Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019 Intel Corporation */
3
4#include "igc.h"
5
6#include <linux/module.h>
7#include <linux/device.h>
8#include <linux/pci.h>
9#include <linux/ptp_classify.h>
10#include <linux/clocksource.h>
11#include <linux/ktime.h>
12#include <linux/delay.h>
13#include <linux/iopoll.h>
14#include <net/xdp_sock_drv.h>
15
16#define INCVALUE_MASK 0x7fffffff
17#define ISGN 0x80000000
18
19#define IGC_PTP_TX_TIMEOUT (HZ * 15)
20
21#define IGC_PTM_STAT_SLEEP 2
22#define IGC_PTM_STAT_TIMEOUT 100
23
24/* SYSTIM read access for I225 */
25void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
26{
27 struct igc_hw *hw = &adapter->hw;
28 u32 sec, nsec;
29
30 /* The timestamp is latched when SYSTIML is read. */
31 nsec = rd32(IGC_SYSTIML);
32 sec = rd32(IGC_SYSTIMH);
33
34 ts->tv_sec = sec;
35 ts->tv_nsec = nsec;
36}
37
38static void igc_ptp_write_i225(struct igc_adapter *adapter,
39 const struct timespec64 *ts)
40{
41 struct igc_hw *hw = &adapter->hw;
42
43 wr32(IGC_SYSTIML, ts->tv_nsec);
44 wr32(IGC_SYSTIMH, ts->tv_sec);
45}
46
47static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
48{
49 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
50 ptp_caps);
51 struct igc_hw *hw = &igc->hw;
52 int neg_adj = 0;
53 u64 rate;
54 u32 inca;
55
56 if (scaled_ppm < 0) {
57 neg_adj = 1;
58 scaled_ppm = -scaled_ppm;
59 }
60 rate = scaled_ppm;
61 rate <<= 14;
62 rate = div_u64(rate, 78125);
63
64 inca = rate & INCVALUE_MASK;
65 if (neg_adj)
66 inca |= ISGN;
67
68 wr32(IGC_TIMINCA, inca);
69
70 return 0;
71}
72
73static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
74{
75 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
76 ptp_caps);
77 struct timespec64 now, then = ns_to_timespec64(delta);
78 unsigned long flags;
79
80 spin_lock_irqsave(&igc->tmreg_lock, flags);
81
82 igc_ptp_read(igc, &now);
83 now = timespec64_add(now, then);
84 igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
85
86 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
87
88 return 0;
89}
90
91static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
92 struct timespec64 *ts,
93 struct ptp_system_timestamp *sts)
94{
95 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
96 ptp_caps);
97 struct igc_hw *hw = &igc->hw;
98 unsigned long flags;
99
100 spin_lock_irqsave(&igc->tmreg_lock, flags);
101
102 ptp_read_system_prets(sts);
103 ts->tv_nsec = rd32(IGC_SYSTIML);
104 ts->tv_sec = rd32(IGC_SYSTIMH);
105 ptp_read_system_postts(sts);
106
107 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
108
109 return 0;
110}
111
112static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
113 const struct timespec64 *ts)
114{
115 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
116 ptp_caps);
117 unsigned long flags;
118
119 spin_lock_irqsave(&igc->tmreg_lock, flags);
120
121 igc_ptp_write_i225(igc, ts);
122
123 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
124
125 return 0;
126}
127
128static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
129{
130 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
131 static const u32 mask[IGC_N_SDP] = {
132 IGC_CTRL_SDP0_DIR,
133 IGC_CTRL_SDP1_DIR,
134 IGC_CTRL_EXT_SDP2_DIR,
135 IGC_CTRL_EXT_SDP3_DIR,
136 };
137
138 if (input)
139 *ptr &= ~mask[pin];
140 else
141 *ptr |= mask[pin];
142}
143
144static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
145{
146 static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
147 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
148 };
149 static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
150 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
151 };
152 static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
153 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
154 };
155 static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
156 IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
157 IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
158 };
159 static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
160 IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
161 IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
162 };
163 static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
164 IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
165 IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
166 };
167 static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
168 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
169 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
170 };
171 static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
172 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
173 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
174 };
175 struct igc_hw *hw = &igc->hw;
176 u32 ctrl, ctrl_ext, tssdp = 0;
177
178 ctrl = rd32(IGC_CTRL);
179 ctrl_ext = rd32(IGC_CTRL_EXT);
180 tssdp = rd32(IGC_TSSDP);
181
182 igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
183
184 /* Make sure this pin is not enabled as an input. */
185 if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
186 tssdp &= ~IGC_AUX0_TS_SDP_EN;
187
188 if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
189 tssdp &= ~IGC_AUX1_TS_SDP_EN;
190
191 tssdp &= ~igc_ts_sdp_sel_clr[pin];
192 if (freq) {
193 if (chan == 1)
194 tssdp |= igc_ts_sdp_sel_fc1[pin];
195 else
196 tssdp |= igc_ts_sdp_sel_fc0[pin];
197 } else {
198 if (chan == 1)
199 tssdp |= igc_ts_sdp_sel_tt1[pin];
200 else
201 tssdp |= igc_ts_sdp_sel_tt0[pin];
202 }
203 tssdp |= igc_ts_sdp_en[pin];
204
205 wr32(IGC_TSSDP, tssdp);
206 wr32(IGC_CTRL, ctrl);
207 wr32(IGC_CTRL_EXT, ctrl_ext);
208}
209
210static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
211{
212 static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
213 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
214 };
215 static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
216 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
217 };
218 static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
219 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
220 };
221 struct igc_hw *hw = &igc->hw;
222 u32 ctrl, ctrl_ext, tssdp = 0;
223
224 ctrl = rd32(IGC_CTRL);
225 ctrl_ext = rd32(IGC_CTRL_EXT);
226 tssdp = rd32(IGC_TSSDP);
227
228 igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
229
230 /* Make sure this pin is not enabled as an output. */
231 tssdp &= ~igc_ts_sdp_en[pin];
232
233 if (chan == 1) {
234 tssdp &= ~IGC_AUX1_SEL_SDP3;
235 tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
236 } else {
237 tssdp &= ~IGC_AUX0_SEL_SDP3;
238 tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
239 }
240
241 wr32(IGC_TSSDP, tssdp);
242 wr32(IGC_CTRL, ctrl);
243 wr32(IGC_CTRL_EXT, ctrl_ext);
244}
245
246static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
247 struct ptp_clock_request *rq, int on)
248{
249 struct igc_adapter *igc =
250 container_of(ptp, struct igc_adapter, ptp_caps);
251 struct igc_hw *hw = &igc->hw;
252 unsigned long flags;
253 struct timespec64 ts;
254 int use_freq = 0, pin = -1;
255 u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
256 s64 ns;
257
258 switch (rq->type) {
259 case PTP_CLK_REQ_EXTTS:
260 /* Reject requests with unsupported flags */
261 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
262 PTP_RISING_EDGE |
263 PTP_FALLING_EDGE |
264 PTP_STRICT_FLAGS))
265 return -EOPNOTSUPP;
266
267 /* Reject requests failing to enable both edges. */
268 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
269 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
270 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
271 return -EOPNOTSUPP;
272
273 if (on) {
274 pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
275 rq->extts.index);
276 if (pin < 0)
277 return -EBUSY;
278 }
279 if (rq->extts.index == 1) {
280 tsauxc_mask = IGC_TSAUXC_EN_TS1;
281 tsim_mask = IGC_TSICR_AUTT1;
282 } else {
283 tsauxc_mask = IGC_TSAUXC_EN_TS0;
284 tsim_mask = IGC_TSICR_AUTT0;
285 }
286 spin_lock_irqsave(&igc->tmreg_lock, flags);
287 tsauxc = rd32(IGC_TSAUXC);
288 tsim = rd32(IGC_TSIM);
289 if (on) {
290 igc_pin_extts(igc, rq->extts.index, pin);
291 tsauxc |= tsauxc_mask;
292 tsim |= tsim_mask;
293 } else {
294 tsauxc &= ~tsauxc_mask;
295 tsim &= ~tsim_mask;
296 }
297 wr32(IGC_TSAUXC, tsauxc);
298 wr32(IGC_TSIM, tsim);
299 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
300 return 0;
301
302 case PTP_CLK_REQ_PEROUT:
303 /* Reject requests with unsupported flags */
304 if (rq->perout.flags)
305 return -EOPNOTSUPP;
306
307 if (on) {
308 pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
309 rq->perout.index);
310 if (pin < 0)
311 return -EBUSY;
312 }
313 ts.tv_sec = rq->perout.period.sec;
314 ts.tv_nsec = rq->perout.period.nsec;
315 ns = timespec64_to_ns(&ts);
316 ns = ns >> 1;
317 if (on && (ns <= 70000000LL || ns == 125000000LL ||
318 ns == 250000000LL || ns == 500000000LL)) {
319 if (ns < 8LL)
320 return -EINVAL;
321 use_freq = 1;
322 }
323 ts = ns_to_timespec64(ns);
324 if (rq->perout.index == 1) {
325 if (use_freq) {
326 tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
327 tsim_mask = 0;
328 } else {
329 tsauxc_mask = IGC_TSAUXC_EN_TT1;
330 tsim_mask = IGC_TSICR_TT1;
331 }
332 trgttiml = IGC_TRGTTIML1;
333 trgttimh = IGC_TRGTTIMH1;
334 freqout = IGC_FREQOUT1;
335 } else {
336 if (use_freq) {
337 tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
338 tsim_mask = 0;
339 } else {
340 tsauxc_mask = IGC_TSAUXC_EN_TT0;
341 tsim_mask = IGC_TSICR_TT0;
342 }
343 trgttiml = IGC_TRGTTIML0;
344 trgttimh = IGC_TRGTTIMH0;
345 freqout = IGC_FREQOUT0;
346 }
347 spin_lock_irqsave(&igc->tmreg_lock, flags);
348 tsauxc = rd32(IGC_TSAUXC);
349 tsim = rd32(IGC_TSIM);
350 if (rq->perout.index == 1) {
351 tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
352 IGC_TSAUXC_ST1);
353 tsim &= ~IGC_TSICR_TT1;
354 } else {
355 tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
356 IGC_TSAUXC_ST0);
357 tsim &= ~IGC_TSICR_TT0;
358 }
359 if (on) {
360 struct timespec64 safe_start;
361 int i = rq->perout.index;
362
363 igc_pin_perout(igc, i, pin, use_freq);
364 igc_ptp_read(igc, &safe_start);
365
366 /* PPS output start time is triggered by Target time(TT)
367 * register. Programming any past time value into TT
368 * register will cause PPS to never start. Need to make
369 * sure we program the TT register a time ahead in
370 * future. There isn't a stringent need to fire PPS out
371 * right away. Adding +2 seconds should take care of
372 * corner cases. Let's say if the SYSTIML is close to
373 * wrap up and the timer keeps ticking as we program the
374 * register, adding +2seconds is safe bet.
