Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *	Jay Schulist <jschlst@samba.org>
  13 *	Alexei Starovoitov <ast@plumgrid.com>
  14 *	Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <uapi/linux/btf.h>
  21#include <linux/filter.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/prandom.h>
 
  25#include <linux/bpf.h>
  26#include <linux/btf.h>
  27#include <linux/objtool.h>
  28#include <linux/overflow.h>
  29#include <linux/rbtree_latch.h>
  30#include <linux/kallsyms.h>
  31#include <linux/rcupdate.h>
  32#include <linux/perf_event.h>
  33#include <linux/extable.h>
  34#include <linux/log2.h>
  35#include <linux/bpf_verifier.h>
  36#include <linux/nodemask.h>
  37#include <linux/nospec.h>
  38#include <linux/bpf_mem_alloc.h>
  39#include <linux/memcontrol.h>
  40#include <linux/execmem.h>
  41
  42#include <asm/barrier.h>
  43#include <linux/unaligned.h>
  44
  45/* Registers */
  46#define BPF_R0	regs[BPF_REG_0]
  47#define BPF_R1	regs[BPF_REG_1]
  48#define BPF_R2	regs[BPF_REG_2]
  49#define BPF_R3	regs[BPF_REG_3]
  50#define BPF_R4	regs[BPF_REG_4]
  51#define BPF_R5	regs[BPF_REG_5]
  52#define BPF_R6	regs[BPF_REG_6]
  53#define BPF_R7	regs[BPF_REG_7]
  54#define BPF_R8	regs[BPF_REG_8]
  55#define BPF_R9	regs[BPF_REG_9]
  56#define BPF_R10	regs[BPF_REG_10]
  57
  58/* Named registers */
  59#define DST	regs[insn->dst_reg]
  60#define SRC	regs[insn->src_reg]
  61#define FP	regs[BPF_REG_FP]
  62#define AX	regs[BPF_REG_AX]
  63#define ARG1	regs[BPF_REG_ARG1]
  64#define CTX	regs[BPF_REG_CTX]
  65#define OFF	insn->off
  66#define IMM	insn->imm
  67
  68struct bpf_mem_alloc bpf_global_ma;
  69bool bpf_global_ma_set;
  70
  71/* No hurry in this branch
  72 *
  73 * Exported for the bpf jit load helper.
  74 */
  75void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  76{
  77	u8 *ptr = NULL;
  78
  79	if (k >= SKF_NET_OFF) {
  80		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  81	} else if (k >= SKF_LL_OFF) {
  82		if (unlikely(!skb_mac_header_was_set(skb)))
  83			return NULL;
  84		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  85	}
  86	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  87		return ptr;
  88
  89	return NULL;
  90}
  91
  92/* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
  93enum page_size_enum {
  94	__PAGE_SIZE = PAGE_SIZE
  95};
  96
  97struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
  98{
  99	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
 100	struct bpf_prog_aux *aux;
 101	struct bpf_prog *fp;
 102
 103	size = round_up(size, __PAGE_SIZE);
 104	fp = __vmalloc(size, gfp_flags);
 105	if (fp == NULL)
 106		return NULL;
 107
 108	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
 109	if (aux == NULL) {
 110		vfree(fp);
 111		return NULL;
 112	}
 113	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
 114	if (!fp->active) {
 115		vfree(fp);
 116		kfree(aux);
 117		return NULL;
 118	}
 119
 120	fp->pages = size / PAGE_SIZE;
 121	fp->aux = aux;
 122	fp->aux->prog = fp;
 123	fp->jit_requested = ebpf_jit_enabled();
 124	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
 125#ifdef CONFIG_CGROUP_BPF
 126	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
 127#endif
 128
 129	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
 130#ifdef CONFIG_FINEIBT
 131	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
 132#endif
 133	mutex_init(&fp->aux->used_maps_mutex);
 134	mutex_init(&fp->aux->ext_mutex);
 135	mutex_init(&fp->aux->dst_mutex);
 136
 137	return fp;
 138}
 139
 140struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 141{
 142	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
 143	struct bpf_prog *prog;
 144	int cpu;
 145
 146	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
 147	if (!prog)
 148		return NULL;
 149
 150	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
 151	if (!prog->stats) {
 152		free_percpu(prog->active);
 153		kfree(prog->aux);
 154		vfree(prog);
 155		return NULL;
 156	}
 157
 158	for_each_possible_cpu(cpu) {
 159		struct bpf_prog_stats *pstats;
 160
 161		pstats = per_cpu_ptr(prog->stats, cpu);
 162		u64_stats_init(&pstats->syncp);
 163	}
 164	return prog;
 165}
 166EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 167
 168int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
 169{
 170	if (!prog->aux->nr_linfo || !prog->jit_requested)
 171		return 0;
 172
 173	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
 174					  sizeof(*prog->aux->jited_linfo),
 175					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
 176	if (!prog->aux->jited_linfo)
 177		return -ENOMEM;
 178
 179	return 0;
 180}
 181
 182void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
 183{
 184	if (prog->aux->jited_linfo &&
 185	    (!prog->jited || !prog->aux->jited_linfo[0])) {
 186		kvfree(prog->aux->jited_linfo);
 187		prog->aux->jited_linfo = NULL;
 188	}
 189
 190	kfree(prog->aux->kfunc_tab);
 191	prog->aux->kfunc_tab = NULL;
 192}
 193
 194/* The jit engine is responsible to provide an array
 195 * for insn_off to the jited_off mapping (insn_to_jit_off).
 196 *
 197 * The idx to this array is the insn_off.  Hence, the insn_off
 198 * here is relative to the prog itself instead of the main prog.
 199 * This array has one entry for each xlated bpf insn.
 200 *
 201 * jited_off is the byte off to the end of the jited insn.
 202 *
 203 * Hence, with
 204 * insn_start:
 205 *      The first bpf insn off of the prog.  The insn off
 206 *      here is relative to the main prog.
 207 *      e.g. if prog is a subprog, insn_start > 0
 208 * linfo_idx:
 209 *      The prog's idx to prog->aux->linfo and jited_linfo
 210 *
 211 * jited_linfo[linfo_idx] = prog->bpf_func
 212 *
 213 * For i > linfo_idx,
 214 *
 215 * jited_linfo[i] = prog->bpf_func +
 216 *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
 217 */
 218void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 219			       const u32 *insn_to_jit_off)
 220{
 221	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
 222	const struct bpf_line_info *linfo;
 223	void **jited_linfo;
 224
 225	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
 226		/* Userspace did not provide linfo */
 227		return;
 228
 229	linfo_idx = prog->aux->linfo_idx;
 230	linfo = &prog->aux->linfo[linfo_idx];
 231	insn_start = linfo[0].insn_off;
 232	insn_end = insn_start + prog->len;
 233
 234	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
 235	jited_linfo[0] = prog->bpf_func;
 236
 237	nr_linfo = prog->aux->nr_linfo - linfo_idx;
 238
 239	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
 240		/* The verifier ensures that linfo[i].insn_off is
 241		 * strictly increasing
 242		 */
 243		jited_linfo[i] = prog->bpf_func +
 244			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
 245}
 246
 247struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 248				  gfp_t gfp_extra_flags)
 249{
 250	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
 251	struct bpf_prog *fp;
 252	u32 pages;
 253
 254	size = round_up(size, PAGE_SIZE);
 255	pages = size / PAGE_SIZE;
 256	if (pages <= fp_old->pages)
 257		return fp_old;
 258
 259	fp = __vmalloc(size, gfp_flags);
 260	if (fp) {
 261		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 262		fp->pages = pages;
 263		fp->aux->prog = fp;
 264
 265		/* We keep fp->aux from fp_old around in the new
 266		 * reallocated structure.
 267		 */
 268		fp_old->aux = NULL;
 269		fp_old->stats = NULL;
 270		fp_old->active = NULL;
 271		__bpf_prog_free(fp_old);
 272	}
 273
 274	return fp;
 275}
 276
 277void __bpf_prog_free(struct bpf_prog *fp)
 278{
 279	if (fp->aux) {
 280		mutex_destroy(&fp->aux->used_maps_mutex);
 281		mutex_destroy(&fp->aux->dst_mutex);
 282		kfree(fp->aux->poke_tab);
 283		kfree(fp->aux);
 284	}
 285	free_percpu(fp->stats);
 286	free_percpu(fp->active);
 287	vfree(fp);
 288}
 289
 290int bpf_prog_calc_tag(struct bpf_prog *fp)
 291{
 292	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
 293	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 294	u32 digest[SHA1_DIGEST_WORDS];
 295	u32 ws[SHA1_WORKSPACE_WORDS];
 296	u32 i, bsize, psize, blocks;
 297	struct bpf_insn *dst;
 298	bool was_ld_map;
 299	u8 *raw, *todo;
 300	__be32 *result;
 301	__be64 *bits;
 302
 303	raw = vmalloc(raw_size);
 304	if (!raw)
 305		return -ENOMEM;
 306
 307	sha1_init(digest);
 308	memset(ws, 0, sizeof(ws));
 309
 310	/* We need to take out the map fd for the digest calculation
 311	 * since they are unstable from user space side.
 312	 */
 313	dst = (void *)raw;
 314	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 315		dst[i] = fp->insnsi[i];
 316		if (!was_ld_map &&
 317		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 318		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
 319		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
 320			was_ld_map = true;
 321			dst[i].imm = 0;
 322		} else if (was_ld_map &&
 323			   dst[i].code == 0 &&
 324			   dst[i].dst_reg == 0 &&
 325			   dst[i].src_reg == 0 &&
 326			   dst[i].off == 0) {
 327			was_ld_map = false;
 328			dst[i].imm = 0;
 329		} else {
 330			was_ld_map = false;
 331		}
 332	}
 333
 334	psize = bpf_prog_insn_size(fp);
 335	memset(&raw[psize], 0, raw_size - psize);
 336	raw[psize++] = 0x80;
 337
 338	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
 339	blocks = bsize / SHA1_BLOCK_SIZE;
 340	todo   = raw;
 341	if (bsize - psize >= sizeof(__be64)) {
 342		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 343	} else {
 344		bits = (__be64 *)(todo + bsize + bits_offset);
 345		blocks++;
 346	}
 347	*bits = cpu_to_be64((psize - 1) << 3);
 348
 349	while (blocks--) {
 350		sha1_transform(digest, todo, ws);
 351		todo += SHA1_BLOCK_SIZE;
 352	}
 353
 354	result = (__force __be32 *)digest;
 355	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
 356		result[i] = cpu_to_be32(digest[i]);
 357	memcpy(fp->tag, result, sizeof(fp->tag));
 358
 359	vfree(raw);
 360	return 0;
 361}
 362
 363static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
 364				s32 end_new, s32 curr, const bool probe_pass)
 365{
 366	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 367	s32 delta = end_new - end_old;
 368	s64 imm = insn->imm;
 369
 370	if (curr < pos && curr + imm + 1 >= end_old)
 371		imm += delta;
 372	else if (curr >= end_new && curr + imm + 1 < end_new)
 373		imm -= delta;
 374	if (imm < imm_min || imm > imm_max)
 375		return -ERANGE;
 376	if (!probe_pass)
 377		insn->imm = imm;
 378	return 0;
 379}
 380
 381static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
 382				s32 end_new, s32 curr, const bool probe_pass)
 383{
 384	s64 off_min, off_max, off;
 385	s32 delta = end_new - end_old;
 386
 387	if (insn->code == (BPF_JMP32 | BPF_JA)) {
 388		off = insn->imm;
 389		off_min = S32_MIN;
 390		off_max = S32_MAX;
 391	} else {
 392		off = insn->off;
 393		off_min = S16_MIN;
 394		off_max = S16_MAX;
 395	}
 396
 397	if (curr < pos && curr + off + 1 >= end_old)
 398		off += delta;
 399	else if (curr >= end_new && curr + off + 1 < end_new)
 400		off -= delta;
 401	if (off < off_min || off > off_max)
 402		return -ERANGE;
 403	if (!probe_pass) {
 404		if (insn->code == (BPF_JMP32 | BPF_JA))
 405			insn->imm = off;
 406		else
 407			insn->off = off;
 408	}
 409	return 0;
 410}
 411
 412static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
 413			    s32 end_new, const bool probe_pass)
 414{
 415	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
 416	struct bpf_insn *insn = prog->insnsi;
 417	int ret = 0;
 418
 419	for (i = 0; i < insn_cnt; i++, insn++) {
 420		u8 code;
 421
 422		/* In the probing pass we still operate on the original,
 423		 * unpatched image in order to check overflows before we
 424		 * do any other adjustments. Therefore skip the patchlet.
 425		 */
 426		if (probe_pass && i == pos) {
 427			i = end_new;
 428			insn = prog->insnsi + end_old;
 429		}
 430		if (bpf_pseudo_func(insn)) {
 431			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 432						   end_new, i, probe_pass);
 433			if (ret)
 434				return ret;
 435			continue;
 436		}
 437		code = insn->code;
 438		if ((BPF_CLASS(code) != BPF_JMP &&
 439		     BPF_CLASS(code) != BPF_JMP32) ||
 440		    BPF_OP(code) == BPF_EXIT)
 441			continue;
 442		/* Adjust offset of jmps if we cross patch boundaries. */
 443		if (BPF_OP(code) == BPF_CALL) {
 444			if (insn->src_reg != BPF_PSEUDO_CALL)
 445				continue;
 446			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 447						   end_new, i, probe_pass);
 448		} else {
 449			ret = bpf_adj_delta_to_off(insn, pos, end_old,
 450						   end_new, i, probe_pass);
 451		}
 452		if (ret)
 453			break;
 454	}
 455
 456	return ret;
 457}
 458
 459static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
 460{
 461	struct bpf_line_info *linfo;
 462	u32 i, nr_linfo;
 463
 464	nr_linfo = prog->aux->nr_linfo;
 465	if (!nr_linfo || !delta)
 466		return;
 467
 468	linfo = prog->aux->linfo;
 469
 470	for (i = 0; i < nr_linfo; i++)
 471		if (off < linfo[i].insn_off)
 472			break;
 473
 474	/* Push all off < linfo[i].insn_off by delta */
 475	for (; i < nr_linfo; i++)
 476		linfo[i].insn_off += delta;
 477}
 478
 479struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 480				       const struct bpf_insn *patch, u32 len)
 481{
 482	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 483	const u32 cnt_max = S16_MAX;
 484	struct bpf_prog *prog_adj;
 485	int err;
 486
 487	/* Since our patchlet doesn't expand the image, we're done. */
 488	if (insn_delta == 0) {
 489		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 490		return prog;
 491	}
 492
 493	insn_adj_cnt = prog->len + insn_delta;
 494
 495	/* Reject anything that would potentially let the insn->off
 496	 * target overflow when we have excessive program expansions.
 497	 * We need to probe here before we do any reallocation where
 498	 * we afterwards may not fail anymore.
 499	 */
 500	if (insn_adj_cnt > cnt_max &&
 501	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
 502		return ERR_PTR(err);
 503
 504	/* Several new instructions need to be inserted. Make room
 505	 * for them. Likely, there's no need for a new allocation as
 506	 * last page could have large enough tailroom.
 507	 */
 508	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 509				    GFP_USER);
 510	if (!prog_adj)
 511		return ERR_PTR(-ENOMEM);
 512
 513	prog_adj->len = insn_adj_cnt;
 514
 515	/* Patching happens in 3 steps:
 516	 *
 517	 * 1) Move over tail of insnsi from next instruction onwards,
 518	 *    so we can patch the single target insn with one or more
 519	 *    new ones (patching is always from 1 to n insns, n > 0).
 520	 * 2) Inject new instructions at the target location.
 521	 * 3) Adjust branch offsets if necessary.
 522	 */
 523	insn_rest = insn_adj_cnt - off - len;
 524
 525	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 526		sizeof(*patch) * insn_rest);
 527	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 528
 529	/* We are guaranteed to not fail at this point, otherwise
 530	 * the ship has sailed to reverse to the original state. An
 531	 * overflow cannot happen at this point.
 532	 */
 533	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
 534
 535	bpf_adj_linfo(prog_adj, off, insn_delta);
 536
 537	return prog_adj;
 538}
 539
 540int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
 541{
 542	int err;
 543
 544	/* Branch offsets can't overflow when program is shrinking, no need
 545	 * to call bpf_adj_branches(..., true) here
 546	 */
 547	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
 548		sizeof(struct bpf_insn) * (prog->len - off - cnt));
 549	prog->len -= cnt;
 550
 551	err = bpf_adj_branches(prog, off, off + cnt, off, false);
 552	WARN_ON_ONCE(err);
 553	return err;
 554}
 555
 556static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
 557{
 558	int i;
 559
 560	for (i = 0; i < fp->aux->real_func_cnt; i++)
 561		bpf_prog_kallsyms_del(fp->aux->func[i]);
 562}
 563
 564void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
 565{
 566	bpf_prog_kallsyms_del_subprogs(fp);
 567	bpf_prog_kallsyms_del(fp);
 568}
 569
 570#ifdef CONFIG_BPF_JIT
 571/* All BPF JIT sysctl knobs here. */
 572int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 573int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 574int bpf_jit_harden   __read_mostly;
 575long bpf_jit_limit   __read_mostly;
 576long bpf_jit_limit_max __read_mostly;
 577
 578static void
 579bpf_prog_ksym_set_addr(struct bpf_prog *prog)
 580{
 581	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 582
 583	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
 584	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
 585}
 586
 587static void
 588bpf_prog_ksym_set_name(struct bpf_prog *prog)
 589{
 590	char *sym = prog->aux->ksym.name;
 591	const char *end = sym + KSYM_NAME_LEN;
 592	const struct btf_type *type;
 593	const char *func_name;
 594
 595	BUILD_BUG_ON(sizeof("bpf_prog_") +
 596		     sizeof(prog->tag) * 2 +
 597		     /* name has been null terminated.
 598		      * We should need +1 for the '_' preceding
 599		      * the name.  However, the null character
 600		      * is double counted between the name and the
 601		      * sizeof("bpf_prog_") above, so we omit
 602		      * the +1 here.
 603		      */
 604		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 605
 606	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 607	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 608
 609	/* prog->aux->name will be ignored if full btf name is available */
 610	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
 611		type = btf_type_by_id(prog->aux->btf,
 612				      prog->aux->func_info[prog->aux->func_idx].type_id);
 613		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
 614		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
 615		return;
 616	}
 617
 618	if (prog->aux->name[0])
 619		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 620	else
 621		*sym = 0;
 622}
 623
 624static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
 625{
 626	return container_of(n, struct bpf_ksym, tnode)->start;
 627}
 628
 629static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 630					  struct latch_tree_node *b)
 631{
 632	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
 633}
 634
 635static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 636{
 637	unsigned long val = (unsigned long)key;
 638	const struct bpf_ksym *ksym;
 639
 640	ksym = container_of(n, struct bpf_ksym, tnode);
 641
 642	if (val < ksym->start)
 643		return -1;
 644	/* Ensure that we detect return addresses as part of the program, when
 645	 * the final instruction is a call for a program part of the stack
 646	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
 647	 */
 648	if (val > ksym->end)
 649		return  1;
 650
 651	return 0;
 652}
 653
 654static const struct latch_tree_ops bpf_tree_ops = {
 655	.less	= bpf_tree_less,
 656	.comp	= bpf_tree_comp,
 657};
 658
 659static DEFINE_SPINLOCK(bpf_lock);
 660static LIST_HEAD(bpf_kallsyms);
 661static struct latch_tree_root bpf_tree __cacheline_aligned;
 662
 663void bpf_ksym_add(struct bpf_ksym *ksym)
 664{
 665	spin_lock_bh(&bpf_lock);
 666	WARN_ON_ONCE(!list_empty(&ksym->lnode));
 667	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
 668	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 669	spin_unlock_bh(&bpf_lock);
 670}
 671
 672static void __bpf_ksym_del(struct bpf_ksym *ksym)
 673{
 674	if (list_empty(&ksym->lnode))
 675		return;
 676
 677	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 678	list_del_rcu(&ksym->lnode);
 679}
 680
 681void bpf_ksym_del(struct bpf_ksym *ksym)
 682{
 683	spin_lock_bh(&bpf_lock);
 684	__bpf_ksym_del(ksym);
 685	spin_unlock_bh(&bpf_lock);
 686}
 687
 688static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 689{
 690	return fp->jited && !bpf_prog_was_classic(fp);
 691}
 692
 693void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 694{
 695	if (!bpf_prog_kallsyms_candidate(fp) ||
 696	    !bpf_token_capable(fp->aux->token, CAP_BPF))
 697		return;
 698
 699	bpf_prog_ksym_set_addr(fp);
 700	bpf_prog_ksym_set_name(fp);
 701	fp->aux->ksym.prog = true;
 702
 703	bpf_ksym_add(&fp->aux->ksym);
 704
 705#ifdef CONFIG_FINEIBT
 706	/*
 707	 * When FineIBT, code in the __cfi_foo() symbols can get executed
 708	 * and hence unwinder needs help.
 709	 */
 710	if (cfi_mode != CFI_FINEIBT)
 711		return;
 712
 713	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
 714		 "__cfi_%s", fp->aux->ksym.name);
 715
 716	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
 717	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
 718
 719	bpf_ksym_add(&fp->aux->ksym_prefix);
 720#endif
 721}
 722
 723void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 724{
 725	if (!bpf_prog_kallsyms_candidate(fp))
 726		return;
 727
 728	bpf_ksym_del(&fp->aux->ksym);
 729#ifdef CONFIG_FINEIBT
 730	if (cfi_mode != CFI_FINEIBT)
 731		return;
 732	bpf_ksym_del(&fp->aux->ksym_prefix);
 733#endif
 734}
 735
 736static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
 737{
 738	struct latch_tree_node *n;
 739
 740	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 741	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
 742}
 743
 744int __bpf_address_lookup(unsigned long addr, unsigned long *size,
 745				 unsigned long *off, char *sym)
 746{
 747	struct bpf_ksym *ksym;
 748	int ret = 0;
 749
 750	rcu_read_lock();
 751	ksym = bpf_ksym_find(addr);
 752	if (ksym) {
 753		unsigned long symbol_start = ksym->start;
 754		unsigned long symbol_end = ksym->end;
 755
 756		ret = strscpy(sym, ksym->name, KSYM_NAME_LEN);
 757
 
