Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include <net/devlink.h>
   5#include "ice_sched.h"
   6
   7/**
   8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
   9 * @pi: port information structure
  10 * @info: Scheduler element information from firmware
  11 *
  12 * This function inserts the root node of the scheduling tree topology
  13 * to the SW DB.
  14 */
  15static int
  16ice_sched_add_root_node(struct ice_port_info *pi,
  17			struct ice_aqc_txsched_elem_data *info)
  18{
  19	struct ice_sched_node *root;
  20	struct ice_hw *hw;
  21
  22	if (!pi)
  23		return -EINVAL;
  24
  25	hw = pi->hw;
  26
  27	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
  28	if (!root)
  29		return -ENOMEM;
  30
 
  31	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
  32				      sizeof(*root->children), GFP_KERNEL);
  33	if (!root->children) {
  34		devm_kfree(ice_hw_to_dev(hw), root);
  35		return -ENOMEM;
  36	}
  37
  38	memcpy(&root->info, info, sizeof(*info));
  39	pi->root = root;
  40	return 0;
  41}
  42
  43/**
  44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
  45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
  46 * @teid: node TEID to search
  47 *
  48 * This function searches for a node matching the TEID in the scheduling tree
  49 * from the SW DB. The search is recursive and is restricted by the number of
  50 * layers it has searched through; stopping at the max supported layer.
  51 *
  52 * This function needs to be called when holding the port_info->sched_lock
  53 */
  54struct ice_sched_node *
  55ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
  56{
  57	u16 i;
  58
  59	/* The TEID is same as that of the start_node */
  60	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
  61		return start_node;
  62
  63	/* The node has no children or is at the max layer */
  64	if (!start_node->num_children ||
  65	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
  66	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
  67		return NULL;
  68
  69	/* Check if TEID matches to any of the children nodes */
  70	for (i = 0; i < start_node->num_children; i++)
  71		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
  72			return start_node->children[i];
  73
  74	/* Search within each child's sub-tree */
  75	for (i = 0; i < start_node->num_children; i++) {
  76		struct ice_sched_node *tmp;
  77
  78		tmp = ice_sched_find_node_by_teid(start_node->children[i],
  79						  teid);
  80		if (tmp)
  81			return tmp;
  82	}
  83
  84	return NULL;
  85}
  86
  87/**
  88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
  89 * @hw: pointer to the HW struct
  90 * @cmd_opc: cmd opcode
  91 * @elems_req: number of elements to request
  92 * @buf: pointer to buffer
  93 * @buf_size: buffer size in bytes
  94 * @elems_resp: returns total number of elements response
  95 * @cd: pointer to command details structure or NULL
  96 *
  97 * This function sends a scheduling elements cmd (cmd_opc)
  98 */
  99static int
 100ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
 101			    u16 elems_req, void *buf, u16 buf_size,
 102			    u16 *elems_resp, struct ice_sq_cd *cd)
 103{
 104	struct ice_aqc_sched_elem_cmd *cmd;
 105	struct ice_aq_desc desc;
 106	int status;
 107
 108	cmd = &desc.params.sched_elem_cmd;
 109	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
 110	cmd->num_elem_req = cpu_to_le16(elems_req);
 111	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 112	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 113	if (!status && elems_resp)
 114		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
 115
 116	return status;
 117}
 118
 119/**
 120 * ice_aq_query_sched_elems - query scheduler elements
 121 * @hw: pointer to the HW struct
 122 * @elems_req: number of elements to query
 123 * @buf: pointer to buffer
 124 * @buf_size: buffer size in bytes
 125 * @elems_ret: returns total number of elements returned
 126 * @cd: pointer to command details structure or NULL
 127 *
 128 * Query scheduling elements (0x0404)
 129 */
 130int
 131ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
 132			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
 133			 u16 *elems_ret, struct ice_sq_cd *cd)
 134{
 135	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
 136					   elems_req, (void *)buf, buf_size,
 137					   elems_ret, cd);
 138}
 139
 140/**
 141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
 142 * @pi: port information structure
 143 * @layer: Scheduler layer of the node
 144 * @info: Scheduler element information from firmware
 145 * @prealloc_node: preallocated ice_sched_node struct for SW DB
 146 *
 147 * This function inserts a scheduler node to the SW DB.
 148 */
 149int
 150ice_sched_add_node(struct ice_port_info *pi, u8 layer,
 151		   struct ice_aqc_txsched_elem_data *info,
 152		   struct ice_sched_node *prealloc_node)
 153{
 154	struct ice_aqc_txsched_elem_data elem;
 155	struct ice_sched_node *parent;
 156	struct ice_sched_node *node;
 157	struct ice_hw *hw;
 158	int status;
 159
 160	if (!pi)
 161		return -EINVAL;
 162
 163	hw = pi->hw;
 164
 165	/* A valid parent node should be there */
 166	parent = ice_sched_find_node_by_teid(pi->root,
 167					     le32_to_cpu(info->parent_teid));
 168	if (!parent) {
 169		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
 170			  le32_to_cpu(info->parent_teid));
 171		return -EINVAL;
 172	}
 173
 174	/* query the current node information from FW before adding it
 175	 * to the SW DB
 176	 */
 177	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
 178	if (status)
 179		return status;
 180
 181	if (prealloc_node)
 182		node = prealloc_node;
 183	else
 184		node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
 185	if (!node)
 186		return -ENOMEM;
 187	if (hw->max_children[layer]) {
 
 188		node->children = devm_kcalloc(ice_hw_to_dev(hw),
 189					      hw->max_children[layer],
 190					      sizeof(*node->children), GFP_KERNEL);
 191		if (!node->children) {
 192			devm_kfree(ice_hw_to_dev(hw), node);
 193			return -ENOMEM;
 194		}
 195	}
 196
 197	node->in_use = true;
 198	node->parent = parent;
 199	node->tx_sched_layer = layer;
 200	parent->children[parent->num_children++] = node;
 201	node->info = elem;
 202	return 0;
 203}
 204
 205/**
 206 * ice_aq_delete_sched_elems - delete scheduler elements