375 */
376 safe_start.tv_sec += 2;
377
378 if (rq->perout.start.sec < safe_start.tv_sec)
379 igc->perout[i].start.tv_sec = safe_start.tv_sec;
380 else
381 igc->perout[i].start.tv_sec = rq->perout.start.sec;
382 igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
383 igc->perout[i].period.tv_sec = ts.tv_sec;
384 igc->perout[i].period.tv_nsec = ts.tv_nsec;
385 wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
386 /* For now, always select timer 0 as source. */
387 wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
388 IGC_TT_IO_TIMER_SEL_SYSTIM0));
389 if (use_freq)
390 wr32(freqout, ns);
391 tsauxc |= tsauxc_mask;
392 tsim |= tsim_mask;
393 }
394 wr32(IGC_TSAUXC, tsauxc);
395 wr32(IGC_TSIM, tsim);
396 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
397 return 0;
398
399 case PTP_CLK_REQ_PPS:
400 spin_lock_irqsave(&igc->tmreg_lock, flags);
401 tsim = rd32(IGC_TSIM);
402 if (on)
403 tsim |= IGC_TSICR_SYS_WRAP;
404 else
405 tsim &= ~IGC_TSICR_SYS_WRAP;
406 igc->pps_sys_wrap_on = on;
407 wr32(IGC_TSIM, tsim);
408 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
409 return 0;
410
411 default:
412 break;
413 }
414
415 return -EOPNOTSUPP;
416}
417
418static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
419 enum ptp_pin_function func, unsigned int chan)
420{
421 switch (func) {
422 case PTP_PF_NONE:
423 case PTP_PF_EXTTS:
424 case PTP_PF_PEROUT:
425 break;
426 case PTP_PF_PHYSYNC:
427 return -1;
428 }
429 return 0;
430}
431
432/**
433 * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
434 * @adapter: board private structure
435 * @hwtstamps: timestamp structure to update
436 * @systim: unsigned 64bit system time value
437 *
438 * We need to convert the system time value stored in the RX/TXSTMP registers
439 * into a hwtstamp which can be used by the upper level timestamping functions.
440 *
441 * Returns 0 on success.
442 **/
443static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
444 struct skb_shared_hwtstamps *hwtstamps,
445 u64 systim)
446{
447 switch (adapter->hw.mac.type) {
448 case igc_i225:
449 memset(hwtstamps, 0, sizeof(*hwtstamps));
450 /* Upper 32 bits contain s, lower 32 bits contain ns. */
451 hwtstamps->hwtstamp = ktime_set(systim >> 32,
452 systim & 0xFFFFFFFF);
453 break;
454 default:
455 return -EINVAL;
456 }
457 return 0;
458}
459
460/**
461 * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
462 * @adapter: Pointer to adapter the packet buffer belongs to
463 * @buf: Pointer to start of timestamp in HW format (2 32-bit words)
464 *
465 * This function retrieves and converts the timestamp stored at @buf
466 * to ktime_t, adjusting for hardware latencies.
467 *
468 * Returns timestamp value.
469 */
470ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
471{
472 ktime_t timestamp;
473 u32 secs, nsecs;
474 int adjust;
475
476 nsecs = le32_to_cpu(buf[0]);
477 secs = le32_to_cpu(buf[1]);
478
479 timestamp = ktime_set(secs, nsecs);
480
481 /* Adjust timestamp for the RX latency based on link speed */
482 switch (adapter->link_speed) {
483 case SPEED_10:
484 adjust = IGC_I225_RX_LATENCY_10;
485 break;
486 case SPEED_100:
487 adjust = IGC_I225_RX_LATENCY_100;
488 break;
489 case SPEED_1000:
490 adjust = IGC_I225_RX_LATENCY_1000;
491 break;
492 case SPEED_2500:
493 adjust = IGC_I225_RX_LATENCY_2500;
494 break;
495 default:
496 adjust = 0;
497 netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
498 break;
499 }
500
501 return ktime_sub_ns(timestamp, adjust);
502}
503
504static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
505{
506 struct igc_hw *hw = &adapter->hw;
507 u32 val;
508 int i;
509
510 wr32(IGC_TSYNCRXCTL, 0);
511
512 for (i = 0; i < adapter->num_rx_queues; i++) {
513 val = rd32(IGC_SRRCTL(i));
514 val &= ~IGC_SRRCTL_TIMESTAMP;
515 wr32(IGC_SRRCTL(i), val);
516 }
517
518 val = rd32(IGC_RXPBS);
519 val &= ~IGC_RXPBS_CFG_TS_EN;
520 wr32(IGC_RXPBS, val);
521}
522
523static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
524{
525 struct igc_hw *hw = &adapter->hw;
526 u32 val;
527 int i;
528
529 val = rd32(IGC_RXPBS);
530 val |= IGC_RXPBS_CFG_TS_EN;
531 wr32(IGC_RXPBS, val);
532
533 for (i = 0; i < adapter->num_rx_queues; i++) {
534 val = rd32(IGC_SRRCTL(i));
535 /* Enable retrieving timestamps from timer 0, the
536 * "adjustable clock" and timer 1 the "free running
537 * clock".
538 */
539 val |= IGC_SRRCTL_TIMER1SEL(1) | IGC_SRRCTL_TIMER0SEL(0) |
540 IGC_SRRCTL_TIMESTAMP;
541 wr32(IGC_SRRCTL(i), val);
542 }
543
544 val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
545 IGC_TSYNCRXCTL_RXSYNSIG;
546 wr32(IGC_TSYNCRXCTL, val);
547}
548
549static void igc_ptp_free_tx_buffer(struct igc_adapter *adapter,
550 struct igc_tx_timestamp_request *tstamp)
551{
552 if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) {
553 /* Release the transmit completion */
554 tstamp->xsk_tx_buffer->xsk_pending_ts = false;
555
556 /* Note: tstamp->skb and tstamp->xsk_tx_buffer are in union.
557 * By setting tstamp->xsk_tx_buffer to NULL, tstamp->skb will
558 * become NULL as well.
559 */
560 tstamp->xsk_tx_buffer = NULL;
561 tstamp->buffer_type = 0;
562
563 /* Trigger txrx interrupt for transmit completion */
564 igc_xsk_wakeup(adapter->netdev, tstamp->xsk_queue_index, 0);
565
566 return;
567 }
568
569 dev_kfree_skb_any(tstamp->skb);
570 tstamp->skb = NULL;
571}
572
573static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
574{
575 unsigned long flags;
576 int i;
577
578 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
579
580 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
581 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
582
583 if (tstamp->skb)
584 igc_ptp_free_tx_buffer(adapter, tstamp);
585 }
586
587 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
588}
589
590static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
591{
592 struct igc_hw *hw = &adapter->hw;
593 int i;
594
595 /* Clear the flags first to avoid new packets to be enqueued
596 * for TX timestamping.
597 */
598 for (i = 0; i < adapter->num_tx_queues; i++) {
599 struct igc_ring *tx_ring = adapter->tx_ring[i];
600
601 clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
602 }
603
604 /* Now we can clean the pending TX timestamp requests. */
605 igc_ptp_clear_tx_tstamp(adapter);
606
607 wr32(IGC_TSYNCTXCTL, 0);
608}
609
610static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
611{
612 struct igc_hw *hw = &adapter->hw;
613 int i;
614
615 wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
616
617 /* Read TXSTMP registers to discard any timestamp previously stored. */
618 rd32(IGC_TXSTMPL);
619 rd32(IGC_TXSTMPH);
620
621 /* The hardware is ready to accept TX timestamp requests,
622 * notify the transmit path.
623 */
624 for (i = 0; i < adapter->num_tx_queues; i++) {
625 struct igc_ring *tx_ring = adapter->tx_ring[i];
626
627 set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
628 }
629
630}
631
632/**
633 * igc_ptp_set_timestamp_mode - setup hardware for timestamping
634 * @adapter: networking device structure
635 * @config: hwtstamp configuration
636 *
637 * Return: 0 in case of success, negative errno code otherwise.
