Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch-independent dma-mapping routines
  4 *
  5 * Copyright (c) 2006  SUSE Linux Products GmbH
  6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
  7 */
  8#include <linux/memblock.h> /* for max_pfn */
  9#include <linux/acpi.h>
 10#include <linux/dma-map-ops.h>
 11#include <linux/export.h>
 12#include <linux/gfp.h>
 13#include <linux/iommu-dma.h>
 14#include <linux/kmsan.h>
 15#include <linux/of_device.h>
 16#include <linux/slab.h>
 17#include <linux/vmalloc.h>
 18#include "debug.h"
 19#include "direct.h"
 20
 21#define CREATE_TRACE_POINTS
 22#include <trace/events/dma.h>
 23
 24#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
 25	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
 26	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
 27bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
 28#endif
 29
 30/*
 31 * Managed DMA API
 32 */
 33struct dma_devres {
 34	size_t		size;
 35	void		*vaddr;
 36	dma_addr_t	dma_handle;
 37	unsigned long	attrs;
 38};
 39
 40static void dmam_release(struct device *dev, void *res)
 41{
 42	struct dma_devres *this = res;
 43
 44	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
 45			this->attrs);
 46}
 47
 48static int dmam_match(struct device *dev, void *res, void *match_data)
 49{
 50	struct dma_devres *this = res, *match = match_data;
 51
 52	if (this->vaddr == match->vaddr) {
 53		WARN_ON(this->size != match->size ||
 54			this->dma_handle != match->dma_handle);
 55		return 1;
 56	}
 57	return 0;
 58}
 59
 60/**
 61 * dmam_free_coherent - Managed dma_free_coherent()
 62 * @dev: Device to free coherent memory for
 63 * @size: Size of allocation
 64 * @vaddr: Virtual address of the memory to free
 65 * @dma_handle: DMA handle of the memory to free
 66 *
 67 * Managed dma_free_coherent().
 68 */
 69void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
 70			dma_addr_t dma_handle)
 71{
 72	struct dma_devres match_data = { size, vaddr, dma_handle };
 73
 74	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 75	dma_free_coherent(dev, size, vaddr, dma_handle);
 