 758		if (size)
 759			*size = symbol_end - symbol_start;
 760		if (off)
 761			*off  = addr - symbol_start;
 762	}
 763	rcu_read_unlock();
 764
 765	return ret;
 766}
 767
 768bool is_bpf_text_address(unsigned long addr)
 769{
 770	bool ret;
 771
 772	rcu_read_lock();
 773	ret = bpf_ksym_find(addr) != NULL;
 774	rcu_read_unlock();
 775
 776	return ret;
 777}
 778
 779struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
 780{
 781	struct bpf_ksym *ksym = bpf_ksym_find(addr);
 782
 783	return ksym && ksym->prog ?
 784	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
 785	       NULL;
 786}
 787
 788const struct exception_table_entry *search_bpf_extables(unsigned long addr)
 789{
 790	const struct exception_table_entry *e = NULL;
 791	struct bpf_prog *prog;
 792
 793	rcu_read_lock();
 794	prog = bpf_prog_ksym_find(addr);
 795	if (!prog)
 796		goto out;
 797	if (!prog->aux->num_exentries)
 798		goto out;
 799
 800	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
 801out:
 802	rcu_read_unlock();
 803	return e;
 804}
 805
 806int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 807		    char *sym)
 808{
 809	struct bpf_ksym *ksym;
 810	unsigned int it = 0;
 811	int ret = -ERANGE;
 812
 813	if (!bpf_jit_kallsyms_enabled())
 814		return ret;
 815
 816	rcu_read_lock();
 817	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
 818		if (it++ != symnum)
 819			continue;
 820
 821		strscpy(sym, ksym->name, KSYM_NAME_LEN);
 822
 823		*value = ksym->start;
 824		*type  = BPF_SYM_ELF_TYPE;
 825
 826		ret = 0;
 827		break;
 828	}
 829	rcu_read_unlock();
 830
 831	return ret;
 832}
 833
 834int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
 835				struct bpf_jit_poke_descriptor *poke)
 836{
 837	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
 838	static const u32 poke_tab_max = 1024;
 839	u32 slot = prog->aux->size_poke_tab;
 840	u32 size = slot + 1;
 841
 842	if (size > poke_tab_max)
 843		return -ENOSPC;
 844	if (poke->tailcall_target || poke->tailcall_target_stable ||
 845	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
 846		return -EINVAL;
 847
 848	switch (poke->reason) {
 849	case BPF_POKE_REASON_TAIL_CALL:
 850		if (!poke->tail_call.map)
 851			return -EINVAL;
 852		break;
 853	default:
 854		return -EINVAL;
 855	}
 856
 857	tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
 858	if (!tab)
 859		return -ENOMEM;
 860
 861	memcpy(&tab[slot], poke, sizeof(*poke));
 862	prog->aux->size_poke_tab = size;
 863	prog->aux->poke_tab = tab;
 864
 865	return slot;
 866}
 867
 868/*
 869 * BPF program pack allocator.
 870 *
 871 * Most BPF programs are pretty small. Allocating a hole page for each
 872 * program is sometime a waste. Many small bpf program also adds pressure
 873 * to instruction TLB. To solve this issue, we introduce a BPF program pack
 874 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
 875 * to host BPF programs.
 876 */
 877#define BPF_PROG_CHUNK_SHIFT	6
 878#define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
 879#define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
 880
 881struct bpf_prog_pack {
 882	struct list_head list;
 883	void *ptr;
 884	unsigned long bitmap[];
 885};
 886
 887void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
 888{
 889	memset(area, 0, size);
 890}
 891
 892#define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
 893
 894static DEFINE_MUTEX(pack_mutex);
 895static LIST_HEAD(pack_list);
 896
 897/* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
 898 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
 899 */
 900#ifdef PMD_SIZE
 901/* PMD_SIZE is really big for some archs. It doesn't make sense to
 902 * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
 903 * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
 904 * greater than or equal to 2MB.
 905 */
 906#define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
 907#else
 908#define BPF_PROG_PACK_SIZE PAGE_SIZE
 909#endif
 910
 911#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
 912
 913static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
 914{
 915	struct bpf_prog_pack *pack;
 916	int err;
 917
 918	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
 919		       GFP_KERNEL);
 920	if (!pack)
 921		return NULL;
 922	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
 923	if (!pack->ptr)
 924		goto out;
 
 
 925	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
 926	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
 
 927
 928	set_vm_flush_reset_perms(pack->ptr);
 929	err = set_memory_rox((unsigned long)pack->ptr,
 930			     BPF_PROG_PACK_SIZE / PAGE_SIZE);
 931	if (err)
 932		goto out;
 933	list_add_tail(&pack->list, &pack_list);
 934	return pack;
 935
 936out:
 937	bpf_jit_free_exec(pack->ptr);
 938	kfree(pack);
 939	return NULL;
 940}
 941
 942void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
 943{
 944	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
 945	struct bpf_prog_pack *pack;
 946	unsigned long pos;
 947	void *ptr = NULL;
 948
 949	mutex_lock(&pack_mutex);
 950	if (size > BPF_PROG_PACK_SIZE) {
 951		size = round_up(size, PAGE_SIZE);
 952		ptr = bpf_jit_alloc_exec(size);
 953		if (ptr) {
 954			int err;
 955
 956			bpf_fill_ill_insns(ptr, size);
 957			set_vm_flush_reset_perms(ptr);
 958			err = set_memory_rox((unsigned long)ptr,
 959					     size / PAGE_SIZE);
 960			if (err) {
 961				bpf_jit_free_exec(ptr);
 962				ptr = NULL;
 963			}
 964		}
 965		goto out;
 966	}
 967	list_for_each_entry(pack, &pack_list, list) {
 968		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
 969						 nbits, 0);
 970		if (pos < BPF_PROG_CHUNK_COUNT)
 971			goto found_free_area;
 972	}
 973
 974	pack = alloc_new_pack(bpf_fill_ill_insns);
 975	if (!pack)
 976		goto out;
 977
 978	pos = 0;
 979
 980found_free_area:
 981	bitmap_set(pack->bitmap, pos, nbits);
 982	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
 983
 984out:
 985	mutex_unlock(&pack_mutex);
 986	return ptr;
 987}
 988
 989void bpf_prog_pack_free(void *ptr, u32 size)
 990{
 991	struct bpf_prog_pack *pack = NULL, *tmp;
 992	unsigned int nbits;
 993	unsigned long pos;
 994
 995	mutex_lock(&pack_mutex);
 996	if (size > BPF_PROG_PACK_SIZE) {
 997		bpf_jit_free_exec(ptr);
 998		goto out;
 999	}
1000
1001	list_for_each_entry(tmp, &pack_list, list) {
1002		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
1003			pack = tmp;
1004			break;
1005		}
1006	}
1007
1008	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
1009		goto out;
1010
1011	nbits = BPF_PROG_SIZE_TO_NBITS(size);
1012	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
1013
1014	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
1015		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
1016
1017	bitmap_clear(pack->bitmap, pos, nbits);
1018	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1019				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
1020		list_del(&pack->list);
1021		bpf_jit_free_exec(pack->ptr);
1022		kfree(pack);
1023	}
1024out:
1025	mutex_unlock(&pack_mutex);
1026}
1027
1028static atomic_long_t bpf_jit_current;
1029
1030/* Can be overridden by an arch's JIT compiler if it has a custom,
1031 * dedicated BPF backend memory area, or if neither of the two
1032 * below apply.
1033 */
1034u64 __weak bpf_jit_alloc_exec_limit(void)
1035{
1036#if defined(MODULES_VADDR)
1037	return MODULES_END - MODULES_VADDR;
1038#else
1039	return VMALLOC_END - VMALLOC_START;
1040#endif
1041}
1042
1043static int __init bpf_jit_charge_init(void)
1044{
1045	/* Only used as heuristic here to derive limit. */
1046	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1047	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1048					    PAGE_SIZE), LONG_MAX);
1049	return 0;
1050}
1051pure_initcall(bpf_jit_charge_init);
1052
1053int bpf_jit_charge_modmem(u32 size)
1054{
1055	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1056		if (!bpf_capable()) {
1057			atomic_long_sub(size, &bpf_jit_current);
1058			return -EPERM;
1059		}
1060	}
1061
1062	return 0;
1063}
1064
1065void bpf_jit_uncharge_modmem(u32 size)
1066{
1067	atomic_long_sub(size, &bpf_jit_current);
1068}
1069
1070void *__weak bpf_jit_alloc_exec(unsigned long size)
1071{
1072	return execmem_alloc(EXECMEM_BPF, size);
1073}
1074
1075void __weak bpf_jit_free_exec(void *addr)
1076{
1077	execmem_free(addr);
1078}
1079
1080struct bpf_binary_header *
1081bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1082		     unsigned int alignment,
1083		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1084{
1085	struct bpf_binary_header *hdr;
1086	u32 size, hole, start;
1087
1088	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1089		     alignment > BPF_IMAGE_ALIGNMENT);
1090
1091	/* Most of BPF filters are really small, but if some of them
1092	 * fill a page, allow at least 128 extra bytes to insert a
1093	 * random section of illegal instructions.
1094	 */
1095	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1096
1097	if (bpf_jit_charge_modmem(size))
1098		return NULL;
1099	hdr = bpf_jit_alloc_exec(size);
1100	if (!hdr) {
1101		bpf_jit_uncharge_modmem(size);
1102		return NULL;
1103	}
1104
1105	/* Fill space with illegal/arch-dep instructions. */
1106	bpf_fill_ill_insns(hdr, size);
1107
1108	hdr->size = size;
1109	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1110		     PAGE_SIZE - sizeof(*hdr));
1111	start = get_random_u32_below(hole) & ~(alignment - 1);
1112
1113	/* Leave a random number of instructions before BPF code. */
1114	*image_ptr = &hdr->image[start];
1115
1116	return hdr;
1117}
1118
1119void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1120{
1121	u32 size = hdr->size;
1122
1123	bpf_jit_free_exec(hdr);
1124	bpf_jit_uncharge_modmem(size);
1125}
1126
1127/* Allocate jit binary from bpf_prog_pack allocator.
1128 * Since the allocated memory is RO+X, the JIT engine cannot write directly
1129 * to the memory. To solve this problem, a RW buffer is also allocated at
1130 * as the same time. The JIT engine should calculate offsets based on the
1131 * RO memory address, but write JITed program to the RW buffer. Once the
1132 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1133 * the JITed program to the RO memory.
1134 */
1135struct bpf_binary_header *
1136bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1137			  unsigned int alignment,
1138			  struct bpf_binary_header **rw_header,
1139			  u8 **rw_image,
1140			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1141{
1142	struct bpf_binary_header *ro_header;
1143	u32 size, hole, start;
1144
1145	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1146		     alignment > BPF_IMAGE_ALIGNMENT);
1147
1148	/* add 16 bytes for a random section of illegal instructions */
1149	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1150
1151	if (bpf_jit_charge_modmem(size))
1152		return NULL;
1153	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1154	if (!ro_header) {
1155		bpf_jit_uncharge_modmem(size);
1156		return NULL;
1157	}
1158
1159	*rw_header = kvmalloc(size, GFP_KERNEL);
1160	if (!*rw_header) {
1161		bpf_prog_pack_free(ro_header, size);
1162		bpf_jit_uncharge_modmem(size);
1163		return NULL;
1164	}
1165
1166	/* Fill space with illegal/arch-dep instructions. */
1167	bpf_fill_ill_insns(*rw_header, size);
1168	(*rw_header)->size = size;
1169
1170	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1171		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1172	start = get_random_u32_below(hole) & ~(alignment - 1);
1173
1174	*image_ptr = &ro_header->image[start];
1175	*rw_image = &(*rw_header)->image[start];
1176
1177	return ro_header;
1178}
1179
1180/* Copy JITed text from rw_header to its final location, the ro_header. */
1181int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
 