638 */
639static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
640 struct hwtstamp_config *config)
641{
642 switch (config->tx_type) {
643 case HWTSTAMP_TX_OFF:
644 igc_ptp_disable_tx_timestamp(adapter);
645 break;
646 case HWTSTAMP_TX_ON:
647 igc_ptp_enable_tx_timestamp(adapter);
648 break;
649 default:
650 return -ERANGE;
651 }
652
653 switch (config->rx_filter) {
654 case HWTSTAMP_FILTER_NONE:
655 igc_ptp_disable_rx_timestamp(adapter);
656 break;
657 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
658 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
659 case HWTSTAMP_FILTER_PTP_V2_EVENT:
660 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
661 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
662 case HWTSTAMP_FILTER_PTP_V2_SYNC:
663 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
664 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
665 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
666 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
667 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
668 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
669 case HWTSTAMP_FILTER_NTP_ALL:
670 case HWTSTAMP_FILTER_ALL:
671 igc_ptp_enable_rx_timestamp(adapter);
672 config->rx_filter = HWTSTAMP_FILTER_ALL;
673 break;
674 default:
675 return -ERANGE;
676 }
677
678 return 0;
679}
680
681/* Requires adapter->ptp_tx_lock held by caller. */
682static void igc_ptp_tx_timeout(struct igc_adapter *adapter,
683 struct igc_tx_timestamp_request *tstamp)
684{
685 if (tstamp->skb)
686 igc_ptp_free_tx_buffer(adapter, tstamp);
687
688 adapter->tx_hwtstamp_timeouts++;
689
690 netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
691}
692
693void igc_ptp_tx_hang(struct igc_adapter *adapter)
694{
695 struct igc_tx_timestamp_request *tstamp;
696 struct igc_hw *hw = &adapter->hw;
697 unsigned long flags;
698 bool found = false;
699 int i;
700
701 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
702
703 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
704 tstamp = &adapter->tx_tstamp[i];
705
706 if (!tstamp->skb)
707 continue;
708
709 if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT))
710 continue;
711
712 igc_ptp_tx_timeout(adapter, tstamp);
713 found = true;
714 }
715
716 if (found) {
717 /* Reading the high register of the first set of timestamp registers
718 * clears all the equivalent bits in the TSYNCTXCTL register.
719 */
720 rd32(IGC_TXSTMPH_0);
721 }
722
723 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
724}
725
726static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter,
727 struct igc_tx_timestamp_request *tstamp, u64 regval)
728{
729 struct skb_shared_hwtstamps shhwtstamps;
730 struct sk_buff *skb;
731 int adjust = 0;
732
733 skb = tstamp->skb;
734 if (!skb)
735 return;
736
737 if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
738 return;
739
740 switch (adapter->link_speed) {
741 case SPEED_10:
742 adjust = IGC_I225_TX_LATENCY_10;
743 break;
744 case SPEED_100:
745 adjust = IGC_I225_TX_LATENCY_100;
746 break;
747 case SPEED_1000:
748 adjust = IGC_I225_TX_LATENCY_1000;
749 break;
750 case SPEED_2500:
751 adjust = IGC_I225_TX_LATENCY_2500;
752 break;
753 }
754
755 shhwtstamps.hwtstamp =
756 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
757
758 /* Copy the tx hardware timestamp into xdp metadata or skb */
759 if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) {
760 struct xsk_buff_pool *xsk_pool;
761
762 xsk_pool = adapter->tx_ring[tstamp->xsk_queue_index]->xsk_pool;
763 if (xsk_pool && xp_tx_metadata_enabled(xsk_pool)) {
764 xsk_tx_metadata_complete(&tstamp->xsk_meta,
765 &igc_xsk_tx_metadata_ops,
766 &shhwtstamps.hwtstamp);
767 }
768 } else {
769 skb_tstamp_tx(skb, &shhwtstamps);
770 }
771
772 igc_ptp_free_tx_buffer(adapter, tstamp);
773}
774
775/**
776 * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
777 * @adapter: Board private structure
778 *
779 * Check against the ready mask for which of the timestamp register
780 * sets are ready to be retrieved, then retrieve that and notify the
781 * rest of the stack.
782 *
783 * Context: Expects adapter->ptp_tx_lock to be held by caller.
784 */
785static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
786{
787 struct igc_hw *hw = &adapter->hw;
788 u64 regval;
789 u32 mask;
790 int i;
791
792 mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY;
793 if (mask & IGC_TSYNCTXCTL_TXTT_0) {
794 regval = rd32(IGC_TXSTMPL);
795 regval |= (u64)rd32(IGC_TXSTMPH) << 32;
796 } else {
797 /* There's a bug in the hardware that could cause
798 * missing interrupts for TX timestamping. The issue
799 * is that for new interrupts to be triggered, the
800 * IGC_TXSTMPH_0 register must be read.
801 *
802 * To avoid discarding a valid timestamp that just
803 * happened at the "wrong" time, we need to confirm
804 * that there was no timestamp captured, we do that by
805 * assuming that no two timestamps in sequence have
806 * the same nanosecond value.
807 *
808 * So, we read the "low" register, read the "high"
809 * register (to latch a new timestamp) and read the
810 * "low" register again, if "old" and "new" versions
811 * of the "low" register are different, a valid
812 * timestamp was captured, we can read the "high"
813 * register again.
814 */
815 u32 txstmpl_old, txstmpl_new;
816
817 txstmpl_old = rd32(IGC_TXSTMPL);
818 rd32(IGC_TXSTMPH);
819 txstmpl_new = rd32(IGC_TXSTMPL);
820
821 if (txstmpl_old == txstmpl_new)
822 goto done;
823
824 regval = txstmpl_new;
825 regval |= (u64)rd32(IGC_TXSTMPH) << 32;
826 }
827
828 igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval);
829
830done:
831 /* Now that the problematic first register was handled, we can
832 * use retrieve the timestamps from the other registers
833 * (starting from '1') with less complications.
834 */
835 for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
836 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
837
838 if (!(tstamp->mask & mask))
839 continue;
840
841 regval = rd32(tstamp->regl);
842 regval |= (u64)rd32(tstamp->regh) << 32;
843
844 igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval);
845 }
846}
847
848/**
849 * igc_ptp_tx_tstamp_event
850 * @adapter: board private structure
851 *
852 * Called when a TX timestamp interrupt happens to retrieve the
853 * timestamp and send it up to the socket.
854 */
855void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
856{
857 unsigned long flags;
858
859 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
860
861 igc_ptp_tx_hwtstamp(adapter);
862
863 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
864}
865
866/**
867 * igc_ptp_set_ts_config - set hardware time stamping config
868 * @netdev: network interface device structure
869 * @ifr: interface request data
870 *
871 **/
872int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
873{
874 struct igc_adapter *adapter = netdev_priv(netdev);
875 struct hwtstamp_config config;
876 int err;
877
878 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
879 return -EFAULT;
880
881 err = igc_ptp_set_timestamp_mode(adapter, &config);
882 if (err)
883 return err;
884
885 /* save these settings for future reference */
886 memcpy(&adapter->tstamp_config, &config,
887 sizeof(adapter->tstamp_config));
888
889 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
890 -EFAULT : 0;
891}
892
893/**
894 * igc_ptp_get_ts_config - get hardware time stamping config
895 * @netdev: network interface device structure
896 * @ifr: interface request data
897 *
898 * Get the hwtstamp_config settings to return to the user. Rather than attempt
899 * to deconstruct the settings from the registers, just return a shadow copy
900 * of the last known settings.
901 **/
902int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
903{
904 struct igc_adapter *adapter = netdev_priv(netdev);
905 struct hwtstamp_config *config = &adapter->tstamp_config;
906
907 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
908 -EFAULT : 0;
909}
910
911/* The two conditions below must be met for cross timestamping via
912 * PCIe PTM:
913 *
914 * 1. We have an way to convert the timestamps in the PTM messages
915 * to something related to the system clocks (right now, only
916 * X86 systems with support for the Always Running Timer allow that);
917 *
918 * 2. We have PTM enabled in the path from the device to the PCIe root port.
919 */
920static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
921{
922 if (!IS_ENABLED(CONFIG_X86_TSC))
923 return false;
924
925 /* FIXME: it was noticed that enabling support for PCIe PTM in
926 * some i225-V models could cause lockups when bringing the
927 * interface up/down. There should be no downsides to
928 * disabling crosstimestamping support for i225-V, as it
929 * doesn't have any PTP support. That way we gain some time
930 * while root causing the issue.
931 */
932 if (adapter->pdev->device == IGC_DEV_ID_I225_V)
933 return false;
934
935 return pcie_ptm_enabled(adapter->pdev);
936}
937
938static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
939{
940#if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
941 return (struct system_counterval_t) {
942 .cs_id = CSID_X86_ART,
943 .cycles = tstamp,
944 .use_nsecs = true,
945 };
946#else
947 return (struct system_counterval_t) { };
948#endif
949}
950
951static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
952{
953 struct net_device *netdev = adapter->netdev;
954
955 switch (ptm_stat) {
956 case IGC_PTM_STAT_RET_ERR:
957 netdev_err(netdev, "PTM Error: Root port timeout\n");
958 break;
959 case IGC_PTM_STAT_BAD_PTM_RES:
960 netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
961 break;
962 case IGC_PTM_STAT_T4M1_OVFL:
963 netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
964 break;
965 case IGC_PTM_STAT_ADJUST_1ST:
966 netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
967 break;
968 case IGC_PTM_STAT_ADJUST_CYC:
969 netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
970 break;
971 default:
972 netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
973 break;
974 }
975}
976
977static int igc_phc_get_syncdevicetime(ktime_t *device,
978 struct system_counterval_t *system,
979 void *ctx)
980{
981 u32 stat, t2_curr_h, t2_curr_l, ctrl;
982 struct igc_adapter *adapter = ctx;
983 struct igc_hw *hw = &adapter->hw;
984 int err, count = 100;
985 ktime_t t1, t2_curr;
986
987 /* Get a snapshot of system clocks to use as historic value. */
988 ktime_get_snapshot(&adapter->snapshot);
989
990 do {
991 /* Doing this in a loop because in the event of a
992 * badly timed (ha!) system clock adjustment, we may
993 * get PTM errors from the PCI root, but these errors
994 * are transitory. Repeating the process returns valid
995 * data eventually.
