Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Compaq Hot Plug Controller Driver
   4 *
   5 * Copyright (C) 1995,2001 Compaq Computer Corporation
   6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   7 * Copyright (C) 2001 IBM Corp.
   8 *
   9 * All rights reserved.
  10 *
  11 * Send feedback to <greg@kroah.com>
  12 *
  13 */
  14
  15#define pr_fmt(fmt) "cpqphp: " fmt
  16
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/printk.h>
  20#include <linux/types.h>
  21#include <linux/slab.h>
  22#include <linux/workqueue.h>
  23#include <linux/proc_fs.h>
  24#include <linux/pci.h>
  25#include <linux/pci_hotplug.h>
  26#include "../pci.h"
  27#include "cpqphp.h"
  28#include "cpqphp_nvram.h"
  29
  30
  31u8 cpqhp_nic_irq;
  32u8 cpqhp_disk_irq;
  33
  34static u16 unused_IRQ;
  35
  36/*
  37 * detect_HRT_floating_pointer
  38 *
  39 * find the Hot Plug Resource Table in the specified region of memory.
  40 *
  41 */
  42static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
  43{
  44	void __iomem *fp;
  45	void __iomem *endp;
  46	u8 temp1, temp2, temp3, temp4;
  47	int status = 0;
  48
  49	endp = (end - sizeof(struct hrt) + 1);
  50
  51	for (fp = begin; fp <= endp; fp += 16) {
  52		temp1 = readb(fp + SIG0);
  53		temp2 = readb(fp + SIG1);
  54		temp3 = readb(fp + SIG2);
  55		temp4 = readb(fp + SIG3);
  56		if (temp1 == '$' &&
  57		    temp2 == 'H' &&
  58		    temp3 == 'R' &&
  59		    temp4 == 'T') {
  60			status = 1;
  61			break;
  62		}
  63	}
  64
  65	if (!status)
  66		fp = NULL;
  67
  68	dbg("Discovered Hotplug Resource Table at %p\n", fp);
  69	return fp;
  70}
  71
  72
  73int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
  74{
  75	struct pci_bus *child;
  76	int num;
  77
  78	pci_lock_rescan_remove();
  79
  80	if (func->pci_dev == NULL)
  81		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
  82							PCI_DEVFN(func->device,
  83							func->function));
  84
  85	/* No pci device, we need to create it then */
  86	if (func->pci_dev == NULL) {
  87		dbg("INFO: pci_dev still null\n");
  88
  89		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
  90		if (num)
  91			pci_bus_add_devices(ctrl->pci_dev->bus);
  92
  93		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
  94							PCI_DEVFN(func->device,
  95							func->function));
  96		if (func->pci_dev == NULL) {
  97			dbg("ERROR: pci_dev still null\n");
  98			goto out;
  99		}
 100	}
 101
 102	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 103		pci_hp_add_bridge(func->pci_dev);
 104		child = func->pci_dev->subordinate;
 105		if (child)
 106			pci_bus_add_devices(child);
 107	}
 108
 109	pci_dev_put(func->pci_dev);
 110
 111 out:
 112	pci_unlock_rescan_remove();
 113	return 0;
 114}
 115
 116
 117int cpqhp_unconfigure_device(struct pci_func *func)
 118{
 119	int j;
 120
 121	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
 122
 123	pci_lock_rescan_remove();
 124	for (j = 0; j < 8 ; j++) {
 125		struct pci_dev *temp = pci_get_domain_bus_and_slot(0,
 126							func->bus,
 127							PCI_DEVFN(func->device,
 128							j));
 129		if (temp) {
 130			pci_dev_put(temp);
 131			pci_stop_and_remove_bus_device(temp);
 132		}
 133	}
 134	pci_unlock_rescan_remove();
 135	return 0;
 136}
 137
 
 
 
 
 
 
 
 
 
 
 
 
 138/*
 139 * cpqhp_set_irq
 140 *
 141 * @bus_num: bus number of PCI device
 142 * @dev_num: device number of PCI device
 143 * @slot: pointer to u8 where slot number will be returned
 144 */
 145int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
 146{
 147	int rc = 0;
 148
 149	if (cpqhp_legacy_mode) {
 150		struct pci_dev *fakedev;
 151		struct pci_bus *fakebus;
 152		u16 temp_word;
 153
 154		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
 155		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
 156		if (!fakedev || !fakebus) {
 157			kfree(fakedev);
 158			kfree(fakebus);
 159			return -ENOMEM;
 160		}
 161
 162		fakedev->devfn = dev_num << 3;
 163		fakedev->bus = fakebus;
 164		fakebus->number = bus_num;
 165		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
 166		    __func__, dev_num, bus_num, int_pin, irq_num);
 167		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
 168		kfree(fakedev);
 169		kfree(fakebus);
 170		dbg("%s: rc %d\n", __func__, rc);
 171		if (!rc)
 172			return !rc;
 173
 174		/* set the Edge Level Control Register (ELCR) */
 175		temp_word = inb(0x4d0);
 176		temp_word |= inb(0x4d1) << 8;
 177
 178		temp_word |= 0x01 << irq_num;
 179
 180		/* This should only be for x86 as it sets the Edge Level
 181		 * Control Register
 182		 */
 183		outb((u8)(temp_word & 0xFF), 0x4d0);
 184		outb((u8)((temp_word & 0xFF00) >> 8), 0x4d1);
 185		rc = 0;
 186	}
 187
 188	return rc;
 189}
 190
 191
 192static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
 193{
 194	u16 tdevice;
 195	u32 work;
 196	int ret = -1;
 197
 198	ctrl->pci_bus->number = bus_num;
 199
 200	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 201		/* Scan for access first */
 202		if (!pci_bus_read_dev_vendor_id(ctrl->pci_bus, tdevice, &work, 0))
 203			continue;
 204		ret = pci_bus_read_config_dword(ctrl->pci_bus, tdevice, PCI_CLASS_REVISION, &work);
 205		if (ret)
 206			continue;
 207		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
 208		/* Yep we got one. Not a bridge ? */
 209		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
 210			*dev_num = tdevice;
 211			dbg("found it !\n");
 212			return 0;
 213		} else {
 214			/*
 215			 * XXX: Code whose debug printout indicated
 216			 * recursion to buses underneath bridges might be
 217			 * necessary was removed because it never did
 218			 * any recursion.
 219			 */
 220			ret = 0;
 221			pr_warn("missing feature: bridge scan recursion not implemented\n");
 
 
 
 
 222		}
 223	}
 224
 225
 226	return ret;
 227}
 228
 229
 230static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
 231{
 232	int loop, len;
 233	u32 work;
 234	u8 tbus, tdevice, tslot;
 235
 236	len = cpqhp_routing_table_length();
 237	for (loop = 0; loop < len; ++loop) {
 238		tbus = cpqhp_routing_table->slots[loop].bus;
 239		tdevice = cpqhp_routing_table->slots[loop].devfn;
 240		tslot = cpqhp_routing_table->slots[loop].slot;
 241
 242		if (tslot == slot) {
 243			*bus_num = tbus;
 244			*dev_num = tdevice;
 245			ctrl->pci_bus->number = tbus;
 246			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
 247			if (!nobridge || PCI_POSSIBLE_ERROR(work))
 248				return 0;
 249
 250			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
 251			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
 252			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
 253
 254			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 255				pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
 256				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
 257				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
 258					*bus_num = tbus;
 259					return 0;
 260				}
 261			} else
 262				return 0;
 263		}
 264	}
 265	return -1;
 266}
 267
 268
 269int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
 270{
 271	/* plain (bridges allowed) */
 272	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
 273}
 274
 275
 276/* More PCI configuration routines; this time centered around hotplug
 277 * controller
 278 */
 279
 280
 281/*
 282 * cpqhp_save_config
 283 *
 284 * Reads configuration for all slots in a PCI bus and saves info.
 285 *
 286 * Note:  For non-hot plug buses, the slot # saved is the device #
 287 *
 288 * returns 0 if success
 289 */
 290int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
 291{
 292	long rc;
 293	u8 class_code;
 294	u8 header_type;
 295	u32 ID;
 296	u8 secondary_bus;
 297	struct pci_func *new_slot;
 298	int sub_bus;
 299	int FirstSupported;
 300	int LastSupported;
 301	int max_functions;
 302	int function;
 303	u8 DevError;
 304	int device = 0;
 305	int cloop = 0;
 306	int stop_it;
 307	int index;
 308	u16 devfn;
 309
 310	/* Decide which slots are supported */
 311
 312	if (is_hot_plug) {
 313		/*
 314		 * is_hot_plug is the slot mask
 315		 */
 316		FirstSupported = is_hot_plug >> 4;
 317		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
 318	} else {
 319		FirstSupported = 0;
 320		LastSupported = 0x1F;
 321	}
 322
 323	/* Save PCI configuration space for all devices in supported slots */
 324	ctrl->pci_bus->number = busnumber;
 325	for (device = FirstSupported; device <= LastSupported; device++) {
 326		ID = 0xFFFFFFFF;
 327		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
 328
 329		if (ID == 0xFFFFFFFF) {
 330			if (is_hot_plug) {
 331				/* Setup slot structure with entry for empty
 332				 * slot
 333				 */
 334				new_slot = cpqhp_slot_create(busnumber);
 335				if (new_slot == NULL)
 336					return 1;
 337
 338				new_slot->bus = (u8) busnumber;
 339				new_slot->device = (u8) device;
 340				new_slot->function = 0;
 341				new_slot->is_a_board = 0;
 342				new_slot->presence_save = 0;
 343				new_slot->switch_save = 0;
 344			}
 345			continue;
 346		}
 347
 348		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
 349		if (rc)
 350			return rc;
 351
 352		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
 353		if (rc)
 354			return rc;
 355
 356		/* If multi-function device, set max_functions to 8 */
 357		if (header_type & PCI_HEADER_TYPE_MFD)
 358			max_functions = 8;
 359		else
 360			max_functions = 1;
 361
 362		function = 0;
 363
 364		do {
 365			DevError = 0;
 366			if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 367				/* Recurse the subordinate bus
 368				 * get the subordinate bus number
 369				 */
 370				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
 371				if (rc) {
 372					return rc;
 373				} else {
 374					sub_bus = (int) secondary_bus;
 375
 376					/* Save secondary bus cfg spc
 377					 * with this recursive call.