 207 * @hw: pointer to the HW struct
 208 * @grps_req: number of groups to delete
 209 * @buf: pointer to buffer
 210 * @buf_size: buffer size in bytes
 211 * @grps_del: returns total number of elements deleted
 212 * @cd: pointer to command details structure or NULL
 213 *
 214 * Delete scheduling elements (0x040F)
 215 */
 216static int
 217ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
 218			  struct ice_aqc_delete_elem *buf, u16 buf_size,
 219			  u16 *grps_del, struct ice_sq_cd *cd)
 220{
 221	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
 222					   grps_req, (void *)buf, buf_size,
 223					   grps_del, cd);
 224}
 225
 226/**
 227 * ice_sched_remove_elems - remove nodes from HW
 228 * @hw: pointer to the HW struct
 229 * @parent: pointer to the parent node
 230 * @node_teid: node teid to be deleted
 231 *
 232 * This function remove nodes from HW
 233 */
 234static int
 235ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
 236		       u32 node_teid)
 237{
 238	DEFINE_RAW_FLEX(struct ice_aqc_delete_elem, buf, teid, 1);
 239	u16 buf_size = __struct_size(buf);
 240	u16 num_groups_removed = 0;
 241	int status;
 242
 243	buf->hdr.parent_teid = parent->info.node_teid;
 244	buf->hdr.num_elems = cpu_to_le16(1);
 245	buf->teid[0] = cpu_to_le32(node_teid);
 246
 247	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
 248					   &num_groups_removed, NULL);
 249	if (status || num_groups_removed != 1)
 250		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
 251			  hw->adminq.sq_last_status);
 252
 253	return status;
 254}
 255
 256/**
 257 * ice_sched_get_first_node - get the first node of the given layer
 258 * @pi: port information structure
 259 * @parent: pointer the base node of the subtree
 260 * @layer: layer number
 261 *
 262 * This function retrieves the first node of the given layer from the subtree
 263 */
 264static struct ice_sched_node *
 265ice_sched_get_first_node(struct ice_port_info *pi,
 266			 struct ice_sched_node *parent, u8 layer)
 267{
 268	return pi->sib_head[parent->tc_num][layer];
 269}
 270
 271/**
 272 * ice_sched_get_tc_node - get pointer to TC node
 273 * @pi: port information structure
 274 * @tc: TC number
 275 *
 276 * This function returns the TC node pointer
 277 */
 278struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
 279{
 280	u8 i;
 281
 282	if (!pi || !pi->root)
 283		return NULL;
 284	for (i = 0; i < pi->root->num_children; i++)
 285		if (pi->root->children[i]->tc_num == tc)
 286			return pi->root->children[i];
 287	return NULL;
 288}
 289
 290/**
 291 * ice_free_sched_node - Free a Tx scheduler node from SW DB
 292 * @pi: port information structure
 293 * @node: pointer to the ice_sched_node struct
 294 *
 295 * This function frees up a node from SW DB as well as from HW
 296 *
 297 * This function needs to be called with the port_info->sched_lock held
 298 */
 299void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
 300{
 301	struct ice_sched_node *parent;
 302	struct ice_hw *hw = pi->hw;
 303	u8 i, j;
 304
 305	/* Free the children before freeing up the parent node
 306	 * The parent array is updated below and that shifts the nodes
 307	 * in the array. So always pick the first child if num children > 0
 308	 */
 309	while (node->num_children)
 310		ice_free_sched_node(pi, node->children[0]);
 311
 312	/* Leaf, TC and root nodes can't be deleted by SW */
 313	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
 314	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
 315	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
 316	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
 317		u32 teid = le32_to_cpu(node->info.node_teid);
 318
 319		ice_sched_remove_elems(hw, node->parent, teid);
 320	}
 321	parent = node->parent;
 322	/* root has no parent */
 323	if (parent) {
 324		struct ice_sched_node *p;
 325
 326		/* update the parent */
 327		for (i = 0; i < parent->num_children; i++)
 328			if (parent->children[i] == node) {
 329				for (j = i + 1; j < parent->num_children; j++)
 330					parent->children[j - 1] =
 331						parent->children[j];
 332				parent->num_children--;
 333				break;
 334			}
 335
 336		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
 337		while (p) {
 338			if (p->sibling == node) {
 339				p->sibling = node->sibling;
 340				break;
 341			}
 342			p = p->sibling;
 343		}
 344
 345		/* update the sibling head if head is getting removed */
 346		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
 347			pi->sib_head[node->tc_num][node->tx_sched_layer] =
 348				node->sibling;
 349	}
 350
 351	devm_kfree(ice_hw_to_dev(hw), node->children);
 352	kfree(node->name);
 353	xa_erase(&pi->sched_node_ids, node->id);
 354	devm_kfree(ice_hw_to_dev(hw), node);
 355}
 356
 357/**
 358 * ice_aq_get_dflt_topo - gets default scheduler topology
 359 * @hw: pointer to the HW struct
 360 * @lport: logical port number
 361 * @buf: pointer to buffer
 362 * @buf_size: buffer size in bytes
 363 * @num_branches: returns total number of queue to port branches
 364 * @cd: pointer to command details structure or NULL
 365 *
 366 * Get default scheduler topology (0x400)
 367 */
 368static int
 369ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
 370		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
 371		     u8 *num_branches, struct ice_sq_cd *cd)
 372{
 373	struct ice_aqc_get_topo *cmd;
 374	struct ice_aq_desc desc;
 375	int status;
 376
 377	cmd = &desc.params.get_topo;
 378	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
 379	cmd->port_num = lport;
 380	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 381	if (!status && num_branches)
 382		*num_branches = cmd->num_branches;
 383
 384	return status;
 385}
 386
 387/**
 388 * ice_aq_add_sched_elems - adds scheduling element
 389 * @hw: pointer to the HW struct
 390 * @grps_req: the number of groups that are requested to be added
 391 * @buf: pointer to buffer
 392 * @buf_size: buffer size in bytes
 393 * @grps_added: returns total number of groups added
 394 * @cd: pointer to command details structure or NULL
 395 *
 396 * Add scheduling elements (0x0401)
 397 */
 398static int
 399ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
 400		       struct ice_aqc_add_elem *buf, u16 buf_size,
 401		       u16 *grps_added, struct ice_sq_cd *cd)
 402{
 403	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