 76}
 77EXPORT_SYMBOL(dmam_free_coherent);
 78
 79/**
 80 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 81 * @dev: Device to allocate non_coherent memory for
 82 * @size: Size of allocation
 83 * @dma_handle: Out argument for allocated DMA handle
 84 * @gfp: Allocation flags
 85 * @attrs: Flags in the DMA_ATTR_* namespace.
 86 *
 87 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 88 * automatically released on driver detach.
 89 *
 90 * RETURNS:
 91 * Pointer to allocated memory on success, NULL on failure.
 92 */
 93void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 94		gfp_t gfp, unsigned long attrs)
 95{
 96	struct dma_devres *dr;
 97	void *vaddr;
 98
 99	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100	if (!dr)
101		return NULL;
102
103	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104	if (!vaddr) {
105		devres_free(dr);
106		return NULL;
107	}
108
109	dr->vaddr = vaddr;
110	dr->dma_handle = *dma_handle;
111	dr->size = size;
112	dr->attrs = attrs;
113
114	devres_add(dev, dr);
115
116	return vaddr;
117}
118EXPORT_SYMBOL(dmam_alloc_attrs);
119
120static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121		const struct dma_map_ops *ops)
122{
123	if (use_dma_iommu(dev))
124		return false;
125
126	if (likely(!ops))
127		return true;
128
129#ifdef CONFIG_DMA_OPS_BYPASS
130	if (dev->dma_ops_bypass)
131		return min_not_zero(mask, dev->bus_dma_limit) >=
132			    dma_direct_get_required_mask(dev);
133#endif
134	return false;
135}
136
137
138/*
139 * Check if the devices uses a direct mapping for streaming DMA operations.
140 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141 * enough.
142 */
143static inline bool dma_alloc_direct(struct device *dev,
144		const struct dma_map_ops *ops)
145{
146	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147}
148
149static inline bool dma_map_direct(struct device *dev,
150		const struct dma_map_ops *ops)
151{
152	return dma_go_direct(dev, *dev->dma_mask, ops);
153}
154
155dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
156		size_t offset, size_t size, enum dma_data_direction dir,
157		unsigned long attrs)
158{
159	const struct dma_map_ops *ops = get_dma_ops(dev);
160	dma_addr_t addr;
161
162	BUG_ON(!valid_dma_direction(dir));
163
164	if (WARN_ON_ONCE(!dev->dma_mask))
165		return DMA_MAPPING_ERROR;
166
167	if (dma_map_direct(dev, ops) ||
168	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
169		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
170	else if (use_dma_iommu(dev))
171		addr = iommu_dma_map_page(dev, page, offset, size, dir, attrs);
172	else
173		addr = ops->map_page(dev, page, offset, size, dir, attrs);
174	kmsan_handle_dma(page, offset, size, dir);
175	trace_dma_map_page(dev, page_to_phys(page) + offset, addr, size, dir,
176			   attrs);
177	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
178
179	return addr;
180}
181EXPORT_SYMBOL(dma_map_page_attrs);
182
183void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
184		enum dma_data_direction dir, unsigned long attrs)
185{
186	const struct dma_map_ops *ops = get_dma_ops(dev);
187
188	BUG_ON(!valid_dma_direction(dir));
189	if (dma_map_direct(dev, ops) ||
190	    arch_dma_unmap_page_direct(dev, addr + size))
191		dma_direct_unmap_page(dev, addr, size, dir, attrs);
192	else if (use_dma_iommu(dev))
193		iommu_dma_unmap_page(dev, addr, size, dir, attrs);
194	else
195		ops->unmap_page(dev, addr, size, dir, attrs);
196	trace_dma_unmap_page(dev, addr, size, dir, attrs);
197	debug_dma_unmap_page(dev, addr, size, dir);
198}
199EXPORT_SYMBOL(dma_unmap_page_attrs);
200
201static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
202	 int nents, enum dma_data_direction dir, unsigned long attrs)
203{
204	const struct dma_map_ops *ops = get_dma_ops(dev);
205	int ents;
206
207	BUG_ON(!valid_dma_direction(dir));
208
209	if (WARN_ON_ONCE(!dev->dma_mask))
210		return 0;
211
212	if (dma_map_direct(dev, ops) ||
213	    arch_dma_map_sg_direct(dev, sg, nents))
214		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
215	else if (use_dma_iommu(dev))
216		ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
217	else
218		ents = ops->map_sg(dev, sg, nents, dir, attrs);
219
220	if (ents > 0) {
221		kmsan_handle_dma_sg(sg, nents, dir);
222		trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
223		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
224	} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
225				ents != -EIO && ents != -EREMOTEIO)) {
226		trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
227		return -EIO;
228	}
229
230	return ents;
231}
232
233/**
234 * dma_map_sg_attrs - Map the given buffer for DMA
235 * @dev:	The device for which to perform the DMA operation
236 * @sg:		The sg_table object describing the buffer
237 * @nents:	Number of entries to map
238 * @dir:	DMA direction
239 * @attrs:	Optional DMA attributes for the map operation
240 *
241 * Maps a buffer described by a scatterlist passed in the sg argument with
242 * nents segments for the @dir DMA operation by the @dev device.
243 *
244 * Returns the number of mapped entries (which can be less than nents)
245 * on success. Zero is returned for any error.
246 *
247 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
248 * original sg and original nents (not the value returned by this funciton).
249 */
250unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
251		    int nents, enum dma_data_direction dir, unsigned long attrs)
252{
253	int ret;
254
255	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
256	if (ret < 0)
257		return 0;
258	return ret;
259}
260EXPORT_SYMBOL(dma_map_sg_attrs);
261
262/**
263 * dma_map_sgtable - Map the given buffer for DMA
264 * @dev:	The device for which to perform the DMA operation
265 * @sgt:	The sg_table object describing the buffer
266 * @dir:	DMA direction
267 * @attrs:	Optional DMA attributes for the map operation
268 *
269 * Maps a buffer described by a scatterlist stored in the given sg_table
270 * object for the @dir DMA operation by the @dev device. After success, the
271 * ownership for the buffer is transferred to the DMA domain.  One has to
272 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
273 * ownership of the buffer back to the CPU domain before touching the
274 * buffer by the CPU.
275 *
276 * Returns 0 on success or a negative error code on error. The following
277 * error codes are supported with the given meaning:
278 *
279 *   -EINVAL		An invalid argument, unaligned access or other error
280 *			in usage. Will not succeed if retried.
281 *   -ENOMEM		Insufficient resources (like memory or IOVA space) to
282 *			complete the mapping. Should succeed if retried later.
283 *   -EIO		Legacy error code with an unknown meaning. eg. this is
284 *			returned if a lower level call returned
285 *			DMA_MAPPING_ERROR.
286 *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified
287 *			in the sg_table. This will not succeed if retried.
288 */
289int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
290		    enum dma_data_direction dir, unsigned long attrs)
291{
292	int nents;
293
294	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
295	if (nents < 0)
296		return nents;
297	sgt->nents = nents;
298	return 0;
299}
300EXPORT_SYMBOL_GPL(dma_map_sgtable);
301
302void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
303				      int nents, enum dma_data_direction dir,
304				      unsigned long attrs)
305{
306	const struct dma_map_ops *ops = get_dma_ops(dev);
307
308	BUG_ON(!valid_dma_direction(dir));
309	trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
310	debug_dma_unmap_sg(dev, sg, nents, dir);
311	if (dma_map_direct(dev, ops) ||
312	    arch_dma_unmap_sg_direct(dev, sg, nents))
313		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
314	else if (use_dma_iommu(dev))
315		iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
316	else if (ops->unmap_sg)
317		ops->unmap_sg(dev, sg, nents, dir, attrs);
318}
319EXPORT_SYMBOL(dma_unmap_sg_attrs);
320
321dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
322		size_t size, enum dma_data_direction dir, unsigned long attrs)
323{
324	const struct dma_map_ops *ops = get_dma_ops(dev);
325	dma_addr_t addr = DMA_MAPPING_ERROR;
326
327	BUG_ON(!valid_dma_direction(dir));
328
329	if (WARN_ON_ONCE(!dev->dma_mask))
330		return DMA_MAPPING_ERROR;
331
332	if (dma_map_direct(dev, ops))
333		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
334	else if (use_dma_iommu(dev))
335		addr = iommu_dma_map_resource(dev, phys_addr, size, dir, attrs);
336	else if (ops->map_resource)
337		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
338
339	trace_dma_map_resource(dev, phys_addr, addr, size, dir, attrs);
340	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
341	return addr;
342}
343EXPORT_SYMBOL(dma_map_resource);
344
345void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
346		enum dma_data_direction dir, unsigned long attrs)
347{
348	const struct dma_map_ops *ops = get_dma_ops(dev);
349
350	BUG_ON(!valid_dma_direction(dir));
351	if (dma_map_direct(dev, ops))
352		; /* nothing to do: uncached and no swiotlb */
353	else if (use_dma_iommu(dev))
354		iommu_dma_unmap_resource(dev, addr, size, dir, attrs);
355	else if (ops->unmap_resource)
356		ops->unmap_resource(dev, addr, size, dir, attrs);
357	trace_dma_unmap_resource(dev, addr, size, dir, attrs);
358	debug_dma_unmap_resource(dev, addr, size, dir);
359}
360EXPORT_SYMBOL(dma_unmap_resource);
361
362#ifdef CONFIG_DMA_NEED_SYNC
363void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
364		enum dma_data_direction dir)
365{
366	const struct dma_map_ops *ops = get_dma_ops(dev);
367
368	BUG_ON(!valid_dma_direction(dir));
369	if (dma_map_direct(dev, ops))
370		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
371	else if (use_dma_iommu(dev))
372		iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
373	else if (ops->sync_single_for_cpu)
374		ops->sync_single_for_cpu(dev, addr, size, dir);
375	trace_dma_sync_single_for_cpu(dev, addr, size, dir);
376	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
377}
378EXPORT_SYMBOL(__dma_sync_single_for_cpu);
379
380void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
381		size_t size, enum dma_data_direction dir)
382{
383	const struct dma_map_ops *ops = get_dma_ops(dev);
384
385	BUG_ON(!valid_dma_direction(dir));
386	if (dma_map_direct(dev, ops))
387		dma_direct_sync_single_for_device(dev, addr, size, dir);
388	else if (use_dma_iommu(dev))
389		iommu_dma_sync_single_for_device(dev, addr, size, dir);
390	else if (ops->sync_single_for_device)
391		ops->sync_single_for_device(dev, addr, size, dir);
392	trace_dma_sync_single_for_device(dev, addr, size, dir);
393	debug_dma_sync_single_for_device(dev, addr, size, dir);
394}
395EXPORT_SYMBOL(__dma_sync_single_for_device);
396
397void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
398		    int nelems, enum dma_data_direction dir)
399{
400	const struct dma_map_ops *ops = get_dma_ops(dev);
401
402	BUG_ON(!valid_dma_direction(dir));
403	if (dma_map_direct(dev, ops))
404		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
405	else if (use_dma_iommu(dev))
406		iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
407	else if (ops->sync_sg_for_cpu)
408		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
409	trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
410	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
411}
412EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
413
414void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
415		       int nelems, enum dma_data_direction dir)
416{
417	const struct dma_map_ops *ops = get_dma_ops(dev);
418
419	BUG_ON(!valid_dma_direction(dir));
420	if (dma_map_direct(dev, ops))