 378					 */
 379					rc = cpqhp_save_config(ctrl, sub_bus, 0);
 380					if (rc)
 381						return rc;
 382					ctrl->pci_bus->number = busnumber;
 383				}
 384			}
 385
 386			index = 0;
 387			new_slot = cpqhp_slot_find(busnumber, device, index++);
 388			while (new_slot &&
 389			       (new_slot->function != (u8) function))
 390				new_slot = cpqhp_slot_find(busnumber, device, index++);
 391
 392			if (!new_slot) {
 393				/* Setup slot structure. */
 394				new_slot = cpqhp_slot_create(busnumber);
 395				if (new_slot == NULL)
 396					return 1;
 397			}
 398
 399			new_slot->bus = (u8) busnumber;
 400			new_slot->device = (u8) device;
 401			new_slot->function = (u8) function;
 402			new_slot->is_a_board = 1;
 403			new_slot->switch_save = 0x10;
 404			/* In case of unsupported board */
 405			new_slot->status = DevError;
 406			devfn = (new_slot->device << 3) | new_slot->function;
 407			new_slot->pci_dev = pci_get_domain_bus_and_slot(0,
 408							new_slot->bus, devfn);
 409
 410			for (cloop = 0; cloop < 0x20; cloop++) {
 411				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
 412				if (rc)
 413					return rc;
 414			}
 415
 416			pci_dev_put(new_slot->pci_dev);
 417
 418			function++;
 419
 420			stop_it = 0;
 421
 422			/* this loop skips to the next present function
 423			 * reading in Class Code and Header type.
 424			 */
 425			while ((function < max_functions) && (!stop_it)) {
 426				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
 427				if (ID == 0xFFFFFFFF) {
 428					function++;
 429					continue;
 430				}
 431				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
 432				if (rc)
 433					return rc;
 434
 435				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
 436				if (rc)
 437					return rc;
 438
 439				stop_it++;
 440			}
 441
 442		} while (function < max_functions);
 443	}			/* End of FOR loop */
 444
 445	return 0;
 446}
 447
 448
 449/*
 450 * cpqhp_save_slot_config
 451 *
 452 * Saves configuration info for all PCI devices in a given slot
 453 * including subordinate buses.
 454 *
 455 * returns 0 if success
 456 */
 457int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
 458{
 459	long rc;
 460	u8 class_code;
 461	u8 header_type;
 462	u32 ID;
 463	u8 secondary_bus;
 464	int sub_bus;
 465	int max_functions;
 466	int function = 0;
 467	int cloop;
 468	int stop_it;
 469
 470	ID = 0xFFFFFFFF;
 471
 472	ctrl->pci_bus->number = new_slot->bus;
 473	pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
 474
 475	if (ID == 0xFFFFFFFF)
 476		return 2;
 477
 478	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
 479	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
 480
 481	if (header_type & PCI_HEADER_TYPE_MFD)
 482		max_functions = 8;
 483	else
 484		max_functions = 1;
 485
 486	while (function < max_functions) {
 487		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 488			/*  Recurse the subordinate bus */
 489			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
 490
 491			sub_bus = (int) secondary_bus;
 492
 493			/* Save the config headers for the secondary
 494			 * bus.
 495			 */
 496			rc = cpqhp_save_config(ctrl, sub_bus, 0);
 497			if (rc)
 498				return(rc);
 499			ctrl->pci_bus->number = new_slot->bus;
 500
 501		}
 502
 503		new_slot->status = 0;
 504
 505		for (cloop = 0; cloop < 0x20; cloop++)
 506			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
 507
 508		function++;
 509
 510		stop_it = 0;
 511
 512		/* this loop skips to the next present function
 513		 * reading in the Class Code and the Header type.
 514		 */
 515		while ((function < max_functions) && (!stop_it)) {
 516			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
 517
 518			if (ID == 0xFFFFFFFF)
 519				function++;
 520			else {
 521				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
 522				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
 523				stop_it++;
 524			}
 525		}
 526
 527	}
 528
 529	return 0;
 530}
 531
 532
 533/*
 534 * cpqhp_save_base_addr_length
 535 *
 536 * Saves the length of all base address registers for the
 537 * specified slot.  this is for hot plug REPLACE
 538 *
 539 * returns 0 if success
 540 */
 541int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
 542{
 543	u8 cloop;
 544	u8 header_type;
 545	u8 secondary_bus;
 546	u8 type;
 547	int sub_bus;
 548	u32 temp_register;
 549	u32 base;
 550	u32 rc;
 551	struct pci_func *next;
 552	int index = 0;
 553	struct pci_bus *pci_bus = ctrl->pci_bus;
 554	unsigned int devfn;
 555
 556	func = cpqhp_slot_find(func->bus, func->device, index++);
 557
 558	while (func != NULL) {
 559		pci_bus->number = func->bus;
 560		devfn = PCI_DEVFN(func->device, func->function);
 561
 562		/* Check for Bridge */
 563		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 564
 565		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 566			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 567
 568			sub_bus = (int) secondary_bus;
 569
 570			next = cpqhp_slot_list[sub_bus];
 571
 572			while (next != NULL) {
 573				rc = cpqhp_save_base_addr_length(ctrl, next);
 574				if (rc)
 575					return rc;
 576
 577				next = next->next;
 578			}
 579			pci_bus->number = func->bus;
 580
 581			/* FIXME: this loop is duplicated in the non-bridge
 582			 * case.  The two could be rolled together Figure out
 583			 * IO and memory base lengths
 584			 */
 585			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 586				temp_register = 0xFFFFFFFF;
 587				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 588				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 589				/* If this register is implemented */
 590				if (base) {
 591					if (base & 0x01L) {
 592						/* IO base
 593						 * set base = amount of IO space
 594						 * requested
 595						 */
 596						base = base & 0xFFFFFFFE;
 597						base = (~base) + 1;
 598
 599						type = 1;
 600					} else {
 601						/* memory base */
 602						base = base & 0xFFFFFFF0;
 603						base = (~base) + 1;
 604
 605						type = 0;
 606					}
 607				} else {
 608					base = 0x0L;
 609					type = 0;
 610				}
 611
 612				/* Save information in slot structure */
 613				func->base_length[(cloop - 0x10) >> 2] =
 614				base;
 615				func->base_type[(cloop - 0x10) >> 2] = type;
 616
 617			}	/* End of base register loop */
 618
 619		} else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
 620			/* Figure out IO and memory base lengths */
 621			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 622				temp_register = 0xFFFFFFFF;
 623				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 624				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 625
 626				/* If this register is implemented */
 627				if (base) {
 628					if (base & 0x01L) {
 629						/* IO base
 630						 * base = amount of IO space
 631						 * requested
 632						 */
 633						base = base & 0xFFFFFFFE;
 634						base = (~base) + 1;
 635
 636						type = 1;
 637					} else {
 638						/* memory base
 639						 * base = amount of memory
 640						 * space requested
 641						 */
 642						base = base & 0xFFFFFFF0;
 643						base = (~base) + 1;
 644
 645						type = 0;
 646					}
 647				} else {
 648					base = 0x0L;
 649					type = 0;
 650				}
 651
 652				/* Save information in slot structure */
 653				func->base_length[(cloop - 0x10) >> 2] = base;
 654				func->base_type[(cloop - 0x10) >> 2] = type;
 655
 656			}	/* End of base register loop */
 657
 658		} else {	  /* Some other unknown header type */
 659		}
 660
 661		/* find the next device in this slot */
 662		func = cpqhp_slot_find(func->bus, func->device, index++);
 663	}
 664
 665	return(0);
 666}
 667
 668
 669/*
 670 * cpqhp_save_used_resources
 671 *
 672 * Stores used resource information for existing boards.  this is
 673 * for boards that were in the system when this driver was loaded.
 674 * this function is for hot plug ADD
 675 *
 676 * returns 0 if success
 677 */
 678int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
 679{
 680	u8 cloop;
 681	u8 header_type;
 682	u8 secondary_bus;
 683	u8 temp_byte;
 684	u8 b_base;
 685	u8 b_length;
 686	u16 command;
 687	u16 save_command;
 688	u16 w_base;
 689	u16 w_length;
 690	u32 temp_register;
 691	u32 save_base;
 692	u32 base;
 693	int index = 0;
 694	struct pci_resource *mem_node;
 695	struct pci_resource *p_mem_node;
 696	struct pci_resource *io_node;
 697	struct pci_resource *bus_node;
 698	struct pci_bus *pci_bus = ctrl->pci_bus;
 699	unsigned int devfn;
 700
 701	func = cpqhp_slot_find(func->bus, func->device, index++);
 702
 703	while ((func != NULL) && func->is_a_board) {
 704		pci_bus->number = func->bus;
 705		devfn = PCI_DEVFN(func->device, func->function);
 706
 707		/* Save the command register */
 708		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
 709
 710		/* disable card */
 711		command = 0x00;
 712		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
 713
 714		/* Check for Bridge */
 715		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 716
 717		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 718			/* Clear Bridge Control Register */
 719			command = 0x00;
 720			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
 721			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 722			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
 723
 724			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
 725			if (!bus_node)
 726				return -ENOMEM;
 727
 728			bus_node->base = secondary_bus;
 729			bus_node->length = temp_byte - secondary_bus + 1;
 730
 731			bus_node->next = func->bus_head;
 732			func->bus_head = bus_node;
 733
 734			/* Save IO base and Limit registers */
 735			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
 736			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
 737
 738			if ((b_base <= b_length) && (save_command & 0x01)) {
 739				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
 740				if (!io_node)
 741					return -ENOMEM;
 742
 743				io_node->base = (b_base & 0xF0) << 8;
 744				io_node->length = (b_length - b_base + 0x10) << 8;
 745
 746				io_node->next = func->io_head;
 747				func->io_head = io_node;
 748			}
 749
 750			/* Save memory base and Limit registers */
 751			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
 752			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
 753
 754			if ((w_base <= w_length) && (save_command & 0x02)) {
 755				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
 756				if (!mem_node)
 757					return -ENOMEM;
 758
 759				mem_node->base = w_base << 16;
 760				mem_node->length = (w_length - w_base + 0x10) << 16;
 761
 762				mem_node->next = func->mem_head;
 763				func->mem_head = mem_node;
 764			}
 765
 766			/* Save prefetchable memory base and Limit registers */
 767			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
 768			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
 769
 770			if ((w_base <= w_length) && (save_command & 0x02)) {
 771				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
 772				if (!p_mem_node)
 773					return -ENOMEM;
 774
 775				p_mem_node->base = w_base << 16;
 776				p_mem_node->length = (w_length - w_base + 0x10) << 16;
 777
 778				p_mem_node->next = func->p_mem_head;
 779				func->p_mem_head = p_mem_node;
