM) NULL
 116#endif
 117
 118/*
 119 * Define static calls and static keys for each LSM hook.
 120 */
 121#define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...)			\
 122	DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM),		\
 123				*((RET(*)(__VA_ARGS__))NULL));		\
 124	DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
 125
 126#define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
 127	LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
 128#include <linux/lsm_hook_defs.h>
 129#undef LSM_HOOK
 130#undef DEFINE_LSM_STATIC_CALL
 131
 132/*
 133 * Initialise a table of static calls for each LSM hook.
 134 * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
 135 * and a trampoline (STATIC_CALL_TRAMP) which are used to call
 136 * __static_call_update when updating the static call.
 137 *
 138 * The static calls table is used by early LSMs, some architectures can fault on
 139 * unaligned accesses and the fault handling code may not be ready by then.
 140 * Thus, the static calls table should be aligned to avoid any unhandled faults
 141 * in early init.
 142 */
 143struct lsm_static_calls_table
 144	static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
 145#define INIT_LSM_STATIC_CALL(NUM, NAME)					\
 146	(struct lsm_static_call) {					\
 147		.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)),	\
 148		.trampoline = LSM_HOOK_TRAMP(NAME, NUM),		\
 149		.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM),		\
 150	},
 151#define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
 152	.NAME = {							\
 153		LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME)		\
 154	},
 155#include <linux/lsm_hook_defs.h>
 156#undef LSM_HOOK
 157#undef INIT_LSM_STATIC_CALL
 158	};
 159
 160static __initdata bool debug;
 161#define init_debug(...)						\
 162	do {							\
 163		if (debug)					\
 164			pr_info(__VA_ARGS__);			\
 165	} while (0)
 166
 167static bool __init is_enabled(struct lsm_info *lsm)
 168{
 169	if (!lsm->enabled)
 170		return false;
 171
 172	return *lsm->enabled;
 173}
 174
 175/* Mark an LSM's enabled flag. */
 176static int lsm_enabled_true __initdata = 1;
 177static int lsm_enabled_false __initdata = 0;
 178static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 179{
 180	/*
 181	 * When an LSM hasn't configured an enable variable, we can use
 182	 * a hard-coded location for storing the default enabled state.
 183	 */
 184	if (!lsm->enabled) {
 185		if (enabled)
 186			lsm->enabled = &lsm_enabled_true;
 187		else
 188			lsm->enabled = &lsm_enabled_false;
 189	} else if (lsm->enabled == &lsm_enabled_true) {
 190		if (!enabled)
 191			lsm->enabled = &lsm_enabled_false;
 192	} else if (lsm->enabled == &lsm_enabled_false) {
 193		if (enabled)
 194			lsm->enabled = &lsm_enabled_true;
 195	} else {
 196		*lsm->enabled = enabled;
 197	}
 198}
 199
 200/* Is an LSM already listed in the ordered LSMs list? */
 201static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 202{
 203	struct lsm_info **check;
 204
 205	for (check = ordered_lsms; *check; check++)
 206		if (*check == lsm)
 207			return true;
 208
 209	return false;
 210}
 211
 212/* Append an LSM to the list of ordered LSMs to initialize. */
 213static int last_lsm __initdata;
 214static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 215{
 216	/* Ignore duplicate selections. */
 217	if (exists_ordered_lsm(lsm))
 218		return;
 219
 220	if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
 221		return;
 222
 223	/* Enable this LSM, if it is not already set. */
 224	if (!lsm->enabled)
 225		lsm->enabled = &lsm_enabled_true;
 226	ordered_lsms[last_lsm++] = lsm;
 227
 228	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
 229		   is_enabled(lsm) ? "enabled" : "disabled");
 230}
 231
 232/* Is an LSM allowed to be initialized? */
 233static bool __init lsm_allowed(struct lsm_info *lsm)
 234{
 235	/* Skip if the LSM is disabled. */
 236	if (!is_enabled(lsm))
 237		return false;
 238
 239	/* Not allowed if another exclusive LSM already initialized. */
 240	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 241		init_debug("exclusive disabled: %s\n", lsm->name);
 242		return false;
 243	}
 244
 245	return true;
 246}
 247
 248static void __init lsm_set_blob_size(int *need, int *lbs)
 249{
 250	int offset;
 251
 252	if (*need <= 0)
 253		return;
 254
 255	offset = ALIGN(*lbs, sizeof(void *));
 256	*lbs = offset + *need;
 257	*need = offset;
 258}
 259
 260static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 261{
 262	if (!needed)
 263		return;
 264
 265	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 266	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 267	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
 268	/*
 269	 * The inode blob gets an rcu_head in addition to
 270	 * what the modules might need.
 271	 */
 272	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 273		blob_sizes.lbs_inode = sizeof(struct rcu_head);
 274	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 275	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 276	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
 277	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 278	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
 279	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
 280	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
 281	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 282	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
 283	lsm_set_blob_size(&needed->lbs_xattr_count,
 284			  &blob_sizes.lbs_xattr_count);
 285	lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
 286}
 287
 288/* Prepare LSM for initialization. */
 289static void __init prepare_lsm(struct lsm_info *lsm)
 290{
 291	int enabled = lsm_allowed(lsm);
 292
 293	/* Record enablement (to handle any following exclusive LSMs). */
 294	set_enabled(lsm, enabled);
 295
 296	/* If enabled, do pre-initialization work. */
 297	if (enabled) {
 298		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 299			exclusive = lsm;
 300			init_debug("exclusive chosen:   %s\n", lsm->name);
 301		}
 302
 303		lsm_set_blob_sizes(lsm->blobs);
 304	}
 305}
 306
 307/* Initialize a given LSM, if it is enabled. */
 308static void __init initialize_lsm(struct lsm_info *lsm)
 309{
 310	if (is_enabled(lsm)) {
 311		int ret;
 312
 313		init_debug("initializing %s\n", lsm->name);
 314		ret = lsm->init();
 315		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 316	}
 317}
 318
 319/*
 320 * Current index to use while initializing the lsm id list.
 321 */
 322u32 lsm_active_cnt __ro_after_init;
 323const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
 324
 325/* Populate ordered LSMs list from comma-separated LSM name list. */
 326static void __init ordered_lsm_parse(const char *order, const char *origin)
 327{
 328	struct lsm_info *lsm;
 329	char *sep, *name, *next;
 330
 331	/* LSM_ORDER_FIRST is always first. */
 332	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 333		if (lsm->order == LSM_ORDER_FIRST)
 334			append_ordered_lsm(lsm, "  first");
 335	}
 336
 337	/* Process "security=", if given. */
 338	if (chosen_major_lsm) {
 339		struct lsm_info *major;
 340
 341		/*
 342		 * To match the original "security=" behavior, this
 343		 * explicitly does NOT fallback to another Legacy Major
 344		 * if the selected one was separately disabled: disable
 345		 * all non-matching Legacy Major LSMs.
 346		 */
 347		for (major = __start_lsm_info; major < __end_lsm_info;
 348		     major++) {
 349			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 350			    strcmp(major->name, chosen_major_lsm) != 0) {
 351				set_enabled(major, false);
 352				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
 353					   chosen_major_lsm, major->name);
 354			}
 355		}
 356	}
 357
 358	sep = kstrdup(order, GFP_KERNEL);
 359	next = sep;
 360	/* Walk the list, looking for matching LSMs. */
 361	while ((name = strsep(&next, ",")) != NULL) {
 362		bool found = false;
 363
 364		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 365			if (strcmp(lsm->name, name) == 0) {
 366				if (lsm->order == LSM_ORDER_MUTABLE)
 367					append_ordered_lsm(lsm, origin);
 368				found = true;
 369			}
 370		}
 371
 372		if (!found)
 373			init_debug("%s ignored: %s (not built into kernel)\n",
 374				   origin, name);
 375	}
 376
 377	/* Process "security=", if given. */
 378	if (chosen_major_lsm) {
 379		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 380			if (exists_ordered_lsm(lsm))
 381				continue;
 382			if (strcmp(lsm->name, chosen_major_lsm) == 0)
 383				append_ordered_lsm(lsm, "security=");
 384		}
 385	}
 386
 387	/* LSM_ORDER_LAST is always last. */
 388	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 389		if (lsm->order == LSM_ORDER_LAST)
 390			append_ordered_lsm(lsm, "   last");
 391	}
 392
 393	/* Disable all LSMs not in the ordered list. */
 394	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 395		if (exists_ordered_lsm(lsm))
 396			continue;
 397		set_enabled(lsm, false);
 398		init_debug("%s skipped: %s (not in requested order)\n",
 399			   origin, lsm->name);
 400	}
 401
 402	kfree(sep);
 403}
 404
 405static void __init lsm_static_call_init(struct security_hook_list *hl)
 406{
 407	struct lsm_static_call *scall = hl->scalls;
 408	int i;
 409
 410	for (i = 0; i < MAX_LSM_COUNT; i++) {
 411		/* Update the first static call that is not used yet */
 412		if (!scall->hl) {
 413			__static_call_update(scall->key, scall->trampoline,
 414					     hl->hook.lsm_func_addr);
 415			scall->hl = hl;
 416			static_branch_enable(scall->active);
 417			return;
 418		}
 419		scall++;
 420	}
 421	panic("%s - Ran out of static slots.\n", __func__);
 422}
 423
 424static void __init lsm_early_cred(struct cred *cred);
 425static void __init lsm_early_task(struct task_struct *task);
 426
 427static int lsm_append(const char *new, char **result);
 428
 429static void __init report_lsm_order(void)
 430{
 431	struct lsm_info **lsm, *early;
 432	int first = 0;
 433
 434	pr_info("initializing lsm=");
 435
 436	/* Report each enabled LSM name, comma separated. */
 437	for (early = __start_early_lsm_info;
 438	     early < __end_early_lsm_info; early++)
 439		if (is_enabled(early))
 440			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
 441	for (lsm = ordered_lsms; *lsm; lsm++)
 442		if (is_enabled(*lsm))
 443			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
 444
 445	pr_cont("\n");
 446}
 447
 448static void __init ordered_lsm_init(void)
 449{
 450	struct lsm_info **lsm;
 451
 
 
 
 452	if (chosen_lsm_order) {
 453		if (chosen_major_lsm) {
 454			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
 455				chosen_major_lsm, chosen_lsm_order);
 456			chosen_major_lsm = NULL;
 457		}
 458		ordered_lsm_parse(chosen_lsm_order, "cmdline");
 459	} else
 460		ordered_lsm_parse(builtin_lsm_order, "builtin");
 461
 462	for (lsm = ordered_lsms; *lsm; lsm++)
 463		prepare_lsm(*lsm);
 464
 465	report_lsm_order();
 466
 467	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
 468	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
 469	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
 470	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
 471	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
 472#ifdef CONFIG_KEYS
 473	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
 474#endif /* CONFIG_KEYS */
 475	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
 476	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
 477	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
 478	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
 479	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
 480	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
 481	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
 482	init_debug("bdev blob size       = %d\n", blob_sizes.lbs_bdev);
 483
 484	/*
 485	 * Create any kmem_caches needed for blobs
 486	 */
 487	if (blob_sizes.lbs_file)
 488		lsm_file_cache = kmem_cache_create("lsm_file_cache",
 489						   blob_sizes.lbs_file, 0,
 490						   SLAB_PANIC, NULL);
 491	if (blob_sizes.lbs_inode)
 492		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 493						    blob_sizes.lbs_inode, 0,
 494						    SLAB_PANIC, NULL);
 495
 496	lsm_early_cred((struct cred *) current->cred);
 497	lsm_early_task(current);
 498	for (lsm = ordered_lsms; *lsm; lsm++)
 499		initialize_lsm(*lsm);
 
 
 500}
 501
 502int __init early_security_init(void)
 503{
 504	struct lsm_info *lsm;
 505
 
 
 
 
 
 506	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 507		if (!lsm->enabled)
 508			lsm->enabled = &lsm_enabled_true;
 509		prepare_lsm(lsm);
 510		initialize_lsm(lsm);
 511	}
 512
 513	return 0;
 514}
 515
 516/**
 517 * security_init - initializes the security framework
 518 *
 519 * This should be called early in the kernel initialization sequence.
 520 */
 521int __init security_init(void)
 522{
 523	struct lsm_info *lsm;
 524
 525	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
 526	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
 527	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
 528
 529	/*
 530	 * Append the names of the early LSM modules now that kmalloc() is
 531	 * available
 532	 */
 533	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 534		init_debug("  early started: %s (%s)\n", lsm->name,
 535			   is_enabled(lsm) ? "enabled" : "disabled");
 536		if (lsm->enabled)
 537			lsm_append(lsm->name, &lsm_names);
 538	}
 539
 540	/* Load LSMs in specified order. */
 541	ordered_lsm_init();
 542
 543	return 0;
 544}
 545
 546/* Save user chosen LSM */
 547static int __init choose_major_lsm(char *str)
 548{
 549	chosen_major_lsm = str;
 550	return 1;
 551}
 552__setup("security=", choose_major_lsm);
 553
 554/* Explicitly choose LSM initialization order. */
 555static int __init choose_lsm_order(char *str)
 556{
 557	chosen_lsm_order = str;
 558	return 1;
 559}
 560__setup("lsm=", choose_lsm_order);
 561
 562/* Enable LSM order debugging. */
 563static int __init enable_debug(char *str)
 564{
 565	debug = true;
 566	return 1;
 567}
 568__setup("lsm.debug", enable_debug);
 569
 570static bool match_last_lsm(const char *list, const char *lsm)
 571{
 572	const char *last;
 573
 574	if (WARN_ON(!list || !lsm))
 575		return false;
 576	last = strrchr(list, ',');
 577	if (last)
 578		/* Pass the comma, strcmp() will check for '\0' */
 579		last++;
 580	else
 581		last = list;
 582	return !strcmp(last, lsm);
 583}
 584
 585static int lsm_append(const char *new, char **result)
 586{
 587	char *cp;
 588
 589	if (*result == NULL) {
 590		*result = kstrdup(new, GFP_KERNEL);
 591		if (*result == NULL)
 592			return -ENOMEM;
 593	} else {
 594		/* Check if it is the last registered name */
 595		if (match_last_lsm(*result, new))
 596			return 0;
 597		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 598		if (cp == NULL)
 599			return -ENOMEM;
 600		kfree(*result);
 601		*result = cp;
 602	}
 603	return 0;
 604}
 605
 606/**
 607 * security_add_hooks - Add a modules hooks to the hook lists.
 608 * @hooks: the hooks to add
 609 * @count: the number of hooks to add
 610 * @lsmid: the identification information for the security module
 611 *
 612 * Each LSM has to register its hooks with the infrastructure.
 613 */
 614void __init security_add_hooks(struct security_hook_list *hooks, int count,
 615			       const struct lsm_id *lsmid)
 616{
 617	int i;
 618
 619	/*
 620	 * A security module may call security_add_hooks() more
 621	 * than once during initialization, and LSM initialization
 622	 * is serialized. Landlock is one such case.
 623	 * Look at the previous entry, if there is one, for duplication.
 624	 */
 625	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
 626		if (lsm_active_cnt >= MAX_LSM_COUNT)
 627			panic("%s Too many LSMs registered.\n", __func__);
 628		lsm_idlist[lsm_active_cnt++] = lsmid;
 629	}
 630
 631	for (i = 0; i < count; i++) {
 632		hooks[i].lsmid = lsmid;
 633		lsm_static_call_init(&hooks[i]);
 634	}
 635
 636	/*
 637	 * Don't try to append during early_security_init(), we'll come back
 638	 * and fix this up afterwards.
 639	 */
 640	if (slab_is_available()) {
 641		if (lsm_append(lsmid->name, &lsm_names) < 0)
 642			panic("%s - Cannot get early memory.\n", __func__);
 643	}
 644}
 645
 646int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 647{
 648	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 649					    event, data);
 650}
 651EXPORT_SYMBOL(call_blocking_lsm_notifier);
 652
 653int register_blocking_lsm_notifier(struct notifier_block *nb)
 654{
 655	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 656						nb);
 657}
 658EXPORT_SYMBOL(register_blocking_lsm_notifier);
 659
 660int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 661{
 662	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 663						  nb);
 664}
 665EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 666
 667/**
 668 * lsm_blob_alloc - allocate a composite blob
 669 * @dest: the destination for the blob
 670 * @size: the size of the blob
 671 * @gfp: allocation type
 672 *
 673 * Allocate a blob for all the modules
 674 *
 675 * Returns 0, or -ENOMEM if memory can't be allocated.
 676 */
 677static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
 678{
 679	if (size == 0) {
 680		*dest = NULL;
 681		return 0;
 682	}
 683
 684	*dest = kzalloc(size, gfp);
 685	if (*dest == NULL)
 686		return -ENOMEM;
 687	return 0;
 688}
 689
 690/**
 691 * lsm_cred_alloc - allocate a composite cred blob
 692 * @cred: the cred that needs a blob
 693 * @gfp: allocation type
 694 *
 695 * Allocate the cred blob for all the modules
 696 *
 697 * Returns 0, or -ENOMEM if memory can't be allocated.
 698 */
 699static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 700{
 701	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
 702}
 703
 704/**
 705 * lsm_early_cred - during initialization allocate a composite cred blob
 706 * @cred: the cred that needs a blob
 707 *
 708 * Allocate the cred blob for all the modules
 709 */
 710static void __init lsm_early_cred(struct cred *cred)
 711{
 712	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 713
 714	if (rc)
 715		panic("%s: Early cred alloc failed.\n", __func__);
 716}
 717
 718/**
 719 * lsm_file_alloc - allocate a composite file blob
 720 * @file: the file that needs a blob
 721 *
 722 * Allocate the file blob for all the modules
 723 *
 724 * Returns 0, or -ENOMEM if memory can't be allocated.
 725 */
 726static int lsm_file_alloc(struct file *file)
 727{
 728	if (!lsm_file_cache) {
 729		file->f_security = NULL;
 730		return 0;
 731	}
 732
 733	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 734	if (file->f_security == NULL)
 735		return -ENOMEM;
 736	return 0;
 737}
 738
 739/**
 740 * lsm_inode_alloc - allocate a composite inode blob
 741 * @inode: the inode that needs a blob
 742 * @gfp: allocation flags
 743 *
 744 * Allocate the inode blob for all the modules
 745 *
 746 * Returns 0, or -ENOMEM if memory can't be allocated.
 747 */
 748static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
 749{
 750	if (!lsm_inode_cache) {
 751		inode->i_security = NULL;
 752		return 0;
 753	}
 754
 755	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
 756	if (inode->i_security == NULL)
 757		return -ENOMEM;
 758	return 0;
 759}
 760
 761/**
 762 * lsm_task_alloc - allocate a composite task blob
 763 * @task: the task that needs a blob
 764 *
 765 * Allocate the task blob for all the modules
 766 *
 767 * Returns 0, or -ENOMEM if memory can't be allocated.
 768 */
 769static int lsm_task_alloc(struct task_struct *task)
 770{
 771	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
 
 
 
 
 
 
 
 
 772}
 773
 774/**
 775 * lsm_ipc_alloc - allocate a composite ipc blob
 776 * @kip: the ipc that needs a blob
 777 *
 778 * Allocate the ipc blob for all the modules
 779 *
 780 * Returns 0, or -ENOMEM if memory can't be allocated.
 781 */
 782static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 783{
 784	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
 785}
 
 
 786
 787#ifdef CONFIG_KEYS
 788/**
 789 * lsm_key_alloc - allocate a composite key blob
 790 * @key: the key that needs a blob
 791 *
 792 * Allocate the key blob for all the modules
 793 *
 794 * Returns 0, or -ENOMEM if memory can't be allocated.
 795 */
 796static int lsm_key_alloc(struct key *key)
 797{
 798	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
 799}
 800#endif /* CONFIG_KEYS */
 801
 802/**
 803 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 804 * @mp: the msg_msg that needs a blob
 805 *
 806 * Allocate the ipc blob for all the modules
 807 *
 808 * Returns 0, or -ENOMEM if memory can't be allocated.
 809 */
 810static int lsm_msg_msg_alloc(struct msg_msg *mp)
 811{
 812	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
 813			      GFP_KERNEL);
 814}
 815
 816/**
 817 * lsm_bdev_alloc - allocate a composite block_device blob
 818 * @bdev: the block_device that needs a blob
 819 *
 820 * Allocate the block_device blob for all the modules
 821 *
 822 * Returns 0, or -ENOMEM if memory can't be allocated.
 823 */
 824static int lsm_bdev_alloc(struct block_device *bdev)
 825{
 826	if (blob_sizes.lbs_bdev == 0) {
 827		bdev->bd_security = NULL;
 828		return 0;
 829	}
 830
 831	bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
 832	if (!bdev->bd_security)
 833		return -ENOMEM;
 834
 835	return 0;
 836}
 837
 838/**
 839 * lsm_early_task - during initialization allocate a composite task blob
 840 * @task: the task that needs a blob
 841 *
 842 * Allocate the task blob for all the modules
 843 */
 844static void __init lsm_early_task(struct task_struct *task)
 845{
 846	int rc = lsm_task_alloc(task);
 847
 848	if (rc)
 849		panic("%s: Early task alloc failed.\n", __func__);
 850}
 851
 852/**
 853 * lsm_superblock_alloc - allocate a composite superblock blob
 854 * @sb: the superblock that needs a blob
 855 *
 856 * Allocate the superblock blob for all the modules
 857 *
 858 * Returns 0, or -ENOMEM if memory can't be allocated.
 859 */
 860static int lsm_superblock_alloc(struct super_block *sb)
 861{
 862	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
 863			      GFP_KERNEL);
 
 
 
 
 
 
 
 864}
 865
 866/**
 867 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
 868 * @uctx: a userspace LSM context to be filled
 869 * @uctx_len: available uctx size (input), used uctx size (output)
 870 * @val: the new LSM context value
 871 * @val_len: the size of the new LSM context value
 872 * @id: LSM id
 873 * @flags: LSM defined flags
 874 *
 875 * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
 876 * simply calculate the required size to output via @utc_len and return
 877 * success.
 878 *
 879 * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
 880 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
 881 */
 882int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
 883		      void *val, size_t val_len,
 884		      u64 id, u64 flags)
 885{
 886	struct lsm_ctx *nctx = NULL;
 887	size_t nctx_len;
 888	int rc = 0;
 889
 890	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
 891	if (nctx_len > *uctx_len) {
 892		rc = -E2BIG;
 893		goto out;
 894	}
 895
 896	/* no buffer - return success/0 and set @uctx_len to the req size */
 897	if (!uctx)
 898		goto out;
 899
 900	nctx = kzalloc(nctx_len, GFP_KERNEL);
 901	if (nctx == NULL) {
 902		rc = -ENOMEM;
 903		goto out;
 904	}
 905	nctx->id = id;
 906	nctx->flags = flags;
 907	nctx->len = nctx_len;
 908	nctx->ctx_len = val_len;
 909	memcpy(nctx->ctx, val, val_len);
 910
 911	if (copy_to_user(uctx, nctx, nctx_len))
 912		rc = -EFAULT;
 913
 914out:
 915	kfree(nctx);
 916	*uctx_len = nctx_len;
 917	return rc;
 918}
 919
 920/*
 921 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 922 * can be accessed with:
 923 *
 924 *	LSM_RET_DEFAULT(<hook_name>)
 925 *
 926 * The macros below define static constants for the default value of each
 927 * LSM hook.
 928 */
 929#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 930#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 931#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 932	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
 933#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 934	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 935
 936#include <linux/lsm_hook_defs.h>
 937#undef LSM_HOOK
 938
 939/*
 940 * Hook list operation macros.
 941 *
 942 * call_void_hook:
 943 *	This is a hook that does not return a value.
 944 *
 945 * call_int_hook:
 946 *	This is a hook that returns a value.
 947 */
 948#define __CALL_STATIC_VOID(NUM, HOOK, ...)				     \
 949do {									     \
 950	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {    \
 951		static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);	     \
 952	}								     \
 953} while (0);
 954
 955#define call_void_hook(HOOK, ...)                                 \
 956	do {                                                      \
 957		LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
 958	} while (0)
 959
 
 
 
 
 
 
 
 960
 961#define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...)			     \
 962do {									     \
 963	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {  \
 964		R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);    \
 965		if (R != LSM_RET_DEFAULT(HOOK))				     \
 966			goto LABEL;					     \
 967	}								     \
 968} while (0);
 969
 970#define call_int_hook(HOOK, ...)					\
 971({									\
 972	__label__ OUT;							\
 973	int RC = LSM_RET_DEFAULT(HOOK);					\
 974									\
 975	LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__);	\
 976OUT:									\
 977	RC;								\
 978})
 979
 980#define lsm_for_each_hook(scall, NAME)					\
 981	for (scall = static_calls_table.NAME;				\
 982	     scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++)  \
 983		if (static_key_enabled(&scall->active->key))
 984
 985/* Security operations */
 986
 987/**
 988 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
 989 * @mgr: task credentials of current binder process
 990 *
 991 * Check whether @mgr is allowed to be the binder context manager.
 992 *
 993 * Return: Return 0 if permission is granted.
 994 */
 995int security_binder_set_context_mgr(const struct cred *mgr)
 996{
 997	return call_int_hook(binder_set_context_mgr, mgr);
 998}
 999
1000/**
1001 * security_binder_transaction() - Check if a binder transaction is allowed
1002 * @from: sending process
1003 * @to: receiving process
1004 *
1005 * Check whether @from is allowed to invoke a binder transaction call to @to.
1006 *
1007 * Return: Returns 0 if permission is granted.
1008 */
1009int security_binder_transaction(const struct cred *from,
1010				const struct cred *to)
1011{
1012	return call_int_hook(binder_transaction, from, to);
1013}
1014
1015/**
1016 * security_binder_transfer_binder() - Check if a binder transfer is allowed
1017 * @from: sending process
1018 * @to: receiving process
1019 *
1020 * Check whether @from is allowed to transfer a binder reference to @to.
1021 *
1022 * Return: Returns 0 if permission is granted.
1023 */
1024int security_binder_transfer_binder(const struct cred *from,
1025				    const struct cred *to)
1026{
1027	return call_int_hook(binder_transfer_binder, from, to);
1028}
1029
1030/**
1031 * security_binder_transfer_file() - Check if a binder file xfer is allowed
1032 * @from: sending process
1033 * @to: receiving process
1034 * @file: file being transferred
1035 *
1036 * Check whether @from is allowed to transfer @file to @to.
1037 *
1038 * Return: Returns 0 if permission is granted.
1039 */
1040int security_binder_transfer_file(const struct cred *from,
1041				  const struct cred *to, const struct file *file)
1042{
1043	return call_int_hook(binder_transfer_file, from, to, file);
1044}
1045
1046/**
1047 * security_ptrace_access_check() - Check if tracing is allowed
1048 * @child: target process
1049 * @mode: PTRACE_MODE flags
1050 *
1051 * Check permission before allowing the current process to trace the @child
1052 * process.  Security modules may also want to perform a process tracing check
1053 * during an execve in the set_security or apply_creds hooks of tracing check
1054 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1055 * process is being traced and its security attributes would be changed by the
1056 * execve.
1057 *
1058 * Return: Returns 0 if permission is granted.
1059 */
1060int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1061{
1062	return call_int_hook(ptrace_access_check, child, mode);
1063}
1064
1065/**
1066 * security_ptrace_traceme() - Check if tracing is allowed
1067 * @parent: tracing process
1068 *
1069 * Check that the @parent process has sufficient permission to trace the
1070 * current process before allowing the current process to present itself to the
1071 * @parent process for tracing.
1072 *
1073 * Return: Returns 0 if permission is granted.
1074 */
1075int security_ptrace_traceme(struct task_struct *parent)
1076{
1077	return call_int_hook(ptrace_traceme, parent);
1078}
1079
1080/**
1081 * security_capget() - Get the capability sets for a process
1082 * @target: target process
1083 * @effective: effective capability set
1084 * @inheritable: inheritable capability set
1085 * @permitted: permitted capability set
1086 *
1087 * Get the @effective, @inheritable, and @permitted capability sets for the
1088 * @target process.  The hook may also perform permission checking to determine
1089 * if the current process is allowed to see the capability sets of the @target
1090 * process.
1091 *
1092 * Return: Returns 0 if the capability sets were successfully obtained.
1093 */
1094int security_capget(const struct task_struct *target,
1095		    kernel_cap_t *effective,
1096		    kernel_cap_t *inheritable,
1097		    kernel_cap_t *permitted)
1098{
1099	return call_int_hook(capget, target, effective, inheritable, permitted);
 
1100}
1101
1102/**
1103 * security_capset() - Set the capability sets for a process
1104 * @new: new credentials for the target process
1105 * @old: current credentials of the target process
1106 * @effective: effective capability set
1107 * @inheritable: inheritable capability set
1108 * @permitted: permitted capability set
1109 *
1110 * Set the @effective, @inheritable, and @permitted capability sets for the
1111 * current process.
1112 *
1113 * Return: Returns 0 and update @new if permission is granted.
1114 */
1115int security_capset(struct cred *new, const struct cred *old,
1116		    const kernel_cap_t *effective,
1117		    const kernel_cap_t *inheritable,
1118		    const kernel_cap_t *permitted)
1119{
1120	return call_int_hook(capset, new, old, effective, inheritable,
1121			     permitted);
1122}
1123
1124/**
1125 * security_capable() - Check if a process has the necessary capability
1126 * @cred: credentials to examine
1127 * @ns: user namespace
1128 * @cap: capability requested
1129 * @opts: capability check options
1130 *
1131 * Check whether the @tsk process has the @cap capability in the indicated
1132 * credentials.  @cap contains the capability <include/linux/capability.h>.
1133 * @opts contains options for the capable check <include/linux/security.h>.
1134 *
1135 * Return: Returns 0 if the capability is granted.
1136 */
1137int security_capable(const struct cred *cred,
1138		     struct user_namespace *ns,
1139		     int cap,
1140		     unsigned int opts)
1141{
1142	return call_int_hook(capable, cred, ns, cap, opts);
1143}
1144
1145/**
1146 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1147 * @cmds: commands
1148 * @type: type
1149 * @id: id
1150 * @sb: filesystem
1151 *
1152 * Check whether the quotactl syscall is allowed for this @sb.
1153 *
1154 * Return: Returns 0 if permission is granted.
1155 */
1156int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1157{
1158	return call_int_hook(quotactl, cmds, type, id, sb);
1159}
1160
1161/**
1162 * security_quota_on() - Check if QUOTAON is allowed for a dentry
1163 * @dentry: dentry
1164 *
1165 * Check whether QUOTAON is allowed for @dentry.
1166 *
1167 * Return: Returns 0 if permission is granted.
1168 */
1169int security_quota_on(struct dentry *dentry)
1170{
1171	return call_int_hook(quota_on, dentry);
1172}
1173
1174/**
1175 * security_syslog() - Check if accessing the kernel message ring is allowed
1176 * @type: SYSLOG_ACTION_* type
1177 *
1178 * Check permission before accessing the kernel message ring or changing
1179 * logging to the console.  See the syslog(2) manual page for an explanation of
1180 * the @type values.
1181 *
1182 * Return: Return 0 if permission is granted.
1183 */
1184int security_syslog(int type)
1185{
1186	return call_int_hook(syslog, type);
1187}
1188
1189/**
1190 * security_settime64() - Check if changing the system time is allowed
1191 * @ts: new time
1192 * @tz: timezone
1193 *
1194 * Check permission to change the system time, struct timespec64 is defined in
1195 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1196 *
1197 * Return: Returns 0 if permission is granted.
1198 */
1199int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1200{
1201	return call_int_hook(settime, ts, tz);
1202}
1203
1204/**
1205 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1206 * @mm: mm struct
1207 * @pages: number of pages
1208 *
1209 * Check permissions for allocating a new virtual mapping.  If all LSMs return
1210 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1211 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1212 * called with cap_sys_admin cleared.
1213 *
1214 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1215 *         caller.
1216 */
1217int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1218{
1219	struct lsm_static_call *scall;
1220	int cap_sys_admin = 1;
1221	int rc;
1222
1223	/*
1224	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1225	 * call should be made with the cap_sys_admin set. If all of the modules
1226	 * agree that it should be set it will. If any module thinks it should
1227	 * not be set it won't.
 
1228	 */
1229	lsm_for_each_hook(scall, vm_enough_memory) {
1230		rc = scall->hl->hook.vm_enough_memory(mm, pages);
1231		if (rc < 0) {
1232			cap_sys_admin = 0;
1233			break;
1234		}
1235	}
1236	return __vm_enough_memory(mm, pages, cap_sys_admin);
1237}
1238
1239/**
1240 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1241 * @bprm: binary program information
1242 *
1243 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1244 * properly for executing @bprm->file, update the LSM's portion of
1245 * @bprm->cred->security to be what commit_creds needs to install for the new
1246 * program.  This hook may also optionally check permissions (e.g. for
1247 * transitions between security domains).  The hook must set @bprm->secureexec
1248 * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1249 * contains the linux_binprm structure.
1250 *
1251 * Return: Returns 0 if the hook is successful and permission is granted.
1252 */
1253int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1254{
1255	return call_int_hook(bprm_creds_for_exec, bprm);
1256}
1257
1258/**
1259 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1260 * @bprm: binary program information
1261 * @file: associated file
1262 *
1263 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1264 * exec, update @bprm->cred to reflect that change. This is called after
1265 * finding the binary that will be executed without an interpreter.  This
1266 * ensures that the credentials will not be derived from a script that the
1267 * binary will need to reopen, which when reopend may end up being a completely
1268 * different file.  This hook may also optionally check permissions (e.g. for
1269 * transitions between security domains).  The hook must set @bprm->secureexec
1270 * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1271 * hook must add to @bprm->per_clear any personality flags that should be
1272 * cleared from current->personality.  @bprm contains the linux_binprm
1273 * structure.
1274 *
1275 * Return: Returns 0 if the hook is successful and permission is granted.
1276 */
1277int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1278{
1279	return call_int_hook(bprm_creds_from_file, bprm, file);
1280}
1281
1282/**
1283 * security_bprm_check() - Mediate binary handler search
1284 * @bprm: binary program information
1285 *
1286 * This hook mediates the point when a search for a binary handler will begin.
1287 * It allows a check against the @bprm->cred->security value which was set in
1288 * the preceding creds_for_exec call.  The argv list and envp list are reliably
1289 * available in @bprm.  This hook may be called multiple times during a single
1290 * execve.  @bprm contains the linux_binprm structure.
1291 *
1292 * Return: Returns 0 if the hook is successful and permission is granted.
1293 */
1294int security_bprm_check(struct linux_binprm *bprm)
1295{
1296	return call_int_hook(bprm_check_security, bprm);
 
 
 
 
 
1297}
1298
1299/**
1300 * security_bprm_committing_creds() - Install creds for a process during exec()
1301 * @bprm: binary program information
1302 *
1303 * Prepare to install the new security attributes of a process being
1304 * transformed by an execve operation, based on the old credentials pointed to
1305 * by @current->cred and the information set in @bprm->cred by the
1306 * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1307 * hook is a good place to perform state changes on the process such as closing
1308 * open file descriptors to which access will no longer be granted when the
1309 * attributes are changed.  This is called immediately before commit_creds().
1310 */
1311void security_bprm_committing_creds(const struct linux_binprm *bprm)
1312{
1313	call_void_hook(bprm_committing_creds, bprm);
1314}
1315
1316/**
1317 * security_bprm_committed_creds() - Tidy up after cred install during exec()
1318 * @bprm: binary program information
1319 *
1320 * Tidy up after the installation of the new security attributes of a process
1321 * being transformed by an execve operation.  The new credentials have, by this
1322 * point, been set to @current->cred.  @bprm points to the linux_binprm
1323 * structure.  This hook is a good place to perform state changes on the
1324 * process such as clearing out non-inheritable signal state.  This is called
1325 * immediately after commit_creds().
1326 */
1327void security_bprm_committed_creds(const struct linux_binprm *bprm)
1328{
1329	call_void_hook(bprm_committed_creds, bprm);
1330}
1331
1332/**
1333 * security_fs_context_submount() - Initialise fc->security
1334 * @fc: new filesystem context
1335 * @reference: dentry reference for submount/remount
1336 *
1337 * Fill out the ->security field for a new fs_context.
1338 *
1339 * Return: Returns 0 on success or negative error code on failure.
1340 */
1341int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1342{
1343	return call_int_hook(fs_context_submount, fc, reference);
1344}
1345
1346/**
1347 * security_fs_context_dup() - Duplicate a fs_context LSM blob
1348 * @fc: destination filesystem context
1349 * @src_fc: source filesystem context
1350 *
1351 * Allocate and attach a security structure to sc->security.  This pointer is
1352 * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1353 * @src_fc indicates the original filesystem context.
1354 *
1355 * Return: Returns 0 on success or a negative error code on failure.
1356 */
1357int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1358{
1359	return call_int_hook(fs_context_dup, fc, src_fc);
1360}
1361
1362/**
1363 * security_fs_context_parse_param() - Configure a filesystem context
1364 * @fc: filesystem context
1365 * @param: filesystem parameter
1366 *
1367 * Userspace provided a parameter to configure a superblock.  The LSM can
1368 * consume the parameter or return it to the caller for use elsewhere.
1369 *
1370 * Return: If the parameter is used by the LSM it should return 0, if it is
1371 *         returned to the caller -ENOPARAM is returned, otherwise a negative
1372 *         error code is returned.
1373 */
1374int security_fs_context_parse_param(struct fs_context *fc,
1375				    struct fs_parameter *param)
1376{
1377	struct lsm_static_call *scall;
1378	int trc;
1379	int rc = -ENOPARAM;
1380
1381	lsm_for_each_hook(scall, fs_context_parse_param) {
1382		trc = scall->hl->hook.fs_context_parse_param(fc, param);
 
1383		if (trc == 0)
1384			rc = 0;
1385		else if (trc != -ENOPARAM)
1386			return trc;
1387	}
1388	return rc;
1389}
1390
1391/**
1392 * security_sb_alloc() - Allocate a super_block LSM blob
1393 * @sb: filesystem superblock
1394 *
1395 * Allocate and attach a security structure to the sb->s_security field.  The
1396 * s_security field is initialized to NULL when the structure is allocated.
1397 * @sb contains the super_block structure to be modified.
1398 *
1399 * Return: Returns 0 if operation was successful.
1400 */
1401int security_sb_alloc(struct super_block *sb)
1402{
1403	int rc = lsm_superblock_alloc(sb);
1404
1405	if (unlikely(rc))
1406		return rc;
1407	rc = call_int_hook(sb_alloc_security, sb);
1408	if (unlikely(rc))
1409		security_sb_free(sb);
1410	return rc;
1411}
1412
1413/**
1414 * security_sb_delete() - Release super_block LSM associated objects
1415 * @sb: filesystem superblock
1416 *
1417 * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1418 * super_block structure being released.
1419 */
1420void security_sb_delete(struct super_block *sb)
1421{
1422	call_void_hook(sb_delete, sb);
1423}
1424
1425/**
1426 * security_sb_free() - Free a super_block LSM blob
1427 * @sb: filesystem superblock
1428 *
1429 * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1430 * structure to be modified.
1431 */
1432void security_sb_free(struct super_block *sb)
1433{
1434	call_void_hook(sb_free_security, sb);
1435	kfree(sb->s_security);
1436	sb->s_security = NULL;
1437}
1438
1439/**
1440 * security_free_mnt_opts() - Free memory associated with mount options
1441 * @mnt_opts: LSM processed mount options
1442 *
1443 * Free memory associated with @mnt_ops.
1444 */
1445void security_free_mnt_opts(void **mnt_opts)
1446{
1447	if (!*mnt_opts)
1448		return;
1449	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1450	*mnt_opts = NULL;
1451}
1452EXPORT_SYMBOL(security_free_mnt_opts);
1453
1454/**
1455 * security_sb_eat_lsm_opts() - Consume LSM mount options
1456 * @options: mount options
1457 * @mnt_opts: LSM processed mount options
1458 *
1459 * Eat (scan @options) and save them in @mnt_opts.
1460 *
1461 * Return: Returns 0 on success, negative values on failure.
1462 */
1463int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1464{
1465	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1466}
1467EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1468
1469/**
1470 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1471 * @sb: filesystem superblock
1472 * @mnt_opts: new mount options
1473 *
1474 * Determine if the new mount options in @mnt_opts are allowed given the
1475 * existing mounted filesystem at @sb.  @sb superblock being compared.
1476 *
1477 * Return: Returns 0 if options are compatible.
1478 */
1479int security_sb_mnt_opts_compat(struct super_block *sb,
1480				void *mnt_opts)
1481{
1482	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1483}
1484EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1485
1486/**
1487 * security_sb_remount() - Verify no incompatible mount changes during remount
1488 * @sb: filesystem superblock
1489 * @mnt_opts: (re)mount options
1490 *
1491 * Extracts security system specific mount options and verifies no changes are
1492 * being made to those options.
1493 *
1494 * Return: Returns 0 if permission is granted.
1495 */
1496int security_sb_remount(struct super_block *sb,
1497			void *mnt_opts)
1498{
1499	return call_int_hook(sb_remount, sb, mnt_opts);
1500}
1501EXPORT_SYMBOL(security_sb_remount);
1502
1503/**
1504 * security_sb_kern_mount() - Check if a kernel mount is allowed
1505 * @sb: filesystem superblock
1506 *
1507 * Mount this @sb if allowed by permissions.
1508 *
1509 * Return: Returns 0 if permission is granted.
1510 */
1511int security_sb_kern_mount(const struct super_block *sb)
1512{
1513	return call_int_hook(sb_kern_mount, sb);
1514}
1515
1516/**
1517 * security_sb_show_options() - Output the mount options for a superblock
1518 * @m: output file
1519 * @sb: filesystem superblock
1520 *
1521 * Show (print on @m) mount options for this @sb.
1522 *
1523 * Return: Returns 0 on success, negative values on failure.
1524 */
1525int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1526{
1527	return call_int_hook(sb_show_options, m, sb);
1528}
1529
1530/**
1531 * security_sb_statfs() - Check if accessing fs stats is allowed
1532 * @dentry: superblock handle
1533 *
1534 * Check permission before obtaining filesystem statistics for the @mnt
1535 * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1536 *
1537 * Return: Returns 0 if permission is granted.
1538 */
1539int security_sb_statfs(struct dentry *dentry)
1540{
1541	return call_int_hook(sb_statfs, dentry);
1542}
1543
1544/**
1545 * security_sb_mount() - Check permission for mounting a filesystem
1546 * @dev_name: filesystem backing device
1547 * @path: mount point
1548 * @type: filesystem type
1549 * @flags: mount flags
1550 * @data: filesystem specific data
1551 *
1552 * Check permission before an object specified by @dev_name is mounted on the
1553 * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1554 * device if the file system type requires a device.  For a remount
1555 * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1556 * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1557 * mounted.
1558 *
1559 * Return: Returns 0 if permission is granted.
1560 */
1561int security_sb_mount(const char *dev_name, const struct path *path,
1562		      const char *type, unsigned long flags, void *data)
1563{
1564	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1565}
1566
1567/**
1568 * security_sb_umount() - Check permission for unmounting a filesystem
1569 * @mnt: mounted filesystem
1570 * @flags: unmount flags
1571 *
1572 * Check permission before the @mnt file system is unmounted.
1573 *
1574 * Return: Returns 0 if permission is granted.
1575 */
1576int security_sb_umount(struct vfsmount *mnt, int flags)
1577{
1578	return call_int_hook(sb_umount, mnt, flags);
1579}
1580
1581/**
1582 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1583 * @old_path: new location for current rootfs
1584 * @new_path: location of the new rootfs
1585 *
1586 * Check permission before pivoting the root filesystem.
1587 *
1588 * Return: Returns 0 if permission is granted.
1589 */
1590int security_sb_pivotroot(const struct path *old_path,
1591			  const struct path *new_path)
1592{
1593	return call_int_hook(sb_pivotroot, old_path, new_path);
1594}
1595
1596/**
1597 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1598 * @sb: filesystem superblock
1599 * @mnt_opts: binary mount options
1600 * @kern_flags: kernel flags (in)
1601 * @set_kern_flags: kernel flags (out)
1602 *
1603 * Set the security relevant mount options used for a superblock.
1604 *
1605 * Return: Returns 0 on success, error on failure.
1606 */
1607int security_sb_set_mnt_opts(struct super_block *sb,
1608			     void *mnt_opts,
1609			     unsigned long kern_flags,
1610			     unsigned long *set_kern_flags)
1611{
1612	struct lsm_static_call *scall;
1613	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1614
1615	lsm_for_each_hook(scall, sb_set_mnt_opts) {
1616		rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1617					      set_kern_flags);
1618		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1619			break;
1620	}
1621	return rc;
1622}
1623EXPORT_SYMBOL(security_sb_set_mnt_opts);
1624
1625/**
1626 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1627 * @oldsb: source superblock
1628 * @newsb: destination superblock
1629 * @kern_flags: kernel flags (in)
1630 * @set_kern_flags: kernel flags (out)
1631 *
1632 * Copy all security options from a given superblock to another.
1633 *
1634 * Return: Returns 0 on success, error on failure.
1635 */
1636int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1637			       struct super_block *newsb,
1638			       unsigned long kern_flags,
1639			       unsigned long *set_kern_flags)
1640{
1641	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1642			     kern_flags, set_kern_flags);
1643}
1644EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1645
1646/**
1647 * security_move_mount() - Check permissions for moving a mount
1648 * @from_path: source mount point
1649 * @to_path: destination mount point
1650 *
1651 * Check permission before a mount is moved.
1652 *
1653 * Return: Returns 0 if permission is granted.
1654 */
1655int security_move_mount(const struct path *from_path,
1656			const struct path *to_path)
1657{
1658	return call_int_hook(move_mount, from_path, to_path);
1659}
1660
1661/**
1662 * security_path_notify() - Check if setting a watch is allowed
1663 * @path: file path
1664 * @mask: event mask
1665 * @obj_type: file path type
1666 *
1667 * Check permissions before setting a watch on events as defined by @mask, on
1668 * an object at @path, whose type is defined by @obj_type.
1669 *
1670 * Return: Returns 0 if permission is granted.
1671 */
1672int security_path_notify(const struct path *path, u64 mask,
1673			 unsigned int obj_type)
1674{
1675	return call_int_hook(path_notify, path, mask, obj_type);
1676}
1677
1678/**
1679 * security_inode_alloc() - Allocate an inode LSM blob
1680 * @inode: the inode
1681 * @gfp: allocation flags
1682 *
1683 * Allocate and attach a security structure to @inode->i_security.  The
1684 * i_security field is initialized to NULL when the inode structure is
1685 * allocated.
1686 *
1687 * Return: Return 0 if operation was successful.
1688 */
1689int security_inode_alloc(struct inode *inode, gfp_t gfp)
1690{
1691	int rc = lsm_inode_alloc(inode, gfp);
1692
1693	if (unlikely(rc))
1694		return rc;
1695	rc = call_int_hook(inode_alloc_security, inode);
1696	if (unlikely(rc))
1697		security_inode_free(inode);
1698	return rc;
1699}
1700
1701static void inode_free_by_rcu(struct rcu_head *head)
1702{
1703	/* The rcu head is at the start of the inode blob */
1704	call_void_hook(inode_free_security_rcu, head);
 