421		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
422	else if (use_dma_iommu(dev))
423		iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
424	else if (ops->sync_sg_for_device)
425		ops->sync_sg_for_device(dev, sg, nelems, dir);
426	trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
427	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
428}
429EXPORT_SYMBOL(__dma_sync_sg_for_device);
430
431bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
432{
433	const struct dma_map_ops *ops = get_dma_ops(dev);
434
435	if (dma_map_direct(dev, ops))
436		/*
437		 * dma_skip_sync could've been reset on first SWIOTLB buffer
438		 * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
439		 * In this case, fall back to more granular check.
440		 */
441		return dma_direct_need_sync(dev, dma_addr);
442	return true;
443}
444EXPORT_SYMBOL_GPL(__dma_need_sync);
445
446static void dma_setup_need_sync(struct device *dev)
447{
448	const struct dma_map_ops *ops = get_dma_ops(dev);
449
450	if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
451		/*
452		 * dma_skip_sync will be reset to %false on first SWIOTLB buffer
453		 * mapping, if any. During the device initialization, it's
454		 * enough to check only for the DMA coherence.
455		 */
456		dev->dma_skip_sync = dev_is_dma_coherent(dev);
457	else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
458		 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
459		/*
460		 * Synchronization is not possible when none of DMA sync ops
461		 * is set.
462		 */
463		dev->dma_skip_sync = true;
464	else
465		dev->dma_skip_sync = false;
466}
467#else /* !CONFIG_DMA_NEED_SYNC */
468static inline void dma_setup_need_sync(struct device *dev) { }
469#endif /* !CONFIG_DMA_NEED_SYNC */
470
471/*
472 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
473 * that the intention is to allow exporting memory allocated via the
474 * coherent DMA APIs through the dma_buf API, which only accepts a
475 * scattertable.  This presents a couple of problems:
476 * 1. Not all memory allocated via the coherent DMA APIs is backed by
477 *    a struct page
478 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
479 *    as we will try to flush the memory through a different alias to that
480 *    actually being used (and the flushes are redundant.)
481 */
482int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
483		void *cpu_addr, dma_addr_t dma_addr, size_t size,
484		unsigned long attrs)
485{
486	const struct dma_map_ops *ops = get_dma_ops(dev);
487
488	if (dma_alloc_direct(dev, ops))
489		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
490				size, attrs);
491	if (use_dma_iommu(dev))
492		return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
493				size, attrs);
494	if (!ops->get_sgtable)
495		return -ENXIO;
496	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
497}
498EXPORT_SYMBOL(dma_get_sgtable_attrs);
499
500#ifdef CONFIG_MMU
501/*
502 * Return the page attributes used for mapping dma_alloc_* memory, either in
503 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
504 */
505pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
506{
507	if (dev_is_dma_coherent(dev))
508		return prot;
509#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
510	if (attrs & DMA_ATTR_WRITE_COMBINE)
511		return pgprot_writecombine(prot);
512#endif
513	return pgprot_dmacoherent(prot);
514}
515#endif /* CONFIG_MMU */
516
517/**
518 * dma_can_mmap - check if a given device supports dma_mmap_*
519 * @dev: device to check
520 *
521 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
522 * map DMA allocations to userspace.
523 */
524bool dma_can_mmap(struct device *dev)
525{
526	const struct dma_map_ops *ops = get_dma_ops(dev);
527
528	if (dma_alloc_direct(dev, ops))
529		return dma_direct_can_mmap(dev);
530	if (use_dma_iommu(dev))
531		return true;
532	return ops->mmap != NULL;
533}
534EXPORT_SYMBOL_GPL(dma_can_mmap);
535
536/**
537 * dma_mmap_attrs - map a coherent DMA allocation into user space
538 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
539 * @vma: vm_area_struct describing requested user mapping
540 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
541 * @dma_addr: device-view address returned from dma_alloc_attrs
542 * @size: size of memory originally requested in dma_alloc_attrs
543 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
544 *
545 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
546 * space.  The coherent DMA buffer must not be freed by the driver until the
547 * user space mapping has been released.
548 */
549int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
550		void *cpu_addr, dma_addr_t dma_addr, size_t size,
551		unsigned long attrs)
552{
553	const struct dma_map_ops *ops = get_dma_ops(dev);
554
555	if (dma_alloc_direct(dev, ops))
556		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
557				attrs);
558	if (use_dma_iommu(dev))
559		return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
560				      attrs);
561	if (!ops->mmap)
562		return -ENXIO;
563	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
564}
565EXPORT_SYMBOL(dma_mmap_attrs);
566
567u64 dma_get_required_mask(struct device *dev)
568{
569	const struct dma_map_ops *ops = get_dma_ops(dev);
570
571	if (dma_alloc_direct(dev, ops))
572		return dma_direct_get_required_mask(dev);
573
574	if (use_dma_iommu(dev))
575		return DMA_BIT_MASK(32);
576
577	if (ops->get_required_mask)
578		return ops->get_required_mask(dev);
579
580	/*
581	 * We require every DMA ops implementation to at least support a 32-bit
582	 * DMA mask (and use bounce buffering if that isn't supported in
583	 * hardware).  As the direct mapping code has its own routine to
584	 * actually report an optimal mask we default to 32-bit here as that
585	 * is the right thing for most IOMMUs, and at least not actively
586	 * harmful in general.
587	 */
588	return DMA_BIT_MASK(32);
589}
590EXPORT_SYMBOL_GPL(dma_get_required_mask);
591
592void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
593		gfp_t flag, unsigned long attrs)
594{
595	const struct dma_map_ops *ops = get_dma_ops(dev);
596	void *cpu_addr;
597
598	WARN_ON_ONCE(!dev->coherent_dma_mask);
599
600	/*
601	 * DMA allocations can never be turned back into a page pointer, so
602	 * requesting compound pages doesn't make sense (and can't even be
603	 * supported at all by various backends).
604	 */
605	if (WARN_ON_ONCE(flag & __GFP_COMP))
606		return NULL;
607
608	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
609		trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
610				DMA_BIDIRECTIONAL, flag, attrs);
611		return cpu_addr;
612	}
613
614	/* let the implementation decide on the zone to allocate from: */
615	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
616
617	if (dma_alloc_direct(dev, ops)) {
618		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
619	} else if (use_dma_iommu(dev)) {
620		cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
621	} else if (ops->alloc) {
622		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
623	} else {
624		trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
625				attrs);
626		return NULL;
627	}
628
629	trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
630			flag, attrs);
631	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
632	return cpu_addr;
633}
634EXPORT_SYMBOL(dma_alloc_attrs);
635
636void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
637		dma_addr_t dma_handle, unsigned long attrs)
638{
639	const struct dma_map_ops *ops = get_dma_ops(dev);
640
641	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
642		return;
643	/*
644	 * On non-coherent platforms which implement DMA-coherent buffers via
645	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
646	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
647	 * sleep on some machines, and b) an indication that the driver is
648	 * probably misusing the coherent API anyway.
649	 */
650	WARN_ON(irqs_disabled());
651
652	trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
653		       attrs);
654	if (!cpu_addr)
655		return;
656
657	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
658	if (dma_alloc_direct(dev, ops))
659		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
660	else if (use_dma_iommu(dev))
661		iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
662	else if (ops->free)
663		ops->free(dev, size, cpu_addr, dma_handle, attrs);
664}
665EXPORT_SYMBOL(dma_free_attrs);
666
667static struct page *__dma_alloc_pages(struct device *dev, size_t size,
668		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
669{
670	const struct dma_map_ops *ops = get_dma_ops(dev);
671
672	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
673		return NULL;
674	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
675		return NULL;
676	if (WARN_ON_ONCE(gfp & __GFP_COMP))
677		return NULL;
678
679	size = PAGE_ALIGN(size);
680	if (dma_alloc_direct(dev, ops))
681		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
682	if (use_dma_iommu(dev))
683		return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
684	if (!ops->alloc_pages_op)
685		return NULL;
686	return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
687}
688
689struct page *dma_alloc_pages(struct device *dev, size_t size,
690		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
691{
692	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
693
694	if (page) {
695		trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
696				      size, dir, gfp, 0);
697		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
698	} else {
699		trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
700	}
701	return page;
702}
703EXPORT_SYMBOL_GPL(dma_alloc_pages);
704
705static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
706		dma_addr_t dma_handle, enum dma_data_direction dir)
707{
708	const struct dma_map_ops *ops = get_dma_ops(dev);
709
710	size = PAGE_ALIGN(size);
711	if (dma_alloc_direct(dev, ops))
712		dma_direct_free_pages(dev, size, page, dma_handle, dir);
713	else if (use_dma_iommu(dev))
714		dma_common_free_pages(dev, size, page, dma_handle, dir);
715	else if (ops->free_pages)
716		ops->free_pages(dev, size, page, dma_handle, dir);
717}
718
719void dma_free_pages(struct device *dev, size_t size, struct page *page,
720		dma_addr_t dma_handle, enum dma_data_direction dir)
721{
722	trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
723	debug_dma_unmap_page(dev, dma_handle, size, dir);
724	__dma_free_pages(dev, size, page, dma_handle, dir);
725}
726EXPORT_SYMBOL_GPL(dma_free_pages);
727
728int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
729		size_t size, struct page *page)
730{
731	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
732
733	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
734		return -ENXIO;
735	return remap_pfn_range(vma, vma->vm_start,
736			       page_to_pfn(page) + vma->vm_pgoff,
737			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
738}
739EXPORT_SYMBOL_GPL(dma_mmap_pages);
740
741static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
742		enum dma_data_direction dir, gfp_t gfp)
743{
744	struct sg_table *sgt;
745	struct page *page;
746
747	sgt = kmalloc(sizeof(*sgt), gfp);
748	if (!sgt)
749		return NULL;
750	if (sg_alloc_table(sgt, 1, gfp))
751		goto out_free_sgt;
752	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
753	if (!page)
754		goto out_free_table;
755	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
756	sg_dma_len(sgt->sgl) = sgt->sgl->length;
757	return sgt;
758out_free_table:
759	sg_free_table(sgt);
760out_free_sgt:
761	kfree(sgt);
762	return NULL;
763}
764
765struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
766		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
767{
 