 780			}
 781			/* Figure out IO and memory base lengths */
 782			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 783				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 784
 785				temp_register = 0xFFFFFFFF;
 786				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 787				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 788
 789				temp_register = base;
 790
 791				/* If this register is implemented */
 792				if (base) {
 793					if (((base & 0x03L) == 0x01)
 794					    && (save_command & 0x01)) {
 795						/* IO base
 796						 * set temp_register = amount
 797						 * of IO space requested
 798						 */
 799						temp_register = base & 0xFFFFFFFE;
 800						temp_register = (~temp_register) + 1;
 801
 802						io_node = kmalloc(sizeof(*io_node),
 803								GFP_KERNEL);
 804						if (!io_node)
 805							return -ENOMEM;
 806
 807						io_node->base =
 808						save_base & (~0x03L);
 809						io_node->length = temp_register;
 810
 811						io_node->next = func->io_head;
 812						func->io_head = io_node;
 813					} else
 814						if (((base & 0x0BL) == 0x08)
 815						    && (save_command & 0x02)) {
 816						/* prefetchable memory base */
 817						temp_register = base & 0xFFFFFFF0;
 818						temp_register = (~temp_register) + 1;
 819
 820						p_mem_node = kmalloc(sizeof(*p_mem_node),
 821								GFP_KERNEL);
 822						if (!p_mem_node)
 823							return -ENOMEM;
 824
 825						p_mem_node->base = save_base & (~0x0FL);
 826						p_mem_node->length = temp_register;
 827
 828						p_mem_node->next = func->p_mem_head;
 829						func->p_mem_head = p_mem_node;
 830					} else
 831						if (((base & 0x0BL) == 0x00)
 832						    && (save_command & 0x02)) {
 833						/* prefetchable memory base */
 834						temp_register = base & 0xFFFFFFF0;
 835						temp_register = (~temp_register) + 1;
 836
 837						mem_node = kmalloc(sizeof(*mem_node),
 838								GFP_KERNEL);
 839						if (!mem_node)
 840							return -ENOMEM;
 841
 842						mem_node->base = save_base & (~0x0FL);
 843						mem_node->length = temp_register;
 844
 845						mem_node->next = func->mem_head;
 846						func->mem_head = mem_node;
 847					} else
 848						return(1);
 849				}
 850			}	/* End of base register loop */
 851		/* Standard header */
 852		} else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
 853			/* Figure out IO and memory base lengths */
 854			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 855				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 856
 857				temp_register = 0xFFFFFFFF;
 858				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 859				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 860
 861				temp_register = base;
 862
 863				/* If this register is implemented */
 864				if (base) {
 865					if (((base & 0x03L) == 0x01)
 866					    && (save_command & 0x01)) {
 867						/* IO base
 868						 * set temp_register = amount
 869						 * of IO space requested
 870						 */
 871						temp_register = base & 0xFFFFFFFE;
 872						temp_register = (~temp_register) + 1;
 873
 874						io_node = kmalloc(sizeof(*io_node),
 875								GFP_KERNEL);
 876						if (!io_node)
 877							return -ENOMEM;
 878
 879						io_node->base = save_base & (~0x01L);
 880						io_node->length = temp_register;
 881
 882						io_node->next = func->io_head;
 883						func->io_head = io_node;
 884					} else
 885						if (((base & 0x0BL) == 0x08)
 886						    && (save_command & 0x02)) {
 887						/* prefetchable memory base */
 888						temp_register = base & 0xFFFFFFF0;
 889						temp_register = (~temp_register) + 1;
 890
 891						p_mem_node = kmalloc(sizeof(*p_mem_node),
 892								GFP_KERNEL);
 893						if (!p_mem_node)
 894							return -ENOMEM;
 895
 896						p_mem_node->base = save_base & (~0x0FL);
 897						p_mem_node->length = temp_register;
 898
 899						p_mem_node->next = func->p_mem_head;
 900						func->p_mem_head = p_mem_node;
 901					} else
 902						if (((base & 0x0BL) == 0x00)
 903						    && (save_command & 0x02)) {
 904						/* prefetchable memory base */
 905						temp_register = base & 0xFFFFFFF0;
 906						temp_register = (~temp_register) + 1;
 907
 908						mem_node = kmalloc(sizeof(*mem_node),
 909								GFP_KERNEL);
 910						if (!mem_node)
 911							return -ENOMEM;
 912
 913						mem_node->base = save_base & (~0x0FL);
 914						mem_node->length = temp_register;
 915
 916						mem_node->next = func->mem_head;
 917						func->mem_head = mem_node;
 918					} else
 919						return(1);
 920				}
 921			}	/* End of base register loop */
 922		}
 923
 924		/* find the next device in this slot */
 925		func = cpqhp_slot_find(func->bus, func->device, index++);
 926	}
 927
 928	return 0;
 929}
 930
 931
 932/*
 933 * cpqhp_configure_board
 934 *
 935 * Copies saved configuration information to one slot.
 936 * this is called recursively for bridge devices.
 937 * this is for hot plug REPLACE!
 938 *
 939 * returns 0 if success
 940 */
 941int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
 942{
 943	int cloop;
 944	u8 header_type;
 945	u8 secondary_bus;
 946	int sub_bus;
 947	struct pci_func *next;
 948	u32 temp;
 949	u32 rc;
 950	int index = 0;
 951	struct pci_bus *pci_bus = ctrl->pci_bus;
 952	unsigned int devfn;
 953
 954	func = cpqhp_slot_find(func->bus, func->device, index++);
 955
 956	while (func != NULL) {
 957		pci_bus->number = func->bus;
 958		devfn = PCI_DEVFN(func->device, func->function);
 959
 960		/* Start at the top of config space so that the control
 961		 * registers are programmed last
 962		 */
 963		for (cloop = 0x3C; cloop > 0; cloop -= 4)
 964			pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
 965
 966		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 967
 968		/* If this is a bridge device, restore subordinate devices */
 969		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 970			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 971
 972			sub_bus = (int) secondary_bus;
 973
 974			next = cpqhp_slot_list[sub_bus];
 975
 976			while (next != NULL) {
 977				rc = cpqhp_configure_board(ctrl, next);
 978				if (rc)
 979					return rc;
 980
 981				next = next->next;
 982			}
 983		} else {
 984
 985			/* Check all the base Address Registers to make sure
 986			 * they are the same.  If not, the board is different.
 987			 */
 988
 989			for (cloop = 16; cloop < 40; cloop += 4) {
 990				pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
 991
 992				if (temp != func->config_space[cloop >> 2]) {
 993					dbg("Config space compare failure!!! offset = %x\n", cloop);
 994					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
 995					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
 996					return 1;
 997				}
 998			}
 999		}
1000
1001		func->configured = 1;
1002
1003		func = cpqhp_slot_find(func->bus, func->device, index++);
1004	}
1005
1006	return 0;
1007}
1008
1009
1010/*
1011 * cpqhp_valid_replace
1012 *
1013 * this function checks to see if a board is the same as the
1014 * one it is replacing.  this check will detect if the device's
1015 * vendor or device id's are the same
1016 *
1017 * returns 0 if the board is the same nonzero otherwise
1018 */
1019int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1020{
1021	u8 cloop;
1022	u8 header_type;
1023	u8 secondary_bus;
1024	u8 type;
1025	u32 temp_register = 0;
1026	u32 base;
1027	u32 rc;
1028	struct pci_func *next;
1029	int index = 0;
1030	struct pci_bus *pci_bus = ctrl->pci_bus;
1031	unsigned int devfn;
1032
1033	if (!func->is_a_board)
1034		return(ADD_NOT_SUPPORTED);
1035
1036	func = cpqhp_slot_find(func->bus, func->device, index++);
1037
1038	while (func != NULL) {
1039		pci_bus->number = func->bus;
1040		devfn = PCI_DEVFN(func->device, func->function);
1041
1042		pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1043
1044		/* No adapter present */
1045		if (temp_register == 0xFFFFFFFF)
1046			return(NO_ADAPTER_PRESENT);
1047
1048		if (temp_register != func->config_space[0])
1049			return(ADAPTER_NOT_SAME);
1050
1051		/* Check for same revision number and class code */
1052		pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1053
1054		/* Adapter not the same */
1055		if (temp_register != func->config_space[0x08 >> 2])
1056			return(ADAPTER_NOT_SAME);
1057
1058		/* Check for Bridge */
1059		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1060
1061		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
1062			/* In order to continue checking, we must program the
1063			 * bus registers in the bridge to respond to accesses
1064			 * for its subordinate bus(es)
1065			 */
1066
1067			temp_register = func->config_space[0x18 >> 2];
1068			pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1069
1070			secondary_bus = (temp_register >> 8) & 0xFF;
1071
1072			next = cpqhp_slot_list[secondary_bus];
1073
1074			while (next != NULL) {
1075				rc = cpqhp_valid_replace(ctrl, next);
1076				if (rc)
1077					return rc;
1078
1079				next = next->next;
1080			}
1081
1082		}
1083		/* Check to see if it is a standard config header */
1084		else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
1085			/* Check subsystem vendor and ID */
1086			pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1087
1088			if (temp_register != func->config_space[0x2C >> 2]) {
1089				/* If it's a SMART-2 and the register isn't
1090				 * filled in, ignore the difference because
1091				 * they just have an old rev of the firmware
1092				 */
1093				if (!((func->config_space[0] == 0xAE100E11)
1094				      && (temp_register == 0x00L)))
1095					return(ADAPTER_NOT_SAME);
1096			}
1097			/* Figure out IO and memory base lengths */
1098			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1099				temp_register = 0xFFFFFFFF;
1100				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
1101				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
1102
1103				/* If this register is implemented */
1104				if (base) {
1105					if (base & 0x01L) {
1106						/* IO base
1107						 * set base = amount of IO
1108						 * space requested
1109						 */
1110						base = base & 0xFFFFFFFE;
1111						base = (~base) + 1;
1112
1113						type = 1;
1114					} else {
1115						/* memory base */
1116						base = base & 0xFFFFFFF0;
1117						base = (~base) + 1;
1118
1119						type = 0;
1120					}
1121				} else {
1122					base = 0x0L;
1123					type = 0;
1124				}
1125
1126				/* Check information in slot structure */
1127				if (func->base_length[(cloop - 0x10) >> 2] != base)
1128					return(ADAPTER_NOT_SAME);
1129
1130				if (func->base_type[(cloop - 0x10) >> 2] != type)
1131					return(ADAPTER_NOT_SAME);
1132
1133			}	/* End of base register loop */
1134
1135		}		/* End of (type 0 config space) else */
1136		else {
1137			/* this is not a type 0 or 1 config space header so
1138			 * we don't know how to do it
1139			 */
1140			return(DEVICE_TYPE_NOT_SUPPORTED);
1141		}
1142
1143		/* Get the next function */
1144		func = cpqhp_slot_find(func->bus, func->device, index++);
1145	}
1146
1147
1148	return 0;
1149}
1150
1151
1152/*
1153 * cpqhp_find_available_resources
1154 *
1155 * Finds available memory, IO, and IRQ resources for programming
1156 * devices which may be added to the system
1157 * this function is for hot plug ADD!