1705	kmem_cache_free(lsm_inode_cache, head);
1706}
1707
1708/**
1709 * security_inode_free() - Free an inode's LSM blob
1710 * @inode: the inode
1711 *
1712 * Release any LSM resources associated with @inode, although due to the
1713 * inode's RCU protections it is possible that the resources will not be
1714 * fully released until after the current RCU grace period has elapsed.
1715 *
1716 * It is important for LSMs to note that despite being present in a call to
1717 * security_inode_free(), @inode may still be referenced in a VFS path walk
1718 * and calls to security_inode_permission() may be made during, or after,
1719 * a call to security_inode_free().  For this reason the inode->i_security
1720 * field is released via a call_rcu() callback and any LSMs which need to
1721 * retain inode state for use in security_inode_permission() should only
1722 * release that state in the inode_free_security_rcu() LSM hook callback.
1723 */
1724void security_inode_free(struct inode *inode)
1725{
 
1726	call_void_hook(inode_free_security, inode);
1727	if (!inode->i_security)
1728		return;
1729	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
 
 
 
 
 
 
 
 
 
1730}
1731
1732/**
1733 * security_dentry_init_security() - Perform dentry initialization
1734 * @dentry: the dentry to initialize
1735 * @mode: mode used to determine resource type
1736 * @name: name of the last path component
1737 * @xattr_name: name of the security/LSM xattr
1738 * @ctx: pointer to the resulting LSM context
1739 * @ctxlen: length of @ctx
1740 *
1741 * Compute a context for a dentry as the inode is not yet available since NFSv4
1742 * has no label backed by an EA anyway.  It is important to note that
1743 * @xattr_name does not need to be free'd by the caller, it is a static string.
1744 *
1745 * Return: Returns 0 on success, negative values on failure.
1746 */
1747int security_dentry_init_security(struct dentry *dentry, int mode,
1748				  const struct qstr *name,
1749				  const char **xattr_name, void **ctx,
1750				  u32 *ctxlen)
1751{
1752	return call_int_hook(dentry_init_security, dentry, mode, name,
1753			     xattr_name, ctx, ctxlen);
 
 
 
 
 
 
 
 
 
 
 
 
1754}
1755EXPORT_SYMBOL(security_dentry_init_security);
1756
1757/**
1758 * security_dentry_create_files_as() - Perform dentry initialization
1759 * @dentry: the dentry to initialize
1760 * @mode: mode used to determine resource type
1761 * @name: name of the last path component
1762 * @old: creds to use for LSM context calculations
1763 * @new: creds to modify
1764 *
1765 * Compute a context for a dentry as the inode is not yet available and set
1766 * that context in passed in creds so that new files are created using that
1767 * context. Context is calculated using the passed in creds and not the creds
1768 * of the caller.
1769 *
1770 * Return: Returns 0 on success, error on failure.
1771 */
1772int security_dentry_create_files_as(struct dentry *dentry, int mode,
1773				    struct qstr *name,
1774				    const struct cred *old, struct cred *new)
1775{
1776	return call_int_hook(dentry_create_files_as, dentry, mode,
1777			     name, old, new);
1778}
1779EXPORT_SYMBOL(security_dentry_create_files_as);
1780
1781/**
1782 * security_inode_init_security() - Initialize an inode's LSM context
1783 * @inode: the inode
1784 * @dir: parent directory
1785 * @qstr: last component of the pathname
1786 * @initxattrs: callback function to write xattrs
1787 * @fs_data: filesystem specific data
1788 *
1789 * Obtain the security attribute name suffix and value to set on a newly
1790 * created inode and set up the incore security field for the new inode.  This
1791 * hook is called by the fs code as part of the inode creation transaction and
1792 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1793 * hooks called by the VFS.
1794 *
1795 * The hook function is expected to populate the xattrs array, by calling
1796 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1797 * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1798 * slot, the hook function should set ->name to the attribute name suffix
1799 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1800 * to the attribute value, to set ->value_len to the length of the value.  If
1801 * the security module does not use security attributes or does not wish to put
1802 * a security attribute on this particular inode, then it should return
1803 * -EOPNOTSUPP to skip this processing.
1804 *
1805 * Return: Returns 0 if the LSM successfully initialized all of the inode
1806 *         security attributes that are required, negative values otherwise.
1807 */
1808int security_inode_init_security(struct inode *inode, struct inode *dir,
1809				 const struct qstr *qstr,
1810				 const initxattrs initxattrs, void *fs_data)
1811{
1812	struct lsm_static_call *scall;
1813	struct xattr *new_xattrs = NULL;
1814	int ret = -EOPNOTSUPP, xattr_count = 0;
1815
1816	if (unlikely(IS_PRIVATE(inode)))
1817		return 0;
1818
1819	if (!blob_sizes.lbs_xattr_count)
1820		return 0;
1821
1822	if (initxattrs) {
1823		/* Allocate +1 as terminator. */
1824		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1825				     sizeof(*new_xattrs), GFP_NOFS);
1826		if (!new_xattrs)
1827			return -ENOMEM;
1828	}
1829
1830	lsm_for_each_hook(scall, inode_init_security) {
1831		ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
 
1832						  &xattr_count);
1833		if (ret && ret != -EOPNOTSUPP)
1834			goto out;
1835		/*
1836		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1837		 * means that the LSM is not willing to provide an xattr, not
1838		 * that it wants to signal an error. Thus, continue to invoke
1839		 * the remaining LSMs.
1840		 */
1841	}
1842
1843	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1844	if (!xattr_count)
1845		goto out;
1846
 
 
 
 
1847	ret = initxattrs(inode, new_xattrs, fs_data);
1848out:
1849	for (; xattr_count > 0; xattr_count--)
1850		kfree(new_xattrs[xattr_count - 1].value);
1851	kfree(new_xattrs);
1852	return (ret == -EOPNOTSUPP) ? 0 : ret;
1853}
1854EXPORT_SYMBOL(security_inode_init_security);
1855
1856/**
1857 * security_inode_init_security_anon() - Initialize an anonymous inode
1858 * @inode: the inode
1859 * @name: the anonymous inode class
1860 * @context_inode: an optional related inode
1861 *
1862 * Set up the incore security field for the new anonymous inode and return
1863 * whether the inode creation is permitted by the security module or not.
1864 *
1865 * Return: Returns 0 on success, -EACCES if the security module denies the
1866 * creation of this inode, or another -errno upon other errors.
1867 */
1868int security_inode_init_security_anon(struct inode *inode,
1869				      const struct qstr *name,
1870				      const struct inode *context_inode)
1871{
1872	return call_int_hook(inode_init_security_anon, inode, name,
1873			     context_inode);
1874}
1875
1876#ifdef CONFIG_SECURITY_PATH
1877/**
1878 * security_path_mknod() - Check if creating a special file is allowed
1879 * @dir: parent directory
1880 * @dentry: new file
1881 * @mode: new file mode
1882 * @dev: device number
1883 *
1884 * Check permissions when creating a file. Note that this hook is called even
1885 * if mknod operation is being done for a regular file.
1886 *
1887 * Return: Returns 0 if permission is granted.
1888 */
1889int security_path_mknod(const struct path *dir, struct dentry *dentry,
1890			umode_t mode, unsigned int dev)
1891{
1892	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1893		return 0;
1894	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1895}
1896EXPORT_SYMBOL(security_path_mknod);
1897
1898/**
1899 * security_path_post_mknod() - Update inode security after reg file creation
1900 * @idmap: idmap of the mount
1901 * @dentry: new file
1902 *
1903 * Update inode security field after a regular file has been created.
1904 */
1905void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1906{
1907	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1908		return;
1909	call_void_hook(path_post_mknod, idmap, dentry);
1910}
1911
1912/**
1913 * security_path_mkdir() - Check if creating a new directory is allowed
1914 * @dir: parent directory
1915 * @dentry: new directory
1916 * @mode: new directory mode
1917 *
1918 * Check permissions to create a new directory in the existing directory.
1919 *
1920 * Return: Returns 0 if permission is granted.
1921 */
1922int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1923			umode_t mode)
1924{
1925	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1926		return 0;
1927	return call_int_hook(path_mkdir, dir, dentry, mode);
1928}
1929EXPORT_SYMBOL(security_path_mkdir);
1930
1931/**
1932 * security_path_rmdir() - Check if removing a directory is allowed
1933 * @dir: parent directory
1934 * @dentry: directory to remove
1935 *
1936 * Check the permission to remove a directory.
1937 *
1938 * Return: Returns 0 if permission is granted.
1939 */
1940int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1941{
1942	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1943		return 0;
1944	return call_int_hook(path_rmdir, dir, dentry);
1945}
1946
1947/**
1948 * security_path_unlink() - Check if removing a hard link is allowed
1949 * @dir: parent directory
1950 * @dentry: file
1951 *
1952 * Check the permission to remove a hard link to a file.
1953 *
1954 * Return: Returns 0 if permission is granted.
1955 */
1956int security_path_unlink(const struct path *dir, struct dentry *dentry)
1957{
1958	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1959		return 0;
1960	return call_int_hook(path_unlink, dir, dentry);
1961}
1962EXPORT_SYMBOL(security_path_unlink);
1963
1964/**
1965 * security_path_symlink() - Check if creating a symbolic link is allowed
1966 * @dir: parent directory
1967 * @dentry: symbolic link
1968 * @old_name: file pathname
1969 *
1970 * Check the permission to create a symbolic link to a file.
1971 *
1972 * Return: Returns 0 if permission is granted.
1973 */
1974int security_path_symlink(const struct path *dir, struct dentry *dentry,
1975			  const char *old_name)
1976{
1977	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1978		return 0;
1979	return call_int_hook(path_symlink, dir, dentry, old_name);
1980}
1981
1982/**
1983 * security_path_link - Check if creating a hard link is allowed
1984 * @old_dentry: existing file
1985 * @new_dir: new parent directory
1986 * @new_dentry: new link
1987 *
1988 * Check permission before creating a new hard link to a file.
1989 *
1990 * Return: Returns 0 if permission is granted.
1991 */
1992int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1993		       struct dentry *new_dentry)
1994{
1995	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1996		return 0;
1997	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1998}
1999
2000/**
2001 * security_path_rename() - Check if renaming a file is allowed
2002 * @old_dir: parent directory of the old file
2003 * @old_dentry: the old file
2004 * @new_dir: parent directory of the new file
2005 * @new_dentry: the new file
2006 * @flags: flags
2007 *
2008 * Check for permission to rename a file or directory.
2009 *
2010 * Return: Returns 0 if permission is granted.
2011 */
2012int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2013			 const struct path *new_dir, struct dentry *new_dentry,
2014			 unsigned int flags)
2015{
2016	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2017		     (d_is_positive(new_dentry) &&
2018		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2019		return 0;
2020
2021	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2022			     new_dentry, flags);
2023}
2024EXPORT_SYMBOL(security_path_rename);
2025
2026/**
2027 * security_path_truncate() - Check if truncating a file is allowed
2028 * @path: file
2029 *
2030 * Check permission before truncating the file indicated by path.  Note that
2031 * truncation permissions may also be checked based on already opened files,
2032 * using the security_file_truncate() hook.
2033 *
2034 * Return: Returns 0 if permission is granted.
2035 */
2036int security_path_truncate(const struct path *path)
2037{
2038	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2039		return 0;
2040	return call_int_hook(path_truncate, path);
2041}
2042
2043/**
2044 * security_path_chmod() - Check if changing the file's mode is allowed
2045 * @path: file
2046 * @mode: new mode
2047 *
2048 * Check for permission to change a mode of the file @path. The new mode is
2049 * specified in @mode which is a bitmask of constants from
2050 * <include/uapi/linux/stat.h>.
2051 *
2052 * Return: Returns 0 if permission is granted.
2053 */
2054int security_path_chmod(const struct path *path, umode_t mode)
2055{
2056	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2057		return 0;
2058	return call_int_hook(path_chmod, path, mode);
2059}
2060
2061/**
2062 * security_path_chown() - Check if changing the file's owner/group is allowed
2063 * @path: file
2064 * @uid: file owner
2065 * @gid: file group
2066 *
2067 * Check for permission to change owner/group of a file or directory.
2068 *
2069 * Return: Returns 0 if permission is granted.
2070 */
2071int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2072{
2073	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2074		return 0;
2075	return call_int_hook(path_chown, path, uid, gid);
2076}
2077
2078/**
2079 * security_path_chroot() - Check if changing the root directory is allowed
2080 * @path: directory
2081 *
2082 * Check for permission to change root directory.
2083 *
2084 * Return: Returns 0 if permission is granted.
2085 */
2086int security_path_chroot(const struct path *path)
2087{
2088	return call_int_hook(path_chroot, path);
2089}
2090#endif /* CONFIG_SECURITY_PATH */
2091
2092/**
2093 * security_inode_create() - Check if creating a file is allowed
2094 * @dir: the parent directory
2095 * @dentry: the file being created
2096 * @mode: requested file mode
2097 *
2098 * Check permission to create a regular file.
2099 *
2100 * Return: Returns 0 if permission is granted.
2101 */
2102int security_inode_create(struct inode *dir, struct dentry *dentry,
2103			  umode_t mode)
2104{
2105	if (unlikely(IS_PRIVATE(dir)))
2106		return 0;
2107	return call_int_hook(inode_create, dir, dentry, mode);
2108}
2109EXPORT_SYMBOL_GPL(security_inode_create);
2110
2111/**
2112 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2113 * @idmap: idmap of the mount
2114 * @inode: inode of the new tmpfile
2115 *
2116 * Update inode security data after a tmpfile has been created.
2117 */
2118void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2119					struct inode *inode)
2120{
2121	if (unlikely(IS_PRIVATE(inode)))
2122		return;
2123	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2124}
2125
2126/**
2127 * security_inode_link() - Check if creating a hard link is allowed
2128 * @old_dentry: existing file
2129 * @dir: new parent directory
2130 * @new_dentry: new link
2131 *
2132 * Check permission before creating a new hard link to a file.
2133 *
2134 * Return: Returns 0 if permission is granted.
2135 */
2136int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2137			struct dentry *new_dentry)
2138{
2139	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2140		return 0;
2141	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2142}
2143
2144/**
2145 * security_inode_unlink() - Check if removing a hard link is allowed
2146 * @dir: parent directory
2147 * @dentry: file
2148 *
2149 * Check the permission to remove a hard link to a file.
2150 *
2151 * Return: Returns 0 if permission is granted.
2152 */
2153int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2154{
2155	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2156		return 0;
2157	return call_int_hook(inode_unlink, dir, dentry);
2158}
2159
2160/**
2161 * security_inode_symlink() - Check if creating a symbolic link is allowed
2162 * @dir: parent directory
2163 * @dentry: symbolic link
2164 * @old_name: existing filename
2165 *
2166 * Check the permission to create a symbolic link to a file.
2167 *
2168 * Return: Returns 0 if permission is granted.
2169 */
2170int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2171			   const char *old_name)
2172{
2173	if (unlikely(IS_PRIVATE(dir)))
2174		return 0;
2175	return call_int_hook(inode_symlink, dir, dentry, old_name);
2176}
2177
2178/**
2179 * security_inode_mkdir() - Check if creation a new director is allowed
2180 * @dir: parent directory
2181 * @dentry: new directory
2182 * @mode: new directory mode
2183 *
2184 * Check permissions to create a new directory in the existing directory
2185 * associated with inode structure @dir.
2186 *
2187 * Return: Returns 0 if permission is granted.
2188 */
2189int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2190{
2191	if (unlikely(IS_PRIVATE(dir)))
2192		return 0;
2193	return call_int_hook(inode_mkdir, dir, dentry, mode);
2194}
2195EXPORT_SYMBOL_GPL(security_inode_mkdir);
2196
2197/**
2198 * security_inode_rmdir() - Check if removing a directory is allowed
2199 * @dir: parent directory
2200 * @dentry: directory to be removed
2201 *
2202 * Check the permission to remove a directory.
2203 *
2204 * Return: Returns 0 if permission is granted.
2205 */
2206int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2207{
2208	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2209		return 0;
2210	return call_int_hook(inode_rmdir, dir, dentry);
2211}
2212
2213/**
2214 * security_inode_mknod() - Check if creating a special file is allowed
2215 * @dir: parent directory
2216 * @dentry: new file
2217 * @mode: new file mode
2218 * @dev: device number
2219 *
2220 * Check permissions when creating a special file (or a socket or a fifo file
2221 * created via the mknod system call).  Note that if mknod operation is being
2222 * done for a regular file, then the create hook will be called and not this
2223 * hook.
2224 *
2225 * Return: Returns 0 if permission is granted.
2226 */
2227int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2228			 umode_t mode, dev_t dev)
2229{
2230	if (unlikely(IS_PRIVATE(dir)))
2231		return 0;
2232	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2233}
2234
2235/**
2236 * security_inode_rename() - Check if renaming a file is allowed
2237 * @old_dir: parent directory of the old file
2238 * @old_dentry: the old file
2239 * @new_dir: parent directory of the new file
2240 * @new_dentry: the new file
2241 * @flags: flags
2242 *
2243 * Check for permission to rename a file or directory.
2244 *
2245 * Return: Returns 0 if permission is granted.
2246 */
2247int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2248			  struct inode *new_dir, struct dentry *new_dentry,
2249			  unsigned int flags)
2250{
2251	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2252		     (d_is_positive(new_dentry) &&
2253		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2254		return 0;
2255
2256	if (flags & RENAME_EXCHANGE) {
2257		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2258					old_dir, old_dentry);
2259		if (err)
2260			return err;
2261	}
2262
2263	return call_int_hook(inode_rename, old_dir, old_dentry,
2264			     new_dir, new_dentry);
2265}
2266
2267/**
2268 * security_inode_readlink() - Check if reading a symbolic link is allowed
2269 * @dentry: link
2270 *
2271 * Check the permission to read the symbolic link.
2272 *
2273 * Return: Returns 0 if permission is granted.
2274 */
2275int security_inode_readlink(struct dentry *dentry)
2276{
2277	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2278		return 0;
2279	return call_int_hook(inode_readlink, dentry);
2280}
2281
2282/**
2283 * security_inode_follow_link() - Check if following a symbolic link is allowed
2284 * @dentry: link dentry
2285 * @inode: link inode
2286 * @rcu: true if in RCU-walk mode
2287 *
2288 * Check permission to follow a symbolic link when looking up a pathname.  If
2289 * @rcu is true, @inode is not stable.
2290 *
2291 * Return: Returns 0 if permission is granted.
2292 */
2293int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2294			       bool rcu)
2295{
2296	if (unlikely(IS_PRIVATE(inode)))
2297		return 0;
2298	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2299}
2300
2301/**
2302 * security_inode_permission() - Check if accessing an inode is allowed
2303 * @inode: inode
2304 * @mask: access mask
2305 *
2306 * Check permission before accessing an inode.  This hook is called by the
2307 * existing Linux permission function, so a security module can use it to
2308 * provide additional checking for existing Linux permission checks.  Notice
2309 * that this hook is called when a file is opened (as well as many other
2310 * operations), whereas the file_security_ops permission hook is called when
2311 * the actual read/write operations are performed.
2312 *
2313 * Return: Returns 0 if permission is granted.
2314 */
2315int security_inode_permission(struct inode *inode, int mask)
2316{
2317	if (unlikely(IS_PRIVATE(inode)))
2318		return 0;
2319	return call_int_hook(inode_permission, inode, mask);
2320}
2321
2322/**
2323 * security_inode_setattr() - Check if setting file attributes is allowed
2324 * @idmap: idmap of the mount
2325 * @dentry: file
2326 * @attr: new attributes
2327 *
2328 * Check permission before setting file attributes.  Note that the kernel call
2329 * to notify_change is performed from several locations, whenever file
2330 * attributes change (such as when a file is truncated, chown/chmod operations,
2331 * transferring disk quotas, etc).
2332 *
2333 * Return: Returns 0 if permission is granted.
2334 */
2335int security_inode_setattr(struct mnt_idmap *idmap,
2336			   struct dentry *dentry, struct iattr *attr)
2337{
 
 
2338	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2339		return 0;
2340	return call_int_hook(inode_setattr, idmap, dentry, attr);
 
 
 
2341}
2342EXPORT_SYMBOL_GPL(security_inode_setattr);
2343
2344/**
2345 * security_inode_post_setattr() - Update the inode after a setattr operation
2346 * @idmap: idmap of the mount
2347 * @dentry: file
2348 * @ia_valid: file attributes set
2349 *
2350 * Update inode security field after successful setting file attributes.
2351 */
2352void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2353				 int ia_valid)
2354{
2355	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2356		return;
2357	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2358}
2359
2360/**
2361 * security_inode_getattr() - Check if getting file attributes is allowed
2362 * @path: file
2363 *
2364 * Check permission before obtaining file attributes.
2365 *
2366 * Return: Returns 0 if permission is granted.
2367 */
2368int security_inode_getattr(const struct path *path)
2369{
2370	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2371		return 0;
2372	return call_int_hook(inode_getattr, path);
2373}
2374
2375/**
2376 * security_inode_setxattr() - Check if setting file xattrs is allowed
2377 * @idmap: idmap of the mount
2378 * @dentry: file
2379 * @name: xattr name
2380 * @value: xattr value
2381 * @size: size of xattr value
2382 * @flags: flags
2383 *
2384 * This hook performs the desired permission checks before setting the extended
2385 * attributes (xattrs) on @dentry.  It is important to note that we have some
2386 * additional logic before the main LSM implementation calls to detect if we
2387 * need to perform an additional capability check at the LSM layer.
2388 *
2389 * Normally we enforce a capability check prior to executing the various LSM
2390 * hook implementations, but if a LSM wants to avoid this capability check,
2391 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2392 * xattrs that it wants to avoid the capability check, leaving the LSM fully
2393 * responsible for enforcing the access control for the specific xattr.  If all
2394 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2395 * or return a 0 (the default return value), the capability check is still
2396 * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2397 * check is performed.
2398 *
2399 * Return: Returns 0 if permission is granted.
2400 */
2401int security_inode_setxattr(struct mnt_idmap *idmap,
2402			    struct dentry *dentry, const char *name,
2403			    const void *value, size_t size, int flags)
2404{
2405	int rc;
2406
2407	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2408		return 0;
 
 
 
 
 
 
2409
2410	/* enforce the capability checks at the lsm layer, if needed */
2411	if (!call_int_hook(inode_xattr_skipcap, name)) {
2412		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2413		if (rc)
2414			return rc;
2415	}
2416
2417	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2418			     flags);
2419}
2420
2421/**
2422 * security_inode_set_acl() - Check if setting posix acls is allowed
2423 * @idmap: idmap of the mount
2424 * @dentry: file
2425 * @acl_name: acl name
2426 * @kacl: acl struct
2427 *
2428 * Check permission before setting posix acls, the posix acls in @kacl are
2429 * identified by @acl_name.
2430 *
2431 * Return: Returns 0 if permission is granted.
2432 */
2433int security_inode_set_acl(struct mnt_idmap *idmap,
2434			   struct dentry *dentry, const char *acl_name,
2435			   struct posix_acl *kacl)
2436{
2437	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2438		return 0;
2439	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2440}
2441
2442/**
2443 * security_inode_post_set_acl() - Update inode security from posix acls set
2444 * @dentry: file
2445 * @acl_name: acl name
2446 * @kacl: acl struct
2447 *
2448 * Update inode security data after successfully setting posix acls on @dentry.
2449 * The posix acls in @kacl are identified by @acl_name.
2450 */
2451void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2452				 struct posix_acl *kacl)
2453{
2454	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2455		return;
2456	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
 
 
 
 
 
 
 
2457}
2458
2459/**
2460 * security_inode_get_acl() - Check if reading posix acls is allowed
2461 * @idmap: idmap of the mount
2462 * @dentry: file
2463 * @acl_name: acl name
2464 *
2465 * Check permission before getting osix acls, the posix acls are identified by
2466 * @acl_name.
2467 *
2468 * Return: Returns 0 if permission is granted.
2469 */
2470int security_inode_get_acl(struct mnt_idmap *idmap,
2471			   struct dentry *dentry, const char *acl_name)
2472{
2473	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2474		return 0;
2475	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2476}
2477
2478/**
2479 * security_inode_remove_acl() - Check if removing a posix acl is allowed
2480 * @idmap: idmap of the mount
2481 * @dentry: file
2482 * @acl_name: acl name
2483 *
2484 * Check permission before removing posix acls, the posix acls are identified
2485 * by @acl_name.
2486 *
2487 * Return: Returns 0 if permission is granted.
2488 */
2489int security_inode_remove_acl(struct mnt_idmap *idmap,
2490			      struct dentry *dentry, const char *acl_name)
2491{
2492	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2493		return 0;
2494	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2495}
2496
2497/**
2498 * security_inode_post_remove_acl() - Update inode security after rm posix acls
2499 * @idmap: idmap of the mount
2500 * @dentry: file
2501 * @acl_name: acl name
2502 *
2503 * Update inode security data after successfully removing posix acls on
2504 * @dentry in @idmap. The posix acls are identified by @acl_name.
2505 */
2506void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2507				    struct dentry *dentry, const char *acl_name)
2508{
2509	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2510		return;
2511	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
 
 
 
 
 
 
2512}
2513
2514/**
2515 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2516 * @dentry: file
2517 * @name: xattr name
2518 * @value: xattr value
2519 * @size: xattr value size
2520 * @flags: flags
2521 *
2522 * Update inode security field after successful setxattr operation.
2523 */
2524void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2525				  const void *value, size_t size, int flags)
2526{
2527	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2528		return;
2529	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
 
2530}
2531
2532/**
2533 * security_inode_getxattr() - Check if xattr access is allowed
2534 * @dentry: file
2535 * @name: xattr name
2536 *
2537 * Check permission before obtaining the extended attributes identified by
2538 * @name for @dentry.
2539 *
2540 * Return: Returns 0 if permission is granted.
2541 */
2542int security_inode_getxattr(struct dentry *dentry, const char *name)
2543{
2544	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2545		return 0;
2546	return call_int_hook(inode_getxattr, dentry, name);
2547}
2548
2549/**
2550 * security_inode_listxattr() - Check if listing xattrs is allowed
2551 * @dentry: file
2552 *
2553 * Check permission before obtaining the list of extended attribute names for
2554 * @dentry.
2555 *
2556 * Return: Returns 0 if permission is granted.
2557 */
2558int security_inode_listxattr(struct dentry *dentry)
2559{
2560	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2561		return 0;
2562	return call_int_hook(inode_listxattr, dentry);
2563}
2564
2565/**
2566 * security_inode_removexattr() - Check if removing an xattr is allowed
2567 * @idmap: idmap of the mount
2568 * @dentry: file
2569 * @name: xattr name
2570 *
2571 * This hook performs the desired permission checks before setting the extended
2572 * attributes (xattrs) on @dentry.  It is important to note that we have some
2573 * additional logic before the main LSM implementation calls to detect if we
2574 * need to perform an additional capability check at the LSM layer.
2575 *
2576 * Normally we enforce a capability check prior to executing the various LSM
2577 * hook implementations, but if a LSM wants to avoid this capability check,
2578 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2579 * xattrs that it wants to avoid the capability check, leaving the LSM fully
2580 * responsible for enforcing the access control for the specific xattr.  If all
2581 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2582 * or return a 0 (the default return value), the capability check is still
2583 * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2584 * check is performed.
2585 *
2586 * Return: Returns 0 if permission is granted.
2587 */
2588int security_inode_removexattr(struct mnt_idmap *idmap,
2589			       struct dentry *dentry, const char *name)
2590{
2591	int rc;
2592
2593	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2594		return 0;
2595
2596	/* enforce the capability checks at the lsm layer, if needed */
2597	if (!call_int_hook(inode_xattr_skipcap, name)) {
2598		rc = cap_inode_removexattr(idmap, dentry, name);
2599		if (rc)
2600			return rc;
2601	}
2602
2603	return call_int_hook(inode_removexattr, idmap, dentry, name);
2604}
2605
2606/**
2607 * security_inode_post_removexattr() - Update the inode after a removexattr op
2608 * @dentry: file
2609 * @name: xattr name
2610 *
2611 * Update the inode after a successful removexattr operation.
2612 */
2613void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2614{
2615	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2616		return;
2617	call_void_hook(inode_post_removexattr, dentry, name);
2618}
2619
2620/**
2621 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2622 * @dentry: associated dentry
2623 *
2624 * Called when an inode has been changed to determine if
2625 * security_inode_killpriv() should be called.
2626 *
2627 * Return: Return <0 on error to abort the inode change operation, return 0 if
2628 *         security_inode_killpriv() does not need to be called, return >0 if
2629 *         security_inode_killpriv() does need to be called.
2630 */
2631int security_inode_need_killpriv(struct dentry *dentry)
2632{
2633	return call_int_hook(inode_need_killpriv, dentry);
2634}
2635
2636/**
2637 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2638 * @idmap: idmap of the mount
2639 * @dentry: associated dentry
2640 *
2641 * The @dentry's setuid bit is being removed.  Remove similar security labels.
2642 * Called with the dentry->d_inode->i_mutex held.
2643 *
2644 * Return: Return 0 on success.  If error is returned, then the operation
2645 *         causing setuid bit removal is failed.
2646 */
2647int security_inode_killpriv(struct mnt_idmap *idmap,
2648			    struct dentry *dentry)
2649{
2650	return call_int_hook(inode_killpriv, idmap, dentry);
2651}
2652
2653/**
2654 * security_inode_getsecurity() - Get the xattr security label of an inode
2655 * @idmap: idmap of the mount
2656 * @inode: inode
2657 * @name: xattr name
2658 * @buffer: security label buffer
2659 * @alloc: allocation flag
2660 *
2661 * Retrieve a copy of the extended attribute representation of the security
2662 * label associated with @name for @inode via @buffer.  Note that @name is the
2663 * remainder of the attribute name after the security prefix has been removed.
2664 * @alloc is used to specify if the call should return a value via the buffer
2665 * or just the value length.
2666 *
2667 * Return: Returns size of buffer on success.
2668 */
2669int security_inode_getsecurity(struct mnt_idmap *idmap,
2670			       struct inode *inode, const char *name,
2671			       void **buffer, bool alloc)
2672{
 
 
 
2673	if (unlikely(IS_PRIVATE(inode)))
2674		return LSM_RET_DEFAULT(inode_getsecurity);
2675
2676	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2677			     alloc);
 
 
 
 
 
 
 
2678}
2679
2680/**
2681 * security_inode_setsecurity() - Set the xattr security label of an inode
2682 * @inode: inode
2683 * @name: xattr name
2684 * @value: security label
2685 * @size: length of security label
2686 * @flags: flags
2687 *
2688 * Set the security label associated with @name for @inode from the extended
2689 * attribute value @value.  @size indicates the size of the @value in bytes.
2690 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2691 * remainder of the attribute name after the security. prefix has been removed.
2692 *
2693 * Return: Returns 0 on success.
2694 */
2695int security_inode_setsecurity(struct inode *inode, const char *name,
2696			       const void *value, size_t size, int flags)
2697{
 
 
 
2698	if (unlikely(IS_PRIVATE(inode)))
2699		return LSM_RET_DEFAULT(inode_setsecurity);
2700
2701	return call_int_hook(inode_setsecurity, inode, name, value, size,
2702			     flags);
 
 
 
 
 
 
 
2703}
2704
2705/**
2706 * security_inode_listsecurity() - List the xattr security label names
2707 * @inode: inode
2708 * @buffer: buffer
2709 * @buffer_size: size of buffer
2710 *
2711 * Copy the extended attribute names for the security labels associated with
2712 * @inode into @buffer.  The maximum size of @buffer is specified by
2713 * @buffer_size.  @buffer may be NULL to request the size of the buffer
2714 * required.
2715 *
2716 * Return: Returns number of bytes used/required on success.
2717 */
2718int security_inode_listsecurity(struct inode *inode,
2719				char *buffer, size_t buffer_size)
2720{
2721	if (unlikely(IS_PRIVATE(inode)))
2722		return 0;
2723	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2724}
2725EXPORT_SYMBOL(security_inode_listsecurity);
2726
2727/**
2728 * security_inode_getlsmprop() - Get an inode's LSM data
2729 * @inode: inode
2730 * @prop: lsm specific information to return
2731 *
2732 * Get the lsm specific information associated with the node.
 
2733 */
2734void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2735{
2736	call_void_hook(inode_getlsmprop, inode, prop);
2737}
2738
2739/**
2740 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2741 * @src: union dentry of copy-up file
2742 * @new: newly created creds
2743 *
2744 * A file is about to be copied up from lower layer to upper layer of overlay
2745 * filesystem. Security module can prepare a set of new creds and modify as
2746 * need be and return new creds. Caller will switch to new creds temporarily to
2747 * create new file and release newly allocated creds.
2748 *
2749 * Return: Returns 0 on success or a negative error code on error.
2750 */
2751int security_inode_copy_up(struct dentry *src, struct cred **new)
2752{
2753	return call_int_hook(inode_copy_up, src, new);
2754}
2755EXPORT_SYMBOL(security_inode_copy_up);
2756
2757/**
2758 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2759 * @src: union dentry of copy-up file
2760 * @name: xattr name
2761 *
2762 * Filter the xattrs being copied up when a unioned file is copied up from a
2763 * lower layer to the union/overlay layer.   The caller is responsible for
2764 * reading and writing the xattrs, this hook is merely a filter.
2765 *
2766 * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2767 *         -EOPNOTSUPP if the security module does not know about attribute,
2768 *         or a negative error code to abort the copy up.
2769 */
2770int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2771{
 
2772	int rc;
2773
2774	rc = call_int_hook(inode_copy_up_xattr, src, name);
2775	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2776		return rc;
 
 
 
 
 
 
 
 
2777
2778	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2779}
2780EXPORT_SYMBOL(security_inode_copy_up_xattr);
2781
2782/**
2783 * security_inode_setintegrity() - Set the inode's integrity data
2784 * @inode: inode
2785 * @type: type of integrity, e.g. hash digest, signature, etc
2786 * @value: the integrity value
2787 * @size: size of the integrity value
2788 *
2789 * Register a verified integrity measurement of a inode with LSMs.
2790 * LSMs should free the previously saved data if @value is NULL.
2791 *
2792 * Return: Returns 0 on success, negative values on failure.
2793 */
2794int security_inode_setintegrity(const struct inode *inode,
2795				enum lsm_integrity_type type, const void *value,
2796				size_t size)
2797{
2798	return call_int_hook(inode_setintegrity, inode, type, value, size);
2799}
2800EXPORT_SYMBOL(security_inode_setintegrity);
2801
2802/**
2803 * security_kernfs_init_security() - Init LSM context for a kernfs node
2804 * @kn_dir: parent kernfs node
2805 * @kn: the kernfs node to initialize
2806 *
2807 * Initialize the security context of a newly created kernfs node based on its
2808 * own and its parent's attributes.
2809 *
2810 * Return: Returns 0 if permission is granted.
2811 */
2812int security_kernfs_init_security(struct kernfs_node *kn_dir,
2813				  struct kernfs_node *kn)
2814{
2815	return call_int_hook(kernfs_init_security, kn_dir, kn);
2816}
2817
2818/**
2819 * security_file_permission() - Check file permissions
2820 * @file: file
2821 * @mask: requested permissions
2822 *
2823 * Check file permissions before accessing an open file.  This hook is called
2824 * by various operations that read or write files.  A security module can use
2825 * this hook to perform additional checking on these operations, e.g. to
2826 * revalidate permissions on use to support privilege bracketing or policy
2827 * changes.  Notice that this hook is used when the actual read/write
2828 * operations are performed, whereas the inode_security_ops hook is called when
2829 * a file is opened (as well as many other operations).  Although this hook can
2830 * be used to revalidate permissions for various system call operations that
2831 * read or write files, it does not address the revalidation of permissions for
2832 * memory-mapped files.  Security modules must handle this separately if they
2833 * need such revalidation.
2834 *
2835 * Return: Returns 0 if permission is granted.
2836 */
2837int security_file_permission(struct file *file, int mask)
2838{
2839	return call_int_hook(file_permission, file, mask);
2840}
2841
2842/**
2843 * security_file_alloc() - Allocate and init a file's LSM blob
2844 * @file: the file
2845 *
2846 * Allocate and attach a security structure to the file->f_security field.  The
2847 * security field is initialized to NULL when the structure is first created.
2848 *
2849 * Return: Return 0 if the hook is successful and permission is granted.
2850 */
2851int security_file_alloc(struct file *file)
2852{
2853	int rc = lsm_file_alloc(file);
2854
2855	if (rc)
2856		return rc;
2857	rc = call_int_hook(file_alloc_security, file);
2858	if (unlikely(rc))
2859		security_file_free(file);
2860	return rc;
2861}
2862
2863/**
2864 * security_file_release() - Perform actions before releasing the file ref
2865 * @file: the file
2866 *
2867 * Perform actions before releasing the last reference to a file.
2868 */
2869void security_file_release(struct file *file)
2870{
2871	call_void_hook(file_release, file);
2872}
2873
2874/**
2875 * security_file_free() - Free a file's LSM blob
2876 * @file: the file
2877 *
2878 * Deallocate and free any security structures stored in file->f_security.
2879 */
2880void security_file_free(struct file *file)
2881{
2882	void *blob;
2883
2884	call_void_hook(file_free_security, file);
2885
2886	blob = file->f_security;
2887	if (blob) {
2888		file->f_security = NULL;
2889		kmem_cache_free(lsm_file_cache, blob);
2890	}
2891}
2892
2893/**
2894 * security_file_ioctl() - Check if an ioctl is allowed
2895 * @file: associated file
2896 * @cmd: ioctl cmd
2897 * @arg: ioctl arguments
2898 *
2899 * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2900 * represents a user space pointer; in other cases, it may be a simple integer
2901 * value.  When @arg represents a user space pointer, it should never be used
2902 * by the security module.
2903 *
2904 * Return: Returns 0 if permission is granted.
2905 */
2906int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2907{
2908	return call_int_hook(file_ioctl, file, cmd, arg);
2909}
2910EXPORT_SYMBOL_GPL(security_file_ioctl);
2911
2912/**
2913 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2914 * @file: associated file
2915 * @cmd: ioctl cmd
2916 * @arg: ioctl arguments
2917 *
2918 * Compat version of security_file_ioctl() that correctly handles 32-bit
2919 * processes running on 64-bit kernels.
2920 *
2921 * Return: Returns 0 if permission is granted.
2922 */
2923int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2924			       unsigned long arg)
2925{
2926	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2927}
2928EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2929
2930static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2931{
2932	/*
2933	 * Does we have PROT_READ and does the application expect
2934	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2935	 */
2936	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2937		return prot;
2938	if (!(current->personality & READ_IMPLIES_EXEC))
2939		return prot;
2940	/*
2941	 * if that's an anonymous mapping, let it.
2942	 */
2943	if (!file)
2944		return prot | PROT_EXEC;
2945	/*
2946	 * ditto if it's not on noexec mount, except that on !MMU we need
2947	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2948	 */
2949	if (!path_noexec(&file->f_path)) {
2950#ifndef CONFIG_MMU
2951		if (file->f_op->mmap_capabilities) {
2952			unsigned caps = file->f_op->mmap_capabilities(file);
2953			if (!(caps & NOMMU_MAP_EXEC))
2954				return prot;
2955		}
2956#endif
2957		return prot | PROT_EXEC;
2958	}
2959	/* anything on noexec mount won't get PROT_EXEC */
2960	return prot;
2961}
2962
2963/**
2964 * security_mmap_file() - Check if mmap'ing a file is allowed
2965 * @file: file
2966 * @prot: protection applied by the kernel
2967 * @flags: flags
2968 *
2969 * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2970 * mapping anonymous memory.
2971 *
2972 * Return: Returns 0 if permission is granted.
2973 */
2974int security_mmap_file(struct file *file, unsigned long prot,
2975		       unsigned long flags)
2976{
2977	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2978			     flags);
 