1182				 struct bpf_binary_header *rw_header)
1183{
1184	void *ptr;
1185
1186	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1187
1188	kvfree(rw_header);
1189
1190	if (IS_ERR(ptr)) {
1191		bpf_prog_pack_free(ro_header, ro_header->size);
1192		return PTR_ERR(ptr);
1193	}
1194	return 0;
1195}
1196
1197/* bpf_jit_binary_pack_free is called in two different scenarios:
1198 *   1) when the program is freed after;
1199 *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1200 * For case 2), we need to free both the RO memory and the RW buffer.
1201 *
1202 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1203 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1204 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1205 * bpf_arch_text_copy (when jit fails).
1206 */
1207void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1208			      struct bpf_binary_header *rw_header)
1209{
1210	u32 size = ro_header->size;
1211
1212	bpf_prog_pack_free(ro_header, size);
1213	kvfree(rw_header);
1214	bpf_jit_uncharge_modmem(size);
1215}
1216
1217struct bpf_binary_header *
1218bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1219{
1220	unsigned long real_start = (unsigned long)fp->bpf_func;
1221	unsigned long addr;
1222
1223	addr = real_start & BPF_PROG_CHUNK_MASK;
1224	return (void *)addr;
1225}
1226
1227static inline struct bpf_binary_header *
1228bpf_jit_binary_hdr(const struct bpf_prog *fp)
1229{
1230	unsigned long real_start = (unsigned long)fp->bpf_func;
1231	unsigned long addr;
1232
1233	addr = real_start & PAGE_MASK;
1234	return (void *)addr;
1235}
1236
1237/* This symbol is only overridden by archs that have different
1238 * requirements than the usual eBPF JITs, f.e. when they only
1239 * implement cBPF JIT, do not set images read-only, etc.
1240 */
1241void __weak bpf_jit_free(struct bpf_prog *fp)
1242{
1243	if (fp->jited) {
1244		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1245
1246		bpf_jit_binary_free(hdr);
1247		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1248	}
1249
1250	bpf_prog_unlock_free(fp);
1251}
1252
1253int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1254			  const struct bpf_insn *insn, bool extra_pass,
1255			  u64 *func_addr, bool *func_addr_fixed)
1256{
1257	s16 off = insn->off;
1258	s32 imm = insn->imm;
1259	u8 *addr;
1260	int err;
1261
1262	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1263	if (!*func_addr_fixed) {
1264		/* Place-holder address till the last pass has collected
1265		 * all addresses for JITed subprograms in which case we
1266		 * can pick them up from prog->aux.
1267		 */
1268		if (!extra_pass)
1269			addr = NULL;
1270		else if (prog->aux->func &&
1271			 off >= 0 && off < prog->aux->real_func_cnt)
1272			addr = (u8 *)prog->aux->func[off]->bpf_func;
1273		else
1274			return -EINVAL;
1275	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1276		   bpf_jit_supports_far_kfunc_call()) {
1277		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1278		if (err)
1279			return err;
1280	} else {
1281		/* Address of a BPF helper call. Since part of the core
1282		 * kernel, it's always at a fixed location. __bpf_call_base
1283		 * and the helper with imm relative to it are both in core
1284		 * kernel.
1285		 */
1286		addr = (u8 *)__bpf_call_base + imm;
1287	}
1288
1289	*func_addr = (unsigned long)addr;
1290	return 0;
1291}
1292
1293static int bpf_jit_blind_insn(const struct bpf_insn *from,
1294			      const struct bpf_insn *aux,
1295			      struct bpf_insn *to_buff,
1296			      bool emit_zext)
1297{
1298	struct bpf_insn *to = to_buff;
1299	u32 imm_rnd = get_random_u32();
1300	s16 off;
1301
1302	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1303	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1304
1305	/* Constraints on AX register:
1306	 *
1307	 * AX register is inaccessible from user space. It is mapped in
1308	 * all JITs, and used here for constant blinding rewrites. It is
1309	 * typically "stateless" meaning its contents are only valid within
1310	 * the executed instruction, but not across several instructions.
1311	 * There are a few exceptions however which are further detailed
1312	 * below.
1313	 *
1314	 * Constant blinding is only used by JITs, not in the interpreter.
1315	 * The interpreter uses AX in some occasions as a local temporary
1316	 * register e.g. in DIV or MOD instructions.
1317	 *
1318	 * In restricted circumstances, the verifier can also use the AX
1319	 * register for rewrites as long as they do not interfere with
1320	 * the above cases!
1321	 */
1322	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1323		goto out;
1324
1325	if (from->imm == 0 &&
1326	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1327	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1328		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1329		goto out;
1330	}
1331
1332	switch (from->code) {
1333	case BPF_ALU | BPF_ADD | BPF_K:
1334	case BPF_ALU | BPF_SUB | BPF_K:
1335	case BPF_ALU | BPF_AND | BPF_K:
1336	case BPF_ALU | BPF_OR  | BPF_K:
1337	case BPF_ALU | BPF_XOR | BPF_K:
1338	case BPF_ALU | BPF_MUL | BPF_K:
1339	case BPF_ALU | BPF_MOV | BPF_K:
1340	case BPF_ALU | BPF_DIV | BPF_K:
1341	case BPF_ALU | BPF_MOD | BPF_K:
1342		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1343		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1344		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1345		break;
1346
1347	case BPF_ALU64 | BPF_ADD | BPF_K:
1348	case BPF_ALU64 | BPF_SUB | BPF_K:
1349	case BPF_ALU64 | BPF_AND | BPF_K:
1350	case BPF_ALU64 | BPF_OR  | BPF_K:
1351	case BPF_ALU64 | BPF_XOR | BPF_K:
1352	case BPF_ALU64 | BPF_MUL | BPF_K:
1353	case BPF_ALU64 | BPF_MOV | BPF_K:
1354	case BPF_ALU64 | BPF_DIV | BPF_K:
1355	case BPF_ALU64 | BPF_MOD | BPF_K:
1356		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1357		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1358		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1359		break;
1360
1361	case BPF_JMP | BPF_JEQ  | BPF_K:
1362	case BPF_JMP | BPF_JNE  | BPF_K:
1363	case BPF_JMP | BPF_JGT  | BPF_K:
1364	case BPF_JMP | BPF_JLT  | BPF_K:
1365	case BPF_JMP | BPF_JGE  | BPF_K:
1366	case BPF_JMP | BPF_JLE  | BPF_K:
1367	case BPF_JMP | BPF_JSGT | BPF_K:
1368	case BPF_JMP | BPF_JSLT | BPF_K:
1369	case BPF_JMP | BPF_JSGE | BPF_K:
1370	case BPF_JMP | BPF_JSLE | BPF_K:
1371	case BPF_JMP | BPF_JSET | BPF_K:
1372		/* Accommodate for extra offset in case of a backjump. */
1373		off = from->off;
1374		if (off < 0)
1375			off -= 2;
1376		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1377		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1378		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1379		break;
1380
1381	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1382	case BPF_JMP32 | BPF_JNE  | BPF_K:
1383	case BPF_JMP32 | BPF_JGT  | BPF_K:
1384	case BPF_JMP32 | BPF_JLT  | BPF_K:
1385	case BPF_JMP32 | BPF_JGE  | BPF_K:
1386	case BPF_JMP32 | BPF_JLE  | BPF_K:
1387	case BPF_JMP32 | BPF_JSGT | BPF_K:
1388	case BPF_JMP32 | BPF_JSLT | BPF_K:
1389	case BPF_JMP32 | BPF_JSGE | BPF_K:
1390	case BPF_JMP32 | BPF_JSLE | BPF_K:
1391	case BPF_JMP32 | BPF_JSET | BPF_K:
1392		/* Accommodate for extra offset in case of a backjump. */
1393		off = from->off;
1394		if (off < 0)
1395			off -= 2;
1396		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1397		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1398		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1399				      off);
1400		break;
1401
1402	case BPF_LD | BPF_IMM | BPF_DW:
1403		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1404		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1405		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1406		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1407		break;
1408	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1409		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1410		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1411		if (emit_zext)
1412			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1413		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1414		break;
1415
1416	case BPF_ST | BPF_MEM | BPF_DW:
1417	case BPF_ST | BPF_MEM | BPF_W:
1418	case BPF_ST | BPF_MEM | BPF_H:
1419	case BPF_ST | BPF_MEM | BPF_B:
1420		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1421		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1422		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1423		break;
1424	}
1425out:
1426	return to - to_buff;
1427}
1428
1429static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1430					      gfp_t gfp_extra_flags)
1431{
1432	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1433	struct bpf_prog *fp;
1434
1435	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1436	if (fp != NULL) {
1437		/* aux->prog still points to the fp_other one, so
1438		 * when promoting the clone to the real program,
1439		 * this still needs to be adapted.
1440		 */
1441		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1442	}
1443
1444	return fp;
1445}
1446
1447static void bpf_prog_clone_free(struct bpf_prog *fp)
1448{
1449	/* aux was stolen by the other clone, so we cannot free
1450	 * it from this path! It will be freed eventually by the
1451	 * other program on release.
1452	 *
1453	 * At this point, we don't need a deferred release since
1454	 * clone is guaranteed to not be locked.
1455	 */
1456	fp->aux = NULL;
1457	fp->stats = NULL;
1458	fp->active = NULL;
1459	__bpf_prog_free(fp);
1460}
1461
1462void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1463{
1464	/* We have to repoint aux->prog to self, as we don't
1465	 * know whether fp here is the clone or the original.
1466	 */
1467	fp->aux->prog = fp;
1468	bpf_prog_clone_free(fp_other);
1469}
1470
1471struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1472{
1473	struct bpf_insn insn_buff[16], aux[2];
1474	struct bpf_prog *clone, *tmp;
1475	int insn_delta, insn_cnt;
1476	struct bpf_insn *insn;
1477	int i, rewritten;
1478
1479	if (!prog->blinding_requested || prog->blinded)
1480		return prog;
1481
1482	clone = bpf_prog_clone_create(prog, GFP_USER);
1483	if (!clone)
1484		return ERR_PTR(-ENOMEM);
1485
1486	insn_cnt = clone->len;
1487	insn = clone->insnsi;
1488
1489	for (i = 0; i < insn_cnt; i++, insn++) {
1490		if (bpf_pseudo_func(insn)) {
1491			/* ld_imm64 with an address of bpf subprog is not
1492			 * a user controlled constant. Don't randomize it,
1493			 * since it will conflict with jit_subprogs() logic.
1494			 */
1495			insn++;
1496			i++;
1497			continue;
1498		}
1499
1500		/* We temporarily need to hold the original ld64 insn
1501		 * so that we can still access the first part in the
1502		 * second blinding run.
1503		 */
1504		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1505		    insn[1].code == 0)
1506			memcpy(aux, insn, sizeof(aux));
1507
1508		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1509						clone->aux->verifier_zext);
1510		if (!rewritten)
1511			continue;
1512
1513		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1514		if (IS_ERR(tmp)) {
1515			/* Patching may have repointed aux->prog during
1516			 * realloc from the original one, so we need to
1517			 * fix it up here on error.
1518			 */
1519			bpf_jit_prog_release_other(prog, clone);
1520			return tmp;
1521		}
1522
1523		clone = tmp;
1524		insn_delta = rewritten - 1;
1525
1526		/* Walk new program and skip insns we just inserted. */
1527		insn = clone->insnsi + i + insn_delta;
1528		insn_cnt += insn_delta;
1529		i        += insn_delta;
1530	}
1531
1532	clone->blinded = 1;
1533	return clone;
1534}
1535#endif /* CONFIG_BPF_JIT */
1536
1537/* Base function for offset calculation. Needs to go into .text section,
1538 * therefore keeping it non-static as well; will also be used by JITs
1539 * anyway later on, so do not let the compiler omit it. This also needs
1540 * to go into kallsyms for correlation from e.g. bpftool, so naming
1541 * must not change.
1542 */
1543noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1544{
1545	return 0;
1546}
1547EXPORT_SYMBOL_GPL(__bpf_call_base);
1548
1549/* All UAPI available opcodes. */
1550#define BPF_INSN_MAP(INSN_2, INSN_3)		\
1551	/* 32 bit ALU operations. */		\
1552	/*   Register based. */			\
1553	INSN_3(ALU, ADD,  X),			\
1554	INSN_3(ALU, SUB,  X),			\
1555	INSN_3(ALU, AND,  X),			\
1556	INSN_3(ALU, OR,   X),			\
1557	INSN_3(ALU, LSH,  X),			\
1558	INSN_3(ALU, RSH,  X),			\
1559	INSN_3(ALU, XOR,  X),			\
1560	INSN_3(ALU, MUL,  X),			\
1561	INSN_3(ALU, MOV,  X),			\
1562	INSN_3(ALU, ARSH, X),			\
1563	INSN_3(ALU, DIV,  X),			\
1564	INSN_3(ALU, MOD,  X),			\
1565	INSN_2(ALU, NEG),			\
1566	INSN_3(ALU, END, TO_BE),		\
1567	INSN_3(ALU, END, TO_LE),		\
1568	/*   Immediate based. */		\
1569	INSN_3(ALU, ADD,  K),			\
1570	INSN_3(ALU, SUB,  K),			\
1571	INSN_3(ALU, AND,  K),			\
1572	INSN_3(ALU, OR,   K),			\
1573	INSN_3(ALU, LSH,  K),			\
1574	INSN_3(ALU, RSH,  K),			\
1575	INSN_3(ALU, XOR,  K),			\
1576	INSN_3(ALU, MUL,  K),			\
1577	INSN_3(ALU, MOV,  K),			\
1578	INSN_3(ALU, ARSH, K),			\
1579	INSN_3(ALU, DIV,  K),			\
1580	INSN_3(ALU, MOD,  K),			\
1581	/* 64 bit ALU operations. */		\
1582	/*   Register based. */			\
1583	INSN_3(ALU64, ADD,  X),			\
1584	INSN_3(ALU64, SUB,  X),			\
1585	INSN_3(ALU64, AND,  X),			\
1586	INSN_3(ALU64, OR,   X),			\
1587	INSN_3(ALU64, LSH,  X),			\
1588	INSN_3(ALU64, RSH,  X),			\
1589	INSN_3(ALU64, XOR,  X),			\
1590	INSN_3(ALU64, MUL,  X),			\
1591	INSN_3(ALU64, MOV,  X),			\
1592	INSN_3(ALU64, ARSH, X),			\
1593	INSN_3(ALU64, DIV,  X),			\
1594	INSN_3(ALU64, MOD,  X),			\
1595	INSN_2(ALU64, NEG),			\
1596	INSN_3(ALU64, END, TO_LE),		\
1597	/*   Immediate based. */		\
1598	INSN_3(ALU64, ADD,  K),			\
1599	INSN_3(ALU64, SUB,  K),			\
1600	INSN_3(ALU64, AND,  K),			\
1601	INSN_3(ALU64, OR,   K),			\
1602	INSN_3(ALU64, LSH,  K),			\
1603	INSN_3(ALU64, RSH,  K),			\
1604	INSN_3(ALU64, XOR,  K),			\
1605	INSN_3(ALU64, MUL,  K),			\
1606	INSN_3(ALU64, MOV,  K),			\
1607	INSN_3(ALU64, ARSH, K),			\
1608	INSN_3(ALU64, DIV,  K),			\
1609	INSN_3(ALU64, MOD,  K),			\
1610	/* Call instruction. */			\
1611	INSN_2(JMP, CALL),			\
1612	/* Exit instruction. */			\
1613	INSN_2(JMP, EXIT),			\
1614	/* 32-bit Jump instructions. */		\
1615	/*   Register based. */			\
1616	INSN_3(JMP32, JEQ,  X),			\
1617	INSN_3(JMP32, JNE,  X),			\
1618	INSN_3(JMP32, JGT,  X),			\
1619	INSN_3(JMP32, JLT,  X),			\
1620	INSN_3(JMP32, JGE,  X),			\
1621	INSN_3(JMP32, JLE,  X),			\
1622	INSN_3(JMP32, JSGT, X),			\
1623	INSN_3(JMP32, JSLT, X),			\
1624	INSN_3(JMP32, JSGE, X),			\
1625	INSN_3(JMP32, JSLE, X),			\
1626	INSN_3(JMP32, JSET, X),			\
1627	/*   Immediate based. */		\
1628	INSN_3(JMP32, JEQ,  K),			\
1629	INSN_3(JMP32, JNE,  K),			\
1630	INSN_3(JMP32, JGT,  K),			\
1631	INSN_3(JMP32, JLT,  K),			\
1632	INSN_3(JMP32, JGE,  K),			\
1633	INSN_3(JMP32, JLE,  K),			\
1634	INSN_3(JMP32, JSGT, K),			\
1635	INSN_3(JMP32, JSLT, K),			\
1636	INSN_3(JMP32, JSGE, K),			\
1637	INSN_3(JMP32, JSLE, K),			\
1638	INSN_3(JMP32, JSET, K),			\
1639	/* Jump instructions. */		\
1640	/*   Register based. */			\
1641	INSN_3(JMP, JEQ,  X),			\
1642	INSN_3(JMP, JNE,  X),			\
1643	INSN_3(JMP, JGT,  X),			\
1644	INSN_3(JMP, JLT,  X),			\
1645	INSN_3(JMP, JGE,  X),			\
1646	INSN_3(JMP, JLE,  X),			\
1647	INSN_3(JMP, JSGT, X),			\
1648	INSN_3(JMP, JSLT, X),			\
1649	INSN_3(JMP, JSGE, X),			\
1650	INSN_3(JMP, JSLE, X),			\
1651	INSN_3(JMP, JSET, X),			\
1652	/*   Immediate based. */		\
1653	INSN_3(JMP, JEQ,  K),			\
1654	INSN_3(JMP, JNE,  K),			\
1655	INSN_3(JMP, JGT,  K),			\
1656	INSN_3(JMP, JLT,  K),			\
1657	INSN_3(JMP, JGE,  K),			\
1658	INSN_3(JMP, JLE,  K),			\
1659	INSN_3(JMP, JSGT, K),			\
1660	INSN_3(JMP, JSLT, K),			\
1661	INSN_3(JMP, JSGE, K),			\
1662	INSN_3(JMP, JSLE, K),			\
1663	INSN_3(JMP, JSET, K),			\
1664	INSN_2(JMP, JA),			\
1665	INSN_2(JMP32, JA),			\
1666	/* Store instructions. */		\
1667	/*   Register based. */			\
1668	INSN_3(STX, MEM,  B),			\
1669	INSN_3(STX, MEM,  H),			\
1670	INSN_3(STX, MEM,  W),			\
1671	INSN_3(STX, MEM,  DW),			\
1672	INSN_3(STX, ATOMIC, W),			\
1673	INSN_3(STX, ATOMIC, DW),		\
1674	/*   Immediate based. */		\
1675	INSN_3(ST, MEM, B),			\
1676	INSN_3(ST, MEM, H),			\
1677	INSN_3(ST, MEM, W),			\
1678	INSN_3(ST, MEM, DW),			\
1679	/* Load instructions. */		\
1680	/*   Register based. */			\
1681	INSN_3(LDX, MEM, B),			\
1682	INSN_3(LDX, MEM, H),			\
1683	INSN_3(LDX, MEM, W),			\
1684	INSN_3(LDX, MEM, DW),			\
1685	INSN_3(LDX, MEMSX, B),			\
1686	INSN_3(LDX, MEMSX, H),			\
1687	INSN_3(LDX, MEMSX, W),			\
1688	/*   Immediate based. */		\
1689	INSN_3(LD, IMM, DW)
1690
1691bool bpf_opcode_in_insntable(u8 code)
1692{
1693#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1694#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1695	static const bool public_insntable[256] = {
1696		[0 ... 255] = false,
1697		/* Now overwrite non-defaults ... */
1698		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1699		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1700		[BPF_LD | BPF_ABS | BPF_B] = true,
1701		[BPF_LD | BPF_ABS | BPF_H] = true,
1702		[BPF_LD | BPF_ABS | BPF_W] = true,
1703		[BPF_LD | BPF_IND | BPF_B] = true,
1704		[BPF_LD | BPF_IND | BPF_H] = true,
1705		[BPF_LD | BPF_IND | BPF_W] = true,
1706		[BPF_JMP | BPF_JCOND] = true,
1707	};
1708#undef BPF_INSN_3_TBL
1709#undef BPF_INSN_2_TBL
1710	return public_insntable[code];
1711}
1712
1713#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1714/**
1715 *	___bpf_prog_run - run eBPF program on a given context
1716 *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1717 *	@insn: is the array of eBPF instructions
1718 *
1719 * Decode and execute eBPF instructions.
1720 *
1721 * Return: whatever value is in %BPF_R0 at program exit
1722 */
1723static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1724{
1725#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1726#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1727	static const void * const jumptable[256] __annotate_jump_table = {
1728		[0 ... 255] = &&default_label,
1729		/* Now overwrite non-defaults ... */
1730		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1731		/* Non-UAPI available opcodes. */
1732		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1733		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1734		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1735		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1736		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1737		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1738		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1739		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1740		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1741		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1742	};
1743#undef BPF_INSN_3_LBL
1744#undef BPF_INSN_2_LBL
1745	u32 tail_call_cnt = 0;
1746
1747#define CONT	 ({ insn++; goto select_insn; })
1748#define CONT_JMP ({ insn++; goto select_insn; })
1749
1750select_insn:
1751	goto *jumptable[insn->code];
1752
1753	/* Explicitly mask the register-based shift amounts with 63 or 31
1754	 * to avoid undefined behavior. Normally this won't affect the
1755	 * generated code, for example, in case of native 64 bit archs such
1756	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1757	 * the interpreter. In case of JITs, each of the JIT backends compiles
1758	 * the BPF shift operations to machine instructions which produce
1759	 * implementation-defined results in such a case; the resulting
1760	 * contents of the register may be arbitrary, but program behaviour
1761	 * as a whole remains defined. In other words, in case of JIT backends,
1762	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1763	 */
1764	/* ALU (shifts) */
1765#define SHT(OPCODE, OP)					\
1766	ALU64_##OPCODE##_X:				\
1767		DST = DST OP (SRC & 63);		\
1768		CONT;					\
1769	ALU_##OPCODE##_X:				\
1770		DST = (u32) DST OP ((u32) SRC & 31);	\
1771		CONT;					\
1772	ALU64_##OPCODE##_K:				\
1773		DST = DST OP IMM;			\
1774		CONT;					\
1775	ALU_##OPCODE##_K:				\
1776		DST = (u32) DST OP (u32) IMM;		\
1777		CONT;
1778	/* ALU (rest) */
1779#define ALU(OPCODE, OP)					\
1780	ALU64_##OPCODE##_X:				\
1781		DST = DST OP SRC;			\
1782		CONT;					\
1783	ALU_##OPCODE##_X:				\
1784		DST = (u32) DST OP (u32) SRC;		\
1785		CONT;					\
1786	ALU64_##OPCODE##_K:				\
1787		DST = DST OP IMM;			\
1788		CONT;					\
1789	ALU_##OPCODE##_K:				\
1790		DST = (u32) DST OP (u32) IMM;		\
1791		CONT;
1792	ALU(ADD,  +)
1793	ALU(SUB,  -)
1794	ALU(AND,  &)
1795	ALU(OR,   |)
1796	ALU(XOR,  ^)
1797	ALU(MUL,  *)
1798	SHT(LSH, <<)
1799	SHT(RSH, >>)
1800#undef SHT
1801#undef ALU
1802	ALU_NEG:
1803		DST = (u32) -DST;
1804		CONT;
1805	ALU64_NEG:
1806		DST = -DST;
1807		CONT;
1808	ALU_MOV_X:
1809		switch (OFF) {
1810		case 0:
1811			DST = (u32) SRC;
1812			break;
1813		case 8:
1814			DST = (u32)(s8) SRC;
1815			break;
1816		case 16:
1817			DST = (u32)(s16) SRC;
1818			break;
1819		}
1820		CONT;
1821	ALU_MOV_K:
1822		DST = (u32) IMM;
1823		CONT;
1824	ALU64_MOV_X:
1825		switch (OFF) {
1826		case 0:
1827			DST = SRC;
1828			break;
1829		case 8:
1830			DST = (s8) SRC;
1831			break;
1832		case 16:
1833			DST = (s16) SRC;
1834			break;
1835		case 32:
1836			DST = (s32) SRC;
1837			break;
1838		}
1839		CONT;
1840	ALU64_MOV_K:
1841		DST = IMM;
1842		CONT;
1843	LD_IMM_DW:
1844		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1845		insn++;
1846		CONT;
1847	ALU_ARSH_X:
1848		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1849		CONT;
1850	ALU_ARSH_K:
1851		DST = (u64) (u32) (((s32) DST) >> IMM);
1852		CONT;
1853	ALU64_ARSH_X:
1854		(*(s64 *) &DST) >>= (SRC & 63);
1855		CONT;
1856	ALU64_ARSH_K:
1857		(*(s64 *) &DST) >>= IMM;
1858		CONT;
1859	ALU64_MOD_X:
1860		switch (OFF) {
1861		case 0:
1862			div64_u64_rem(DST, SRC, &AX);
1863			DST = AX;
1864			break;
1865		case 1:
1866			AX = div64_s64(DST, SRC);
1867			DST = DST - AX * SRC;
1868			break;
1869		}
1870		CONT;
1871	ALU_MOD_X:
1872		switch (OFF) {
1873		case 0:
1874			AX = (u32) DST;
1875			DST = do_div(AX, (u32) SRC);
1876			break;
1877		case 1:
1878			AX = abs((s32)DST);
1879			AX = do_div(AX, abs((s32)SRC));
1880			if ((s32)DST < 0)
1881				DST = (u32)-AX;
1882			else
1883				DST = (u32)AX;
1884			break;
1885		}
1886		CONT;
1887	ALU64_MOD_K:
1888		switch (OFF) {
1889		case 0:
1890			div64_u64_rem(DST, IMM, &AX);
1891			DST = AX;
1892			break;
1893		case 1:
1894			AX = div64_s64(DST, IMM);
1895			DST = DST - AX * IMM;
1896			break;
1897		}
1898		CONT;
1899	ALU_MOD_K:
1900		switch (OFF) {
1901		case 0:
1902			AX = (u32) DST;
1903			DST = do_div(AX, (u32) IMM);
1904			break;
1905		case 1:
1906			AX = abs((s32)DST);
1907			AX = do_div(AX, abs((s32)IMM));
1908			if ((s32)DST < 0)
1909				DST = (u32)-AX;
1910			else
1911				DST = (u32)AX;
1912			break;
1913		}
1914		CONT;
1915	ALU64_DIV_X:
1916		switch (OFF) {
1917		case 0:
1918			DST = div64_u64(DST, SRC);
1919			break;
1920		case 1:
1921			DST = div64_s64(DST, SRC);
1922			break;
1923		}
1924		CONT;
1925	ALU_DIV_X:
1926		switch (OFF) {
1927		case 0:
1928			AX = (u32) DST;
1929			do_div(AX, (u32) SRC);
1930			DST = (u32) AX;
1931			break;
1932		case 1:
1933			AX = abs((s32)DST);
1934			do_div(AX, abs((s32)SRC));
1935			if (((s32)DST < 0) == ((s32)SRC < 0))
1936				DST = (u32)AX;
1937			else
1938				DST = (u32)-AX;
1939			break;
1940		}
1941		CONT;
1942	ALU64_DIV_K:
1943		switch (OFF) {
1944		case 0:
1945			DST = div64_u64(DST, IMM);
1946			break;
1947		case 1:
1948			DST = div64_s64(DST, IMM);
1949			break;
1950		}
1951		CONT;
1952	ALU_DIV_K:
1953		switch (OFF) {
1954		case 0:
1955			AX = (u32) DST;
1956			do_div(AX, (u32) IMM);
1957			DST = (u32) AX;
1958			break;
1959		case 1:
1960			AX = abs((s32)DST);
1961			do_div(AX, abs((s32)IMM));
1962			if (((s32)DST < 0) == ((s32)IMM < 0))
1963				DST = (u32)AX;
1964			else
1965				DST = (u32)-AX;
1966			break;
1967		}
1968		CONT;
1969	ALU_END_TO_BE:
1970		switch (IMM) {
1971		case 16:
1972			DST = (__force u16) cpu_to_be16(DST);
1973			break;
1974		case 32:
1975			DST = (__force u32) cpu_to_be32(DST);
1976			break;
1977		case 64:
1978			DST = (__force u64) cpu_to_be64(DST);
1979			break;
1980		}
1981		CONT;
1982	ALU_END_TO_LE:
1983		switch (IMM) {
1984		case 16:
1985			DST = (__force u16) cpu_to_le16(DST);
1986			break;
1987		case 32:
1988			DST = (__force u32) cpu_to_le32(DST);
1989			break;
1990		case 64:
1991			DST = (__force u64) cpu_to_le64(DST);
1992			break;
1993		}
1994		CONT;
1995	ALU64_END_TO_LE:
1996		switch (IMM) {
1997		case 16:
1998			DST = (__force u16) __swab16(DST);
1999			break;
2000		case 32:
2001			DST = (__force u32) __swab32(DST);
2002			break;
2003		case 64:
2004			DST = (__force u64) __swab64(DST);
2005			break;
2006		}
2007		CONT;
2008
2009	/* CALL */
2010	JMP_CALL:
2011		/* Function call scratches BPF_R1-BPF_R5 registers,
2012		 * preserves BPF_R6-BPF_R9, and stores return value
2013		 * into BPF_R0.
2014		 */
2015		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2016						       BPF_R4, BPF_R5);
2017		CONT;
2018
2019	JMP_CALL_ARGS:
2020		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2021							    BPF_R3, BPF_R4,
2022							    BPF_R5,
2023							    insn + insn->off + 1);
2024		CONT;
2025
2026	JMP_TAIL_CALL: {
2027		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2028		struct bpf_array *array = container_of(map, struct bpf_array, map);
2029		struct bpf_prog *prog;
2030		u32 index = BPF_R3;
2031
2032		if (unlikely(index >= array->map.max_entries))
2033			goto out;
2034
2035		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2036			goto out;
2037
2038		tail_call_cnt++;
2039
2040		prog = READ_ONCE(array->ptrs[index]);
2041		if (!prog)
2042			goto out;
2043
2044		/* ARG1 at this point is guaranteed to point to CTX from
2045		 * the verifier side due to the fact that the tail call is
2046		 * handled like a helper, that is, bpf_tail_call_proto,
2047		 * where arg1_type is ARG_PTR_TO_CTX.
2048		 */
2049		insn = prog->insnsi;
2050		goto select_insn;
2051out:
2052		CONT;
2053	}
2054	JMP_JA:
2055		insn += insn->off;
2056		CONT;
2057	JMP32_JA:
2058		insn += insn->imm;
2059		CONT;
2060	JMP_EXIT:
2061		return BPF_R0;
2062	/* JMP */
2063#define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2064	JMP_##OPCODE##_X:					\
2065		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2066			insn += insn->off;			\
2067			CONT_JMP;				\
2068		}						\
2069		CONT;						\
2070	JMP32_##OPCODE##_X:					\
2071		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2072			insn += insn->off;			\
2073			CONT_JMP;				\
2074		}						\
2075		CONT;						\
2076	JMP_##OPCODE##_K:					\
2077		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2078			insn += insn->off;			\
2079			CONT_JMP;				\
2080		}						\
2081		CONT;						\
2082	JMP32_##OPCODE##_K:					\
2083		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2084			insn += insn->off;			\
2085			CONT_JMP;				\
2086		}						\
2087		CONT;
2088	COND_JMP(u, JEQ, ==)
2089	COND_JMP(u, JNE, !=)
2090	COND_JMP(u, JGT, >)
2091	COND_JMP(u, JLT, <)
2092	COND_JMP(u, JGE, >=)
2093	COND_JMP(u, JLE, <=)
2094	COND_JMP(u, JSET, &)
2095	COND_JMP(s, JSGT, >)
2096	COND_JMP(s, JSLT, <)
2097	COND_JMP(s, JSGE, >=)
2098	COND_JMP(s, JSLE, <=)
2099#undef COND_JMP
2100	/* ST, STX and LDX*/
2101	ST_NOSPEC:
2102		/* Speculation barrier for mitigating Speculative Store Bypass.
2103		 * In case of arm64, we rely on the firmware mitigation as
2104		 * controlled via the ssbd kernel parameter. Whenever the
2105		 * mitigation is enabled, it works for all of the kernel code
2106		 * with no need to provide any additional instructions here.
2107		 * In case of x86, we use 'lfence' insn for mitigation. We
2108		 * reuse preexisting logic from Spectre v1 mitigation that
2109		 * happens to produce the required code on x86 for v4 as well.
2110		 */
2111		barrier_nospec();
2112		CONT;
2113#define LDST(SIZEOP, SIZE)						\
2114	STX_MEM_##SIZEOP:						\
2115		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2116		CONT;							\
2117	ST_MEM_##SIZEOP:						\
2118		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2119		CONT;							\
2120	LDX_MEM_##SIZEOP:						\
2121		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2122		CONT;							\
2123	LDX_PROBE_MEM_##SIZEOP:						\
2124		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2125			      (const void *)(long) (SRC + insn->off));	\
2126		DST = *((SIZE *)&DST);					\
2127		CONT;
2128
2129	LDST(B,   u8)
2130	LDST(H,  u16)
2131	LDST(W,  u32)
2132	LDST(DW, u64)
2133#undef LDST
2134
2135#define LDSX(SIZEOP, SIZE)						\
2136	LDX_MEMSX_##SIZEOP:						\
2137		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2138		CONT;							\
2139	LDX_PROBE_MEMSX_##SIZEOP:					\
2140		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2141				      (const void *)(long) (SRC + insn->off));	\
2142		DST = *((SIZE *)&DST);					\
2143		CONT;
2144
2145	LDSX(B,   s8)
2146	LDSX(H,  s16)
2147	LDSX(W,  s32)
2148#undef LDSX
2149
2150#define ATOMIC_ALU_OP(BOP, KOP)						\
2151		case BOP:						\
2152			if (BPF_SIZE(insn->code) == BPF_W)		\
2153				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2154					     (DST + insn->off));	\
2155			else						\
2156				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2157					       (DST + insn->off));	\
2158			break;						\
2159		case BOP | BPF_FETCH:					\
2160			if (BPF_SIZE(insn->code) == BPF_W)		\
2161				SRC = (u32) atomic_fetch_##KOP(		\
2162					(u32) SRC,			\
2163					(atomic_t *)(unsigned long) (DST + insn->off)); \
2164			else						\
2165				SRC = (u64) atomic64_fetch_##KOP(	\
2166					(u64) SRC,			\
2167					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2168			break;
2169
2170	STX_ATOMIC_DW:
2171	STX_ATOMIC_W:
2172		switch (IMM) {
2173		ATOMIC_ALU_OP(BPF_ADD, add)
2174		ATOMIC_ALU_OP(BPF_AND, and)
2175		ATOMIC_ALU_OP(BPF_OR, or)
2176		ATOMIC_ALU_OP(BPF_XOR, xor)
2177#undef ATOMIC_ALU_OP
2178
2179		case BPF_XCHG:
2180			if (BPF_SIZE(insn->code) == BPF_W)
2181				SRC = (u32) atomic_xchg(
2182					(atomic_t *)(unsigned long) (DST + insn->off),
2183					(u32) SRC);
2184			else
2185				SRC = (u64) atomic64_xchg(
2186					(atomic64_t *)(unsigned long) (DST + insn->off),
2187					(u64) SRC);
2188			break;
2189		case BPF_CMPXCHG:
2190			if (BPF_SIZE(insn->code) == BPF_W)
2191				BPF_R0 = (u32) atomic_cmpxchg(
2192					(atomic_t *)(unsigned long) (DST + insn->off),
2193					(u32) BPF_R0, (u32) SRC);
2194			else
2195				BPF_R0 = (u64) atomic64_cmpxchg(
2196					(atomic64_t *)(unsigned long) (DST + insn->off),
2197					(u64) BPF_R0, (u64) SRC);
2198			break;
2199
2200		default:
2201			goto default_label;
2202		}
2203		CONT;
2204
2205	default_label:
2206		/* If we ever reach this, we have a bug somewhere. Die hard here
2207		 * instead of just returning 0; we could be somewhere in a subprog,
2208		 * so execution could continue otherwise which we do /not/ want.
2209		 *
2210		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2211		 */
2212		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2213			insn->code, insn->imm);
2214		BUG_ON(1);
2215		return 0;
2216}
2217
2218#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2219#define DEFINE_BPF_PROG_RUN(stack_size) \
2220static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2221{ \
2222	u64 stack[stack_size / sizeof(u64)]; \
2223	u64 regs[MAX_BPF_EXT_REG] = {}; \
2224\
2225	kmsan_unpoison_memory(stack, sizeof(stack)); \
2226	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2227	ARG1 = (u64) (unsigned long) ctx; \
2228	return ___bpf_prog_run(regs, insn); \
2229}
2230
2231#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2232#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2233static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2234				      const struct bpf_insn *insn) \
2235{ \
2236	u64 stack[stack_size / sizeof(u64)]; \
2237	u64 regs[MAX_BPF_EXT_REG]; \
2238\
2239	kmsan_unpoison_memory(stack, sizeof(stack)); \
2240	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2241	BPF_R1 = r1; \
2242	BPF_R2 = r2; \
2243	BPF_R3 = r3; \
2244	BPF_R4 = r4; \
2245	BPF_R5 = r5; \
2246	return ___bpf_prog_run(regs, insn); \
2247}
2248
2249#define EVAL1(FN, X) FN(X)
2250#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2251#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2252#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2253#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2254#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2255
2256EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2257EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2258EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2259
2260EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2261EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2262EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2263
2264#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2265
2266static unsigned int (*interpreters[])(const void *ctx,
2267				      const struct bpf_insn *insn) = {
2268EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2269EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2270EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2271};
2272#undef PROG_NAME_LIST
2273#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2274static __maybe_unused
2275u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2276			   const struct bpf_insn *insn) = {
2277EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2278EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2279EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2280};
2281#undef PROG_NAME_LIST
2282
2283#ifdef CONFIG_BPF_SYSCALL
2284void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2285{
2286	stack_depth = max_t(u32, stack_depth, 1);
2287	insn->off = (s16) insn->imm;
2288	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2289		__bpf_call_base_args;
2290	insn->code = BPF_JMP | BPF_CALL_ARGS;
2291}
2292#endif
2293#else
2294static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2295					 const struct bpf_insn *insn)
2296{
2297	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2298	 * is not working properly, so warn about it!
2299	 */
2300	WARN_ON_ONCE(1);
2301	return 0;
2302}
2303#endif
2304
2305bool bpf_prog_map_compatible(struct bpf_map *map,
2306			     const struct bpf_prog *fp)
2307{
2308	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2309	bool ret;
2310	struct bpf_prog_aux *aux = fp->aux;
2311
2312	if (fp->kprobe_override)
2313		return false;
2314
2315	/* XDP programs inserted into maps are not guaranteed to run on
2316	 * a particular netdev (and can run outside driver context entirely
2317	 * in the case of devmap and cpumap). Until device checks
2318	 * are implemented, prohibit adding dev-bound programs to program maps.
2319	 */
2320	if (bpf_prog_is_dev_bound(aux))
2321		return false;
2322
2323	spin_lock(&map->owner.lock);
2324	if (!map->owner.type) {
2325		/* There's no owner yet where we could check for
2326		 * compatibility.
2327		 */
2328		map->owner.type  = prog_type;
2329		map->owner.jited = fp->jited;
2330		map->owner.xdp_has_frags = aux->xdp_has_frags;
2331		map->owner.attach_func_proto = aux->attach_func_proto;
2332		ret = true;
2333	} else {
2334		ret = map->owner.type  == prog_type &&
2335		      map->owner.jited == fp->jited &&
2336		      map->owner.xdp_has_frags == aux->xdp_has_frags;
2337		if (ret &&
2338		    map->owner.attach_func_proto != aux->attach_func_proto) {
2339			switch (prog_type) {
2340			case BPF_PROG_TYPE_TRACING:
2341			case BPF_PROG_TYPE_LSM:
2342			case BPF_PROG_TYPE_EXT:
2343			case BPF_PROG_TYPE_STRUCT_OPS:
2344				ret = false;
2345				break;
2346			default:
2347				break;
2348			}
2349		}
2350	}
2351	spin_unlock(&map->owner.lock);
2352
2353	return ret;
2354}
2355
2356static int bpf_check_tail_call(const struct bpf_prog *fp)
2357{
2358	struct bpf_prog_aux *aux = fp->aux;
2359	int i, ret = 0;
2360
2361	mutex_lock(&aux->used_maps_mutex);
2362	for (i = 0; i < aux->used_map_cnt; i++) {
2363		struct bpf_map *map = aux->used_maps[i];
2364
2365		if (!map_type_contains_progs(map))
2366			continue;
2367
2368		if (!bpf_prog_map_compatible(map, fp)) {
2369			ret = -EINVAL;
2370			goto out;
2371		}
2372	}
2373
2374out:
2375	mutex_unlock(&aux->used_maps_mutex);
2376	return ret;
2377}
2378
2379static void bpf_prog_select_func(struct bpf_prog *fp)
2380{
2381#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2382	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2383
2384	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2385#else
2386	fp->bpf_func = __bpf_prog_ret0_warn;
2387#endif
2388}
2389
2390/**
2391 *	bpf_prog_select_runtime - select exec runtime for BPF program
2392 *	@fp: bpf_prog populated with BPF program
2393 *	@err: pointer to error variable
2394 *
2395 * Try to JIT eBPF program, if JIT is not available, use interpreter.
2396 * The BPF program will be executed via bpf_prog_run() function.
2397 *
2398 * Return: the &fp argument along with &err set to 0 for success or
2399 * a negative errno code on failure
2400 */
2401struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2402{
2403	/* In case of BPF to BPF calls, verifier did all the prep
2404	 * work with regards to JITing, etc.
2405	 */
2406	bool jit_needed = false;
2407
2408	if (fp->bpf_func)
2409		goto finalize;
2410
2411	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2412	    bpf_prog_has_kfunc_call(fp))
2413		jit_needed = true;
2414
2415	bpf_prog_select_func(fp);
2416
2417	/* eBPF JITs can rewrite the program in case constant
2418	 * blinding is active. However, in case of error during
2419	 * blinding, bpf_int_jit_compile() must always return a
2420	 * valid program, which in this case would simply not
2421	 * be JITed, but falls back to the interpreter.
2422	 */
2423	if (!bpf_prog_is_offloaded(fp->aux)) {
2424		*err = bpf_prog_alloc_jited_linfo(fp);
2425		if (*err)
2426			return fp;
2427
2428		fp = bpf_int_jit_compile(fp);
2429		bpf_prog_jit_attempt_done(fp);
2430		if (!fp->jited && jit_needed) {
2431			*err = -ENOTSUPP;
2432			return fp;
2433		}
2434	} else {
2435		*err = bpf_prog_offload_compile(fp);
2436		if (*err)
2437			return fp;
2438	}
2439
2440finalize:
2441	*err = bpf_prog_lock_ro(fp);
2442	if (*err)
2443		return fp;
2444
2445	/* The tail call compatibility check can only be done at
2446	 * this late stage as we need to determine, if we deal
2447	 * with JITed or non JITed program concatenations and not
2448	 * all eBPF JITs might immediately support all features.
2449	 */
2450	*err = bpf_check_tail_call(fp);
2451
2452	return fp;
2453}
2454EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2455
2456static unsigned int __bpf_prog_ret1(const void *ctx,
2457				    const struct bpf_insn *insn)
2458{
2459	return 1;
2460}
2461
2462static struct bpf_prog_dummy {
2463	struct bpf_prog prog;
2464} dummy_bpf_prog = {
2465	.prog = {
2466		.bpf_func = __bpf_prog_ret1,
2467	},
2468};
2469
2470struct bpf_empty_prog_array bpf_empty_prog_array = {
2471	.null_prog = NULL,
2472};
2473EXPORT_SYMBOL(bpf_empty_prog_array);
2474
2475struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2476{
2477	struct bpf_prog_array *p;
2478
2479	if (prog_cnt)
2480		p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2481	else
2482		p = &bpf_empty_prog_array.hdr;
 