1158 *
1159 * returns 0 if success
1160 */
1161int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1162{
1163	u8 temp;
1164	u8 populated_slot;
1165	u8 bridged_slot;
1166	void __iomem *one_slot;
1167	void __iomem *rom_resource_table;
1168	struct pci_func *func = NULL;
1169	int i = 10, index;
1170	u32 temp_dword, rc;
1171	struct pci_resource *mem_node;
1172	struct pci_resource *p_mem_node;
1173	struct pci_resource *io_node;
1174	struct pci_resource *bus_node;
1175
1176	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1177	dbg("rom_resource_table = %p\n", rom_resource_table);
1178
1179	if (rom_resource_table == NULL)
1180		return -ENODEV;
1181
1182	/* Sum all resources and setup resource maps */
1183	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1184	dbg("unused_IRQ = %x\n", unused_IRQ);
1185
1186	temp = 0;
1187	while (unused_IRQ) {
1188		if (unused_IRQ & 1) {
1189			cpqhp_disk_irq = temp;
1190			break;
1191		}
1192		unused_IRQ = unused_IRQ >> 1;
1193		temp++;
1194	}
1195
1196	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1197	unused_IRQ = unused_IRQ >> 1;
1198	temp++;
1199
1200	while (unused_IRQ) {
1201		if (unused_IRQ & 1) {
1202			cpqhp_nic_irq = temp;
1203			break;
1204		}
1205		unused_IRQ = unused_IRQ >> 1;
1206		temp++;
1207	}
1208
1209	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1210	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1211
1212	temp = 0;
1213
1214	if (!cpqhp_nic_irq)
1215		cpqhp_nic_irq = ctrl->cfgspc_irq;
1216
1217	if (!cpqhp_disk_irq)
1218		cpqhp_disk_irq = ctrl->cfgspc_irq;
1219
1220	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1221
1222	rc = compaq_nvram_load(rom_start, ctrl);
1223	if (rc)
1224		return rc;
1225
1226	one_slot = rom_resource_table + sizeof(struct hrt);
1227
1228	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1229	dbg("number_of_entries = %d\n", i);
1230
1231	if (!readb(one_slot + SECONDARY_BUS))
1232		return 1;
1233
1234	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1235
1236	while (i && readb(one_slot + SECONDARY_BUS)) {
1237		u8 dev_func = readb(one_slot + DEV_FUNC);
1238		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1239		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1240		u8 max_bus = readb(one_slot + MAX_BUS);
1241		u16 io_base = readw(one_slot + IO_BASE);
1242		u16 io_length = readw(one_slot + IO_LENGTH);
1243		u16 mem_base = readw(one_slot + MEM_BASE);
1244		u16 mem_length = readw(one_slot + MEM_LENGTH);
1245		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1246		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1247
1248		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1249		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1250		    primary_bus, secondary_bus, max_bus);
1251
1252		/* If this entry isn't for our controller's bus, ignore it */
1253		if (primary_bus != ctrl->bus) {
1254			i--;
1255			one_slot += sizeof(struct slot_rt);
1256			continue;
1257		}
1258		/* find out if this entry is for an occupied slot */
1259		ctrl->pci_bus->number = primary_bus;
1260		pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1261		dbg("temp_D_word = %x\n", temp_dword);
1262
1263		if (temp_dword != 0xFFFFFFFF) {
1264			index = 0;
1265			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1266
1267			while (func && (func->function != (dev_func & 0x07))) {
1268				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1269				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1270			}
1271
1272			/* If we can't find a match, skip this table entry */
1273			if (!func) {
1274				i--;
1275				one_slot += sizeof(struct slot_rt);
1276				continue;
1277			}
1278			/* this may not work and shouldn't be used */
1279			if (secondary_bus != primary_bus)
1280				bridged_slot = 1;
1281			else
1282				bridged_slot = 0;
1283
1284			populated_slot = 1;
1285		} else {
1286			populated_slot = 0;
1287			bridged_slot = 0;
1288		}
1289
1290
1291		/* If we've got a valid IO base, use it */
1292
1293		temp_dword = io_base + io_length;
1294
1295		if ((io_base) && (temp_dword < 0x10000)) {
1296			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1297			if (!io_node)
1298				return -ENOMEM;
1299
1300			io_node->base = io_base;
1301			io_node->length = io_length;
1302
1303			dbg("found io_node(base, length) = %x, %x\n",
1304					io_node->base, io_node->length);
1305			dbg("populated slot =%d \n", populated_slot);
1306			if (!populated_slot) {
1307				io_node->next = ctrl->io_head;
1308				ctrl->io_head = io_node;
1309			} else {
1310				io_node->next = func->io_head;
1311				func->io_head = io_node;
1312			}
1313		}
1314
1315		/* If we've got a valid memory base, use it */
1316		temp_dword = mem_base + mem_length;
1317		if ((mem_base) && (temp_dword < 0x10000)) {
1318			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1319			if (!mem_node)
1320				return -ENOMEM;
1321
1322			mem_node->base = mem_base << 16;
1323
1324			mem_node->length = mem_length << 16;
1325
1326			dbg("found mem_node(base, length) = %x, %x\n",
1327					mem_node->base, mem_node->length);
1328			dbg("populated slot =%d \n", populated_slot);
1329			if (!populated_slot) {
1330				mem_node->next = ctrl->mem_head;
1331				ctrl->mem_head = mem_node;
1332			} else {
1333				mem_node->next = func->mem_head;
1334				func->mem_head = mem_node;
1335			}
1336		}
1337
1338		/* If we've got a valid prefetchable memory base, and
1339		 * the base + length isn't greater than 0xFFFF
1340		 */
1341		temp_dword = pre_mem_base + pre_mem_length;
1342		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1343			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1344			if (!p_mem_node)
1345				return -ENOMEM;
1346
1347			p_mem_node->base = pre_mem_base << 16;
1348
1349			p_mem_node->length = pre_mem_length << 16;
1350			dbg("found p_mem_node(base, length) = %x, %x\n",
1351					p_mem_node->base, p_mem_node->length);
1352			dbg("populated slot =%d \n", populated_slot);
1353
1354			if (!populated_slot) {
1355				p_mem_node->next = ctrl->p_mem_head;
1356				ctrl->p_mem_head = p_mem_node;
1357			} else {
1358				p_mem_node->next = func->p_mem_head;
1359				func->p_mem_head = p_mem_node;
1360			}
1361		}
1362
1363		/* If we've got a valid bus number, use it
1364		 * The second condition is to ignore bus numbers on
1365		 * populated slots that don't have PCI-PCI bridges
1366		 */
1367		if (secondary_bus && (secondary_bus != primary_bus)) {
1368			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1369			if (!bus_node)
1370				return -ENOMEM;
1371
1372			bus_node->base = secondary_bus;
1373			bus_node->length = max_bus - secondary_bus + 1;
1374			dbg("found bus_node(base, length) = %x, %x\n",
1375					bus_node->base, bus_node->length);
1376			dbg("populated slot =%d \n", populated_slot);
1377			if (!populated_slot) {
1378				bus_node->next = ctrl->bus_head;
1379				ctrl->bus_head = bus_node;
1380			} else {
1381				bus_node->next = func->bus_head;
1382				func->bus_head = bus_node;
1383			}
1384		}
1385
1386		i--;
1387		one_slot += sizeof(struct slot_rt);
1388	}
1389
1390	/* If all of the following fail, we don't have any resources for
1391	 * hot plug add
1392	 */
1393	rc = 1;
1394	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1395	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1396	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1397	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1398
1399	return rc;
1400}
1401
1402
1403/*
1404 * cpqhp_return_board_resources
1405 *
1406 * this routine returns all resources allocated to a board to
1407 * the available pool.
1408 *
1409 * returns 0 if success
1410 */
1411int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1412{
1413	int rc = 0;
1414	struct pci_resource *node;
1415	struct pci_resource *t_node;
1416	dbg("%s\n", __func__);
1417
1418	if (!func)
1419		return 1;
1420
1421	node = func->io_head;
1422	func->io_head = NULL;
1423	while (node) {
1424		t_node = node->next;
1425		return_resource(&(resources->io_head), node);
1426		node = t_node;
1427	}
1428
1429	node = func->mem_head;
1430	func->mem_head = NULL;
1431	while (node) {
1432		t_node = node->next;
1433		return_resource(&(resources->mem_head), node);
1434		node = t_node;
1435	}
1436
1437	node = func->p_mem_head;
1438	func->p_mem_head = NULL;
1439	while (node) {
1440		t_node = node->next;
1441		return_resource(&(resources->p_mem_head), node);
1442		node = t_node;
1443	}
1444
1445	node = func->bus_head;
1446	func->bus_head = NULL;
1447	while (node) {
1448		t_node = node->next;
1449		return_resource(&(resources->bus_head), node);
1450		node = t_node;
1451	}
1452
1453	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1454	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1455	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1456	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1457
1458	return rc;
1459}
1460
1461
1462/*
1463 * cpqhp_destroy_resource_list
1464 *
1465 * Puts node back in the resource list pointed to by head
1466 */
1467void cpqhp_destroy_resource_list(struct resource_lists *resources)
1468{
1469	struct pci_resource *res, *tres;
1470
1471	res = resources->io_head;
1472	resources->io_head = NULL;
1473
1474	while (res) {
1475		tres = res;
1476		res = res->next;
1477		kfree(tres);
1478	}
1479
1480	res = resources->mem_head;
1481	resources->mem_head = NULL;
1482
1483	while (res) {
1484		tres = res;
1485		res = res->next;
1486		kfree(tres);
1487	}
1488
1489	res = resources->p_mem_head;
1490	resources->p_mem_head = NULL;
1491
1492	while (res) {
1493		tres = res;
1494		res = res->next;
1495		kfree(tres);
1496	}
1497
1498	res = resources->bus_head;
1499	resources->bus_head = NULL;
1500
1501	while (res) {
1502		tres = res;
1503		res = res->next;
1504		kfree(tres);
1505	}
1506}
1507
1508
1509/*
1510 * cpqhp_destroy_board_resources
1511 *
1512 * Puts node back in the resource list pointed to by head
1513 */
1514void cpqhp_destroy_board_resources(struct pci_func *func)
1515{
1516	struct pci_resource *res, *tres;
1517
1518	res = func->io_head;
1519	func->io_head = NULL;
1520
1521	while (res) {
1522		tres = res;
1523		res = res->next;
1524		kfree(tres);
1525	}
1526
1527	res = func->mem_head;
1528	func->mem_head = NULL;
1529
1530	while (res) {
1531		tres = res;
1532		res = res->next;
1533		kfree(tres);
1534	}
1535
1536	res = func->p_mem_head;
1537	func->p_mem_head = NULL;
1538
1539	while (res) {
1540		tres = res;
1541		res = res->next;
1542		kfree(tres);
1543	}
1544
1545	res = func->bus_head;
1546	func->bus_head = NULL;
1547
1548	while (res) {
1549		tres = res;
1550		res = res->next;
1551		kfree(tres);
1552	}
1553}
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Compaq Hot Plug Controller Driver
   4 *
   5 * Copyright (C) 1995,2001 Compaq Computer Corporation
   6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   7 * Copyright (C) 2001 IBM Corp.