996 */
997
998 /* To "manually" start the PTM cycle we need to clear and
999 * then set again the TRIG bit.
1000 */
1001 ctrl = rd32(IGC_PTM_CTRL);
1002 ctrl &= ~IGC_PTM_CTRL_TRIG;
1003 wr32(IGC_PTM_CTRL, ctrl);
1004 ctrl |= IGC_PTM_CTRL_TRIG;
1005 wr32(IGC_PTM_CTRL, ctrl);
1006
1007 /* The cycle only starts "for real" when software notifies
1008 * that it has read the registers, this is done by setting
1009 * VALID bit.
1010 */
1011 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1012
1013 err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
1014 stat, IGC_PTM_STAT_SLEEP,
1015 IGC_PTM_STAT_TIMEOUT);
1016 if (err < 0) {
1017 netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
1018 return err;
1019 }
1020
1021 if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
1022 break;
1023
1024 if (stat & ~IGC_PTM_STAT_VALID) {
1025 /* An error occurred, log it. */
1026 igc_ptm_log_error(adapter, stat);
1027 /* The STAT register is write-1-to-clear (W1C),
1028 * so write the previous error status to clear it.
1029 */
1030 wr32(IGC_PTM_STAT, stat);
1031 continue;
1032 }
1033 } while (--count);
1034
1035 if (!count) {
1036 netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
1037 return -ETIMEDOUT;
1038 }
1039
1040 t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
1041
1042 t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
1043 t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
1044
1045 /* FIXME: When the register that tells the endianness of the
1046 * PTM registers are implemented, check them here and add the
1047 * appropriate conversion.
1048 */
1049 t2_curr_h = swab32(t2_curr_h);
1050
1051 t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
1052
1053 *device = t1;
1054 *system = igc_device_tstamp_to_system(t2_curr);
1055
1056 return 0;
1057}
1058
1059static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
1060 struct system_device_crosststamp *cts)
1061{
1062 struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
1063 ptp_caps);
1064
1065 return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
1066 adapter, &adapter->snapshot, cts);
1067}
1068
1069static int igc_ptp_getcyclesx64(struct ptp_clock_info *ptp,
1070 struct timespec64 *ts,
1071 struct ptp_system_timestamp *sts)
1072{
1073 struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps);
1074 struct igc_hw *hw = &igc->hw;
1075 unsigned long flags;
1076
1077 spin_lock_irqsave(&igc->free_timer_lock, flags);
1078
1079 ptp_read_system_prets(sts);
1080 ts->tv_nsec = rd32(IGC_SYSTIML_1);
1081 ts->tv_sec = rd32(IGC_SYSTIMH_1);
1082 ptp_read_system_postts(sts);
1083
1084 spin_unlock_irqrestore(&igc->free_timer_lock, flags);
1085
1086 return 0;
1087}
1088
1089/**
1090 * igc_ptp_init - Initialize PTP functionality
1091 * @adapter: Board private structure
1092 *
1093 * This function is called at device probe to initialize the PTP
1094 * functionality.
1095 */
1096void igc_ptp_init(struct igc_adapter *adapter)
1097{
1098 struct net_device *netdev = adapter->netdev;
1099 struct igc_tx_timestamp_request *tstamp;
1100 struct igc_hw *hw = &adapter->hw;
1101 int i;
1102
1103 tstamp = &adapter->tx_tstamp[0];
1104 tstamp->mask = IGC_TSYNCTXCTL_TXTT_0;
1105 tstamp->regl = IGC_TXSTMPL_0;
1106 tstamp->regh = IGC_TXSTMPH_0;
1107 tstamp->flags = 0;
1108
1109 tstamp = &adapter->tx_tstamp[1];
1110 tstamp->mask = IGC_TSYNCTXCTL_TXTT_1;
1111 tstamp->regl = IGC_TXSTMPL_1;
1112 tstamp->regh = IGC_TXSTMPH_1;
1113 tstamp->flags = IGC_TX_FLAGS_TSTAMP_1;
1114
1115 tstamp = &adapter->tx_tstamp[2];
1116 tstamp->mask = IGC_TSYNCTXCTL_TXTT_2;
1117 tstamp->regl = IGC_TXSTMPL_2;
1118 tstamp->regh = IGC_TXSTMPH_2;
1119 tstamp->flags = IGC_TX_FLAGS_TSTAMP_2;
1120
1121 tstamp = &adapter->tx_tstamp[3];
1122 tstamp->mask = IGC_TSYNCTXCTL_TXTT_3;
1123 tstamp->regl = IGC_TXSTMPL_3;
1124 tstamp->regh = IGC_TXSTMPH_3;
1125 tstamp->flags = IGC_TX_FLAGS_TSTAMP_3;
1126
1127 switch (hw->mac.type) {
1128 case igc_i225:
1129 for (i = 0; i < IGC_N_SDP; i++) {
1130 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1131
1132 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1133 ppd->index = i;
1134 ppd->func = PTP_PF_NONE;
1135 }
1136 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1137 adapter->ptp_caps.owner = THIS_MODULE;
1138 adapter->ptp_caps.max_adj = 62499999;
1139 adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
1140 adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
1141 adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
1142 adapter->ptp_caps.getcyclesx64 = igc_ptp_getcyclesx64;
1143 adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
1144 adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
1145 adapter->ptp_caps.pps = 1;
1146 adapter->ptp_caps.pin_config = adapter->sdp_config;
1147 adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
1148 adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
1149 adapter->ptp_caps.n_pins = IGC_N_SDP;
1150 adapter->ptp_caps.verify = igc_ptp_verify_pin;
1151
1152 if (!igc_is_crosststamp_supported(adapter))
1153 break;
1154
1155 adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
1156 break;
1157 default:
1158 adapter->ptp_clock = NULL;
1159 return;
1160 }
1161
1162 spin_lock_init(&adapter->ptp_tx_lock);
1163 spin_lock_init(&adapter->free_timer_lock);
1164 spin_lock_init(&adapter->tmreg_lock);
1165
1166 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1167 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1168
1169 adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
1170 adapter->ptp_reset_start = ktime_get();
1171
1172 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1173 &adapter->pdev->dev);
1174 if (IS_ERR(adapter->ptp_clock)) {
1175 adapter->ptp_clock = NULL;
1176 netdev_err(netdev, "ptp_clock_register failed\n");
1177 } else if (adapter->ptp_clock) {
1178 netdev_info(netdev, "PHC added\n");
1179 adapter->ptp_flags |= IGC_PTP_ENABLED;
1180 }
1181}
1182
1183static void igc_ptp_time_save(struct igc_adapter *adapter)
1184{
1185 igc_ptp_read(adapter, &adapter->prev_ptp_time);
1186 adapter->ptp_reset_start = ktime_get();
1187}
1188
1189static void igc_ptp_time_restore(struct igc_adapter *adapter)
1190{
1191 struct timespec64 ts = adapter->prev_ptp_time;
1192 ktime_t delta;
1193
1194 delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
1195
1196 timespec64_add_ns(&ts, ktime_to_ns(delta));
1197
1198 igc_ptp_write_i225(adapter, &ts);
1199}
1200
1201static void igc_ptm_stop(struct igc_adapter *adapter)
1202{
1203 struct igc_hw *hw = &adapter->hw;
1204 u32 ctrl;
1205
1206 ctrl = rd32(IGC_PTM_CTRL);
1207 ctrl &= ~IGC_PTM_CTRL_EN;
1208
1209 wr32(IGC_PTM_CTRL, ctrl);
1210}
1211
1212/**
1213 * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1214 * @adapter: Board private structure
1215 *
1216 * This function stops the overflow check work and PTP Tx timestamp work, and
1217 * will prepare the device for OS suspend.
1218 */
1219void igc_ptp_suspend(struct igc_adapter *adapter)
1220{
1221 if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1222 return;
1223
1224 igc_ptp_clear_tx_tstamp(adapter);
1225
1226 if (pci_device_is_present(adapter->pdev)) {
1227 igc_ptp_time_save(adapter);
1228 igc_ptm_stop(adapter);
1229 }
1230}
1231
1232/**
1233 * igc_ptp_stop - Disable PTP device and stop the overflow check.
1234 * @adapter: Board private structure.
1235 *
1236 * This function stops the PTP support and cancels the delayed work.
1237 **/
1238void igc_ptp_stop(struct igc_adapter *adapter)
1239{
1240 igc_ptp_suspend(adapter);
1241
1242 if (adapter->ptp_clock) {
1243 ptp_clock_unregister(adapter->ptp_clock);
1244 netdev_info(adapter->netdev, "PHC removed\n");
1245 adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1246 }
1247}
1248
1249/**
1250 * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1251 * @adapter: Board private structure.
1252 *
1253 * This function handles the reset work required to re-enable the PTP device.