2483
2484	return p;
2485}
2486
2487void bpf_prog_array_free(struct bpf_prog_array *progs)
2488{
2489	if (!progs || progs == &bpf_empty_prog_array.hdr)
2490		return;
2491	kfree_rcu(progs, rcu);
2492}
2493
2494static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2495{
2496	struct bpf_prog_array *progs;
2497
2498	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2499	 * no need to call kfree_rcu(), just call kfree() directly.
2500	 */
2501	progs = container_of(rcu, struct bpf_prog_array, rcu);
2502	if (rcu_trace_implies_rcu_gp())
2503		kfree(progs);
2504	else
2505		kfree_rcu(progs, rcu);
2506}
2507
2508void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2509{
2510	if (!progs || progs == &bpf_empty_prog_array.hdr)
2511		return;
2512	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2513}
2514
2515int bpf_prog_array_length(struct bpf_prog_array *array)
2516{
2517	struct bpf_prog_array_item *item;
2518	u32 cnt = 0;
2519
2520	for (item = array->items; item->prog; item++)
2521		if (item->prog != &dummy_bpf_prog.prog)
2522			cnt++;
2523	return cnt;
2524}
2525
2526bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2527{
2528	struct bpf_prog_array_item *item;
2529
2530	for (item = array->items; item->prog; item++)
2531		if (item->prog != &dummy_bpf_prog.prog)
2532			return false;
2533	return true;
2534}
2535
2536static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2537				     u32 *prog_ids,
2538				     u32 request_cnt)
2539{
2540	struct bpf_prog_array_item *item;
2541	int i = 0;
2542
2543	for (item = array->items; item->prog; item++) {
2544		if (item->prog == &dummy_bpf_prog.prog)
2545			continue;
2546		prog_ids[i] = item->prog->aux->id;
2547		if (++i == request_cnt) {
2548			item++;
2549			break;
2550		}
2551	}
2552
2553	return !!(item->prog);
2554}
2555
2556int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2557				__u32 __user *prog_ids, u32 cnt)
2558{
2559	unsigned long err = 0;
2560	bool nospc;
2561	u32 *ids;
2562
2563	/* users of this function are doing:
2564	 * cnt = bpf_prog_array_length();
2565	 * if (cnt > 0)
2566	 *     bpf_prog_array_copy_to_user(..., cnt);
2567	 * so below kcalloc doesn't need extra cnt > 0 check.
2568	 */
2569	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2570	if (!ids)
2571		return -ENOMEM;
2572	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2573	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2574	kfree(ids);
2575	if (err)
2576		return -EFAULT;
2577	if (nospc)
2578		return -ENOSPC;
2579	return 0;
2580}
2581
2582void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2583				struct bpf_prog *old_prog)
2584{
2585	struct bpf_prog_array_item *item;
2586
2587	for (item = array->items; item->prog; item++)
2588		if (item->prog == old_prog) {
2589			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2590			break;
2591		}
2592}
2593
2594/**
2595 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2596 *                                   index into the program array with
2597 *                                   a dummy no-op program.
2598 * @array: a bpf_prog_array
2599 * @index: the index of the program to replace
2600 *
2601 * Skips over dummy programs, by not counting them, when calculating
2602 * the position of the program to replace.
2603 *
2604 * Return:
2605 * * 0		- Success
2606 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2607 * * -ENOENT	- Index out of range
2608 */
2609int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2610{
2611	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2612}
2613
2614/**
2615 * bpf_prog_array_update_at() - Updates the program at the given index
2616 *                              into the program array.
2617 * @array: a bpf_prog_array
2618 * @index: the index of the program to update
2619 * @prog: the program to insert into the array
2620 *
2621 * Skips over dummy programs, by not counting them, when calculating
2622 * the position of the program to update.
2623 *
2624 * Return:
2625 * * 0		- Success
2626 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2627 * * -ENOENT	- Index out of range
2628 */
2629int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2630			     struct bpf_prog *prog)
2631{
2632	struct bpf_prog_array_item *item;
2633
2634	if (unlikely(index < 0))
2635		return -EINVAL;
2636
2637	for (item = array->items; item->prog; item++) {
2638		if (item->prog == &dummy_bpf_prog.prog)
2639			continue;
2640		if (!index) {
2641			WRITE_ONCE(item->prog, prog);
2642			return 0;
2643		}
2644		index--;
2645	}
2646	return -ENOENT;
2647}
2648
2649int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2650			struct bpf_prog *exclude_prog,
2651			struct bpf_prog *include_prog,
2652			u64 bpf_cookie,
2653			struct bpf_prog_array **new_array)
2654{
2655	int new_prog_cnt, carry_prog_cnt = 0;
2656	struct bpf_prog_array_item *existing, *new;
2657	struct bpf_prog_array *array;
2658	bool found_exclude = false;
2659
2660	/* Figure out how many existing progs we need to carry over to
2661	 * the new array.
2662	 */
2663	if (old_array) {
2664		existing = old_array->items;
2665		for (; existing->prog; existing++) {
2666			if (existing->prog == exclude_prog) {
2667				found_exclude = true;
2668				continue;
2669			}
2670			if (existing->prog != &dummy_bpf_prog.prog)
2671				carry_prog_cnt++;
2672			if (existing->prog == include_prog)
2673				return -EEXIST;
2674		}
2675	}
2676
2677	if (exclude_prog && !found_exclude)
2678		return -ENOENT;
2679
2680	/* How many progs (not NULL) will be in the new array? */
2681	new_prog_cnt = carry_prog_cnt;
2682	if (include_prog)
2683		new_prog_cnt += 1;
2684
2685	/* Do we have any prog (not NULL) in the new array? */
2686	if (!new_prog_cnt) {
2687		*new_array = NULL;
2688		return 0;
2689	}
2690
2691	/* +1 as the end of prog_array is marked with NULL */
2692	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2693	if (!array)
2694		return -ENOMEM;
2695	new = array->items;
2696
2697	/* Fill in the new prog array */
2698	if (carry_prog_cnt) {
2699		existing = old_array->items;
2700		for (; existing->prog; existing++) {
2701			if (existing->prog == exclude_prog ||
2702			    existing->prog == &dummy_bpf_prog.prog)
2703				continue;
2704
2705			new->prog = existing->prog;
2706			new->bpf_cookie = existing->bpf_cookie;
2707			new++;
2708		}
2709	}
2710	if (include_prog) {
2711		new->prog = include_prog;
2712		new->bpf_cookie = bpf_cookie;
2713		new++;
2714	}
2715	new->prog = NULL;
2716	*new_array = array;
2717	return 0;
2718}
2719
2720int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2721			     u32 *prog_ids, u32 request_cnt,
2722			     u32 *prog_cnt)
2723{
2724	u32 cnt = 0;
2725
2726	if (array)
2727		cnt = bpf_prog_array_length(array);
2728
2729	*prog_cnt = cnt;
2730
2731	/* return early if user requested only program count or nothing to copy */
2732	if (!request_cnt || !cnt)
2733		return 0;
2734
2735	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2736	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2737								     : 0;
2738}
2739
2740void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2741			  struct bpf_map **used_maps, u32 len)
2742{
2743	struct bpf_map *map;
2744	bool sleepable;
2745	u32 i;
2746
2747	sleepable = aux->prog->sleepable;
2748	for (i = 0; i < len; i++) {
2749		map = used_maps[i];
2750		if (map->ops->map_poke_untrack)
2751			map->ops->map_poke_untrack(map, aux);
2752		if (sleepable)
2753			atomic64_dec(&map->sleepable_refcnt);
2754		bpf_map_put(map);
2755	}
2756}
2757
2758static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2759{
2760	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2761	kfree(aux->used_maps);
2762}
2763
2764void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len)
 
2765{
2766#ifdef CONFIG_BPF_SYSCALL
2767	struct btf_mod_pair *btf_mod;
2768	u32 i;
2769
2770	for (i = 0; i < len; i++) {
2771		btf_mod = &used_btfs[i];
2772		if (btf_mod->module)
2773			module_put(btf_mod->module);
2774		btf_put(btf_mod->btf);
2775	}
2776#endif
2777}
2778
2779static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2780{
2781	__bpf_free_used_btfs(aux->used_btfs, aux->used_btf_cnt);
2782	kfree(aux->used_btfs);
2783}
2784
2785static void bpf_prog_free_deferred(struct work_struct *work)
2786{
2787	struct bpf_prog_aux *aux;
2788	int i;
2789
2790	aux = container_of(work, struct bpf_prog_aux, work);
2791#ifdef CONFIG_BPF_SYSCALL
2792	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2793#endif
2794#ifdef CONFIG_CGROUP_BPF
2795	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2796		bpf_cgroup_atype_put(aux->cgroup_atype);
2797#endif
2798	bpf_free_used_maps(aux);
2799	bpf_free_used_btfs(aux);
2800	if (bpf_prog_is_dev_bound(aux))
2801		bpf_prog_dev_bound_destroy(aux->prog);
2802#ifdef CONFIG_PERF_EVENTS
2803	if (aux->prog->has_callchain_buf)
2804		put_callchain_buffers();
2805#endif
2806	if (aux->dst_trampoline)
2807		bpf_trampoline_put(aux->dst_trampoline);
2808	for (i = 0; i < aux->real_func_cnt; i++) {
2809		/* We can just unlink the subprog poke descriptor table as
2810		 * it was originally linked to the main program and is also
2811		 * released along with it.
2812		 */
2813		aux->func[i]->aux->poke_tab = NULL;
2814		bpf_jit_free(aux->func[i]);
2815	}
2816	if (aux->real_func_cnt) {
2817		kfree(aux->func);
2818		bpf_prog_unlock_free(aux->prog);
2819	} else {
2820		bpf_jit_free(aux->prog);
2821	}
2822}
2823
2824void bpf_prog_free(struct bpf_prog *fp)
2825{
2826	struct bpf_prog_aux *aux = fp->aux;
2827
2828	if (aux->dst_prog)
2829		bpf_prog_put(aux->dst_prog);
2830	bpf_token_put(aux->token);
2831	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2832	schedule_work(&aux->work);
2833}
2834EXPORT_SYMBOL_GPL(bpf_prog_free);
2835
2836/* RNG for unprivileged user space with separated state from prandom_u32(). */
2837static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2838
2839void bpf_user_rnd_init_once(void)
2840{
2841	prandom_init_once(&bpf_user_rnd_state);
2842}
2843
2844BPF_CALL_0(bpf_user_rnd_u32)
2845{
2846	/* Should someone ever have the rather unwise idea to use some
2847	 * of the registers passed into this function, then note that
2848	 * this function is called from native eBPF and classic-to-eBPF
2849	 * transformations. Register assignments from both sides are
2850	 * different, f.e. classic always sets fn(ctx, A, X) here.
2851	 */
2852	struct rnd_state *state;
2853	u32 res;
2854
2855	state = &get_cpu_var(bpf_user_rnd_state);
2856	res = prandom_u32_state(state);
2857	put_cpu_var(bpf_user_rnd_state);
2858
2859	return res;
2860}
2861
2862BPF_CALL_0(bpf_get_raw_cpu_id)
2863{
2864	return raw_smp_processor_id();
2865}
2866
2867/* Weak definitions of helper functions in case we don't have bpf syscall. */
2868const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2869const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2870const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2871const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2872const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2873const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2874const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2875const struct bpf_func_proto bpf_spin_lock_proto __weak;
2876const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2877const struct bpf_func_proto bpf_jiffies64_proto __weak;
2878
2879const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2880const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2881const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2882const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2883const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2884const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2885const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2886
2887const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2888const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2889const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2890const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2891const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2892const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2893const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2894const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2895const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2896const struct bpf_func_proto bpf_set_retval_proto __weak;
2897const struct bpf_func_proto bpf_get_retval_proto __weak;
2898
2899const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2900{
2901	return NULL;
2902}
2903
2904const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2905{
2906	return NULL;
2907}
2908
2909u64 __weak
2910bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2911		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2912{
2913	return -ENOTSUPP;
2914}
2915EXPORT_SYMBOL_GPL(bpf_event_output);
2916
2917/* Always built-in helper functions. */
2918const struct bpf_func_proto bpf_tail_call_proto = {
2919	.func		= NULL,
2920	.gpl_only	= false,
2921	.ret_type	= RET_VOID,
2922	.arg1_type	= ARG_PTR_TO_CTX,
2923	.arg2_type	= ARG_CONST_MAP_PTR,
2924	.arg3_type	= ARG_ANYTHING,
2925};
2926
2927/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2928 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2929 * eBPF and implicitly also cBPF can get JITed!
2930 */
2931struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2932{
2933	return prog;
2934}
2935
2936/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2937 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2938 */
2939void __weak bpf_jit_compile(struct bpf_prog *prog)
2940{
2941}
2942
2943bool __weak bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
2944{
2945	return false;
2946}
2947
2948/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2949 * analysis code and wants explicit zero extension inserted by verifier.
2950 * Otherwise, return FALSE.
2951 *
2952 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2953 * you don't override this. JITs that don't want these extra insns can detect
2954 * them using insn_is_zext.
2955 */
2956bool __weak bpf_jit_needs_zext(void)
2957{
2958	return false;
2959}
2960
2961/* Return true if the JIT inlines the call to the helper corresponding to
2962 * the imm.
2963 *
2964 * The verifier will not patch the insn->imm for the call to the helper if
2965 * this returns true.
2966 */
2967bool __weak bpf_jit_inlines_helper_call(s32 imm)
2968{
2969	return false;
2970}
2971
2972/* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2973bool __weak bpf_jit_supports_subprog_tailcalls(void)
2974{
2975	return false;
2976}
2977
2978bool __weak bpf_jit_supports_percpu_insn(void)
2979{
2980	return false;
2981}
2982
2983bool __weak bpf_jit_supports_kfunc_call(void)
2984{
2985	return false;
2986}
2987
2988bool __weak bpf_jit_supports_far_kfunc_call(void)
2989{
2990	return false;
2991}
2992
2993bool __weak bpf_jit_supports_arena(void)
2994{
2995	return false;
2996}
2997
2998bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2999{
3000	return false;
3001}
3002
3003u64 __weak bpf_arch_uaddress_limit(void)
3004{
3005#if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
3006	return TASK_SIZE;
3007#else
3008	return 0;
3009#endif
3010}
3011
3012/* Return TRUE if the JIT backend satisfies the following two conditions:
3013 * 1) JIT backend supports atomic_xchg() on pointer-sized words.
3014 * 2) Under the specific arch, the implementation of xchg() is the same
3015 *    as atomic_xchg() on pointer-sized words.
3016 */
3017bool __weak bpf_jit_supports_ptr_xchg(void)
3018{
3019	return false;
3020}
3021
3022/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3023 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3024 */
3025int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3026			 int len)
3027{
3028	return -EFAULT;
3029}
3030
3031int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3032			      void *addr1, void *addr2)
3033{
3034	return -ENOTSUPP;
3035}
3036
3037void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3038{
3039	return ERR_PTR(-ENOTSUPP);
3040}
3041
3042int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3043{
3044	return -ENOTSUPP;
3045}
3046
3047bool __weak bpf_jit_supports_exceptions(void)
3048{
3049	return false;
3050}
3051
3052bool __weak bpf_jit_supports_private_stack(void)
3053{
3054	return false;
3055}
3056
3057void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3058{
3059}
3060
3061/* for configs without MMU or 32-bit */
3062__weak const struct bpf_map_ops arena_map_ops;
3063__weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3064{
3065	return 0;
3066}
3067__weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3068{
3069	return 0;
3070}
3071
3072#ifdef CONFIG_BPF_SYSCALL
3073static int __init bpf_global_ma_init(void)
3074{
3075	int ret;
3076
3077	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3078	bpf_global_ma_set = !ret;
3079	return ret;
3080}
3081late_initcall(bpf_global_ma_init);
3082#endif
3083
3084DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3085EXPORT_SYMBOL(bpf_stats_enabled_key);
3086
3087/* All definitions of tracepoints related to BPF. */
3088#define CREATE_TRACE_POINTS
3089#include <linux/bpf_trace.h>
3090
3091EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3092EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *	Jay Schulist <jschlst@samba.org>
  13 *	Alexei Starovoitov <ast@plumgrid.com>
  14 *	Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <uapi/linux/btf.h>
  21#include <linux/filter.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/random.h>
  25#include <linux/moduleloader.h>
  26#include <linux/bpf.h>
  27#include <linux/btf.h>
  28#include <linux/objtool.h>
 