   8 *
   9 * All rights reserved.
  10 *
  11 * Send feedback to <greg@kroah.com>
  12 *
  13 */
  14
 
 
  15#include <linux/module.h>
  16#include <linux/kernel.h>
 
  17#include <linux/types.h>
  18#include <linux/slab.h>
  19#include <linux/workqueue.h>
  20#include <linux/proc_fs.h>
  21#include <linux/pci.h>
  22#include <linux/pci_hotplug.h>
  23#include "../pci.h"
  24#include "cpqphp.h"
  25#include "cpqphp_nvram.h"
  26
  27
  28u8 cpqhp_nic_irq;
  29u8 cpqhp_disk_irq;
  30
  31static u16 unused_IRQ;
  32
  33/*
  34 * detect_HRT_floating_pointer
  35 *
  36 * find the Hot Plug Resource Table in the specified region of memory.
  37 *
  38 */
  39static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
  40{
  41	void __iomem *fp;
  42	void __iomem *endp;
  43	u8 temp1, temp2, temp3, temp4;
  44	int status = 0;
  45
  46	endp = (end - sizeof(struct hrt) + 1);
  47
  48	for (fp = begin; fp <= endp; fp += 16) {
  49		temp1 = readb(fp + SIG0);
  50		temp2 = readb(fp + SIG1);
  51		temp3 = readb(fp + SIG2);
  52		temp4 = readb(fp + SIG3);
  53		if (temp1 == '$' &&
  54		    temp2 == 'H' &&
  55		    temp3 == 'R' &&
  56		    temp4 == 'T') {
  57			status = 1;
  58			break;
  59		}
  60	}
  61
  62	if (!status)
  63		fp = NULL;
  64
  65	dbg("Discovered Hotplug Resource Table at %p\n", fp);
  66	return fp;
  67}
  68
  69
  70int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
  71{
  72	struct pci_bus *child;
  73	int num;
  74
  75	pci_lock_rescan_remove();
  76
  77	if (func->pci_dev == NULL)
  78		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
  79							PCI_DEVFN(func->device,
  80							func->function));
  81
  82	/* No pci device, we need to create it then */
  83	if (func->pci_dev == NULL) {
  84		dbg("INFO: pci_dev still null\n");
  85
  86		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
  87		if (num)
  88			pci_bus_add_devices(ctrl->pci_dev->bus);
  89
  90		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
  91							PCI_DEVFN(func->device,
  92							func->function));
  93		if (func->pci_dev == NULL) {
  94			dbg("ERROR: pci_dev still null\n");
  95			goto out;
  96		}
  97	}
  98
  99	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 100		pci_hp_add_bridge(func->pci_dev);
 101		child = func->pci_dev->subordinate;
 102		if (child)
 103			pci_bus_add_devices(child);
 104	}
 105
 106	pci_dev_put(func->pci_dev);
 107
 108 out:
 109	pci_unlock_rescan_remove();
 110	return 0;
 111}
 112
 113
 114int cpqhp_unconfigure_device(struct pci_func *func)
 115{
 116	int j;
 117
 118	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
 119
 120	pci_lock_rescan_remove();
 121	for (j = 0; j < 8 ; j++) {
 122		struct pci_dev *temp = pci_get_domain_bus_and_slot(0,
 123							func->bus,
 124							PCI_DEVFN(func->device,
 125							j));
 126		if (temp) {
 127			pci_dev_put(temp);
 128			pci_stop_and_remove_bus_device(temp);
 129		}
 130	}
 131	pci_unlock_rescan_remove();
 132	return 0;
 133}
 134
 135static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
 136{
 137	u32 vendID = 0;
 138
 139	if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
 140		return -1;
 141	if (vendID == 0xffffffff)
 142		return -1;
 143	return pci_bus_read_config_dword(bus, devfn, offset, value);
 144}
 145
 146
 147/*
 148 * cpqhp_set_irq
 149 *
 150 * @bus_num: bus number of PCI device
 151 * @dev_num: device number of PCI device
 152 * @slot: pointer to u8 where slot number will be returned
 153 */
 154int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
 155{
 156	int rc = 0;
 157
 158	if (cpqhp_legacy_mode) {
 159		struct pci_dev *fakedev;
 160		struct pci_bus *fakebus;
 161		u16 temp_word;
 162
 163		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
 164		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
 165		if (!fakedev || !fakebus) {
 166			kfree(fakedev);
 167			kfree(fakebus);
 168			return -ENOMEM;
 169		}
 170
 171		fakedev->devfn = dev_num << 3;
 172		fakedev->bus = fakebus;
 173		fakebus->number = bus_num;
 174		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
 175		    __func__, dev_num, bus_num, int_pin, irq_num);
 176		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
 177		kfree(fakedev);
 178		kfree(fakebus);
 179		dbg("%s: rc %d\n", __func__, rc);
 180		if (!rc)
 181			return !rc;
 182
 183		/* set the Edge Level Control Register (ELCR) */
 184		temp_word = inb(0x4d0);
 185		temp_word |= inb(0x4d1) << 8;
 186
 187		temp_word |= 0x01 << irq_num;
 188
 189		/* This should only be for x86 as it sets the Edge Level
 190		 * Control Register
 191		 */
 192		outb((u8)(temp_word & 0xFF), 0x4d0);
 193		outb((u8)((temp_word & 0xFF00) >> 8), 0x4d1);
 194		rc = 0;
 195	}
 196
 197	return rc;
 198}
 199
 200
 201static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
 202{
 203	u16 tdevice;
 204	u32 work;
 205	u8 tbus;
 206
 207	ctrl->pci_bus->number = bus_num;
 208
 209	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 210		/* Scan for access first */
 211		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
 
 
 
 212			continue;
 213		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
 214		/* Yep we got one. Not a bridge ? */
 215		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
 216			*dev_num = tdevice;
 217			dbg("found it !\n");
 218			return 0;
 219		}
 220	}
 221	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 222		/* Scan for access first */
 223		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
 224			continue;
 225		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
 226		/* Yep we got one. bridge ? */
 227		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 228			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
 229			/* XXX: no recursion, wtf? */
 230			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
 231			return 0;
 232		}
 233	}
 234
 235	return -1;
 
 236}
 237
 238
 239static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
 240{
 241	int loop, len;
 242	u32 work;
 243	u8 tbus, tdevice, tslot;
 244
 245	len = cpqhp_routing_table_length();
 246	for (loop = 0; loop < len; ++loop) {
 247		tbus = cpqhp_routing_table->slots[loop].bus;
 248		tdevice = cpqhp_routing_table->slots[loop].devfn;
 249		tslot = cpqhp_routing_table->slots[loop].slot;
 250
 251		if (tslot == slot) {
 252			*bus_num = tbus;
 253			*dev_num = tdevice;
 254			ctrl->pci_bus->number = tbus;
 255			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
 256			if (!nobridge || (work == 0xffffffff))
 257				return 0;
 258
 259			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
 260			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
 261			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
 262
 263			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 264				pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
 265				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
 266				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
 267					*bus_num = tbus;
 268					return 0;
 269				}
 270			} else
 271				return 0;
 272		}
 273	}
 274	return -1;
 275}
 276
 277
 278int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
 279{
 280	/* plain (bridges allowed) */
 281	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
 282}
 283
 284
 285/* More PCI configuration routines; this time centered around hotplug
 286 * controller
 287 */
 288
 289
 290/*
 291 * cpqhp_save_config
 292 *
 293 * Reads configuration for all slots in a PCI bus and saves info.
 294 *
 295 * Note:  For non-hot plug buses, the slot # saved is the device #
 296 *
 297 * returns 0 if success
 298 */
 299int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
 300{
 301	long rc;
 302	u8 class_code;
 303	u8 header_type;
 304	u32 ID;
 305	u8 secondary_bus;
 306	struct pci_func *new_slot;
 307	int sub_bus;
 308	int FirstSupported;
 309	int LastSupported;
 310	int max_functions;
 311	int function;
 312	u8 DevError;
 313	int device = 0;
 314	int cloop = 0;
 315	int stop_it;
 316	int index;
 317	u16 devfn;
 318
 319	/* Decide which slots are supported */
 320
 321	if (is_hot_plug) {
 322		/*
 323		 * is_hot_plug is the slot mask
 324		 */
 325		FirstSupported = is_hot_plug >> 4;
 326		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
 327	} else {
 328		FirstSupported = 0;
 329		LastSupported = 0x1F;
 330	}
 331
 332	/* Save PCI configuration space for all devices in supported slots */
 333	ctrl->pci_bus->number = busnumber;
 334	for (device = FirstSupported; device <= LastSupported; device++) {
 335		ID = 0xFFFFFFFF;
 336		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
 337
 338		if (ID == 0xFFFFFFFF) {
 339			if (is_hot_plug) {
 340				/* Setup slot structure with entry for empty
 341				 * slot
 342				 */
 343				new_slot = cpqhp_slot_create(busnumber);
 344				if (new_slot == NULL)
 345					return 1;
 346
 347				new_slot->bus = (u8) busnumber;
 348				new_slot->device = (u8) device;
 349				new_slot->function = 0;
 350				new_slot->is_a_board = 0;
 351				new_slot->presence_save = 0;
 352				new_slot->switch_save = 0;
 353			}
 354			continue;
 355		}
 356
 357		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
 358		if (rc)
 359			return rc;
 360
 361		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
 362		if (rc)
 363			return rc;
 364
 365		/* If multi-function device, set max_functions to 8 */
 366		if (header_type & PCI_HEADER_TYPE_MFD)
 367			max_functions = 8;
 368		else
 369			max_functions = 1;
 370
 371		function = 0;
 372
 373		do {
 374			DevError = 0;
 375			if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 376				/* Recurse the subordinate bus
 377				 * get the subordinate bus number
 378				 */
 379				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
 380				if (rc) {
 381					return rc;
 382				} else {
 383					sub_bus = (int) secondary_bus;
 384
 385					/* Save secondary bus cfg spc
 386					 * with this recursive call.