 404					   grps_req, (void *)buf, buf_size,
 405					   grps_added, cd);
 406}
 407
 408/**
 409 * ice_aq_cfg_sched_elems - configures scheduler elements
 410 * @hw: pointer to the HW struct
 411 * @elems_req: number of elements to configure
 412 * @buf: pointer to buffer
 413 * @buf_size: buffer size in bytes
 414 * @elems_cfgd: returns total number of elements configured
 415 * @cd: pointer to command details structure or NULL
 416 *
 417 * Configure scheduling elements (0x0403)
 418 */
 419static int
 420ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
 421		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
 422		       u16 *elems_cfgd, struct ice_sq_cd *cd)
 423{
 424	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
 425					   elems_req, (void *)buf, buf_size,
 426					   elems_cfgd, cd);
 427}
 428
 429/**
 430 * ice_aq_move_sched_elems - move scheduler element (just 1 group)
 431 * @hw: pointer to the HW struct
 432 * @buf: pointer to buffer
 433 * @buf_size: buffer size in bytes
 434 * @grps_movd: returns total number of groups moved
 435 *
 436 * Move scheduling elements (0x0408)
 437 */
 438int
 439ice_aq_move_sched_elems(struct ice_hw *hw, struct ice_aqc_move_elem *buf,
 440			u16 buf_size, u16 *grps_movd)
 441{
 442	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
 443					   1, buf, buf_size, grps_movd, NULL);
 444}
 445
 446/**
 447 * ice_aq_suspend_sched_elems - suspend scheduler elements
 448 * @hw: pointer to the HW struct
 449 * @elems_req: number of elements to suspend
 450 * @buf: pointer to buffer
 451 * @buf_size: buffer size in bytes
 452 * @elems_ret: returns total number of elements suspended
 453 * @cd: pointer to command details structure or NULL
 454 *
 455 * Suspend scheduling elements (0x0409)
 456 */
 457static int
 458ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
 459			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
 460{
 461	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
 462					   elems_req, (void *)buf, buf_size,
 463					   elems_ret, cd);
 464}
 465
 466/**
 467 * ice_aq_resume_sched_elems - resume scheduler elements
 468 * @hw: pointer to the HW struct
 469 * @elems_req: number of elements to resume
 470 * @buf: pointer to buffer
 471 * @buf_size: buffer size in bytes
 472 * @elems_ret: returns total number of elements resumed
 473 * @cd: pointer to command details structure or NULL
 474 *
 475 * resume scheduling elements (0x040A)
 476 */
 477static int
 478ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
 479			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
 480{
 481	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
 482					   elems_req, (void *)buf, buf_size,
 483					   elems_ret, cd);
 484}
 485
 486/**
 487 * ice_aq_query_sched_res - query scheduler resource
 488 * @hw: pointer to the HW struct
 489 * @buf_size: buffer size in bytes
 490 * @buf: pointer to buffer
 491 * @cd: pointer to command details structure or NULL
 492 *
 493 * Query scheduler resource allocation (0x0412)
 494 */
 495static int
 496ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
 497		       struct ice_aqc_query_txsched_res_resp *buf,
 498		       struct ice_sq_cd *cd)
 499{
 500	struct ice_aq_desc desc;
 501
 502	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
 503	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 504}
 505
 506/**
 507 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
 508 * @hw: pointer to the HW struct
 509 * @num_nodes: number of nodes
 510 * @node_teids: array of node teids to be suspended or resumed
 511 * @suspend: true means suspend / false means resume
 512 *
 513 * This function suspends or resumes HW nodes
 514 */
 515int
 516ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
 517			       bool suspend)
 518{
 519	u16 i, buf_size, num_elem_ret = 0;
 520	__le32 *buf;
 521	int status;
 522
 523	buf_size = sizeof(*buf) * num_nodes;
 524	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
 525	if (!buf)
 526		return -ENOMEM;
 527
 528	for (i = 0; i < num_nodes; i++)
 529		buf[i] = cpu_to_le32(node_teids[i]);
 530
 531	if (suspend)
 532		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
 533						    buf_size, &num_elem_ret,
 534						    NULL);
 535	else
 536		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
 537						   buf_size, &num_elem_ret,
 538						   NULL);
 539	if (status || num_elem_ret != num_nodes)
 540		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
 541
 542	devm_kfree(ice_hw_to_dev(hw), buf);
 543	return status;
 544}
 545
 546/**
 547 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
 548 * @hw: pointer to the HW struct
 549 * @vsi_handle: VSI handle
 550 * @tc: TC number
 551 * @new_numqs: number of queues
 552 */
 553static int
 554ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
 555{
 556	struct ice_vsi_ctx *vsi_ctx;
 557	struct ice_q_ctx *q_ctx;
 558	u16 idx;
 559
 560	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
 561	if (!vsi_ctx)
 562		return -EINVAL;
 563	/* allocate LAN queue contexts */
 564	if (!vsi_ctx->lan_q_ctx[tc]) {
 565		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
 566				     sizeof(*q_ctx), GFP_KERNEL);
 567		if (!q_ctx)
 568			return -ENOMEM;
 569
 570		for (idx = 0; idx < new_numqs; idx++) {
 571			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
 572			q_ctx[idx].q_teid = ICE_INVAL_TEID;
 573		}
 574
 575		vsi_ctx->lan_q_ctx[tc] = q_ctx;
 576		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
 577		return 0;
 578	}
 579	/* num queues are increased, update the queue contexts */
 580	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
 581		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
 582
 583		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
 584				     sizeof(*q_ctx), GFP_KERNEL);
 585		if (!q_ctx)
 586			return -ENOMEM;
 587
 588		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
 589		       prev_num * sizeof(*q_ctx));
 590		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
 591
 592		for (idx = prev_num; idx < new_numqs; idx++) {
 593			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
 594			q_ctx[idx].q_teid = ICE_INVAL_TEID;
 595		}
 596
 597		vsi_ctx->lan_q_ctx[tc] = q_ctx;
 598		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
 599	}
 600	return 0;
 601}
 602