 
 
 
 
2979}
2980
2981/**
2982 * security_mmap_addr() - Check if mmap'ing an address is allowed
2983 * @addr: address
2984 *
2985 * Check permissions for a mmap operation at @addr.
2986 *
2987 * Return: Returns 0 if permission is granted.
2988 */
2989int security_mmap_addr(unsigned long addr)
2990{
2991	return call_int_hook(mmap_addr, addr);
2992}
2993
2994/**
2995 * security_file_mprotect() - Check if changing memory protections is allowed
2996 * @vma: memory region
2997 * @reqprot: application requested protection
2998 * @prot: protection applied by the kernel
2999 *
3000 * Check permissions before changing memory access permissions.
3001 *
3002 * Return: Returns 0 if permission is granted.
3003 */
3004int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3005			   unsigned long prot)
3006{
3007	return call_int_hook(file_mprotect, vma, reqprot, prot);
 
 
 
 
 
3008}
3009
3010/**
3011 * security_file_lock() - Check if a file lock is allowed
3012 * @file: file
3013 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3014 *
3015 * Check permission before performing file locking operations.  Note the hook
3016 * mediates both flock and fcntl style locks.
3017 *
3018 * Return: Returns 0 if permission is granted.
3019 */
3020int security_file_lock(struct file *file, unsigned int cmd)
3021{
3022	return call_int_hook(file_lock, file, cmd);
3023}
3024
3025/**
3026 * security_file_fcntl() - Check if fcntl() op is allowed
3027 * @file: file
3028 * @cmd: fcntl command
3029 * @arg: command argument
3030 *
3031 * Check permission before allowing the file operation specified by @cmd from
3032 * being performed on the file @file.  Note that @arg sometimes represents a
3033 * user space pointer; in other cases, it may be a simple integer value.  When
3034 * @arg represents a user space pointer, it should never be used by the
3035 * security module.
3036 *
3037 * Return: Returns 0 if permission is granted.
3038 */
3039int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3040{
3041	return call_int_hook(file_fcntl, file, cmd, arg);
3042}
3043
3044/**
3045 * security_file_set_fowner() - Set the file owner info in the LSM blob
3046 * @file: the file
3047 *
3048 * Save owner security information (typically from current->security) in
3049 * file->f_security for later use by the send_sigiotask hook.
3050 *
3051 * This hook is called with file->f_owner.lock held.
3052 *
3053 * Return: Returns 0 on success.
3054 */
3055void security_file_set_fowner(struct file *file)
3056{
3057	call_void_hook(file_set_fowner, file);
3058}
3059
3060/**
3061 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3062 * @tsk: target task
3063 * @fown: signal sender
3064 * @sig: signal to be sent, SIGIO is sent if 0
3065 *
3066 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3067 * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
3068 * that the fown_struct, @fown, is never outside the context of a struct file,
3069 * so the file structure (and associated security information) can always be
3070 * obtained: container_of(fown, struct file, f_owner).
3071 *
3072 * Return: Returns 0 if permission is granted.
3073 */
3074int security_file_send_sigiotask(struct task_struct *tsk,
3075				 struct fown_struct *fown, int sig)
3076{
3077	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3078}
3079
3080/**
3081 * security_file_receive() - Check if receiving a file via IPC is allowed
3082 * @file: file being received
3083 *
3084 * This hook allows security modules to control the ability of a process to
3085 * receive an open file descriptor via socket IPC.
3086 *
3087 * Return: Returns 0 if permission is granted.
3088 */
3089int security_file_receive(struct file *file)
3090{
3091	return call_int_hook(file_receive, file);
3092}
3093
3094/**
3095 * security_file_open() - Save open() time state for late use by the LSM
3096 * @file:
3097 *
3098 * Save open-time permission checking state for later use upon file_permission,
3099 * and recheck access if anything has changed since inode_permission.
3100 *
3101 * Return: Returns 0 if permission is granted.
3102 */
3103int security_file_open(struct file *file)
3104{
3105	return call_int_hook(file_open, file);
3106}
3107
3108/**
3109 * security_file_post_open() - Evaluate a file after it has been opened
3110 * @file: the file
3111 * @mask: access mask
3112 *
3113 * Evaluate an opened file and the access mask requested with open(). The hook
3114 * is useful for LSMs that require the file content to be available in order to
3115 * make decisions.
3116 *
3117 * Return: Returns 0 if permission is granted.
3118 */
3119int security_file_post_open(struct file *file, int mask)
3120{
3121	return call_int_hook(file_post_open, file, mask);
3122}
3123EXPORT_SYMBOL_GPL(security_file_post_open);
3124
3125/**
3126 * security_file_truncate() - Check if truncating a file is allowed
3127 * @file: file
3128 *
3129 * Check permission before truncating a file, i.e. using ftruncate.  Note that
3130 * truncation permission may also be checked based on the path, using the
3131 * @path_truncate hook.
3132 *
3133 * Return: Returns 0 if permission is granted.
3134 */
3135int security_file_truncate(struct file *file)
3136{
3137	return call_int_hook(file_truncate, file);
3138}
3139
3140/**
3141 * security_task_alloc() - Allocate a task's LSM blob
3142 * @task: the task
3143 * @clone_flags: flags indicating what is being shared
3144 *
3145 * Handle allocation of task-related resources.
3146 *
3147 * Return: Returns a zero on success, negative values on failure.
3148 */
3149int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3150{
3151	int rc = lsm_task_alloc(task);
3152
3153	if (rc)
3154		return rc;
3155	rc = call_int_hook(task_alloc, task, clone_flags);
3156	if (unlikely(rc))
3157		security_task_free(task);
3158	return rc;
3159}
3160
3161/**
3162 * security_task_free() - Free a task's LSM blob and related resources
3163 * @task: task
3164 *
3165 * Handle release of task-related resources.  Note that this can be called from
3166 * interrupt context.
3167 */
3168void security_task_free(struct task_struct *task)
3169{
3170	call_void_hook(task_free, task);
3171
3172	kfree(task->security);
3173	task->security = NULL;
3174}
3175
3176/**
3177 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3178 * @cred: credentials
3179 * @gfp: gfp flags
3180 *
3181 * Only allocate sufficient memory and attach to @cred such that
3182 * cred_transfer() will not get ENOMEM.
3183 *
3184 * Return: Returns 0 on success, negative values on failure.
3185 */
3186int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3187{
3188	int rc = lsm_cred_alloc(cred, gfp);
3189
3190	if (rc)
3191		return rc;
3192
3193	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3194	if (unlikely(rc))
3195		security_cred_free(cred);
3196	return rc;
3197}
3198
3199/**
3200 * security_cred_free() - Free the cred's LSM blob and associated resources
3201 * @cred: credentials
3202 *
3203 * Deallocate and clear the cred->security field in a set of credentials.
3204 */
3205void security_cred_free(struct cred *cred)
3206{
3207	/*
3208	 * There is a failure case in prepare_creds() that
3209	 * may result in a call here with ->security being NULL.
3210	 */
3211	if (unlikely(cred->security == NULL))
3212		return;
3213
3214	call_void_hook(cred_free, cred);
3215
3216	kfree(cred->security);
3217	cred->security = NULL;
3218}
3219
3220/**
3221 * security_prepare_creds() - Prepare a new set of credentials
3222 * @new: new credentials
3223 * @old: original credentials
3224 * @gfp: gfp flags
3225 *
3226 * Prepare a new set of credentials by copying the data from the old set.
3227 *
3228 * Return: Returns 0 on success, negative values on failure.
3229 */
3230int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3231{
3232	int rc = lsm_cred_alloc(new, gfp);
3233
3234	if (rc)
3235		return rc;
3236
3237	rc = call_int_hook(cred_prepare, new, old, gfp);
3238	if (unlikely(rc))
3239		security_cred_free(new);
3240	return rc;
3241}
3242
3243/**
3244 * security_transfer_creds() - Transfer creds
3245 * @new: target credentials
3246 * @old: original credentials
3247 *
3248 * Transfer data from original creds to new creds.
3249 */
3250void security_transfer_creds(struct cred *new, const struct cred *old)
3251{
3252	call_void_hook(cred_transfer, new, old);
3253}
3254
3255/**
3256 * security_cred_getsecid() - Get the secid from a set of credentials
3257 * @c: credentials
3258 * @secid: secid value
3259 *
3260 * Retrieve the security identifier of the cred structure @c.  In case of
3261 * failure, @secid will be set to zero.
3262 */
3263void security_cred_getsecid(const struct cred *c, u32 *secid)
3264{
3265	*secid = 0;
3266	call_void_hook(cred_getsecid, c, secid);
3267}
3268EXPORT_SYMBOL(security_cred_getsecid);
3269
3270/**
3271 * security_cred_getlsmprop() - Get the LSM data from a set of credentials
3272 * @c: credentials
3273 * @prop: destination for the LSM data
3274 *
3275 * Retrieve the security data of the cred structure @c.  In case of
3276 * failure, @prop will be cleared.
3277 */
3278void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
3279{
3280	lsmprop_init(prop);
3281	call_void_hook(cred_getlsmprop, c, prop);
3282}
3283EXPORT_SYMBOL(security_cred_getlsmprop);
3284
3285/**
3286 * security_kernel_act_as() - Set the kernel credentials to act as secid
3287 * @new: credentials
3288 * @secid: secid
3289 *
3290 * Set the credentials for a kernel service to act as (subjective context).
3291 * The current task must be the one that nominated @secid.
3292 *
3293 * Return: Returns 0 if successful.
3294 */
3295int security_kernel_act_as(struct cred *new, u32 secid)
3296{
3297	return call_int_hook(kernel_act_as, new, secid);
3298}
3299
3300/**
3301 * security_kernel_create_files_as() - Set file creation context using an inode
3302 * @new: target credentials
3303 * @inode: reference inode
3304 *
3305 * Set the file creation context in a set of credentials to be the same as the
3306 * objective context of the specified inode.  The current task must be the one
3307 * that nominated @inode.
3308 *
3309 * Return: Returns 0 if successful.
3310 */
3311int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3312{
3313	return call_int_hook(kernel_create_files_as, new, inode);
3314}
3315
3316/**
3317 * security_kernel_module_request() - Check if loading a module is allowed
3318 * @kmod_name: module name
3319 *
3320 * Ability to trigger the kernel to automatically upcall to userspace for
3321 * userspace to load a kernel module with the given name.
3322 *
3323 * Return: Returns 0 if successful.
3324 */
3325int security_kernel_module_request(char *kmod_name)
3326{
3327	return call_int_hook(kernel_module_request, kmod_name);
 
 
 
 
 
3328}
3329
3330/**
3331 * security_kernel_read_file() - Read a file specified by userspace
3332 * @file: file
3333 * @id: file identifier
3334 * @contents: trust if security_kernel_post_read_file() will be called
3335 *
3336 * Read a file specified by userspace.
3337 *
3338 * Return: Returns 0 if permission is granted.
3339 */
3340int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3341			      bool contents)
3342{
3343	return call_int_hook(kernel_read_file, file, id, contents);
 
 
 
 
 
3344}
3345EXPORT_SYMBOL_GPL(security_kernel_read_file);
3346
3347/**
3348 * security_kernel_post_read_file() - Read a file specified by userspace
3349 * @file: file
3350 * @buf: file contents
3351 * @size: size of file contents
3352 * @id: file identifier
3353 *
3354 * Read a file specified by userspace.  This must be paired with a prior call
3355 * to security_kernel_read_file() call that indicated this hook would also be
3356 * called, see security_kernel_read_file() for more information.
3357 *
3358 * Return: Returns 0 if permission is granted.
3359 */
3360int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3361				   enum kernel_read_file_id id)
3362{
3363	return call_int_hook(kernel_post_read_file, file, buf, size, id);
 
 
 
 
 
3364}
3365EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3366
3367/**
3368 * security_kernel_load_data() - Load data provided by userspace
3369 * @id: data identifier
3370 * @contents: true if security_kernel_post_load_data() will be called
3371 *
3372 * Load data provided by userspace.
3373 *
3374 * Return: Returns 0 if permission is granted.
3375 */
3376int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3377{
3378	return call_int_hook(kernel_load_data, id, contents);
 
 
 
 
 
3379}
3380EXPORT_SYMBOL_GPL(security_kernel_load_data);
3381
3382/**
3383 * security_kernel_post_load_data() - Load userspace data from a non-file source
3384 * @buf: data
3385 * @size: size of data
3386 * @id: data identifier
3387 * @description: text description of data, specific to the id value
3388 *
3389 * Load data provided by a non-file source (usually userspace buffer).  This
3390 * must be paired with a prior security_kernel_load_data() call that indicated
3391 * this hook would also be called, see security_kernel_load_data() for more
3392 * information.
3393 *
3394 * Return: Returns 0 if permission is granted.
3395 */
3396int security_kernel_post_load_data(char *buf, loff_t size,
3397				   enum kernel_load_data_id id,
3398				   char *description)
3399{
3400	return call_int_hook(kernel_post_load_data, buf, size, id, description);
 
 
 
 
 
 
3401}
3402EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3403
3404/**
3405 * security_task_fix_setuid() - Update LSM with new user id attributes
3406 * @new: updated credentials
3407 * @old: credentials being replaced
3408 * @flags: LSM_SETID_* flag values
3409 *
3410 * Update the module's state after setting one or more of the user identity
3411 * attributes of the current process.  The @flags parameter indicates which of
3412 * the set*uid system calls invoked this hook.  If @new is the set of
3413 * credentials that will be installed.  Modifications should be made to this
3414 * rather than to @current->cred.
3415 *
3416 * Return: Returns 0 on success.
3417 */
3418int security_task_fix_setuid(struct cred *new, const struct cred *old,
3419			     int flags)
3420{
3421	return call_int_hook(task_fix_setuid, new, old, flags);
3422}
3423
3424/**
3425 * security_task_fix_setgid() - Update LSM with new group id attributes
3426 * @new: updated credentials
3427 * @old: credentials being replaced
3428 * @flags: LSM_SETID_* flag value
3429 *
3430 * Update the module's state after setting one or more of the group identity
3431 * attributes of the current process.  The @flags parameter indicates which of
3432 * the set*gid system calls invoked this hook.  @new is the set of credentials
3433 * that will be installed.  Modifications should be made to this rather than to
3434 * @current->cred.
3435 *
3436 * Return: Returns 0 on success.
3437 */
3438int security_task_fix_setgid(struct cred *new, const struct cred *old,
3439			     int flags)
3440{
3441	return call_int_hook(task_fix_setgid, new, old, flags);
3442}
3443
3444/**
3445 * security_task_fix_setgroups() - Update LSM with new supplementary groups
3446 * @new: updated credentials
3447 * @old: credentials being replaced
3448 *
3449 * Update the module's state after setting the supplementary group identity
3450 * attributes of the current process.  @new is the set of credentials that will
3451 * be installed.  Modifications should be made to this rather than to
3452 * @current->cred.
3453 *
3454 * Return: Returns 0 on success.
3455 */
3456int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3457{
3458	return call_int_hook(task_fix_setgroups, new, old);
3459}
3460
3461/**
3462 * security_task_setpgid() - Check if setting the pgid is allowed
3463 * @p: task being modified
3464 * @pgid: new pgid
3465 *
3466 * Check permission before setting the process group identifier of the process
3467 * @p to @pgid.
3468 *
3469 * Return: Returns 0 if permission is granted.
3470 */
3471int security_task_setpgid(struct task_struct *p, pid_t pgid)
3472{
3473	return call_int_hook(task_setpgid, p, pgid);
3474}
3475
3476/**
3477 * security_task_getpgid() - Check if getting the pgid is allowed
3478 * @p: task
3479 *
3480 * Check permission before getting the process group identifier of the process
3481 * @p.
3482 *
3483 * Return: Returns 0 if permission is granted.
3484 */
3485int security_task_getpgid(struct task_struct *p)
3486{
3487	return call_int_hook(task_getpgid, p);
3488}
3489
3490/**
3491 * security_task_getsid() - Check if getting the session id is allowed
3492 * @p: task
3493 *
3494 * Check permission before getting the session identifier of the process @p.
3495 *
3496 * Return: Returns 0 if permission is granted.
3497 */
3498int security_task_getsid(struct task_struct *p)
3499{
3500	return call_int_hook(task_getsid, p);
3501}
3502
3503/**
3504 * security_current_getlsmprop_subj() - Current task's subjective LSM data
3505 * @prop: lsm specific information
3506 *
3507 * Retrieve the subjective security identifier of the current task and return
3508 * it in @prop.
3509 */
3510void security_current_getlsmprop_subj(struct lsm_prop *prop)
3511{
3512	lsmprop_init(prop);
3513	call_void_hook(current_getlsmprop_subj, prop);
3514}
3515EXPORT_SYMBOL(security_current_getlsmprop_subj);
3516
3517/**
3518 * security_task_getlsmprop_obj() - Get a task's objective LSM data
3519 * @p: target task
3520 * @prop: lsm specific information
3521 *
3522 * Retrieve the objective security identifier of the task_struct in @p and
3523 * return it in @prop.
3524 */
3525void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3526{
3527	lsmprop_init(prop);
3528	call_void_hook(task_getlsmprop_obj, p, prop);
3529}
3530EXPORT_SYMBOL(security_task_getlsmprop_obj);
3531
3532/**
3533 * security_task_setnice() - Check if setting a task's nice value is allowed
3534 * @p: target task
3535 * @nice: nice value
3536 *
3537 * Check permission before setting the nice value of @p to @nice.
3538 *
3539 * Return: Returns 0 if permission is granted.
3540 */
3541int security_task_setnice(struct task_struct *p, int nice)
3542{
3543	return call_int_hook(task_setnice, p, nice);
3544}
3545
3546/**
3547 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3548 * @p: target task
3549 * @ioprio: ioprio value
3550 *
3551 * Check permission before setting the ioprio value of @p to @ioprio.
3552 *
3553 * Return: Returns 0 if permission is granted.
3554 */
3555int security_task_setioprio(struct task_struct *p, int ioprio)
3556{
3557	return call_int_hook(task_setioprio, p, ioprio);
3558}
3559
3560/**
3561 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3562 * @p: task
3563 *
3564 * Check permission before getting the ioprio value of @p.
3565 *
3566 * Return: Returns 0 if permission is granted.
3567 */
3568int security_task_getioprio(struct task_struct *p)
3569{
3570	return call_int_hook(task_getioprio, p);
3571}
3572
3573/**
3574 * security_task_prlimit() - Check if get/setting resources limits is allowed
3575 * @cred: current task credentials
3576 * @tcred: target task credentials
3577 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3578 *
3579 * Check permission before getting and/or setting the resource limits of
3580 * another task.
3581 *
3582 * Return: Returns 0 if permission is granted.
3583 */
3584int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3585			  unsigned int flags)
3586{
3587	return call_int_hook(task_prlimit, cred, tcred, flags);
3588}
3589
3590/**
3591 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3592 * @p: target task's group leader
3593 * @resource: resource whose limit is being set
3594 * @new_rlim: new resource limit
3595 *
3596 * Check permission before setting the resource limits of process @p for
3597 * @resource to @new_rlim.  The old resource limit values can be examined by
3598 * dereferencing (p->signal->rlim + resource).
3599 *
3600 * Return: Returns 0 if permission is granted.
3601 */
3602int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3603			    struct rlimit *new_rlim)
3604{
3605	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3606}
3607
3608/**
3609 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3610 * @p: target task
3611 *
3612 * Check permission before setting scheduling policy and/or parameters of
3613 * process @p.
3614 *
3615 * Return: Returns 0 if permission is granted.
3616 */
3617int security_task_setscheduler(struct task_struct *p)
3618{
3619	return call_int_hook(task_setscheduler, p);
3620}
3621
3622/**
3623 * security_task_getscheduler() - Check if getting scheduling info is allowed
3624 * @p: target task
3625 *
3626 * Check permission before obtaining scheduling information for process @p.
3627 *
3628 * Return: Returns 0 if permission is granted.
3629 */
3630int security_task_getscheduler(struct task_struct *p)
3631{
3632	return call_int_hook(task_getscheduler, p);
3633}
3634
3635/**
3636 * security_task_movememory() - Check if moving memory is allowed
3637 * @p: task
3638 *
3639 * Check permission before moving memory owned by process @p.
3640 *
3641 * Return: Returns 0 if permission is granted.
3642 */
3643int security_task_movememory(struct task_struct *p)
3644{
3645	return call_int_hook(task_movememory, p);
3646}
3647
3648/**
3649 * security_task_kill() - Check if sending a signal is allowed
3650 * @p: target process
3651 * @info: signal information
3652 * @sig: signal value
3653 * @cred: credentials of the signal sender, NULL if @current
3654 *
3655 * Check permission before sending signal @sig to @p.  @info can be NULL, the
3656 * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3657 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3658 * the kernel and should typically be permitted.  SIGIO signals are handled
3659 * separately by the send_sigiotask hook in file_security_ops.
3660 *
3661 * Return: Returns 0 if permission is granted.
3662 */
3663int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3664		       int sig, const struct cred *cred)
3665{
3666	return call_int_hook(task_kill, p, info, sig, cred);
3667}
3668
3669/**
3670 * security_task_prctl() - Check if a prctl op is allowed
3671 * @option: operation
3672 * @arg2: argument
3673 * @arg3: argument
3674 * @arg4: argument
3675 * @arg5: argument
3676 *
3677 * Check permission before performing a process control operation on the
3678 * current process.
3679 *
3680 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3681 *         to cause prctl() to return immediately with that value.
3682 */
3683int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3684			unsigned long arg4, unsigned long arg5)
3685{
3686	int thisrc;
3687	int rc = LSM_RET_DEFAULT(task_prctl);
3688	struct lsm_static_call *scall;
3689
3690	lsm_for_each_hook(scall, task_prctl) {
3691		thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3692		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3693			rc = thisrc;
3694			if (thisrc != 0)
3695				break;
3696		}
3697	}
3698	return rc;
3699}
3700
3701/**
3702 * security_task_to_inode() - Set the security attributes of a task's inode
3703 * @p: task
3704 * @inode: inode
3705 *
3706 * Set the security attributes for an inode based on an associated task's
3707 * security attributes, e.g. for /proc/pid inodes.
3708 */
3709void security_task_to_inode(struct task_struct *p, struct inode *inode)
3710{
3711	call_void_hook(task_to_inode, p, inode);
3712}
3713
3714/**
3715 * security_create_user_ns() - Check if creating a new userns is allowed
3716 * @cred: prepared creds
3717 *
3718 * Check permission prior to creating a new user namespace.
3719 *
3720 * Return: Returns 0 if successful, otherwise < 0 error code.
3721 */
3722int security_create_user_ns(const struct cred *cred)
3723{
3724	return call_int_hook(userns_create, cred);
3725}
3726
3727/**
3728 * security_ipc_permission() - Check if sysv ipc access is allowed
3729 * @ipcp: ipc permission structure
3730 * @flag: requested permissions
3731 *
3732 * Check permissions for access to IPC.
3733 *
3734 * Return: Returns 0 if permission is granted.
3735 */
3736int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3737{
3738	return call_int_hook(ipc_permission, ipcp, flag);
3739}
3740
3741/**
3742 * security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3743 * @ipcp: ipc permission structure
3744 * @prop: pointer to lsm information
3745 *
3746 * Get the lsm information associated with the ipc object.
 
3747 */
3748
3749void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3750{
3751	lsmprop_init(prop);
3752	call_void_hook(ipc_getlsmprop, ipcp, prop);
3753}
3754
3755/**
3756 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3757 * @msg: message structure
3758 *
3759 * Allocate and attach a security structure to the msg->security field.  The
3760 * security field is initialized to NULL when the structure is first created.
3761 *
3762 * Return: Return 0 if operation was successful and permission is granted.
3763 */
3764int security_msg_msg_alloc(struct msg_msg *msg)
3765{
3766	int rc = lsm_msg_msg_alloc(msg);
3767
3768	if (unlikely(rc))
3769		return rc;
3770	rc = call_int_hook(msg_msg_alloc_security, msg);
3771	if (unlikely(rc))
3772		security_msg_msg_free(msg);
3773	return rc;
3774}
3775
3776/**
3777 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3778 * @msg: message structure
3779 *
3780 * Deallocate the security structure for this message.
3781 */
3782void security_msg_msg_free(struct msg_msg *msg)
3783{
3784	call_void_hook(msg_msg_free_security, msg);
3785	kfree(msg->security);
3786	msg->security = NULL;
3787}
3788
3789/**
3790 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3791 * @msq: sysv ipc permission structure
3792 *
3793 * Allocate and attach a security structure to @msg. The security field is
3794 * initialized to NULL when the structure is first created.
3795 *
3796 * Return: Returns 0 if operation was successful and permission is granted.
3797 */
3798int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3799{
3800	int rc = lsm_ipc_alloc(msq);
3801
3802	if (unlikely(rc))
3803		return rc;
3804	rc = call_int_hook(msg_queue_alloc_security, msq);
3805	if (unlikely(rc))
3806		security_msg_queue_free(msq);
3807	return rc;
3808}
3809
3810/**
3811 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3812 * @msq: sysv ipc permission structure
3813 *
3814 * Deallocate security field @perm->security for the message queue.
3815 */
3816void security_msg_queue_free(struct kern_ipc_perm *msq)
3817{
3818	call_void_hook(msg_queue_free_security, msq);
3819	kfree(msq->security);
3820	msq->security = NULL;
3821}
3822
3823/**
3824 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3825 * @msq: sysv ipc permission structure
3826 * @msqflg: operation flags
3827 *
3828 * Check permission when a message queue is requested through the msgget system
3829 * call. This hook is only called when returning the message queue identifier
3830 * for an existing message queue, not when a new message queue is created.
3831 *
3832 * Return: Return 0 if permission is granted.
3833 */
3834int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3835{
3836	return call_int_hook(msg_queue_associate, msq, msqflg);
3837}
3838
3839/**
3840 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3841 * @msq: sysv ipc permission structure
3842 * @cmd: operation
3843 *
3844 * Check permission when a message control operation specified by @cmd is to be
3845 * performed on the message queue with permissions.
3846 *
3847 * Return: Returns 0 if permission is granted.
3848 */
3849int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3850{
3851	return call_int_hook(msg_queue_msgctl, msq, cmd);
3852}
3853
3854/**
3855 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3856 * @msq: sysv ipc permission structure
3857 * @msg: message
3858 * @msqflg: operation flags
3859 *
3860 * Check permission before a message, @msg, is enqueued on the message queue
3861 * with permissions specified in @msq.
3862 *
3863 * Return: Returns 0 if permission is granted.
3864 */
3865int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3866			      struct msg_msg *msg, int msqflg)
3867{
3868	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3869}
3870
3871/**
3872 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3873 * @msq: sysv ipc permission structure
3874 * @msg: message
3875 * @target: target task
3876 * @type: type of message requested
3877 * @mode: operation flags
3878 *
3879 * Check permission before a message, @msg, is removed from the message	queue.
3880 * The @target task structure contains a pointer to the process that will be
3881 * receiving the message (not equal to the current process when inline receives
3882 * are being performed).
3883 *
3884 * Return: Returns 0 if permission is granted.
3885 */
3886int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3887			      struct task_struct *target, long type, int mode)
3888{
3889	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3890}
3891
3892/**
3893 * security_shm_alloc() - Allocate a sysv shm LSM blob
3894 * @shp: sysv ipc permission structure
3895 *
3896 * Allocate and attach a security structure to the @shp security field.  The
3897 * security field is initialized to NULL when the structure is first created.
3898 *
3899 * Return: Returns 0 if operation was successful and permission is granted.
3900 */
3901int security_shm_alloc(struct kern_ipc_perm *shp)
3902{
3903	int rc = lsm_ipc_alloc(shp);
3904
3905	if (unlikely(rc))
3906		return rc;
3907	rc = call_int_hook(shm_alloc_security, shp);
3908	if (unlikely(rc))
3909		security_shm_free(shp);
3910	return rc;
3911}
3912
3913/**
3914 * security_shm_free() - Free a sysv shm LSM blob
3915 * @shp: sysv ipc permission structure
3916 *
3917 * Deallocate the security structure @perm->security for the memory segment.
3918 */
3919void security_shm_free(struct kern_ipc_perm *shp)
3920{
3921	call_void_hook(shm_free_security, shp);
3922	kfree(shp->security);
3923	shp->security = NULL;
3924}
3925
3926/**
3927 * security_shm_associate() - Check if a sysv shm operation is allowed
3928 * @shp: sysv ipc permission structure
3929 * @shmflg: operation flags
3930 *
3931 * Check permission when a shared memory region is requested through the shmget
3932 * system call. This hook is only called when returning the shared memory
3933 * region identifier for an existing region, not when a new shared memory
3934 * region is created.
3935 *
3936 * Return: Returns 0 if permission is granted.
3937 */
3938int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3939{
3940	return call_int_hook(shm_associate, shp, shmflg);
3941}
3942
3943/**
3944 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3945 * @shp: sysv ipc permission structure
3946 * @cmd: operation
3947 *
3948 * Check permission when a shared memory control operation specified by @cmd is
3949 * to be performed on the shared memory region with permissions in @shp.
3950 *
3951 * Return: Return 0 if permission is granted.
3952 */
3953int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3954{
3955	return call_int_hook(shm_shmctl, shp, cmd);
3956}
3957
3958/**
3959 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3960 * @shp: sysv ipc permission structure
3961 * @shmaddr: address of memory region to attach
3962 * @shmflg: operation flags
3963 *
3964 * Check permissions prior to allowing the shmat system call to attach the
3965 * shared memory segment with permissions @shp to the data segment of the
3966 * calling process. The attaching address is specified by @shmaddr.
3967 *
3968 * Return: Returns 0 if permission is granted.
3969 */
3970int security_shm_shmat(struct kern_ipc_perm *shp,
3971		       char __user *shmaddr, int shmflg)
3972{
3973	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3974}
3975
3976/**
3977 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3978 * @sma: sysv ipc permission structure
3979 *
3980 * Allocate and attach a security structure to the @sma security field. The
3981 * security field is initialized to NULL when the structure is first created.
3982 *
3983 * Return: Returns 0 if operation was successful and permission is granted.
3984 */
3985int security_sem_alloc(struct kern_ipc_perm *sma)
3986{
3987	int rc = lsm_ipc_alloc(sma);
3988
3989	if (unlikely(rc))
3990		return rc;
3991	rc = call_int_hook(sem_alloc_security, sma);
3992	if (unlikely(rc))
3993		security_sem_free(sma);
3994	return rc;
3995}
3996
3997/**
3998 * security_sem_free() - Free a sysv semaphore LSM blob
3999 * @sma: sysv ipc permission structure
4000 *
4001 * Deallocate security structure @sma->security for the semaphore.
4002 */
4003void security_sem_free(struct kern_ipc_perm *sma)
4004{
4005	call_void_hook(sem_free_security, sma);
4006	kfree(sma->security);
4007	sma->security = NULL;
4008}
4009
4010/**
4011 * security_sem_associate() - Check if a sysv semaphore operation is allowed
4012 * @sma: sysv ipc permission structure
4013 * @semflg: operation flags
4014 *
4015 * Check permission when a semaphore is requested through the semget system
4016 * call. This hook is only called when returning the semaphore identifier for
4017 * an existing semaphore, not when a new one must be created.
4018 *
4019 * Return: Returns 0 if permission is granted.
4020 */
4021int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4022{
4023	return call_int_hook(sem_associate, sma, semflg);
4024}
4025
4026/**
4027 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4028 * @sma: sysv ipc permission structure
4029 * @cmd: operation
4030 *
4031 * Check permission when a semaphore operation specified by @cmd is to be
4032 * performed on the semaphore.
4033 *
4034 * Return: Returns 0 if permission is granted.
4035 */
4036int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4037{
4038	return call_int_hook(sem_semctl, sma, cmd);
4039}
4040
4041/**
4042 * security_sem_semop() - Check if a sysv semaphore operation is allowed
4043 * @sma: sysv ipc permission structure
4044 * @sops: operations to perform
4045 * @nsops: number of operations
4046 * @alter: flag indicating changes will be made
4047 *
4048 * Check permissions before performing operations on members of the semaphore
4049 * set. If the @alter flag is nonzero, the semaphore set may be modified.
4050 *
4051 * Return: Returns 0 if permission is granted.
4052 */
4053int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4054		       unsigned nsops, int alter)
4055{
4056	return call_int_hook(sem_semop, sma, sops, nsops, alter);
4057}
4058
4059/**
4060 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4061 * @dentry: dentry
4062 * @inode: inode
4063 *
4064 * Fill in @inode security information for a @dentry if allowed.
4065 */
4066void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4067{
4068	if (unlikely(inode && IS_PRIVATE(inode)))
4069		return;
4070	call_void_hook(d_instantiate, dentry, inode);
4071}
4072EXPORT_SYMBOL(security_d_instantiate);
4073
4074/*
4075 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4076 */
4077
4078/**
4079 * security_getselfattr - Read an LSM attribute of the current process.
4080 * @attr: which attribute to return
4081 * @uctx: the user-space destination for the information, or NULL
4082 * @size: pointer to the size of space available to receive the data
4083 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4084 * attributes associated with the LSM identified in the passed @ctx be
4085 * reported.
4086 *
4087 * A NULL value for @uctx can be used to get both the number of attributes
4088 * and the size of the data.
4089 *
4090 * Returns the number of attributes found on success, negative value
4091 * on error. @size is reset to the total size of the data.
4092 * If @size is insufficient to contain the data -E2BIG is returned.
4093 */
4094int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4095			 u32 __user *size, u32 flags)
4096{
4097	struct lsm_static_call *scall;
4098	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4099	u8 __user *base = (u8 __user *)uctx;
4100	u32 entrysize;
4101	u32 total = 0;
4102	u32 left;
4103	bool toobig = false;
4104	bool single = false;
4105	int count = 0;
4106	int rc;
4107
4108	if (attr == LSM_ATTR_UNDEF)
4109		return -EINVAL;
4110	if (size == NULL)
4111		return -EINVAL;
4112	if (get_user(left, size))
4113		return -EFAULT;
4114
4115	if (flags) {
4116		/*
4117		 * Only flag supported is LSM_FLAG_SINGLE
4118		 */
4119		if (flags != LSM_FLAG_SINGLE || !uctx)
4120			return -EINVAL;
4121		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4122			return -EFAULT;
4123		/*
4124		 * If the LSM ID isn't specified it is an error.
4125		 */
4126		if (lctx.id == LSM_ID_UNDEF)
4127			return -EINVAL;
4128		single = true;
4129	}
4130
4131	/*
4132	 * In the usual case gather all the data from the LSMs.
4133	 * In the single case only get the data from the LSM specified.
4134	 */
4135	lsm_for_each_hook(scall, getselfattr) {
4136		if (single && lctx.id != scall->hl->lsmid->id)
4137			continue;
4138		entrysize = left;
4139		if (base)
4140			uctx = (struct lsm_ctx __user *)(base + total);
4141		rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4142		if (rc == -EOPNOTSUPP) {
4143			rc = 0;
4144			continue;
4145		}
4146		if (rc == -E2BIG) {
4147			rc = 0;
4148			left = 0;
4149			toobig = true;
4150		} else if (rc < 0)
4151			return rc;
4152		else
4153			left -= entrysize;
4154
4155		total += entrysize;
4156		count += rc;
4157		if (single)
4158			break;
4159	}
4160	if (put_user(total, size))
4161		return -EFAULT;
4162	if (toobig)
4163		return -E2BIG;
4164	if (count == 0)
4165		return LSM_RET_DEFAULT(getselfattr);
4166	return count;
4167}
4168
4169/*
4170 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4171 */
4172
4173/**
4174 * security_setselfattr - Set an LSM attribute on the current process.
4175 * @attr: which attribute to set
4176 * @uctx: the user-space source for the information
4177 * @size: the size of the data
4178 * @flags: reserved for future use, must be 0
4179 *
4180 * Set an LSM attribute for the current process. The LSM, attribute
4181 * and new value are included in @uctx.
4182 *
4183 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4184 * if the user buffer is inaccessible, E2BIG if size is too big, or an
4185 * LSM specific failure.
4186 */
4187int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4188			 u32 size, u32 flags)
4189{
4190	struct lsm_static_call *scall;
4191	struct lsm_ctx *lctx;
4192	int rc = LSM_RET_DEFAULT(setselfattr);
4193	u64 required_len;
4194
4195	if (flags)
4196		return -EINVAL;
4197	if (size < sizeof(*lctx))
4198		return -EINVAL;
4199	if (size > PAGE_SIZE)
4200		return -E2BIG;
4201
4202	lctx = memdup_user(uctx, size);
4203	if (IS_ERR(lctx))
4204		return PTR_ERR(lctx);
4205
4206	if (size < lctx->len ||
4207	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4208	    lctx->len < required_len) {
4209		rc = -EINVAL;
4210		goto free_out;
4211	}
4212
4213	lsm_for_each_hook(scall, setselfattr)
4214		if ((scall->hl->lsmid->id) == lctx->id) {
4215			rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4216			break;
4217		}
4218
4219free_out:
4220	kfree(lctx);
4221	return rc;
4222}
4223
4224/**
4225 * security_getprocattr() - Read an attribute for a task
4226 * @p: the task
4227 * @lsmid: LSM identification
4228 * @name: attribute name
4229 * @value: attribute value
4230 *
4231 * Read attribute @name for task @p and store it into @value if allowed.
4232 *
4233 * Return: Returns the length of @value on success, a negative value otherwise.
4234 */
4235int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4236			 char **value)
4237{
4238	struct lsm_static_call *scall;
4239
4240	lsm_for_each_hook(scall, getprocattr) {
4241		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4242			continue;
4243		return scall->hl->hook.getprocattr(p, name, value);
4244	}
4245	return LSM_RET_DEFAULT(getprocattr);
4246}
4247
4248/**
4249 * security_setprocattr() - Set an attribute for a task
4250 * @lsmid: LSM identification
4251 * @name: attribute name
4252 * @value: attribute value
4253 * @size: attribute value size
4254 *
4255 * Write (set) the current task's attribute @name to @value, size @size if
4256 * allowed.
4257 *
4258 * Return: Returns bytes written on success, a negative value otherwise.
4259 */
4260int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4261{
4262	struct lsm_static_call *scall;
4263
4264	lsm_for_each_hook(scall, setprocattr) {
4265		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4266			continue;
4267		return scall->hl->hook.setprocattr(name, value, size);
4268	}
4269	return LSM_RET_DEFAULT(setprocattr);
4270}
4271
4272/**
4273 * security_netlink_send() - Save info and check if netlink sending is allowed
4274 * @sk: sending socket
4275 * @skb: netlink message
4276 *
4277 * Save security information for a netlink message so that permission checking
4278 * can be performed when the message is processed.  The security information
4279 * can be saved using the eff_cap field of the netlink_skb_parms structure.
4280 * Also may be used to provide fine grained control over message transmission.
4281 *
4282 * Return: Returns 0 if the information was successfully saved and message is
4283 *         allowed to be transmitted.
4284 */
4285int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4286{
4287	return call_int_hook(netlink_send, sk, skb);
4288}
4289
4290/**
4291 * security_ismaclabel() - Check if the named attribute is a MAC label
4292 * @name: full extended attribute name
4293 *
4294 * Check if the extended attribute specified by @name represents a MAC label.
4295 *
4296 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4297 */
4298int security_ismaclabel(const char *name)
4299{
4300	return call_int_hook(ismaclabel, name);
4301}
4302EXPORT_SYMBOL(security_ismaclabel);
4303
4304/**
4305 * security_secid_to_secctx() - Convert a secid to a secctx
4306 * @secid: secid
4307 * @secdata: secctx
4308 * @seclen: secctx length
4309 *
4310 * Convert secid to security context.  If @secdata is NULL the length of the
4311 * result will be returned in @seclen, but no @secdata will be returned.  This
4312 * does mean that the length could change between calls to check the length and
4313 * the next call which actually allocates and returns the @secdata.
4314 *
4315 * Return: Return 0 on success, error on failure.
4316 */
4317int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4318{
4319	return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4320}
4321EXPORT_SYMBOL(security_secid_to_secctx);
4322
4323/**
4324 * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
4325 * @prop: lsm specific information
4326 * @secdata: secctx
4327 * @seclen: secctx length
4328 *
4329 * Convert a @prop entry to security context.  If @secdata is NULL the
4330 * length of the result will be returned in @seclen, but no @secdata
4331 * will be returned.  This does mean that the length could change between
4332 * calls to check the length and the next call which actually allocates
4333 * and returns the @secdata.
4334 *
4335 * Return: Return 0 on success, error on failure.
4336 */
4337int security_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata,
4338			       u32 *seclen)
4339{
4340	return call_int_hook(lsmprop_to_secctx, prop, secdata, seclen);
4341}
4342EXPORT_SYMBOL(security_lsmprop_to_secctx);
4343
4344/**
4345 * security_secctx_to_secid() - Convert a secctx to a secid
4346 * @secdata: secctx
4347 * @seclen: length of secctx
4348 * @secid: secid
4349 *
4350 * Convert security context to secid.
4351 *
4352 * Return: Returns 0 on success, error on failure.
4353 */
4354int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4355{
4356	*secid = 0;
4357	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4358}
4359EXPORT_SYMBOL(security_secctx_to_secid);
4360
4361/**
4362 * security_release_secctx() - Free a secctx buffer
4363 * @secdata: secctx
4364 * @seclen: length of secctx
4365 *
4366 * Release the security context.
4367 */
4368void security_release_secctx(char *secdata, u32 seclen)
4369{
4370	call_void_hook(release_secctx, secdata, seclen);
4371}
4372EXPORT_SYMBOL(security_release_secctx);
4373
4374/**
4375 * security_inode_invalidate_secctx() - Invalidate an inode's security label
4376 * @inode: inode
4377 *
4378 * Notify the security module that it must revalidate the security context of
4379 * an inode.
4380 */
4381void security_inode_invalidate_secctx(struct inode *inode)
4382{
4383	call_void_hook(inode_invalidate_secctx, inode);
4384}
4385EXPORT_SYMBOL(security_inode_invalidate_secctx);
4386
4387/**
4388 * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4389 * @inode: inode
4390 * @ctx: secctx
4391 * @ctxlen: length of secctx
4392 *
4393 * Notify the security module of what the security context of an inode should
4394 * be.  Initializes the incore security context managed by the security module
4395 * for this inode.  Example usage: NFS client invokes this hook to initialize
4396 * the security context in its incore inode to the value provided by the server
4397 * for the file when the server returned the file's attributes to the client.
4398 * Must be called with inode->i_mutex locked.
4399 *
4400 * Return: Returns 0 on success, error on failure.
4401 */
4402int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4403{
4404	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4405}
4406EXPORT_SYMBOL(security_inode_notifysecctx);
4407
4408/**
4409 * security_inode_setsecctx() - Change the security label of an inode
4410 * @dentry: inode
4411 * @ctx: secctx
4412 * @ctxlen: length of secctx
4413 *
4414 * Change the security context of an inode.  Updates the incore security
4415 * context managed by the security module and invokes the fs code as needed
4416 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4417 * context.  Example usage: NFS server invokes this hook to change the security
4418 * context in its incore inode and on the backing filesystem to a value
4419 * provided by the client on a SETATTR operation.  Must be called with
4420 * inode->i_mutex locked.
4421 *
4422 * Return: Returns 0 on success, error on failure.
4423 */
4424int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4425{
4426	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4427}
4428EXPORT_SYMBOL(security_inode_setsecctx);
4429
4430/**
4431 * security_inode_getsecctx() - Get the security label of an inode
4432 * @inode: inode
4433 * @ctx: secctx
4434 * @ctxlen: length of secctx
4435 *
4436 * On success, returns 0 and fills out @ctx and @ctxlen with the security
4437 * context for the given @inode.
4438 *
4439 * Return: Returns 0 on success, error on failure.
4440 */
4441int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4442{
4443	return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
 