 387					 */
 388					rc = cpqhp_save_config(ctrl, sub_bus, 0);
 389					if (rc)
 390						return rc;
 391					ctrl->pci_bus->number = busnumber;
 392				}
 393			}
 394
 395			index = 0;
 396			new_slot = cpqhp_slot_find(busnumber, device, index++);
 397			while (new_slot &&
 398			       (new_slot->function != (u8) function))
 399				new_slot = cpqhp_slot_find(busnumber, device, index++);
 400
 401			if (!new_slot) {
 402				/* Setup slot structure. */
 403				new_slot = cpqhp_slot_create(busnumber);
 404				if (new_slot == NULL)
 405					return 1;
 406			}
 407
 408			new_slot->bus = (u8) busnumber;
 409			new_slot->device = (u8) device;
 410			new_slot->function = (u8) function;
 411			new_slot->is_a_board = 1;
 412			new_slot->switch_save = 0x10;
 413			/* In case of unsupported board */
 414			new_slot->status = DevError;
 415			devfn = (new_slot->device << 3) | new_slot->function;
 416			new_slot->pci_dev = pci_get_domain_bus_and_slot(0,
 417							new_slot->bus, devfn);
 418
 419			for (cloop = 0; cloop < 0x20; cloop++) {
 420				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
 421				if (rc)
 422					return rc;
 423			}
 424
 425			pci_dev_put(new_slot->pci_dev);
 426
 427			function++;
 428
 429			stop_it = 0;
 430
 431			/* this loop skips to the next present function
 432			 * reading in Class Code and Header type.
 433			 */
 434			while ((function < max_functions) && (!stop_it)) {
 435				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
 436				if (ID == 0xFFFFFFFF) {
 437					function++;
 438					continue;
 439				}
 440				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
 441				if (rc)
 442					return rc;
 443
 444				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
 445				if (rc)
 446					return rc;
 447
 448				stop_it++;
 449			}
 450
 451		} while (function < max_functions);
 452	}			/* End of FOR loop */
 453
 454	return 0;
 455}
 456
 457
 458/*
 459 * cpqhp_save_slot_config
 460 *
 461 * Saves configuration info for all PCI devices in a given slot
 462 * including subordinate buses.
 463 *
 464 * returns 0 if success
 465 */
 466int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
 467{
 468	long rc;
 469	u8 class_code;
 470	u8 header_type;
 471	u32 ID;
 472	u8 secondary_bus;
 473	int sub_bus;
 474	int max_functions;
 475	int function = 0;
 476	int cloop;
 477	int stop_it;
 478
 479	ID = 0xFFFFFFFF;
 480
 481	ctrl->pci_bus->number = new_slot->bus;
 482	pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
 483
 484	if (ID == 0xFFFFFFFF)
 485		return 2;
 486
 487	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
 488	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
 489
 490	if (header_type & PCI_HEADER_TYPE_MFD)
 491		max_functions = 8;
 492	else
 493		max_functions = 1;
 494
 495	while (function < max_functions) {
 496		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 497			/*  Recurse the subordinate bus */
 498			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
 499
 500			sub_bus = (int) secondary_bus;
 501
 502			/* Save the config headers for the secondary
 503			 * bus.
 504			 */
 505			rc = cpqhp_save_config(ctrl, sub_bus, 0);
 506			if (rc)
 507				return(rc);
 508			ctrl->pci_bus->number = new_slot->bus;
 509
 510		}
 511
 512		new_slot->status = 0;
 513
 514		for (cloop = 0; cloop < 0x20; cloop++)
 515			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
 516
 517		function++;
 518
 519		stop_it = 0;
 520
 521		/* this loop skips to the next present function
 522		 * reading in the Class Code and the Header type.
 523		 */
 524		while ((function < max_functions) && (!stop_it)) {
 525			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
 526
 527			if (ID == 0xFFFFFFFF)
 528				function++;
 529			else {
 530				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
 531				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
 532				stop_it++;
 533			}
 534		}
 535
 536	}
 537
 538	return 0;
 539}
 540
 541
 542/*
 543 * cpqhp_save_base_addr_length
 544 *
 545 * Saves the length of all base address registers for the
 546 * specified slot.  this is for hot plug REPLACE
 547 *
 548 * returns 0 if success
 549 */
 550int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
 551{
 552	u8 cloop;
 553	u8 header_type;
 554	u8 secondary_bus;
 555	u8 type;
 556	int sub_bus;
 557	u32 temp_register;
 558	u32 base;
 559	u32 rc;
 560	struct pci_func *next;
 561	int index = 0;
 562	struct pci_bus *pci_bus = ctrl->pci_bus;
 563	unsigned int devfn;
 564
 565	func = cpqhp_slot_find(func->bus, func->device, index++);
 566
 567	while (func != NULL) {
 568		pci_bus->number = func->bus;
 569		devfn = PCI_DEVFN(func->device, func->function);
 570
 571		/* Check for Bridge */
 572		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 573
 574		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 575			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 576
 577			sub_bus = (int) secondary_bus;
 578
 579			next = cpqhp_slot_list[sub_bus];
 580
 581			while (next != NULL) {
 582				rc = cpqhp_save_base_addr_length(ctrl, next);
 583				if (rc)
 584					return rc;
 585
 586				next = next->next;
 587			}
 588			pci_bus->number = func->bus;
 589
 590			/* FIXME: this loop is duplicated in the non-bridge
 591			 * case.  The two could be rolled together Figure out
 592			 * IO and memory base lengths
 593			 */
 594			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 595				temp_register = 0xFFFFFFFF;
 596				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 597				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 598				/* If this register is implemented */
 599				if (base) {
 600					if (base & 0x01L) {
 601						/* IO base
 602						 * set base = amount of IO space
 603						 * requested
 604						 */
 605						base = base & 0xFFFFFFFE;
 606						base = (~base) + 1;
 607
 608						type = 1;
 609					} else {
 610						/* memory base */
 611						base = base & 0xFFFFFFF0;
 612						base = (~base) + 1;
 613
 614						type = 0;
 615					}
 616				} else {
 617					base = 0x0L;
 618					type = 0;
 619				}
 620
 621				/* Save information in slot structure */
 622				func->base_length[(cloop - 0x10) >> 2] =
 623				base;
 624				func->base_type[(cloop - 0x10) >> 2] = type;
 625
 626			}	/* End of base register loop */
 627
 628		} else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
 629			/* Figure out IO and memory base lengths */
 630			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 631				temp_register = 0xFFFFFFFF;
 632				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 633				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 634
 635				/* If this register is implemented */
 636				if (base) {
 637					if (base & 0x01L) {
 638						/* IO base
 639						 * base = amount of IO space
 640						 * requested
 641						 */
 642						base = base & 0xFFFFFFFE;
 643						base = (~base) + 1;
 644
 645						type = 1;
 646					} else {
 647						/* memory base
 648						 * base = amount of memory
 649						 * space requested
 650						 */
 651						base = base & 0xFFFFFFF0;
 652						base = (~base) + 1;
 653
 654						type = 0;
 655					}
 656				} else {
 657					base = 0x0L;
 658					type = 0;
 659				}
 660
 661				/* Save information in slot structure */
 662				func->base_length[(cloop - 0x10) >> 2] = base;
 663				func->base_type[(cloop - 0x10) >> 2] = type;
 664
 665			}	/* End of base register loop */
 666
 667		} else {	  /* Some other unknown header type */
 668		}
 669
 670		/* find the next device in this slot */
 671		func = cpqhp_slot_find(func->bus, func->device, index++);
 672	}
 673
 674	return(0);
 675}
 676
 677
 678/*
 679 * cpqhp_save_used_resources
 680 *
 681 * Stores used resource information for existing boards.  this is
 682 * for boards that were in the system when this driver was loaded.
 683 * this function is for hot plug ADD
 684 *
 685 * returns 0 if success
 686 */
 687int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
 688{
 689	u8 cloop;
 690	u8 header_type;
 691	u8 secondary_bus;
 692	u8 temp_byte;
 693	u8 b_base;
 694	u8 b_length;
 695	u16 command;
 696	u16 save_command;
 697	u16 w_base;
 698	u16 w_length;
 699	u32 temp_register;
 700	u32 save_base;
 701	u32 base;
 702	int index = 0;
 703	struct pci_resource *mem_node;
 704	struct pci_resource *p_mem_node;
 705	struct pci_resource *io_node;
 706	struct pci_resource *bus_node;
 707	struct pci_bus *pci_bus = ctrl->pci_bus;
 708	unsigned int devfn;
 709
 710	func = cpqhp_slot_find(func->bus, func->device, index++);
 711
 712	while ((func != NULL) && func->is_a_board) {
 713		pci_bus->number = func->bus;
 714		devfn = PCI_DEVFN(func->device, func->function);
 715
 716		/* Save the command register */
 717		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
 718
 719		/* disable card */
 720		command = 0x00;
 721		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
 722
 723		/* Check for Bridge */
 724		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 725
 726		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 727			/* Clear Bridge Control Register */
 728			command = 0x00;
 729			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
 730			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 731			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
 732
 733			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
 734			if (!bus_node)
 735				return -ENOMEM;
 736
 737			bus_node->base = secondary_bus;
 738			bus_node->length = temp_byte - secondary_bus + 1;
 739
 740			bus_node->next = func->bus_head;
 741			func->bus_head = bus_node;
 742
 743			/* Save IO base and Limit registers */
 744			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
 745			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
 746
 747			if ((b_base <= b_length) && (save_command & 0x01)) {
 748				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
 749				if (!io_node)
 750					return -ENOMEM;
 751
 752				io_node->base = (b_base & 0xF0) << 8;
 753				io_node->length = (b_length - b_base + 0x10) << 8;
 754
 755				io_node->next = func->io_head;
 756				func->io_head = io_node;
 757			}
 758
 759			/* Save memory base and Limit registers */
 760			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
 761			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
 762
 763			if ((w_base <= w_length) && (save_command & 0x02)) {
 764				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
 765				if (!mem_node)
 766					return -ENOMEM;
 767
 768				mem_node->base = w_base << 16;
 769				mem_node->length = (w_length - w_base + 0x10) << 16;
 770
 771				mem_node->next = func->mem_head;
 772				func->mem_head = mem_node;
 773			}
 774
 775			/* Save prefetchable memory base and Limit registers */
 776			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
 777			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
 778
 779			if ((w_base <= w_length) && (save_command & 0x02)) {
 780				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
 781				if (!p_mem_node)
 782					return -ENOMEM;
 783
 784				p_mem_node->base = w_base << 16;
 785				p_mem_node->length = (w_length - w_base + 0x10) << 16;
 786
 787				p_mem_node->next = func->p_mem_head;
 788				func->p_mem_head = p_mem_node;