 603/**
 604 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
 605 * @hw: pointer to the HW struct
 606 * @vsi_handle: VSI handle
 607 * @tc: TC number
 608 * @new_numqs: number of queues
 609 */
 610static int
 611ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
 612{
 613	struct ice_vsi_ctx *vsi_ctx;
 614	struct ice_q_ctx *q_ctx;
 615
 616	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
 617	if (!vsi_ctx)
 618		return -EINVAL;
 619	/* allocate RDMA queue contexts */
 620	if (!vsi_ctx->rdma_q_ctx[tc]) {
 621		vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
 622						       new_numqs,
 623						       sizeof(*q_ctx),
 624						       GFP_KERNEL);
 625		if (!vsi_ctx->rdma_q_ctx[tc])
 626			return -ENOMEM;
 627		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
 628		return 0;
 629	}
 630	/* num queues are increased, update the queue contexts */
 631	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
 632		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
 633
 634		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
 635				     sizeof(*q_ctx), GFP_KERNEL);
 636		if (!q_ctx)
 637			return -ENOMEM;
 638		memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
 639		       prev_num * sizeof(*q_ctx));
 640		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
 641		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
 642		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
 643	}
 644	return 0;
 645}
 646
 647/**
 648 * ice_aq_rl_profile - performs a rate limiting task
 649 * @hw: pointer to the HW struct
 650 * @opcode: opcode for add, query, or remove profile(s)
 651 * @num_profiles: the number of profiles
 652 * @buf: pointer to buffer
 653 * @buf_size: buffer size in bytes
 654 * @num_processed: number of processed add or remove profile(s) to return
 655 * @cd: pointer to command details structure
 656 *
 657 * RL profile function to add, query, or remove profile(s)
 658 */
 659static int
 660ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
 661		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
 662		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
 663{
 664	struct ice_aqc_rl_profile *cmd;
 665	struct ice_aq_desc desc;
 666	int status;
 667
 668	cmd = &desc.params.rl_profile;
 669
 670	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
 671	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 672	cmd->num_profiles = cpu_to_le16(num_profiles);
 673	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 674	if (!status && num_processed)
 675		*num_processed = le16_to_cpu(cmd->num_processed);
 676	return status;
 677}
 678
 679/**
 680 * ice_aq_add_rl_profile - adds rate limiting profile(s)
 681 * @hw: pointer to the HW struct
 682 * @num_profiles: the number of profile(s) to be add
 683 * @buf: pointer to buffer
 684 * @buf_size: buffer size in bytes
 685 * @num_profiles_added: total number of profiles added to return
 686 * @cd: pointer to command details structure
 687 *
 688 * Add RL profile (0x0410)
 689 */
 690static int
 691ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
 692		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
 693		      u16 *num_profiles_added, struct ice_sq_cd *cd)
 694{
 695	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
 696				 buf, buf_size, num_profiles_added, cd);
 697}
 698
 699/**
 700 * ice_aq_remove_rl_profile - removes RL profile(s)
 701 * @hw: pointer to the HW struct
 702 * @num_profiles: the number of profile(s) to remove
 703 * @buf: pointer to buffer
 704 * @buf_size: buffer size in bytes
 705 * @num_profiles_removed: total number of profiles removed to return
 706 * @cd: pointer to command details structure or NULL
 707 *
 708 * Remove RL profile (0x0415)
 709 */
 710static int
 711ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
 712			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
 713			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
 714{
 715	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
 716				 num_profiles, buf, buf_size,
 717				 num_profiles_removed, cd);
 718}
 719
 720/**
 721 * ice_sched_del_rl_profile - remove RL profile
 722 * @hw: pointer to the HW struct
 723 * @rl_info: rate limit profile information
 724 *
 725 * If the profile ID is not referenced anymore, it removes profile ID with
 726 * its associated parameters from HW DB,and locally. The caller needs to
 727 * hold scheduler lock.
 728 */
 729static int
 730ice_sched_del_rl_profile(struct ice_hw *hw,
 731			 struct ice_aqc_rl_profile_info *rl_info)
 732{
 733	struct ice_aqc_rl_profile_elem *buf;
 734	u16 num_profiles_removed;
 735	u16 num_profiles = 1;
 736	int status;
 737
 738	if (rl_info->prof_id_ref != 0)
 739		return -EBUSY;
 740
 741	/* Safe to remove profile ID */
 742	buf = &rl_info->profile;
 743	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
 744					  &num_profiles_removed, NULL);
 745	if (status || num_profiles_removed != num_profiles)
 746		return -EIO;
 747
 748	/* Delete stale entry now */
 749	list_del(&rl_info->list_entry);
 750	devm_kfree(ice_hw_to_dev(hw), rl_info);
 751	return status;
 752}
 753
 754/**
 755 * ice_sched_clear_rl_prof - clears RL prof entries
 756 * @pi: port information structure
 757 *
 758 * This function removes all RL profile from HW as well as from SW DB.
 759 */
 760static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
 761{
 762	u16 ln;
 763
 764	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
 765		struct ice_aqc_rl_profile_info *rl_prof_elem;
 766		struct ice_aqc_rl_profile_info *rl_prof_tmp;
 767
 768		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
 769					 &pi->rl_prof_list[ln], list_entry) {
 770			struct ice_hw *hw = pi->hw;
 771			int status;
 772
 773			rl_prof_elem->prof_id_ref = 0;
 774			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
 775			if (status) {
 776				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
 777				/* On error, free mem required */
 778				list_del(&rl_prof_elem->list_entry);
 779				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
 780			}
 781		}
 782	}
 783}
 784
 785/**
 786 * ice_sched_clear_agg - clears the aggregator related information
 787 * @hw: pointer to the hardware structure
 788 *
 789 * This function removes aggregator list and free up aggregator related memory
 790 * previously allocated.