  29#include <linux/rbtree_latch.h>
  30#include <linux/kallsyms.h>
  31#include <linux/rcupdate.h>
  32#include <linux/perf_event.h>
  33#include <linux/extable.h>
  34#include <linux/log2.h>
  35#include <linux/bpf_verifier.h>
  36#include <linux/nodemask.h>
  37#include <linux/nospec.h>
  38#include <linux/bpf_mem_alloc.h>
  39#include <linux/memcontrol.h>
 
  40
  41#include <asm/barrier.h>
  42#include <asm/unaligned.h>
  43
  44/* Registers */
  45#define BPF_R0	regs[BPF_REG_0]
  46#define BPF_R1	regs[BPF_REG_1]
  47#define BPF_R2	regs[BPF_REG_2]
  48#define BPF_R3	regs[BPF_REG_3]
  49#define BPF_R4	regs[BPF_REG_4]
  50#define BPF_R5	regs[BPF_REG_5]
  51#define BPF_R6	regs[BPF_REG_6]
  52#define BPF_R7	regs[BPF_REG_7]
  53#define BPF_R8	regs[BPF_REG_8]
  54#define BPF_R9	regs[BPF_REG_9]
  55#define BPF_R10	regs[BPF_REG_10]
  56
  57/* Named registers */
  58#define DST	regs[insn->dst_reg]
  59#define SRC	regs[insn->src_reg]
  60#define FP	regs[BPF_REG_FP]
  61#define AX	regs[BPF_REG_AX]
  62#define ARG1	regs[BPF_REG_ARG1]
  63#define CTX	regs[BPF_REG_CTX]
  64#define OFF	insn->off
  65#define IMM	insn->imm
  66
  67struct bpf_mem_alloc bpf_global_ma;
  68bool bpf_global_ma_set;
  69
  70/* No hurry in this branch
  71 *
  72 * Exported for the bpf jit load helper.
  73 */
  74void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  75{
  76	u8 *ptr = NULL;
  77
  78	if (k >= SKF_NET_OFF) {
  79		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  80	} else if (k >= SKF_LL_OFF) {
  81		if (unlikely(!skb_mac_header_was_set(skb)))
  82			return NULL;
  83		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  84	}
  85	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  86		return ptr;
  87
  88	return NULL;
  89}
  90
 
 
 
 
 
  91struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
  92{
  93	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
  94	struct bpf_prog_aux *aux;
  95	struct bpf_prog *fp;
  96
  97	size = round_up(size, PAGE_SIZE);
  98	fp = __vmalloc(size, gfp_flags);
  99	if (fp == NULL)
 100		return NULL;
 101
 102	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
 103	if (aux == NULL) {
 104		vfree(fp);
 105		return NULL;
 106	}
 107	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
 108	if (!fp->active) {
 109		vfree(fp);
 110		kfree(aux);
 111		return NULL;
 112	}
 113
 114	fp->pages = size / PAGE_SIZE;
 115	fp->aux = aux;
 116	fp->aux->prog = fp;
 117	fp->jit_requested = ebpf_jit_enabled();
 118	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
 119#ifdef CONFIG_CGROUP_BPF
 120	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
 121#endif
 122
 123	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
 124#ifdef CONFIG_FINEIBT
 125	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
 126#endif
 127	mutex_init(&fp->aux->used_maps_mutex);
 
 128	mutex_init(&fp->aux->dst_mutex);
 129
 130	return fp;
 131}
 132
 133struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 134{
 135	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
 136	struct bpf_prog *prog;
 137	int cpu;
 138
 139	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
 140	if (!prog)
 141		return NULL;
 142
 143	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
 144	if (!prog->stats) {
 145		free_percpu(prog->active);
 146		kfree(prog->aux);
 147		vfree(prog);
 148		return NULL;
 149	}
 150
 151	for_each_possible_cpu(cpu) {
 152		struct bpf_prog_stats *pstats;
 153
 154		pstats = per_cpu_ptr(prog->stats, cpu);
 155		u64_stats_init(&pstats->syncp);
 156	}
 157	return prog;
 158}
 159EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 160
 161int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
 162{
 163	if (!prog->aux->nr_linfo || !prog->jit_requested)
 164		return 0;
 165
 166	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
 167					  sizeof(*prog->aux->jited_linfo),
 168					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
 169	if (!prog->aux->jited_linfo)
 170		return -ENOMEM;
 171
 172	return 0;
 173}
 174
 175void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
 176{
 177	if (prog->aux->jited_linfo &&
 178	    (!prog->jited || !prog->aux->jited_linfo[0])) {
 179		kvfree(prog->aux->jited_linfo);
 180		prog->aux->jited_linfo = NULL;
 181	}
 182
 183	kfree(prog->aux->kfunc_tab);
 184	prog->aux->kfunc_tab = NULL;
 185}
 186
 187/* The jit engine is responsible to provide an array
 188 * for insn_off to the jited_off mapping (insn_to_jit_off).
 189 *
 190 * The idx to this array is the insn_off.  Hence, the insn_off
 191 * here is relative to the prog itself instead of the main prog.
 192 * This array has one entry for each xlated bpf insn.
 193 *
 194 * jited_off is the byte off to the end of the jited insn.
 195 *
 196 * Hence, with
 197 * insn_start:
 198 *      The first bpf insn off of the prog.  The insn off
 199 *      here is relative to the main prog.
 200 *      e.g. if prog is a subprog, insn_start > 0
 201 * linfo_idx:
 202 *      The prog's idx to prog->aux->linfo and jited_linfo
 203 *
 204 * jited_linfo[linfo_idx] = prog->bpf_func
 205 *
 206 * For i > linfo_idx,
 207 *
 208 * jited_linfo[i] = prog->bpf_func +
 209 *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
 210 */
 211void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 212			       const u32 *insn_to_jit_off)
 213{
 214	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
 215	const struct bpf_line_info *linfo;
 216	void **jited_linfo;
 217
 218	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
 219		/* Userspace did not provide linfo */
 220		return;
 221
 222	linfo_idx = prog->aux->linfo_idx;
 223	linfo = &prog->aux->linfo[linfo_idx];
 224	insn_start = linfo[0].insn_off;
 225	insn_end = insn_start + prog->len;
 226
 227	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
 228	jited_linfo[0] = prog->bpf_func;
 229
 230	nr_linfo = prog->aux->nr_linfo - linfo_idx;
 231
 232	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
 233		/* The verifier ensures that linfo[i].insn_off is
 234		 * strictly increasing
 235		 */
 236		jited_linfo[i] = prog->bpf_func +
 237			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
 238}
 239
 240struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 241				  gfp_t gfp_extra_flags)
 242{
 243	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
 244	struct bpf_prog *fp;
 245	u32 pages;
 246
 247	size = round_up(size, PAGE_SIZE);
 248	pages = size / PAGE_SIZE;
 249	if (pages <= fp_old->pages)
 250		return fp_old;
 251
 252	fp = __vmalloc(size, gfp_flags);
 253	if (fp) {
 254		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 255		fp->pages = pages;
 256		fp->aux->prog = fp;
 257
 258		/* We keep fp->aux from fp_old around in the new
 259		 * reallocated structure.
 260		 */
 261		fp_old->aux = NULL;
 262		fp_old->stats = NULL;
 263		fp_old->active = NULL;
 264		__bpf_prog_free(fp_old);
 265	}
 266
 267	return fp;
 268}
 269
 270void __bpf_prog_free(struct bpf_prog *fp)
 271{
 272	if (fp->aux) {
 273		mutex_destroy(&fp->aux->used_maps_mutex);
 274		mutex_destroy(&fp->aux->dst_mutex);
 275		kfree(fp->aux->poke_tab);
 276		kfree(fp->aux);
 277	}
 278	free_percpu(fp->stats);
 279	free_percpu(fp->active);
 280	vfree(fp);
 281}
 282
 283int bpf_prog_calc_tag(struct bpf_prog *fp)
 284{
 285	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
 286	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 287	u32 digest[SHA1_DIGEST_WORDS];
 288	u32 ws[SHA1_WORKSPACE_WORDS];
 289	u32 i, bsize, psize, blocks;
 290	struct bpf_insn *dst;
 291	bool was_ld_map;
 292	u8 *raw, *todo;
 293	__be32 *result;
 294	__be64 *bits;
 295
 296	raw = vmalloc(raw_size);
 297	if (!raw)
 298		return -ENOMEM;
 299
 300	sha1_init(digest);
 301	memset(ws, 0, sizeof(ws));
 302
 303	/* We need to take out the map fd for the digest calculation
 304	 * since they are unstable from user space side.
 305	 */
 306	dst = (void *)raw;
 307	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 308		dst[i] = fp->insnsi[i];
 309		if (!was_ld_map &&
 310		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 311		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
 312		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
 313			was_ld_map = true;
 314			dst[i].imm = 0;
 315		} else if (was_ld_map &&
 316			   dst[i].code == 0 &&
 317			   dst[i].dst_reg == 0 &&
 318			   dst[i].src_reg == 0 &&
 319			   dst[i].off == 0) {
 320			was_ld_map = false;
 321			dst[i].imm = 0;
 322		} else {
 323			was_ld_map = false;
 324		}
 325	}
 326
 327	psize = bpf_prog_insn_size(fp);
 328	memset(&raw[psize], 0, raw_size - psize);
 329	raw[psize++] = 0x80;
 330
 331	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
 332	blocks = bsize / SHA1_BLOCK_SIZE;
 333	todo   = raw;
 334	if (bsize - psize >= sizeof(__be64)) {
 335		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 336	} else {
 337		bits = (__be64 *)(todo + bsize + bits_offset);
 338		blocks++;
 339	}
 340	*bits = cpu_to_be64((psize - 1) << 3);
 341
 342	while (blocks--) {
 343		sha1_transform(digest, todo, ws);
 344		todo += SHA1_BLOCK_SIZE;
 345	}
 346
 347	result = (__force __be32 *)digest;
 348	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
 349		result[i] = cpu_to_be32(digest[i]);
 350	memcpy(fp->tag, result, sizeof(fp->tag));
 351
 352	vfree(raw);
 353	return 0;
 354}
 355
 356static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
 357				s32 end_new, s32 curr, const bool probe_pass)
 358{
 359	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 360	s32 delta = end_new - end_old;
 361	s64 imm = insn->imm;
 362
 363	if (curr < pos && curr + imm + 1 >= end_old)
 364		imm += delta;
 365	else if (curr >= end_new && curr + imm + 1 < end_new)
 366		imm -= delta;
 367	if (imm < imm_min || imm > imm_max)
 368		return -ERANGE;
 369	if (!probe_pass)
 370		insn->imm = imm;
 371	return 0;
 372}
 373
 374static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
 375				s32 end_new, s32 curr, const bool probe_pass)
 376{
 377	s64 off_min, off_max, off;
 378	s32 delta = end_new - end_old;
 379
 380	if (insn->code == (BPF_JMP32 | BPF_JA)) {
 381		off = insn->imm;
 382		off_min = S32_MIN;
 383		off_max = S32_MAX;
 384	} else {
 385		off = insn->off;
 386		off_min = S16_MIN;
 387		off_max = S16_MAX;
 388	}
 389
 390	if (curr < pos && curr + off + 1 >= end_old)
 391		off += delta;
 392	else if (curr >= end_new && curr + off + 1 < end_new)
 393		off -= delta;
 394	if (off < off_min || off > off_max)
 395		return -ERANGE;
 396	if (!probe_pass) {
 397		if (insn->code == (BPF_JMP32 | BPF_JA))
 398			insn->imm = off;
 399		else
 400			insn->off = off;
 401	}
 402	return 0;
 403}
 404
 405static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
 406			    s32 end_new, const bool probe_pass)
 407{
 408	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
 409	struct bpf_insn *insn = prog->insnsi;
 410	int ret = 0;
 411
 412	for (i = 0; i < insn_cnt; i++, insn++) {
 413		u8 code;
 414
 415		/* In the probing pass we still operate on the original,
 416		 * unpatched image in order to check overflows before we
 417		 * do any other adjustments. Therefore skip the patchlet.
 418		 */
 419		if (probe_pass && i == pos) {
 420			i = end_new;
 421			insn = prog->insnsi + end_old;
 422		}
 423		if (bpf_pseudo_func(insn)) {
 424			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 425						   end_new, i, probe_pass);
 426			if (ret)
 427				return ret;
 428			continue;
 429		}
 430		code = insn->code;
 431		if ((BPF_CLASS(code) != BPF_JMP &&
 432		     BPF_CLASS(code) != BPF_JMP32) ||
 433		    BPF_OP(code) == BPF_EXIT)
 434			continue;
 435		/* Adjust offset of jmps if we cross patch boundaries. */
 436		if (BPF_OP(code) == BPF_CALL) {
 437			if (insn->src_reg != BPF_PSEUDO_CALL)
 438				continue;
 439			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 440						   end_new, i, probe_pass);
 441		} else {
 442			ret = bpf_adj_delta_to_off(insn, pos, end_old,
 443						   end_new, i, probe_pass);
 444		}
 445		if (ret)
 446			break;
 447	}
 448
 449	return ret;
 450}
 451
 452static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
 453{
 454	struct bpf_line_info *linfo;
 455	u32 i, nr_linfo;
 456
 457	nr_linfo = prog->aux->nr_linfo;
 458	if (!nr_linfo || !delta)
 459		return;
 460
 461	linfo = prog->aux->linfo;
 462
 463	for (i = 0; i < nr_linfo; i++)
 464		if (off < linfo[i].insn_off)
 465			break;
 466
 467	/* Push all off < linfo[i].insn_off by delta */
 468	for (; i < nr_linfo; i++)
 469		linfo[i].insn_off += delta;
 470}
 471
 472struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 473				       const struct bpf_insn *patch, u32 len)
 474{
 475	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 476	const u32 cnt_max = S16_MAX;
 477	struct bpf_prog *prog_adj;
 478	int err;
 479
 480	/* Since our patchlet doesn't expand the image, we're done. */
 481	if (insn_delta == 0) {
 482		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 483		return prog;
 484	}
 485
 486	insn_adj_cnt = prog->len + insn_delta;
 487
 488	/* Reject anything that would potentially let the insn->off
 489	 * target overflow when we have excessive program expansions.
 490	 * We need to probe here before we do any reallocation where
 491	 * we afterwards may not fail anymore.
 492	 */
 493	if (insn_adj_cnt > cnt_max &&
 494	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
 495		return ERR_PTR(err);
 496
 497	/* Several new instructions need to be inserted. Make room
 498	 * for them. Likely, there's no need for a new allocation as
 499	 * last page could have large enough tailroom.
 500	 */
 501	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 502				    GFP_USER);
 503	if (!prog_adj)
 504		return ERR_PTR(-ENOMEM);
 505
 506	prog_adj->len = insn_adj_cnt;
 507
 508	/* Patching happens in 3 steps:
 509	 *
 510	 * 1) Move over tail of insnsi from next instruction onwards,
 511	 *    so we can patch the single target insn with one or more
 512	 *    new ones (patching is always from 1 to n insns, n > 0).
 513	 * 2) Inject new instructions at the target location.
 514	 * 3) Adjust branch offsets if necessary.
 515	 */
 516	insn_rest = insn_adj_cnt - off - len;
 517
 518	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 519		sizeof(*patch) * insn_rest);
 520	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 521
 522	/* We are guaranteed to not fail at this point, otherwise
 523	 * the ship has sailed to reverse to the original state. An
 524	 * overflow cannot happen at this point.
 525	 */
 526	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
 527
 528	bpf_adj_linfo(prog_adj, off, insn_delta);
 529
 530	return prog_adj;
 531}
 532
 533int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
 534{
 
 
 535	/* Branch offsets can't overflow when program is shrinking, no need
 536	 * to call bpf_adj_branches(..., true) here
 537	 */
 538	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
 539		sizeof(struct bpf_insn) * (prog->len - off - cnt));
 540	prog->len -= cnt;
 541
 542	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
 
 
 543}
 544
 545static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
 546{
 547	int i;
 548
 549	for (i = 0; i < fp->aux->real_func_cnt; i++)
 550		bpf_prog_kallsyms_del(fp->aux->func[i]);
 551}
 552
 553void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
 554{
 555	bpf_prog_kallsyms_del_subprogs(fp);
 556	bpf_prog_kallsyms_del(fp);
 557}
 558
 559#ifdef CONFIG_BPF_JIT
 560/* All BPF JIT sysctl knobs here. */
 561int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 562int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 563int bpf_jit_harden   __read_mostly;
 564long bpf_jit_limit   __read_mostly;
 565long bpf_jit_limit_max __read_mostly;
 566
 567static void
 568bpf_prog_ksym_set_addr(struct bpf_prog *prog)
 569{
 570	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 571
 572	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
 573	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
 574}
 575
 576static void
 577bpf_prog_ksym_set_name(struct bpf_prog *prog)
 578{
 579	char *sym = prog->aux->ksym.name;
 580	const char *end = sym + KSYM_NAME_LEN;
 581	const struct btf_type *type;
 582	const char *func_name;
 583
 584	BUILD_BUG_ON(sizeof("bpf_prog_") +
 585		     sizeof(prog->tag) * 2 +
 586		     /* name has been null terminated.
 587		      * We should need +1 for the '_' preceding
 588		      * the name.  However, the null character
 589		      * is double counted between the name and the
 590		      * sizeof("bpf_prog_") above, so we omit
 591		      * the +1 here.
 592		      */
 593		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 594
 595	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 596	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 597
 598	/* prog->aux->name will be ignored if full btf name is available */
 599	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
 600		type = btf_type_by_id(prog->aux->btf,
 601				      prog->aux->func_info[prog->aux->func_idx].type_id);
 602		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
 603		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
 604		return;
 605	}
 606
 607	if (prog->aux->name[0])
 608		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 609	else
 610		*sym = 0;
 611}
 612
 613static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
 614{
 615	return container_of(n, struct bpf_ksym, tnode)->start;
 616}
 617
 618static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 619					  struct latch_tree_node *b)
 620{
 621	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
 622}
 623
 624static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 625{
 626	unsigned long val = (unsigned long)key;
 627	const struct bpf_ksym *ksym;
 628
 629	ksym = container_of(n, struct bpf_ksym, tnode);
 630
 631	if (val < ksym->start)
 632		return -1;
 633	/* Ensure that we detect return addresses as part of the program, when
 634	 * the final instruction is a call for a program part of the stack
 635	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
 636	 */
 637	if (val > ksym->end)
 638		return  1;
 639
 640	return 0;
 641}
 642
 643static const struct latch_tree_ops bpf_tree_ops = {
 644	.less	= bpf_tree_less,
 645	.comp	= bpf_tree_comp,
 646};
 647
 648static DEFINE_SPINLOCK(bpf_lock);
 649static LIST_HEAD(bpf_kallsyms);
 650static struct latch_tree_root bpf_tree __cacheline_aligned;
 651
 652void bpf_ksym_add(struct bpf_ksym *ksym)
 653{
 654	spin_lock_bh(&bpf_lock);
 655	WARN_ON_ONCE(!list_empty(&ksym->lnode));
 656	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
 657	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 658	spin_unlock_bh(&bpf_lock);
 659}
 660
 661static void __bpf_ksym_del(struct bpf_ksym *ksym)
 662{
 663	if (list_empty(&ksym->lnode))
 664		return;
 665
 666	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 667	list_del_rcu(&ksym->lnode);
 668}
 669
 670void bpf_ksym_del(struct bpf_ksym *ksym)
 671{
 672	spin_lock_bh(&bpf_lock);
 673	__bpf_ksym_del(ksym);
 674	spin_unlock_bh(&bpf_lock);
 675}
 676
 677static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 678{
 679	return fp->jited && !bpf_prog_was_classic(fp);
 680}
 681
 682void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 683{
 684	if (!bpf_prog_kallsyms_candidate(fp) ||
 685	    !bpf_capable())
 686		return;
 687
 688	bpf_prog_ksym_set_addr(fp);
 689	bpf_prog_ksym_set_name(fp);
 690	fp->aux->ksym.prog = true;
 691
 692	bpf_ksym_add(&fp->aux->ksym);
 693
 694#ifdef CONFIG_FINEIBT
 695	/*
 696	 * When FineIBT, code in the __cfi_foo() symbols can get executed
 697	 * and hence unwinder needs help.
 698	 */
 699	if (cfi_mode != CFI_FINEIBT)
 700		return;
 701
 702	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
 703		 "__cfi_%s", fp->aux->ksym.name);
 704
 705	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
 706	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
 707
 708	bpf_ksym_add(&fp->aux->ksym_prefix);
 709#endif
 710}
 711
 712void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 713{
 714	if (!bpf_prog_kallsyms_candidate(fp))
 715		return;
 716
 717	bpf_ksym_del(&fp->aux->ksym);
 718#ifdef CONFIG_FINEIBT
 719	if (cfi_mode != CFI_FINEIBT)
 720		return;
 721	bpf_ksym_del(&fp->aux->ksym_prefix);
 722#endif
 723}
 724
 725static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
 726{
 727	struct latch_tree_node *n;
 728
 729	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 730	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
 731}
 732
 733const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 734				 unsigned long *off, char *sym)
 735{
 736	struct bpf_ksym *ksym;
 737	char *ret = NULL;
 738
 739	rcu_read_lock();
 740	ksym = bpf_ksym_find(addr);
 741	if (ksym) {
 742		unsigned long symbol_start = ksym->start;
 743		unsigned long symbol_end = ksym->end;
 744
 745		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 746
 747		ret = sym;
 748		if (size)
 749			*size = symbol_end - symbol_start;
 750		if (off)
 751			*off  = addr - symbol_start;
 752	}
 753	rcu_read_unlock();
 754
 755	return ret;
 756}
 757
 758bool is_bpf_text_address(unsigned long addr)
 759{
 760	bool ret;
 761
 762	rcu_read_lock();
 763	ret = bpf_ksym_find(addr) != NULL;
 764	rcu_read_unlock();
 765
 766	return ret;
 767}
 768
 769struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
 770{
 771	struct bpf_ksym *ksym = bpf_ksym_find(addr);
 772
 773	return ksym && ksym->prog ?
 774	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
 775	       NULL;
 776}
 777
 778const struct exception_table_entry *search_bpf_extables(unsigned long addr)
 779{
 780	const struct exception_table_entry *e = NULL;
 781	struct bpf_prog *prog;
 782
 783	rcu_read_lock();
 784	prog = bpf_prog_ksym_find(addr);
 785	if (!prog)
 786		goto out;
 787	if (!prog->aux->num_exentries)
 788		goto out;
 789
 790	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
 791out:
 792	rcu_read_unlock();
 793	return e;
 794}
 795
 796int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 797		    char *sym)
 798{
 799	struct bpf_ksym *ksym;
 800	unsigned int it = 0;
 801	int ret = -ERANGE;
 802
 803	if (!bpf_jit_kallsyms_enabled())
 804		return ret;
 805
 806	rcu_read_lock();
 807	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
 808		if (it++ != symnum)
 809			continue;
 810
 811		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 812
 813		*value = ksym->start;
 814		*type  = BPF_SYM_ELF_TYPE;
 815
 816		ret = 0;
 817		break;
 818	}
 819	rcu_read_unlock();
 820
 821	return ret;
 822}
 823
 824int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
 825				struct bpf_jit_poke_descriptor *poke)
 826{
 827	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
 828	static const u32 poke_tab_max = 1024;
 829	u32 slot = prog->aux->size_poke_tab;
 830	u32 size = slot + 1;
 831
 832	if (size > poke_tab_max)
 833		return -ENOSPC;
 834	if (poke->tailcall_target || poke->tailcall_target_stable ||
 835	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
 836		return -EINVAL;
 837
 838	switch (poke->reason) {
 839	case BPF_POKE_REASON_TAIL_CALL:
 840		if (!poke->tail_call.map)
 841			return -EINVAL;
 842		break;
 843	default:
 844		return -EINVAL;
 845	}
 846
 847	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
 848	if (!tab)
 849		return -ENOMEM;
 850
 851	memcpy(&tab[slot], poke, sizeof(*poke));
 852	prog->aux->size_poke_tab = size;
 853	prog->aux->poke_tab = tab;
 854
 855	return slot;
 856}
 857
 858/*
 859 * BPF program pack allocator.
 860 *
 861 * Most BPF programs are pretty small. Allocating a hole page for each
 862 * program is sometime a waste. Many small bpf program also adds pressure
 863 * to instruction TLB. To solve this issue, we introduce a BPF program pack
 864 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
 865 * to host BPF programs.
 866 */
 867#define BPF_PROG_CHUNK_SHIFT	6
 868#define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
 869#define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
 870
 871struct bpf_prog_pack {
 872	struct list_head list;
 873	void *ptr;
 874	unsigned long bitmap[];
 875};
 876
 877void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
 878{
 879	memset(area, 0, size);
 880}
 881
 882#define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
 883
 884static DEFINE_MUTEX(pack_mutex);
 885static LIST_HEAD(pack_list);
 886
 887/* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
 888 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
 889 */
 890#ifdef PMD_SIZE
 891#define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
 