1254 **/
1255void igc_ptp_reset(struct igc_adapter *adapter)
1256{
1257 struct igc_hw *hw = &adapter->hw;
1258 u32 cycle_ctrl, ctrl;
1259 unsigned long flags;
1260 u32 timadj;
1261
1262 /* reset the tstamp_config */
1263 igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1264
1265 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1266
1267 switch (adapter->hw.mac.type) {
1268 case igc_i225:
1269 timadj = rd32(IGC_TIMADJ);
1270 timadj |= IGC_TIMADJ_ADJUST_METH;
1271 wr32(IGC_TIMADJ, timadj);
1272
1273 wr32(IGC_TSAUXC, 0x0);
1274 wr32(IGC_TSSDP, 0x0);
1275 wr32(IGC_TSIM,
1276 IGC_TSICR_INTERRUPTS |
1277 (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1278 wr32(IGC_IMS, IGC_IMS_TS);
1279
1280 if (!igc_is_crosststamp_supported(adapter))
1281 break;
1282
1283 wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1284 wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1285
1286 cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1287
1288 wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1289
1290 ctrl = IGC_PTM_CTRL_EN |
1291 IGC_PTM_CTRL_START_NOW |
1292 IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1293 IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1294 IGC_PTM_CTRL_TRIG;
1295
1296 wr32(IGC_PTM_CTRL, ctrl);
1297
1298 /* Force the first cycle to run. */
1299 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1300
1301 break;
1302 default:
1303 /* No work to do. */
1304 goto out;
1305 }
1306
1307 /* Re-initialize the timer. */
1308 if (hw->mac.type == igc_i225) {
1309 igc_ptp_time_restore(adapter);
1310 } else {
1311 timecounter_init(&adapter->tc, &adapter->cc,
1312 ktime_to_ns(ktime_get_real()));
1313 }
1314out:
1315 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1316
1317 wrfl();
1318}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019 Intel Corporation */
3
4#include "igc.h"
5
6#include <linux/module.h>
7#include <linux/device.h>
8#include <linux/pci.h>
9#include <linux/ptp_classify.h>
10#include <linux/clocksource.h>
11#include <linux/ktime.h>
12#include <linux/delay.h>
13#include <linux/iopoll.h>
14
15#define INCVALUE_MASK 0x7fffffff
16#define ISGN 0x80000000
17
18#define IGC_PTP_TX_TIMEOUT (HZ * 15)
19
20#define IGC_PTM_STAT_SLEEP 2
21#define IGC_PTM_STAT_TIMEOUT 100
22
23/* SYSTIM read access for I225 */
24void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
25{
26 struct igc_hw *hw = &adapter->hw;
27 u32 sec, nsec;
28
29 /* The timestamp is latched when SYSTIML is read. */
30 nsec = rd32(IGC_SYSTIML);
31 sec = rd32(IGC_SYSTIMH);
32
33 ts->tv_sec = sec;
34 ts->tv_nsec = nsec;
35}
36
37static void igc_ptp_write_i225(struct igc_adapter *adapter,
38 const struct timespec64 *ts)
39{
40 struct igc_hw *hw = &adapter->hw;
41
42 wr32(IGC_SYSTIML, ts->tv_nsec);
43 wr32(IGC_SYSTIMH, ts->tv_sec);
44}
45
46static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
47{
48 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
49 ptp_caps);
50 struct igc_hw *hw = &igc->hw;
51 int neg_adj = 0;
52 u64 rate;
53 u32 inca;
54
55 if (scaled_ppm < 0) {
56 neg_adj = 1;
57 scaled_ppm = -scaled_ppm;
58 }
59 rate = scaled_ppm;
60 rate <<= 14;
61 rate = div_u64(rate, 78125);
62
63 inca = rate & INCVALUE_MASK;
64 if (neg_adj)
65 inca |= ISGN;
66
67 wr32(IGC_TIMINCA, inca);
68
69 return 0;
70}
71
72static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
73{
74 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
75 ptp_caps);
76 struct timespec64 now, then = ns_to_timespec64(delta);
77 unsigned long flags;
78
79 spin_lock_irqsave(&igc->tmreg_lock, flags);
80
81 igc_ptp_read(igc, &now);
82 now = timespec64_add(now, then);
83 igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
84
85 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
86
87 return 0;
88}
89
90static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
91 struct timespec64 *ts,
92 struct ptp_system_timestamp *sts)
93{
94 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
95 ptp_caps);
96 struct igc_hw *hw = &igc->hw;
97 unsigned long flags;
98
99 spin_lock_irqsave(&igc->tmreg_lock, flags);
100
101 ptp_read_system_prets(sts);
102 ts->tv_nsec = rd32(IGC_SYSTIML);
103 ts->tv_sec = rd32(IGC_SYSTIMH);
104 ptp_read_system_postts(sts);
105
106 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
107
108 return 0;
109}
110
111static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
112 const struct timespec64 *ts)
113{
114 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
115 ptp_caps);
116 unsigned long flags;
117
118 spin_lock_irqsave(&igc->tmreg_lock, flags);
119
120 igc_ptp_write_i225(igc, ts);
121
122 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
123
124 return 0;
125}
126
127static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
128{
129 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
130 static const u32 mask[IGC_N_SDP] = {
131 IGC_CTRL_SDP0_DIR,
132 IGC_CTRL_SDP1_DIR,
133 IGC_CTRL_EXT_SDP2_DIR,
134 IGC_CTRL_EXT_SDP3_DIR,
135 };
136
137 if (input)
138 *ptr &= ~mask[pin];
139 else
140 *ptr |= mask[pin];
141}
142
143static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
144{
145 static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
146 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
147 };
148 static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
149 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
150 };
151 static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
152 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
153 };
154 static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
155 IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
156 IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
157 };
158 static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
159 IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
160 IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
161 };
162 static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
163 IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
164 IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
165 };
166 static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
167 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
168 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
169 };
170 static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
171 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
172 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
173 };
174 struct igc_hw *hw = &igc->hw;
175 u32 ctrl, ctrl_ext, tssdp = 0;
176
177 ctrl = rd32(IGC_CTRL);
178 ctrl_ext = rd32(IGC_CTRL_EXT);
179 tssdp = rd32(IGC_TSSDP);
180
181 igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
182
183 /* Make sure this pin is not enabled as an input. */
184 if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
185 tssdp &= ~IGC_AUX0_TS_SDP_EN;
186
187 if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
188 tssdp &= ~IGC_AUX1_TS_SDP_EN;
189
190 tssdp &= ~igc_ts_sdp_sel_clr[pin];
191 if (freq) {
192 if (chan == 1)
193 tssdp |= igc_ts_sdp_sel_fc1[pin];
194 else
195 tssdp |= igc_ts_sdp_sel_fc0[pin];
196 } else {
197 if (chan == 1)
198 tssdp |= igc_ts_sdp_sel_tt1[pin];
199 else
200 tssdp |= igc_ts_sdp_sel_tt0[pin];
201 }
202 tssdp |= igc_ts_sdp_en[pin];
203
204 wr32(IGC_TSSDP, tssdp);
205 wr32(IGC_CTRL, ctrl);
206 wr32(IGC_CTRL_EXT, ctrl_ext);
207}
208
209static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
210{
211 static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
212 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
213 };
214 static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
215 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
216 };
217 static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
218 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
219 };
220 struct igc_hw *hw = &igc->hw;
221 u32 ctrl, ctrl_ext, tssdp = 0;
222
223 ctrl = rd32(IGC_CTRL);
224 ctrl_ext = rd32(IGC_CTRL_EXT);
225 tssdp = rd32(IGC_TSSDP);
226
227 igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
228
229 /* Make sure this pin is not enabled as an output. */
230 tssdp &= ~igc_ts_sdp_en[pin];
231
232 if (chan == 1) {
233 tssdp &= ~IGC_AUX1_SEL_SDP3;
234 tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
235 } else {
236 tssdp &= ~IGC_AUX0_SEL_SDP3;
237 tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
238 }
239
240 wr32(IGC_TSSDP, tssdp);
241 wr32(IGC_CTRL, ctrl);
242 wr32(IGC_CTRL_EXT, ctrl_ext);
243}
244
245static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
246 struct ptp_clock_request *rq, int on)
247{
248 struct igc_adapter *igc =
249 container_of(ptp, struct igc_adapter, ptp_caps);
250 struct igc_hw *hw = &igc->hw;
251 unsigned long flags;
252 struct timespec64 ts;
253 int use_freq = 0, pin = -1;
254 u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
255 s64 ns;
256
257 switch (rq->type) {
258 case PTP_CLK_REQ_EXTTS:
259 /* Reject requests with unsupported flags */
260 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
261 PTP_RISING_EDGE |
262 PTP_FALLING_EDGE |
263 PTP_STRICT_FLAGS))
264 return -EOPNOTSUPP;
265
266 /* Reject requests failing to enable both edges. */
267 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
268 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
269 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
270 return -EOPNOTSUPP;
271
272 if (on) {
273 pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
274 rq->extts.index);
275 if (pin < 0)
276 return -EBUSY;
277 }
278 if (rq->extts.index == 1) {
279 tsauxc_mask = IGC_TSAUXC_EN_TS1;
280 tsim_mask = IGC_TSICR_AUTT1;
281 } else {
282 tsauxc_mask = IGC_TSAUXC_EN_TS0;
283 tsim_mask = IGC_TSICR_AUTT0;
284 }
285 spin_lock_irqsave(&igc->tmreg_lock, flags);
286 tsauxc = rd32(IGC_TSAUXC);
287 tsim = rd32(IGC_TSIM);
288 if (on) {
289 igc_pin_extts(igc, rq->extts.index, pin);
290 tsauxc |= tsauxc_mask;
291 tsim |= tsim_mask;
292 } else {
293 tsauxc &= ~tsauxc_mask;
294 tsim &= ~tsim_mask;
295 }
296 wr32(IGC_TSAUXC, tsauxc);
297 wr32(IGC_TSIM, tsim);
298 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
299 return 0;
300
301 case PTP_CLK_REQ_PEROUT:
302 /* Reject requests with unsupported flags */
303 if (rq->perout.flags)
304 return -EOPNOTSUPP;
305
306 if (on) {
307 pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
308 rq->perout.index);
309 if (pin < 0)
310 return -EBUSY;
311 }
312 ts.tv_sec = rq->perout.period.sec;
313 ts.tv_nsec = rq->perout.period.nsec;
314 ns = timespec64_to_ns(&ts);
315 ns = ns >> 1;
316 if (on && (ns <= 70000000LL || ns == 125000000LL ||
317 ns == 250000000LL || ns == 500000000LL)) {
318 if (ns < 8LL)
319 return -EINVAL;
320 use_freq = 1;
321 }
322 ts = ns_to_timespec64(ns);
323 if (rq->perout.index == 1) {
324 if (use_freq) {
325 tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
326 tsim_mask = 0;
327 } else {
328 tsauxc_mask = IGC_TSAUXC_EN_TT1;
329 tsim_mask = IGC_TSICR_TT1;
330 }
331 trgttiml = IGC_TRGTTIML1;
332 trgttimh = IGC_TRGTTIMH1;
333 freqout = IGC_FREQOUT1;
334 } else {
335 if (use_freq) {
336 tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
337 tsim_mask = 0;
338 } else {
339 tsauxc_mask = IGC_TSAUXC_EN_TT0;
340 tsim_mask = IGC_TSICR_TT0;
341 }
342 trgttiml = IGC_TRGTTIML0;
343 trgttimh = IGC_TRGTTIMH0;
344 freqout = IGC_FREQOUT0;
345 }
346 spin_lock_irqsave(&igc->tmreg_lock, flags);
347 tsauxc = rd32(IGC_TSAUXC);
348 tsim = rd32(IGC_TSIM);
349 if (rq->perout.index == 1) {
350 tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
351 IGC_TSAUXC_ST1);
352 tsim &= ~IGC_TSICR_TT1;
353 } else {
354 tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
355 IGC_TSAUXC_ST0);
356 tsim &= ~IGC_TSICR_TT0;
357 }
358 if (on) {
359 struct timespec64 safe_start;
360 int i = rq->perout.index;
361
362 igc_pin_perout(igc, i, pin, use_freq);
363 igc_ptp_read(igc, &safe_start);
364
365 /* PPS output start time is triggered by Target time(TT)
366 * register. Programming any past time value into TT
367 * register will cause PPS to never start. Need to make
368 * sure we program the TT register a time ahead in
369 * future. There isn't a stringent need to fire PPS out
370 * right away. Adding +2 seconds should take care of
371 * corner cases. Let's say if the SYSTIML is close to
372 * wrap up and the timer keeps ticking as we program the
373 * register, adding +2seconds is safe bet.