 791 */
 792void ice_sched_clear_agg(struct ice_hw *hw)
 793{
 794	struct ice_sched_agg_info *agg_info;
 795	struct ice_sched_agg_info *atmp;
 796
 797	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
 798		struct ice_sched_agg_vsi_info *agg_vsi_info;
 799		struct ice_sched_agg_vsi_info *vtmp;
 800
 801		list_for_each_entry_safe(agg_vsi_info, vtmp,
 802					 &agg_info->agg_vsi_list, list_entry) {
 803			list_del(&agg_vsi_info->list_entry);
 804			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
 805		}
 806		list_del(&agg_info->list_entry);
 807		devm_kfree(ice_hw_to_dev(hw), agg_info);
 808	}
 809}
 810
 811/**
 812 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
 813 * @pi: port information structure
 814 *
 815 * This function removes all the nodes from HW as well as from SW DB.
 816 */
 817static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
 818{
 819	if (!pi)
 820		return;
 821	/* remove RL profiles related lists */
 822	ice_sched_clear_rl_prof(pi);
 823	if (pi->root) {
 824		ice_free_sched_node(pi, pi->root);
 825		pi->root = NULL;
 826	}
 827}
 828
 829/**
 830 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
 831 * @pi: port information structure
 832 *
 833 * Cleanup scheduling elements from SW DB
 834 */
 835void ice_sched_clear_port(struct ice_port_info *pi)
 836{
 837	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
 838		return;
 839
 840	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
 841	mutex_lock(&pi->sched_lock);
 842	ice_sched_clear_tx_topo(pi);
 843	mutex_unlock(&pi->sched_lock);
 844	mutex_destroy(&pi->sched_lock);
 845}
 846
 847/**
 848 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
 849 * @hw: pointer to the HW struct
 850 *
 851 * Cleanup scheduling elements from SW DB for all the ports
 852 */
 853void ice_sched_cleanup_all(struct ice_hw *hw)
 854{
 855	if (!hw)
 856		return;
 857
 858	devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
 859	hw->layer_info = NULL;
 860
 861	ice_sched_clear_port(hw->port_info);
 862
 863	hw->num_tx_sched_layers = 0;
 864	hw->num_tx_sched_phys_layers = 0;
 865	hw->flattened_layers = 0;
 866	hw->max_cgds = 0;
 867}
 868
 869/**
 870 * ice_sched_add_elems - add nodes to HW and SW DB
 871 * @pi: port information structure
 872 * @tc_node: pointer to the branch node
 873 * @parent: pointer to the parent node
 874 * @layer: layer number to add nodes
 875 * @num_nodes: number of nodes
 876 * @num_nodes_added: pointer to num nodes added
 877 * @first_node_teid: if new nodes are added then return the TEID of first node
 878 * @prealloc_nodes: preallocated nodes struct for software DB
 879 *
 880 * This function add nodes to HW as well as to SW DB for a given layer
 881 */
 882int
 883ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
 884		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
 885		    u16 *num_nodes_added, u32 *first_node_teid,
 886		    struct ice_sched_node **prealloc_nodes)
 887{
 888	struct ice_sched_node *prev, *new_node;
 889	struct ice_aqc_add_elem *buf;
 890	u16 i, num_groups_added = 0;
 891	struct ice_hw *hw = pi->hw;
 892	size_t buf_size;
 893	int status = 0;
 894	u32 teid;
 895
 896	buf_size = struct_size(buf, generic, num_nodes);
 897	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
 898	if (!buf)
 899		return -ENOMEM;
 900
 901	buf->hdr.parent_teid = parent->info.node_teid;
 902	buf->hdr.num_elems = cpu_to_le16(num_nodes);
 903	for (i = 0; i < num_nodes; i++) {
 904		buf->generic[i].parent_teid = parent->info.node_teid;
 905		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
 906		buf->generic[i].data.valid_sections =
 907			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
 908			ICE_AQC_ELEM_VALID_EIR;
 909		buf->generic[i].data.generic = 0;
 910		buf->generic[i].data.cir_bw.bw_profile_idx =
 911			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
 912		buf->generic[i].data.cir_bw.bw_alloc =
 913			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
 914		buf->generic[i].data.eir_bw.bw_profile_idx =
 915			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
 916		buf->generic[i].data.eir_bw.bw_alloc =
 917			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
 918	}
 919
 920	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
 921					&num_groups_added, NULL);
 922	if (status || num_groups_added != 1) {
 923		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
 924			  hw->adminq.sq_last_status);
 925		devm_kfree(ice_hw_to_dev(hw), buf);
 926		return -EIO;
 927	}
 928
 929	*num_nodes_added = num_nodes;
 930	/* add nodes to the SW DB */
 931	for (i = 0; i < num_nodes; i++) {
 932		if (prealloc_nodes)
 933			status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
 934		else
 935			status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
 936
 937		if (status) {
 938			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
 939				  status);
 940			break;
 941		}
 942
 943		teid = le32_to_cpu(buf->generic[i].node_teid);
 944		new_node = ice_sched_find_node_by_teid(parent, teid);
 945		if (!new_node) {
 946			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
 947			break;
 948		}
 949
 950		new_node->sibling = NULL;
 951		new_node->tc_num = tc_node->tc_num;
 952		new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
 953		new_node->tx_share = ICE_SCHED_DFLT_BW;
 954		new_node->tx_max = ICE_SCHED_DFLT_BW;
 955		new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
 956		if (!new_node->name)
 957			return -ENOMEM;
 958
 959		status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
 960				  GFP_KERNEL);
 961		if (status) {
 962			ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
 963				  status);
 964			break;
 965		}
 966
 967		snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
 968
 969		/* add it to previous node sibling pointer */
 970		/* Note: siblings are not linked across branches */
 971		prev = ice_sched_get_first_node(pi, tc_node, layer);
 972		if (prev && prev != new_node) {
 973			while (prev->sibling)
 974				prev = prev->sibling;
 975			prev->sibling = new_node;
 976		}
 977
 978		/* initialize the sibling head */
 979		if (!pi->sib_head[tc_node->tc_num][layer])
 980			pi->sib_head[tc_node->tc_num][layer] = new_node;
 981
 982		if (i == 0)
 983			*first_node_teid = teid;
 984	}
 985
 986	devm_kfree(ice_hw_to_dev(hw), buf);
 987	return status;
 988}
 989
 990/**
 991 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
 992 * @pi: port information structure
 993 * @tc_node: pointer to TC node
 994 * @parent: pointer to parent node
 995 * @layer: layer number to add nodes
 996 * @num_nodes: number of nodes to be added
 997 * @first_node_teid: pointer to the first node TEID
 998 * @num_nodes_added: pointer to number of nodes added
 999 *
1000 * Add nodes into specific HW layer.