768	struct sg_table *sgt;
769
770	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
771		return NULL;
772	if (WARN_ON_ONCE(gfp & __GFP_COMP))
773		return NULL;
774
775	if (use_dma_iommu(dev))
776		sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
777	else
778		sgt = alloc_single_sgt(dev, size, dir, gfp);
779
780	if (sgt) {
781		sgt->nents = 1;
782		trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
783		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
784	} else {
785		trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
786	}
787	return sgt;
788}
789EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
790
791static void free_single_sgt(struct device *dev, size_t size,
792		struct sg_table *sgt, enum dma_data_direction dir)
793{
794	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
795			 dir);
796	sg_free_table(sgt);
797	kfree(sgt);
798}
799
800void dma_free_noncontiguous(struct device *dev, size_t size,
801		struct sg_table *sgt, enum dma_data_direction dir)
802{
803	trace_dma_free_sgt(dev, sgt, size, dir);
804	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
805
806	if (use_dma_iommu(dev))
807		iommu_dma_free_noncontiguous(dev, size, sgt, dir);
 
808	else
809		free_single_sgt(dev, size, sgt, dir);
810}
811EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
812
813void *dma_vmap_noncontiguous(struct device *dev, size_t size,
814		struct sg_table *sgt)
815{
 
 
816
817	if (use_dma_iommu(dev))
818		return iommu_dma_vmap_noncontiguous(dev, size, sgt);
819
820	return page_address(sg_page(sgt->sgl));
821}
822EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
823
824void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
825{
826	if (use_dma_iommu(dev))
827		iommu_dma_vunmap_noncontiguous(dev, vaddr);
 
 
828}
829EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
830
831int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
832		size_t size, struct sg_table *sgt)
833{
834	if (use_dma_iommu(dev))
835		return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
 
 
 
 
 
 
 
 
836	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
837}
838EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
839
840static int dma_supported(struct device *dev, u64 mask)
841{
842	const struct dma_map_ops *ops = get_dma_ops(dev);
843
844	if (use_dma_iommu(dev)) {
845		if (WARN_ON(ops))
846			return false;
847		return true;
848	}
849
850	/*
851	 * ->dma_supported sets and clears the bypass flag, so ignore it here
852	 * and always call into the method if there is one.
853	 */
854	if (ops) {
855		if (!ops->dma_supported)
856			return true;
857		return ops->dma_supported(dev, mask);
858	}
859
860	return dma_direct_supported(dev, mask);
861}
862
863bool dma_pci_p2pdma_supported(struct device *dev)
864{
865	const struct dma_map_ops *ops = get_dma_ops(dev);
866
 
 
 
 
867	/*
868	 * Note: dma_ops_bypass is not checked here because P2PDMA should
869	 * not be used with dma mapping ops that do not have support even
870	 * if the specific device is bypassing them.
871	 */
872
873	/* if ops is not set, dma direct and default IOMMU support P2PDMA */
874	return !ops;
875}
876EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
877
878int dma_set_mask(struct device *dev, u64 mask)
879{
880	/*
881	 * Truncate the mask to the actually supported dma_addr_t width to
882	 * avoid generating unsupportable addresses.
883	 */
884	mask = (dma_addr_t)mask;
885
886	if (!dev->dma_mask || !dma_supported(dev, mask))
887		return -EIO;
888
889	arch_dma_set_mask(dev, mask);
890	*dev->dma_mask = mask;
891	dma_setup_need_sync(dev);
892
893	return 0;
894}
895EXPORT_SYMBOL(dma_set_mask);
896
897int dma_set_coherent_mask(struct device *dev, u64 mask)
898{
899	/*
900	 * Truncate the mask to the actually supported dma_addr_t width to
901	 * avoid generating unsupportable addresses.
902	 */
903	mask = (dma_addr_t)mask;
904
905	if (!dma_supported(dev, mask))
906		return -EIO;
907
908	dev->coherent_dma_mask = mask;
909	return 0;
910}
911EXPORT_SYMBOL(dma_set_coherent_mask);
912
913/**
914 * dma_addressing_limited - return if the device is addressing limited
915 * @dev:	device to check
916 *
917 * Return %true if the devices DMA mask is too small to address all memory in
918 * the system, else %false.  Lack of addressing bits is the prime reason for
919 * bounce buffering, but might not be the only one.
920 */
921bool dma_addressing_limited(struct device *dev)
922{
923	const struct dma_map_ops *ops = get_dma_ops(dev);
924
925	if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
926			 dma_get_required_mask(dev))
927		return true;
928
929	if (unlikely(ops) || use_dma_iommu(dev))
930		return false;
931	return !dma_direct_all_ram_mapped(dev);
932}
933EXPORT_SYMBOL_GPL(dma_addressing_limited);
934
935size_t dma_max_mapping_size(struct device *dev)
936{
937	const struct dma_map_ops *ops = get_dma_ops(dev);
938	size_t size = SIZE_MAX;
939
940	if (dma_map_direct(dev, ops))
941		size = dma_direct_max_mapping_size(dev);
942	else if (use_dma_iommu(dev))
943		size = iommu_dma_max_mapping_size(dev);
944	else if (ops && ops->max_mapping_size)
945		size = ops->max_mapping_size(dev);
946
947	return size;
948}
949EXPORT_SYMBOL_GPL(dma_max_mapping_size);
950
951size_t dma_opt_mapping_size(struct device *dev)
952{
953	const struct dma_map_ops *ops = get_dma_ops(dev);
954	size_t size = SIZE_MAX;
955
956	if (use_dma_iommu(dev))
957		size = iommu_dma_opt_mapping_size();
958	else if (ops && ops->opt_mapping_size)
959		size = ops->opt_mapping_size();
960
961	return min(dma_max_mapping_size(dev), size);
962}
963EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
964
965unsigned long dma_get_merge_boundary(struct device *dev)
966{
967	const struct dma_map_ops *ops = get_dma_ops(dev);
968
969	if (use_dma_iommu(dev))
970		return iommu_dma_get_merge_boundary(dev);
 