 
 
 
 
 892#else
 893#define BPF_PROG_PACK_SIZE PAGE_SIZE
 894#endif
 895
 896#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
 897
 898static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
 899{
 900	struct bpf_prog_pack *pack;
 
 901
 902	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
 903		       GFP_KERNEL);
 904	if (!pack)
 905		return NULL;
 906	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
 907	if (!pack->ptr) {
 908		kfree(pack);
 909		return NULL;
 910	}
 911	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
 912	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
 913	list_add_tail(&pack->list, &pack_list);
 914
 915	set_vm_flush_reset_perms(pack->ptr);
 916	set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
 
 
 
 
 917	return pack;
 
 
 
 
 
 918}
 919
 920void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
 921{
 922	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
 923	struct bpf_prog_pack *pack;
 924	unsigned long pos;
 925	void *ptr = NULL;
 926
 927	mutex_lock(&pack_mutex);
 928	if (size > BPF_PROG_PACK_SIZE) {
 929		size = round_up(size, PAGE_SIZE);
 930		ptr = bpf_jit_alloc_exec(size);
 931		if (ptr) {
 
 
 932			bpf_fill_ill_insns(ptr, size);
 933			set_vm_flush_reset_perms(ptr);
 934			set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
 
 
 
 
 
 935		}
 936		goto out;
 937	}
 938	list_for_each_entry(pack, &pack_list, list) {
 939		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
 940						 nbits, 0);
 941		if (pos < BPF_PROG_CHUNK_COUNT)
 942			goto found_free_area;
 943	}
 944
 945	pack = alloc_new_pack(bpf_fill_ill_insns);
 946	if (!pack)
 947		goto out;
 948
 949	pos = 0;
 950
 951found_free_area:
 952	bitmap_set(pack->bitmap, pos, nbits);
 953	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
 954
 955out:
 956	mutex_unlock(&pack_mutex);
 957	return ptr;
 958}
 959
 960void bpf_prog_pack_free(void *ptr, u32 size)
 961{
 962	struct bpf_prog_pack *pack = NULL, *tmp;
 963	unsigned int nbits;
 964	unsigned long pos;
 965
 966	mutex_lock(&pack_mutex);
 967	if (size > BPF_PROG_PACK_SIZE) {
 968		bpf_jit_free_exec(ptr);
 969		goto out;
 970	}
 971
 972	list_for_each_entry(tmp, &pack_list, list) {
 973		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
 974			pack = tmp;
 975			break;
 976		}
 977	}
 978
 979	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
 980		goto out;
 981
 982	nbits = BPF_PROG_SIZE_TO_NBITS(size);
 983	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
 984
 985	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
 986		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
 987
 988	bitmap_clear(pack->bitmap, pos, nbits);
 989	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
 990				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
 991		list_del(&pack->list);
 992		bpf_jit_free_exec(pack->ptr);
 993		kfree(pack);
 994	}
 995out:
 996	mutex_unlock(&pack_mutex);
 997}
 998
 999static atomic_long_t bpf_jit_current;
1000
1001/* Can be overridden by an arch's JIT compiler if it has a custom,
1002 * dedicated BPF backend memory area, or if neither of the two
1003 * below apply.
1004 */
1005u64 __weak bpf_jit_alloc_exec_limit(void)
1006{
1007#if defined(MODULES_VADDR)
1008	return MODULES_END - MODULES_VADDR;
1009#else
1010	return VMALLOC_END - VMALLOC_START;
1011#endif
1012}
1013
1014static int __init bpf_jit_charge_init(void)
1015{
1016	/* Only used as heuristic here to derive limit. */
1017	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1018	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1019					    PAGE_SIZE), LONG_MAX);
1020	return 0;
1021}
1022pure_initcall(bpf_jit_charge_init);
1023
1024int bpf_jit_charge_modmem(u32 size)
1025{
1026	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1027		if (!bpf_capable()) {
1028			atomic_long_sub(size, &bpf_jit_current);
1029			return -EPERM;
1030		}
1031	}
1032
1033	return 0;
1034}
1035
1036void bpf_jit_uncharge_modmem(u32 size)
1037{
1038	atomic_long_sub(size, &bpf_jit_current);
1039}
1040
1041void *__weak bpf_jit_alloc_exec(unsigned long size)
1042{
1043	return module_alloc(size);
1044}
1045
1046void __weak bpf_jit_free_exec(void *addr)
1047{
1048	module_memfree(addr);
1049}
1050
1051struct bpf_binary_header *
1052bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1053		     unsigned int alignment,
1054		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1055{
1056	struct bpf_binary_header *hdr;
1057	u32 size, hole, start;
1058
1059	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1060		     alignment > BPF_IMAGE_ALIGNMENT);
1061
1062	/* Most of BPF filters are really small, but if some of them
1063	 * fill a page, allow at least 128 extra bytes to insert a
1064	 * random section of illegal instructions.
1065	 */
1066	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1067
1068	if (bpf_jit_charge_modmem(size))
1069		return NULL;
1070	hdr = bpf_jit_alloc_exec(size);
1071	if (!hdr) {
1072		bpf_jit_uncharge_modmem(size);
1073		return NULL;
1074	}
1075
1076	/* Fill space with illegal/arch-dep instructions. */
1077	bpf_fill_ill_insns(hdr, size);
1078
1079	hdr->size = size;
1080	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1081		     PAGE_SIZE - sizeof(*hdr));
1082	start = get_random_u32_below(hole) & ~(alignment - 1);
1083
1084	/* Leave a random number of instructions before BPF code. */
1085	*image_ptr = &hdr->image[start];
1086
1087	return hdr;
1088}
1089
1090void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1091{
1092	u32 size = hdr->size;
1093
1094	bpf_jit_free_exec(hdr);
1095	bpf_jit_uncharge_modmem(size);
1096}
1097
1098/* Allocate jit binary from bpf_prog_pack allocator.
1099 * Since the allocated memory is RO+X, the JIT engine cannot write directly
1100 * to the memory. To solve this problem, a RW buffer is also allocated at
1101 * as the same time. The JIT engine should calculate offsets based on the
1102 * RO memory address, but write JITed program to the RW buffer. Once the
1103 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1104 * the JITed program to the RO memory.
1105 */
1106struct bpf_binary_header *
1107bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1108			  unsigned int alignment,
1109			  struct bpf_binary_header **rw_header,
1110			  u8 **rw_image,
1111			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1112{
1113	struct bpf_binary_header *ro_header;
1114	u32 size, hole, start;
1115
1116	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1117		     alignment > BPF_IMAGE_ALIGNMENT);
1118
1119	/* add 16 bytes for a random section of illegal instructions */
1120	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1121
1122	if (bpf_jit_charge_modmem(size))
1123		return NULL;
1124	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1125	if (!ro_header) {
1126		bpf_jit_uncharge_modmem(size);
1127		return NULL;
1128	}
1129
1130	*rw_header = kvmalloc(size, GFP_KERNEL);
1131	if (!*rw_header) {
1132		bpf_prog_pack_free(ro_header, size);
1133		bpf_jit_uncharge_modmem(size);
1134		return NULL;
1135	}
1136
1137	/* Fill space with illegal/arch-dep instructions. */
1138	bpf_fill_ill_insns(*rw_header, size);
1139	(*rw_header)->size = size;
1140
1141	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1142		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1143	start = get_random_u32_below(hole) & ~(alignment - 1);
1144
1145	*image_ptr = &ro_header->image[start];
1146	*rw_image = &(*rw_header)->image[start];
1147
1148	return ro_header;
1149}
1150
1151/* Copy JITed text from rw_header to its final location, the ro_header. */
1152int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1153				 struct bpf_binary_header *ro_header,
1154				 struct bpf_binary_header *rw_header)
1155{
1156	void *ptr;
1157
1158	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1159
1160	kvfree(rw_header);
1161
1162	if (IS_ERR(ptr)) {
1163		bpf_prog_pack_free(ro_header, ro_header->size);
1164		return PTR_ERR(ptr);
1165	}
1166	return 0;
1167}
1168
1169/* bpf_jit_binary_pack_free is called in two different scenarios:
1170 *   1) when the program is freed after;
1171 *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1172 * For case 2), we need to free both the RO memory and the RW buffer.
1173 *
1174 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1175 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1176 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1177 * bpf_arch_text_copy (when jit fails).
1178 */
1179void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1180			      struct bpf_binary_header *rw_header)
1181{
1182	u32 size = ro_header->size;
1183
1184	bpf_prog_pack_free(ro_header, size);
1185	kvfree(rw_header);
1186	bpf_jit_uncharge_modmem(size);
1187}
1188
1189struct bpf_binary_header *
1190bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1191{
1192	unsigned long real_start = (unsigned long)fp->bpf_func;
1193	unsigned long addr;
1194
1195	addr = real_start & BPF_PROG_CHUNK_MASK;
1196	return (void *)addr;
1197}
1198
1199static inline struct bpf_binary_header *
1200bpf_jit_binary_hdr(const struct bpf_prog *fp)
1201{
1202	unsigned long real_start = (unsigned long)fp->bpf_func;
1203	unsigned long addr;
1204
1205	addr = real_start & PAGE_MASK;
1206	return (void *)addr;
1207}
1208
1209/* This symbol is only overridden by archs that have different
1210 * requirements than the usual eBPF JITs, f.e. when they only
1211 * implement cBPF JIT, do not set images read-only, etc.
1212 */
1213void __weak bpf_jit_free(struct bpf_prog *fp)
1214{
1215	if (fp->jited) {
1216		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1217
1218		bpf_jit_binary_free(hdr);
1219		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1220	}
1221
1222	bpf_prog_unlock_free(fp);
1223}
1224
1225int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1226			  const struct bpf_insn *insn, bool extra_pass,
1227			  u64 *func_addr, bool *func_addr_fixed)
1228{
1229	s16 off = insn->off;
1230	s32 imm = insn->imm;
1231	u8 *addr;
1232	int err;
1233
1234	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1235	if (!*func_addr_fixed) {
1236		/* Place-holder address till the last pass has collected
1237		 * all addresses for JITed subprograms in which case we
1238		 * can pick them up from prog->aux.
1239		 */
1240		if (!extra_pass)
1241			addr = NULL;
1242		else if (prog->aux->func &&
1243			 off >= 0 && off < prog->aux->real_func_cnt)
1244			addr = (u8 *)prog->aux->func[off]->bpf_func;
1245		else
1246			return -EINVAL;
1247	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1248		   bpf_jit_supports_far_kfunc_call()) {
1249		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1250		if (err)
1251			return err;
1252	} else {
1253		/* Address of a BPF helper call. Since part of the core
1254		 * kernel, it's always at a fixed location. __bpf_call_base
1255		 * and the helper with imm relative to it are both in core
1256		 * kernel.
1257		 */
1258		addr = (u8 *)__bpf_call_base + imm;
1259	}
1260
1261	*func_addr = (unsigned long)addr;
1262	return 0;
1263}
1264
1265static int bpf_jit_blind_insn(const struct bpf_insn *from,
1266			      const struct bpf_insn *aux,
1267			      struct bpf_insn *to_buff,
1268			      bool emit_zext)
1269{
1270	struct bpf_insn *to = to_buff;
1271	u32 imm_rnd = get_random_u32();
1272	s16 off;
1273
1274	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1275	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1276
1277	/* Constraints on AX register:
1278	 *
1279	 * AX register is inaccessible from user space. It is mapped in
1280	 * all JITs, and used here for constant blinding rewrites. It is
1281	 * typically "stateless" meaning its contents are only valid within
1282	 * the executed instruction, but not across several instructions.
1283	 * There are a few exceptions however which are further detailed
1284	 * below.
1285	 *
1286	 * Constant blinding is only used by JITs, not in the interpreter.
1287	 * The interpreter uses AX in some occasions as a local temporary
1288	 * register e.g. in DIV or MOD instructions.
1289	 *
1290	 * In restricted circumstances, the verifier can also use the AX
1291	 * register for rewrites as long as they do not interfere with
1292	 * the above cases!
1293	 */
1294	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1295		goto out;
1296
1297	if (from->imm == 0 &&
1298	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1299	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1300		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1301		goto out;
1302	}
1303
1304	switch (from->code) {
1305	case BPF_ALU | BPF_ADD | BPF_K:
1306	case BPF_ALU | BPF_SUB | BPF_K:
1307	case BPF_ALU | BPF_AND | BPF_K:
1308	case BPF_ALU | BPF_OR  | BPF_K:
1309	case BPF_ALU | BPF_XOR | BPF_K:
1310	case BPF_ALU | BPF_MUL | BPF_K:
1311	case BPF_ALU | BPF_MOV | BPF_K:
1312	case BPF_ALU | BPF_DIV | BPF_K:
1313	case BPF_ALU | BPF_MOD | BPF_K:
1314		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1315		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1316		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1317		break;
1318
1319	case BPF_ALU64 | BPF_ADD | BPF_K:
1320	case BPF_ALU64 | BPF_SUB | BPF_K:
1321	case BPF_ALU64 | BPF_AND | BPF_K:
1322	case BPF_ALU64 | BPF_OR  | BPF_K:
1323	case BPF_ALU64 | BPF_XOR | BPF_K:
1324	case BPF_ALU64 | BPF_MUL | BPF_K:
1325	case BPF_ALU64 | BPF_MOV | BPF_K:
1326	case BPF_ALU64 | BPF_DIV | BPF_K:
1327	case BPF_ALU64 | BPF_MOD | BPF_K:
1328		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1329		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1330		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1331		break;
1332
1333	case BPF_JMP | BPF_JEQ  | BPF_K:
1334	case BPF_JMP | BPF_JNE  | BPF_K:
1335	case BPF_JMP | BPF_JGT  | BPF_K:
1336	case BPF_JMP | BPF_JLT  | BPF_K:
1337	case BPF_JMP | BPF_JGE  | BPF_K:
1338	case BPF_JMP | BPF_JLE  | BPF_K:
1339	case BPF_JMP | BPF_JSGT | BPF_K:
1340	case BPF_JMP | BPF_JSLT | BPF_K:
1341	case BPF_JMP | BPF_JSGE | BPF_K:
1342	case BPF_JMP | BPF_JSLE | BPF_K:
1343	case BPF_JMP | BPF_JSET | BPF_K:
1344		/* Accommodate for extra offset in case of a backjump. */
1345		off = from->off;
1346		if (off < 0)
1347			off -= 2;
1348		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1349		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1350		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1351		break;
1352
1353	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1354	case BPF_JMP32 | BPF_JNE  | BPF_K:
1355	case BPF_JMP32 | BPF_JGT  | BPF_K:
1356	case BPF_JMP32 | BPF_JLT  | BPF_K:
1357	case BPF_JMP32 | BPF_JGE  | BPF_K:
1358	case BPF_JMP32 | BPF_JLE  | BPF_K:
1359	case BPF_JMP32 | BPF_JSGT | BPF_K:
1360	case BPF_JMP32 | BPF_JSLT | BPF_K:
1361	case BPF_JMP32 | BPF_JSGE | BPF_K:
1362	case BPF_JMP32 | BPF_JSLE | BPF_K:
1363	case BPF_JMP32 | BPF_JSET | BPF_K:
1364		/* Accommodate for extra offset in case of a backjump. */
1365		off = from->off;
1366		if (off < 0)
1367			off -= 2;
1368		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1369		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1370		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1371				      off);
1372		break;
1373
1374	case BPF_LD | BPF_IMM | BPF_DW:
1375		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1376		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1377		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1378		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1379		break;
1380	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1381		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1382		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1383		if (emit_zext)
1384			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1385		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1386		break;
1387
1388	case BPF_ST | BPF_MEM | BPF_DW:
1389	case BPF_ST | BPF_MEM | BPF_W:
1390	case BPF_ST | BPF_MEM | BPF_H:
1391	case BPF_ST | BPF_MEM | BPF_B:
1392		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1393		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1394		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1395		break;
1396	}
1397out:
1398	return to - to_buff;
1399}
1400
1401static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1402					      gfp_t gfp_extra_flags)
1403{
1404	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1405	struct bpf_prog *fp;
1406
1407	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1408	if (fp != NULL) {
1409		/* aux->prog still points to the fp_other one, so
1410		 * when promoting the clone to the real program,
1411		 * this still needs to be adapted.
1412		 */
1413		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1414	}
1415
1416	return fp;
1417}
1418
1419static void bpf_prog_clone_free(struct bpf_prog *fp)
1420{
1421	/* aux was stolen by the other clone, so we cannot free
1422	 * it from this path! It will be freed eventually by the
1423	 * other program on release.
1424	 *
1425	 * At this point, we don't need a deferred release since
1426	 * clone is guaranteed to not be locked.
1427	 */
1428	fp->aux = NULL;
1429	fp->stats = NULL;
1430	fp->active = NULL;
1431	__bpf_prog_free(fp);
1432}
1433
1434void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1435{
1436	/* We have to repoint aux->prog to self, as we don't
1437	 * know whether fp here is the clone or the original.
1438	 */
1439	fp->aux->prog = fp;
1440	bpf_prog_clone_free(fp_other);
1441}
1442
1443struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1444{
1445	struct bpf_insn insn_buff[16], aux[2];
1446	struct bpf_prog *clone, *tmp;
1447	int insn_delta, insn_cnt;
1448	struct bpf_insn *insn;
1449	int i, rewritten;
1450
1451	if (!prog->blinding_requested || prog->blinded)
1452		return prog;
1453
1454	clone = bpf_prog_clone_create(prog, GFP_USER);
1455	if (!clone)
1456		return ERR_PTR(-ENOMEM);
1457
1458	insn_cnt = clone->len;
1459	insn = clone->insnsi;
1460
1461	for (i = 0; i < insn_cnt; i++, insn++) {
1462		if (bpf_pseudo_func(insn)) {
1463			/* ld_imm64 with an address of bpf subprog is not
1464			 * a user controlled constant. Don't randomize it,
1465			 * since it will conflict with jit_subprogs() logic.
1466			 */
1467			insn++;
1468			i++;
1469			continue;
1470		}
1471
1472		/* We temporarily need to hold the original ld64 insn
1473		 * so that we can still access the first part in the
1474		 * second blinding run.
1475		 */
1476		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1477		    insn[1].code == 0)
1478			memcpy(aux, insn, sizeof(aux));
1479
1480		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1481						clone->aux->verifier_zext);
1482		if (!rewritten)
1483			continue;
1484
1485		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1486		if (IS_ERR(tmp)) {
1487			/* Patching may have repointed aux->prog during
1488			 * realloc from the original one, so we need to
1489			 * fix it up here on error.
1490			 */
1491			bpf_jit_prog_release_other(prog, clone);
1492			return tmp;
1493		}
1494
1495		clone = tmp;
1496		insn_delta = rewritten - 1;
1497
1498		/* Walk new program and skip insns we just inserted. */
1499		insn = clone->insnsi + i + insn_delta;
1500		insn_cnt += insn_delta;
1501		i        += insn_delta;
1502	}
1503
1504	clone->blinded = 1;
1505	return clone;
1506}
1507#endif /* CONFIG_BPF_JIT */
1508
1509/* Base function for offset calculation. Needs to go into .text section,
1510 * therefore keeping it non-static as well; will also be used by JITs
1511 * anyway later on, so do not let the compiler omit it. This also needs
1512 * to go into kallsyms for correlation from e.g. bpftool, so naming
1513 * must not change.
1514 */
1515noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1516{
1517	return 0;
1518}
1519EXPORT_SYMBOL_GPL(__bpf_call_base);
1520
1521/* All UAPI available opcodes. */
1522#define BPF_INSN_MAP(INSN_2, INSN_3)		\
1523	/* 32 bit ALU operations. */		\
1524	/*   Register based. */			\
1525	INSN_3(ALU, ADD,  X),			\
1526	INSN_3(ALU, SUB,  X),			\
1527	INSN_3(ALU, AND,  X),			\
1528	INSN_3(ALU, OR,   X),			\
1529	INSN_3(ALU, LSH,  X),			\
1530	INSN_3(ALU, RSH,  X),			\
1531	INSN_3(ALU, XOR,  X),			\
1532	INSN_3(ALU, MUL,  X),			\
1533	INSN_3(ALU, MOV,  X),			\
1534	INSN_3(ALU, ARSH, X),			\
1535	INSN_3(ALU, DIV,  X),			\
1536	INSN_3(ALU, MOD,  X),			\
1537	INSN_2(ALU, NEG),			\
1538	INSN_3(ALU, END, TO_BE),		\
1539	INSN_3(ALU, END, TO_LE),		\
1540	/*   Immediate based. */		\
1541	INSN_3(ALU, ADD,  K),			\
1542	INSN_3(ALU, SUB,  K),			\
1543	INSN_3(ALU, AND,  K),			\
1544	INSN_3(ALU, OR,   K),			\
1545	INSN_3(ALU, LSH,  K),			\
1546	INSN_3(ALU, RSH,  K),			\
1547	INSN_3(ALU, XOR,  K),			\
1548	INSN_3(ALU, MUL,  K),			\
1549	INSN_3(ALU, MOV,  K),			\
1550	INSN_3(ALU, ARSH, K),			\
1551	INSN_3(ALU, DIV,  K),			\
1552	INSN_3(ALU, MOD,  K),			\
1553	/* 64 bit ALU operations. */		\
1554	/*   Register based. */			\
1555	INSN_3(ALU64, ADD,  X),			\
1556	INSN_3(ALU64, SUB,  X),			\
1557	INSN_3(ALU64, AND,  X),			\
1558	INSN_3(ALU64, OR,   X),			\
1559	INSN_3(ALU64, LSH,  X),			\
1560	INSN_3(ALU64, RSH,  X),			\
1561	INSN_3(ALU64, XOR,  X),			\
1562	INSN_3(ALU64, MUL,  X),			\
1563	INSN_3(ALU64, MOV,  X),			\
1564	INSN_3(ALU64, ARSH, X),			\
1565	INSN_3(ALU64, DIV,  X),			\
1566	INSN_3(ALU64, MOD,  X),			\
1567	INSN_2(ALU64, NEG),			\
1568	INSN_3(ALU64, END, TO_LE),		\
1569	/*   Immediate based. */		\
1570	INSN_3(ALU64, ADD,  K),			\
1571	INSN_3(ALU64, SUB,  K),			\
1572	INSN_3(ALU64, AND,  K),			\
1573	INSN_3(ALU64, OR,   K),			\
1574	INSN_3(ALU64, LSH,  K),			\
1575	INSN_3(ALU64, RSH,  K),			\
1576	INSN_3(ALU64, XOR,  K),			\
1577	INSN_3(ALU64, MUL,  K),			\
1578	INSN_3(ALU64, MOV,  K),			\
1579	INSN_3(ALU64, ARSH, K),			\
1580	INSN_3(ALU64, DIV,  K),			\
1581	INSN_3(ALU64, MOD,  K),			\
1582	/* Call instruction. */			\
1583	INSN_2(JMP, CALL),			\
1584	/* Exit instruction. */			\
1585	INSN_2(JMP, EXIT),			\
1586	/* 32-bit Jump instructions. */		\
1587	/*   Register based. */			\
1588	INSN_3(JMP32, JEQ,  X),			\
1589	INSN_3(JMP32, JNE,  X),			\
1590	INSN_3(JMP32, JGT,  X),			\
1591	INSN_3(JMP32, JLT,  X),			\
1592	INSN_3(JMP32, JGE,  X),			\
1593	INSN_3(JMP32, JLE,  X),			\
1594	INSN_3(JMP32, JSGT, X),			\
1595	INSN_3(JMP32, JSLT, X),			\
1596	INSN_3(JMP32, JSGE, X),			\
1597	INSN_3(JMP32, JSLE, X),			\
1598	INSN_3(JMP32, JSET, X),			\
1599	/*   Immediate based. */		\
1600	INSN_3(JMP32, JEQ,  K),			\
1601	INSN_3(JMP32, JNE,  K),			\
1602	INSN_3(JMP32, JGT,  K),			\
1603	INSN_3(JMP32, JLT,  K),			\
1604	INSN_3(JMP32, JGE,  K),			\
1605	INSN_3(JMP32, JLE,  K),			\
1606	INSN_3(JMP32, JSGT, K),			\
1607	INSN_3(JMP32, JSLT, K),			\
1608	INSN_3(JMP32, JSGE, K),			\
1609	INSN_3(JMP32, JSLE, K),			\
1610	INSN_3(JMP32, JSET, K),			\
1611	/* Jump instructions. */		\
1612	/*   Register based. */			\
1613	INSN_3(JMP, JEQ,  X),			\
1614	INSN_3(JMP, JNE,  X),			\
1615	INSN_3(JMP, JGT,  X),			\
1616	INSN_3(JMP, JLT,  X),			\
1617	INSN_3(JMP, JGE,  X),			\
1618	INSN_3(JMP, JLE,  X),			\
1619	INSN_3(JMP, JSGT, X),			\
1620	INSN_3(JMP, JSLT, X),			\
1621	INSN_3(JMP, JSGE, X),			\
1622	INSN_3(JMP, JSLE, X),			\
1623	INSN_3(JMP, JSET, X),			\
1624	/*   Immediate based. */		\
1625	INSN_3(JMP, JEQ,  K),			\
1626	INSN_3(JMP, JNE,  K),			\
1627	INSN_3(JMP, JGT,  K),			\
1628	INSN_3(JMP, JLT,  K),			\
1629	INSN_3(JMP, JGE,  K),			\
1630	INSN_3(JMP, JLE,  K),			\
1631	INSN_3(JMP, JSGT, K),			\
1632	INSN_3(JMP, JSLT, K),			\
1633	INSN_3(JMP, JSGE, K),			\
1634	INSN_3(JMP, JSLE, K),			\
1635	INSN_3(JMP, JSET, K),			\
1636	INSN_2(JMP, JA),			\
1637	INSN_2(JMP32, JA),			\
1638	/* Store instructions. */		\
1639	/*   Register based. */			\
1640	INSN_3(STX, MEM,  B),			\
1641	INSN_3(STX, MEM,  H),			\
1642	INSN_3(STX, MEM,  W),			\
1643	INSN_3(STX, MEM,  DW),			\
1644	INSN_3(STX, ATOMIC, W),			\
1645	INSN_3(STX, ATOMIC, DW),		\
1646	/*   Immediate based. */		\
1647	INSN_3(ST, MEM, B),			\
1648	INSN_3(ST, MEM, H),			\
1649	INSN_3(ST, MEM, W),			\
1650	INSN_3(ST, MEM, DW),			\
1651	/* Load instructions. */		\
1652	/*   Register based. */			\
1653	INSN_3(LDX, MEM, B),			\
1654	INSN_3(LDX, MEM, H),			\
1655	INSN_3(LDX, MEM, W),			\
1656	INSN_3(LDX, MEM, DW),			\
1657	INSN_3(LDX, MEMSX, B),			\
1658	INSN_3(LDX, MEMSX, H),			\
1659	INSN_3(LDX, MEMSX, W),			\
1660	/*   Immediate based. */		\
1661	INSN_3(LD, IMM, DW)
1662
1663bool bpf_opcode_in_insntable(u8 code)
1664{
1665#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1666#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1667	static const bool public_insntable[256] = {
1668		[0 ... 255] = false,
1669		/* Now overwrite non-defaults ... */
1670		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1671		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1672		[BPF_LD | BPF_ABS | BPF_B] = true,
1673		[BPF_LD | BPF_ABS | BPF_H] = true,
1674		[BPF_LD | BPF_ABS | BPF_W] = true,
1675		[BPF_LD | BPF_IND | BPF_B] = true,
1676		[BPF_LD | BPF_IND | BPF_H] = true,
1677		[BPF_LD | BPF_IND | BPF_W] = true,
 