1001 */
1002static int
1003ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1004				struct ice_sched_node *tc_node,
1005				struct ice_sched_node *parent, u8 layer,
1006				u16 num_nodes, u32 *first_node_teid,
1007				u16 *num_nodes_added)
1008{
1009	u16 max_child_nodes;
1010
1011	*num_nodes_added = 0;
1012
1013	if (!num_nodes)
1014		return 0;
1015
1016	if (!parent || layer < pi->hw->sw_entry_point_layer)
1017		return -EINVAL;
1018
1019	/* max children per node per layer */
1020	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1021
1022	/* current number of children + required nodes exceed max children */
1023	if ((parent->num_children + num_nodes) > max_child_nodes) {
1024		/* Fail if the parent is a TC node */
1025		if (parent == tc_node)
1026			return -EIO;
1027		return -ENOSPC;
1028	}
1029
1030	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1031				   num_nodes_added, first_node_teid, NULL);
1032}
1033
1034/**
1035 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1036 * @pi: port information structure
1037 * @tc_node: pointer to TC node
1038 * @parent: pointer to parent node
1039 * @layer: layer number to add nodes
1040 * @num_nodes: number of nodes to be added
1041 * @first_node_teid: pointer to the first node TEID
1042 * @num_nodes_added: pointer to number of nodes added
1043 *
1044 * This function add nodes to a given layer.
1045 */
1046int
1047ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1048			     struct ice_sched_node *tc_node,
1049			     struct ice_sched_node *parent, u8 layer,
1050			     u16 num_nodes, u32 *first_node_teid,
1051			     u16 *num_nodes_added)
1052{
1053	u32 *first_teid_ptr = first_node_teid;
1054	u16 new_num_nodes = num_nodes;
1055	int status = 0;
1056
1057	*num_nodes_added = 0;
1058	while (*num_nodes_added < num_nodes) {
1059		u16 max_child_nodes, num_added = 0;
1060		u32 temp;
1061
1062		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1063							 layer,	new_num_nodes,
1064							 first_teid_ptr,
1065							 &num_added);
1066		if (!status)
1067			*num_nodes_added += num_added;
1068		/* added more nodes than requested ? */
1069		if (*num_nodes_added > num_nodes) {
1070			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1071				  *num_nodes_added);
1072			status = -EIO;
1073			break;
1074		}
1075		/* break if all the nodes are added successfully */
1076		if (!status && (*num_nodes_added == num_nodes))
1077			break;
1078		/* break if the error is not max limit */
1079		if (status && status != -ENOSPC)
1080			break;
1081		/* Exceeded the max children */
1082		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1083		/* utilize all the spaces if the parent is not full */
1084		if (parent->num_children < max_child_nodes) {
1085			new_num_nodes = max_child_nodes - parent->num_children;
1086		} else {
1087			/* This parent is full, try the next sibling */
1088			parent = parent->sibling;
1089			/* Don't modify the first node TEID memory if the
1090			 * first node was added already in the above call.
1091			 * Instead send some temp memory for all other
1092			 * recursive calls.
1093			 */
1094			if (num_added)
1095				first_teid_ptr = &temp;
1096
1097			new_num_nodes = num_nodes - *num_nodes_added;
1098		}
1099	}
1100	return status;
1101}
1102
1103/**
1104 * ice_sched_get_qgrp_layer - get the current queue group layer number
1105 * @hw: pointer to the HW struct
1106 *
1107 * This function returns the current queue group layer number
1108 */
1109static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1110{
1111	/* It's always total layers - 1, the array is 0 relative so -2 */
1112	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1113}
1114
1115/**
1116 * ice_sched_get_vsi_layer - get the current VSI layer number
1117 * @hw: pointer to the HW struct
1118 *
1119 * This function returns the current VSI layer number
1120 */
1121u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1122{
1123	/* Num Layers       VSI layer
1124	 *     9               6
1125	 *     7               4
1126	 *     5 or less       sw_entry_point_layer
1127	 */
1128	/* calculate the VSI layer based on number of layers. */
1129	if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1130		return hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1131	else if (hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS)
1132		/* qgroup and VSI layers are same */
1133		return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
 
1134	return hw->sw_entry_point_layer;
1135}
1136
1137/**
1138 * ice_sched_get_agg_layer - get the current aggregator layer number
1139 * @hw: pointer to the HW struct
1140 *
1141 * This function returns the current aggregator layer number
1142 */
1143u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1144{
1145	/* Num Layers       aggregator layer
1146	 *     9               4
1147	 *     7 or less       sw_entry_point_layer
1148	 */
1149	/* calculate the aggregator layer based on number of layers. */
1150	if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1151		return hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1152	else
1153		return hw->sw_entry_point_layer;
 
 
 
1154}
1155
1156/**
1157 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1158 * @pi: port information structure
1159 *
1160 * This function removes the leaf node that was created by the FW
1161 * during initialization
1162 */
1163static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1164{
1165	struct ice_sched_node *node;
1166
1167	node = pi->root;
1168	while (node) {
1169		if (!node->num_children)
1170			break;
1171		node = node->children[0];
1172	}
1173	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1174		u32 teid = le32_to_cpu(node->info.node_teid);
1175		int status;
1176
1177		/* remove the default leaf node */
1178		status = ice_sched_remove_elems(pi->hw, node->parent, teid);
1179		if (!status)
1180			ice_free_sched_node(pi, node);
1181	}
1182}
1183
1184/**
1185 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1186 * @pi: port information structure
1187 *
1188 * This function frees all the nodes except root and TC that were created by
1189 * the FW during initialization
1190 */
1191static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1192{
1193	struct ice_sched_node *node;
1194
1195	ice_rm_dflt_leaf_node(pi);
1196
1197	/* remove the default nodes except TC and root nodes */
1198	node = pi->root;
1199	while (node) {
1200		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1201		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1202		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1203			ice_free_sched_node(pi, node);
1204			break;
1205		}
1206
1207		if (!node->num_children)
1208			break;
1209		node = node->children[0];
1210	}
1211}
1212
1213/**
1214 * ice_sched_init_port - Initialize scheduler by querying information from FW
1215 * @pi: port info structure for the tree to cleanup
1216 *
1217 * This function is the initial call to find the total number of Tx scheduler
1218 * resources, default topology created by firmware and storing the information
1219 * in SW DB.