 
 
 
 
 
 
 
 
 
 
 
4444}
4445EXPORT_SYMBOL(security_inode_getsecctx);
4446
4447#ifdef CONFIG_WATCH_QUEUE
4448/**
4449 * security_post_notification() - Check if a watch notification can be posted
4450 * @w_cred: credentials of the task that set the watch
4451 * @cred: credentials of the task which triggered the watch
4452 * @n: the notification
4453 *
4454 * Check to see if a watch notification can be posted to a particular queue.
4455 *
4456 * Return: Returns 0 if permission is granted.
4457 */
4458int security_post_notification(const struct cred *w_cred,
4459			       const struct cred *cred,
4460			       struct watch_notification *n)
4461{
4462	return call_int_hook(post_notification, w_cred, cred, n);
4463}
4464#endif /* CONFIG_WATCH_QUEUE */
4465
4466#ifdef CONFIG_KEY_NOTIFICATIONS
4467/**
4468 * security_watch_key() - Check if a task is allowed to watch for key events
4469 * @key: the key to watch
4470 *
4471 * Check to see if a process is allowed to watch for event notifications from
4472 * a key or keyring.
4473 *
4474 * Return: Returns 0 if permission is granted.
4475 */
4476int security_watch_key(struct key *key)
4477{
4478	return call_int_hook(watch_key, key);
4479}
4480#endif /* CONFIG_KEY_NOTIFICATIONS */
4481
4482#ifdef CONFIG_SECURITY_NETWORK
4483/**
4484 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4485 * @sock: originating sock
4486 * @other: peer sock
4487 * @newsk: new sock
4488 *
4489 * Check permissions before establishing a Unix domain stream connection
4490 * between @sock and @other.
4491 *
4492 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4493 * Linux provides an alternative to the conventional file name space for Unix
4494 * domain sockets.  Whereas binding and connecting to sockets in the file name
4495 * space is mediated by the typical file permissions (and caught by the mknod
4496 * and permission hooks in inode_security_ops), binding and connecting to
4497 * sockets in the abstract name space is completely unmediated.  Sufficient
4498 * control of Unix domain sockets in the abstract name space isn't possible
4499 * using only the socket layer hooks, since we need to know the actual target
4500 * socket, which is not looked up until we are inside the af_unix code.
4501 *
4502 * Return: Returns 0 if permission is granted.
4503 */
4504int security_unix_stream_connect(struct sock *sock, struct sock *other,
4505				 struct sock *newsk)
4506{
4507	return call_int_hook(unix_stream_connect, sock, other, newsk);
4508}
4509EXPORT_SYMBOL(security_unix_stream_connect);
4510
4511/**
4512 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4513 * @sock: originating sock
4514 * @other: peer sock
4515 *
4516 * Check permissions before connecting or sending datagrams from @sock to
4517 * @other.
4518 *
4519 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4520 * Linux provides an alternative to the conventional file name space for Unix
4521 * domain sockets.  Whereas binding and connecting to sockets in the file name
4522 * space is mediated by the typical file permissions (and caught by the mknod
4523 * and permission hooks in inode_security_ops), binding and connecting to
4524 * sockets in the abstract name space is completely unmediated.  Sufficient
4525 * control of Unix domain sockets in the abstract name space isn't possible
4526 * using only the socket layer hooks, since we need to know the actual target
4527 * socket, which is not looked up until we are inside the af_unix code.
4528 *
4529 * Return: Returns 0 if permission is granted.
4530 */
4531int security_unix_may_send(struct socket *sock,  struct socket *other)
4532{
4533	return call_int_hook(unix_may_send, sock, other);
4534}
4535EXPORT_SYMBOL(security_unix_may_send);
4536
4537/**
4538 * security_socket_create() - Check if creating a new socket is allowed
4539 * @family: protocol family
4540 * @type: communications type
4541 * @protocol: requested protocol
4542 * @kern: set to 1 if a kernel socket is requested
4543 *
4544 * Check permissions prior to creating a new socket.
4545 *
4546 * Return: Returns 0 if permission is granted.
4547 */
4548int security_socket_create(int family, int type, int protocol, int kern)
4549{
4550	return call_int_hook(socket_create, family, type, protocol, kern);
4551}
4552
4553/**
4554 * security_socket_post_create() - Initialize a newly created socket
4555 * @sock: socket
4556 * @family: protocol family
4557 * @type: communications type
4558 * @protocol: requested protocol
4559 * @kern: set to 1 if a kernel socket is requested
4560 *
4561 * This hook allows a module to update or allocate a per-socket security
4562 * structure. Note that the security field was not added directly to the socket
4563 * structure, but rather, the socket security information is stored in the
4564 * associated inode.  Typically, the inode alloc_security hook will allocate
4565 * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4566 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4567 * information that wasn't available when the inode was allocated.
4568 *
4569 * Return: Returns 0 if permission is granted.
4570 */
4571int security_socket_post_create(struct socket *sock, int family,
4572				int type, int protocol, int kern)
4573{
4574	return call_int_hook(socket_post_create, sock, family, type,
4575			     protocol, kern);
4576}
4577
4578/**
4579 * security_socket_socketpair() - Check if creating a socketpair is allowed
4580 * @socka: first socket
4581 * @sockb: second socket
4582 *
4583 * Check permissions before creating a fresh pair of sockets.
4584 *
4585 * Return: Returns 0 if permission is granted and the connection was
4586 *         established.
4587 */
4588int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4589{
4590	return call_int_hook(socket_socketpair, socka, sockb);
4591}
4592EXPORT_SYMBOL(security_socket_socketpair);
4593
4594/**
4595 * security_socket_bind() - Check if a socket bind operation is allowed
4596 * @sock: socket
4597 * @address: requested bind address
4598 * @addrlen: length of address
4599 *
4600 * Check permission before socket protocol layer bind operation is performed
4601 * and the socket @sock is bound to the address specified in the @address
4602 * parameter.
4603 *
4604 * Return: Returns 0 if permission is granted.
4605 */
4606int security_socket_bind(struct socket *sock,
4607			 struct sockaddr *address, int addrlen)
4608{
4609	return call_int_hook(socket_bind, sock, address, addrlen);
4610}
4611
4612/**
4613 * security_socket_connect() - Check if a socket connect operation is allowed
4614 * @sock: socket
4615 * @address: address of remote connection point
4616 * @addrlen: length of address
4617 *
4618 * Check permission before socket protocol layer connect operation attempts to
4619 * connect socket @sock to a remote address, @address.
4620 *
4621 * Return: Returns 0 if permission is granted.
4622 */
4623int security_socket_connect(struct socket *sock,
4624			    struct sockaddr *address, int addrlen)
4625{
4626	return call_int_hook(socket_connect, sock, address, addrlen);
4627}
4628
4629/**
4630 * security_socket_listen() - Check if a socket is allowed to listen
4631 * @sock: socket
4632 * @backlog: connection queue size
4633 *
4634 * Check permission before socket protocol layer listen operation.
4635 *
4636 * Return: Returns 0 if permission is granted.
4637 */
4638int security_socket_listen(struct socket *sock, int backlog)
4639{
4640	return call_int_hook(socket_listen, sock, backlog);
4641}
4642
4643/**
4644 * security_socket_accept() - Check if a socket is allowed to accept connections
4645 * @sock: listening socket
4646 * @newsock: newly creation connection socket
4647 *
4648 * Check permission before accepting a new connection.  Note that the new
4649 * socket, @newsock, has been created and some information copied to it, but
4650 * the accept operation has not actually been performed.
4651 *
4652 * Return: Returns 0 if permission is granted.
4653 */
4654int security_socket_accept(struct socket *sock, struct socket *newsock)
4655{
4656	return call_int_hook(socket_accept, sock, newsock);
4657}
4658
4659/**
4660 * security_socket_sendmsg() - Check if sending a message is allowed
4661 * @sock: sending socket
4662 * @msg: message to send
4663 * @size: size of message
4664 *
4665 * Check permission before transmitting a message to another socket.
4666 *
4667 * Return: Returns 0 if permission is granted.
4668 */
4669int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4670{
4671	return call_int_hook(socket_sendmsg, sock, msg, size);
4672}
4673
4674/**
4675 * security_socket_recvmsg() - Check if receiving a message is allowed
4676 * @sock: receiving socket
4677 * @msg: message to receive
4678 * @size: size of message
4679 * @flags: operational flags
4680 *
4681 * Check permission before receiving a message from a socket.
4682 *
4683 * Return: Returns 0 if permission is granted.
4684 */
4685int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4686			    int size, int flags)
4687{
4688	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4689}
4690
4691/**
4692 * security_socket_getsockname() - Check if reading the socket addr is allowed
4693 * @sock: socket
4694 *
4695 * Check permission before reading the local address (name) of the socket
4696 * object.
4697 *
4698 * Return: Returns 0 if permission is granted.
4699 */
4700int security_socket_getsockname(struct socket *sock)
4701{
4702	return call_int_hook(socket_getsockname, sock);
4703}
4704
4705/**
4706 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4707 * @sock: socket
4708 *
4709 * Check permission before the remote address (name) of a socket object.
4710 *
4711 * Return: Returns 0 if permission is granted.
4712 */
4713int security_socket_getpeername(struct socket *sock)
4714{
4715	return call_int_hook(socket_getpeername, sock);
4716}
4717
4718/**
4719 * security_socket_getsockopt() - Check if reading a socket option is allowed
4720 * @sock: socket
4721 * @level: option's protocol level
4722 * @optname: option name
4723 *
4724 * Check permissions before retrieving the options associated with socket
4725 * @sock.
4726 *
4727 * Return: Returns 0 if permission is granted.
4728 */
4729int security_socket_getsockopt(struct socket *sock, int level, int optname)
4730{
4731	return call_int_hook(socket_getsockopt, sock, level, optname);
4732}
4733
4734/**
4735 * security_socket_setsockopt() - Check if setting a socket option is allowed
4736 * @sock: socket
4737 * @level: option's protocol level
4738 * @optname: option name
4739 *
4740 * Check permissions before setting the options associated with socket @sock.
4741 *
4742 * Return: Returns 0 if permission is granted.
4743 */
4744int security_socket_setsockopt(struct socket *sock, int level, int optname)
4745{
4746	return call_int_hook(socket_setsockopt, sock, level, optname);
4747}
4748
4749/**
4750 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4751 * @sock: socket
4752 * @how: flag indicating how sends and receives are handled
4753 *
4754 * Checks permission before all or part of a connection on the socket @sock is
4755 * shut down.
4756 *
4757 * Return: Returns 0 if permission is granted.
4758 */
4759int security_socket_shutdown(struct socket *sock, int how)
4760{
4761	return call_int_hook(socket_shutdown, sock, how);
4762}
4763
4764/**
4765 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4766 * @sk: destination sock
4767 * @skb: incoming packet
4768 *
4769 * Check permissions on incoming network packets.  This hook is distinct from
4770 * Netfilter's IP input hooks since it is the first time that the incoming
4771 * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4772 * sleep inside this hook because some callers hold spinlocks.
4773 *
4774 * Return: Returns 0 if permission is granted.
4775 */
4776int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4777{
4778	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4779}
4780EXPORT_SYMBOL(security_sock_rcv_skb);
4781
4782/**
4783 * security_socket_getpeersec_stream() - Get the remote peer label
4784 * @sock: socket
4785 * @optval: destination buffer
4786 * @optlen: size of peer label copied into the buffer
4787 * @len: maximum size of the destination buffer
4788 *
4789 * This hook allows the security module to provide peer socket security state
4790 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4791 * For tcp sockets this can be meaningful if the socket is associated with an
4792 * ipsec SA.
4793 *
4794 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4795 *         values.
4796 */
4797int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4798				      sockptr_t optlen, unsigned int len)
4799{
4800	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4801			     len);
 
 
 
 
 
 
 
 
 
 
 
 
4802}
4803
4804/**
4805 * security_socket_getpeersec_dgram() - Get the remote peer label
4806 * @sock: socket
4807 * @skb: datagram packet
4808 * @secid: remote peer label secid
4809 *
4810 * This hook allows the security module to provide peer socket security state
4811 * for udp sockets on a per-packet basis to userspace via getsockopt
4812 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4813 * option via getsockopt. It can then retrieve the security state returned by
4814 * this hook for a packet via the SCM_SECURITY ancillary message type.
4815 *
4816 * Return: Returns 0 on success, error on failure.
4817 */
4818int security_socket_getpeersec_dgram(struct socket *sock,
4819				     struct sk_buff *skb, u32 *secid)
4820{
4821	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4822}
4823EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4824
4825/**
4826 * lsm_sock_alloc - allocate a composite sock blob
4827 * @sock: the sock that needs a blob
4828 * @gfp: allocation mode
4829 *
4830 * Allocate the sock blob for all the modules
4831 *
4832 * Returns 0, or -ENOMEM if memory can't be allocated.
4833 */
4834static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4835{
4836	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4837}
 
4838
4839/**
4840 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4841 * @sk: sock
4842 * @family: protocol family
4843 * @priority: gfp flags
4844 *
4845 * Allocate and attach a security structure to the sk->sk_security field, which
4846 * is used to copy security attributes between local stream sockets.
4847 *
4848 * Return: Returns 0 on success, error on failure.
4849 */
4850int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4851{
4852	int rc = lsm_sock_alloc(sk, priority);
4853
4854	if (unlikely(rc))
4855		return rc;
4856	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4857	if (unlikely(rc))
4858		security_sk_free(sk);
4859	return rc;
4860}
4861
4862/**
4863 * security_sk_free() - Free the sock's LSM blob
4864 * @sk: sock
4865 *
4866 * Deallocate security structure.
4867 */
4868void security_sk_free(struct sock *sk)
4869{
4870	call_void_hook(sk_free_security, sk);
4871	kfree(sk->sk_security);
4872	sk->sk_security = NULL;
4873}
4874
4875/**
4876 * security_sk_clone() - Clone a sock's LSM state
4877 * @sk: original sock
4878 * @newsk: target sock
4879 *
4880 * Clone/copy security structure.
4881 */
4882void security_sk_clone(const struct sock *sk, struct sock *newsk)
4883{
4884	call_void_hook(sk_clone_security, sk, newsk);
4885}
4886EXPORT_SYMBOL(security_sk_clone);
4887
4888/**
4889 * security_sk_classify_flow() - Set a flow's secid based on socket
4890 * @sk: original socket
4891 * @flic: target flow
4892 *
4893 * Set the target flow's secid to socket's secid.
4894 */
4895void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4896{
4897	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4898}
4899EXPORT_SYMBOL(security_sk_classify_flow);
4900
4901/**
4902 * security_req_classify_flow() - Set a flow's secid based on request_sock
4903 * @req: request_sock
4904 * @flic: target flow
4905 *
4906 * Sets @flic's secid to @req's secid.
4907 */
4908void security_req_classify_flow(const struct request_sock *req,
4909				struct flowi_common *flic)
4910{
4911	call_void_hook(req_classify_flow, req, flic);
4912}
4913EXPORT_SYMBOL(security_req_classify_flow);
4914
4915/**
4916 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4917 * @sk: sock being grafted
4918 * @parent: target parent socket
4919 *
4920 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4921 * LSM state from @parent.
4922 */
4923void security_sock_graft(struct sock *sk, struct socket *parent)
4924{
4925	call_void_hook(sock_graft, sk, parent);
4926}
4927EXPORT_SYMBOL(security_sock_graft);
4928
4929/**
4930 * security_inet_conn_request() - Set request_sock state using incoming connect
4931 * @sk: parent listening sock
4932 * @skb: incoming connection
4933 * @req: new request_sock
4934 *
4935 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4936 *
4937 * Return: Returns 0 if permission is granted.
4938 */
4939int security_inet_conn_request(const struct sock *sk,
4940			       struct sk_buff *skb, struct request_sock *req)
4941{
4942	return call_int_hook(inet_conn_request, sk, skb, req);
4943}
4944EXPORT_SYMBOL(security_inet_conn_request);
4945
4946/**
4947 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4948 * @newsk: new sock
4949 * @req: connection request_sock
4950 *
4951 * Set that LSM state of @sock using the LSM state from @req.
4952 */
4953void security_inet_csk_clone(struct sock *newsk,
4954			     const struct request_sock *req)
4955{
4956	call_void_hook(inet_csk_clone, newsk, req);
4957}
4958
4959/**
4960 * security_inet_conn_established() - Update sock's LSM state with connection
4961 * @sk: sock
4962 * @skb: connection packet
4963 *
4964 * Update @sock's LSM state to represent a new connection from @skb.
4965 */
4966void security_inet_conn_established(struct sock *sk,
4967				    struct sk_buff *skb)
4968{
4969	call_void_hook(inet_conn_established, sk, skb);
4970}
4971EXPORT_SYMBOL(security_inet_conn_established);
4972
4973/**
4974 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4975 * @secid: new secmark value
4976 *
4977 * Check if the process should be allowed to relabel packets to @secid.
4978 *
4979 * Return: Returns 0 if permission is granted.
4980 */
4981int security_secmark_relabel_packet(u32 secid)
4982{
4983	return call_int_hook(secmark_relabel_packet, secid);
4984}
4985EXPORT_SYMBOL(security_secmark_relabel_packet);
4986
4987/**
4988 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4989 *
4990 * Tells the LSM to increment the number of secmark labeling rules loaded.
4991 */
4992void security_secmark_refcount_inc(void)
4993{
4994	call_void_hook(secmark_refcount_inc);
4995}
4996EXPORT_SYMBOL(security_secmark_refcount_inc);
4997
4998/**
4999 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
5000 *
5001 * Tells the LSM to decrement the number of secmark labeling rules loaded.
5002 */
5003void security_secmark_refcount_dec(void)
5004{
5005	call_void_hook(secmark_refcount_dec);
5006}
5007EXPORT_SYMBOL(security_secmark_refcount_dec);
5008
5009/**
5010 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
5011 * @security: pointer to the LSM blob
5012 *
5013 * This hook allows a module to allocate a security structure for a TUN	device,
5014 * returning the pointer in @security.
5015 *
5016 * Return: Returns a zero on success, negative values on failure.
5017 */
5018int security_tun_dev_alloc_security(void **security)
5019{
5020	int rc;
5021
5022	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
5023	if (rc)
5024		return rc;
5025
5026	rc = call_int_hook(tun_dev_alloc_security, *security);
5027	if (rc) {
5028		kfree(*security);
5029		*security = NULL;
5030	}
5031	return rc;
5032}
5033EXPORT_SYMBOL(security_tun_dev_alloc_security);
5034
5035/**
5036 * security_tun_dev_free_security() - Free a TUN device LSM blob
5037 * @security: LSM blob
5038 *
5039 * This hook allows a module to free the security structure for a TUN device.
5040 */
5041void security_tun_dev_free_security(void *security)
5042{
5043	kfree(security);
5044}
5045EXPORT_SYMBOL(security_tun_dev_free_security);
5046
5047/**
5048 * security_tun_dev_create() - Check if creating a TUN device is allowed
5049 *
5050 * Check permissions prior to creating a new TUN device.
5051 *
5052 * Return: Returns 0 if permission is granted.
5053 */
5054int security_tun_dev_create(void)
5055{
5056	return call_int_hook(tun_dev_create);
5057}
5058EXPORT_SYMBOL(security_tun_dev_create);
5059
5060/**
5061 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5062 * @security: TUN device LSM blob
5063 *
5064 * Check permissions prior to attaching to a TUN device queue.
5065 *
5066 * Return: Returns 0 if permission is granted.
5067 */
5068int security_tun_dev_attach_queue(void *security)
5069{
5070	return call_int_hook(tun_dev_attach_queue, security);
5071}
5072EXPORT_SYMBOL(security_tun_dev_attach_queue);
5073
5074/**
5075 * security_tun_dev_attach() - Update TUN device LSM state on attach
5076 * @sk: associated sock
5077 * @security: TUN device LSM blob
5078 *
5079 * This hook can be used by the module to update any security state associated
5080 * with the TUN device's sock structure.
5081 *
5082 * Return: Returns 0 if permission is granted.
5083 */
5084int security_tun_dev_attach(struct sock *sk, void *security)
5085{
5086	return call_int_hook(tun_dev_attach, sk, security);
5087}
5088EXPORT_SYMBOL(security_tun_dev_attach);
5089
5090/**
5091 * security_tun_dev_open() - Update TUN device LSM state on open
5092 * @security: TUN device LSM blob
5093 *
5094 * This hook can be used by the module to update any security state associated
5095 * with the TUN device's security structure.
5096 *
5097 * Return: Returns 0 if permission is granted.
5098 */
5099int security_tun_dev_open(void *security)
5100{
5101	return call_int_hook(tun_dev_open, security);
5102}
5103EXPORT_SYMBOL(security_tun_dev_open);
5104
5105/**
5106 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5107 * @asoc: SCTP association
5108 * @skb: packet requesting the association
5109 *
5110 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5111 *
5112 * Return: Returns 0 on success, error on failure.
5113 */
5114int security_sctp_assoc_request(struct sctp_association *asoc,
5115				struct sk_buff *skb)
5116{
5117	return call_int_hook(sctp_assoc_request, asoc, skb);
5118}
5119EXPORT_SYMBOL(security_sctp_assoc_request);
5120
5121/**
5122 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5123 * @sk: socket
5124 * @optname: SCTP option to validate
5125 * @address: list of IP addresses to validate
5126 * @addrlen: length of the address list
5127 *
5128 * Validiate permissions required for each address associated with sock	@sk.
5129 * Depending on @optname, the addresses will be treated as either a connect or
5130 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5131 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5132 *
5133 * Return: Returns 0 on success, error on failure.
5134 */
5135int security_sctp_bind_connect(struct sock *sk, int optname,
5136			       struct sockaddr *address, int addrlen)
5137{
5138	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
 
5139}
5140EXPORT_SYMBOL(security_sctp_bind_connect);
5141
5142/**
5143 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5144 * @asoc: SCTP association
5145 * @sk: original sock
5146 * @newsk: target sock
5147 *
5148 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5149 * socket) or when a socket is 'peeled off' e.g userspace calls
5150 * sctp_peeloff(3).
5151 */
5152void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5153			    struct sock *newsk)
5154{
5155	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5156}
5157EXPORT_SYMBOL(security_sctp_sk_clone);
5158
5159/**
5160 * security_sctp_assoc_established() - Update LSM state when assoc established
5161 * @asoc: SCTP association
5162 * @skb: packet establishing the association
5163 *
5164 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5165 * security module.
5166 *
5167 * Return: Returns 0 if permission is granted.
5168 */
5169int security_sctp_assoc_established(struct sctp_association *asoc,
5170				    struct sk_buff *skb)
5171{
5172	return call_int_hook(sctp_assoc_established, asoc, skb);
5173}
5174EXPORT_SYMBOL(security_sctp_assoc_established);
5175
5176/**
5177 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5178 * @sk: the owning MPTCP socket
5179 * @ssk: the new subflow
5180 *
5181 * Update the labeling for the given MPTCP subflow, to match the one of the
5182 * owning MPTCP socket. This hook has to be called after the socket creation and
5183 * initialization via the security_socket_create() and
5184 * security_socket_post_create() LSM hooks.
5185 *
5186 * Return: Returns 0 on success or a negative error code on failure.
5187 */
5188int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5189{
5190	return call_int_hook(mptcp_add_subflow, sk, ssk);
5191}
5192
5193#endif	/* CONFIG_SECURITY_NETWORK */
5194
5195#ifdef CONFIG_SECURITY_INFINIBAND
5196/**
5197 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5198 * @sec: LSM blob
5199 * @subnet_prefix: subnet prefix of the port
5200 * @pkey: IB pkey
5201 *
5202 * Check permission to access a pkey when modifying a QP.
5203 *
5204 * Return: Returns 0 if permission is granted.
5205 */
5206int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5207{
5208	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5209}
5210EXPORT_SYMBOL(security_ib_pkey_access);
5211
5212/**
5213 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5214 * @sec: LSM blob
5215 * @dev_name: IB device name
5216 * @port_num: port number
5217 *
5218 * Check permissions to send and receive SMPs on a end port.
5219 *
5220 * Return: Returns 0 if permission is granted.
5221 */
5222int security_ib_endport_manage_subnet(void *sec,
5223				      const char *dev_name, u8 port_num)
5224{
5225	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
 
5226}
5227EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5228
5229/**
5230 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5231 * @sec: LSM blob
5232 *
5233 * Allocate a security structure for Infiniband objects.
5234 *
5235 * Return: Returns 0 on success, non-zero on failure.
5236 */
5237int security_ib_alloc_security(void **sec)
5238{
5239	int rc;
5240
5241	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5242	if (rc)
5243		return rc;
5244
5245	rc = call_int_hook(ib_alloc_security, *sec);
5246	if (rc) {
5247		kfree(*sec);
5248		*sec = NULL;
5249	}
5250	return rc;
5251}
5252EXPORT_SYMBOL(security_ib_alloc_security);
5253
5254/**
5255 * security_ib_free_security() - Free an Infiniband LSM blob
5256 * @sec: LSM blob
5257 *
5258 * Deallocate an Infiniband security structure.
5259 */
5260void security_ib_free_security(void *sec)
5261{
5262	kfree(sec);
5263}
5264EXPORT_SYMBOL(security_ib_free_security);
5265#endif	/* CONFIG_SECURITY_INFINIBAND */
5266
5267#ifdef CONFIG_SECURITY_NETWORK_XFRM
5268/**
5269 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5270 * @ctxp: xfrm security context being added to the SPD
5271 * @sec_ctx: security label provided by userspace
5272 * @gfp: gfp flags
5273 *
5274 * Allocate a security structure to the xp->security field; the security field
5275 * is initialized to NULL when the xfrm_policy is allocated.
5276 *
5277 * Return:  Return 0 if operation was successful.
5278 */
5279int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5280			       struct xfrm_user_sec_ctx *sec_ctx,
5281			       gfp_t gfp)
5282{
5283	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5284}
5285EXPORT_SYMBOL(security_xfrm_policy_alloc);
5286
5287/**
5288 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5289 * @old_ctx: xfrm security context
5290 * @new_ctxp: target xfrm security context
5291 *
5292 * Allocate a security structure in new_ctxp that contains the information from
5293 * the old_ctx structure.
5294 *
5295 * Return: Return 0 if operation was successful.
5296 */
5297int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5298			       struct xfrm_sec_ctx **new_ctxp)
5299{
5300	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5301}
5302
5303/**
5304 * security_xfrm_policy_free() - Free a xfrm security context
5305 * @ctx: xfrm security context
5306 *
5307 * Free LSM resources associated with @ctx.
5308 */
5309void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5310{
5311	call_void_hook(xfrm_policy_free_security, ctx);
5312}
5313EXPORT_SYMBOL(security_xfrm_policy_free);
5314
5315/**
5316 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5317 * @ctx: xfrm security context
5318 *
5319 * Authorize deletion of a SPD entry.
5320 *
5321 * Return: Returns 0 if permission is granted.
5322 */
5323int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5324{
5325	return call_int_hook(xfrm_policy_delete_security, ctx);
5326}
5327
5328/**
5329 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5330 * @x: xfrm state being added to the SAD
5331 * @sec_ctx: security label provided by userspace
5332 *
5333 * Allocate a security structure to the @x->security field; the security field
5334 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5335 * correspond to @sec_ctx.
5336 *
5337 * Return: Return 0 if operation was successful.
5338 */
5339int security_xfrm_state_alloc(struct xfrm_state *x,
5340			      struct xfrm_user_sec_ctx *sec_ctx)
5341{
5342	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5343}
5344EXPORT_SYMBOL(security_xfrm_state_alloc);
5345
5346/**
5347 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5348 * @x: xfrm state being added to the SAD
5349 * @polsec: associated policy's security context
5350 * @secid: secid from the flow
5351 *
5352 * Allocate a security structure to the x->security field; the security field
5353 * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5354 * correspond to secid.
5355 *
5356 * Return: Returns 0 if operation was successful.
5357 */
5358int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5359				      struct xfrm_sec_ctx *polsec, u32 secid)
5360{
5361	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5362}
5363
5364/**
5365 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5366 * @x: xfrm state
5367 *
5368 * Authorize deletion of x->security.
5369 *
5370 * Return: Returns 0 if permission is granted.
5371 */
5372int security_xfrm_state_delete(struct xfrm_state *x)
5373{
5374	return call_int_hook(xfrm_state_delete_security, x);
5375}
5376EXPORT_SYMBOL(security_xfrm_state_delete);
5377
5378/**
5379 * security_xfrm_state_free() - Free a xfrm state
5380 * @x: xfrm state
5381 *
5382 * Deallocate x->security.
5383 */
5384void security_xfrm_state_free(struct xfrm_state *x)
5385{
5386	call_void_hook(xfrm_state_free_security, x);
5387}
5388
5389/**
5390 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5391 * @ctx: target xfrm security context
5392 * @fl_secid: flow secid used to authorize access
5393 *
5394 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5395 * packet.  The hook is called when selecting either a per-socket policy or a
5396 * generic xfrm policy.
5397 *
5398 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5399 *         other errors.
5400 */
5401int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5402{
5403	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5404}
5405
5406/**
5407 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5408 * @x: xfrm state to match
5409 * @xp: xfrm policy to check for a match
5410 * @flic: flow to check for a match.
5411 *
5412 * Check @xp and @flic for a match with @x.
5413 *
5414 * Return: Returns 1 if there is a match.
5415 */
5416int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5417				       struct xfrm_policy *xp,
5418				       const struct flowi_common *flic)
5419{
5420	struct lsm_static_call *scall;
5421	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5422
5423	/*
5424	 * Since this function is expected to return 0 or 1, the judgment
5425	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5426	 * we can use the first LSM's judgment because currently only SELinux
5427	 * supplies this call.
5428	 *
5429	 * For speed optimization, we explicitly break the loop rather than
5430	 * using the macro
5431	 */
5432	lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5433		rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
 
5434		break;
5435	}
5436	return rc;
5437}
5438
5439/**
5440 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5441 * @skb: xfrm packet
5442 * @secid: secid
5443 *
5444 * Decode the packet in @skb and return the security label in @secid.
5445 *
5446 * Return: Return 0 if all xfrms used have the same secid.
5447 */
5448int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5449{
5450	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5451}
5452
5453void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5454{
5455	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5456			       0);
5457
5458	BUG_ON(rc);
5459}
5460EXPORT_SYMBOL(security_skb_classify_flow);
5461#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5462
5463#ifdef CONFIG_KEYS
5464/**
5465 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5466 * @key: key
5467 * @cred: credentials
5468 * @flags: allocation flags
5469 *
5470 * Permit allocation of a key and assign security data. Note that key does not
5471 * have a serial number assigned at this point.
5472 *
5473 * Return: Return 0 if permission is granted, -ve error otherwise.
5474 */
5475int security_key_alloc(struct key *key, const struct cred *cred,
5476		       unsigned long flags)
5477{
5478	int rc = lsm_key_alloc(key);
5479
5480	if (unlikely(rc))
5481		return rc;
5482	rc = call_int_hook(key_alloc, key, cred, flags);
5483	if (unlikely(rc))
5484		security_key_free(key);
5485	return rc;
5486}
5487
5488/**
5489 * security_key_free() - Free a kernel key LSM blob
5490 * @key: key
5491 *
5492 * Notification of destruction; free security data.
5493 */
5494void security_key_free(struct key *key)
5495{
5496	kfree(key->security);
5497	key->security = NULL;
5498}
5499
5500/**
5501 * security_key_permission() - Check if a kernel key operation is allowed
5502 * @key_ref: key reference
5503 * @cred: credentials of actor requesting access
5504 * @need_perm: requested permissions
5505 *
5506 * See whether a specific operational right is granted to a process on a key.
5507 *
5508 * Return: Return 0 if permission is granted, -ve error otherwise.
5509 */
5510int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5511			    enum key_need_perm need_perm)
5512{
5513	return call_int_hook(key_permission, key_ref, cred, need_perm);
5514}
5515
5516/**
5517 * security_key_getsecurity() - Get the key's security label
5518 * @key: key
5519 * @buffer: security label buffer
5520 *
5521 * Get a textual representation of the security context attached to a key for
5522 * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5523 * storage for the NUL-terminated string and the caller should free it.
5524 *
5525 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5526 *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5527 *         there is no security label assigned to the key.
5528 */
5529int security_key_getsecurity(struct key *key, char **buffer)
5530{
5531	*buffer = NULL;
5532	return call_int_hook(key_getsecurity, key, buffer);
5533}
5534
5535/**
5536 * security_key_post_create_or_update() - Notification of key create or update
5537 * @keyring: keyring to which the key is linked to
5538 * @key: created or updated key
5539 * @payload: data used to instantiate or update the key
5540 * @payload_len: length of payload
5541 * @flags: key flags
5542 * @create: flag indicating whether the key was created or updated
5543 *
5544 * Notify the caller of a key creation or update.
5545 */
5546void security_key_post_create_or_update(struct key *keyring, struct key *key,
5547					const void *payload, size_t payload_len,
5548					unsigned long flags, bool create)
5549{
5550	call_void_hook(key_post_create_or_update, keyring, key, payload,
5551		       payload_len, flags, create);
5552}
5553#endif	/* CONFIG_KEYS */
5554
5555#ifdef CONFIG_AUDIT
5556/**
5557 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5558 * @field: audit action
5559 * @op: rule operator
5560 * @rulestr: rule context
5561 * @lsmrule: receive buffer for audit rule struct
5562 * @gfp: GFP flag used for kmalloc
5563 *
5564 * Allocate and initialize an LSM audit rule structure.
5565 *
5566 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5567 *         an invalid rule.
5568 */
5569int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5570			     gfp_t gfp)
5571{
5572	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5573}
5574
5575/**
5576 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5577 * @krule: audit rule
5578 *
5579 * Specifies whether given @krule contains any fields related to the current
5580 * LSM.
5581 *
5582 * Return: Returns 1 in case of relation found, 0 otherwise.
5583 */
5584int security_audit_rule_known(struct audit_krule *krule)
5585{
5586	return call_int_hook(audit_rule_known, krule);
5587}
5588
5589/**
5590 * security_audit_rule_free() - Free an LSM audit rule struct
5591 * @lsmrule: audit rule struct
5592 *
5593 * Deallocate the LSM audit rule structure previously allocated by
5594 * audit_rule_init().
5595 */
5596void security_audit_rule_free(void *lsmrule)
5597{
5598	call_void_hook(audit_rule_free, lsmrule);
5599}
5600
5601/**
5602 * security_audit_rule_match() - Check if a label matches an audit rule
5603 * @prop: security label
5604 * @field: LSM audit field
5605 * @op: matching operator
5606 * @lsmrule: audit rule
5607 *
5608 * Determine if given @secid matches a rule previously approved by
5609 * security_audit_rule_known().
5610 *
5611 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5612 *         failure.
5613 */
5614int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5615			      void *lsmrule)
5616{
5617	return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5618}
5619#endif /* CONFIG_AUDIT */
5620
5621#ifdef CONFIG_BPF_SYSCALL
5622/**
5623 * security_bpf() - Check if the bpf syscall operation is allowed
5624 * @cmd: command
5625 * @attr: bpf attribute
5626 * @size: size
5627 *
5628 * Do a initial check for all bpf syscalls after the attribute is copied into
5629 * the kernel. The actual security module can implement their own rules to
5630 * check the specific cmd they need.
5631 *
5632 * Return: Returns 0 if permission is granted.
5633 */
5634int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5635{
5636	return call_int_hook(bpf, cmd, attr, size);
5637}
5638
5639/**
5640 * security_bpf_map() - Check if access to a bpf map is allowed
5641 * @map: bpf map
5642 * @fmode: mode
5643 *
5644 * Do a check when the kernel generates and returns a file descriptor for eBPF
5645 * maps.
5646 *
5647 * Return: Returns 0 if permission is granted.
5648 */
5649int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5650{
5651	return call_int_hook(bpf_map, map, fmode);
5652}
5653
5654/**
5655 * security_bpf_prog() - Check if access to a bpf program is allowed
5656 * @prog: bpf program
5657 *
5658 * Do a check when the kernel generates and returns a file descriptor for eBPF
5659 * programs.
5660 *
5661 * Return: Returns 0 if permission is granted.
5662 */
5663int security_bpf_prog(struct bpf_prog *prog)
5664{
5665	return call_int_hook(bpf_prog, prog);
5666}
5667
5668/**
5669 * security_bpf_map_create() - Check if BPF map creation is allowed
5670 * @map: BPF map object
5671 * @attr: BPF syscall attributes used to create BPF map
5672 * @token: BPF token used to grant user access
5673 *
5674 * Do a check when the kernel creates a new BPF map. This is also the
5675 * point where LSM blob is allocated for LSMs that need them.
5676 *
5677 * Return: Returns 0 on success, error on failure.
5678 */
5679int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5680			    struct bpf_token *token)
5681{
5682	return call_int_hook(bpf_map_create, map, attr, token);
5683}
5684
5685/**
5686 * security_bpf_prog_load() - Check if loading of BPF program is allowed
5687 * @prog: BPF program object
5688 * @attr: BPF syscall attributes used to create BPF program
5689 * @token: BPF token used to grant user access to BPF subsystem
5690 *
5691 * Perform an access control check when the kernel loads a BPF program and
5692 * allocates associated BPF program object. This hook is also responsible for
5693 * allocating any required LSM state for the BPF program.
5694 *
5695 * Return: Returns 0 on success, error on failure.
5696 */
5697int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5698			   struct bpf_token *token)
5699{
5700	return call_int_hook(bpf_prog_load, prog, attr, token);
5701}
5702
5703/**
5704 * security_bpf_token_create() - Check if creating of BPF token is allowed
5705 * @token: BPF token object
5706 * @attr: BPF syscall attributes used to create BPF token
5707 * @path: path pointing to BPF FS mount point from which BPF token is created
5708 *
5709 * Do a check when the kernel instantiates a new BPF token object from BPF FS
5710 * instance. This is also the point where LSM blob can be allocated for LSMs.
5711 *
5712 * Return: Returns 0 on success, error on failure.
5713 */
5714int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5715			      const struct path *path)
5716{
5717	return call_int_hook(bpf_token_create, token, attr, path);
5718}
5719
5720/**
5721 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5722 * requested BPF syscall command
5723 * @token: BPF token object
5724 * @cmd: BPF syscall command requested to be delegated by BPF token
5725 *
5726 * Do a check when the kernel decides whether provided BPF token should allow
5727 * delegation of requested BPF syscall command.
5728 *
5729 * Return: Returns 0 on success, error on failure.
5730 */
5731int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5732{
5733	return call_int_hook(bpf_token_cmd, token, cmd);
5734}
5735
5736/**
5737 * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5738 * requested BPF-related capability
5739 * @token: BPF token object
5740 * @cap: capabilities requested to be delegated by BPF token
5741 *
5742 * Do a check when the kernel decides whether provided BPF token should allow
5743 * delegation of requested BPF-related capabilities.
5744 *
5745 * Return: Returns 0 on success, error on failure.
5746 */
5747int security_bpf_token_capable(const struct bpf_token *token, int cap)
5748{
5749	return call_int_hook(bpf_token_capable, token, cap);
5750}
5751
5752/**
5753 * security_bpf_map_free() - Free a bpf map's LSM blob
5754 * @map: bpf map
5755 *
5756 * Clean up the security information stored inside bpf map.
5757 */
5758void security_bpf_map_free(struct bpf_map *map)
5759{
5760	call_void_hook(bpf_map_free, map);
5761}
5762
5763/**
5764 * security_bpf_prog_free() - Free a BPF program's LSM blob
5765 * @prog: BPF program struct
5766 *
5767 * Clean up the security information stored inside BPF program.
5768 */
5769void security_bpf_prog_free(struct bpf_prog *prog)
5770{
5771	call_void_hook(bpf_prog_free, prog);
5772}
5773
5774/**
5775 * security_bpf_token_free() - Free a BPF token's LSM blob
5776 * @token: BPF token struct
5777 *
5778 * Clean up the security information stored inside BPF token.
5779 */
5780void security_bpf_token_free(struct bpf_token *token)
5781{
5782	call_void_hook(bpf_token_free, token);
5783}
5784#endif /* CONFIG_BPF_SYSCALL */
5785
5786/**
5787 * security_locked_down() - Check if a kernel feature is allowed
5788 * @what: requested kernel feature
5789 *
5790 * Determine whether a kernel feature that potentially enables arbitrary code
5791 * execution in kernel space should be permitted.
5792 *
5793 * Return: Returns 0 if permission is granted.
5794 */
5795int security_locked_down(enum lockdown_reason what)
5796{
5797	return call_int_hook(locked_down, what);
5798}
5799EXPORT_SYMBOL(security_locked_down);
5800
5801/**
5802 * security_bdev_alloc() - Allocate a block device LSM blob
5803 * @bdev: block device
5804 *
5805 * Allocate and attach a security structure to @bdev->bd_security.  The
5806 * security field is initialized to NULL when the bdev structure is
5807 * allocated.
5808 *
5809 * Return: Return 0 if operation was successful.
5810 */
5811int security_bdev_alloc(struct block_device *bdev)
5812{
5813	int rc = 0;
5814
5815	rc = lsm_bdev_alloc(bdev);
5816	if (unlikely(rc))
5817		return rc;
5818
5819	rc = call_int_hook(bdev_alloc_security, bdev);
5820	if (unlikely(rc))
5821		security_bdev_free(bdev);
5822
5823	return rc;
5824}
5825EXPORT_SYMBOL(security_bdev_alloc);
5826
5827/**
5828 * security_bdev_free() - Free a block device's LSM blob
5829 * @bdev: block device
5830 *
5831 * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5832 */
5833void security_bdev_free(struct block_device *bdev)
5834{
5835	if (!bdev->bd_security)
5836		return;
5837
5838	call_void_hook(bdev_free_security, bdev);
5839
5840	kfree(bdev->bd_security);
5841	bdev->bd_security = NULL;
5842}
5843EXPORT_SYMBOL(security_bdev_free);
5844
5845/**
5846 * security_bdev_setintegrity() - Set the device's integrity data
5847 * @bdev: block device
5848 * @type: type of integrity, e.g. hash digest, signature, etc
5849 * @value: the integrity value
5850 * @size: size of the integrity value
5851 *
5852 * Register a verified integrity measurement of a bdev with LSMs.
5853 * LSMs should free the previously saved data if @value is NULL.
5854 * Please note that the new hook should be invoked every time the security
5855 * information is updated to keep these data current. For example, in dm-verity,
5856 * if the mapping table is reloaded and configured to use a different dm-verity
5857 * target with a new roothash and signing information, the previously stored
5858 * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5859 * hook to refresh these data and ensure they are up to date. This necessity
5860 * arises from the design of device-mapper, where a device-mapper device is
5861 * first created, and then targets are subsequently loaded into it. These
5862 * targets can be modified multiple times during the device's lifetime.
5863 * Therefore, while the LSM blob is allocated during the creation of the block
5864 * device, its actual contents are not initialized at this stage and can change
5865 * substantially over time. This includes alterations from data that the LSMs
5866 * 'trusts' to those they do not, making it essential to handle these changes
5867 * correctly. Failure to address this dynamic aspect could potentially allow
5868 * for bypassing LSM checks.
5869 *
5870 * Return: Returns 0 on success, negative values on failure.
5871 */
5872int security_bdev_setintegrity(struct block_device *bdev,
5873			       enum lsm_integrity_type type, const void *value,
5874			       size_t size)
5875{
5876	return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5877}
5878EXPORT_SYMBOL(security_bdev_setintegrity);
5879
5880#ifdef CONFIG_PERF_EVENTS
5881/**
5882 * security_perf_event_open() - Check if a perf event open is allowed
5883 * @attr: perf event attribute
5884 * @type: type of event
5885 *
5886 * Check whether the @type of perf_event_open syscall is allowed.
5887 *
5888 * Return: Returns 0 if permission is granted.
5889 */
5890int security_perf_event_open(struct perf_event_attr *attr, int type)
5891{
5892	return call_int_hook(perf_event_open, attr, type);
5893}
5894
5895/**
5896 * security_perf_event_alloc() - Allocate a perf event LSM blob
5897 * @event: perf event
5898 *
5899 * Allocate and save perf_event security info.
5900 *
5901 * Return: Returns 0 on success, error on failure.
5902 */
5903int security_perf_event_alloc(struct perf_event *event)
5904{
5905	int rc;
5906
5907	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5908			    GFP_KERNEL);
5909	if (rc)
5910		return rc;
5911
5912	rc = call_int_hook(perf_event_alloc, event);
5913	if (rc) {
5914		kfree(event->security);
5915		event->security = NULL;
5916	}
5917	return rc;
5918}
5919
5920/**
5921 * security_perf_event_free() - Free a perf event LSM blob
5922 * @event: perf event
5923 *
5924 * Release (free) perf_event security info.
5925 */
5926void security_perf_event_free(struct perf_event *event)
5927{
5928	kfree(event->security);
5929	event->security = NULL;
5930}
5931
5932/**
5933 * security_perf_event_read() - Check if reading a perf event label is allowed
5934 * @event: perf event
5935 *
5936 * Read perf_event security info if allowed.
5937 *
5938 * Return: Returns 0 if permission is granted.
5939 */
5940int security_perf_event_read(struct perf_event *event)
5941{
5942	return call_int_hook(perf_event_read, event);
5943}
5944
5945/**
5946 * security_perf_event_write() - Check if writing a perf event label is allowed
5947 * @event: perf event
5948 *
5949 * Write perf_event security info if allowed.
5950 *
5951 * Return: Returns 0 if permission is granted.
5952 */
5953int security_perf_event_write(struct perf_event *event)
5954{
5955	return call_int_hook(perf_event_write, event);
5956}
5957#endif /* CONFIG_PERF_EVENTS */
5958
5959#ifdef CONFIG_IO_URING
5960/**
5961 * security_uring_override_creds() - Check if overriding creds is allowed
5962 * @new: new credentials
5963 *
5964 * Check if the current task, executing an io_uring operation, is allowed to
5965 * override it's credentials with @new.
5966 *
5967 * Return: Returns 0 if permission is granted.
5968 */
5969int security_uring_override_creds(const struct cred *new)
5970{
5971	return call_int_hook(uring_override_creds, new);
5972}
5973
5974/**
5975 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5976 *
5977 * Check whether the current task is allowed to spawn a io_uring polling thread
5978 * (IORING_SETUP_SQPOLL).
5979 *
5980 * Return: Returns 0 if permission is granted.
5981 */
5982int security_uring_sqpoll(void)
5983{
5984	return call_int_hook(uring_sqpoll);
5985}
5986
5987/**
5988 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5989 * @ioucmd: command
5990 *
5991 * Check whether the file_operations uring_cmd is allowed to run.
5992 *
5993 * Return: Returns 0 if permission is granted.
5994 */
5995int security_uring_cmd(struct io_uring_cmd *ioucmd)
5996{
5997	return call_int_hook(uring_cmd, ioucmd);
5998}
5999#endif /* CONFIG_IO_URING */
6000
6001/**
6002 * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
6003 *
6004 * Tells the LSMs the initramfs has been unpacked into the rootfs.
6005 */
6006void security_initramfs_populated(void)
6007{
6008	call_void_hook(initramfs_populated);
6009}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
  10 */
  11
  12#define pr_fmt(fmt) "LSM: " fmt
  13
  14#include <linux/bpf.h>
  15#include <linux/capability.h>
  16#include <linux/dcache.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/kernel_read_file.h>
  21#include <linux/lsm_hooks.h>
  22#include <linux/integrity.h>
  23#include <linux/ima.h>
  24#include <linux/evm.h>
  25#include <linux/fsnotify.h>
  26#include <linux/mman.h>
  27#include <linux/mount.h>
  28#include <linux/personality.h>
  29#include <linux/backing-dev.h>
  30#include <linux/string.h>
 