 
 
 
 
 
 
971
972	if (!ops || !ops->get_merge_boundary)
973		return 0;	/* can't merge */
974
975	return ops->get_merge_boundary(dev);
976}
977EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch-independent dma-mapping routines
  4 *
  5 * Copyright (c) 2006  SUSE Linux Products GmbH
  6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
  7 */
  8#include <linux/memblock.h> /* for max_pfn */
  9#include <linux/acpi.h>
 10#include <linux/dma-map-ops.h>
 11#include <linux/export.h>
 12#include <linux/gfp.h>
 
 13#include <linux/kmsan.h>
 14#include <linux/of_device.h>
 15#include <linux/slab.h>
 16#include <linux/vmalloc.h>
 17#include "debug.h"
 18#include "direct.h"
 19
 
 
 
 20#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
 21	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
 22	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
 23bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
 24#endif
 25
 26/*
 27 * Managed DMA API
 28 */
 29struct dma_devres {
 30	size_t		size;
 31	void		*vaddr;
 32	dma_addr_t	dma_handle;
 33	unsigned long	attrs;
 34};
 35
 36static void dmam_release(struct device *dev, void *res)
 37{
 38	struct dma_devres *this = res;
 39
 40	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
 41			this->attrs);
 42}
 43
 44static int dmam_match(struct device *dev, void *res, void *match_data)
 45{
 46	struct dma_devres *this = res, *match = match_data;
 47
 48	if (this->vaddr == match->vaddr) {
 49		WARN_ON(this->size != match->size ||
 50			this->dma_handle != match->dma_handle);
 51		return 1;
 52	}
 53	return 0;
 54}
 55
 56/**
 57 * dmam_free_coherent - Managed dma_free_coherent()
 58 * @dev: Device to free coherent memory for
 59 * @size: Size of allocation
 60 * @vaddr: Virtual address of the memory to free
 61 * @dma_handle: DMA handle of the memory to free
 62 *
 63 * Managed dma_free_coherent().
 64 */
 65void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
 66			dma_addr_t dma_handle)
 67{
 68	struct dma_devres match_data = { size, vaddr, dma_handle };
 69
 
 70	dma_free_coherent(dev, size, vaddr, dma_handle);
 71	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 72}
 73EXPORT_SYMBOL(dmam_free_coherent);
 74
 75/**
 76 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 77 * @dev: Device to allocate non_coherent memory for
 78 * @size: Size of allocation
 79 * @dma_handle: Out argument for allocated DMA handle
 80 * @gfp: Allocation flags
 81 * @attrs: Flags in the DMA_ATTR_* namespace.
 82 *
 83 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 84 * automatically released on driver detach.
 85 *
 86 * RETURNS:
 87 * Pointer to allocated memory on success, NULL on failure.
 88 */
 89void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 90		gfp_t gfp, unsigned long attrs)
 91{
 92	struct dma_devres *dr;
 93	void *vaddr;
 94
 95	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
 96	if (!dr)
 97		return NULL;
 98
 99	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
100	if (!vaddr) {
101		devres_free(dr);
102		return NULL;
103	}
104
105	dr->vaddr = vaddr;
106	dr->dma_handle = *dma_handle;
107	dr->size = size;
108	dr->attrs = attrs;
109
110	devres_add(dev, dr);
111
112	return vaddr;
113}
114EXPORT_SYMBOL(dmam_alloc_attrs);
115
116static bool dma_go_direct(struct device *dev, dma_addr_t mask,
117		const struct dma_map_ops *ops)
118{
 
 
 
119	if (likely(!ops))
120		return true;
 
121#ifdef CONFIG_DMA_OPS_BYPASS
122	if (dev->dma_ops_bypass)
123		return min_not_zero(mask, dev->bus_dma_limit) >=
124			    dma_direct_get_required_mask(dev);
125#endif
126	return false;
127}
128
129
130/*
131 * Check if the devices uses a direct mapping for streaming DMA operations.
132 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
133 * enough.
134 */
135static inline bool dma_alloc_direct(struct device *dev,
136		const struct dma_map_ops *ops)
137{
138	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
139}
140
141static inline bool dma_map_direct(struct device *dev,
142		const struct dma_map_ops *ops)
143{
144	return dma_go_direct(dev, *dev->dma_mask, ops);
145}
146
147dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
148		size_t offset, size_t size, enum dma_data_direction dir,
149		unsigned long attrs)
150{
151	const struct dma_map_ops *ops = get_dma_ops(dev);
152	dma_addr_t addr;
153
154	BUG_ON(!valid_dma_direction(dir));
155
156	if (WARN_ON_ONCE(!dev->dma_mask))
157		return DMA_MAPPING_ERROR;
158
159	if (dma_map_direct(dev, ops) ||
160	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
161		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
 
 
162	else
163		addr = ops->map_page(dev, page, offset, size, dir, attrs);
164	kmsan_handle_dma(page, offset, size, dir);
 
 
165	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
166
167	return addr;
168}
169EXPORT_SYMBOL(dma_map_page_attrs);
170
171void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
172		enum dma_data_direction dir, unsigned long attrs)
173{
174	const struct dma_map_ops *ops = get_dma_ops(dev);
175
176	BUG_ON(!valid_dma_direction(dir));
177	if (dma_map_direct(dev, ops) ||
178	    arch_dma_unmap_page_direct(dev, addr + size))
179		dma_direct_unmap_page(dev, addr, size, dir, attrs);
180	else if (ops->unmap_page)
 
 
181		ops->unmap_page(dev, addr, size, dir, attrs);
 