374 */
375 safe_start.tv_sec += 2;
376
377 if (rq->perout.start.sec < safe_start.tv_sec)
378 igc->perout[i].start.tv_sec = safe_start.tv_sec;
379 else
380 igc->perout[i].start.tv_sec = rq->perout.start.sec;
381 igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
382 igc->perout[i].period.tv_sec = ts.tv_sec;
383 igc->perout[i].period.tv_nsec = ts.tv_nsec;
384 wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
385 /* For now, always select timer 0 as source. */
386 wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
387 IGC_TT_IO_TIMER_SEL_SYSTIM0));
388 if (use_freq)
389 wr32(freqout, ns);
390 tsauxc |= tsauxc_mask;
391 tsim |= tsim_mask;
392 }
393 wr32(IGC_TSAUXC, tsauxc);
394 wr32(IGC_TSIM, tsim);
395 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
396 return 0;
397
398 case PTP_CLK_REQ_PPS:
399 spin_lock_irqsave(&igc->tmreg_lock, flags);
400 tsim = rd32(IGC_TSIM);
401 if (on)
402 tsim |= IGC_TSICR_SYS_WRAP;
403 else
404 tsim &= ~IGC_TSICR_SYS_WRAP;
405 igc->pps_sys_wrap_on = on;
406 wr32(IGC_TSIM, tsim);
407 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
408 return 0;
409
410 default:
411 break;
412 }
413
414 return -EOPNOTSUPP;
415}
416
417static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
418 enum ptp_pin_function func, unsigned int chan)
419{
420 switch (func) {
421 case PTP_PF_NONE:
422 case PTP_PF_EXTTS:
423 case PTP_PF_PEROUT:
424 break;
425 case PTP_PF_PHYSYNC:
426 return -1;
427 }
428 return 0;
429}
430
431/**
432 * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
433 * @adapter: board private structure
434 * @hwtstamps: timestamp structure to update
435 * @systim: unsigned 64bit system time value
436 *
437 * We need to convert the system time value stored in the RX/TXSTMP registers
438 * into a hwtstamp which can be used by the upper level timestamping functions.
439 *
440 * Returns 0 on success.
441 **/
442static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
443 struct skb_shared_hwtstamps *hwtstamps,
444 u64 systim)
445{
446 switch (adapter->hw.mac.type) {
447 case igc_i225:
448 memset(hwtstamps, 0, sizeof(*hwtstamps));
449 /* Upper 32 bits contain s, lower 32 bits contain ns. */
450 hwtstamps->hwtstamp = ktime_set(systim >> 32,
451 systim & 0xFFFFFFFF);
452 break;
453 default:
454 return -EINVAL;
455 }
456 return 0;
457}
458
459/**
460 * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
461 * @adapter: Pointer to adapter the packet buffer belongs to
462 * @buf: Pointer to start of timestamp in HW format (2 32-bit words)
463 *
464 * This function retrieves and converts the timestamp stored at @buf
465 * to ktime_t, adjusting for hardware latencies.
466 *
467 * Returns timestamp value.
468 */
469ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
470{
471 ktime_t timestamp;
472 u32 secs, nsecs;
473 int adjust;
474
475 nsecs = le32_to_cpu(buf[0]);
476 secs = le32_to_cpu(buf[1]);
477
478 timestamp = ktime_set(secs, nsecs);
479
480 /* Adjust timestamp for the RX latency based on link speed */
481 switch (adapter->link_speed) {
482 case SPEED_10:
483 adjust = IGC_I225_RX_LATENCY_10;
484 break;
485 case SPEED_100:
486 adjust = IGC_I225_RX_LATENCY_100;
487 break;
488 case SPEED_1000:
489 adjust = IGC_I225_RX_LATENCY_1000;
490 break;
491 case SPEED_2500:
492 adjust = IGC_I225_RX_LATENCY_2500;
493 break;
494 default:
495 adjust = 0;
496 netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
497 break;
498 }
499
500 return ktime_sub_ns(timestamp, adjust);
501}
502
503static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
504{
505 struct igc_hw *hw = &adapter->hw;
506 u32 val;
507 int i;
508
509 wr32(IGC_TSYNCRXCTL, 0);
510
511 for (i = 0; i < adapter->num_rx_queues; i++) {
512 val = rd32(IGC_SRRCTL(i));
513 val &= ~IGC_SRRCTL_TIMESTAMP;
514 wr32(IGC_SRRCTL(i), val);
515 }
516
517 val = rd32(IGC_RXPBS);
518 val &= ~IGC_RXPBS_CFG_TS_EN;
519 wr32(IGC_RXPBS, val);
520}
521
522static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
523{
524 struct igc_hw *hw = &adapter->hw;
525 u32 val;
526 int i;
527
528 val = rd32(IGC_RXPBS);
529 val |= IGC_RXPBS_CFG_TS_EN;
530 wr32(IGC_RXPBS, val);
531
532 for (i = 0; i < adapter->num_rx_queues; i++) {
533 val = rd32(IGC_SRRCTL(i));
534 /* Enable retrieving timestamps from timer 0, the
535 * "adjustable clock" and timer 1 the "free running
536 * clock".
537 */
538 val |= IGC_SRRCTL_TIMER1SEL(1) | IGC_SRRCTL_TIMER0SEL(0) |
539 IGC_SRRCTL_TIMESTAMP;
540 wr32(IGC_SRRCTL(i), val);
541 }
542
543 val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
544 IGC_TSYNCRXCTL_RXSYNSIG;
545 wr32(IGC_TSYNCRXCTL, val);
546}
547
548static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
549{
550 unsigned long flags;
551 int i;
552
553 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
554
555 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
556 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
557
558 dev_kfree_skb_any(tstamp->skb);
559 tstamp->skb = NULL;
560 }
561
562 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
563}
564
565static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
566{
567 struct igc_hw *hw = &adapter->hw;
568 int i;
569
570 /* Clear the flags first to avoid new packets to be enqueued
571 * for TX timestamping.
572 */
573 for (i = 0; i < adapter->num_tx_queues; i++) {
574 struct igc_ring *tx_ring = adapter->tx_ring[i];
575
576 clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
577 }
578
579 /* Now we can clean the pending TX timestamp requests. */
580 igc_ptp_clear_tx_tstamp(adapter);
581
582 wr32(IGC_TSYNCTXCTL, 0);
583}
584
585static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
586{
587 struct igc_hw *hw = &adapter->hw;
588 int i;
589
590 wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
591
592 /* Read TXSTMP registers to discard any timestamp previously stored. */
593 rd32(IGC_TXSTMPL);
594 rd32(IGC_TXSTMPH);
595
596 /* The hardware is ready to accept TX timestamp requests,
597 * notify the transmit path.
598 */
599 for (i = 0; i < adapter->num_tx_queues; i++) {
600 struct igc_ring *tx_ring = adapter->tx_ring[i];
601
602 set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
603 }
604
605}
606
607/**
608 * igc_ptp_set_timestamp_mode - setup hardware for timestamping
609 * @adapter: networking device structure
610 * @config: hwtstamp configuration
611 *
612 * Return: 0 in case of success, negative errno code otherwise.