 789			}
 790			/* Figure out IO and memory base lengths */
 791			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 792				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 793
 794				temp_register = 0xFFFFFFFF;
 795				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 796				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 797
 798				temp_register = base;
 799
 800				/* If this register is implemented */
 801				if (base) {
 802					if (((base & 0x03L) == 0x01)
 803					    && (save_command & 0x01)) {
 804						/* IO base
 805						 * set temp_register = amount
 806						 * of IO space requested
 807						 */
 808						temp_register = base & 0xFFFFFFFE;
 809						temp_register = (~temp_register) + 1;
 810
 811						io_node = kmalloc(sizeof(*io_node),
 812								GFP_KERNEL);
 813						if (!io_node)
 814							return -ENOMEM;
 815
 816						io_node->base =
 817						save_base & (~0x03L);
 818						io_node->length = temp_register;
 819
 820						io_node->next = func->io_head;
 821						func->io_head = io_node;
 822					} else
 823						if (((base & 0x0BL) == 0x08)
 824						    && (save_command & 0x02)) {
 825						/* prefetchable memory base */
 826						temp_register = base & 0xFFFFFFF0;
 827						temp_register = (~temp_register) + 1;
 828
 829						p_mem_node = kmalloc(sizeof(*p_mem_node),
 830								GFP_KERNEL);
 831						if (!p_mem_node)
 832							return -ENOMEM;
 833
 834						p_mem_node->base = save_base & (~0x0FL);
 835						p_mem_node->length = temp_register;
 836
 837						p_mem_node->next = func->p_mem_head;
 838						func->p_mem_head = p_mem_node;
 839					} else
 840						if (((base & 0x0BL) == 0x00)
 841						    && (save_command & 0x02)) {
 842						/* prefetchable memory base */
 843						temp_register = base & 0xFFFFFFF0;
 844						temp_register = (~temp_register) + 1;
 845
 846						mem_node = kmalloc(sizeof(*mem_node),
 847								GFP_KERNEL);
 848						if (!mem_node)
 849							return -ENOMEM;
 850
 851						mem_node->base = save_base & (~0x0FL);
 852						mem_node->length = temp_register;
 853
 854						mem_node->next = func->mem_head;
 855						func->mem_head = mem_node;
 856					} else
 857						return(1);
 858				}
 859			}	/* End of base register loop */
 860		/* Standard header */
 861		} else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
 862			/* Figure out IO and memory base lengths */
 863			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 864				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 865
 866				temp_register = 0xFFFFFFFF;
 867				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 868				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 869
 870				temp_register = base;
 871
 872				/* If this register is implemented */
 873				if (base) {
 874					if (((base & 0x03L) == 0x01)
 875					    && (save_command & 0x01)) {
 876						/* IO base
 877						 * set temp_register = amount
 878						 * of IO space requested
 879						 */
 880						temp_register = base & 0xFFFFFFFE;
 881						temp_register = (~temp_register) + 1;
 882
 883						io_node = kmalloc(sizeof(*io_node),
 884								GFP_KERNEL);
 885						if (!io_node)
 886							return -ENOMEM;
 887
 888						io_node->base = save_base & (~0x01L);
 889						io_node->length = temp_register;
 890
 891						io_node->next = func->io_head;
 892						func->io_head = io_node;
 893					} else
 894						if (((base & 0x0BL) == 0x08)
 895						    && (save_command & 0x02)) {
 896						/* prefetchable memory base */
 897						temp_register = base & 0xFFFFFFF0;
 898						temp_register = (~temp_register) + 1;
 899
 900						p_mem_node = kmalloc(sizeof(*p_mem_node),
 901								GFP_KERNEL);
 902						if (!p_mem_node)
 903							return -ENOMEM;
 904
 905						p_mem_node->base = save_base & (~0x0FL);
 906						p_mem_node->length = temp_register;
 907
 908						p_mem_node->next = func->p_mem_head;
 909						func->p_mem_head = p_mem_node;
 910					} else
 911						if (((base & 0x0BL) == 0x00)
 912						    && (save_command & 0x02)) {
 913						/* prefetchable memory base */
 914						temp_register = base & 0xFFFFFFF0;
 915						temp_register = (~temp_register) + 1;
 916
 917						mem_node = kmalloc(sizeof(*mem_node),
 918								GFP_KERNEL);
 919						if (!mem_node)
 920							return -ENOMEM;
 921
 922						mem_node->base = save_base & (~0x0FL);
 923						mem_node->length = temp_register;
 924
 925						mem_node->next = func->mem_head;
 926						func->mem_head = mem_node;
 927					} else
 928						return(1);
 929				}
 930			}	/* End of base register loop */
 931		}
 932
 933		/* find the next device in this slot */
 934		func = cpqhp_slot_find(func->bus, func->device, index++);
 935	}
 936
 937	return 0;
 938}
 939
 940
 941/*
 942 * cpqhp_configure_board
 943 *
 944 * Copies saved configuration information to one slot.
 945 * this is called recursively for bridge devices.
 946 * this is for hot plug REPLACE!
 947 *
 948 * returns 0 if success
 949 */
 950int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
 951{
 952	int cloop;
 953	u8 header_type;
 954	u8 secondary_bus;
 955	int sub_bus;
 956	struct pci_func *next;
 957	u32 temp;
 958	u32 rc;
 959	int index = 0;
 960	struct pci_bus *pci_bus = ctrl->pci_bus;
 961	unsigned int devfn;
 962
 963	func = cpqhp_slot_find(func->bus, func->device, index++);
 964
 965	while (func != NULL) {
 966		pci_bus->number = func->bus;
 967		devfn = PCI_DEVFN(func->device, func->function);
 968
 969		/* Start at the top of config space so that the control
 970		 * registers are programmed last
 971		 */
 972		for (cloop = 0x3C; cloop > 0; cloop -= 4)
 973			pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
 974
 975		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 976
 977		/* If this is a bridge device, restore subordinate devices */
 978		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 979			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 980
 981			sub_bus = (int) secondary_bus;
 982
 983			next = cpqhp_slot_list[sub_bus];
 984
 985			while (next != NULL) {
 986				rc = cpqhp_configure_board(ctrl, next);
 987				if (rc)
 988					return rc;
 989
 990				next = next->next;
 991			}
 992		} else {
 993
 994			/* Check all the base Address Registers to make sure
 995			 * they are the same.  If not, the board is different.
 996			 */
 997
 998			for (cloop = 16; cloop < 40; cloop += 4) {
 999				pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
1000
1001				if (temp != func->config_space[cloop >> 2]) {
1002					dbg("Config space compare failure!!! offset = %x\n", cloop);
1003					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1004					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1005					return 1;
1006				}
1007			}
1008		}
1009
1010		func->configured = 1;
1011
1012		func = cpqhp_slot_find(func->bus, func->device, index++);
1013	}
1014
1015	return 0;
1016}
1017
1018
1019/*
1020 * cpqhp_valid_replace
1021 *
1022 * this function checks to see if a board is the same as the
1023 * one it is replacing.  this check will detect if the device's
1024 * vendor or device id's are the same
1025 *
1026 * returns 0 if the board is the same nonzero otherwise
1027 */
1028int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1029{
1030	u8 cloop;
1031	u8 header_type;
1032	u8 secondary_bus;
1033	u8 type;
1034	u32 temp_register = 0;
1035	u32 base;
1036	u32 rc;
1037	struct pci_func *next;
1038	int index = 0;
1039	struct pci_bus *pci_bus = ctrl->pci_bus;
1040	unsigned int devfn;
1041
1042	if (!func->is_a_board)
1043		return(ADD_NOT_SUPPORTED);
1044
1045	func = cpqhp_slot_find(func->bus, func->device, index++);
1046
1047	while (func != NULL) {
1048		pci_bus->number = func->bus;
1049		devfn = PCI_DEVFN(func->device, func->function);
1050
1051		pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1052
1053		/* No adapter present */
1054		if (temp_register == 0xFFFFFFFF)
1055			return(NO_ADAPTER_PRESENT);
1056
1057		if (temp_register != func->config_space[0])
1058			return(ADAPTER_NOT_SAME);
1059
1060		/* Check for same revision number and class code */
1061		pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1062
1063		/* Adapter not the same */
1064		if (temp_register != func->config_space[0x08 >> 2])
1065			return(ADAPTER_NOT_SAME);
1066
1067		/* Check for Bridge */
1068		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1069
1070		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
1071			/* In order to continue checking, we must program the
1072			 * bus registers in the bridge to respond to accesses
1073			 * for its subordinate bus(es)
1074			 */
1075
1076			temp_register = func->config_space[0x18 >> 2];
1077			pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1078
1079			secondary_bus = (temp_register >> 8) & 0xFF;
1080
1081			next = cpqhp_slot_list[secondary_bus];
1082
1083			while (next != NULL) {
1084				rc = cpqhp_valid_replace(ctrl, next);
1085				if (rc)
1086					return rc;
1087
1088				next = next->next;
1089			}
1090
1091		}
1092		/* Check to see if it is a standard config header */
1093		else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
1094			/* Check subsystem vendor and ID */
1095			pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1096
1097			if (temp_register != func->config_space[0x2C >> 2]) {
1098				/* If it's a SMART-2 and the register isn't
1099				 * filled in, ignore the difference because
1100				 * they just have an old rev of the firmware
1101				 */
1102				if (!((func->config_space[0] == 0xAE100E11)
1103				      && (temp_register == 0x00L)))
1104					return(ADAPTER_NOT_SAME);
1105			}
1106			/* Figure out IO and memory base lengths */
1107			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1108				temp_register = 0xFFFFFFFF;
1109				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
1110				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
1111
1112				/* If this register is implemented */
1113				if (base) {
1114					if (base & 0x01L) {
1115						/* IO base
1116						 * set base = amount of IO
1117						 * space requested
1118						 */
1119						base = base & 0xFFFFFFFE;
1120						base = (~base) + 1;
1121
1122						type = 1;
1123					} else {
1124						/* memory base */
1125						base = base & 0xFFFFFFF0;
1126						base = (~base) + 1;
1127
1128						type = 0;
1129					}
1130				} else {
1131					base = 0x0L;
1132					type = 0;
1133				}
1134
1135				/* Check information in slot structure */
1136				if (func->base_length[(cloop - 0x10) >> 2] != base)
1137					return(ADAPTER_NOT_SAME);
1138
1139				if (func->base_type[(cloop - 0x10) >> 2] != type)
1140					return(ADAPTER_NOT_SAME);
1141
1142			}	/* End of base register loop */
1143
1144		}		/* End of (type 0 config space) else */
1145		else {
1146			/* this is not a type 0 or 1 config space header so
1147			 * we don't know how to do it
1148			 */
1149			return(DEVICE_TYPE_NOT_SUPPORTED);
1150		}
1151
1152		/* Get the next function */
1153		func = cpqhp_slot_find(func->bus, func->device, index++);
1154	}
1155
1156
1157	return 0;
1158}
1159
1160
1161/*
1162 * cpqhp_find_available_resources
1163 *
1164 * Finds available memory, IO, and IRQ resources for programming
1165 * devices which may be added to the system
1166 * this function is for hot plug ADD!