1678	};
1679#undef BPF_INSN_3_TBL
1680#undef BPF_INSN_2_TBL
1681	return public_insntable[code];
1682}
1683
1684#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1685/**
1686 *	___bpf_prog_run - run eBPF program on a given context
1687 *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1688 *	@insn: is the array of eBPF instructions
1689 *
1690 * Decode and execute eBPF instructions.
1691 *
1692 * Return: whatever value is in %BPF_R0 at program exit
1693 */
1694static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1695{
1696#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1697#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1698	static const void * const jumptable[256] __annotate_jump_table = {
1699		[0 ... 255] = &&default_label,
1700		/* Now overwrite non-defaults ... */
1701		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1702		/* Non-UAPI available opcodes. */
1703		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1704		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1705		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1706		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1707		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1708		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1709		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1710		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1711		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1712		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1713	};
1714#undef BPF_INSN_3_LBL
1715#undef BPF_INSN_2_LBL
1716	u32 tail_call_cnt = 0;
1717
1718#define CONT	 ({ insn++; goto select_insn; })
1719#define CONT_JMP ({ insn++; goto select_insn; })
1720
1721select_insn:
1722	goto *jumptable[insn->code];
1723
1724	/* Explicitly mask the register-based shift amounts with 63 or 31
1725	 * to avoid undefined behavior. Normally this won't affect the
1726	 * generated code, for example, in case of native 64 bit archs such
1727	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1728	 * the interpreter. In case of JITs, each of the JIT backends compiles
1729	 * the BPF shift operations to machine instructions which produce
1730	 * implementation-defined results in such a case; the resulting
1731	 * contents of the register may be arbitrary, but program behaviour
1732	 * as a whole remains defined. In other words, in case of JIT backends,
1733	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1734	 */
1735	/* ALU (shifts) */
1736#define SHT(OPCODE, OP)					\
1737	ALU64_##OPCODE##_X:				\
1738		DST = DST OP (SRC & 63);		\
1739		CONT;					\
1740	ALU_##OPCODE##_X:				\
1741		DST = (u32) DST OP ((u32) SRC & 31);	\
1742		CONT;					\
1743	ALU64_##OPCODE##_K:				\
1744		DST = DST OP IMM;			\
1745		CONT;					\
1746	ALU_##OPCODE##_K:				\
1747		DST = (u32) DST OP (u32) IMM;		\
1748		CONT;
1749	/* ALU (rest) */
1750#define ALU(OPCODE, OP)					\
1751	ALU64_##OPCODE##_X:				\
1752		DST = DST OP SRC;			\
1753		CONT;					\
1754	ALU_##OPCODE##_X:				\
1755		DST = (u32) DST OP (u32) SRC;		\
1756		CONT;					\
1757	ALU64_##OPCODE##_K:				\
1758		DST = DST OP IMM;			\
1759		CONT;					\
1760	ALU_##OPCODE##_K:				\
1761		DST = (u32) DST OP (u32) IMM;		\
1762		CONT;
1763	ALU(ADD,  +)
1764	ALU(SUB,  -)
1765	ALU(AND,  &)
1766	ALU(OR,   |)
1767	ALU(XOR,  ^)
1768	ALU(MUL,  *)
1769	SHT(LSH, <<)
1770	SHT(RSH, >>)
1771#undef SHT
1772#undef ALU
1773	ALU_NEG:
1774		DST = (u32) -DST;
1775		CONT;
1776	ALU64_NEG:
1777		DST = -DST;
1778		CONT;
1779	ALU_MOV_X:
1780		switch (OFF) {
1781		case 0:
1782			DST = (u32) SRC;
1783			break;
1784		case 8:
1785			DST = (u32)(s8) SRC;
1786			break;
1787		case 16:
1788			DST = (u32)(s16) SRC;
1789			break;
1790		}
1791		CONT;
1792	ALU_MOV_K:
1793		DST = (u32) IMM;
1794		CONT;
1795	ALU64_MOV_X:
1796		switch (OFF) {
1797		case 0:
1798			DST = SRC;
1799			break;
1800		case 8:
1801			DST = (s8) SRC;
1802			break;
1803		case 16:
1804			DST = (s16) SRC;
1805			break;
1806		case 32:
1807			DST = (s32) SRC;
1808			break;
1809		}
1810		CONT;
1811	ALU64_MOV_K:
1812		DST = IMM;
1813		CONT;
1814	LD_IMM_DW:
1815		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1816		insn++;
1817		CONT;
1818	ALU_ARSH_X:
1819		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1820		CONT;
1821	ALU_ARSH_K:
1822		DST = (u64) (u32) (((s32) DST) >> IMM);
1823		CONT;
1824	ALU64_ARSH_X:
1825		(*(s64 *) &DST) >>= (SRC & 63);
1826		CONT;
1827	ALU64_ARSH_K:
1828		(*(s64 *) &DST) >>= IMM;
1829		CONT;
1830	ALU64_MOD_X:
1831		switch (OFF) {
1832		case 0:
1833			div64_u64_rem(DST, SRC, &AX);
1834			DST = AX;
1835			break;
1836		case 1:
1837			AX = div64_s64(DST, SRC);
1838			DST = DST - AX * SRC;
1839			break;
1840		}
1841		CONT;
1842	ALU_MOD_X:
1843		switch (OFF) {
1844		case 0:
1845			AX = (u32) DST;
1846			DST = do_div(AX, (u32) SRC);
1847			break;
1848		case 1:
1849			AX = abs((s32)DST);
1850			AX = do_div(AX, abs((s32)SRC));
1851			if ((s32)DST < 0)
1852				DST = (u32)-AX;
1853			else
1854				DST = (u32)AX;
1855			break;
1856		}
1857		CONT;
1858	ALU64_MOD_K:
1859		switch (OFF) {
1860		case 0:
1861			div64_u64_rem(DST, IMM, &AX);
1862			DST = AX;
1863			break;
1864		case 1:
1865			AX = div64_s64(DST, IMM);
1866			DST = DST - AX * IMM;
1867			break;
1868		}
1869		CONT;
1870	ALU_MOD_K:
1871		switch (OFF) {
1872		case 0:
1873			AX = (u32) DST;
1874			DST = do_div(AX, (u32) IMM);
1875			break;
1876		case 1:
1877			AX = abs((s32)DST);
1878			AX = do_div(AX, abs((s32)IMM));
1879			if ((s32)DST < 0)
1880				DST = (u32)-AX;
1881			else
1882				DST = (u32)AX;
1883			break;
1884		}
1885		CONT;
1886	ALU64_DIV_X:
1887		switch (OFF) {
1888		case 0:
1889			DST = div64_u64(DST, SRC);
1890			break;
1891		case 1:
1892			DST = div64_s64(DST, SRC);
1893			break;
1894		}
1895		CONT;
1896	ALU_DIV_X:
1897		switch (OFF) {
1898		case 0:
1899			AX = (u32) DST;
1900			do_div(AX, (u32) SRC);
1901			DST = (u32) AX;
1902			break;
1903		case 1:
1904			AX = abs((s32)DST);
1905			do_div(AX, abs((s32)SRC));
1906			if (((s32)DST < 0) == ((s32)SRC < 0))
1907				DST = (u32)AX;
1908			else
1909				DST = (u32)-AX;
1910			break;
1911		}
1912		CONT;
1913	ALU64_DIV_K:
1914		switch (OFF) {
1915		case 0:
1916			DST = div64_u64(DST, IMM);
1917			break;
1918		case 1:
1919			DST = div64_s64(DST, IMM);
1920			break;
1921		}
1922		CONT;
1923	ALU_DIV_K:
1924		switch (OFF) {
1925		case 0:
1926			AX = (u32) DST;
1927			do_div(AX, (u32) IMM);
1928			DST = (u32) AX;
1929			break;
1930		case 1:
1931			AX = abs((s32)DST);
1932			do_div(AX, abs((s32)IMM));
1933			if (((s32)DST < 0) == ((s32)IMM < 0))
1934				DST = (u32)AX;
1935			else
1936				DST = (u32)-AX;
1937			break;
1938		}
1939		CONT;
1940	ALU_END_TO_BE:
1941		switch (IMM) {
1942		case 16:
1943			DST = (__force u16) cpu_to_be16(DST);
1944			break;
1945		case 32:
1946			DST = (__force u32) cpu_to_be32(DST);
1947			break;
1948		case 64:
1949			DST = (__force u64) cpu_to_be64(DST);
1950			break;
1951		}
1952		CONT;
1953	ALU_END_TO_LE:
1954		switch (IMM) {
1955		case 16:
1956			DST = (__force u16) cpu_to_le16(DST);
1957			break;
1958		case 32:
1959			DST = (__force u32) cpu_to_le32(DST);
1960			break;
1961		case 64:
1962			DST = (__force u64) cpu_to_le64(DST);
1963			break;
1964		}
1965		CONT;
1966	ALU64_END_TO_LE:
1967		switch (IMM) {
1968		case 16:
1969			DST = (__force u16) __swab16(DST);
1970			break;
1971		case 32:
1972			DST = (__force u32) __swab32(DST);
1973			break;
1974		case 64:
1975			DST = (__force u64) __swab64(DST);
1976			break;
1977		}
1978		CONT;
1979
1980	/* CALL */
1981	JMP_CALL:
1982		/* Function call scratches BPF_R1-BPF_R5 registers,
1983		 * preserves BPF_R6-BPF_R9, and stores return value
1984		 * into BPF_R0.
1985		 */
1986		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1987						       BPF_R4, BPF_R5);
1988		CONT;
1989
1990	JMP_CALL_ARGS:
1991		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1992							    BPF_R3, BPF_R4,
1993							    BPF_R5,
1994							    insn + insn->off + 1);
1995		CONT;
1996
1997	JMP_TAIL_CALL: {
1998		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1999		struct bpf_array *array = container_of(map, struct bpf_array, map);
2000		struct bpf_prog *prog;
2001		u32 index = BPF_R3;
2002
2003		if (unlikely(index >= array->map.max_entries))
2004			goto out;
2005
2006		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2007			goto out;
2008
2009		tail_call_cnt++;
2010
2011		prog = READ_ONCE(array->ptrs[index]);
2012		if (!prog)
2013			goto out;
2014
2015		/* ARG1 at this point is guaranteed to point to CTX from
2016		 * the verifier side due to the fact that the tail call is
2017		 * handled like a helper, that is, bpf_tail_call_proto,
2018		 * where arg1_type is ARG_PTR_TO_CTX.
2019		 */
2020		insn = prog->insnsi;
2021		goto select_insn;
2022out:
2023		CONT;
2024	}
2025	JMP_JA:
2026		insn += insn->off;
2027		CONT;
2028	JMP32_JA:
2029		insn += insn->imm;
2030		CONT;
2031	JMP_EXIT:
2032		return BPF_R0;
2033	/* JMP */
2034#define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2035	JMP_##OPCODE##_X:					\
2036		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2037			insn += insn->off;			\
2038			CONT_JMP;				\
2039		}						\
2040		CONT;						\
2041	JMP32_##OPCODE##_X:					\
2042		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2043			insn += insn->off;			\
2044			CONT_JMP;				\
2045		}						\
2046		CONT;						\
2047	JMP_##OPCODE##_K:					\
2048		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2049			insn += insn->off;			\
2050			CONT_JMP;				\
2051		}						\
2052		CONT;						\
2053	JMP32_##OPCODE##_K:					\
2054		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2055			insn += insn->off;			\
2056			CONT_JMP;				\
2057		}						\
2058		CONT;
2059	COND_JMP(u, JEQ, ==)
2060	COND_JMP(u, JNE, !=)
2061	COND_JMP(u, JGT, >)
2062	COND_JMP(u, JLT, <)
2063	COND_JMP(u, JGE, >=)
2064	COND_JMP(u, JLE, <=)
2065	COND_JMP(u, JSET, &)
2066	COND_JMP(s, JSGT, >)
2067	COND_JMP(s, JSLT, <)
2068	COND_JMP(s, JSGE, >=)
2069	COND_JMP(s, JSLE, <=)
2070#undef COND_JMP
2071	/* ST, STX and LDX*/
2072	ST_NOSPEC:
2073		/* Speculation barrier for mitigating Speculative Store Bypass.
2074		 * In case of arm64, we rely on the firmware mitigation as
2075		 * controlled via the ssbd kernel parameter. Whenever the
2076		 * mitigation is enabled, it works for all of the kernel code
2077		 * with no need to provide any additional instructions here.
2078		 * In case of x86, we use 'lfence' insn for mitigation. We
2079		 * reuse preexisting logic from Spectre v1 mitigation that
2080		 * happens to produce the required code on x86 for v4 as well.
2081		 */
2082		barrier_nospec();
2083		CONT;
2084#define LDST(SIZEOP, SIZE)						\
2085	STX_MEM_##SIZEOP:						\
2086		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2087		CONT;							\
2088	ST_MEM_##SIZEOP:						\
2089		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2090		CONT;							\
2091	LDX_MEM_##SIZEOP:						\
2092		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2093		CONT;							\
2094	LDX_PROBE_MEM_##SIZEOP:						\
2095		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2096			      (const void *)(long) (SRC + insn->off));	\
2097		DST = *((SIZE *)&DST);					\
2098		CONT;
2099
2100	LDST(B,   u8)
2101	LDST(H,  u16)
2102	LDST(W,  u32)
2103	LDST(DW, u64)
2104#undef LDST
2105
2106#define LDSX(SIZEOP, SIZE)						\
2107	LDX_MEMSX_##SIZEOP:						\
2108		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2109		CONT;							\
2110	LDX_PROBE_MEMSX_##SIZEOP:					\
2111		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2112				      (const void *)(long) (SRC + insn->off));	\
2113		DST = *((SIZE *)&DST);					\
2114		CONT;
2115
2116	LDSX(B,   s8)
2117	LDSX(H,  s16)
2118	LDSX(W,  s32)
2119#undef LDSX
2120
2121#define ATOMIC_ALU_OP(BOP, KOP)						\
2122		case BOP:						\
2123			if (BPF_SIZE(insn->code) == BPF_W)		\
2124				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2125					     (DST + insn->off));	\
2126			else						\
2127				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2128					       (DST + insn->off));	\
2129			break;						\
2130		case BOP | BPF_FETCH:					\
2131			if (BPF_SIZE(insn->code) == BPF_W)		\
2132				SRC = (u32) atomic_fetch_##KOP(		\
2133					(u32) SRC,			\
2134					(atomic_t *)(unsigned long) (DST + insn->off)); \
2135			else						\
2136				SRC = (u64) atomic64_fetch_##KOP(	\
2137					(u64) SRC,			\
2138					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2139			break;
2140
2141	STX_ATOMIC_DW:
2142	STX_ATOMIC_W:
2143		switch (IMM) {
2144		ATOMIC_ALU_OP(BPF_ADD, add)
2145		ATOMIC_ALU_OP(BPF_AND, and)
2146		ATOMIC_ALU_OP(BPF_OR, or)
2147		ATOMIC_ALU_OP(BPF_XOR, xor)
2148#undef ATOMIC_ALU_OP
2149
2150		case BPF_XCHG:
2151			if (BPF_SIZE(insn->code) == BPF_W)
2152				SRC = (u32) atomic_xchg(
2153					(atomic_t *)(unsigned long) (DST + insn->off),
2154					(u32) SRC);
2155			else
2156				SRC = (u64) atomic64_xchg(
2157					(atomic64_t *)(unsigned long) (DST + insn->off),
2158					(u64) SRC);
2159			break;
2160		case BPF_CMPXCHG:
2161			if (BPF_SIZE(insn->code) == BPF_W)
2162				BPF_R0 = (u32) atomic_cmpxchg(
2163					(atomic_t *)(unsigned long) (DST + insn->off),
2164					(u32) BPF_R0, (u32) SRC);
2165			else
2166				BPF_R0 = (u64) atomic64_cmpxchg(
2167					(atomic64_t *)(unsigned long) (DST + insn->off),
2168					(u64) BPF_R0, (u64) SRC);
2169			break;
2170
2171		default:
2172			goto default_label;
2173		}
2174		CONT;
2175
2176	default_label:
2177		/* If we ever reach this, we have a bug somewhere. Die hard here
2178		 * instead of just returning 0; we could be somewhere in a subprog,
2179		 * so execution could continue otherwise which we do /not/ want.
2180		 *
2181		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2182		 */
2183		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2184			insn->code, insn->imm);
2185		BUG_ON(1);
2186		return 0;
2187}
2188
2189#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2190#define DEFINE_BPF_PROG_RUN(stack_size) \
2191static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2192{ \
2193	u64 stack[stack_size / sizeof(u64)]; \
2194	u64 regs[MAX_BPF_EXT_REG] = {}; \
2195\
 