182	debug_dma_unmap_page(dev, addr, size, dir);
183}
184EXPORT_SYMBOL(dma_unmap_page_attrs);
185
186static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
187	 int nents, enum dma_data_direction dir, unsigned long attrs)
188{
189	const struct dma_map_ops *ops = get_dma_ops(dev);
190	int ents;
191
192	BUG_ON(!valid_dma_direction(dir));
193
194	if (WARN_ON_ONCE(!dev->dma_mask))
195		return 0;
196
197	if (dma_map_direct(dev, ops) ||
198	    arch_dma_map_sg_direct(dev, sg, nents))
199		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
 
 
200	else
201		ents = ops->map_sg(dev, sg, nents, dir, attrs);
202
203	if (ents > 0) {
204		kmsan_handle_dma_sg(sg, nents, dir);
 
205		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
206	} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
207				ents != -EIO && ents != -EREMOTEIO)) {
 
208		return -EIO;
209	}
210
211	return ents;
212}
213
214/**
215 * dma_map_sg_attrs - Map the given buffer for DMA
216 * @dev:	The device for which to perform the DMA operation
217 * @sg:		The sg_table object describing the buffer
218 * @nents:	Number of entries to map
219 * @dir:	DMA direction
220 * @attrs:	Optional DMA attributes for the map operation
221 *
222 * Maps a buffer described by a scatterlist passed in the sg argument with
223 * nents segments for the @dir DMA operation by the @dev device.
224 *
225 * Returns the number of mapped entries (which can be less than nents)
226 * on success. Zero is returned for any error.
227 *
228 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
229 * original sg and original nents (not the value returned by this funciton).
230 */
231unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
232		    int nents, enum dma_data_direction dir, unsigned long attrs)
233{
234	int ret;
235
236	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
237	if (ret < 0)
238		return 0;
239	return ret;
240}
241EXPORT_SYMBOL(dma_map_sg_attrs);
242
243/**
244 * dma_map_sgtable - Map the given buffer for DMA
245 * @dev:	The device for which to perform the DMA operation
246 * @sgt:	The sg_table object describing the buffer
247 * @dir:	DMA direction
248 * @attrs:	Optional DMA attributes for the map operation
249 *
250 * Maps a buffer described by a scatterlist stored in the given sg_table
251 * object for the @dir DMA operation by the @dev device. After success, the
252 * ownership for the buffer is transferred to the DMA domain.  One has to
253 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
254 * ownership of the buffer back to the CPU domain before touching the
255 * buffer by the CPU.
256 *
257 * Returns 0 on success or a negative error code on error. The following
258 * error codes are supported with the given meaning:
259 *
260 *   -EINVAL		An invalid argument, unaligned access or other error
261 *			in usage. Will not succeed if retried.
262 *   -ENOMEM		Insufficient resources (like memory or IOVA space) to
263 *			complete the mapping. Should succeed if retried later.
264 *   -EIO		Legacy error code with an unknown meaning. eg. this is
265 *			returned if a lower level call returned
266 *			DMA_MAPPING_ERROR.
267 *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified
268 *			in the sg_table. This will not succeed if retried.
269 */
270int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
271		    enum dma_data_direction dir, unsigned long attrs)
272{
273	int nents;
274
275	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
276	if (nents < 0)
277		return nents;
278	sgt->nents = nents;
279	return 0;
280}
281EXPORT_SYMBOL_GPL(dma_map_sgtable);
282
283void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
284				      int nents, enum dma_data_direction dir,
285				      unsigned long attrs)
286{
287	const struct dma_map_ops *ops = get_dma_ops(dev);
288
289	BUG_ON(!valid_dma_direction(dir));
 
290	debug_dma_unmap_sg(dev, sg, nents, dir);
291	if (dma_map_direct(dev, ops) ||
292	    arch_dma_unmap_sg_direct(dev, sg, nents))
293		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
 
 
294	else if (ops->unmap_sg)
295		ops->unmap_sg(dev, sg, nents, dir, attrs);
296}
297EXPORT_SYMBOL(dma_unmap_sg_attrs);
298
299dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
300		size_t size, enum dma_data_direction dir, unsigned long attrs)
301{
302	const struct dma_map_ops *ops = get_dma_ops(dev);
303	dma_addr_t addr = DMA_MAPPING_ERROR;
304
305	BUG_ON(!valid_dma_direction(dir));
306
307	if (WARN_ON_ONCE(!dev->dma_mask))
308		return DMA_MAPPING_ERROR;
309
310	if (dma_map_direct(dev, ops))
311		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
 
 
312	else if (ops->map_resource)
313		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
314
 
315	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
316	return addr;
317}
318EXPORT_SYMBOL(dma_map_resource);
319
320void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
321		enum dma_data_direction dir, unsigned long attrs)
322{
323	const struct dma_map_ops *ops = get_dma_ops(dev);
324
325	BUG_ON(!valid_dma_direction(dir));
326	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
 
 
 
 
327		ops->unmap_resource(dev, addr, size, dir, attrs);
 
328	debug_dma_unmap_resource(dev, addr, size, dir);
329}
330EXPORT_SYMBOL(dma_unmap_resource);
331
332void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 
333		enum dma_data_direction dir)
334{
335	const struct dma_map_ops *ops = get_dma_ops(dev);
336
337	BUG_ON(!valid_dma_direction(dir));
338	if (dma_map_direct(dev, ops))
339		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
 
 
340	else if (ops->sync_single_for_cpu)
341		ops->sync_single_for_cpu(dev, addr, size, dir);
 
342	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
343}
344EXPORT_SYMBOL(dma_sync_single_for_cpu);
345
346void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
347		size_t size, enum dma_data_direction dir)
348{
349	const struct dma_map_ops *ops = get_dma_ops(dev);
350
351	BUG_ON(!valid_dma_direction(dir));
352	if (dma_map_direct(dev, ops))
353		dma_direct_sync_single_for_device(dev, addr, size, dir);
 
 
354	else if (ops->sync_single_for_device)
355		ops->sync_single_for_device(dev, addr, size, dir);
 
356	debug_dma_sync_single_for_device(dev, addr, size, dir);
357}
358EXPORT_SYMBOL(dma_sync_single_for_device);
359
360void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
361		    int nelems, enum dma_data_direction dir)
362{
363	const struct dma_map_ops *ops = get_dma_ops(dev);
364
365	BUG_ON(!valid_dma_direction(dir));
366	if (dma_map_direct(dev, ops))
367		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
 
 
368	else if (ops->sync_sg_for_cpu)
369		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
 
370	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
371}
372EXPORT_SYMBOL(dma_sync_sg_for_cpu);
373
374void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
375		       int nelems, enum dma_data_direction dir)
376{
377	const struct dma_map_ops *ops = get_dma_ops(dev);
378
379	BUG_ON(!valid_dma_direction(dir));
380	if (dma_map_direct(dev, ops))
381		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
 
 
382	else if (ops->sync_sg_for_device)
383		ops->sync_sg_for_device(dev, sg, nelems, dir);
 