613 */
614static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
615 struct hwtstamp_config *config)
616{
617 switch (config->tx_type) {
618 case HWTSTAMP_TX_OFF:
619 igc_ptp_disable_tx_timestamp(adapter);
620 break;
621 case HWTSTAMP_TX_ON:
622 igc_ptp_enable_tx_timestamp(adapter);
623 break;
624 default:
625 return -ERANGE;
626 }
627
628 switch (config->rx_filter) {
629 case HWTSTAMP_FILTER_NONE:
630 igc_ptp_disable_rx_timestamp(adapter);
631 break;
632 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
633 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
634 case HWTSTAMP_FILTER_PTP_V2_EVENT:
635 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
636 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
637 case HWTSTAMP_FILTER_PTP_V2_SYNC:
638 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
639 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
640 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
641 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
642 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
643 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
644 case HWTSTAMP_FILTER_NTP_ALL:
645 case HWTSTAMP_FILTER_ALL:
646 igc_ptp_enable_rx_timestamp(adapter);
647 config->rx_filter = HWTSTAMP_FILTER_ALL;
648 break;
649 default:
650 return -ERANGE;
651 }
652
653 return 0;
654}
655
656/* Requires adapter->ptp_tx_lock held by caller. */
657static void igc_ptp_tx_timeout(struct igc_adapter *adapter,
658 struct igc_tx_timestamp_request *tstamp)
659{
660 dev_kfree_skb_any(tstamp->skb);
661 tstamp->skb = NULL;
662 adapter->tx_hwtstamp_timeouts++;
663
664 netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
665}
666
667void igc_ptp_tx_hang(struct igc_adapter *adapter)
668{
669 struct igc_tx_timestamp_request *tstamp;
670 struct igc_hw *hw = &adapter->hw;
671 unsigned long flags;
672 bool found = false;
673 int i;
674
675 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
676
677 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
678 tstamp = &adapter->tx_tstamp[i];
679
680 if (!tstamp->skb)
681 continue;
682
683 if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT))
684 continue;
685
686 igc_ptp_tx_timeout(adapter, tstamp);
687 found = true;
688 }
689
690 if (found) {
691 /* Reading the high register of the first set of timestamp registers
692 * clears all the equivalent bits in the TSYNCTXCTL register.
693 */
694 rd32(IGC_TXSTMPH_0);
695 }
696
697 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
698}
699
700static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter,
701 struct igc_tx_timestamp_request *tstamp, u64 regval)
702{
703 struct skb_shared_hwtstamps shhwtstamps;
704 struct sk_buff *skb;
705 int adjust = 0;
706
707 skb = tstamp->skb;
708 if (!skb)
709 return;
710
711 if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
712 return;
713
714 switch (adapter->link_speed) {
715 case SPEED_10:
716 adjust = IGC_I225_TX_LATENCY_10;
717 break;
718 case SPEED_100:
719 adjust = IGC_I225_TX_LATENCY_100;
720 break;
721 case SPEED_1000:
722 adjust = IGC_I225_TX_LATENCY_1000;
723 break;
724 case SPEED_2500:
725 adjust = IGC_I225_TX_LATENCY_2500;
726 break;
727 }
728
729 shhwtstamps.hwtstamp =
730 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
731
732 tstamp->skb = NULL;
733
734 skb_tstamp_tx(skb, &shhwtstamps);
735 dev_kfree_skb_any(skb);
736}
737
738/**
739 * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
740 * @adapter: Board private structure
741 *
742 * Check against the ready mask for which of the timestamp register
743 * sets are ready to be retrieved, then retrieve that and notify the
744 * rest of the stack.
745 *
746 * Context: Expects adapter->ptp_tx_lock to be held by caller.
747 */
748static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
749{
750 struct igc_hw *hw = &adapter->hw;
751 u64 regval;
752 u32 mask;
753 int i;
754
755 mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY;
756 if (mask & IGC_TSYNCTXCTL_TXTT_0) {
757 regval = rd32(IGC_TXSTMPL);
758 regval |= (u64)rd32(IGC_TXSTMPH) << 32;
759 } else {
760 /* There's a bug in the hardware that could cause
761 * missing interrupts for TX timestamping. The issue
762 * is that for new interrupts to be triggered, the
763 * IGC_TXSTMPH_0 register must be read.
764 *
765 * To avoid discarding a valid timestamp that just
766 * happened at the "wrong" time, we need to confirm
767 * that there was no timestamp captured, we do that by
768 * assuming that no two timestamps in sequence have
769 * the same nanosecond value.
770 *
771 * So, we read the "low" register, read the "high"
772 * register (to latch a new timestamp) and read the
773 * "low" register again, if "old" and "new" versions
774 * of the "low" register are different, a valid
775 * timestamp was captured, we can read the "high"
776 * register again.
777 */
778 u32 txstmpl_old, txstmpl_new;
779
780 txstmpl_old = rd32(IGC_TXSTMPL);
781 rd32(IGC_TXSTMPH);
782 txstmpl_new = rd32(IGC_TXSTMPL);
783
784 if (txstmpl_old == txstmpl_new)
785 goto done;
786
787 regval = txstmpl_new;
788 regval |= (u64)rd32(IGC_TXSTMPH) << 32;
789 }
790
791 igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval);
792
793done:
794 /* Now that the problematic first register was handled, we can
795 * use retrieve the timestamps from the other registers
796 * (starting from '1') with less complications.
797 */
798 for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
799 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
800
801 if (!(tstamp->mask & mask))
802 continue;
803
804 regval = rd32(tstamp->regl);
805 regval |= (u64)rd32(tstamp->regh) << 32;
806
807 igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval);
808 }
809}
810
811/**
812 * igc_ptp_tx_tstamp_event
813 * @adapter: board private structure
814 *
815 * Called when a TX timestamp interrupt happens to retrieve the
816 * timestamp and send it up to the socket.
817 */
818void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
819{
820 unsigned long flags;
821
822 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
823
824 igc_ptp_tx_hwtstamp(adapter);
825
826 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
827}
828
829/**
830 * igc_ptp_set_ts_config - set hardware time stamping config
831 * @netdev: network interface device structure
832 * @ifr: interface request data
833 *
834 **/
835int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
836{
837 struct igc_adapter *adapter = netdev_priv(netdev);
838 struct hwtstamp_config config;
839 int err;
840
841 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
842 return -EFAULT;
843
844 err = igc_ptp_set_timestamp_mode(adapter, &config);
845 if (err)
846 return err;
847
848 /* save these settings for future reference */
849 memcpy(&adapter->tstamp_config, &config,
850 sizeof(adapter->tstamp_config));
851
852 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
853 -EFAULT : 0;
854}
855
856/**
857 * igc_ptp_get_ts_config - get hardware time stamping config
858 * @netdev: network interface device structure
859 * @ifr: interface request data
860 *
861 * Get the hwtstamp_config settings to return to the user. Rather than attempt
862 * to deconstruct the settings from the registers, just return a shadow copy
863 * of the last known settings.
864 **/
865int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
866{
867 struct igc_adapter *adapter = netdev_priv(netdev);
868 struct hwtstamp_config *config = &adapter->tstamp_config;
869
870 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
871 -EFAULT : 0;
872}
873
874/* The two conditions below must be met for cross timestamping via
875 * PCIe PTM:
876 *
877 * 1. We have an way to convert the timestamps in the PTM messages
878 * to something related to the system clocks (right now, only
879 * X86 systems with support for the Always Running Timer allow that);
880 *
881 * 2. We have PTM enabled in the path from the device to the PCIe root port.
882 */
883static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
884{
885 if (!IS_ENABLED(CONFIG_X86_TSC))
886 return false;
887
888 /* FIXME: it was noticed that enabling support for PCIe PTM in
889 * some i225-V models could cause lockups when bringing the
890 * interface up/down. There should be no downsides to
891 * disabling crosstimestamping support for i225-V, as it
892 * doesn't have any PTP support. That way we gain some time
893 * while root causing the issue.
894 */
895 if (adapter->pdev->device == IGC_DEV_ID_I225_V)
896 return false;
897
898 return pcie_ptm_enabled(adapter->pdev);
899}
900
901static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
902{
903#if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
904 return convert_art_ns_to_tsc(tstamp);
905#else
906 return (struct system_counterval_t) { };
907#endif
908}
909
910static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
911{
912 struct net_device *netdev = adapter->netdev;
913
914 switch (ptm_stat) {
915 case IGC_PTM_STAT_RET_ERR:
916 netdev_err(netdev, "PTM Error: Root port timeout\n");
917 break;
918 case IGC_PTM_STAT_BAD_PTM_RES:
919 netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
920 break;
921 case IGC_PTM_STAT_T4M1_OVFL:
922 netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
923 break;
924 case IGC_PTM_STAT_ADJUST_1ST:
925 netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
926 break;
927 case IGC_PTM_STAT_ADJUST_CYC:
928 netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
929 break;
930 default:
931 netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
932 break;
933 }
934}
935
936static int igc_phc_get_syncdevicetime(ktime_t *device,
937 struct system_counterval_t *system,
938 void *ctx)
939{
940 u32 stat, t2_curr_h, t2_curr_l, ctrl;
941 struct igc_adapter *adapter = ctx;
942 struct igc_hw *hw = &adapter->hw;
943 int err, count = 100;
944 ktime_t t1, t2_curr;
945
946 /* Get a snapshot of system clocks to use as historic value. */
947 ktime_get_snapshot(&adapter->snapshot);
948
949 do {
950 /* Doing this in a loop because in the event of a
951 * badly timed (ha!) system clock adjustment, we may
952 * get PTM errors from the PCI root, but these errors
953 * are transitory. Repeating the process returns valid
954 * data eventually.
955 */
956
957 /* To "manually" start the PTM cycle we need to clear and
958 * then set again the TRIG bit.
959 */
960 ctrl = rd32(IGC_PTM_CTRL);
961 ctrl &= ~IGC_PTM_CTRL_TRIG;
962 wr32(IGC_PTM_CTRL, ctrl);
963 ctrl |= IGC_PTM_CTRL_TRIG;
964 wr32(IGC_PTM_CTRL, ctrl);
965
966 /* The cycle only starts "for real" when software notifies
967 * that it has read the registers, this is done by setting
968 * VALID bit.