  31#include <linux/msg.h>
  32#include <linux/overflow.h>
 
 
  33#include <net/flow.h>
 
  34
  35/* How many LSMs were built into the kernel? */
  36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  37
  38/*
  39 * How many LSMs are built into the kernel as determined at
  40 * build time. Used to determine fixed array sizes.
  41 * The capability module is accounted for by CONFIG_SECURITY
  42 */
  43#define LSM_CONFIG_COUNT ( \
  44	(IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \
  45	(IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \
  46	(IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \
  47	(IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \
  48	(IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \
  49	(IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \
  50	(IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \
  51	(IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \
  52	(IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \
  53	(IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \
  54	(IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0))
  55
  56/*
  57 * These are descriptions of the reasons that can be passed to the
  58 * security_locked_down() LSM hook. Placing this array here allows
  59 * all security modules to use the same descriptions for auditing
  60 * purposes.
  61 */
  62const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
  63	[LOCKDOWN_NONE] = "none",
  64	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  65	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  66	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  67	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
  68	[LOCKDOWN_HIBERNATION] = "hibernation",
  69	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  70	[LOCKDOWN_IOPORT] = "raw io port access",
  71	[LOCKDOWN_MSR] = "raw MSR access",
  72	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  73	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
  74	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  75	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  76	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  77	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  78	[LOCKDOWN_DEBUGFS] = "debugfs access",
  79	[LOCKDOWN_XMON_WR] = "xmon write access",
  80	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
  81	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
  82	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
  83	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
  84	[LOCKDOWN_KCORE] = "/proc/kcore access",
  85	[LOCKDOWN_KPROBES] = "use of kprobes",
  86	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
  87	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
  88	[LOCKDOWN_PERF] = "unsafe use of perf",
  89	[LOCKDOWN_TRACEFS] = "use of tracefs",
  90	[LOCKDOWN_XMON_RW] = "xmon read and write access",
  91	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
  92	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  93};
  94
  95struct security_hook_heads security_hook_heads __ro_after_init;
  96static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  97
  98static struct kmem_cache *lsm_file_cache;
  99static struct kmem_cache *lsm_inode_cache;
 100
 101char *lsm_names;
 102static struct lsm_blob_sizes blob_sizes __ro_after_init;
 103
 104/* Boot-time LSM user choice */
 105static __initdata const char *chosen_lsm_order;
 106static __initdata const char *chosen_major_lsm;
 107
 108static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
 109
 110/* Ordered list of LSMs to initialize. */
 111static __initdata struct lsm_info **ordered_lsms;
 112static __initdata struct lsm_info *exclusive;
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114static __initdata bool debug;
 115#define init_debug(...)						\
 116	do {							\
 117		if (debug)					\
 118			pr_info(__VA_ARGS__);			\
 119	} while (0)
 120
 121static bool __init is_enabled(struct lsm_info *lsm)
 122{
 123	if (!lsm->enabled)
 124		return false;
 125
 126	return *lsm->enabled;
 127}
 128
 129/* Mark an LSM's enabled flag. */
 130static int lsm_enabled_true __initdata = 1;
 131static int lsm_enabled_false __initdata = 0;
 132static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 133{
 134	/*
 135	 * When an LSM hasn't configured an enable variable, we can use
 136	 * a hard-coded location for storing the default enabled state.
 137	 */
 138	if (!lsm->enabled) {
 139		if (enabled)
 140			lsm->enabled = &lsm_enabled_true;
 141		else
 142			lsm->enabled = &lsm_enabled_false;
 143	} else if (lsm->enabled == &lsm_enabled_true) {
 144		if (!enabled)
 145			lsm->enabled = &lsm_enabled_false;
 146	} else if (lsm->enabled == &lsm_enabled_false) {
 147		if (enabled)
 148			lsm->enabled = &lsm_enabled_true;
 149	} else {
 150		*lsm->enabled = enabled;
 151	}
 152}
 153
 154/* Is an LSM already listed in the ordered LSMs list? */
 155static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 156{
 157	struct lsm_info **check;
 158
 159	for (check = ordered_lsms; *check; check++)
 160		if (*check == lsm)
 161			return true;
 162
 163	return false;
 164}
 165
 166/* Append an LSM to the list of ordered LSMs to initialize. */
 167static int last_lsm __initdata;
 168static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 169{
 170	/* Ignore duplicate selections. */
 171	if (exists_ordered_lsm(lsm))
 172		return;
 173
 174	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 175		return;
 176
 177	/* Enable this LSM, if it is not already set. */
 178	if (!lsm->enabled)
 179		lsm->enabled = &lsm_enabled_true;
 180	ordered_lsms[last_lsm++] = lsm;
 181
 182	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
 183		   is_enabled(lsm) ? "enabled" : "disabled");
 184}
 185
 186/* Is an LSM allowed to be initialized? */
 187static bool __init lsm_allowed(struct lsm_info *lsm)
 188{
 189	/* Skip if the LSM is disabled. */
 190	if (!is_enabled(lsm))
 191		return false;
 192
 193	/* Not allowed if another exclusive LSM already initialized. */
 194	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 195		init_debug("exclusive disabled: %s\n", lsm->name);
 196		return false;
 197	}
 198
 199	return true;
 200}
 201
 202static void __init lsm_set_blob_size(int *need, int *lbs)
 203{
 204	int offset;
 205
 206	if (*need <= 0)
 207		return;
 208
 209	offset = ALIGN(*lbs, sizeof(void *));
 210	*lbs = offset + *need;
 211	*need = offset;
 212}
 213
 214static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 215{
 216	if (!needed)
 217		return;
 218
 219	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 220	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 
 221	/*
 222	 * The inode blob gets an rcu_head in addition to
 223	 * what the modules might need.
 224	 */
 225	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 226		blob_sizes.lbs_inode = sizeof(struct rcu_head);
 227	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 228	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 
 229	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 
 
 230	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
 231	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 
 232	lsm_set_blob_size(&needed->lbs_xattr_count,
 233			  &blob_sizes.lbs_xattr_count);
 
 234}
 235
 236/* Prepare LSM for initialization. */
 237static void __init prepare_lsm(struct lsm_info *lsm)
 238{
 239	int enabled = lsm_allowed(lsm);
 240
 241	/* Record enablement (to handle any following exclusive LSMs). */
 242	set_enabled(lsm, enabled);
 243
 244	/* If enabled, do pre-initialization work. */
 245	if (enabled) {
 246		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 247			exclusive = lsm;
 248			init_debug("exclusive chosen:   %s\n", lsm->name);
 249		}
 250
 251		lsm_set_blob_sizes(lsm->blobs);
 252	}
 253}
 254
 255/* Initialize a given LSM, if it is enabled. */
 256static void __init initialize_lsm(struct lsm_info *lsm)
 257{
 258	if (is_enabled(lsm)) {
 259		int ret;
 260
 261		init_debug("initializing %s\n", lsm->name);
 262		ret = lsm->init();
 263		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 264	}
 265}
 266
 267/*
 268 * Current index to use while initializing the lsm id list.
 269 */
 270u32 lsm_active_cnt __ro_after_init;
 271const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT];
 272
 273/* Populate ordered LSMs list from comma-separated LSM name list. */
 274static void __init ordered_lsm_parse(const char *order, const char *origin)
 275{
 276	struct lsm_info *lsm;
 277	char *sep, *name, *next;
 278
 279	/* LSM_ORDER_FIRST is always first. */
 280	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 281		if (lsm->order == LSM_ORDER_FIRST)
 282			append_ordered_lsm(lsm, "  first");
 283	}
 284
 285	/* Process "security=", if given. */
 286	if (chosen_major_lsm) {
 287		struct lsm_info *major;
 288
 289		/*
 290		 * To match the original "security=" behavior, this
 291		 * explicitly does NOT fallback to another Legacy Major
 292		 * if the selected one was separately disabled: disable
 293		 * all non-matching Legacy Major LSMs.
 294		 */
 295		for (major = __start_lsm_info; major < __end_lsm_info;
 296		     major++) {
 297			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 298			    strcmp(major->name, chosen_major_lsm) != 0) {
 299				set_enabled(major, false);
 300				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
 301					   chosen_major_lsm, major->name);
 302			}
 303		}
 304	}
 305
 306	sep = kstrdup(order, GFP_KERNEL);
 307	next = sep;
 308	/* Walk the list, looking for matching LSMs. */
 309	while ((name = strsep(&next, ",")) != NULL) {
 310		bool found = false;
 311
 312		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 313			if (strcmp(lsm->name, name) == 0) {
 314				if (lsm->order == LSM_ORDER_MUTABLE)
 315					append_ordered_lsm(lsm, origin);
 316				found = true;
 317			}
 318		}
 319
 320		if (!found)
 321			init_debug("%s ignored: %s (not built into kernel)\n",
 322				   origin, name);
 323	}
 324
 325	/* Process "security=", if given. */
 326	if (chosen_major_lsm) {
 327		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 328			if (exists_ordered_lsm(lsm))
 329				continue;
 330			if (strcmp(lsm->name, chosen_major_lsm) == 0)
 331				append_ordered_lsm(lsm, "security=");
 332		}
 333	}
 334
 335	/* LSM_ORDER_LAST is always last. */
 336	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 337		if (lsm->order == LSM_ORDER_LAST)
 338			append_ordered_lsm(lsm, "   last");
 339	}
 340
 341	/* Disable all LSMs not in the ordered list. */
 342	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 343		if (exists_ordered_lsm(lsm))
 344			continue;
 345		set_enabled(lsm, false);
 346		init_debug("%s skipped: %s (not in requested order)\n",
 347			   origin, lsm->name);
 348	}
 349
 350	kfree(sep);
 351}
 352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 353static void __init lsm_early_cred(struct cred *cred);
 354static void __init lsm_early_task(struct task_struct *task);
 355
 356static int lsm_append(const char *new, char **result);
 357
 358static void __init report_lsm_order(void)
 359{
 360	struct lsm_info **lsm, *early;
 361	int first = 0;
 362
 363	pr_info("initializing lsm=");
 364
 365	/* Report each enabled LSM name, comma separated. */
 366	for (early = __start_early_lsm_info;
 367	     early < __end_early_lsm_info; early++)
 368		if (is_enabled(early))
 369			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
 370	for (lsm = ordered_lsms; *lsm; lsm++)
 371		if (is_enabled(*lsm))
 372			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
 373
 374	pr_cont("\n");
 375}
 376
 377static void __init ordered_lsm_init(void)
 378{
 379	struct lsm_info **lsm;
 380
 381	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 382			       GFP_KERNEL);
 383
 384	if (chosen_lsm_order) {
 385		if (chosen_major_lsm) {
 386			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
 387				chosen_major_lsm, chosen_lsm_order);
 388			chosen_major_lsm = NULL;
 389		}
 390		ordered_lsm_parse(chosen_lsm_order, "cmdline");
 391	} else
 392		ordered_lsm_parse(builtin_lsm_order, "builtin");
 393
 394	for (lsm = ordered_lsms; *lsm; lsm++)
 395		prepare_lsm(*lsm);
 396
 397	report_lsm_order();
 398
 399	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
 400	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
 
 401	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
 402	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
 
 
 
 403	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
 
 404	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
 
 405	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
 
 406	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
 
 407
 408	/*
 409	 * Create any kmem_caches needed for blobs
 410	 */
 411	if (blob_sizes.lbs_file)
 412		lsm_file_cache = kmem_cache_create("lsm_file_cache",
 413						   blob_sizes.lbs_file, 0,
 414						   SLAB_PANIC, NULL);
 415	if (blob_sizes.lbs_inode)
 416		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 417						    blob_sizes.lbs_inode, 0,
 418						    SLAB_PANIC, NULL);
 419
 420	lsm_early_cred((struct cred *) current->cred);
 421	lsm_early_task(current);
 422	for (lsm = ordered_lsms; *lsm; lsm++)
 423		initialize_lsm(*lsm);
 424
 425	kfree(ordered_lsms);
 426}
 427
 428int __init early_security_init(void)
 429{
 430	struct lsm_info *lsm;
 431
 432#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 433	INIT_HLIST_HEAD(&security_hook_heads.NAME);
 434#include "linux/lsm_hook_defs.h"
 435#undef LSM_HOOK
 436
 437	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 438		if (!lsm->enabled)
 439			lsm->enabled = &lsm_enabled_true;
 440		prepare_lsm(lsm);
 441		initialize_lsm(lsm);
 442	}
 443
 444	return 0;
 445}
 446
 447/**
 448 * security_init - initializes the security framework
 449 *
 450 * This should be called early in the kernel initialization sequence.
 451 */
 452int __init security_init(void)
 453{
 454	struct lsm_info *lsm;
 455
 456	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
 457	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
 458	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
 459
 460	/*
 461	 * Append the names of the early LSM modules now that kmalloc() is
 462	 * available
 463	 */
 464	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 465		init_debug("  early started: %s (%s)\n", lsm->name,
 466			   is_enabled(lsm) ? "enabled" : "disabled");
 467		if (lsm->enabled)
 468			lsm_append(lsm->name, &lsm_names);
 469	}
 470
 471	/* Load LSMs in specified order. */
 472	ordered_lsm_init();
 473
 474	return 0;
 475}
 476
 477/* Save user chosen LSM */
 478static int __init choose_major_lsm(char *str)
 479{
 480	chosen_major_lsm = str;
 481	return 1;
 482}
 483__setup("security=", choose_major_lsm);
 484
 485/* Explicitly choose LSM initialization order. */
 486static int __init choose_lsm_order(char *str)
 487{
 488	chosen_lsm_order = str;
 489	return 1;
 490}
 491__setup("lsm=", choose_lsm_order);
 492
 493/* Enable LSM order debugging. */
 494static int __init enable_debug(char *str)
 495{
 496	debug = true;
 497	return 1;
 498}
 499__setup("lsm.debug", enable_debug);
 500
 501static bool match_last_lsm(const char *list, const char *lsm)
 502{
 503	const char *last;
 504
 505	if (WARN_ON(!list || !lsm))
 506		return false;
 507	last = strrchr(list, ',');
 508	if (last)
 509		/* Pass the comma, strcmp() will check for '\0' */
 510		last++;
 511	else
 512		last = list;
 513	return !strcmp(last, lsm);
 514}
 515
 516static int lsm_append(const char *new, char **result)
 517{
 518	char *cp;
 519
 520	if (*result == NULL) {
 521		*result = kstrdup(new, GFP_KERNEL);
 522		if (*result == NULL)
 523			return -ENOMEM;
 524	} else {
 525		/* Check if it is the last registered name */
 526		if (match_last_lsm(*result, new))
 527			return 0;
 528		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 529		if (cp == NULL)
 530			return -ENOMEM;
 531		kfree(*result);
 532		*result = cp;
 533	}
 534	return 0;
 535}
 536
 537/**
 538 * security_add_hooks - Add a modules hooks to the hook lists.
 539 * @hooks: the hooks to add
 540 * @count: the number of hooks to add
 541 * @lsmid: the identification information for the security module
 542 *
 543 * Each LSM has to register its hooks with the infrastructure.
 544 */
 545void __init security_add_hooks(struct security_hook_list *hooks, int count,
 546			       const struct lsm_id *lsmid)
 547{
 548	int i;
 549
 550	/*
 551	 * A security module may call security_add_hooks() more
 552	 * than once during initialization, and LSM initialization
 553	 * is serialized. Landlock is one such case.
 554	 * Look at the previous entry, if there is one, for duplication.
 555	 */
 556	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
 557		if (lsm_active_cnt >= LSM_CONFIG_COUNT)
 558			panic("%s Too many LSMs registered.\n", __func__);
 559		lsm_idlist[lsm_active_cnt++] = lsmid;
 560	}
 561
 562	for (i = 0; i < count; i++) {
 563		hooks[i].lsmid = lsmid;
 564		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 565	}
 566
 567	/*
 568	 * Don't try to append during early_security_init(), we'll come back
 569	 * and fix this up afterwards.
 570	 */
 571	if (slab_is_available()) {
 572		if (lsm_append(lsmid->name, &lsm_names) < 0)
 573			panic("%s - Cannot get early memory.\n", __func__);
 574	}
 575}
 576
 577int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 578{
 579	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 580					    event, data);
 581}
 582EXPORT_SYMBOL(call_blocking_lsm_notifier);
 583
 584int register_blocking_lsm_notifier(struct notifier_block *nb)
 585{
 586	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 587						nb);
 588}
 589EXPORT_SYMBOL(register_blocking_lsm_notifier);
 590
 591int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 592{
 593	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 594						  nb);
 595}
 596EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 597
 598/**
 599 * lsm_cred_alloc - allocate a composite cred blob
 600 * @cred: the cred that needs a blob
 
 601 * @gfp: allocation type
 602 *
 603 * Allocate the cred blob for all the modules
 604 *
 605 * Returns 0, or -ENOMEM if memory can't be allocated.
 606 */
 607static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 608{
 609	if (blob_sizes.lbs_cred == 0) {
 610		cred->security = NULL;
 611		return 0;
 612	}
 613
 614	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 615	if (cred->security == NULL)
 616		return -ENOMEM;
 617	return 0;
 618}
 619
 620/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621 * lsm_early_cred - during initialization allocate a composite cred blob
 622 * @cred: the cred that needs a blob
 623 *
 624 * Allocate the cred blob for all the modules
 625 */
 626static void __init lsm_early_cred(struct cred *cred)
 627{
 628	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 629
 630	if (rc)
 631		panic("%s: Early cred alloc failed.\n", __func__);
 632}
 633
 634/**
 635 * lsm_file_alloc - allocate a composite file blob
 636 * @file: the file that needs a blob
 637 *
 638 * Allocate the file blob for all the modules
 639 *
 640 * Returns 0, or -ENOMEM if memory can't be allocated.
 641 */
 642static int lsm_file_alloc(struct file *file)
 643{
 644	if (!lsm_file_cache) {
 645		file->f_security = NULL;
 646		return 0;
 647	}
 648
 649	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 650	if (file->f_security == NULL)
 651		return -ENOMEM;
 652	return 0;
 653}
 654
 655/**
 656 * lsm_inode_alloc - allocate a composite inode blob
 657 * @inode: the inode that needs a blob
 
 658 *
 659 * Allocate the inode blob for all the modules
 660 *
 661 * Returns 0, or -ENOMEM if memory can't be allocated.
 662 */
 663int lsm_inode_alloc(struct inode *inode)
 664{
 665	if (!lsm_inode_cache) {
 666		inode->i_security = NULL;
 667		return 0;
 668	}
 669
 670	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 671	if (inode->i_security == NULL)
 672		return -ENOMEM;
 673	return 0;
 674}
 675
 676/**
 677 * lsm_task_alloc - allocate a composite task blob
 678 * @task: the task that needs a blob
 679 *
 680 * Allocate the task blob for all the modules
 681 *
 682 * Returns 0, or -ENOMEM if memory can't be allocated.
 683 */
 684static int lsm_task_alloc(struct task_struct *task)
 685{
 686	if (blob_sizes.lbs_task == 0) {
 687		task->security = NULL;
 688		return 0;
 689	}
 690
 691	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 692	if (task->security == NULL)
 693		return -ENOMEM;
 694	return 0;
 695}
 696
 697/**
 698 * lsm_ipc_alloc - allocate a composite ipc blob
 699 * @kip: the ipc that needs a blob
 700 *
 701 * Allocate the ipc blob for all the modules
 702 *
 703 * Returns 0, or -ENOMEM if memory can't be allocated.
 704 */
 705static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 706{
 707	if (blob_sizes.lbs_ipc == 0) {
 708		kip->security = NULL;
 709		return 0;
 710	}
 711
 712	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 713	if (kip->security == NULL)
 714		return -ENOMEM;
 715	return 0;
 
 
 
 
 
 
 
 
 716}
 
 717
 718/**
 719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 720 * @mp: the msg_msg that needs a blob
 721 *
 722 * Allocate the ipc blob for all the modules
 723 *
 724 * Returns 0, or -ENOMEM if memory can't be allocated.
 725 */
 726static int lsm_msg_msg_alloc(struct msg_msg *mp)
 727{
 728	if (blob_sizes.lbs_msg_msg == 0) {
 729		mp->security = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730		return 0;
 731	}
 732
 733	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 734	if (mp->security == NULL)
 735		return -ENOMEM;
 
 736	return 0;
 737}
 738
 739/**
 740 * lsm_early_task - during initialization allocate a composite task blob
 741 * @task: the task that needs a blob
 742 *
 743 * Allocate the task blob for all the modules
 744 */
 745static void __init lsm_early_task(struct task_struct *task)
 746{
 747	int rc = lsm_task_alloc(task);
 748
 749	if (rc)
 750		panic("%s: Early task alloc failed.\n", __func__);
 751}
 752
 753/**
 754 * lsm_superblock_alloc - allocate a composite superblock blob
 755 * @sb: the superblock that needs a blob
 756 *
 757 * Allocate the superblock blob for all the modules
 758 *
 759 * Returns 0, or -ENOMEM if memory can't be allocated.
 760 */
 761static int lsm_superblock_alloc(struct super_block *sb)
 762{
 763	if (blob_sizes.lbs_superblock == 0) {
 764		sb->s_security = NULL;
 765		return 0;
 766	}
 767
 768	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
 769	if (sb->s_security == NULL)
 770		return -ENOMEM;
 771	return 0;
 772}
 773
 774/**
 775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
 776 * @uctx: a userspace LSM context to be filled
 777 * @uctx_len: available uctx size (input), used uctx size (output)
 778 * @val: the new LSM context value
 779 * @val_len: the size of the new LSM context value
 780 * @id: LSM id
 781 * @flags: LSM defined flags
 782 *
 783 * Fill all of the fields in a userspace lsm_ctx structure.
 
 
 784 *
 785 * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
 786 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
 787 */
 788int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, size_t *uctx_len,
 789		      void *val, size_t val_len,
 790		      u64 id, u64 flags)
 791{
 792	struct lsm_ctx *nctx = NULL;
 793	size_t nctx_len;
 794	int rc = 0;
 795
 796	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
 797	if (nctx_len > *uctx_len) {
 798		rc = -E2BIG;
 799		goto out;
 800	}
 801
 
 
 
 
 802	nctx = kzalloc(nctx_len, GFP_KERNEL);
 803	if (nctx == NULL) {
 804		rc = -ENOMEM;
 805		goto out;
 806	}
 807	nctx->id = id;
 808	nctx->flags = flags;
 809	nctx->len = nctx_len;
 810	nctx->ctx_len = val_len;
 811	memcpy(nctx->ctx, val, val_len);
 812
 813	if (copy_to_user(uctx, nctx, nctx_len))
 814		rc = -EFAULT;
 815
 816out:
 817	kfree(nctx);
 818	*uctx_len = nctx_len;
 819	return rc;
 820}
 821
 822/*
 823 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 824 * can be accessed with:
 825 *
 826 *	LSM_RET_DEFAULT(<hook_name>)
 827 *
 828 * The macros below define static constants for the default value of each
 829 * LSM hook.
 830 */
 831#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 832#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 833#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 834	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
 835#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 836	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 837
 838#include <linux/lsm_hook_defs.h>
 839#undef LSM_HOOK
 840
 841/*
 842 * Hook list operation macros.
 843 *
 844 * call_void_hook:
 845 *	This is a hook that does not return a value.
 846 *
 847 * call_int_hook:
 848 *	This is a hook that returns a value.
 849 */
 
 
 
 
 
 
 
 
 
 
 
 850
 851#define call_void_hook(FUNC, ...)				\
 852	do {							\
 853		struct security_hook_list *P;			\
 854								\
 855		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 856			P->hook.FUNC(__VA_ARGS__);		\
 857	} while (0)
 858
 859#define call_int_hook(FUNC, IRC, ...) ({			\
 860	int RC = IRC;						\
 861	do {							\
 862		struct security_hook_list *P;			\
 863								\
 864		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 865			RC = P->hook.FUNC(__VA_ARGS__);		\
 866			if (RC != 0)				\
 867				break;				\
 868		}						\
 869	} while (0);						\
 870	RC;							\
 
 
 
 
 
 871})
 872
 
 
 
 
 
 873/* Security operations */
 874
 875/**
 876 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
 877 * @mgr: task credentials of current binder process
 878 *
 879 * Check whether @mgr is allowed to be the binder context manager.
 880 *
 881 * Return: Return 0 if permission is granted.
 882 */
 883int security_binder_set_context_mgr(const struct cred *mgr)
 884{
 885	return call_int_hook(binder_set_context_mgr, 0, mgr);
 886}
 887
 888/**
 889 * security_binder_transaction() - Check if a binder transaction is allowed
 890 * @from: sending process
 891 * @to: receiving process
 892 *
 893 * Check whether @from is allowed to invoke a binder transaction call to @to.
 894 *
 895 * Return: Returns 0 if permission is granted.
 896 */
 897int security_binder_transaction(const struct cred *from,
 898				const struct cred *to)
 899{
 900	return call_int_hook(binder_transaction, 0, from, to);
 901}
 902
 903/**
 904 * security_binder_transfer_binder() - Check if a binder transfer is allowed
 905 * @from: sending process
 906 * @to: receiving process
 907 *
 908 * Check whether @from is allowed to transfer a binder reference to @to.
 909 *
 910 * Return: Returns 0 if permission is granted.
 911 */
 912int security_binder_transfer_binder(const struct cred *from,
 913				    const struct cred *to)
 914{
 915	return call_int_hook(binder_transfer_binder, 0, from, to);
 916}
 917
 918/**
 919 * security_binder_transfer_file() - Check if a binder file xfer is allowed
 920 * @from: sending process
 921 * @to: receiving process
 922 * @file: file being transferred
 923 *
 924 * Check whether @from is allowed to transfer @file to @to.
 925 *
 926 * Return: Returns 0 if permission is granted.
 927 */
 928int security_binder_transfer_file(const struct cred *from,
 929				  const struct cred *to, const struct file *file)
 930{
 931	return call_int_hook(binder_transfer_file, 0, from, to, file);
 932}
 933
 934/**
 935 * security_ptrace_access_check() - Check if tracing is allowed
 936 * @child: target process
 937 * @mode: PTRACE_MODE flags
 938 *
 939 * Check permission before allowing the current process to trace the @child
 940 * process.  Security modules may also want to perform a process tracing check
 941 * during an execve in the set_security or apply_creds hooks of tracing check
 942 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
 943 * process is being traced and its security attributes would be changed by the
 944 * execve.
 945 *
 946 * Return: Returns 0 if permission is granted.
 947 */
 948int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 949{
 950	return call_int_hook(ptrace_access_check, 0, child, mode);
 951}
 952
 953/**
 954 * security_ptrace_traceme() - Check if tracing is allowed
 955 * @parent: tracing process
 956 *
 957 * Check that the @parent process has sufficient permission to trace the
 958 * current process before allowing the current process to present itself to the
 959 * @parent process for tracing.
 960 *
 961 * Return: Returns 0 if permission is granted.
 962 */
 963int security_ptrace_traceme(struct task_struct *parent)
 964{
 965	return call_int_hook(ptrace_traceme, 0, parent);
 966}
 967
 968/**
 969 * security_capget() - Get the capability sets for a process
 970 * @target: target process
 971 * @effective: effective capability set
 972 * @inheritable: inheritable capability set
 973 * @permitted: permitted capability set
 974 *
 975 * Get the @effective, @inheritable, and @permitted capability sets for the
 976 * @target process.  The hook may also perform permission checking to determine
 977 * if the current process is allowed to see the capability sets of the @target
 978 * process.
 979 *
 980 * Return: Returns 0 if the capability sets were successfully obtained.
 981 */
 982int security_capget(const struct task_struct *target,
 983		    kernel_cap_t *effective,
 984		    kernel_cap_t *inheritable,
 985		    kernel_cap_t *permitted)
 986{
 987	return call_int_hook(capget, 0, target,
 988			     effective, inheritable, permitted);
 989}
 990
 991/**
 992 * security_capset() - Set the capability sets for a process
 993 * @new: new credentials for the target process
 994 * @old: current credentials of the target process
 995 * @effective: effective capability set
 996 * @inheritable: inheritable capability set
 997 * @permitted: permitted capability set
 998 *
 999 * Set the @effective, @inheritable, and @permitted capability sets for the
1000 * current process.
1001 *
1002 * Return: Returns 0 and update @new if permission is granted.
1003 */
1004int security_capset(struct cred *new, const struct cred *old,
1005		    const kernel_cap_t *effective,
1006		    const kernel_cap_t *inheritable,
1007		    const kernel_cap_t *permitted)
1008{
1009	return call_int_hook(capset, 0, new, old,
1010			     effective, inheritable, permitted);
1011}
1012
1013/**
1014 * security_capable() - Check if a process has the necessary capability
1015 * @cred: credentials to examine
1016 * @ns: user namespace
1017 * @cap: capability requested
1018 * @opts: capability check options
1019 *
1020 * Check whether the @tsk process has the @cap capability in the indicated
1021 * credentials.  @cap contains the capability <include/linux/capability.h>.
1022 * @opts contains options for the capable check <include/linux/security.h>.
1023 *
1024 * Return: Returns 0 if the capability is granted.
1025 */
1026int security_capable(const struct cred *cred,
1027		     struct user_namespace *ns,
1028		     int cap,
1029		     unsigned int opts)
1030{
1031	return call_int_hook(capable, 0, cred, ns, cap, opts);
1032}
1033
1034/**
1035 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1036 * @cmds: commands
1037 * @type: type
1038 * @id: id
1039 * @sb: filesystem
1040 *
1041 * Check whether the quotactl syscall is allowed for this @sb.
1042 *
1043 * Return: Returns 0 if permission is granted.
1044 */
1045int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1046{
1047	return call_int_hook(quotactl, 0, cmds, type, id, sb);
1048}
1049
1050/**
1051 * security_quota_on() - Check if QUOTAON is allowed for a dentry
1052 * @dentry: dentry
1053 *
1054 * Check whether QUOTAON is allowed for @dentry.
1055 *
1056 * Return: Returns 0 if permission is granted.
1057 */
1058int security_quota_on(struct dentry *dentry)
1059{
1060	return call_int_hook(quota_on, 0, dentry);
1061}
1062
1063/**
1064 * security_syslog() - Check if accessing the kernel message ring is allowed
1065 * @type: SYSLOG_ACTION_* type
1066 *
1067 * Check permission before accessing the kernel message ring or changing
1068 * logging to the console.  See the syslog(2) manual page for an explanation of
1069 * the @type values.
1070 *
1071 * Return: Return 0 if permission is granted.
1072 */
1073int security_syslog(int type)
1074{
1075	return call_int_hook(syslog, 0, type);
1076}
1077
1078/**
1079 * security_settime64() - Check if changing the system time is allowed
1080 * @ts: new time
1081 * @tz: timezone
1082 *
1083 * Check permission to change the system time, struct timespec64 is defined in
1084 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1085 *
1086 * Return: Returns 0 if permission is granted.
1087 */
1088int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1089{
1090	return call_int_hook(settime, 0, ts, tz);
1091}
1092
1093/**
1094 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1095 * @mm: mm struct
1096 * @pages: number of pages
1097 *
1098 * Check permissions for allocating a new virtual mapping.  If all LSMs return
1099 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1100 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1101 * called with cap_sys_admin cleared.
1102 *
1103 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1104 *         caller.
1105 */
1106int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1107{
1108	struct security_hook_list *hp;
1109	int cap_sys_admin = 1;
1110	int rc;
1111
1112	/*
1113	 * The module will respond with a positive value if
1114	 * it thinks the __vm_enough_memory() call should be
1115	 * made with the cap_sys_admin set. If all of the modules
1116	 * agree that it should be set it will. If any module
1117	 * thinks it should not be set it won't.
1118	 */
1119	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
1120		rc = hp->hook.vm_enough_memory(mm, pages);
1121		if (rc <= 0) {
1122			cap_sys_admin = 0;
1123			break;
1124		}
1125	}
1126	return __vm_enough_memory(mm, pages, cap_sys_admin);
1127}
1128
1129/**
1130 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1131 * @bprm: binary program information
1132 *
1133 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1134 * properly for executing @bprm->file, update the LSM's portion of
1135 * @bprm->cred->security to be what commit_creds needs to install for the new
1136 * program.  This hook may also optionally check permissions (e.g. for
1137 * transitions between security domains).  The hook must set @bprm->secureexec
1138 * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1139 * contains the linux_binprm structure.
1140 *
1141 * Return: Returns 0 if the hook is successful and permission is granted.
1142 */
1143int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1144{
1145	return call_int_hook(bprm_creds_for_exec, 0, bprm);
1146}
1147
1148/**
1149 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1150 * @bprm: binary program information
1151 * @file: associated file
1152 *
1153 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1154 * exec, update @bprm->cred to reflect that change. This is called after
1155 * finding the binary that will be executed without an interpreter.  This
1156 * ensures that the credentials will not be derived from a script that the
1157 * binary will need to reopen, which when reopend may end up being a completely
1158 * different file.  This hook may also optionally check permissions (e.g. for
1159 * transitions between security domains).  The hook must set @bprm->secureexec
1160 * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1161 * hook must add to @bprm->per_clear any personality flags that should be
1162 * cleared from current->personality.  @bprm contains the linux_binprm
1163 * structure.
1164 *
1165 * Return: Returns 0 if the hook is successful and permission is granted.
1166 */
1167int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1168{
1169	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
1170}
1171
1172/**
1173 * security_bprm_check() - Mediate binary handler search
1174 * @bprm: binary program information
1175 *
1176 * This hook mediates the point when a search for a binary handler will begin.
1177 * It allows a check against the @bprm->cred->security value which was set in
1178 * the preceding creds_for_exec call.  The argv list and envp list are reliably
1179 * available in @bprm.  This hook may be called multiple times during a single
1180 * execve.  @bprm contains the linux_binprm structure.
1181 *
1182 * Return: Returns 0 if the hook is successful and permission is granted.
1183 */
1184int security_bprm_check(struct linux_binprm *bprm)
1185{
1186	int ret;
1187
1188	ret = call_int_hook(bprm_check_security, 0, bprm);
1189	if (ret)
1190		return ret;
1191	return ima_bprm_check(bprm);
1192}
1193
1194/**
1195 * security_bprm_committing_creds() - Install creds for a process during exec()
1196 * @bprm: binary program information
1197 *
1198 * Prepare to install the new security attributes of a process being
1199 * transformed by an execve operation, based on the old credentials pointed to
1200 * by @current->cred and the information set in @bprm->cred by the
1201 * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1202 * hook is a good place to perform state changes on the process such as closing
1203 * open file descriptors to which access will no longer be granted when the
1204 * attributes are changed.  This is called immediately before commit_creds().
1205 */
1206void security_bprm_committing_creds(const struct linux_binprm *bprm)
1207{
1208	call_void_hook(bprm_committing_creds, bprm);
1209}
1210
1211/**
1212 * security_bprm_committed_creds() - Tidy up after cred install during exec()
1213 * @bprm: binary program information
1214 *
1215 * Tidy up after the installation of the new security attributes of a process
1216 * being transformed by an execve operation.  The new credentials have, by this
1217 * point, been set to @current->cred.  @bprm points to the linux_binprm
1218 * structure.  This hook is a good place to perform state changes on the
1219 * process such as clearing out non-inheritable signal state.  This is called
1220 * immediately after commit_creds().
1221 */
1222void security_bprm_committed_creds(const struct linux_binprm *bprm)
1223{
1224	call_void_hook(bprm_committed_creds, bprm);
1225}
1226
1227/**
1228 * security_fs_context_submount() - Initialise fc->security
1229 * @fc: new filesystem context
1230 * @reference: dentry reference for submount/remount
1231 *
1232 * Fill out the ->security field for a new fs_context.
1233 *
1234 * Return: Returns 0 on success or negative error code on failure.
1235 */
1236int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1237{
1238	return call_int_hook(fs_context_submount, 0, fc, reference);
1239}
1240
1241/**
1242 * security_fs_context_dup() - Duplicate a fs_context LSM blob
1243 * @fc: destination filesystem context
1244 * @src_fc: source filesystem context
1245 *
1246 * Allocate and attach a security structure to sc->security.  This pointer is
1247 * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1248 * @src_fc indicates the original filesystem context.
1249 *
1250 * Return: Returns 0 on success or a negative error code on failure.
1251 */
1252int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1253{
1254	return call_int_hook(fs_context_dup, 0, fc, src_fc);
1255}
1256
1257/**
1258 * security_fs_context_parse_param() - Configure a filesystem context
1259 * @fc: filesystem context
1260 * @param: filesystem parameter
1261 *
1262 * Userspace provided a parameter to configure a superblock.  The LSM can
1263 * consume the parameter or return it to the caller for use elsewhere.
1264 *
1265 * Return: If the parameter is used by the LSM it should return 0, if it is
1266 *         returned to the caller -ENOPARAM is returned, otherwise a negative
1267 *         error code is returned.
1268 */
1269int security_fs_context_parse_param(struct fs_context *fc,
1270				    struct fs_parameter *param)
1271{
1272	struct security_hook_list *hp;
1273	int trc;
1274	int rc = -ENOPARAM;
1275
1276	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
1277			     list) {
1278		trc = hp->hook.fs_context_parse_param(fc, param);
1279		if (trc == 0)
1280			rc = 0;
1281		else if (trc != -ENOPARAM)
1282			return trc;
1283	}
1284	return rc;
1285}
1286
1287/**
1288 * security_sb_alloc() - Allocate a super_block LSM blob
1289 * @sb: filesystem superblock
1290 *
1291 * Allocate and attach a security structure to the sb->s_security field.  The
1292 * s_security field is initialized to NULL when the structure is allocated.
1293 * @sb contains the super_block structure to be modified.
1294 *
1295 * Return: Returns 0 if operation was successful.
1296 */
1297int security_sb_alloc(struct super_block *sb)
1298{
1299	int rc = lsm_superblock_alloc(sb);
1300
1301	if (unlikely(rc))
1302		return rc;
1303	rc = call_int_hook(sb_alloc_security, 0, sb);
1304	if (unlikely(rc))
1305		security_sb_free(sb);
1306	return rc;
1307}
1308
1309/**
1310 * security_sb_delete() - Release super_block LSM associated objects
1311 * @sb: filesystem superblock
1312 *
1313 * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1314 * super_block structure being released.
1315 */
1316void security_sb_delete(struct super_block *sb)
1317{
1318	call_void_hook(sb_delete, sb);
1319}
1320
1321/**
1322 * security_sb_free() - Free a super_block LSM blob
1323 * @sb: filesystem superblock
1324 *
1325 * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1326 * structure to be modified.
1327 */
1328void security_sb_free(struct super_block *sb)
1329{
1330	call_void_hook(sb_free_security, sb);
1331	kfree(sb->s_security);
1332	sb->s_security = NULL;
1333}
1334
1335/**
1336 * security_free_mnt_opts() - Free memory associated with mount options
1337 * @mnt_opts: LSM processed mount options
1338 *
1339 * Free memory associated with @mnt_ops.
1340 */
1341void security_free_mnt_opts(void **mnt_opts)
1342{
1343	if (!*mnt_opts)
1344		return;
1345	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1346	*mnt_opts = NULL;
1347}
1348EXPORT_SYMBOL(security_free_mnt_opts);
1349
1350/**
1351 * security_sb_eat_lsm_opts() - Consume LSM mount options
1352 * @options: mount options
1353 * @mnt_opts: LSM processed mount options
1354 *
1355 * Eat (scan @options) and save them in @mnt_opts.
1356 *
1357 * Return: Returns 0 on success, negative values on failure.
1358 */
1359int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1360{
1361	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
1362}
1363EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1364
1365/**
1366 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1367 * @sb: filesystem superblock
1368 * @mnt_opts: new mount options
1369 *
1370 * Determine if the new mount options in @mnt_opts are allowed given the
1371 * existing mounted filesystem at @sb.  @sb superblock being compared.
1372 *
1373 * Return: Returns 0 if options are compatible.
1374 */
1375int security_sb_mnt_opts_compat(struct super_block *sb,
1376				void *mnt_opts)
1377{
1378	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
1379}
1380EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1381
1382/**
1383 * security_sb_remount() - Verify no incompatible mount changes during remount
1384 * @sb: filesystem superblock
1385 * @mnt_opts: (re)mount options
1386 *
1387 * Extracts security system specific mount options and verifies no changes are
1388 * being made to those options.
1389 *
1390 * Return: Returns 0 if permission is granted.
1391 */
1392int security_sb_remount(struct super_block *sb,
1393			void *mnt_opts)
1394{
1395	return call_int_hook(sb_remount, 0, sb, mnt_opts);
1396}
1397EXPORT_SYMBOL(security_sb_remount);
1398
1399/**
1400 * security_sb_kern_mount() - Check if a kernel mount is allowed
1401 * @sb: filesystem superblock
1402 *
1403 * Mount this @sb if allowed by permissions.
1404 *
1405 * Return: Returns 0 if permission is granted.
1406 */
1407int security_sb_kern_mount(const struct super_block *sb)
1408{
1409	return call_int_hook(sb_kern_mount, 0, sb);
1410}
1411
1412/**
1413 * security_sb_show_options() - Output the mount options for a superblock
1414 * @m: output file
1415 * @sb: filesystem superblock
1416 *
1417 * Show (print on @m) mount options for this @sb.
1418 *
1419 * Return: Returns 0 on success, negative values on failure.
1420 */
1421int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1422{
1423	return call_int_hook(sb_show_options, 0, m, sb);
1424}
1425
1426/**
1427 * security_sb_statfs() - Check if accessing fs stats is allowed
1428 * @dentry: superblock handle
1429 *
1430 * Check permission before obtaining filesystem statistics for the @mnt
1431 * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1432 *
1433 * Return: Returns 0 if permission is granted.
1434 */
1435int security_sb_statfs(struct dentry *dentry)
1436{
1437	return call_int_hook(sb_statfs, 0, dentry);
1438}
1439
1440/**
1441 * security_sb_mount() - Check permission for mounting a filesystem
1442 * @dev_name: filesystem backing device
1443 * @path: mount point
1444 * @type: filesystem type
1445 * @flags: mount flags
1446 * @data: filesystem specific data
1447 *
1448 * Check permission before an object specified by @dev_name is mounted on the
1449 * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1450 * device if the file system type requires a device.  For a remount
1451 * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1452 * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1453 * mounted.
1454 *
1455 * Return: Returns 0 if permission is granted.
1456 */
1457int security_sb_mount(const char *dev_name, const struct path *path,
1458		      const char *type, unsigned long flags, void *data)
1459{
1460	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
1461}
1462
1463/**
1464 * security_sb_umount() - Check permission for unmounting a filesystem
1465 * @mnt: mounted filesystem
1466 * @flags: unmount flags
1467 *
1468 * Check permission before the @mnt file system is unmounted.
1469 *
1470 * Return: Returns 0 if permission is granted.
1471 */
1472int security_sb_umount(struct vfsmount *mnt, int flags)
1473{
1474	return call_int_hook(sb_umount, 0, mnt, flags);
1475}
1476
1477/**
1478 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1479 * @old_path: new location for current rootfs
1480 * @new_path: location of the new rootfs
1481 *
1482 * Check permission before pivoting the root filesystem.
1483 *
1484 * Return: Returns 0 if permission is granted.
1485 */
1486int security_sb_pivotroot(const struct path *old_path,
1487			  const struct path *new_path)
1488{
1489	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
1490}
1491
1492/**
1493 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1494 * @sb: filesystem superblock
1495 * @mnt_opts: binary mount options
1496 * @kern_flags: kernel flags (in)
1497 * @set_kern_flags: kernel flags (out)
1498 *
1499 * Set the security relevant mount options used for a superblock.
1500 *
1501 * Return: Returns 0 on success, error on failure.
1502 */
1503int security_sb_set_mnt_opts(struct super_block *sb,
1504			     void *mnt_opts,
1505			     unsigned long kern_flags,
1506			     unsigned long *set_kern_flags)
1507{
1508	return call_int_hook(sb_set_mnt_opts,
1509			     mnt_opts ? -EOPNOTSUPP : 0, sb,
1510			     mnt_opts, kern_flags, set_kern_flags);
 