1220 */
1221int ice_sched_init_port(struct ice_port_info *pi)
1222{
1223	struct ice_aqc_get_topo_elem *buf;
1224	struct ice_hw *hw;
1225	u8 num_branches;
1226	u16 num_elems;
1227	int status;
1228	u8 i, j;
1229
1230	if (!pi)
1231		return -EINVAL;
1232	hw = pi->hw;
1233
1234	/* Query the Default Topology from FW */
1235	buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1236	if (!buf)
1237		return -ENOMEM;
1238
1239	/* Query default scheduling tree topology */
1240	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1241				      &num_branches, NULL);
1242	if (status)
1243		goto err_init_port;
1244
1245	/* num_branches should be between 1-8 */
1246	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1247		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1248			  num_branches);
1249		status = -EINVAL;
1250		goto err_init_port;
1251	}
1252
1253	/* get the number of elements on the default/first branch */
1254	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1255
1256	/* num_elems should always be between 1-9 */
1257	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1258		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1259			  num_elems);
1260		status = -EINVAL;
1261		goto err_init_port;
1262	}
1263
1264	/* If the last node is a leaf node then the index of the queue group
1265	 * layer is two less than the number of elements.
1266	 */
1267	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1268	    ICE_AQC_ELEM_TYPE_LEAF)
1269		pi->last_node_teid =
1270			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1271	else
1272		pi->last_node_teid =
1273			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1274
1275	/* Insert the Tx Sched root node */
1276	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1277	if (status)
1278		goto err_init_port;
1279
1280	/* Parse the default tree and cache the information */
1281	for (i = 0; i < num_branches; i++) {
1282		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1283
1284		/* Skip root element as already inserted */
1285		for (j = 1; j < num_elems; j++) {
1286			/* update the sw entry point */
1287			if (buf[0].generic[j].data.elem_type ==
1288			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1289				hw->sw_entry_point_layer = j;
1290
1291			status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1292			if (status)
1293				goto err_init_port;
1294		}
1295	}
1296
1297	/* Remove the default nodes. */
1298	if (pi->root)
1299		ice_sched_rm_dflt_nodes(pi);
1300
1301	/* initialize the port for handling the scheduler tree */
1302	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1303	mutex_init(&pi->sched_lock);
1304	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1305		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1306
1307err_init_port:
1308	if (status && pi->root) {
1309		ice_free_sched_node(pi, pi->root);
1310		pi->root = NULL;
1311	}
1312
1313	kfree(buf);
1314	return status;
1315}
1316
1317/**
1318 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1319 * @hw: pointer to the HW struct
1320 *
1321 * query FW for allocated scheduler resources and store in HW struct
1322 */
1323int ice_sched_query_res_alloc(struct ice_hw *hw)
1324{
1325	struct ice_aqc_query_txsched_res_resp *buf;
1326	__le16 max_sibl;
1327	int status = 0;
1328	u16 i;
1329
1330	if (hw->layer_info)
1331		return status;
1332
1333	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1334	if (!buf)
1335		return -ENOMEM;
1336
1337	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1338	if (status)
1339		goto sched_query_out;
1340
1341	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1342	hw->num_tx_sched_phys_layers =
1343		le16_to_cpu(buf->sched_props.phys_levels);
1344	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1345	hw->max_cgds = buf->sched_props.max_pf_cgds;
1346
1347	/* max sibling group size of current layer refers to the max children
1348	 * of the below layer node.
1349	 * layer 1 node max children will be layer 2 max sibling group size
1350	 * layer 2 node max children will be layer 3 max sibling group size
1351	 * and so on. This array will be populated from root (index 0) to
1352	 * qgroup layer 7. Leaf node has no children.
1353	 */
1354	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1355		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1356		hw->max_children[i] = le16_to_cpu(max_sibl);
1357	}
1358
1359	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1360				      (hw->num_tx_sched_layers *
1361				       sizeof(*hw->layer_info)),
1362				      GFP_KERNEL);
1363	if (!hw->layer_info) {
1364		status = -ENOMEM;
1365		goto sched_query_out;
1366	}
1367
1368sched_query_out:
1369	devm_kfree(ice_hw_to_dev(hw), buf);
1370	return status;
1371}
1372
1373/**
1374 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1375 * @hw: pointer to the HW struct
1376 *
1377 * Determine the PSM clock frequency and store in HW struct
1378 */
1379void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1380{
1381	u32 val, clk_src;
1382
1383	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1384	clk_src = FIELD_GET(GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M, val);
1385
1386#define PSM_CLK_SRC_367_MHZ 0x0
1387#define PSM_CLK_SRC_416_MHZ 0x1
1388#define PSM_CLK_SRC_446_MHZ 0x2
1389#define PSM_CLK_SRC_390_MHZ 0x3
1390
1391	switch (clk_src) {
1392	case PSM_CLK_SRC_367_MHZ:
1393		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1394		break;
1395	case PSM_CLK_SRC_416_MHZ:
1396		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1397		break;
1398	case PSM_CLK_SRC_446_MHZ:
1399		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1400		break;
1401	case PSM_CLK_SRC_390_MHZ:
1402		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1403		break;
1404	default:
1405		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1406			  clk_src);
1407		/* fall back to a safe default */
1408		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1409	}
1410}
1411
1412/**
1413 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1414 * @hw: pointer to the HW struct
1415 * @base: pointer to the base node
1416 * @node: pointer to the node to search
1417 *
1418 * This function checks whether a given node is part of the base node
1419 * subtree or not
1420 */
1421static bool
1422ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1423			       struct ice_sched_node *node)
1424{
1425	u8 i;
1426
1427	for (i = 0; i < base->num_children; i++) {
1428		struct ice_sched_node *child = base->children[i];
1429
1430		if (node == child)
1431			return true;
1432
1433		if (child->tx_sched_layer > node->tx_sched_layer)
1434			return false;
1435
1436		/* this recursion is intentional, and wouldn't
1437		 * go more than 8 calls
1438		 */
1439		if (ice_sched_find_node_in_subtree(hw, child, node))
1440			return true;
1441	}
1442	return false;
1443}
1444
1445/**
1446 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1447 * @pi: port information structure
1448 * @vsi_node: software VSI handle
1449 * @qgrp_node: first queue group node identified for scanning
1450 * @owner: LAN or RDMA
1451 *
1452 * This function retrieves a free LAN or RDMA queue group node by scanning
1453 * qgrp_node and its siblings for the queue group with the fewest number
1454 * of queues currently assigned.