384	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
385}
386EXPORT_SYMBOL(dma_sync_sg_for_device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387
388/*
389 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
390 * that the intention is to allow exporting memory allocated via the
391 * coherent DMA APIs through the dma_buf API, which only accepts a
392 * scattertable.  This presents a couple of problems:
393 * 1. Not all memory allocated via the coherent DMA APIs is backed by
394 *    a struct page
395 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
396 *    as we will try to flush the memory through a different alias to that
397 *    actually being used (and the flushes are redundant.)
398 */
399int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
400		void *cpu_addr, dma_addr_t dma_addr, size_t size,
401		unsigned long attrs)
402{
403	const struct dma_map_ops *ops = get_dma_ops(dev);
404
405	if (dma_alloc_direct(dev, ops))
406		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
407				size, attrs);
 
 
 
408	if (!ops->get_sgtable)
409		return -ENXIO;
410	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
411}
412EXPORT_SYMBOL(dma_get_sgtable_attrs);
413
414#ifdef CONFIG_MMU
415/*
416 * Return the page attributes used for mapping dma_alloc_* memory, either in
417 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
418 */
419pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
420{
421	if (dev_is_dma_coherent(dev))
422		return prot;
423#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
424	if (attrs & DMA_ATTR_WRITE_COMBINE)
425		return pgprot_writecombine(prot);
426#endif
427	return pgprot_dmacoherent(prot);
428}
429#endif /* CONFIG_MMU */
430
431/**
432 * dma_can_mmap - check if a given device supports dma_mmap_*
433 * @dev: device to check
434 *
435 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
436 * map DMA allocations to userspace.
437 */
438bool dma_can_mmap(struct device *dev)
439{
440	const struct dma_map_ops *ops = get_dma_ops(dev);
441
442	if (dma_alloc_direct(dev, ops))
443		return dma_direct_can_mmap(dev);
 
 
444	return ops->mmap != NULL;
445}
446EXPORT_SYMBOL_GPL(dma_can_mmap);
447
448/**
449 * dma_mmap_attrs - map a coherent DMA allocation into user space
450 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
451 * @vma: vm_area_struct describing requested user mapping
452 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
453 * @dma_addr: device-view address returned from dma_alloc_attrs
454 * @size: size of memory originally requested in dma_alloc_attrs
455 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
456 *
457 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
458 * space.  The coherent DMA buffer must not be freed by the driver until the
459 * user space mapping has been released.
460 */
461int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
462		void *cpu_addr, dma_addr_t dma_addr, size_t size,
463		unsigned long attrs)
464{
465	const struct dma_map_ops *ops = get_dma_ops(dev);
466
467	if (dma_alloc_direct(dev, ops))
468		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
469				attrs);
 
 
 
470	if (!ops->mmap)
471		return -ENXIO;
472	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
473}
474EXPORT_SYMBOL(dma_mmap_attrs);
475
476u64 dma_get_required_mask(struct device *dev)
477{
478	const struct dma_map_ops *ops = get_dma_ops(dev);
479
480	if (dma_alloc_direct(dev, ops))
481		return dma_direct_get_required_mask(dev);
 
 
 
 
482	if (ops->get_required_mask)
483		return ops->get_required_mask(dev);
484
485	/*
486	 * We require every DMA ops implementation to at least support a 32-bit
487	 * DMA mask (and use bounce buffering if that isn't supported in
488	 * hardware).  As the direct mapping code has its own routine to
489	 * actually report an optimal mask we default to 32-bit here as that
490	 * is the right thing for most IOMMUs, and at least not actively
491	 * harmful in general.
492	 */
493	return DMA_BIT_MASK(32);
494}
495EXPORT_SYMBOL_GPL(dma_get_required_mask);
496
497void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
498		gfp_t flag, unsigned long attrs)
499{
500	const struct dma_map_ops *ops = get_dma_ops(dev);
501	void *cpu_addr;
502
503	WARN_ON_ONCE(!dev->coherent_dma_mask);
504
505	/*
506	 * DMA allocations can never be turned back into a page pointer, so
507	 * requesting compound pages doesn't make sense (and can't even be
508	 * supported at all by various backends).
509	 */
510	if (WARN_ON_ONCE(flag & __GFP_COMP))
511		return NULL;
512
513	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
 
 
514		return cpu_addr;
 
515
516	/* let the implementation decide on the zone to allocate from: */
517	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
518
519	if (dma_alloc_direct(dev, ops))
520		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
521	else if (ops->alloc)
 
 
522		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
523	else
 
 
524		return NULL;
 
525
 
 
526	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
527	return cpu_addr;
528}
529EXPORT_SYMBOL(dma_alloc_attrs);
530
531void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
532		dma_addr_t dma_handle, unsigned long attrs)
533{
534	const struct dma_map_ops *ops = get_dma_ops(dev);
535
536	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
537		return;
538	/*
539	 * On non-coherent platforms which implement DMA-coherent buffers via
540	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
541	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
542	 * sleep on some machines, and b) an indication that the driver is
543	 * probably misusing the coherent API anyway.
544	 */
545	WARN_ON(irqs_disabled());
546
 
 
547	if (!cpu_addr)
548		return;
549
550	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
551	if (dma_alloc_direct(dev, ops))
552		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
 
 
553	else if (ops->free)
554		ops->free(dev, size, cpu_addr, dma_handle, attrs);
555}
556EXPORT_SYMBOL(dma_free_attrs);
557
558static struct page *__dma_alloc_pages(struct device *dev, size_t size,
559		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
560{
561	const struct dma_map_ops *ops = get_dma_ops(dev);
562
563	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
564		return NULL;
565	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
566		return NULL;
567	if (WARN_ON_ONCE(gfp & __GFP_COMP))
568		return NULL;
569
570	size = PAGE_ALIGN(size);
571	if (dma_alloc_direct(dev, ops))
572		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
573	if (!ops->alloc_pages)
 
 
574		return NULL;
575	return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
576}
577
578struct page *dma_alloc_pages(struct device *dev, size_t size,
579		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
580{
581	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
582
583	if (page)
 
 
584		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
 
 
 
585	return page;
586}
587EXPORT_SYMBOL_GPL(dma_alloc_pages);
588
589static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
590		dma_addr_t dma_handle, enum dma_data_direction dir)
591{
592	const struct dma_map_ops *ops = get_dma_ops(dev);
593
594	size = PAGE_ALIGN(size);
595	if (dma_alloc_direct(dev, ops))
596		dma_direct_free_pages(dev, size, page, dma_handle, dir);
 
 
597	else if (ops->free_pages)
598		ops->free_pages(dev, size, page, dma_handle, dir);
599}
600
601void dma_free_pages(struct device *dev, size_t size, struct page *page,
602		dma_addr_t dma_handle, enum dma_data_direction dir)
603{
 