 
 
 
 
 
 
1511}
1512EXPORT_SYMBOL(security_sb_set_mnt_opts);
1513
1514/**
1515 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1516 * @oldsb: source superblock
1517 * @newsb: destination superblock
1518 * @kern_flags: kernel flags (in)
1519 * @set_kern_flags: kernel flags (out)
1520 *
1521 * Copy all security options from a given superblock to another.
1522 *
1523 * Return: Returns 0 on success, error on failure.
1524 */
1525int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1526			       struct super_block *newsb,
1527			       unsigned long kern_flags,
1528			       unsigned long *set_kern_flags)
1529{
1530	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1531			     kern_flags, set_kern_flags);
1532}
1533EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1534
1535/**
1536 * security_move_mount() - Check permissions for moving a mount
1537 * @from_path: source mount point
1538 * @to_path: destination mount point
1539 *
1540 * Check permission before a mount is moved.
1541 *
1542 * Return: Returns 0 if permission is granted.
1543 */
1544int security_move_mount(const struct path *from_path,
1545			const struct path *to_path)
1546{
1547	return call_int_hook(move_mount, 0, from_path, to_path);
1548}
1549
1550/**
1551 * security_path_notify() - Check if setting a watch is allowed
1552 * @path: file path
1553 * @mask: event mask
1554 * @obj_type: file path type
1555 *
1556 * Check permissions before setting a watch on events as defined by @mask, on
1557 * an object at @path, whose type is defined by @obj_type.
1558 *
1559 * Return: Returns 0 if permission is granted.
1560 */
1561int security_path_notify(const struct path *path, u64 mask,
1562			 unsigned int obj_type)
1563{
1564	return call_int_hook(path_notify, 0, path, mask, obj_type);
1565}
1566
1567/**
1568 * security_inode_alloc() - Allocate an inode LSM blob
1569 * @inode: the inode
 
1570 *
1571 * Allocate and attach a security structure to @inode->i_security.  The
1572 * i_security field is initialized to NULL when the inode structure is
1573 * allocated.
1574 *
1575 * Return: Return 0 if operation was successful.
1576 */
1577int security_inode_alloc(struct inode *inode)
1578{
1579	int rc = lsm_inode_alloc(inode);
1580
1581	if (unlikely(rc))
1582		return rc;
1583	rc = call_int_hook(inode_alloc_security, 0, inode);
1584	if (unlikely(rc))
1585		security_inode_free(inode);
1586	return rc;
1587}
1588
1589static void inode_free_by_rcu(struct rcu_head *head)
1590{
1591	/*
1592	 * The rcu head is at the start of the inode blob
1593	 */
1594	kmem_cache_free(lsm_inode_cache, head);
1595}
1596
1597/**
1598 * security_inode_free() - Free an inode's LSM blob
1599 * @inode: the inode
1600 *
1601 * Deallocate the inode security structure and set @inode->i_security to NULL.
 
 
 
 
 
 
 
 
 
 
1602 */
1603void security_inode_free(struct inode *inode)
1604{
1605	integrity_inode_free(inode);
1606	call_void_hook(inode_free_security, inode);
1607	/*
1608	 * The inode may still be referenced in a path walk and
1609	 * a call to security_inode_permission() can be made
1610	 * after inode_free_security() is called. Ideally, the VFS
1611	 * wouldn't do this, but fixing that is a much harder
1612	 * job. For now, simply free the i_security via RCU, and
1613	 * leave the current inode->i_security pointer intact.
1614	 * The inode will be freed after the RCU grace period too.
1615	 */
1616	if (inode->i_security)
1617		call_rcu((struct rcu_head *)inode->i_security,
1618			 inode_free_by_rcu);
1619}
1620
1621/**
1622 * security_dentry_init_security() - Perform dentry initialization
1623 * @dentry: the dentry to initialize
1624 * @mode: mode used to determine resource type
1625 * @name: name of the last path component
1626 * @xattr_name: name of the security/LSM xattr
1627 * @ctx: pointer to the resulting LSM context
1628 * @ctxlen: length of @ctx
1629 *
1630 * Compute a context for a dentry as the inode is not yet available since NFSv4
1631 * has no label backed by an EA anyway.  It is important to note that
1632 * @xattr_name does not need to be free'd by the caller, it is a static string.
1633 *
1634 * Return: Returns 0 on success, negative values on failure.
1635 */
1636int security_dentry_init_security(struct dentry *dentry, int mode,
1637				  const struct qstr *name,
1638				  const char **xattr_name, void **ctx,
1639				  u32 *ctxlen)
1640{
1641	struct security_hook_list *hp;
1642	int rc;
1643
1644	/*
1645	 * Only one module will provide a security context.
1646	 */
1647	hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security,
1648			     list) {
1649		rc = hp->hook.dentry_init_security(dentry, mode, name,
1650						   xattr_name, ctx, ctxlen);
1651		if (rc != LSM_RET_DEFAULT(dentry_init_security))
1652			return rc;
1653	}
1654	return LSM_RET_DEFAULT(dentry_init_security);
1655}
1656EXPORT_SYMBOL(security_dentry_init_security);
1657
1658/**
1659 * security_dentry_create_files_as() - Perform dentry initialization
1660 * @dentry: the dentry to initialize
1661 * @mode: mode used to determine resource type
1662 * @name: name of the last path component
1663 * @old: creds to use for LSM context calculations
1664 * @new: creds to modify
1665 *
1666 * Compute a context for a dentry as the inode is not yet available and set
1667 * that context in passed in creds so that new files are created using that
1668 * context. Context is calculated using the passed in creds and not the creds
1669 * of the caller.
1670 *
1671 * Return: Returns 0 on success, error on failure.
1672 */
1673int security_dentry_create_files_as(struct dentry *dentry, int mode,
1674				    struct qstr *name,
1675				    const struct cred *old, struct cred *new)
1676{
1677	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1678			     name, old, new);
1679}
1680EXPORT_SYMBOL(security_dentry_create_files_as);
1681
1682/**
1683 * security_inode_init_security() - Initialize an inode's LSM context
1684 * @inode: the inode
1685 * @dir: parent directory
1686 * @qstr: last component of the pathname
1687 * @initxattrs: callback function to write xattrs
1688 * @fs_data: filesystem specific data
1689 *
1690 * Obtain the security attribute name suffix and value to set on a newly
1691 * created inode and set up the incore security field for the new inode.  This
1692 * hook is called by the fs code as part of the inode creation transaction and
1693 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1694 * hooks called by the VFS.
1695 *
1696 * The hook function is expected to populate the xattrs array, by calling
1697 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1698 * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1699 * slot, the hook function should set ->name to the attribute name suffix
1700 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1701 * to the attribute value, to set ->value_len to the length of the value.  If
1702 * the security module does not use security attributes or does not wish to put
1703 * a security attribute on this particular inode, then it should return
1704 * -EOPNOTSUPP to skip this processing.
1705 *
1706 * Return: Returns 0 if the LSM successfully initialized all of the inode
1707 *         security attributes that are required, negative values otherwise.
1708 */
1709int security_inode_init_security(struct inode *inode, struct inode *dir,
1710				 const struct qstr *qstr,
1711				 const initxattrs initxattrs, void *fs_data)
1712{
1713	struct security_hook_list *hp;
1714	struct xattr *new_xattrs = NULL;
1715	int ret = -EOPNOTSUPP, xattr_count = 0;
1716
1717	if (unlikely(IS_PRIVATE(inode)))
1718		return 0;
1719
1720	if (!blob_sizes.lbs_xattr_count)
1721		return 0;
1722
1723	if (initxattrs) {
1724		/* Allocate +1 for EVM and +1 as terminator. */
1725		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 2,
1726				     sizeof(*new_xattrs), GFP_NOFS);
1727		if (!new_xattrs)
1728			return -ENOMEM;
1729	}
1730
1731	hlist_for_each_entry(hp, &security_hook_heads.inode_init_security,
1732			     list) {
1733		ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1734						  &xattr_count);
1735		if (ret && ret != -EOPNOTSUPP)
1736			goto out;
1737		/*
1738		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1739		 * means that the LSM is not willing to provide an xattr, not
1740		 * that it wants to signal an error. Thus, continue to invoke
1741		 * the remaining LSMs.
1742		 */
1743	}
1744
1745	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1746	if (!xattr_count)
1747		goto out;
1748
1749	ret = evm_inode_init_security(inode, dir, qstr, new_xattrs,
1750				      &xattr_count);
1751	if (ret)
1752		goto out;
1753	ret = initxattrs(inode, new_xattrs, fs_data);
1754out:
1755	for (; xattr_count > 0; xattr_count--)
1756		kfree(new_xattrs[xattr_count - 1].value);
1757	kfree(new_xattrs);
1758	return (ret == -EOPNOTSUPP) ? 0 : ret;
1759}
1760EXPORT_SYMBOL(security_inode_init_security);
1761
1762/**
1763 * security_inode_init_security_anon() - Initialize an anonymous inode
1764 * @inode: the inode
1765 * @name: the anonymous inode class
1766 * @context_inode: an optional related inode
1767 *
1768 * Set up the incore security field for the new anonymous inode and return
1769 * whether the inode creation is permitted by the security module or not.
1770 *
1771 * Return: Returns 0 on success, -EACCES if the security module denies the
1772 * creation of this inode, or another -errno upon other errors.
1773 */
1774int security_inode_init_security_anon(struct inode *inode,
1775				      const struct qstr *name,
1776				      const struct inode *context_inode)
1777{
1778	return call_int_hook(inode_init_security_anon, 0, inode, name,
1779			     context_inode);
1780}
1781
1782#ifdef CONFIG_SECURITY_PATH
1783/**
1784 * security_path_mknod() - Check if creating a special file is allowed
1785 * @dir: parent directory
1786 * @dentry: new file
1787 * @mode: new file mode
1788 * @dev: device number
1789 *
1790 * Check permissions when creating a file. Note that this hook is called even
1791 * if mknod operation is being done for a regular file.
1792 *
1793 * Return: Returns 0 if permission is granted.
1794 */
1795int security_path_mknod(const struct path *dir, struct dentry *dentry,
1796			umode_t mode, unsigned int dev)
1797{
1798	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1799		return 0;
1800	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1801}
1802EXPORT_SYMBOL(security_path_mknod);
1803
1804/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805 * security_path_mkdir() - Check if creating a new directory is allowed
1806 * @dir: parent directory
1807 * @dentry: new directory
1808 * @mode: new directory mode
1809 *
1810 * Check permissions to create a new directory in the existing directory.
1811 *
1812 * Return: Returns 0 if permission is granted.
1813 */
1814int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1815			umode_t mode)
1816{
1817	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1818		return 0;
1819	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1820}
1821EXPORT_SYMBOL(security_path_mkdir);
1822
1823/**
1824 * security_path_rmdir() - Check if removing a directory is allowed
1825 * @dir: parent directory
1826 * @dentry: directory to remove
1827 *
1828 * Check the permission to remove a directory.
1829 *
1830 * Return: Returns 0 if permission is granted.
1831 */
1832int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1833{
1834	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1835		return 0;
1836	return call_int_hook(path_rmdir, 0, dir, dentry);
1837}
1838
1839/**
1840 * security_path_unlink() - Check if removing a hard link is allowed
1841 * @dir: parent directory
1842 * @dentry: file
1843 *
1844 * Check the permission to remove a hard link to a file.
1845 *
1846 * Return: Returns 0 if permission is granted.
1847 */
1848int security_path_unlink(const struct path *dir, struct dentry *dentry)
1849{
1850	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1851		return 0;
1852	return call_int_hook(path_unlink, 0, dir, dentry);
1853}
1854EXPORT_SYMBOL(security_path_unlink);
1855
1856/**
1857 * security_path_symlink() - Check if creating a symbolic link is allowed
1858 * @dir: parent directory
1859 * @dentry: symbolic link
1860 * @old_name: file pathname
1861 *
1862 * Check the permission to create a symbolic link to a file.
1863 *
1864 * Return: Returns 0 if permission is granted.
1865 */
1866int security_path_symlink(const struct path *dir, struct dentry *dentry,
1867			  const char *old_name)
1868{
1869	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1870		return 0;
1871	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1872}
1873
1874/**
1875 * security_path_link - Check if creating a hard link is allowed
1876 * @old_dentry: existing file
1877 * @new_dir: new parent directory
1878 * @new_dentry: new link
1879 *
1880 * Check permission before creating a new hard link to a file.
1881 *
1882 * Return: Returns 0 if permission is granted.
1883 */
1884int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1885		       struct dentry *new_dentry)
1886{
1887	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1888		return 0;
1889	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1890}
1891
1892/**
1893 * security_path_rename() - Check if renaming a file is allowed
1894 * @old_dir: parent directory of the old file
1895 * @old_dentry: the old file
1896 * @new_dir: parent directory of the new file
1897 * @new_dentry: the new file
1898 * @flags: flags
1899 *
1900 * Check for permission to rename a file or directory.
1901 *
1902 * Return: Returns 0 if permission is granted.
1903 */
1904int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1905			 const struct path *new_dir, struct dentry *new_dentry,
1906			 unsigned int flags)
1907{
1908	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1909		     (d_is_positive(new_dentry) &&
1910		      IS_PRIVATE(d_backing_inode(new_dentry)))))
1911		return 0;
1912
1913	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1914			     new_dentry, flags);
1915}
1916EXPORT_SYMBOL(security_path_rename);
1917
1918/**
1919 * security_path_truncate() - Check if truncating a file is allowed
1920 * @path: file
1921 *
1922 * Check permission before truncating the file indicated by path.  Note that
1923 * truncation permissions may also be checked based on already opened files,
1924 * using the security_file_truncate() hook.
1925 *
1926 * Return: Returns 0 if permission is granted.
1927 */
1928int security_path_truncate(const struct path *path)
1929{
1930	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1931		return 0;
1932	return call_int_hook(path_truncate, 0, path);
1933}
1934
1935/**
1936 * security_path_chmod() - Check if changing the file's mode is allowed
1937 * @path: file
1938 * @mode: new mode
1939 *
1940 * Check for permission to change a mode of the file @path. The new mode is
1941 * specified in @mode which is a bitmask of constants from
1942 * <include/uapi/linux/stat.h>.
1943 *
1944 * Return: Returns 0 if permission is granted.
1945 */
1946int security_path_chmod(const struct path *path, umode_t mode)
1947{
1948	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1949		return 0;
1950	return call_int_hook(path_chmod, 0, path, mode);
1951}
1952
1953/**
1954 * security_path_chown() - Check if changing the file's owner/group is allowed
1955 * @path: file
1956 * @uid: file owner
1957 * @gid: file group
1958 *
1959 * Check for permission to change owner/group of a file or directory.
1960 *
1961 * Return: Returns 0 if permission is granted.
1962 */
1963int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1964{
1965	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1966		return 0;
1967	return call_int_hook(path_chown, 0, path, uid, gid);
1968}
1969
1970/**
1971 * security_path_chroot() - Check if changing the root directory is allowed
1972 * @path: directory
1973 *
1974 * Check for permission to change root directory.
1975 *
1976 * Return: Returns 0 if permission is granted.
1977 */
1978int security_path_chroot(const struct path *path)
1979{
1980	return call_int_hook(path_chroot, 0, path);
1981}
1982#endif /* CONFIG_SECURITY_PATH */
1983
1984/**
1985 * security_inode_create() - Check if creating a file is allowed
1986 * @dir: the parent directory
1987 * @dentry: the file being created
1988 * @mode: requested file mode
1989 *
1990 * Check permission to create a regular file.
1991 *
1992 * Return: Returns 0 if permission is granted.
1993 */
1994int security_inode_create(struct inode *dir, struct dentry *dentry,
1995			  umode_t mode)
1996{
1997	if (unlikely(IS_PRIVATE(dir)))
1998		return 0;
1999	return call_int_hook(inode_create, 0, dir, dentry, mode);
2000}
2001EXPORT_SYMBOL_GPL(security_inode_create);
2002
2003/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2004 * security_inode_link() - Check if creating a hard link is allowed
2005 * @old_dentry: existing file
2006 * @dir: new parent directory
2007 * @new_dentry: new link
2008 *
2009 * Check permission before creating a new hard link to a file.
2010 *
2011 * Return: Returns 0 if permission is granted.
2012 */
2013int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2014			struct dentry *new_dentry)
2015{
2016	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2017		return 0;
2018	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
2019}
2020
2021/**
2022 * security_inode_unlink() - Check if removing a hard link is allowed
2023 * @dir: parent directory
2024 * @dentry: file
2025 *
2026 * Check the permission to remove a hard link to a file.
2027 *
2028 * Return: Returns 0 if permission is granted.
2029 */
2030int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2031{
2032	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2033		return 0;
2034	return call_int_hook(inode_unlink, 0, dir, dentry);
2035}
2036
2037/**
2038 * security_inode_symlink() - Check if creating a symbolic link is allowed
2039 * @dir: parent directory
2040 * @dentry: symbolic link
2041 * @old_name: existing filename
2042 *
2043 * Check the permission to create a symbolic link to a file.
2044 *
2045 * Return: Returns 0 if permission is granted.
2046 */
2047int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2048			   const char *old_name)
2049{
2050	if (unlikely(IS_PRIVATE(dir)))
2051		return 0;
2052	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
2053}
2054
2055/**
2056 * security_inode_mkdir() - Check if creation a new director is allowed
2057 * @dir: parent directory
2058 * @dentry: new directory
2059 * @mode: new directory mode
2060 *
2061 * Check permissions to create a new directory in the existing directory
2062 * associated with inode structure @dir.
2063 *
2064 * Return: Returns 0 if permission is granted.
2065 */
2066int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2067{
2068	if (unlikely(IS_PRIVATE(dir)))
2069		return 0;
2070	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
2071}
2072EXPORT_SYMBOL_GPL(security_inode_mkdir);
2073
2074/**
2075 * security_inode_rmdir() - Check if removing a directory is allowed
2076 * @dir: parent directory
2077 * @dentry: directory to be removed
2078 *
2079 * Check the permission to remove a directory.
2080 *
2081 * Return: Returns 0 if permission is granted.
2082 */
2083int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2084{
2085	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2086		return 0;
2087	return call_int_hook(inode_rmdir, 0, dir, dentry);
2088}
2089
2090/**
2091 * security_inode_mknod() - Check if creating a special file is allowed
2092 * @dir: parent directory
2093 * @dentry: new file
2094 * @mode: new file mode
2095 * @dev: device number
2096 *
2097 * Check permissions when creating a special file (or a socket or a fifo file
2098 * created via the mknod system call).  Note that if mknod operation is being
2099 * done for a regular file, then the create hook will be called and not this
2100 * hook.
2101 *
2102 * Return: Returns 0 if permission is granted.
2103 */
2104int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2105			 umode_t mode, dev_t dev)
2106{
2107	if (unlikely(IS_PRIVATE(dir)))
2108		return 0;
2109	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
2110}
2111
2112/**
2113 * security_inode_rename() - Check if renaming a file is allowed
2114 * @old_dir: parent directory of the old file
2115 * @old_dentry: the old file
2116 * @new_dir: parent directory of the new file
2117 * @new_dentry: the new file
2118 * @flags: flags
2119 *
2120 * Check for permission to rename a file or directory.
2121 *
2122 * Return: Returns 0 if permission is granted.
2123 */
2124int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2125			  struct inode *new_dir, struct dentry *new_dentry,
2126			  unsigned int flags)
2127{
2128	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2129		     (d_is_positive(new_dentry) &&
2130		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2131		return 0;
2132
2133	if (flags & RENAME_EXCHANGE) {
2134		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
2135					old_dir, old_dentry);
2136		if (err)
2137			return err;
2138	}
2139
2140	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
2141			     new_dir, new_dentry);
2142}
2143
2144/**
2145 * security_inode_readlink() - Check if reading a symbolic link is allowed
2146 * @dentry: link
2147 *
2148 * Check the permission to read the symbolic link.
2149 *
2150 * Return: Returns 0 if permission is granted.
2151 */
2152int security_inode_readlink(struct dentry *dentry)
2153{
2154	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2155		return 0;
2156	return call_int_hook(inode_readlink, 0, dentry);
2157}
2158
2159/**
2160 * security_inode_follow_link() - Check if following a symbolic link is allowed
2161 * @dentry: link dentry
2162 * @inode: link inode
2163 * @rcu: true if in RCU-walk mode
2164 *
2165 * Check permission to follow a symbolic link when looking up a pathname.  If
2166 * @rcu is true, @inode is not stable.
2167 *
2168 * Return: Returns 0 if permission is granted.
2169 */
2170int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2171			       bool rcu)
2172{
2173	if (unlikely(IS_PRIVATE(inode)))
2174		return 0;
2175	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
2176}
2177
2178/**
2179 * security_inode_permission() - Check if accessing an inode is allowed
2180 * @inode: inode
2181 * @mask: access mask
2182 *
2183 * Check permission before accessing an inode.  This hook is called by the
2184 * existing Linux permission function, so a security module can use it to
2185 * provide additional checking for existing Linux permission checks.  Notice
2186 * that this hook is called when a file is opened (as well as many other
2187 * operations), whereas the file_security_ops permission hook is called when
2188 * the actual read/write operations are performed.
2189 *
2190 * Return: Returns 0 if permission is granted.
2191 */
2192int security_inode_permission(struct inode *inode, int mask)
2193{
2194	if (unlikely(IS_PRIVATE(inode)))
2195		return 0;
2196	return call_int_hook(inode_permission, 0, inode, mask);
2197}
2198
2199/**
2200 * security_inode_setattr() - Check if setting file attributes is allowed
2201 * @idmap: idmap of the mount
2202 * @dentry: file
2203 * @attr: new attributes
2204 *
2205 * Check permission before setting file attributes.  Note that the kernel call
2206 * to notify_change is performed from several locations, whenever file
2207 * attributes change (such as when a file is truncated, chown/chmod operations,
2208 * transferring disk quotas, etc).
2209 *
2210 * Return: Returns 0 if permission is granted.
2211 */
2212int security_inode_setattr(struct mnt_idmap *idmap,
2213			   struct dentry *dentry, struct iattr *attr)
2214{
2215	int ret;
2216
2217	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2218		return 0;
2219	ret = call_int_hook(inode_setattr, 0, dentry, attr);
2220	if (ret)
2221		return ret;
2222	return evm_inode_setattr(idmap, dentry, attr);
2223}
2224EXPORT_SYMBOL_GPL(security_inode_setattr);
2225
2226/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2227 * security_inode_getattr() - Check if getting file attributes is allowed
2228 * @path: file
2229 *
2230 * Check permission before obtaining file attributes.
2231 *
2232 * Return: Returns 0 if permission is granted.
2233 */
2234int security_inode_getattr(const struct path *path)
2235{
2236	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2237		return 0;
2238	return call_int_hook(inode_getattr, 0, path);
2239}
2240
2241/**
2242 * security_inode_setxattr() - Check if setting file xattrs is allowed
2243 * @idmap: idmap of the mount
2244 * @dentry: file
2245 * @name: xattr name
2246 * @value: xattr value
2247 * @size: size of xattr value
2248 * @flags: flags
2249 *
2250 * Check permission before setting the extended attributes.
 
 
 
 
 
 
 
 
 
 
 
 
 
2251 *
2252 * Return: Returns 0 if permission is granted.
2253 */
2254int security_inode_setxattr(struct mnt_idmap *idmap,
2255			    struct dentry *dentry, const char *name,
2256			    const void *value, size_t size, int flags)
2257{
2258	int ret;
2259
2260	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2261		return 0;
2262	/*
2263	 * SELinux and Smack integrate the cap call,
2264	 * so assume that all LSMs supplying this call do so.
2265	 */
2266	ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value,
2267			    size, flags);
2268
2269	if (ret == 1)
2270		ret = cap_inode_setxattr(dentry, name, value, size, flags);
2271	if (ret)
2272		return ret;
2273	ret = ima_inode_setxattr(dentry, name, value, size);
2274	if (ret)
2275		return ret;
2276	return evm_inode_setxattr(idmap, dentry, name, value, size);
 
2277}
2278
2279/**
2280 * security_inode_set_acl() - Check if setting posix acls is allowed
2281 * @idmap: idmap of the mount
2282 * @dentry: file
2283 * @acl_name: acl name
2284 * @kacl: acl struct
2285 *
2286 * Check permission before setting posix acls, the posix acls in @kacl are
2287 * identified by @acl_name.
2288 *
2289 * Return: Returns 0 if permission is granted.
2290 */
2291int security_inode_set_acl(struct mnt_idmap *idmap,
2292			   struct dentry *dentry, const char *acl_name,
2293			   struct posix_acl *kacl)
2294{
2295	int ret;
 
 
 
2296
 
 
 
 
 
 
 
 
 
 
 
 
2297	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2298		return 0;
2299	ret = call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name,
2300			    kacl);
2301	if (ret)
2302		return ret;
2303	ret = ima_inode_set_acl(idmap, dentry, acl_name, kacl);
2304	if (ret)
2305		return ret;
2306	return evm_inode_set_acl(idmap, dentry, acl_name, kacl);
2307}
2308
2309/**
2310 * security_inode_get_acl() - Check if reading posix acls is allowed
2311 * @idmap: idmap of the mount
2312 * @dentry: file
2313 * @acl_name: acl name
2314 *
2315 * Check permission before getting osix acls, the posix acls are identified by
2316 * @acl_name.
2317 *
2318 * Return: Returns 0 if permission is granted.
2319 */
2320int security_inode_get_acl(struct mnt_idmap *idmap,
2321			   struct dentry *dentry, const char *acl_name)
2322{
2323	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2324		return 0;
2325	return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name);
2326}
2327
2328/**
2329 * security_inode_remove_acl() - Check if removing a posix acl is allowed
2330 * @idmap: idmap of the mount
2331 * @dentry: file
2332 * @acl_name: acl name
2333 *
2334 * Check permission before removing posix acls, the posix acls are identified
2335 * by @acl_name.
2336 *
2337 * Return: Returns 0 if permission is granted.
2338 */
2339int security_inode_remove_acl(struct mnt_idmap *idmap,
2340			      struct dentry *dentry, const char *acl_name)
2341{
2342	int ret;
 
 
 
2343
 
 
 
 
 
 
 
 
 
 
 
 
2344	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2345		return 0;
2346	ret = call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name);
2347	if (ret)
2348		return ret;
2349	ret = ima_inode_remove_acl(idmap, dentry, acl_name);
2350	if (ret)
2351		return ret;
2352	return evm_inode_remove_acl(idmap, dentry, acl_name);
2353}
2354
2355/**
2356 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2357 * @dentry: file
2358 * @name: xattr name
2359 * @value: xattr value
2360 * @size: xattr value size
2361 * @flags: flags
2362 *
2363 * Update inode security field after successful setxattr operation.
2364 */
2365void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2366				  const void *value, size_t size, int flags)
2367{
2368	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2369		return;
2370	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2371	evm_inode_post_setxattr(dentry, name, value, size);
2372}
2373
2374/**
2375 * security_inode_getxattr() - Check if xattr access is allowed
2376 * @dentry: file
2377 * @name: xattr name
2378 *
2379 * Check permission before obtaining the extended attributes identified by
2380 * @name for @dentry.
2381 *
2382 * Return: Returns 0 if permission is granted.
2383 */
2384int security_inode_getxattr(struct dentry *dentry, const char *name)
2385{
2386	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2387		return 0;
2388	return call_int_hook(inode_getxattr, 0, dentry, name);
2389}
2390
2391/**
2392 * security_inode_listxattr() - Check if listing xattrs is allowed
2393 * @dentry: file
2394 *
2395 * Check permission before obtaining the list of extended attribute names for
2396 * @dentry.
2397 *
2398 * Return: Returns 0 if permission is granted.
2399 */
2400int security_inode_listxattr(struct dentry *dentry)
2401{
2402	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2403		return 0;
2404	return call_int_hook(inode_listxattr, 0, dentry);
2405}
2406
2407/**
2408 * security_inode_removexattr() - Check if removing an xattr is allowed
2409 * @idmap: idmap of the mount
2410 * @dentry: file
2411 * @name: xattr name
2412 *
2413 * Check permission before removing the extended attribute identified by @name
2414 * for @dentry.
 
 
 
 
 
 
 
 
 
 
 
 
2415 *
2416 * Return: Returns 0 if permission is granted.
2417 */
2418int security_inode_removexattr(struct mnt_idmap *idmap,
2419			       struct dentry *dentry, const char *name)
2420{
2421	int ret;
2422
2423	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2424		return 0;
2425	/*
2426	 * SELinux and Smack integrate the cap call,
2427	 * so assume that all LSMs supplying this call do so.
2428	 */
2429	ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name);
2430	if (ret == 1)
2431		ret = cap_inode_removexattr(idmap, dentry, name);
2432	if (ret)
2433		return ret;
2434	ret = ima_inode_removexattr(dentry, name);
2435	if (ret)
2436		return ret;
2437	return evm_inode_removexattr(idmap, dentry, name);
 
 
 
 
 
 
 
 
 
 
2438}
2439
2440/**
2441 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2442 * @dentry: associated dentry
2443 *
2444 * Called when an inode has been changed to determine if
2445 * security_inode_killpriv() should be called.
2446 *
2447 * Return: Return <0 on error to abort the inode change operation, return 0 if
2448 *         security_inode_killpriv() does not need to be called, return >0 if
2449 *         security_inode_killpriv() does need to be called.
2450 */
2451int security_inode_need_killpriv(struct dentry *dentry)
2452{
2453	return call_int_hook(inode_need_killpriv, 0, dentry);
2454}
2455
2456/**
2457 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2458 * @idmap: idmap of the mount
2459 * @dentry: associated dentry
2460 *
2461 * The @dentry's setuid bit is being removed.  Remove similar security labels.
2462 * Called with the dentry->d_inode->i_mutex held.
2463 *
2464 * Return: Return 0 on success.  If error is returned, then the operation
2465 *         causing setuid bit removal is failed.
2466 */
2467int security_inode_killpriv(struct mnt_idmap *idmap,
2468			    struct dentry *dentry)
2469{
2470	return call_int_hook(inode_killpriv, 0, idmap, dentry);
2471}
2472
2473/**
2474 * security_inode_getsecurity() - Get the xattr security label of an inode
2475 * @idmap: idmap of the mount
2476 * @inode: inode
2477 * @name: xattr name
2478 * @buffer: security label buffer
2479 * @alloc: allocation flag
2480 *
2481 * Retrieve a copy of the extended attribute representation of the security
2482 * label associated with @name for @inode via @buffer.  Note that @name is the
2483 * remainder of the attribute name after the security prefix has been removed.
2484 * @alloc is used to specify if the call should return a value via the buffer
2485 * or just the value length.
2486 *
2487 * Return: Returns size of buffer on success.
2488 */
2489int security_inode_getsecurity(struct mnt_idmap *idmap,
2490			       struct inode *inode, const char *name,
2491			       void **buffer, bool alloc)
2492{
2493	struct security_hook_list *hp;
2494	int rc;
2495
2496	if (unlikely(IS_PRIVATE(inode)))
2497		return LSM_RET_DEFAULT(inode_getsecurity);
2498	/*
2499	 * Only one module will provide an attribute with a given name.
2500	 */
2501	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
2502		rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer,
2503						alloc);
2504		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
2505			return rc;
2506	}
2507	return LSM_RET_DEFAULT(inode_getsecurity);
2508}
2509
2510/**
2511 * security_inode_setsecurity() - Set the xattr security label of an inode
2512 * @inode: inode
2513 * @name: xattr name
2514 * @value: security label
2515 * @size: length of security label
2516 * @flags: flags
2517 *
2518 * Set the security label associated with @name for @inode from the extended
2519 * attribute value @value.  @size indicates the size of the @value in bytes.
2520 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2521 * remainder of the attribute name after the security. prefix has been removed.
2522 *
2523 * Return: Returns 0 on success.
2524 */
2525int security_inode_setsecurity(struct inode *inode, const char *name,
2526			       const void *value, size_t size, int flags)
2527{
2528	struct security_hook_list *hp;
2529	int rc;
2530
2531	if (unlikely(IS_PRIVATE(inode)))
2532		return LSM_RET_DEFAULT(inode_setsecurity);
2533	/*
2534	 * Only one module will provide an attribute with a given name.
2535	 */
2536	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
2537		rc = hp->hook.inode_setsecurity(inode, name, value, size,
2538						flags);
2539		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
2540			return rc;
2541	}
2542	return LSM_RET_DEFAULT(inode_setsecurity);
2543}
2544
2545/**
2546 * security_inode_listsecurity() - List the xattr security label names
2547 * @inode: inode
2548 * @buffer: buffer
2549 * @buffer_size: size of buffer
2550 *
2551 * Copy the extended attribute names for the security labels associated with
2552 * @inode into @buffer.  The maximum size of @buffer is specified by
2553 * @buffer_size.  @buffer may be NULL to request the size of the buffer
2554 * required.
2555 *
2556 * Return: Returns number of bytes used/required on success.
2557 */
2558int security_inode_listsecurity(struct inode *inode,
2559				char *buffer, size_t buffer_size)
2560{
2561	if (unlikely(IS_PRIVATE(inode)))
2562		return 0;
2563	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
2564}
2565EXPORT_SYMBOL(security_inode_listsecurity);
2566
2567/**
2568 * security_inode_getsecid() - Get an inode's secid
2569 * @inode: inode
2570 * @secid: secid to return
2571 *
2572 * Get the secid associated with the node.  In case of failure, @secid will be
2573 * set to zero.
2574 */
2575void security_inode_getsecid(struct inode *inode, u32 *secid)
2576{
2577	call_void_hook(inode_getsecid, inode, secid);
2578}
2579
2580/**
2581 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2582 * @src: union dentry of copy-up file
2583 * @new: newly created creds
2584 *
2585 * A file is about to be copied up from lower layer to upper layer of overlay
2586 * filesystem. Security module can prepare a set of new creds and modify as
2587 * need be and return new creds. Caller will switch to new creds temporarily to
2588 * create new file and release newly allocated creds.
2589 *
2590 * Return: Returns 0 on success or a negative error code on error.
2591 */
2592int security_inode_copy_up(struct dentry *src, struct cred **new)
2593{
2594	return call_int_hook(inode_copy_up, 0, src, new);
2595}
2596EXPORT_SYMBOL(security_inode_copy_up);
2597
2598/**
2599 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
 
2600 * @name: xattr name
2601 *
2602 * Filter the xattrs being copied up when a unioned file is copied up from a
2603 * lower layer to the union/overlay layer.   The caller is responsible for
2604 * reading and writing the xattrs, this hook is merely a filter.
2605 *
2606 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP
2607 *         if the security module does not know about attribute, or a negative
2608 *         error code to abort the copy up.
2609 */
2610int security_inode_copy_up_xattr(const char *name)
2611{
2612	struct security_hook_list *hp;
2613	int rc;
2614
2615	/*
2616	 * The implementation can return 0 (accept the xattr), 1 (discard the
2617	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
2618	 * any other error code in case of an error.
2619	 */
2620	hlist_for_each_entry(hp,
2621			     &security_hook_heads.inode_copy_up_xattr, list) {
2622		rc = hp->hook.inode_copy_up_xattr(name);
2623		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2624			return rc;
2625	}
2626
2627	return evm_inode_copy_up_xattr(name);
2628}
2629EXPORT_SYMBOL(security_inode_copy_up_xattr);
2630
2631/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2632 * security_kernfs_init_security() - Init LSM context for a kernfs node
2633 * @kn_dir: parent kernfs node
2634 * @kn: the kernfs node to initialize
2635 *
2636 * Initialize the security context of a newly created kernfs node based on its
2637 * own and its parent's attributes.
2638 *
2639 * Return: Returns 0 if permission is granted.
2640 */
2641int security_kernfs_init_security(struct kernfs_node *kn_dir,
2642				  struct kernfs_node *kn)
2643{
2644	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
2645}
2646
2647/**
2648 * security_file_permission() - Check file permissions
2649 * @file: file
2650 * @mask: requested permissions
2651 *
2652 * Check file permissions before accessing an open file.  This hook is called
2653 * by various operations that read or write files.  A security module can use
2654 * this hook to perform additional checking on these operations, e.g. to
2655 * revalidate permissions on use to support privilege bracketing or policy
2656 * changes.  Notice that this hook is used when the actual read/write
2657 * operations are performed, whereas the inode_security_ops hook is called when
2658 * a file is opened (as well as many other operations).  Although this hook can
2659 * be used to revalidate permissions for various system call operations that
2660 * read or write files, it does not address the revalidation of permissions for
2661 * memory-mapped files.  Security modules must handle this separately if they
2662 * need such revalidation.
2663 *
2664 * Return: Returns 0 if permission is granted.
2665 */
2666int security_file_permission(struct file *file, int mask)
2667{
2668	return call_int_hook(file_permission, 0, file, mask);
2669}
2670
2671/**
2672 * security_file_alloc() - Allocate and init a file's LSM blob
2673 * @file: the file
2674 *
2675 * Allocate and attach a security structure to the file->f_security field.  The
2676 * security field is initialized to NULL when the structure is first created.
2677 *
2678 * Return: Return 0 if the hook is successful and permission is granted.
2679 */
2680int security_file_alloc(struct file *file)
2681{
2682	int rc = lsm_file_alloc(file);
2683
2684	if (rc)
2685		return rc;
2686	rc = call_int_hook(file_alloc_security, 0, file);
2687	if (unlikely(rc))
2688		security_file_free(file);
2689	return rc;
2690}
2691
2692/**
 
 
 
 
 
 
 
 
 
 
 