969 */
970 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
971
972 err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
973 stat, IGC_PTM_STAT_SLEEP,
974 IGC_PTM_STAT_TIMEOUT);
975 if (err < 0) {
976 netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
977 return err;
978 }
979
980 if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
981 break;
982
983 if (stat & ~IGC_PTM_STAT_VALID) {
984 /* An error occurred, log it. */
985 igc_ptm_log_error(adapter, stat);
986 /* The STAT register is write-1-to-clear (W1C),
987 * so write the previous error status to clear it.
988 */
989 wr32(IGC_PTM_STAT, stat);
990 continue;
991 }
992 } while (--count);
993
994 if (!count) {
995 netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
996 return -ETIMEDOUT;
997 }
998
999 t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
1000
1001 t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
1002 t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
1003
1004 /* FIXME: When the register that tells the endianness of the
1005 * PTM registers are implemented, check them here and add the
1006 * appropriate conversion.
1007 */
1008 t2_curr_h = swab32(t2_curr_h);
1009
1010 t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
1011
1012 *device = t1;
1013 *system = igc_device_tstamp_to_system(t2_curr);
1014
1015 return 0;
1016}
1017
1018static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
1019 struct system_device_crosststamp *cts)
1020{
1021 struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
1022 ptp_caps);
1023
1024 return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
1025 adapter, &adapter->snapshot, cts);
1026}
1027
1028static int igc_ptp_getcyclesx64(struct ptp_clock_info *ptp,
1029 struct timespec64 *ts,
1030 struct ptp_system_timestamp *sts)
1031{
1032 struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps);
1033 struct igc_hw *hw = &igc->hw;
1034 unsigned long flags;
1035
1036 spin_lock_irqsave(&igc->free_timer_lock, flags);
1037
1038 ptp_read_system_prets(sts);
1039 ts->tv_nsec = rd32(IGC_SYSTIML_1);
1040 ts->tv_sec = rd32(IGC_SYSTIMH_1);
1041 ptp_read_system_postts(sts);
1042
1043 spin_unlock_irqrestore(&igc->free_timer_lock, flags);
1044
1045 return 0;
1046}
1047
1048/**
1049 * igc_ptp_init - Initialize PTP functionality
1050 * @adapter: Board private structure
1051 *
1052 * This function is called at device probe to initialize the PTP
1053 * functionality.
1054 */
1055void igc_ptp_init(struct igc_adapter *adapter)
1056{
1057 struct net_device *netdev = adapter->netdev;
1058 struct igc_tx_timestamp_request *tstamp;
1059 struct igc_hw *hw = &adapter->hw;
1060 int i;
1061
1062 tstamp = &adapter->tx_tstamp[0];
1063 tstamp->mask = IGC_TSYNCTXCTL_TXTT_0;
1064 tstamp->regl = IGC_TXSTMPL_0;
1065 tstamp->regh = IGC_TXSTMPH_0;
1066 tstamp->flags = 0;
1067
1068 tstamp = &adapter->tx_tstamp[1];
1069 tstamp->mask = IGC_TSYNCTXCTL_TXTT_1;
1070 tstamp->regl = IGC_TXSTMPL_1;
1071 tstamp->regh = IGC_TXSTMPH_1;
1072 tstamp->flags = IGC_TX_FLAGS_TSTAMP_1;
1073
1074 tstamp = &adapter->tx_tstamp[2];
1075 tstamp->mask = IGC_TSYNCTXCTL_TXTT_2;
1076 tstamp->regl = IGC_TXSTMPL_2;
1077 tstamp->regh = IGC_TXSTMPH_2;
1078 tstamp->flags = IGC_TX_FLAGS_TSTAMP_2;
1079
1080 tstamp = &adapter->tx_tstamp[3];
1081 tstamp->mask = IGC_TSYNCTXCTL_TXTT_3;
1082 tstamp->regl = IGC_TXSTMPL_3;
1083 tstamp->regh = IGC_TXSTMPH_3;
1084 tstamp->flags = IGC_TX_FLAGS_TSTAMP_3;
1085
1086 switch (hw->mac.type) {
1087 case igc_i225:
1088 for (i = 0; i < IGC_N_SDP; i++) {
1089 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1090
1091 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1092 ppd->index = i;
1093 ppd->func = PTP_PF_NONE;
1094 }
1095 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1096 adapter->ptp_caps.owner = THIS_MODULE;
1097 adapter->ptp_caps.max_adj = 62499999;
1098 adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
1099 adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
1100 adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
1101 adapter->ptp_caps.getcyclesx64 = igc_ptp_getcyclesx64;
1102 adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
1103 adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
1104 adapter->ptp_caps.pps = 1;
1105 adapter->ptp_caps.pin_config = adapter->sdp_config;
1106 adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
1107 adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
1108 adapter->ptp_caps.n_pins = IGC_N_SDP;
1109 adapter->ptp_caps.verify = igc_ptp_verify_pin;
1110
1111 if (!igc_is_crosststamp_supported(adapter))
1112 break;
1113
1114 adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
1115 break;
1116 default:
1117 adapter->ptp_clock = NULL;
1118 return;
1119 }
1120
1121 spin_lock_init(&adapter->ptp_tx_lock);
1122 spin_lock_init(&adapter->free_timer_lock);
1123 spin_lock_init(&adapter->tmreg_lock);
1124
1125 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1126 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1127
1128 adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
1129 adapter->ptp_reset_start = ktime_get();
1130
1131 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1132 &adapter->pdev->dev);
1133 if (IS_ERR(adapter->ptp_clock)) {
1134 adapter->ptp_clock = NULL;
1135 netdev_err(netdev, "ptp_clock_register failed\n");
1136 } else if (adapter->ptp_clock) {
1137 netdev_info(netdev, "PHC added\n");
1138 adapter->ptp_flags |= IGC_PTP_ENABLED;
1139 }
1140}
1141
1142static void igc_ptp_time_save(struct igc_adapter *adapter)
1143{
1144 igc_ptp_read(adapter, &adapter->prev_ptp_time);
1145 adapter->ptp_reset_start = ktime_get();
1146}
1147
1148static void igc_ptp_time_restore(struct igc_adapter *adapter)
1149{
1150 struct timespec64 ts = adapter->prev_ptp_time;
1151 ktime_t delta;
1152
1153 delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
1154
1155 timespec64_add_ns(&ts, ktime_to_ns(delta));
1156
1157 igc_ptp_write_i225(adapter, &ts);
1158}
1159
1160static void igc_ptm_stop(struct igc_adapter *adapter)
1161{
1162 struct igc_hw *hw = &adapter->hw;
1163 u32 ctrl;
1164
1165 ctrl = rd32(IGC_PTM_CTRL);
1166 ctrl &= ~IGC_PTM_CTRL_EN;
1167
1168 wr32(IGC_PTM_CTRL, ctrl);
1169}
1170
1171/**
1172 * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1173 * @adapter: Board private structure
1174 *
1175 * This function stops the overflow check work and PTP Tx timestamp work, and
1176 * will prepare the device for OS suspend.
1177 */
1178void igc_ptp_suspend(struct igc_adapter *adapter)
1179{
1180 if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1181 return;
1182
1183 igc_ptp_clear_tx_tstamp(adapter);
1184
1185 if (pci_device_is_present(adapter->pdev)) {
1186 igc_ptp_time_save(adapter);
1187 igc_ptm_stop(adapter);
1188 }
1189}
1190
1191/**
1192 * igc_ptp_stop - Disable PTP device and stop the overflow check.
1193 * @adapter: Board private structure.
1194 *
1195 * This function stops the PTP support and cancels the delayed work.
1196 **/
1197void igc_ptp_stop(struct igc_adapter *adapter)
1198{
1199 igc_ptp_suspend(adapter);
1200
1201 if (adapter->ptp_clock) {
1202 ptp_clock_unregister(adapter->ptp_clock);
1203 netdev_info(adapter->netdev, "PHC removed\n");
1204 adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1205 }
1206}
1207
1208/**
1209 * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1210 * @adapter: Board private structure.
1211 *
1212 * This function handles the reset work required to re-enable the PTP device.
1213 **/
1214void igc_ptp_reset(struct igc_adapter *adapter)
1215{
1216 struct igc_hw *hw = &adapter->hw;
1217 u32 cycle_ctrl, ctrl;
1218 unsigned long flags;
1219 u32 timadj;
1220
1221 /* reset the tstamp_config */
1222 igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1223
1224 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1225
1226 switch (adapter->hw.mac.type) {
1227 case igc_i225:
1228 timadj = rd32(IGC_TIMADJ);
1229 timadj |= IGC_TIMADJ_ADJUST_METH;
1230 wr32(IGC_TIMADJ, timadj);
1231
1232 wr32(IGC_TSAUXC, 0x0);
1233 wr32(IGC_TSSDP, 0x0);
1234 wr32(IGC_TSIM,
1235 IGC_TSICR_INTERRUPTS |
1236 (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1237 wr32(IGC_IMS, IGC_IMS_TS);
1238
1239 if (!igc_is_crosststamp_supported(adapter))
1240 break;
1241
1242 wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1243 wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1244
1245 cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1246
1247 wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1248
1249 ctrl = IGC_PTM_CTRL_EN |
1250 IGC_PTM_CTRL_START_NOW |
1251 IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1252 IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1253 IGC_PTM_CTRL_TRIG;
1254
1255 wr32(IGC_PTM_CTRL, ctrl);
1256
1257 /* Force the first cycle to run. */
1258 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1259
1260 break;
1261 default:
1262 /* No work to do. */
1263 goto out;
1264 }
1265
1266 /* Re-initialize the timer. */
1267 if (hw->mac.type == igc_i225) {
1268 igc_ptp_time_restore(adapter);
1269 } else {
1270 timecounter_init(&adapter->tc, &adapter->cc,
1271 ktime_to_ns(ktime_get_real()));
1272 }
1273out:
1274 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1275
1276 wrfl();
1277}