2196	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2197	ARG1 = (u64) (unsigned long) ctx; \
2198	return ___bpf_prog_run(regs, insn); \
2199}
2200
2201#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2202#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2203static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2204				      const struct bpf_insn *insn) \
2205{ \
2206	u64 stack[stack_size / sizeof(u64)]; \
2207	u64 regs[MAX_BPF_EXT_REG]; \
2208\
 
2209	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2210	BPF_R1 = r1; \
2211	BPF_R2 = r2; \
2212	BPF_R3 = r3; \
2213	BPF_R4 = r4; \
2214	BPF_R5 = r5; \
2215	return ___bpf_prog_run(regs, insn); \
2216}
2217
2218#define EVAL1(FN, X) FN(X)
2219#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2220#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2221#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2222#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2223#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2224
2225EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2226EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2227EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2228
2229EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2230EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2231EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2232
2233#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2234
2235static unsigned int (*interpreters[])(const void *ctx,
2236				      const struct bpf_insn *insn) = {
2237EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2238EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2239EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2240};
2241#undef PROG_NAME_LIST
2242#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2243static __maybe_unused
2244u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2245			   const struct bpf_insn *insn) = {
2246EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2247EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2248EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2249};
2250#undef PROG_NAME_LIST
2251
2252#ifdef CONFIG_BPF_SYSCALL
2253void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2254{
2255	stack_depth = max_t(u32, stack_depth, 1);
2256	insn->off = (s16) insn->imm;
2257	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2258		__bpf_call_base_args;
2259	insn->code = BPF_JMP | BPF_CALL_ARGS;
2260}
2261#endif
2262#else
2263static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2264					 const struct bpf_insn *insn)
2265{
2266	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2267	 * is not working properly, so warn about it!
2268	 */
2269	WARN_ON_ONCE(1);
2270	return 0;
2271}
2272#endif
2273
2274bool bpf_prog_map_compatible(struct bpf_map *map,
2275			     const struct bpf_prog *fp)
2276{
2277	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2278	bool ret;
 
2279
2280	if (fp->kprobe_override)
2281		return false;
2282
2283	/* XDP programs inserted into maps are not guaranteed to run on
2284	 * a particular netdev (and can run outside driver context entirely
2285	 * in the case of devmap and cpumap). Until device checks
2286	 * are implemented, prohibit adding dev-bound programs to program maps.
2287	 */
2288	if (bpf_prog_is_dev_bound(fp->aux))
2289		return false;
2290
2291	spin_lock(&map->owner.lock);
2292	if (!map->owner.type) {
2293		/* There's no owner yet where we could check for
2294		 * compatibility.
2295		 */
2296		map->owner.type  = prog_type;
2297		map->owner.jited = fp->jited;
2298		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
 
2299		ret = true;
2300	} else {
2301		ret = map->owner.type  == prog_type &&
2302		      map->owner.jited == fp->jited &&
2303		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
 
 
 
 
 
 
 
 
 
 
 
 
 
2304	}
2305	spin_unlock(&map->owner.lock);
2306
2307	return ret;
2308}
2309
2310static int bpf_check_tail_call(const struct bpf_prog *fp)
2311{
2312	struct bpf_prog_aux *aux = fp->aux;
2313	int i, ret = 0;
2314
2315	mutex_lock(&aux->used_maps_mutex);
2316	for (i = 0; i < aux->used_map_cnt; i++) {
2317		struct bpf_map *map = aux->used_maps[i];
2318
2319		if (!map_type_contains_progs(map))
2320			continue;
2321
2322		if (!bpf_prog_map_compatible(map, fp)) {
2323			ret = -EINVAL;
2324			goto out;
2325		}
2326	}
2327
2328out:
2329	mutex_unlock(&aux->used_maps_mutex);
2330	return ret;
2331}
2332
2333static void bpf_prog_select_func(struct bpf_prog *fp)
2334{
2335#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2336	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2337
2338	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2339#else
2340	fp->bpf_func = __bpf_prog_ret0_warn;
2341#endif
2342}
2343
2344/**
2345 *	bpf_prog_select_runtime - select exec runtime for BPF program
2346 *	@fp: bpf_prog populated with BPF program
2347 *	@err: pointer to error variable
2348 *
2349 * Try to JIT eBPF program, if JIT is not available, use interpreter.
2350 * The BPF program will be executed via bpf_prog_run() function.
2351 *
2352 * Return: the &fp argument along with &err set to 0 for success or
2353 * a negative errno code on failure
2354 */
2355struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2356{
2357	/* In case of BPF to BPF calls, verifier did all the prep
2358	 * work with regards to JITing, etc.
2359	 */
2360	bool jit_needed = false;
2361
2362	if (fp->bpf_func)
2363		goto finalize;
2364
2365	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2366	    bpf_prog_has_kfunc_call(fp))
2367		jit_needed = true;
2368
2369	bpf_prog_select_func(fp);
2370
2371	/* eBPF JITs can rewrite the program in case constant
2372	 * blinding is active. However, in case of error during
2373	 * blinding, bpf_int_jit_compile() must always return a
2374	 * valid program, which in this case would simply not
2375	 * be JITed, but falls back to the interpreter.
2376	 */
2377	if (!bpf_prog_is_offloaded(fp->aux)) {
2378		*err = bpf_prog_alloc_jited_linfo(fp);
2379		if (*err)
2380			return fp;
2381
2382		fp = bpf_int_jit_compile(fp);
2383		bpf_prog_jit_attempt_done(fp);
2384		if (!fp->jited && jit_needed) {
2385			*err = -ENOTSUPP;
2386			return fp;
2387		}
2388	} else {
2389		*err = bpf_prog_offload_compile(fp);
2390		if (*err)
2391			return fp;
2392	}
2393
2394finalize:
2395	bpf_prog_lock_ro(fp);
 
 
2396
2397	/* The tail call compatibility check can only be done at
2398	 * this late stage as we need to determine, if we deal
2399	 * with JITed or non JITed program concatenations and not
2400	 * all eBPF JITs might immediately support all features.
2401	 */
2402	*err = bpf_check_tail_call(fp);
2403
2404	return fp;
2405}
2406EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2407
2408static unsigned int __bpf_prog_ret1(const void *ctx,
2409				    const struct bpf_insn *insn)
2410{
2411	return 1;
2412}
2413
2414static struct bpf_prog_dummy {
2415	struct bpf_prog prog;
2416} dummy_bpf_prog = {
2417	.prog = {
2418		.bpf_func = __bpf_prog_ret1,
2419	},
2420};
2421
2422struct bpf_empty_prog_array bpf_empty_prog_array = {
2423	.null_prog = NULL,
2424};
2425EXPORT_SYMBOL(bpf_empty_prog_array);
2426
2427struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2428{
 
 
2429	if (prog_cnt)
2430		return kzalloc(sizeof(struct bpf_prog_array) +
2431			       sizeof(struct bpf_prog_array_item) *
2432			       (prog_cnt + 1),
2433			       flags);
2434
2435	return &bpf_empty_prog_array.hdr;
2436}
2437
2438void bpf_prog_array_free(struct bpf_prog_array *progs)
2439{
2440	if (!progs || progs == &bpf_empty_prog_array.hdr)
2441		return;
2442	kfree_rcu(progs, rcu);
2443}
2444
2445static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2446{
2447	struct bpf_prog_array *progs;
2448
2449	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2450	 * no need to call kfree_rcu(), just call kfree() directly.
2451	 */
2452	progs = container_of(rcu, struct bpf_prog_array, rcu);
2453	if (rcu_trace_implies_rcu_gp())
2454		kfree(progs);
2455	else
2456		kfree_rcu(progs, rcu);
2457}
2458
2459void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2460{
2461	if (!progs || progs == &bpf_empty_prog_array.hdr)
2462		return;
2463	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2464}
2465
2466int bpf_prog_array_length(struct bpf_prog_array *array)
2467{
2468	struct bpf_prog_array_item *item;
2469	u32 cnt = 0;
2470
2471	for (item = array->items; item->prog; item++)
2472		if (item->prog != &dummy_bpf_prog.prog)
2473			cnt++;
2474	return cnt;
2475}
2476
2477bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2478{
2479	struct bpf_prog_array_item *item;
2480
2481	for (item = array->items; item->prog; item++)
2482		if (item->prog != &dummy_bpf_prog.prog)
2483			return false;
2484	return true;
2485}
2486
2487static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2488				     u32 *prog_ids,
2489				     u32 request_cnt)
2490{
2491	struct bpf_prog_array_item *item;
2492	int i = 0;
2493
2494	for (item = array->items; item->prog; item++) {
2495		if (item->prog == &dummy_bpf_prog.prog)
2496			continue;
2497		prog_ids[i] = item->prog->aux->id;
2498		if (++i == request_cnt) {
2499			item++;
2500			break;
2501		}
2502	}
2503
2504	return !!(item->prog);
2505}
2506
2507int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2508				__u32 __user *prog_ids, u32 cnt)
2509{
2510	unsigned long err = 0;
2511	bool nospc;
2512	u32 *ids;
2513
2514	/* users of this function are doing:
2515	 * cnt = bpf_prog_array_length();
2516	 * if (cnt > 0)
2517	 *     bpf_prog_array_copy_to_user(..., cnt);
2518	 * so below kcalloc doesn't need extra cnt > 0 check.
2519	 */
2520	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2521	if (!ids)
2522		return -ENOMEM;
2523	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2524	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2525	kfree(ids);
2526	if (err)
2527		return -EFAULT;
2528	if (nospc)
2529		return -ENOSPC;
2530	return 0;
2531}
2532
2533void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2534				struct bpf_prog *old_prog)
2535{
2536	struct bpf_prog_array_item *item;
2537
2538	for (item = array->items; item->prog; item++)
2539		if (item->prog == old_prog) {
2540			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2541			break;
2542		}
2543}
2544
2545/**
2546 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2547 *                                   index into the program array with
2548 *                                   a dummy no-op program.
2549 * @array: a bpf_prog_array
2550 * @index: the index of the program to replace
2551 *
2552 * Skips over dummy programs, by not counting them, when calculating
2553 * the position of the program to replace.
2554 *
2555 * Return:
2556 * * 0		- Success
2557 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2558 * * -ENOENT	- Index out of range
2559 */
2560int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2561{
2562	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2563}
2564
2565/**
2566 * bpf_prog_array_update_at() - Updates the program at the given index
2567 *                              into the program array.
2568 * @array: a bpf_prog_array
2569 * @index: the index of the program to update
2570 * @prog: the program to insert into the array
2571 *
2572 * Skips over dummy programs, by not counting them, when calculating
2573 * the position of the program to update.
2574 *
2575 * Return:
2576 * * 0		- Success
2577 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2578 * * -ENOENT	- Index out of range
2579 */
2580int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2581			     struct bpf_prog *prog)
2582{
2583	struct bpf_prog_array_item *item;
2584
2585	if (unlikely(index < 0))
2586		return -EINVAL;
2587
2588	for (item = array->items; item->prog; item++) {
2589		if (item->prog == &dummy_bpf_prog.prog)
2590			continue;
2591		if (!index) {
2592			WRITE_ONCE(item->prog, prog);
2593			return 0;
2594		}
2595		index--;
2596	}
2597	return -ENOENT;
2598}
2599
2600int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2601			struct bpf_prog *exclude_prog,
2602			struct bpf_prog *include_prog,
2603			u64 bpf_cookie,
2604			struct bpf_prog_array **new_array)
2605{
2606	int new_prog_cnt, carry_prog_cnt = 0;
2607	struct bpf_prog_array_item *existing, *new;
2608	struct bpf_prog_array *array;
2609	bool found_exclude = false;
2610
2611	/* Figure out how many existing progs we need to carry over to
2612	 * the new array.
2613	 */
2614	if (old_array) {
2615		existing = old_array->items;
2616		for (; existing->prog; existing++) {
2617			if (existing->prog == exclude_prog) {
2618				found_exclude = true;
2619				continue;
2620			}
2621			if (existing->prog != &dummy_bpf_prog.prog)
2622				carry_prog_cnt++;
2623			if (existing->prog == include_prog)
2624				return -EEXIST;
2625		}
2626	}
2627
2628	if (exclude_prog && !found_exclude)
2629		return -ENOENT;
2630
2631	/* How many progs (not NULL) will be in the new array? */
2632	new_prog_cnt = carry_prog_cnt;
2633	if (include_prog)
2634		new_prog_cnt += 1;
2635
2636	/* Do we have any prog (not NULL) in the new array? */
2637	if (!new_prog_cnt) {
2638		*new_array = NULL;
2639		return 0;
2640	}
2641
2642	/* +1 as the end of prog_array is marked with NULL */
2643	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2644	if (!array)
2645		return -ENOMEM;
2646	new = array->items;
2647
2648	/* Fill in the new prog array */
2649	if (carry_prog_cnt) {
2650		existing = old_array->items;
2651		for (; existing->prog; existing++) {
2652			if (existing->prog == exclude_prog ||
2653			    existing->prog == &dummy_bpf_prog.prog)
2654				continue;
2655
2656			new->prog = existing->prog;
2657			new->bpf_cookie = existing->bpf_cookie;
2658			new++;
2659		}
2660	}
2661	if (include_prog) {
2662		new->prog = include_prog;
2663		new->bpf_cookie = bpf_cookie;
2664		new++;
2665	}
2666	new->prog = NULL;
2667	*new_array = array;
2668	return 0;
2669}
2670
2671int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2672			     u32 *prog_ids, u32 request_cnt,
2673			     u32 *prog_cnt)
2674{
2675	u32 cnt = 0;
2676
2677	if (array)
2678		cnt = bpf_prog_array_length(array);
2679
2680	*prog_cnt = cnt;
2681
2682	/* return early if user requested only program count or nothing to copy */
2683	if (!request_cnt || !cnt)
2684		return 0;
2685
2686	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2687	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2688								     : 0;
2689}
2690
2691void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2692			  struct bpf_map **used_maps, u32 len)
2693{
2694	struct bpf_map *map;
2695	bool sleepable;
2696	u32 i;
2697
2698	sleepable = aux->sleepable;
2699	for (i = 0; i < len; i++) {
2700		map = used_maps[i];
2701		if (map->ops->map_poke_untrack)
2702			map->ops->map_poke_untrack(map, aux);
2703		if (sleepable)
2704			atomic64_dec(&map->sleepable_refcnt);
2705		bpf_map_put(map);
2706	}
2707}
2708
2709static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2710{
2711	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2712	kfree(aux->used_maps);
2713}
2714
2715void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2716			  struct btf_mod_pair *used_btfs, u32 len)
2717{
2718#ifdef CONFIG_BPF_SYSCALL
2719	struct btf_mod_pair *btf_mod;
2720	u32 i;
2721
2722	for (i = 0; i < len; i++) {
2723		btf_mod = &used_btfs[i];
2724		if (btf_mod->module)
2725			module_put(btf_mod->module);
2726		btf_put(btf_mod->btf);
2727	}
2728#endif
2729}
2730
2731static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2732{
2733	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2734	kfree(aux->used_btfs);
2735}
2736
2737static void bpf_prog_free_deferred(struct work_struct *work)
2738{
2739	struct bpf_prog_aux *aux;
2740	int i;
2741
2742	aux = container_of(work, struct bpf_prog_aux, work);
2743#ifdef CONFIG_BPF_SYSCALL
2744	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2745#endif
2746#ifdef CONFIG_CGROUP_BPF
2747	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2748		bpf_cgroup_atype_put(aux->cgroup_atype);
2749#endif
2750	bpf_free_used_maps(aux);
2751	bpf_free_used_btfs(aux);
2752	if (bpf_prog_is_dev_bound(aux))
2753		bpf_prog_dev_bound_destroy(aux->prog);
2754#ifdef CONFIG_PERF_EVENTS
2755	if (aux->prog->has_callchain_buf)
2756		put_callchain_buffers();
2757#endif
2758	if (aux->dst_trampoline)
2759		bpf_trampoline_put(aux->dst_trampoline);
2760	for (i = 0; i < aux->real_func_cnt; i++) {
2761		/* We can just unlink the subprog poke descriptor table as
2762		 * it was originally linked to the main program and is also
2763		 * released along with it.
2764		 */
2765		aux->func[i]->aux->poke_tab = NULL;
2766		bpf_jit_free(aux->func[i]);
2767	}
2768	if (aux->real_func_cnt) {
2769		kfree(aux->func);
2770		bpf_prog_unlock_free(aux->prog);
2771	} else {
2772		bpf_jit_free(aux->prog);
2773	}
2774}
2775
2776void bpf_prog_free(struct bpf_prog *fp)
2777{
2778	struct bpf_prog_aux *aux = fp->aux;
2779
2780	if (aux->dst_prog)
2781		bpf_prog_put(aux->dst_prog);
 
2782	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2783	schedule_work(&aux->work);
2784}
2785EXPORT_SYMBOL_GPL(bpf_prog_free);
2786
2787/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2788static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2789
2790void bpf_user_rnd_init_once(void)
2791{
2792	prandom_init_once(&bpf_user_rnd_state);
2793}
2794
2795BPF_CALL_0(bpf_user_rnd_u32)
2796{
2797	/* Should someone ever have the rather unwise idea to use some
2798	 * of the registers passed into this function, then note that
2799	 * this function is called from native eBPF and classic-to-eBPF
2800	 * transformations. Register assignments from both sides are
2801	 * different, f.e. classic always sets fn(ctx, A, X) here.
2802	 */
2803	struct rnd_state *state;
2804	u32 res;
2805
2806	state = &get_cpu_var(bpf_user_rnd_state);
2807	res = prandom_u32_state(state);
2808	put_cpu_var(bpf_user_rnd_state);
2809
2810	return res;
2811}
2812
2813BPF_CALL_0(bpf_get_raw_cpu_id)
2814{
2815	return raw_smp_processor_id();
2816}
2817
2818/* Weak definitions of helper functions in case we don't have bpf syscall. */
2819const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2820const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2821const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2822const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2823const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2824const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2825const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2826const struct bpf_func_proto bpf_spin_lock_proto __weak;
2827const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2828const struct bpf_func_proto bpf_jiffies64_proto __weak;
2829
2830const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2831const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2832const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2833const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2834const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2835const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2836const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2837
2838const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2839const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2840const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2841const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2842const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2843const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2844const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2845const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2846const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2847const struct bpf_func_proto bpf_set_retval_proto __weak;
2848const struct bpf_func_proto bpf_get_retval_proto __weak;
2849
2850const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2851{
2852	return NULL;
2853}
2854
2855const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2856{
2857	return NULL;
2858}
2859
2860u64 __weak
2861bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2862		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2863{
2864	return -ENOTSUPP;
2865}
2866EXPORT_SYMBOL_GPL(bpf_event_output);
2867
2868/* Always built-in helper functions. */
2869const struct bpf_func_proto bpf_tail_call_proto = {
2870	.func		= NULL,
2871	.gpl_only	= false,
2872	.ret_type	= RET_VOID,
2873	.arg1_type	= ARG_PTR_TO_CTX,
2874	.arg2_type	= ARG_CONST_MAP_PTR,
2875	.arg3_type	= ARG_ANYTHING,
2876};
2877
2878/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2879 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2880 * eBPF and implicitly also cBPF can get JITed!
2881 */
2882struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2883{
2884	return prog;
2885}
2886
2887/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2888 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2889 */
2890void __weak bpf_jit_compile(struct bpf_prog *prog)
2891{
2892}
2893
2894bool __weak bpf_helper_changes_pkt_data(void *func)
2895{
2896	return false;
2897}
2898
2899/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2900 * analysis code and wants explicit zero extension inserted by verifier.
2901 * Otherwise, return FALSE.
2902 *
2903 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2904 * you don't override this. JITs that don't want these extra insns can detect
2905 * them using insn_is_zext.
2906 */
2907bool __weak bpf_jit_needs_zext(void)
2908{
2909	return false;
2910}
2911
 
 
 
 
 
 
 
 
 
 
 
2912/* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2913bool __weak bpf_jit_supports_subprog_tailcalls(void)
2914{
2915	return false;
2916}
2917
 
 
 
 
 
2918bool __weak bpf_jit_supports_kfunc_call(void)
2919{
2920	return false;
2921}
2922
2923bool __weak bpf_jit_supports_far_kfunc_call(void)
2924{
2925	return false;
2926}
2927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2928/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2929 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2930 */
2931int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2932			 int len)
2933{
2934	return -EFAULT;
2935}
2936
2937int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2938			      void *addr1, void *addr2)
2939{
2940	return -ENOTSUPP;
2941}
2942
2943void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2944{
2945	return ERR_PTR(-ENOTSUPP);
2946}
2947
2948int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2949{
2950	return -ENOTSUPP;
2951}
2952
2953bool __weak bpf_jit_supports_exceptions(void)
2954{
2955	return false;
2956}
2957
 
 
 
 
 
2958void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
2959{
 
 
 
 
 
 
 
 
 
 
 
2960}
2961
2962#ifdef CONFIG_BPF_SYSCALL
2963static int __init bpf_global_ma_init(void)
2964{
2965	int ret;
2966
2967	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
2968	bpf_global_ma_set = !ret;
2969	return ret;
2970}
2971late_initcall(bpf_global_ma_init);
2972#endif
2973
2974DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2975EXPORT_SYMBOL(bpf_stats_enabled_key);
2976
2977/* All definitions of tracepoints related to BPF. */
2978#define CREATE_TRACE_POINTS
2979#include <linux/bpf_trace.h>
2980
2981EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2982EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);