2693 * security_file_free() - Free a file's LSM blob
2694 * @file: the file
2695 *
2696 * Deallocate and free any security structures stored in file->f_security.
2697 */
2698void security_file_free(struct file *file)
2699{
2700	void *blob;
2701
2702	call_void_hook(file_free_security, file);
2703
2704	blob = file->f_security;
2705	if (blob) {
2706		file->f_security = NULL;
2707		kmem_cache_free(lsm_file_cache, blob);
2708	}
2709}
2710
2711/**
2712 * security_file_ioctl() - Check if an ioctl is allowed
2713 * @file: associated file
2714 * @cmd: ioctl cmd
2715 * @arg: ioctl arguments
2716 *
2717 * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2718 * represents a user space pointer; in other cases, it may be a simple integer
2719 * value.  When @arg represents a user space pointer, it should never be used
2720 * by the security module.
2721 *
2722 * Return: Returns 0 if permission is granted.
2723 */
2724int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2725{
2726	return call_int_hook(file_ioctl, 0, file, cmd, arg);
2727}
2728EXPORT_SYMBOL_GPL(security_file_ioctl);
2729
2730/**
2731 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2732 * @file: associated file
2733 * @cmd: ioctl cmd
2734 * @arg: ioctl arguments
2735 *
2736 * Compat version of security_file_ioctl() that correctly handles 32-bit
2737 * processes running on 64-bit kernels.
2738 *
2739 * Return: Returns 0 if permission is granted.
2740 */
2741int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2742			       unsigned long arg)
2743{
2744	return call_int_hook(file_ioctl_compat, 0, file, cmd, arg);
2745}
2746EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2747
2748static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2749{
2750	/*
2751	 * Does we have PROT_READ and does the application expect
2752	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2753	 */
2754	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2755		return prot;
2756	if (!(current->personality & READ_IMPLIES_EXEC))
2757		return prot;
2758	/*
2759	 * if that's an anonymous mapping, let it.
2760	 */
2761	if (!file)
2762		return prot | PROT_EXEC;
2763	/*
2764	 * ditto if it's not on noexec mount, except that on !MMU we need
2765	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2766	 */
2767	if (!path_noexec(&file->f_path)) {
2768#ifndef CONFIG_MMU
2769		if (file->f_op->mmap_capabilities) {
2770			unsigned caps = file->f_op->mmap_capabilities(file);
2771			if (!(caps & NOMMU_MAP_EXEC))
2772				return prot;
2773		}
2774#endif
2775		return prot | PROT_EXEC;
2776	}
2777	/* anything on noexec mount won't get PROT_EXEC */
2778	return prot;
2779}
2780
2781/**
2782 * security_mmap_file() - Check if mmap'ing a file is allowed
2783 * @file: file
2784 * @prot: protection applied by the kernel
2785 * @flags: flags
2786 *
2787 * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2788 * mapping anonymous memory.
2789 *
2790 * Return: Returns 0 if permission is granted.
2791 */
2792int security_mmap_file(struct file *file, unsigned long prot,
2793		       unsigned long flags)
2794{
2795	unsigned long prot_adj = mmap_prot(file, prot);
2796	int ret;
2797
2798	ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags);
2799	if (ret)
2800		return ret;
2801	return ima_file_mmap(file, prot, prot_adj, flags);
2802}
2803
2804/**
2805 * security_mmap_addr() - Check if mmap'ing an address is allowed
2806 * @addr: address
2807 *
2808 * Check permissions for a mmap operation at @addr.
2809 *
2810 * Return: Returns 0 if permission is granted.
2811 */
2812int security_mmap_addr(unsigned long addr)
2813{
2814	return call_int_hook(mmap_addr, 0, addr);
2815}
2816
2817/**
2818 * security_file_mprotect() - Check if changing memory protections is allowed
2819 * @vma: memory region
2820 * @reqprot: application requested protection
2821 * @prot: protection applied by the kernel
2822 *
2823 * Check permissions before changing memory access permissions.
2824 *
2825 * Return: Returns 0 if permission is granted.
2826 */
2827int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2828			   unsigned long prot)
2829{
2830	int ret;
2831
2832	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
2833	if (ret)
2834		return ret;
2835	return ima_file_mprotect(vma, prot);
2836}
2837
2838/**
2839 * security_file_lock() - Check if a file lock is allowed
2840 * @file: file
2841 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2842 *
2843 * Check permission before performing file locking operations.  Note the hook
2844 * mediates both flock and fcntl style locks.
2845 *
2846 * Return: Returns 0 if permission is granted.
2847 */
2848int security_file_lock(struct file *file, unsigned int cmd)
2849{
2850	return call_int_hook(file_lock, 0, file, cmd);
2851}
2852
2853/**
2854 * security_file_fcntl() - Check if fcntl() op is allowed
2855 * @file: file
2856 * @cmd: fcntl command
2857 * @arg: command argument
2858 *
2859 * Check permission before allowing the file operation specified by @cmd from
2860 * being performed on the file @file.  Note that @arg sometimes represents a
2861 * user space pointer; in other cases, it may be a simple integer value.  When
2862 * @arg represents a user space pointer, it should never be used by the
2863 * security module.
2864 *
2865 * Return: Returns 0 if permission is granted.
2866 */
2867int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2868{
2869	return call_int_hook(file_fcntl, 0, file, cmd, arg);
2870}
2871
2872/**
2873 * security_file_set_fowner() - Set the file owner info in the LSM blob
2874 * @file: the file
2875 *
2876 * Save owner security information (typically from current->security) in
2877 * file->f_security for later use by the send_sigiotask hook.
2878 *
 
 
2879 * Return: Returns 0 on success.
2880 */
2881void security_file_set_fowner(struct file *file)
2882{
2883	call_void_hook(file_set_fowner, file);
2884}
2885
2886/**
2887 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2888 * @tsk: target task
2889 * @fown: signal sender
2890 * @sig: signal to be sent, SIGIO is sent if 0
2891 *
2892 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
2893 * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
2894 * that the fown_struct, @fown, is never outside the context of a struct file,
2895 * so the file structure (and associated security information) can always be
2896 * obtained: container_of(fown, struct file, f_owner).
2897 *
2898 * Return: Returns 0 if permission is granted.
2899 */
2900int security_file_send_sigiotask(struct task_struct *tsk,
2901				 struct fown_struct *fown, int sig)
2902{
2903	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
2904}
2905
2906/**
2907 * security_file_receive() - Check is receiving a file via IPC is allowed
2908 * @file: file being received
2909 *
2910 * This hook allows security modules to control the ability of a process to
2911 * receive an open file descriptor via socket IPC.
2912 *
2913 * Return: Returns 0 if permission is granted.
2914 */
2915int security_file_receive(struct file *file)
2916{
2917	return call_int_hook(file_receive, 0, file);
2918}
2919
2920/**
2921 * security_file_open() - Save open() time state for late use by the LSM
2922 * @file:
2923 *
2924 * Save open-time permission checking state for later use upon file_permission,
2925 * and recheck access if anything has changed since inode_permission.
2926 *
2927 * Return: Returns 0 if permission is granted.
2928 */
2929int security_file_open(struct file *file)
2930{
2931	int ret;
 
2932
2933	ret = call_int_hook(file_open, 0, file);
2934	if (ret)
2935		return ret;
2936
2937	return fsnotify_open_perm(file);
 
 
 
 
 
 
 
 
 
2938}
 
2939
2940/**
2941 * security_file_truncate() - Check if truncating a file is allowed
2942 * @file: file
2943 *
2944 * Check permission before truncating a file, i.e. using ftruncate.  Note that
2945 * truncation permission may also be checked based on the path, using the
2946 * @path_truncate hook.
2947 *
2948 * Return: Returns 0 if permission is granted.
2949 */
2950int security_file_truncate(struct file *file)
2951{
2952	return call_int_hook(file_truncate, 0, file);
2953}
2954
2955/**
2956 * security_task_alloc() - Allocate a task's LSM blob
2957 * @task: the task
2958 * @clone_flags: flags indicating what is being shared
2959 *
2960 * Handle allocation of task-related resources.
2961 *
2962 * Return: Returns a zero on success, negative values on failure.
2963 */
2964int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
2965{
2966	int rc = lsm_task_alloc(task);
2967
2968	if (rc)
2969		return rc;
2970	rc = call_int_hook(task_alloc, 0, task, clone_flags);
2971	if (unlikely(rc))
2972		security_task_free(task);
2973	return rc;
2974}
2975
2976/**
2977 * security_task_free() - Free a task's LSM blob and related resources
2978 * @task: task
2979 *
2980 * Handle release of task-related resources.  Note that this can be called from
2981 * interrupt context.
2982 */
2983void security_task_free(struct task_struct *task)
2984{
2985	call_void_hook(task_free, task);
2986
2987	kfree(task->security);
2988	task->security = NULL;
2989}
2990
2991/**
2992 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
2993 * @cred: credentials
2994 * @gfp: gfp flags
2995 *
2996 * Only allocate sufficient memory and attach to @cred such that
2997 * cred_transfer() will not get ENOMEM.
2998 *
2999 * Return: Returns 0 on success, negative values on failure.
3000 */
3001int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3002{
3003	int rc = lsm_cred_alloc(cred, gfp);
3004
3005	if (rc)
3006		return rc;
3007
3008	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
3009	if (unlikely(rc))
3010		security_cred_free(cred);
3011	return rc;
3012}
3013
3014/**
3015 * security_cred_free() - Free the cred's LSM blob and associated resources
3016 * @cred: credentials
3017 *
3018 * Deallocate and clear the cred->security field in a set of credentials.
3019 */
3020void security_cred_free(struct cred *cred)
3021{
3022	/*
3023	 * There is a failure case in prepare_creds() that
3024	 * may result in a call here with ->security being NULL.
3025	 */
3026	if (unlikely(cred->security == NULL))
3027		return;
3028
3029	call_void_hook(cred_free, cred);
3030
3031	kfree(cred->security);
3032	cred->security = NULL;
3033}
3034
3035/**
3036 * security_prepare_creds() - Prepare a new set of credentials
3037 * @new: new credentials
3038 * @old: original credentials
3039 * @gfp: gfp flags
3040 *
3041 * Prepare a new set of credentials by copying the data from the old set.
3042 *
3043 * Return: Returns 0 on success, negative values on failure.
3044 */
3045int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3046{
3047	int rc = lsm_cred_alloc(new, gfp);
3048
3049	if (rc)
3050		return rc;
3051
3052	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
3053	if (unlikely(rc))
3054		security_cred_free(new);
3055	return rc;
3056}
3057
3058/**
3059 * security_transfer_creds() - Transfer creds
3060 * @new: target credentials
3061 * @old: original credentials
3062 *
3063 * Transfer data from original creds to new creds.
3064 */
3065void security_transfer_creds(struct cred *new, const struct cred *old)
3066{
3067	call_void_hook(cred_transfer, new, old);
3068}
3069
3070/**
3071 * security_cred_getsecid() - Get the secid from a set of credentials
3072 * @c: credentials
3073 * @secid: secid value
3074 *
3075 * Retrieve the security identifier of the cred structure @c.  In case of
3076 * failure, @secid will be set to zero.
3077 */
3078void security_cred_getsecid(const struct cred *c, u32 *secid)
3079{
3080	*secid = 0;
3081	call_void_hook(cred_getsecid, c, secid);
3082}
3083EXPORT_SYMBOL(security_cred_getsecid);
3084
3085/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3086 * security_kernel_act_as() - Set the kernel credentials to act as secid
3087 * @new: credentials
3088 * @secid: secid
3089 *
3090 * Set the credentials for a kernel service to act as (subjective context).
3091 * The current task must be the one that nominated @secid.
3092 *
3093 * Return: Returns 0 if successful.
3094 */
3095int security_kernel_act_as(struct cred *new, u32 secid)
3096{
3097	return call_int_hook(kernel_act_as, 0, new, secid);
3098}
3099
3100/**
3101 * security_kernel_create_files_as() - Set file creation context using an inode
3102 * @new: target credentials
3103 * @inode: reference inode
3104 *
3105 * Set the file creation context in a set of credentials to be the same as the
3106 * objective context of the specified inode.  The current task must be the one
3107 * that nominated @inode.
3108 *
3109 * Return: Returns 0 if successful.
3110 */
3111int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3112{
3113	return call_int_hook(kernel_create_files_as, 0, new, inode);
3114}
3115
3116/**
3117 * security_kernel_module_request() - Check is loading a module is allowed
3118 * @kmod_name: module name
3119 *
3120 * Ability to trigger the kernel to automatically upcall to userspace for
3121 * userspace to load a kernel module with the given name.
3122 *
3123 * Return: Returns 0 if successful.
3124 */
3125int security_kernel_module_request(char *kmod_name)
3126{
3127	int ret;
3128
3129	ret = call_int_hook(kernel_module_request, 0, kmod_name);
3130	if (ret)
3131		return ret;
3132	return integrity_kernel_module_request(kmod_name);
3133}
3134
3135/**
3136 * security_kernel_read_file() - Read a file specified by userspace
3137 * @file: file
3138 * @id: file identifier
3139 * @contents: trust if security_kernel_post_read_file() will be called
3140 *
3141 * Read a file specified by userspace.
3142 *
3143 * Return: Returns 0 if permission is granted.
3144 */
3145int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3146			      bool contents)
3147{
3148	int ret;
3149
3150	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
3151	if (ret)
3152		return ret;
3153	return ima_read_file(file, id, contents);
3154}
3155EXPORT_SYMBOL_GPL(security_kernel_read_file);
3156
3157/**
3158 * security_kernel_post_read_file() - Read a file specified by userspace
3159 * @file: file
3160 * @buf: file contents
3161 * @size: size of file contents
3162 * @id: file identifier
3163 *
3164 * Read a file specified by userspace.  This must be paired with a prior call
3165 * to security_kernel_read_file() call that indicated this hook would also be
3166 * called, see security_kernel_read_file() for more information.
3167 *
3168 * Return: Returns 0 if permission is granted.
3169 */
3170int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3171				   enum kernel_read_file_id id)
3172{
3173	int ret;
3174
3175	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
3176	if (ret)
3177		return ret;
3178	return ima_post_read_file(file, buf, size, id);
3179}
3180EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3181
3182/**
3183 * security_kernel_load_data() - Load data provided by userspace
3184 * @id: data identifier
3185 * @contents: true if security_kernel_post_load_data() will be called
3186 *
3187 * Load data provided by userspace.
3188 *
3189 * Return: Returns 0 if permission is granted.
3190 */
3191int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3192{
3193	int ret;
3194
3195	ret = call_int_hook(kernel_load_data, 0, id, contents);
3196	if (ret)
3197		return ret;
3198	return ima_load_data(id, contents);
3199}
3200EXPORT_SYMBOL_GPL(security_kernel_load_data);
3201
3202/**
3203 * security_kernel_post_load_data() - Load userspace data from a non-file source
3204 * @buf: data
3205 * @size: size of data
3206 * @id: data identifier
3207 * @description: text description of data, specific to the id value
3208 *
3209 * Load data provided by a non-file source (usually userspace buffer).  This
3210 * must be paired with a prior security_kernel_load_data() call that indicated
3211 * this hook would also be called, see security_kernel_load_data() for more
3212 * information.
3213 *
3214 * Return: Returns 0 if permission is granted.
3215 */
3216int security_kernel_post_load_data(char *buf, loff_t size,
3217				   enum kernel_load_data_id id,
3218				   char *description)
3219{
3220	int ret;
3221
3222	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
3223			    description);
3224	if (ret)
3225		return ret;
3226	return ima_post_load_data(buf, size, id, description);
3227}
3228EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3229
3230/**
3231 * security_task_fix_setuid() - Update LSM with new user id attributes
3232 * @new: updated credentials
3233 * @old: credentials being replaced
3234 * @flags: LSM_SETID_* flag values
3235 *
3236 * Update the module's state after setting one or more of the user identity
3237 * attributes of the current process.  The @flags parameter indicates which of
3238 * the set*uid system calls invoked this hook.  If @new is the set of
3239 * credentials that will be installed.  Modifications should be made to this
3240 * rather than to @current->cred.
3241 *
3242 * Return: Returns 0 on success.
3243 */
3244int security_task_fix_setuid(struct cred *new, const struct cred *old,
3245			     int flags)
3246{
3247	return call_int_hook(task_fix_setuid, 0, new, old, flags);
3248}
3249
3250/**
3251 * security_task_fix_setgid() - Update LSM with new group id attributes
3252 * @new: updated credentials
3253 * @old: credentials being replaced
3254 * @flags: LSM_SETID_* flag value
3255 *
3256 * Update the module's state after setting one or more of the group identity
3257 * attributes of the current process.  The @flags parameter indicates which of
3258 * the set*gid system calls invoked this hook.  @new is the set of credentials
3259 * that will be installed.  Modifications should be made to this rather than to
3260 * @current->cred.
3261 *
3262 * Return: Returns 0 on success.
3263 */
3264int security_task_fix_setgid(struct cred *new, const struct cred *old,
3265			     int flags)
3266{
3267	return call_int_hook(task_fix_setgid, 0, new, old, flags);
3268}
3269
3270/**
3271 * security_task_fix_setgroups() - Update LSM with new supplementary groups
3272 * @new: updated credentials
3273 * @old: credentials being replaced
3274 *
3275 * Update the module's state after setting the supplementary group identity
3276 * attributes of the current process.  @new is the set of credentials that will
3277 * be installed.  Modifications should be made to this rather than to
3278 * @current->cred.
3279 *
3280 * Return: Returns 0 on success.
3281 */
3282int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3283{
3284	return call_int_hook(task_fix_setgroups, 0, new, old);
3285}
3286
3287/**
3288 * security_task_setpgid() - Check if setting the pgid is allowed
3289 * @p: task being modified
3290 * @pgid: new pgid
3291 *
3292 * Check permission before setting the process group identifier of the process
3293 * @p to @pgid.
3294 *
3295 * Return: Returns 0 if permission is granted.
3296 */
3297int security_task_setpgid(struct task_struct *p, pid_t pgid)
3298{
3299	return call_int_hook(task_setpgid, 0, p, pgid);
3300}
3301
3302/**
3303 * security_task_getpgid() - Check if getting the pgid is allowed
3304 * @p: task
3305 *
3306 * Check permission before getting the process group identifier of the process
3307 * @p.
3308 *
3309 * Return: Returns 0 if permission is granted.
3310 */
3311int security_task_getpgid(struct task_struct *p)
3312{
3313	return call_int_hook(task_getpgid, 0, p);
3314}
3315
3316/**
3317 * security_task_getsid() - Check if getting the session id is allowed
3318 * @p: task
3319 *
3320 * Check permission before getting the session identifier of the process @p.
3321 *
3322 * Return: Returns 0 if permission is granted.
3323 */
3324int security_task_getsid(struct task_struct *p)
3325{
3326	return call_int_hook(task_getsid, 0, p);
3327}
3328
3329/**
3330 * security_current_getsecid_subj() - Get the current task's subjective secid
3331 * @secid: secid value
3332 *
3333 * Retrieve the subjective security identifier of the current task and return
3334 * it in @secid.  In case of failure, @secid will be set to zero.
3335 */
3336void security_current_getsecid_subj(u32 *secid)
3337{
3338	*secid = 0;
3339	call_void_hook(current_getsecid_subj, secid);
3340}
3341EXPORT_SYMBOL(security_current_getsecid_subj);
3342
3343/**
3344 * security_task_getsecid_obj() - Get a task's objective secid
3345 * @p: target task
3346 * @secid: secid value
3347 *
3348 * Retrieve the objective security identifier of the task_struct in @p and
3349 * return it in @secid. In case of failure, @secid will be set to zero.
3350 */
3351void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3352{
3353	*secid = 0;
3354	call_void_hook(task_getsecid_obj, p, secid);
3355}
3356EXPORT_SYMBOL(security_task_getsecid_obj);
3357
3358/**
3359 * security_task_setnice() - Check if setting a task's nice value is allowed
3360 * @p: target task
3361 * @nice: nice value
3362 *
3363 * Check permission before setting the nice value of @p to @nice.
3364 *
3365 * Return: Returns 0 if permission is granted.
3366 */
3367int security_task_setnice(struct task_struct *p, int nice)
3368{
3369	return call_int_hook(task_setnice, 0, p, nice);
3370}
3371
3372/**
3373 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3374 * @p: target task
3375 * @ioprio: ioprio value
3376 *
3377 * Check permission before setting the ioprio value of @p to @ioprio.
3378 *
3379 * Return: Returns 0 if permission is granted.
3380 */
3381int security_task_setioprio(struct task_struct *p, int ioprio)
3382{
3383	return call_int_hook(task_setioprio, 0, p, ioprio);
3384}
3385
3386/**
3387 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3388 * @p: task
3389 *
3390 * Check permission before getting the ioprio value of @p.
3391 *
3392 * Return: Returns 0 if permission is granted.
3393 */
3394int security_task_getioprio(struct task_struct *p)
3395{
3396	return call_int_hook(task_getioprio, 0, p);
3397}
3398
3399/**
3400 * security_task_prlimit() - Check if get/setting resources limits is allowed
3401 * @cred: current task credentials
3402 * @tcred: target task credentials
3403 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3404 *
3405 * Check permission before getting and/or setting the resource limits of
3406 * another task.
3407 *
3408 * Return: Returns 0 if permission is granted.
3409 */
3410int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3411			  unsigned int flags)
3412{
3413	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
3414}
3415
3416/**
3417 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3418 * @p: target task's group leader
3419 * @resource: resource whose limit is being set
3420 * @new_rlim: new resource limit
3421 *
3422 * Check permission before setting the resource limits of process @p for
3423 * @resource to @new_rlim.  The old resource limit values can be examined by
3424 * dereferencing (p->signal->rlim + resource).
3425 *
3426 * Return: Returns 0 if permission is granted.
3427 */
3428int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3429			    struct rlimit *new_rlim)
3430{
3431	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
3432}
3433
3434/**
3435 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3436 * @p: target task
3437 *
3438 * Check permission before setting scheduling policy and/or parameters of
3439 * process @p.
3440 *
3441 * Return: Returns 0 if permission is granted.
3442 */
3443int security_task_setscheduler(struct task_struct *p)
3444{
3445	return call_int_hook(task_setscheduler, 0, p);
3446}
3447
3448/**
3449 * security_task_getscheduler() - Check if getting scheduling info is allowed
3450 * @p: target task
3451 *
3452 * Check permission before obtaining scheduling information for process @p.
3453 *
3454 * Return: Returns 0 if permission is granted.
3455 */
3456int security_task_getscheduler(struct task_struct *p)
3457{
3458	return call_int_hook(task_getscheduler, 0, p);
3459}
3460
3461/**
3462 * security_task_movememory() - Check if moving memory is allowed
3463 * @p: task
3464 *
3465 * Check permission before moving memory owned by process @p.
3466 *
3467 * Return: Returns 0 if permission is granted.
3468 */
3469int security_task_movememory(struct task_struct *p)
3470{
3471	return call_int_hook(task_movememory, 0, p);
3472}
3473
3474/**
3475 * security_task_kill() - Check if sending a signal is allowed
3476 * @p: target process
3477 * @info: signal information
3478 * @sig: signal value
3479 * @cred: credentials of the signal sender, NULL if @current
3480 *
3481 * Check permission before sending signal @sig to @p.  @info can be NULL, the
3482 * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3483 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3484 * the kernel and should typically be permitted.  SIGIO signals are handled
3485 * separately by the send_sigiotask hook in file_security_ops.
3486 *
3487 * Return: Returns 0 if permission is granted.
3488 */
3489int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3490		       int sig, const struct cred *cred)
3491{
3492	return call_int_hook(task_kill, 0, p, info, sig, cred);
3493}
3494
3495/**
3496 * security_task_prctl() - Check if a prctl op is allowed
3497 * @option: operation
3498 * @arg2: argument
3499 * @arg3: argument
3500 * @arg4: argument
3501 * @arg5: argument
3502 *
3503 * Check permission before performing a process control operation on the
3504 * current process.
3505 *
3506 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3507 *         to cause prctl() to return immediately with that value.
3508 */
3509int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3510			unsigned long arg4, unsigned long arg5)
3511{
3512	int thisrc;
3513	int rc = LSM_RET_DEFAULT(task_prctl);
3514	struct security_hook_list *hp;
3515
3516	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
3517		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3518		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3519			rc = thisrc;
3520			if (thisrc != 0)
3521				break;
3522		}
3523	}
3524	return rc;
3525}
3526
3527/**
3528 * security_task_to_inode() - Set the security attributes of a task's inode
3529 * @p: task
3530 * @inode: inode
3531 *
3532 * Set the security attributes for an inode based on an associated task's
3533 * security attributes, e.g. for /proc/pid inodes.
3534 */
3535void security_task_to_inode(struct task_struct *p, struct inode *inode)
3536{
3537	call_void_hook(task_to_inode, p, inode);
3538}
3539
3540/**
3541 * security_create_user_ns() - Check if creating a new userns is allowed
3542 * @cred: prepared creds
3543 *
3544 * Check permission prior to creating a new user namespace.
3545 *
3546 * Return: Returns 0 if successful, otherwise < 0 error code.
3547 */
3548int security_create_user_ns(const struct cred *cred)
3549{
3550	return call_int_hook(userns_create, 0, cred);
3551}
3552
3553/**
3554 * security_ipc_permission() - Check if sysv ipc access is allowed
3555 * @ipcp: ipc permission structure
3556 * @flag: requested permissions
3557 *
3558 * Check permissions for access to IPC.
3559 *
3560 * Return: Returns 0 if permission is granted.
3561 */
3562int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3563{
3564	return call_int_hook(ipc_permission, 0, ipcp, flag);
3565}
3566
3567/**
3568 * security_ipc_getsecid() - Get the sysv ipc object's secid
3569 * @ipcp: ipc permission structure
3570 * @secid: secid pointer
3571 *
3572 * Get the secid associated with the ipc object.  In case of failure, @secid
3573 * will be set to zero.
3574 */
3575void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 
3576{
3577	*secid = 0;
3578	call_void_hook(ipc_getsecid, ipcp, secid);
3579}
3580
3581/**
3582 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3583 * @msg: message structure
3584 *
3585 * Allocate and attach a security structure to the msg->security field.  The
3586 * security field is initialized to NULL when the structure is first created.
3587 *
3588 * Return: Return 0 if operation was successful and permission is granted.
3589 */
3590int security_msg_msg_alloc(struct msg_msg *msg)
3591{
3592	int rc = lsm_msg_msg_alloc(msg);
3593
3594	if (unlikely(rc))
3595		return rc;
3596	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
3597	if (unlikely(rc))
3598		security_msg_msg_free(msg);
3599	return rc;
3600}
3601
3602/**
3603 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3604 * @msg: message structure
3605 *
3606 * Deallocate the security structure for this message.
3607 */
3608void security_msg_msg_free(struct msg_msg *msg)
3609{
3610	call_void_hook(msg_msg_free_security, msg);
3611	kfree(msg->security);
3612	msg->security = NULL;
3613}
3614
3615/**
3616 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3617 * @msq: sysv ipc permission structure
3618 *
3619 * Allocate and attach a security structure to @msg. The security field is
3620 * initialized to NULL when the structure is first created.
3621 *
3622 * Return: Returns 0 if operation was successful and permission is granted.
3623 */
3624int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3625{
3626	int rc = lsm_ipc_alloc(msq);
3627
3628	if (unlikely(rc))
3629		return rc;
3630	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
3631	if (unlikely(rc))
3632		security_msg_queue_free(msq);
3633	return rc;
3634}
3635
3636/**
3637 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3638 * @msq: sysv ipc permission structure
3639 *
3640 * Deallocate security field @perm->security for the message queue.
3641 */
3642void security_msg_queue_free(struct kern_ipc_perm *msq)
3643{
3644	call_void_hook(msg_queue_free_security, msq);
3645	kfree(msq->security);
3646	msq->security = NULL;
3647}
3648
3649/**
3650 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3651 * @msq: sysv ipc permission structure
3652 * @msqflg: operation flags
3653 *
3654 * Check permission when a message queue is requested through the msgget system
3655 * call. This hook is only called when returning the message queue identifier
3656 * for an existing message queue, not when a new message queue is created.
3657 *
3658 * Return: Return 0 if permission is granted.
3659 */
3660int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3661{
3662	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
3663}
3664
3665/**
3666 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3667 * @msq: sysv ipc permission structure
3668 * @cmd: operation
3669 *
3670 * Check permission when a message control operation specified by @cmd is to be
3671 * performed on the message queue with permissions.
3672 *
3673 * Return: Returns 0 if permission is granted.
3674 */
3675int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3676{
3677	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
3678}
3679
3680/**
3681 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3682 * @msq: sysv ipc permission structure
3683 * @msg: message
3684 * @msqflg: operation flags
3685 *
3686 * Check permission before a message, @msg, is enqueued on the message queue
3687 * with permissions specified in @msq.
3688 *
3689 * Return: Returns 0 if permission is granted.
3690 */
3691int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3692			      struct msg_msg *msg, int msqflg)
3693{
3694	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
3695}
3696
3697/**
3698 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3699 * @msq: sysv ipc permission structure
3700 * @msg: message
3701 * @target: target task
3702 * @type: type of message requested
3703 * @mode: operation flags
3704 *
3705 * Check permission before a message, @msg, is removed from the message	queue.
3706 * The @target task structure contains a pointer to the process that will be
3707 * receiving the message (not equal to the current process when inline receives
3708 * are being performed).
3709 *
3710 * Return: Returns 0 if permission is granted.
3711 */
3712int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3713			      struct task_struct *target, long type, int mode)
3714{
3715	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
3716}
3717
3718/**
3719 * security_shm_alloc() - Allocate a sysv shm LSM blob
3720 * @shp: sysv ipc permission structure
3721 *
3722 * Allocate and attach a security structure to the @shp security field.  The
3723 * security field is initialized to NULL when the structure is first created.
3724 *
3725 * Return: Returns 0 if operation was successful and permission is granted.
3726 */
3727int security_shm_alloc(struct kern_ipc_perm *shp)
3728{
3729	int rc = lsm_ipc_alloc(shp);
3730
3731	if (unlikely(rc))
3732		return rc;
3733	rc = call_int_hook(shm_alloc_security, 0, shp);
3734	if (unlikely(rc))
3735		security_shm_free(shp);
3736	return rc;
3737}
3738
3739/**
3740 * security_shm_free() - Free a sysv shm LSM blob
3741 * @shp: sysv ipc permission structure
3742 *
3743 * Deallocate the security structure @perm->security for the memory segment.
3744 */
3745void security_shm_free(struct kern_ipc_perm *shp)
3746{
3747	call_void_hook(shm_free_security, shp);
3748	kfree(shp->security);
3749	shp->security = NULL;
3750}
3751
3752/**
3753 * security_shm_associate() - Check if a sysv shm operation is allowed
3754 * @shp: sysv ipc permission structure
3755 * @shmflg: operation flags
3756 *
3757 * Check permission when a shared memory region is requested through the shmget
3758 * system call. This hook is only called when returning the shared memory
3759 * region identifier for an existing region, not when a new shared memory
3760 * region is created.
3761 *
3762 * Return: Returns 0 if permission is granted.
3763 */
3764int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3765{
3766	return call_int_hook(shm_associate, 0, shp, shmflg);
3767}
3768
3769/**
3770 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3771 * @shp: sysv ipc permission structure
3772 * @cmd: operation
3773 *
3774 * Check permission when a shared memory control operation specified by @cmd is
3775 * to be performed on the shared memory region with permissions in @shp.
3776 *
3777 * Return: Return 0 if permission is granted.
3778 */
3779int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3780{
3781	return call_int_hook(shm_shmctl, 0, shp, cmd);
3782}
3783
3784/**
3785 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3786 * @shp: sysv ipc permission structure
3787 * @shmaddr: address of memory region to attach
3788 * @shmflg: operation flags
3789 *
3790 * Check permissions prior to allowing the shmat system call to attach the
3791 * shared memory segment with permissions @shp to the data segment of the
3792 * calling process. The attaching address is specified by @shmaddr.
3793 *
3794 * Return: Returns 0 if permission is granted.
3795 */
3796int security_shm_shmat(struct kern_ipc_perm *shp,
3797		       char __user *shmaddr, int shmflg)
3798{
3799	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
3800}
3801
3802/**
3803 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3804 * @sma: sysv ipc permission structure
3805 *
3806 * Allocate and attach a security structure to the @sma security field. The
3807 * security field is initialized to NULL when the structure is first created.
3808 *
3809 * Return: Returns 0 if operation was successful and permission is granted.
3810 */
3811int security_sem_alloc(struct kern_ipc_perm *sma)
3812{
3813	int rc = lsm_ipc_alloc(sma);
3814
3815	if (unlikely(rc))
3816		return rc;
3817	rc = call_int_hook(sem_alloc_security, 0, sma);
3818	if (unlikely(rc))
3819		security_sem_free(sma);
3820	return rc;
3821}
3822
3823/**
3824 * security_sem_free() - Free a sysv semaphore LSM blob
3825 * @sma: sysv ipc permission structure
3826 *
3827 * Deallocate security structure @sma->security for the semaphore.
3828 */
3829void security_sem_free(struct kern_ipc_perm *sma)
3830{
3831	call_void_hook(sem_free_security, sma);
3832	kfree(sma->security);
3833	sma->security = NULL;
3834}
3835
3836/**
3837 * security_sem_associate() - Check if a sysv semaphore operation is allowed
3838 * @sma: sysv ipc permission structure
3839 * @semflg: operation flags
3840 *
3841 * Check permission when a semaphore is requested through the semget system
3842 * call. This hook is only called when returning the semaphore identifier for
3843 * an existing semaphore, not when a new one must be created.
3844 *
3845 * Return: Returns 0 if permission is granted.
3846 */
3847int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3848{
3849	return call_int_hook(sem_associate, 0, sma, semflg);
3850}
3851
3852/**
3853 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3854 * @sma: sysv ipc permission structure
3855 * @cmd: operation
3856 *
3857 * Check permission when a semaphore operation specified by @cmd is to be
3858 * performed on the semaphore.
3859 *
3860 * Return: Returns 0 if permission is granted.
3861 */
3862int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3863{
3864	return call_int_hook(sem_semctl, 0, sma, cmd);
3865}
3866
3867/**
3868 * security_sem_semop() - Check if a sysv semaphore operation is allowed
3869 * @sma: sysv ipc permission structure
3870 * @sops: operations to perform
3871 * @nsops: number of operations
3872 * @alter: flag indicating changes will be made
3873 *
3874 * Check permissions before performing operations on members of the semaphore
3875 * set. If the @alter flag is nonzero, the semaphore set may be modified.
3876 *
3877 * Return: Returns 0 if permission is granted.
3878 */
3879int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3880		       unsigned nsops, int alter)
3881{
3882	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
3883}
3884
3885/**
3886 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3887 * @dentry: dentry
3888 * @inode: inode
3889 *
3890 * Fill in @inode security information for a @dentry if allowed.
3891 */
3892void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3893{
3894	if (unlikely(inode && IS_PRIVATE(inode)))
3895		return;
3896	call_void_hook(d_instantiate, dentry, inode);
3897}
3898EXPORT_SYMBOL(security_d_instantiate);
3899
3900/*
3901 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3902 */
3903
3904/**
3905 * security_getselfattr - Read an LSM attribute of the current process.
3906 * @attr: which attribute to return
3907 * @uctx: the user-space destination for the information, or NULL
3908 * @size: pointer to the size of space available to receive the data
3909 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
3910 * attributes associated with the LSM identified in the passed @ctx be
3911 * reported.
3912 *
3913 * A NULL value for @uctx can be used to get both the number of attributes
3914 * and the size of the data.
3915 *
3916 * Returns the number of attributes found on success, negative value
3917 * on error. @size is reset to the total size of the data.
3918 * If @size is insufficient to contain the data -E2BIG is returned.
3919 */
3920int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3921			 size_t __user *size, u32 flags)
3922{
3923	struct security_hook_list *hp;
3924	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
3925	u8 __user *base = (u8 __user *)uctx;
3926	size_t total = 0;
3927	size_t entrysize;
3928	size_t left;
3929	bool toobig = false;
3930	bool single = false;
3931	int count = 0;
3932	int rc;
3933
3934	if (attr == LSM_ATTR_UNDEF)
3935		return -EINVAL;
3936	if (size == NULL)
3937		return -EINVAL;
3938	if (get_user(left, size))
3939		return -EFAULT;
3940
3941	if (flags) {
3942		/*
3943		 * Only flag supported is LSM_FLAG_SINGLE
3944		 */
3945		if (flags != LSM_FLAG_SINGLE || !uctx)
3946			return -EINVAL;
3947		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
3948			return -EFAULT;
3949		/*
3950		 * If the LSM ID isn't specified it is an error.
3951		 */
3952		if (lctx.id == LSM_ID_UNDEF)
3953			return -EINVAL;
3954		single = true;
3955	}
3956
3957	/*
3958	 * In the usual case gather all the data from the LSMs.
3959	 * In the single case only get the data from the LSM specified.
3960	 */
3961	hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) {
3962		if (single && lctx.id != hp->lsmid->id)
3963			continue;
3964		entrysize = left;
3965		if (base)
3966			uctx = (struct lsm_ctx __user *)(base + total);
3967		rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags);
3968		if (rc == -EOPNOTSUPP) {
3969			rc = 0;
3970			continue;
3971		}
3972		if (rc == -E2BIG) {
3973			rc = 0;
3974			left = 0;
3975			toobig = true;
3976		} else if (rc < 0)
3977			return rc;
3978		else
3979			left -= entrysize;
3980
3981		total += entrysize;
3982		count += rc;
3983		if (single)
3984			break;
3985	}
3986	if (put_user(total, size))
3987		return -EFAULT;
3988	if (toobig)
3989		return -E2BIG;
3990	if (count == 0)
3991		return LSM_RET_DEFAULT(getselfattr);
3992	return count;
3993}
3994
3995/*
3996 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3997 */
3998
3999/**
4000 * security_setselfattr - Set an LSM attribute on the current process.
4001 * @attr: which attribute to set
4002 * @uctx: the user-space source for the information
4003 * @size: the size of the data
4004 * @flags: reserved for future use, must be 0
4005 *
4006 * Set an LSM attribute for the current process. The LSM, attribute
4007 * and new value are included in @uctx.
4008 *
4009 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4010 * if the user buffer is inaccessible, E2BIG if size is too big, or an
4011 * LSM specific failure.
4012 */
4013int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4014			 size_t size, u32 flags)
4015{
4016	struct security_hook_list *hp;
4017	struct lsm_ctx *lctx;
4018	int rc = LSM_RET_DEFAULT(setselfattr);
4019	u64 required_len;
4020
4021	if (flags)
4022		return -EINVAL;
4023	if (size < sizeof(*lctx))
4024		return -EINVAL;
4025	if (size > PAGE_SIZE)
4026		return -E2BIG;
4027
4028	lctx = memdup_user(uctx, size);
4029	if (IS_ERR(lctx))
4030		return PTR_ERR(lctx);
4031
4032	if (size < lctx->len ||
4033	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4034	    lctx->len < required_len) {
4035		rc = -EINVAL;
4036		goto free_out;
4037	}
4038
4039	hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list)
4040		if ((hp->lsmid->id) == lctx->id) {
4041			rc = hp->hook.setselfattr(attr, lctx, size, flags);
4042			break;
4043		}
4044
4045free_out:
4046	kfree(lctx);
4047	return rc;
4048}
4049
4050/**
4051 * security_getprocattr() - Read an attribute for a task
4052 * @p: the task
4053 * @lsmid: LSM identification
4054 * @name: attribute name
4055 * @value: attribute value
4056 *
4057 * Read attribute @name for task @p and store it into @value if allowed.
4058 *
4059 * Return: Returns the length of @value on success, a negative value otherwise.
4060 */
4061int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4062			 char **value)
4063{
4064	struct security_hook_list *hp;
4065
4066	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
4067		if (lsmid != 0 && lsmid != hp->lsmid->id)
4068			continue;
4069		return hp->hook.getprocattr(p, name, value);
4070	}
4071	return LSM_RET_DEFAULT(getprocattr);
4072}
4073
4074/**
4075 * security_setprocattr() - Set an attribute for a task
4076 * @lsmid: LSM identification
4077 * @name: attribute name
4078 * @value: attribute value
4079 * @size: attribute value size
4080 *
4081 * Write (set) the current task's attribute @name to @value, size @size if
4082 * allowed.
4083 *
4084 * Return: Returns bytes written on success, a negative value otherwise.
4085 */
4086int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4087{
4088	struct security_hook_list *hp;
4089
4090	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
4091		if (lsmid != 0 && lsmid != hp->lsmid->id)
4092			continue;
4093		return hp->hook.setprocattr(name, value, size);
4094	}
4095	return LSM_RET_DEFAULT(setprocattr);
4096}
4097
4098/**
4099 * security_netlink_send() - Save info and check if netlink sending is allowed
4100 * @sk: sending socket
4101 * @skb: netlink message
4102 *
4103 * Save security information for a netlink message so that permission checking
4104 * can be performed when the message is processed.  The security information
4105 * can be saved using the eff_cap field of the netlink_skb_parms structure.
4106 * Also may be used to provide fine grained control over message transmission.
4107 *
4108 * Return: Returns 0 if the information was successfully saved and message is
4109 *         allowed to be transmitted.
4110 */
4111int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4112{
4113	return call_int_hook(netlink_send, 0, sk, skb);
4114}
4115
4116/**
4117 * security_ismaclabel() - Check is the named attribute is a MAC label
4118 * @name: full extended attribute name
4119 *
4120 * Check if the extended attribute specified by @name represents a MAC label.
4121 *
4122 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4123 */
4124int security_ismaclabel(const char *name)
4125{
4126	return call_int_hook(ismaclabel, 0, name);
4127}
4128EXPORT_SYMBOL(security_ismaclabel);
4129
4130/**
4131 * security_secid_to_secctx() - Convert a secid to a secctx
4132 * @secid: secid
4133 * @secdata: secctx
4134 * @seclen: secctx length
4135 *
4136 * Convert secid to security context.  If @secdata is NULL the length of the
4137 * result will be returned in @seclen, but no @secdata will be returned.  This
4138 * does mean that the length could change between calls to check the length and
4139 * the next call which actually allocates and returns the @secdata.
4140 *
4141 * Return: Return 0 on success, error on failure.
4142 */
4143int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4144{
4145	struct security_hook_list *hp;
4146	int rc;
 
4147
4148	/*
4149	 * Currently, only one LSM can implement secid_to_secctx (i.e this
4150	 * LSM hook is not "stackable").
4151	 */
4152	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
4153		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
4154		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
4155			return rc;
4156	}
4157
4158	return LSM_RET_DEFAULT(secid_to_secctx);
 
 
 
 
 
 
 