1167 *
1168 * returns 0 if success
1169 */
1170int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1171{
1172	u8 temp;
1173	u8 populated_slot;
1174	u8 bridged_slot;
1175	void __iomem *one_slot;
1176	void __iomem *rom_resource_table;
1177	struct pci_func *func = NULL;
1178	int i = 10, index;
1179	u32 temp_dword, rc;
1180	struct pci_resource *mem_node;
1181	struct pci_resource *p_mem_node;
1182	struct pci_resource *io_node;
1183	struct pci_resource *bus_node;
1184
1185	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1186	dbg("rom_resource_table = %p\n", rom_resource_table);
1187
1188	if (rom_resource_table == NULL)
1189		return -ENODEV;
1190
1191	/* Sum all resources and setup resource maps */
1192	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1193	dbg("unused_IRQ = %x\n", unused_IRQ);
1194
1195	temp = 0;
1196	while (unused_IRQ) {
1197		if (unused_IRQ & 1) {
1198			cpqhp_disk_irq = temp;
1199			break;
1200		}
1201		unused_IRQ = unused_IRQ >> 1;
1202		temp++;
1203	}
1204
1205	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1206	unused_IRQ = unused_IRQ >> 1;
1207	temp++;
1208
1209	while (unused_IRQ) {
1210		if (unused_IRQ & 1) {
1211			cpqhp_nic_irq = temp;
1212			break;
1213		}
1214		unused_IRQ = unused_IRQ >> 1;
1215		temp++;
1216	}
1217
1218	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1219	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1220
1221	temp = 0;
1222
1223	if (!cpqhp_nic_irq)
1224		cpqhp_nic_irq = ctrl->cfgspc_irq;
1225
1226	if (!cpqhp_disk_irq)
1227		cpqhp_disk_irq = ctrl->cfgspc_irq;
1228
1229	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1230
1231	rc = compaq_nvram_load(rom_start, ctrl);
1232	if (rc)
1233		return rc;
1234
1235	one_slot = rom_resource_table + sizeof(struct hrt);
1236
1237	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1238	dbg("number_of_entries = %d\n", i);
1239
1240	if (!readb(one_slot + SECONDARY_BUS))
1241		return 1;
1242
1243	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1244
1245	while (i && readb(one_slot + SECONDARY_BUS)) {
1246		u8 dev_func = readb(one_slot + DEV_FUNC);
1247		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1248		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1249		u8 max_bus = readb(one_slot + MAX_BUS);
1250		u16 io_base = readw(one_slot + IO_BASE);
1251		u16 io_length = readw(one_slot + IO_LENGTH);
1252		u16 mem_base = readw(one_slot + MEM_BASE);
1253		u16 mem_length = readw(one_slot + MEM_LENGTH);
1254		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1255		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1256
1257		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1258		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1259		    primary_bus, secondary_bus, max_bus);
1260
1261		/* If this entry isn't for our controller's bus, ignore it */
1262		if (primary_bus != ctrl->bus) {
1263			i--;
1264			one_slot += sizeof(struct slot_rt);
1265			continue;
1266		}
1267		/* find out if this entry is for an occupied slot */
1268		ctrl->pci_bus->number = primary_bus;
1269		pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1270		dbg("temp_D_word = %x\n", temp_dword);
1271
1272		if (temp_dword != 0xFFFFFFFF) {
1273			index = 0;
1274			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1275
1276			while (func && (func->function != (dev_func & 0x07))) {
1277				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1278				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1279			}
1280
1281			/* If we can't find a match, skip this table entry */
1282			if (!func) {
1283				i--;
1284				one_slot += sizeof(struct slot_rt);
1285				continue;
1286			}
1287			/* this may not work and shouldn't be used */
1288			if (secondary_bus != primary_bus)
1289				bridged_slot = 1;
1290			else
1291				bridged_slot = 0;
1292
1293			populated_slot = 1;
1294		} else {
1295			populated_slot = 0;
1296			bridged_slot = 0;
1297		}
1298
1299
1300		/* If we've got a valid IO base, use it */
1301
1302		temp_dword = io_base + io_length;
1303
1304		if ((io_base) && (temp_dword < 0x10000)) {
1305			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1306			if (!io_node)
1307				return -ENOMEM;
1308
1309			io_node->base = io_base;
1310			io_node->length = io_length;
1311
1312			dbg("found io_node(base, length) = %x, %x\n",
1313					io_node->base, io_node->length);
1314			dbg("populated slot =%d \n", populated_slot);
1315			if (!populated_slot) {
1316				io_node->next = ctrl->io_head;
1317				ctrl->io_head = io_node;
1318			} else {
1319				io_node->next = func->io_head;
1320				func->io_head = io_node;
1321			}
1322		}
1323
1324		/* If we've got a valid memory base, use it */
1325		temp_dword = mem_base + mem_length;
1326		if ((mem_base) && (temp_dword < 0x10000)) {
1327			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1328			if (!mem_node)
1329				return -ENOMEM;
1330
1331			mem_node->base = mem_base << 16;
1332
1333			mem_node->length = mem_length << 16;
1334
1335			dbg("found mem_node(base, length) = %x, %x\n",
1336					mem_node->base, mem_node->length);
1337			dbg("populated slot =%d \n", populated_slot);
1338			if (!populated_slot) {
1339				mem_node->next = ctrl->mem_head;
1340				ctrl->mem_head = mem_node;
1341			} else {
1342				mem_node->next = func->mem_head;
1343				func->mem_head = mem_node;
1344			}
1345		}
1346
1347		/* If we've got a valid prefetchable memory base, and
1348		 * the base + length isn't greater than 0xFFFF
1349		 */
1350		temp_dword = pre_mem_base + pre_mem_length;
1351		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1352			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1353			if (!p_mem_node)
1354				return -ENOMEM;
1355
1356			p_mem_node->base = pre_mem_base << 16;
1357
1358			p_mem_node->length = pre_mem_length << 16;
1359			dbg("found p_mem_node(base, length) = %x, %x\n",
1360					p_mem_node->base, p_mem_node->length);
1361			dbg("populated slot =%d \n", populated_slot);
1362
1363			if (!populated_slot) {
1364				p_mem_node->next = ctrl->p_mem_head;
1365				ctrl->p_mem_head = p_mem_node;
1366			} else {
1367				p_mem_node->next = func->p_mem_head;
1368				func->p_mem_head = p_mem_node;
1369			}
1370		}
1371
1372		/* If we've got a valid bus number, use it
1373		 * The second condition is to ignore bus numbers on
1374		 * populated slots that don't have PCI-PCI bridges
1375		 */
1376		if (secondary_bus && (secondary_bus != primary_bus)) {
1377			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1378			if (!bus_node)
1379				return -ENOMEM;
1380
1381			bus_node->base = secondary_bus;
1382			bus_node->length = max_bus - secondary_bus + 1;
1383			dbg("found bus_node(base, length) = %x, %x\n",
1384					bus_node->base, bus_node->length);
1385			dbg("populated slot =%d \n", populated_slot);
1386			if (!populated_slot) {
1387				bus_node->next = ctrl->bus_head;
1388				ctrl->bus_head = bus_node;
1389			} else {
1390				bus_node->next = func->bus_head;
1391				func->bus_head = bus_node;
1392			}
1393		}
1394
1395		i--;
1396		one_slot += sizeof(struct slot_rt);
1397	}
1398
1399	/* If all of the following fail, we don't have any resources for
1400	 * hot plug add
1401	 */
1402	rc = 1;
1403	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1404	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1405	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1406	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1407
1408	return rc;
1409}
1410
1411
1412/*
1413 * cpqhp_return_board_resources
1414 *
1415 * this routine returns all resources allocated to a board to
1416 * the available pool.
1417 *
1418 * returns 0 if success
1419 */
1420int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1421{
1422	int rc = 0;
1423	struct pci_resource *node;
1424	struct pci_resource *t_node;
1425	dbg("%s\n", __func__);
1426
1427	if (!func)
1428		return 1;
1429
1430	node = func->io_head;
1431	func->io_head = NULL;
1432	while (node) {
1433		t_node = node->next;
1434		return_resource(&(resources->io_head), node);
1435		node = t_node;
1436	}
1437
1438	node = func->mem_head;
1439	func->mem_head = NULL;
1440	while (node) {
1441		t_node = node->next;
1442		return_resource(&(resources->mem_head), node);
1443		node = t_node;
1444	}
1445
1446	node = func->p_mem_head;
1447	func->p_mem_head = NULL;
1448	while (node) {
1449		t_node = node->next;
1450		return_resource(&(resources->p_mem_head), node);
1451		node = t_node;
1452	}
1453
1454	node = func->bus_head;
1455	func->bus_head = NULL;
1456	while (node) {
1457		t_node = node->next;
1458		return_resource(&(resources->bus_head), node);
1459		node = t_node;
1460	}
1461
1462	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1463	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1464	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1465	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1466
1467	return rc;
1468}
1469
1470
1471/*
1472 * cpqhp_destroy_resource_list
1473 *
1474 * Puts node back in the resource list pointed to by head
1475 */
1476void cpqhp_destroy_resource_list(struct resource_lists *resources)
1477{
1478	struct pci_resource *res, *tres;
1479
1480	res = resources->io_head;
1481	resources->io_head = NULL;
1482
1483	while (res) {
1484		tres = res;
1485		res = res->next;
1486		kfree(tres);
1487	}
1488
1489	res = resources->mem_head;
1490	resources->mem_head = NULL;
1491
1492	while (res) {
1493		tres = res;
1494		res = res->next;
1495		kfree(tres);
1496	}
1497
1498	res = resources->p_mem_head;
1499	resources->p_mem_head = NULL;
1500
1501	while (res) {
1502		tres = res;
1503		res = res->next;
1504		kfree(tres);
1505	}
1506
1507	res = resources->bus_head;
1508	resources->bus_head = NULL;
1509
1510	while (res) {
1511		tres = res;
1512		res = res->next;
1513		kfree(tres);
1514	}
1515}
1516
1517
1518/*
1519 * cpqhp_destroy_board_resources
1520 *
1521 * Puts node back in the resource list pointed to by head
1522 */
1523void cpqhp_destroy_board_resources(struct pci_func *func)
1524{
1525	struct pci_resource *res, *tres;
1526
1527	res = func->io_head;
1528	func->io_head = NULL;
1529
1530	while (res) {
1531		tres = res;
1532		res = res->next;
1533		kfree(tres);
1534	}
1535
1536	res = func->mem_head;
1537	func->mem_head = NULL;
1538
1539	while (res) {
1540		tres = res;
1541		res = res->next;
1542		kfree(tres);
1543	}
1544
1545	res = func->p_mem_head;
1546	func->p_mem_head = NULL;
1547
1548	while (res) {
1549		tres = res;
1550		res = res->next;
1551		kfree(tres);
1552	}
1553
1554	res = func->bus_head;
1555	func->bus_head = NULL;
1556
1557	while (res) {
1558		tres = res;
1559		res = res->next;
1560		kfree(tres);
1561	}
1562}