604	debug_dma_unmap_page(dev, dma_handle, size, dir);
605	__dma_free_pages(dev, size, page, dma_handle, dir);
606}
607EXPORT_SYMBOL_GPL(dma_free_pages);
608
609int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
610		size_t size, struct page *page)
611{
612	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
613
614	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
615		return -ENXIO;
616	return remap_pfn_range(vma, vma->vm_start,
617			       page_to_pfn(page) + vma->vm_pgoff,
618			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
619}
620EXPORT_SYMBOL_GPL(dma_mmap_pages);
621
622static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
623		enum dma_data_direction dir, gfp_t gfp)
624{
625	struct sg_table *sgt;
626	struct page *page;
627
628	sgt = kmalloc(sizeof(*sgt), gfp);
629	if (!sgt)
630		return NULL;
631	if (sg_alloc_table(sgt, 1, gfp))
632		goto out_free_sgt;
633	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
634	if (!page)
635		goto out_free_table;
636	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
637	sg_dma_len(sgt->sgl) = sgt->sgl->length;
638	return sgt;
639out_free_table:
640	sg_free_table(sgt);
641out_free_sgt:
642	kfree(sgt);
643	return NULL;
644}
645
646struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
647		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
648{
649	const struct dma_map_ops *ops = get_dma_ops(dev);
650	struct sg_table *sgt;
651
652	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
653		return NULL;
654	if (WARN_ON_ONCE(gfp & __GFP_COMP))
655		return NULL;
656
657	if (ops && ops->alloc_noncontiguous)
658		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
659	else
660		sgt = alloc_single_sgt(dev, size, dir, gfp);
661
662	if (sgt) {
663		sgt->nents = 1;
 
664		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
 
 
665	}
666	return sgt;
667}
668EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
669
670static void free_single_sgt(struct device *dev, size_t size,
671		struct sg_table *sgt, enum dma_data_direction dir)
672{
673	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
674			 dir);
675	sg_free_table(sgt);
676	kfree(sgt);
677}
678
679void dma_free_noncontiguous(struct device *dev, size_t size,
680		struct sg_table *sgt, enum dma_data_direction dir)
681{
682	const struct dma_map_ops *ops = get_dma_ops(dev);
 
683
684	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
685	if (ops && ops->free_noncontiguous)
686		ops->free_noncontiguous(dev, size, sgt, dir);
687	else
688		free_single_sgt(dev, size, sgt, dir);
689}
690EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
691
692void *dma_vmap_noncontiguous(struct device *dev, size_t size,
693		struct sg_table *sgt)
694{
695	const struct dma_map_ops *ops = get_dma_ops(dev);
696	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
697
698	if (ops && ops->alloc_noncontiguous)
699		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
 
700	return page_address(sg_page(sgt->sgl));
701}
702EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
703
704void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
705{
706	const struct dma_map_ops *ops = get_dma_ops(dev);
707
708	if (ops && ops->alloc_noncontiguous)
709		vunmap(vaddr);
710}
711EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
712
713int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
714		size_t size, struct sg_table *sgt)
715{
716	const struct dma_map_ops *ops = get_dma_ops(dev);
717
718	if (ops && ops->alloc_noncontiguous) {
719		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
720
721		if (vma->vm_pgoff >= count ||
722		    vma_pages(vma) > count - vma->vm_pgoff)
723			return -ENXIO;
724		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
725	}
726	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
727}
728EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
729
730static int dma_supported(struct device *dev, u64 mask)
731{
732	const struct dma_map_ops *ops = get_dma_ops(dev);
733
 
 
 
 
 
 
734	/*
735	 * ->dma_supported sets the bypass flag, so we must always call
736	 * into the method here unless the device is truly direct mapped.
737	 */
738	if (!ops)
739		return dma_direct_supported(dev, mask);
740	if (!ops->dma_supported)
741		return 1;
742	return ops->dma_supported(dev, mask);
 
 
743}
744
745bool dma_pci_p2pdma_supported(struct device *dev)
746{
747	const struct dma_map_ops *ops = get_dma_ops(dev);
748
749	/* if ops is not set, dma direct will be used which supports P2PDMA */
750	if (!ops)
751		return true;
752
753	/*
754	 * Note: dma_ops_bypass is not checked here because P2PDMA should
755	 * not be used with dma mapping ops that do not have support even
756	 * if the specific device is bypassing them.
757	 */
758
759	return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
 
760}
761EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
762
763int dma_set_mask(struct device *dev, u64 mask)
764{
765	/*
766	 * Truncate the mask to the actually supported dma_addr_t width to
767	 * avoid generating unsupportable addresses.
768	 */
769	mask = (dma_addr_t)mask;
770
771	if (!dev->dma_mask || !dma_supported(dev, mask))
772		return -EIO;
773
774	arch_dma_set_mask(dev, mask);
775	*dev->dma_mask = mask;
 
 
776	return 0;
777}
778EXPORT_SYMBOL(dma_set_mask);
779
780int dma_set_coherent_mask(struct device *dev, u64 mask)
781{
782	/*
783	 * Truncate the mask to the actually supported dma_addr_t width to
784	 * avoid generating unsupportable addresses.
785	 */
786	mask = (dma_addr_t)mask;
787
788	if (!dma_supported(dev, mask))
789		return -EIO;
790
791	dev->coherent_dma_mask = mask;
792	return 0;
793}
794EXPORT_SYMBOL(dma_set_coherent_mask);
795
796/**
797 * dma_addressing_limited - return if the device is addressing limited
798 * @dev:	device to check
799 *
800 * Return %true if the devices DMA mask is too small to address all memory in
801 * the system, else %false.  Lack of addressing bits is the prime reason for
802 * bounce buffering, but might not be the only one.
803 */
804bool dma_addressing_limited(struct device *dev)
805{
806	const struct dma_map_ops *ops = get_dma_ops(dev);
807
808	if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
809			 dma_get_required_mask(dev))
810		return true;
811
812	if (unlikely(ops))
813		return false;
814	return !dma_direct_all_ram_mapped(dev);
815}
816EXPORT_SYMBOL_GPL(dma_addressing_limited);
817
818size_t dma_max_mapping_size(struct device *dev)
819{
820	const struct dma_map_ops *ops = get_dma_ops(dev);
821	size_t size = SIZE_MAX;
822
823	if (dma_map_direct(dev, ops))
824		size = dma_direct_max_mapping_size(dev);
 
 
825	else if (ops && ops->max_mapping_size)
826		size = ops->max_mapping_size(dev);
827
828	return size;
829}
830EXPORT_SYMBOL_GPL(dma_max_mapping_size);
831
832size_t dma_opt_mapping_size(struct device *dev)
833{
834	const struct dma_map_ops *ops = get_dma_ops(dev);
835	size_t size = SIZE_MAX;
836
837	if (ops && ops->opt_mapping_size)
 
 
838		size = ops->opt_mapping_size();
839
840	return min(dma_max_mapping_size(dev), size);
841}
842EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
843
844bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
845{
846	const struct dma_map_ops *ops = get_dma_ops(dev);
847
848	if (dma_map_direct(dev, ops))
849		return dma_direct_need_sync(dev, dma_addr);
850	return ops->sync_single_for_cpu || ops->sync_single_for_device;
851}
852EXPORT_SYMBOL_GPL(dma_need_sync);
853
854unsigned long dma_get_merge_boundary(struct device *dev)
855{
856	const struct dma_map_ops *ops = get_dma_ops(dev);
857
858	if (!ops || !ops->get_merge_boundary)
859		return 0;	/* can't merge */
860
861	return ops->get_merge_boundary(dev);
862}
863EXPORT_SYMBOL_GPL(dma_get_merge_boundary);