4159}
4160EXPORT_SYMBOL(security_secid_to_secctx);
4161
4162/**
4163 * security_secctx_to_secid() - Convert a secctx to a secid
4164 * @secdata: secctx
4165 * @seclen: length of secctx
4166 * @secid: secid
4167 *
4168 * Convert security context to secid.
4169 *
4170 * Return: Returns 0 on success, error on failure.
4171 */
4172int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4173{
4174	*secid = 0;
4175	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
4176}
4177EXPORT_SYMBOL(security_secctx_to_secid);
4178
4179/**
4180 * security_release_secctx() - Free a secctx buffer
4181 * @secdata: secctx
4182 * @seclen: length of secctx
4183 *
4184 * Release the security context.
4185 */
4186void security_release_secctx(char *secdata, u32 seclen)
4187{
4188	call_void_hook(release_secctx, secdata, seclen);
4189}
4190EXPORT_SYMBOL(security_release_secctx);
4191
4192/**
4193 * security_inode_invalidate_secctx() - Invalidate an inode's security label
4194 * @inode: inode
4195 *
4196 * Notify the security module that it must revalidate the security context of
4197 * an inode.
4198 */
4199void security_inode_invalidate_secctx(struct inode *inode)
4200{
4201	call_void_hook(inode_invalidate_secctx, inode);
4202}
4203EXPORT_SYMBOL(security_inode_invalidate_secctx);
4204
4205/**
4206 * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4207 * @inode: inode
4208 * @ctx: secctx
4209 * @ctxlen: length of secctx
4210 *
4211 * Notify the security module of what the security context of an inode should
4212 * be.  Initializes the incore security context managed by the security module
4213 * for this inode.  Example usage: NFS client invokes this hook to initialize
4214 * the security context in its incore inode to the value provided by the server
4215 * for the file when the server returned the file's attributes to the client.
4216 * Must be called with inode->i_mutex locked.
4217 *
4218 * Return: Returns 0 on success, error on failure.
4219 */
4220int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4221{
4222	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
4223}
4224EXPORT_SYMBOL(security_inode_notifysecctx);
4225
4226/**
4227 * security_inode_setsecctx() - Change the security label of an inode
4228 * @dentry: inode
4229 * @ctx: secctx
4230 * @ctxlen: length of secctx
4231 *
4232 * Change the security context of an inode.  Updates the incore security
4233 * context managed by the security module and invokes the fs code as needed
4234 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4235 * context.  Example usage: NFS server invokes this hook to change the security
4236 * context in its incore inode and on the backing filesystem to a value
4237 * provided by the client on a SETATTR operation.  Must be called with
4238 * inode->i_mutex locked.
4239 *
4240 * Return: Returns 0 on success, error on failure.
4241 */
4242int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4243{
4244	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
4245}
4246EXPORT_SYMBOL(security_inode_setsecctx);
4247
4248/**
4249 * security_inode_getsecctx() - Get the security label of an inode
4250 * @inode: inode
4251 * @ctx: secctx
4252 * @ctxlen: length of secctx
4253 *
4254 * On success, returns 0 and fills out @ctx and @ctxlen with the security
4255 * context for the given @inode.
4256 *
4257 * Return: Returns 0 on success, error on failure.
4258 */
4259int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4260{
4261	struct security_hook_list *hp;
4262	int rc;
4263
4264	/*
4265	 * Only one module will provide a security context.
4266	 */
4267	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) {
4268		rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen);
4269		if (rc != LSM_RET_DEFAULT(inode_getsecctx))
4270			return rc;
4271	}
4272
4273	return LSM_RET_DEFAULT(inode_getsecctx);
4274}
4275EXPORT_SYMBOL(security_inode_getsecctx);
4276
4277#ifdef CONFIG_WATCH_QUEUE
4278/**
4279 * security_post_notification() - Check if a watch notification can be posted
4280 * @w_cred: credentials of the task that set the watch
4281 * @cred: credentials of the task which triggered the watch
4282 * @n: the notification
4283 *
4284 * Check to see if a watch notification can be posted to a particular queue.
4285 *
4286 * Return: Returns 0 if permission is granted.
4287 */
4288int security_post_notification(const struct cred *w_cred,
4289			       const struct cred *cred,
4290			       struct watch_notification *n)
4291{
4292	return call_int_hook(post_notification, 0, w_cred, cred, n);
4293}
4294#endif /* CONFIG_WATCH_QUEUE */
4295
4296#ifdef CONFIG_KEY_NOTIFICATIONS
4297/**
4298 * security_watch_key() - Check if a task is allowed to watch for key events
4299 * @key: the key to watch
4300 *
4301 * Check to see if a process is allowed to watch for event notifications from
4302 * a key or keyring.
4303 *
4304 * Return: Returns 0 if permission is granted.
4305 */
4306int security_watch_key(struct key *key)
4307{
4308	return call_int_hook(watch_key, 0, key);
4309}
4310#endif /* CONFIG_KEY_NOTIFICATIONS */
4311
4312#ifdef CONFIG_SECURITY_NETWORK
4313/**
4314 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4315 * @sock: originating sock
4316 * @other: peer sock
4317 * @newsk: new sock
4318 *
4319 * Check permissions before establishing a Unix domain stream connection
4320 * between @sock and @other.
4321 *
4322 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4323 * Linux provides an alternative to the conventional file name space for Unix
4324 * domain sockets.  Whereas binding and connecting to sockets in the file name
4325 * space is mediated by the typical file permissions (and caught by the mknod
4326 * and permission hooks in inode_security_ops), binding and connecting to
4327 * sockets in the abstract name space is completely unmediated.  Sufficient
4328 * control of Unix domain sockets in the abstract name space isn't possible
4329 * using only the socket layer hooks, since we need to know the actual target
4330 * socket, which is not looked up until we are inside the af_unix code.
4331 *
4332 * Return: Returns 0 if permission is granted.
4333 */
4334int security_unix_stream_connect(struct sock *sock, struct sock *other,
4335				 struct sock *newsk)
4336{
4337	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
4338}
4339EXPORT_SYMBOL(security_unix_stream_connect);
4340
4341/**
4342 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4343 * @sock: originating sock
4344 * @other: peer sock
4345 *
4346 * Check permissions before connecting or sending datagrams from @sock to
4347 * @other.
4348 *
4349 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4350 * Linux provides an alternative to the conventional file name space for Unix
4351 * domain sockets.  Whereas binding and connecting to sockets in the file name
4352 * space is mediated by the typical file permissions (and caught by the mknod
4353 * and permission hooks in inode_security_ops), binding and connecting to
4354 * sockets in the abstract name space is completely unmediated.  Sufficient
4355 * control of Unix domain sockets in the abstract name space isn't possible
4356 * using only the socket layer hooks, since we need to know the actual target
4357 * socket, which is not looked up until we are inside the af_unix code.
4358 *
4359 * Return: Returns 0 if permission is granted.
4360 */
4361int security_unix_may_send(struct socket *sock,  struct socket *other)
4362{
4363	return call_int_hook(unix_may_send, 0, sock, other);
4364}
4365EXPORT_SYMBOL(security_unix_may_send);
4366
4367/**
4368 * security_socket_create() - Check if creating a new socket is allowed
4369 * @family: protocol family
4370 * @type: communications type
4371 * @protocol: requested protocol
4372 * @kern: set to 1 if a kernel socket is requested
4373 *
4374 * Check permissions prior to creating a new socket.
4375 *
4376 * Return: Returns 0 if permission is granted.
4377 */
4378int security_socket_create(int family, int type, int protocol, int kern)
4379{
4380	return call_int_hook(socket_create, 0, family, type, protocol, kern);
4381}
4382
4383/**
4384 * security_socket_post_create() - Initialize a newly created socket
4385 * @sock: socket
4386 * @family: protocol family
4387 * @type: communications type
4388 * @protocol: requested protocol
4389 * @kern: set to 1 if a kernel socket is requested
4390 *
4391 * This hook allows a module to update or allocate a per-socket security
4392 * structure. Note that the security field was not added directly to the socket
4393 * structure, but rather, the socket security information is stored in the
4394 * associated inode.  Typically, the inode alloc_security hook will allocate
4395 * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4396 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4397 * information that wasn't available when the inode was allocated.
4398 *
4399 * Return: Returns 0 if permission is granted.
4400 */
4401int security_socket_post_create(struct socket *sock, int family,
4402				int type, int protocol, int kern)
4403{
4404	return call_int_hook(socket_post_create, 0, sock, family, type,
4405			     protocol, kern);
4406}
4407
4408/**
4409 * security_socket_socketpair() - Check if creating a socketpair is allowed
4410 * @socka: first socket
4411 * @sockb: second socket
4412 *
4413 * Check permissions before creating a fresh pair of sockets.
4414 *
4415 * Return: Returns 0 if permission is granted and the connection was
4416 *         established.
4417 */
4418int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4419{
4420	return call_int_hook(socket_socketpair, 0, socka, sockb);
4421}
4422EXPORT_SYMBOL(security_socket_socketpair);
4423
4424/**
4425 * security_socket_bind() - Check if a socket bind operation is allowed
4426 * @sock: socket
4427 * @address: requested bind address
4428 * @addrlen: length of address
4429 *
4430 * Check permission before socket protocol layer bind operation is performed
4431 * and the socket @sock is bound to the address specified in the @address
4432 * parameter.
4433 *
4434 * Return: Returns 0 if permission is granted.
4435 */
4436int security_socket_bind(struct socket *sock,
4437			 struct sockaddr *address, int addrlen)
4438{
4439	return call_int_hook(socket_bind, 0, sock, address, addrlen);
4440}
4441
4442/**
4443 * security_socket_connect() - Check if a socket connect operation is allowed
4444 * @sock: socket
4445 * @address: address of remote connection point
4446 * @addrlen: length of address
4447 *
4448 * Check permission before socket protocol layer connect operation attempts to
4449 * connect socket @sock to a remote address, @address.
4450 *
4451 * Return: Returns 0 if permission is granted.
4452 */
4453int security_socket_connect(struct socket *sock,
4454			    struct sockaddr *address, int addrlen)
4455{
4456	return call_int_hook(socket_connect, 0, sock, address, addrlen);
4457}
4458
4459/**
4460 * security_socket_listen() - Check if a socket is allowed to listen
4461 * @sock: socket
4462 * @backlog: connection queue size
4463 *
4464 * Check permission before socket protocol layer listen operation.
4465 *
4466 * Return: Returns 0 if permission is granted.
4467 */
4468int security_socket_listen(struct socket *sock, int backlog)
4469{
4470	return call_int_hook(socket_listen, 0, sock, backlog);
4471}
4472
4473/**
4474 * security_socket_accept() - Check if a socket is allowed to accept connections
4475 * @sock: listening socket
4476 * @newsock: newly creation connection socket
4477 *
4478 * Check permission before accepting a new connection.  Note that the new
4479 * socket, @newsock, has been created and some information copied to it, but
4480 * the accept operation has not actually been performed.
4481 *
4482 * Return: Returns 0 if permission is granted.
4483 */
4484int security_socket_accept(struct socket *sock, struct socket *newsock)
4485{
4486	return call_int_hook(socket_accept, 0, sock, newsock);
4487}
4488
4489/**
4490 * security_socket_sendmsg() - Check is sending a message is allowed
4491 * @sock: sending socket
4492 * @msg: message to send
4493 * @size: size of message
4494 *
4495 * Check permission before transmitting a message to another socket.
4496 *
4497 * Return: Returns 0 if permission is granted.
4498 */
4499int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4500{
4501	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
4502}
4503
4504/**
4505 * security_socket_recvmsg() - Check if receiving a message is allowed
4506 * @sock: receiving socket
4507 * @msg: message to receive
4508 * @size: size of message
4509 * @flags: operational flags
4510 *
4511 * Check permission before receiving a message from a socket.
4512 *
4513 * Return: Returns 0 if permission is granted.
4514 */
4515int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4516			    int size, int flags)
4517{
4518	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
4519}
4520
4521/**
4522 * security_socket_getsockname() - Check if reading the socket addr is allowed
4523 * @sock: socket
4524 *
4525 * Check permission before reading the local address (name) of the socket
4526 * object.
4527 *
4528 * Return: Returns 0 if permission is granted.
4529 */
4530int security_socket_getsockname(struct socket *sock)
4531{
4532	return call_int_hook(socket_getsockname, 0, sock);
4533}
4534
4535/**
4536 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4537 * @sock: socket
4538 *
4539 * Check permission before the remote address (name) of a socket object.
4540 *
4541 * Return: Returns 0 if permission is granted.
4542 */
4543int security_socket_getpeername(struct socket *sock)
4544{
4545	return call_int_hook(socket_getpeername, 0, sock);
4546}
4547
4548/**
4549 * security_socket_getsockopt() - Check if reading a socket option is allowed
4550 * @sock: socket
4551 * @level: option's protocol level
4552 * @optname: option name
4553 *
4554 * Check permissions before retrieving the options associated with socket
4555 * @sock.
4556 *
4557 * Return: Returns 0 if permission is granted.
4558 */
4559int security_socket_getsockopt(struct socket *sock, int level, int optname)
4560{
4561	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
4562}
4563
4564/**
4565 * security_socket_setsockopt() - Check if setting a socket option is allowed
4566 * @sock: socket
4567 * @level: option's protocol level
4568 * @optname: option name
4569 *
4570 * Check permissions before setting the options associated with socket @sock.
4571 *
4572 * Return: Returns 0 if permission is granted.
4573 */
4574int security_socket_setsockopt(struct socket *sock, int level, int optname)
4575{
4576	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
4577}
4578
4579/**
4580 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4581 * @sock: socket
4582 * @how: flag indicating how sends and receives are handled
4583 *
4584 * Checks permission before all or part of a connection on the socket @sock is
4585 * shut down.
4586 *
4587 * Return: Returns 0 if permission is granted.
4588 */
4589int security_socket_shutdown(struct socket *sock, int how)
4590{
4591	return call_int_hook(socket_shutdown, 0, sock, how);
4592}
4593
4594/**
4595 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4596 * @sk: destination sock
4597 * @skb: incoming packet
4598 *
4599 * Check permissions on incoming network packets.  This hook is distinct from
4600 * Netfilter's IP input hooks since it is the first time that the incoming
4601 * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4602 * sleep inside this hook because some callers hold spinlocks.
4603 *
4604 * Return: Returns 0 if permission is granted.
4605 */
4606int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4607{
4608	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
4609}
4610EXPORT_SYMBOL(security_sock_rcv_skb);
4611
4612/**
4613 * security_socket_getpeersec_stream() - Get the remote peer label
4614 * @sock: socket
4615 * @optval: destination buffer
4616 * @optlen: size of peer label copied into the buffer
4617 * @len: maximum size of the destination buffer
4618 *
4619 * This hook allows the security module to provide peer socket security state
4620 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4621 * For tcp sockets this can be meaningful if the socket is associated with an
4622 * ipsec SA.
4623 *
4624 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4625 *         values.
4626 */
4627int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4628				      sockptr_t optlen, unsigned int len)
4629{
4630	struct security_hook_list *hp;
4631	int rc;
4632
4633	/*
4634	 * Only one module will provide a security context.
4635	 */
4636	hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_stream,
4637			     list) {
4638		rc = hp->hook.socket_getpeersec_stream(sock, optval, optlen,
4639						       len);
4640		if (rc != LSM_RET_DEFAULT(socket_getpeersec_stream))
4641			return rc;
4642	}
4643	return LSM_RET_DEFAULT(socket_getpeersec_stream);
4644}
4645
4646/**
4647 * security_socket_getpeersec_dgram() - Get the remote peer label
4648 * @sock: socket
4649 * @skb: datagram packet
4650 * @secid: remote peer label secid
4651 *
4652 * This hook allows the security module to provide peer socket security state
4653 * for udp sockets on a per-packet basis to userspace via getsockopt
4654 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4655 * option via getsockopt. It can then retrieve the security state returned by
4656 * this hook for a packet via the SCM_SECURITY ancillary message type.
4657 *
4658 * Return: Returns 0 on success, error on failure.
4659 */
4660int security_socket_getpeersec_dgram(struct socket *sock,
4661				     struct sk_buff *skb, u32 *secid)
4662{
4663	struct security_hook_list *hp;
4664	int rc;
 
4665
4666	/*
4667	 * Only one module will provide a security context.
4668	 */
4669	hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_dgram,
4670			     list) {
4671		rc = hp->hook.socket_getpeersec_dgram(sock, skb, secid);
4672		if (rc != LSM_RET_DEFAULT(socket_getpeersec_dgram))
4673			return rc;
4674	}
4675	return LSM_RET_DEFAULT(socket_getpeersec_dgram);
 
 
4676}
4677EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4678
4679/**
4680 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4681 * @sk: sock
4682 * @family: protocol family
4683 * @priority: gfp flags
4684 *
4685 * Allocate and attach a security structure to the sk->sk_security field, which
4686 * is used to copy security attributes between local stream sockets.
4687 *
4688 * Return: Returns 0 on success, error on failure.
4689 */
4690int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4691{
4692	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
 
 
 
 
 
 
 
4693}
4694
4695/**
4696 * security_sk_free() - Free the sock's LSM blob
4697 * @sk: sock
4698 *
4699 * Deallocate security structure.
4700 */
4701void security_sk_free(struct sock *sk)
4702{
4703	call_void_hook(sk_free_security, sk);
 
 
4704}
4705
4706/**
4707 * security_sk_clone() - Clone a sock's LSM state
4708 * @sk: original sock
4709 * @newsk: target sock
4710 *
4711 * Clone/copy security structure.
4712 */
4713void security_sk_clone(const struct sock *sk, struct sock *newsk)
4714{
4715	call_void_hook(sk_clone_security, sk, newsk);
4716}
4717EXPORT_SYMBOL(security_sk_clone);
4718
4719/**
4720 * security_sk_classify_flow() - Set a flow's secid based on socket
4721 * @sk: original socket
4722 * @flic: target flow
4723 *
4724 * Set the target flow's secid to socket's secid.
4725 */
4726void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4727{
4728	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4729}
4730EXPORT_SYMBOL(security_sk_classify_flow);
4731
4732/**
4733 * security_req_classify_flow() - Set a flow's secid based on request_sock
4734 * @req: request_sock
4735 * @flic: target flow
4736 *
4737 * Sets @flic's secid to @req's secid.
4738 */
4739void security_req_classify_flow(const struct request_sock *req,
4740				struct flowi_common *flic)
4741{
4742	call_void_hook(req_classify_flow, req, flic);
4743}
4744EXPORT_SYMBOL(security_req_classify_flow);
4745
4746/**
4747 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4748 * @sk: sock being grafted
4749 * @parent: target parent socket
4750 *
4751 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4752 * LSM state from @parent.
4753 */
4754void security_sock_graft(struct sock *sk, struct socket *parent)
4755{
4756	call_void_hook(sock_graft, sk, parent);
4757}
4758EXPORT_SYMBOL(security_sock_graft);
4759
4760/**
4761 * security_inet_conn_request() - Set request_sock state using incoming connect
4762 * @sk: parent listening sock
4763 * @skb: incoming connection
4764 * @req: new request_sock
4765 *
4766 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4767 *
4768 * Return: Returns 0 if permission is granted.
4769 */
4770int security_inet_conn_request(const struct sock *sk,
4771			       struct sk_buff *skb, struct request_sock *req)
4772{
4773	return call_int_hook(inet_conn_request, 0, sk, skb, req);
4774}
4775EXPORT_SYMBOL(security_inet_conn_request);
4776
4777/**
4778 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4779 * @newsk: new sock
4780 * @req: connection request_sock
4781 *
4782 * Set that LSM state of @sock using the LSM state from @req.
4783 */
4784void security_inet_csk_clone(struct sock *newsk,
4785			     const struct request_sock *req)
4786{
4787	call_void_hook(inet_csk_clone, newsk, req);
4788}
4789
4790/**
4791 * security_inet_conn_established() - Update sock's LSM state with connection
4792 * @sk: sock
4793 * @skb: connection packet
4794 *
4795 * Update @sock's LSM state to represent a new connection from @skb.
4796 */
4797void security_inet_conn_established(struct sock *sk,
4798				    struct sk_buff *skb)
4799{
4800	call_void_hook(inet_conn_established, sk, skb);
4801}
4802EXPORT_SYMBOL(security_inet_conn_established);
4803
4804/**
4805 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4806 * @secid: new secmark value
4807 *
4808 * Check if the process should be allowed to relabel packets to @secid.
4809 *
4810 * Return: Returns 0 if permission is granted.
4811 */
4812int security_secmark_relabel_packet(u32 secid)
4813{
4814	return call_int_hook(secmark_relabel_packet, 0, secid);
4815}
4816EXPORT_SYMBOL(security_secmark_relabel_packet);
4817
4818/**
4819 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4820 *
4821 * Tells the LSM to increment the number of secmark labeling rules loaded.
4822 */
4823void security_secmark_refcount_inc(void)
4824{
4825	call_void_hook(secmark_refcount_inc);
4826}
4827EXPORT_SYMBOL(security_secmark_refcount_inc);
4828
4829/**
4830 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4831 *
4832 * Tells the LSM to decrement the number of secmark labeling rules loaded.
4833 */
4834void security_secmark_refcount_dec(void)
4835{
4836	call_void_hook(secmark_refcount_dec);
4837}
4838EXPORT_SYMBOL(security_secmark_refcount_dec);
4839
4840/**
4841 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4842 * @security: pointer to the LSM blob
4843 *
4844 * This hook allows a module to allocate a security structure for a TUN	device,
4845 * returning the pointer in @security.
4846 *
4847 * Return: Returns a zero on success, negative values on failure.
4848 */
4849int security_tun_dev_alloc_security(void **security)
4850{
4851	return call_int_hook(tun_dev_alloc_security, 0, security);
 
 
 
 
 
 
 
 
 
 
 
4852}
4853EXPORT_SYMBOL(security_tun_dev_alloc_security);
4854
4855/**
4856 * security_tun_dev_free_security() - Free a TUN device LSM blob
4857 * @security: LSM blob
4858 *
4859 * This hook allows a module to free the security structure for a TUN device.
4860 */
4861void security_tun_dev_free_security(void *security)
4862{
4863	call_void_hook(tun_dev_free_security, security);
4864}
4865EXPORT_SYMBOL(security_tun_dev_free_security);
4866
4867/**
4868 * security_tun_dev_create() - Check if creating a TUN device is allowed
4869 *
4870 * Check permissions prior to creating a new TUN device.
4871 *
4872 * Return: Returns 0 if permission is granted.
4873 */
4874int security_tun_dev_create(void)
4875{
4876	return call_int_hook(tun_dev_create, 0);
4877}
4878EXPORT_SYMBOL(security_tun_dev_create);
4879
4880/**
4881 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4882 * @security: TUN device LSM blob
4883 *
4884 * Check permissions prior to attaching to a TUN device queue.
4885 *
4886 * Return: Returns 0 if permission is granted.
4887 */
4888int security_tun_dev_attach_queue(void *security)
4889{
4890	return call_int_hook(tun_dev_attach_queue, 0, security);
4891}
4892EXPORT_SYMBOL(security_tun_dev_attach_queue);
4893
4894/**
4895 * security_tun_dev_attach() - Update TUN device LSM state on attach
4896 * @sk: associated sock
4897 * @security: TUN device LSM blob
4898 *
4899 * This hook can be used by the module to update any security state associated
4900 * with the TUN device's sock structure.
4901 *
4902 * Return: Returns 0 if permission is granted.
4903 */
4904int security_tun_dev_attach(struct sock *sk, void *security)
4905{
4906	return call_int_hook(tun_dev_attach, 0, sk, security);
4907}
4908EXPORT_SYMBOL(security_tun_dev_attach);
4909
4910/**
4911 * security_tun_dev_open() - Update TUN device LSM state on open
4912 * @security: TUN device LSM blob
4913 *
4914 * This hook can be used by the module to update any security state associated
4915 * with the TUN device's security structure.
4916 *
4917 * Return: Returns 0 if permission is granted.
4918 */
4919int security_tun_dev_open(void *security)
4920{
4921	return call_int_hook(tun_dev_open, 0, security);
4922}
4923EXPORT_SYMBOL(security_tun_dev_open);
4924
4925/**
4926 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
4927 * @asoc: SCTP association
4928 * @skb: packet requesting the association
4929 *
4930 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4931 *
4932 * Return: Returns 0 on success, error on failure.
4933 */
4934int security_sctp_assoc_request(struct sctp_association *asoc,
4935				struct sk_buff *skb)
4936{
4937	return call_int_hook(sctp_assoc_request, 0, asoc, skb);
4938}
4939EXPORT_SYMBOL(security_sctp_assoc_request);
4940
4941/**
4942 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4943 * @sk: socket
4944 * @optname: SCTP option to validate
4945 * @address: list of IP addresses to validate
4946 * @addrlen: length of the address list
4947 *
4948 * Validiate permissions required for each address associated with sock	@sk.
4949 * Depending on @optname, the addresses will be treated as either a connect or
4950 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4951 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4952 *
4953 * Return: Returns 0 on success, error on failure.
4954 */
4955int security_sctp_bind_connect(struct sock *sk, int optname,
4956			       struct sockaddr *address, int addrlen)
4957{
4958	return call_int_hook(sctp_bind_connect, 0, sk, optname,
4959			     address, addrlen);
4960}
4961EXPORT_SYMBOL(security_sctp_bind_connect);
4962
4963/**
4964 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
4965 * @asoc: SCTP association
4966 * @sk: original sock
4967 * @newsk: target sock
4968 *
4969 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
4970 * socket) or when a socket is 'peeled off' e.g userspace calls
4971 * sctp_peeloff(3).
4972 */
4973void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
4974			    struct sock *newsk)
4975{
4976	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
4977}
4978EXPORT_SYMBOL(security_sctp_sk_clone);
4979
4980/**
4981 * security_sctp_assoc_established() - Update LSM state when assoc established
4982 * @asoc: SCTP association
4983 * @skb: packet establishing the association
4984 *
4985 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
4986 * security module.
4987 *
4988 * Return: Returns 0 if permission is granted.
4989 */
4990int security_sctp_assoc_established(struct sctp_association *asoc,
4991				    struct sk_buff *skb)
4992{
4993	return call_int_hook(sctp_assoc_established, 0, asoc, skb);
4994}
4995EXPORT_SYMBOL(security_sctp_assoc_established);
4996
4997/**
4998 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
4999 * @sk: the owning MPTCP socket
5000 * @ssk: the new subflow
5001 *
5002 * Update the labeling for the given MPTCP subflow, to match the one of the
5003 * owning MPTCP socket. This hook has to be called after the socket creation and
5004 * initialization via the security_socket_create() and
5005 * security_socket_post_create() LSM hooks.
5006 *
5007 * Return: Returns 0 on success or a negative error code on failure.
5008 */
5009int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5010{
5011	return call_int_hook(mptcp_add_subflow, 0, sk, ssk);
5012}
5013
5014#endif	/* CONFIG_SECURITY_NETWORK */
5015
5016#ifdef CONFIG_SECURITY_INFINIBAND
5017/**
5018 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5019 * @sec: LSM blob
5020 * @subnet_prefix: subnet prefix of the port
5021 * @pkey: IB pkey
5022 *
5023 * Check permission to access a pkey when modifying a QP.
5024 *
5025 * Return: Returns 0 if permission is granted.
5026 */
5027int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5028{
5029	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
5030}
5031EXPORT_SYMBOL(security_ib_pkey_access);
5032
5033/**
5034 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5035 * @sec: LSM blob
5036 * @dev_name: IB device name
5037 * @port_num: port number
5038 *
5039 * Check permissions to send and receive SMPs on a end port.
5040 *
5041 * Return: Returns 0 if permission is granted.
5042 */
5043int security_ib_endport_manage_subnet(void *sec,
5044				      const char *dev_name, u8 port_num)
5045{
5046	return call_int_hook(ib_endport_manage_subnet, 0, sec,
5047			     dev_name, port_num);
5048}
5049EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5050
5051/**
5052 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5053 * @sec: LSM blob
5054 *
5055 * Allocate a security structure for Infiniband objects.
5056 *
5057 * Return: Returns 0 on success, non-zero on failure.
5058 */
5059int security_ib_alloc_security(void **sec)
5060{
5061	return call_int_hook(ib_alloc_security, 0, sec);
 
 
 
 
 
 
 
 
 
 
 
5062}
5063EXPORT_SYMBOL(security_ib_alloc_security);
5064
5065/**
5066 * security_ib_free_security() - Free an Infiniband LSM blob
5067 * @sec: LSM blob
5068 *
5069 * Deallocate an Infiniband security structure.
5070 */
5071void security_ib_free_security(void *sec)
5072{
5073	call_void_hook(ib_free_security, sec);
5074}
5075EXPORT_SYMBOL(security_ib_free_security);
5076#endif	/* CONFIG_SECURITY_INFINIBAND */
5077
5078#ifdef CONFIG_SECURITY_NETWORK_XFRM
5079/**
5080 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5081 * @ctxp: xfrm security context being added to the SPD
5082 * @sec_ctx: security label provided by userspace
5083 * @gfp: gfp flags
5084 *
5085 * Allocate a security structure to the xp->security field; the security field
5086 * is initialized to NULL when the xfrm_policy is allocated.
5087 *
5088 * Return:  Return 0 if operation was successful.
5089 */
5090int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5091			       struct xfrm_user_sec_ctx *sec_ctx,
5092			       gfp_t gfp)
5093{
5094	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
5095}
5096EXPORT_SYMBOL(security_xfrm_policy_alloc);
5097
5098/**
5099 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5100 * @old_ctx: xfrm security context
5101 * @new_ctxp: target xfrm security context
5102 *
5103 * Allocate a security structure in new_ctxp that contains the information from
5104 * the old_ctx structure.
5105 *
5106 * Return: Return 0 if operation was successful.
5107 */
5108int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5109			       struct xfrm_sec_ctx **new_ctxp)
5110{
5111	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
5112}
5113
5114/**
5115 * security_xfrm_policy_free() - Free a xfrm security context
5116 * @ctx: xfrm security context
5117 *
5118 * Free LSM resources associated with @ctx.
5119 */
5120void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5121{
5122	call_void_hook(xfrm_policy_free_security, ctx);
5123}
5124EXPORT_SYMBOL(security_xfrm_policy_free);
5125
5126/**
5127 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5128 * @ctx: xfrm security context
5129 *
5130 * Authorize deletion of a SPD entry.
5131 *
5132 * Return: Returns 0 if permission is granted.
5133 */
5134int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5135{
5136	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
5137}
5138
5139/**
5140 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5141 * @x: xfrm state being added to the SAD
5142 * @sec_ctx: security label provided by userspace
5143 *
5144 * Allocate a security structure to the @x->security field; the security field
5145 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5146 * correspond to @sec_ctx.
5147 *
5148 * Return: Return 0 if operation was successful.
5149 */
5150int security_xfrm_state_alloc(struct xfrm_state *x,
5151			      struct xfrm_user_sec_ctx *sec_ctx)
5152{
5153	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
5154}
5155EXPORT_SYMBOL(security_xfrm_state_alloc);
5156
5157/**
5158 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5159 * @x: xfrm state being added to the SAD
5160 * @polsec: associated policy's security context
5161 * @secid: secid from the flow
5162 *
5163 * Allocate a security structure to the x->security field; the security field
5164 * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5165 * correspond to secid.
5166 *
5167 * Return: Returns 0 if operation was successful.
5168 */
5169int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5170				      struct xfrm_sec_ctx *polsec, u32 secid)
5171{
5172	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
5173}
5174
5175/**
5176 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5177 * @x: xfrm state
5178 *
5179 * Authorize deletion of x->security.
5180 *
5181 * Return: Returns 0 if permission is granted.
5182 */
5183int security_xfrm_state_delete(struct xfrm_state *x)
5184{
5185	return call_int_hook(xfrm_state_delete_security, 0, x);
5186}
5187EXPORT_SYMBOL(security_xfrm_state_delete);
5188
5189/**
5190 * security_xfrm_state_free() - Free a xfrm state
5191 * @x: xfrm state
5192 *
5193 * Deallocate x->security.
5194 */
5195void security_xfrm_state_free(struct xfrm_state *x)
5196{
5197	call_void_hook(xfrm_state_free_security, x);
5198}
5199
5200/**
5201 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5202 * @ctx: target xfrm security context
5203 * @fl_secid: flow secid used to authorize access
5204 *
5205 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5206 * packet.  The hook is called when selecting either a per-socket policy or a
5207 * generic xfrm policy.
5208 *
5209 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5210 *         other errors.
5211 */
5212int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5213{
5214	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
5215}
5216
5217/**
5218 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5219 * @x: xfrm state to match
5220 * @xp: xfrm policy to check for a match
5221 * @flic: flow to check for a match.
5222 *
5223 * Check @xp and @flic for a match with @x.
5224 *
5225 * Return: Returns 1 if there is a match.
5226 */
5227int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5228				       struct xfrm_policy *xp,
5229				       const struct flowi_common *flic)
5230{
5231	struct security_hook_list *hp;
5232	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5233
5234	/*
5235	 * Since this function is expected to return 0 or 1, the judgment
5236	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5237	 * we can use the first LSM's judgment because currently only SELinux
5238	 * supplies this call.
5239	 *
5240	 * For speed optimization, we explicitly break the loop rather than
5241	 * using the macro
5242	 */
5243	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
5244			     list) {
5245		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
5246		break;
5247	}
5248	return rc;
5249}
5250
5251/**
5252 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5253 * @skb: xfrm packet
5254 * @secid: secid
5255 *
5256 * Decode the packet in @skb and return the security label in @secid.
5257 *
5258 * Return: Return 0 if all xfrms used have the same secid.
5259 */
5260int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5261{
5262	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
5263}
5264
5265void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5266{
5267	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
5268			       0);
5269
5270	BUG_ON(rc);
5271}
5272EXPORT_SYMBOL(security_skb_classify_flow);
5273#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5274
5275#ifdef CONFIG_KEYS
5276/**
5277 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5278 * @key: key
5279 * @cred: credentials
5280 * @flags: allocation flags
5281 *
5282 * Permit allocation of a key and assign security data. Note that key does not
5283 * have a serial number assigned at this point.
5284 *
5285 * Return: Return 0 if permission is granted, -ve error otherwise.
5286 */
5287int security_key_alloc(struct key *key, const struct cred *cred,
5288		       unsigned long flags)
5289{
5290	return call_int_hook(key_alloc, 0, key, cred, flags);
 
 
 
 
 
 
 
5291}
5292
5293/**
5294 * security_key_free() - Free a kernel key LSM blob
5295 * @key: key
5296 *
5297 * Notification of destruction; free security data.
5298 */
5299void security_key_free(struct key *key)
5300{
5301	call_void_hook(key_free, key);
 
5302}
5303
5304/**
5305 * security_key_permission() - Check if a kernel key operation is allowed
5306 * @key_ref: key reference
5307 * @cred: credentials of actor requesting access
5308 * @need_perm: requested permissions
5309 *
5310 * See whether a specific operational right is granted to a process on a key.
5311 *
5312 * Return: Return 0 if permission is granted, -ve error otherwise.
5313 */
5314int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5315			    enum key_need_perm need_perm)
5316{
5317	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
5318}
5319
5320/**
5321 * security_key_getsecurity() - Get the key's security label
5322 * @key: key
5323 * @buffer: security label buffer
5324 *
5325 * Get a textual representation of the security context attached to a key for
5326 * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5327 * storage for the NUL-terminated string and the caller should free it.
5328 *
5329 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5330 *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5331 *         there is no security label assigned to the key.
5332 */
5333int security_key_getsecurity(struct key *key, char **buffer)
5334{
5335	*buffer = NULL;
5336	return call_int_hook(key_getsecurity, 0, key, buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5337}
5338#endif	/* CONFIG_KEYS */
5339
5340#ifdef CONFIG_AUDIT
5341/**
5342 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5343 * @field: audit action
5344 * @op: rule operator
5345 * @rulestr: rule context
5346 * @lsmrule: receive buffer for audit rule struct
 
5347 *
5348 * Allocate and initialize an LSM audit rule structure.
5349 *
5350 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5351 *         an invalid rule.
5352 */
5353int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
 
5354{
5355	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
5356}
5357
5358/**
5359 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5360 * @krule: audit rule
5361 *
5362 * Specifies whether given @krule contains any fields related to the current
5363 * LSM.
5364 *
5365 * Return: Returns 1 in case of relation found, 0 otherwise.
5366 */
5367int security_audit_rule_known(struct audit_krule *krule)
5368{
5369	return call_int_hook(audit_rule_known, 0, krule);
5370}
5371
5372/**
5373 * security_audit_rule_free() - Free an LSM audit rule struct
5374 * @lsmrule: audit rule struct
5375 *
5376 * Deallocate the LSM audit rule structure previously allocated by
5377 * audit_rule_init().
5378 */
5379void security_audit_rule_free(void *lsmrule)
5380{
5381	call_void_hook(audit_rule_free, lsmrule);
5382}
5383
5384/**
5385 * security_audit_rule_match() - Check if a label matches an audit rule
5386 * @secid: security label
5387 * @field: LSM audit field
5388 * @op: matching operator
5389 * @lsmrule: audit rule
5390 *
5391 * Determine if given @secid matches a rule previously approved by
5392 * security_audit_rule_known().
5393 *
5394 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5395 *         failure.
5396 */
5397int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
 
5398{
5399	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
5400}
5401#endif /* CONFIG_AUDIT */
5402
5403#ifdef CONFIG_BPF_SYSCALL
5404/**
5405 * security_bpf() - Check if the bpf syscall operation is allowed
5406 * @cmd: command
5407 * @attr: bpf attribute
5408 * @size: size
5409 *
5410 * Do a initial check for all bpf syscalls after the attribute is copied into
5411 * the kernel. The actual security module can implement their own rules to
5412 * check the specific cmd they need.
5413 *
5414 * Return: Returns 0 if permission is granted.
5415 */
5416int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5417{
5418	return call_int_hook(bpf, 0, cmd, attr, size);
5419}
5420
5421/**
5422 * security_bpf_map() - Check if access to a bpf map is allowed
5423 * @map: bpf map
5424 * @fmode: mode
5425 *
5426 * Do a check when the kernel generates and returns a file descriptor for eBPF
5427 * maps.
5428 *
5429 * Return: Returns 0 if permission is granted.
5430 */
5431int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5432{
5433	return call_int_hook(bpf_map, 0, map, fmode);
5434}
5435
5436/**
5437 * security_bpf_prog() - Check if access to a bpf program is allowed
5438 * @prog: bpf program
5439 *
5440 * Do a check when the kernel generates and returns a file descriptor for eBPF
5441 * programs.
5442 *
5443 * Return: Returns 0 if permission is granted.
5444 */
5445int security_bpf_prog(struct bpf_prog *prog)
5446{
5447	return call_int_hook(bpf_prog, 0, prog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5448}
5449
5450/**
5451 * security_bpf_map_alloc() - Allocate a bpf map LSM blob
5452 * @map: bpf map
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5453 *
5454 * Initialize the security field inside bpf map.
 
5455 *
5456 * Return: Returns 0 on success, error on failure.
5457 */
5458int security_bpf_map_alloc(struct bpf_map *map)
5459{
5460	return call_int_hook(bpf_map_alloc_security, 0, map);
5461}
5462
5463/**
5464 * security_bpf_prog_alloc() - Allocate a bpf program LSM blob
5465 * @aux: bpf program aux info struct
 
 
5466 *
5467 * Initialize the security field inside bpf program.
 
5468 *
5469 * Return: Returns 0 on success, error on failure.
5470 */
5471int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
5472{
5473	return call_int_hook(bpf_prog_alloc_security, 0, aux);
5474}
5475
5476/**
5477 * security_bpf_map_free() - Free a bpf map's LSM blob
5478 * @map: bpf map
5479 *
5480 * Clean up the security information stored inside bpf map.
5481 */
5482void security_bpf_map_free(struct bpf_map *map)
5483{
5484	call_void_hook(bpf_map_free_security, map);
5485}
5486
5487/**
5488 * security_bpf_prog_free() - Free a bpf program's LSM blob
5489 * @aux: bpf program aux info struct
5490 *
5491 * Clean up the security information stored inside bpf prog.
5492 */
5493void security_bpf_prog_free(struct bpf_prog_aux *aux)
5494{
5495	call_void_hook(bpf_prog_free_security, aux);
 
 
 
 
 
 
 
 
 
 
 
5496}
5497#endif /* CONFIG_BPF_SYSCALL */
5498
5499/**
5500 * security_locked_down() - Check if a kernel feature is allowed
5501 * @what: requested kernel feature
5502 *
5503 * Determine whether a kernel feature that potentially enables arbitrary code
5504 * execution in kernel space should be permitted.
5505 *
5506 * Return: Returns 0 if permission is granted.
5507 */
5508int security_locked_down(enum lockdown_reason what)
5509{
5510	return call_int_hook(locked_down, 0, what);
5511}
5512EXPORT_SYMBOL(security_locked_down);
5513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5514#ifdef CONFIG_PERF_EVENTS
5515/**
5516 * security_perf_event_open() - Check if a perf event open is allowed
5517 * @attr: perf event attribute
5518 * @type: type of event
5519 *
5520 * Check whether the @type of perf_event_open syscall is allowed.
5521 *
5522 * Return: Returns 0 if permission is granted.
5523 */
5524int security_perf_event_open(struct perf_event_attr *attr, int type)
5525{
5526	return call_int_hook(perf_event_open, 0, attr, type);
5527}
5528
5529/**
5530 * security_perf_event_alloc() - Allocate a perf event LSM blob
5531 * @event: perf event
5532 *
5533 * Allocate and save perf_event security info.
5534 *
5535 * Return: Returns 0 on success, error on failure.
5536 */
5537int security_perf_event_alloc(struct perf_event *event)
5538{
5539	return call_int_hook(perf_event_alloc, 0, event);
 
 
 
 
 
 
 
 
 
 
 
 
5540}
5541
5542/**
5543 * security_perf_event_free() - Free a perf event LSM blob
5544 * @event: perf event
5545 *
5546 * Release (free) perf_event security info.
5547 */
5548void security_perf_event_free(struct perf_event *event)
5549{
5550	call_void_hook(perf_event_free, event);
 
5551}
5552
5553/**
5554 * security_perf_event_read() - Check if reading a perf event label is allowed
5555 * @event: perf event
5556 *
5557 * Read perf_event security info if allowed.
5558 *
5559 * Return: Returns 0 if permission is granted.
5560 */
5561int security_perf_event_read(struct perf_event *event)
5562{
5563	return call_int_hook(perf_event_read, 0, event);
5564}
5565
5566/**
5567 * security_perf_event_write() - Check if writing a perf event label is allowed
5568 * @event: perf event
5569 *
5570 * Write perf_event security info if allowed.
5571 *
5572 * Return: Returns 0 if permission is granted.
5573 */
5574int security_perf_event_write(struct perf_event *event)
5575{
5576	return call_int_hook(perf_event_write, 0, event);
5577}
5578#endif /* CONFIG_PERF_EVENTS */
5579
5580#ifdef CONFIG_IO_URING
5581/**
5582 * security_uring_override_creds() - Check if overriding creds is allowed
5583 * @new: new credentials
5584 *
5585 * Check if the current task, executing an io_uring operation, is allowed to
5586 * override it's credentials with @new.
5587 *
5588 * Return: Returns 0 if permission is granted.
5589 */
5590int security_uring_override_creds(const struct cred *new)
5591{
5592	return call_int_hook(uring_override_creds, 0, new);
5593}
5594
5595/**
5596 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5597 *
5598 * Check whether the current task is allowed to spawn a io_uring polling thread
5599 * (IORING_SETUP_SQPOLL).
5600 *
5601 * Return: Returns 0 if permission is granted.
5602 */
5603int security_uring_sqpoll(void)
5604{
5605	return call_int_hook(uring_sqpoll, 0);
5606}
5607
5608/**
5609 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5610 * @ioucmd: command
5611 *
5612 * Check whether the file_operations uring_cmd is allowed to run.
5613 *
5614 * Return: Returns 0 if permission is granted.
5615 */
5616int security_uring_cmd(struct io_uring_cmd *ioucmd)
5617{
5618	return call_int_hook(uring_cmd, 0, ioucmd);
5619}
5620#endif /* CONFIG_IO_URING */