1455 */
1456static struct ice_sched_node *
1457ice_sched_get_free_qgrp(struct ice_port_info *pi,
1458			struct ice_sched_node *vsi_node,
1459			struct ice_sched_node *qgrp_node, u8 owner)
1460{
1461	struct ice_sched_node *min_qgrp;
1462	u8 min_children;
1463
1464	if (!qgrp_node)
1465		return qgrp_node;
1466	min_children = qgrp_node->num_children;
1467	if (!min_children)
1468		return qgrp_node;
1469	min_qgrp = qgrp_node;
1470	/* scan all queue groups until find a node which has less than the
1471	 * minimum number of children. This way all queue group nodes get
1472	 * equal number of shares and active. The bandwidth will be equally
1473	 * distributed across all queues.
1474	 */
1475	while (qgrp_node) {
1476		/* make sure the qgroup node is part of the VSI subtree */
1477		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1478			if (qgrp_node->num_children < min_children &&
1479			    qgrp_node->owner == owner) {
1480				/* replace the new min queue group node */
1481				min_qgrp = qgrp_node;
1482				min_children = min_qgrp->num_children;
1483				/* break if it has no children, */
1484				if (!min_children)
1485					break;
1486			}
1487		qgrp_node = qgrp_node->sibling;
1488	}
1489	return min_qgrp;
1490}
1491
1492/**
1493 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1494 * @pi: port information structure
1495 * @vsi_handle: software VSI handle
1496 * @tc: branch number
1497 * @owner: LAN or RDMA
1498 *
1499 * This function retrieves a free LAN or RDMA queue group node
1500 */
1501struct ice_sched_node *
1502ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1503			   u8 owner)
1504{
1505	struct ice_sched_node *vsi_node, *qgrp_node;
1506	struct ice_vsi_ctx *vsi_ctx;
1507	u8 qgrp_layer, vsi_layer;
1508	u16 max_children;
 
1509
1510	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1511	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1512	max_children = pi->hw->max_children[qgrp_layer];
1513
1514	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1515	if (!vsi_ctx)
1516		return NULL;
1517	vsi_node = vsi_ctx->sched.vsi_node[tc];
1518	/* validate invalid VSI ID */
1519	if (!vsi_node)
1520		return NULL;
1521
1522	/* If the queue group and VSI layer are same then queues
1523	 * are all attached directly to VSI
1524	 */
1525	if (qgrp_layer == vsi_layer)
1526		return vsi_node;
1527
1528	/* get the first queue group node from VSI sub-tree */
1529	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1530	while (qgrp_node) {
1531		/* make sure the qgroup node is part of the VSI subtree */
1532		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1533			if (qgrp_node->num_children < max_children &&
1534			    qgrp_node->owner == owner)
1535				break;
1536		qgrp_node = qgrp_node->sibling;
1537	}
1538
1539	/* Select the best queue group */
1540	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1541}
1542
1543/**
1544 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1545 * @pi: pointer to the port information structure
1546 * @tc_node: pointer to the TC node
1547 * @vsi_handle: software VSI handle
1548 *
1549 * This function retrieves a VSI node for a given VSI ID from a given
1550 * TC branch
1551 */
1552static struct ice_sched_node *
1553ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1554		       u16 vsi_handle)
1555{
1556	struct ice_sched_node *node;
1557	u8 vsi_layer;
1558
1559	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1560	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1561
1562	/* Check whether it already exists */
1563	while (node) {
1564		if (node->vsi_handle == vsi_handle)
1565			return node;
1566		node = node->sibling;
1567	}
1568
1569	return node;
1570}
1571
1572/**
1573 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1574 * @pi: pointer to the port information structure
1575 * @tc_node: pointer to the TC node
1576 * @agg_id: aggregator ID
1577 *
1578 * This function retrieves an aggregator node for a given aggregator ID from
1579 * a given TC branch
1580 */
1581struct ice_sched_node *
1582ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1583		       u32 agg_id)
1584{
1585	struct ice_sched_node *node;
1586	struct ice_hw *hw = pi->hw;
1587	u8 agg_layer;
1588
1589	if (!hw)
1590		return NULL;
1591	agg_layer = ice_sched_get_agg_layer(hw);
1592	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1593
1594	/* Check whether it already exists */
1595	while (node) {
1596		if (node->agg_id == agg_id)
1597			return node;
1598		node = node->sibling;
1599	}
1600
1601	return node;
1602}
1603
1604/**
1605 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1606 * @hw: pointer to the HW struct
1607 * @num_qs: number of queues
1608 * @num_nodes: num nodes array
1609 *
1610 * This function calculates the number of VSI child nodes based on the
1611 * number of queues.
1612 */
1613static void
1614ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1615{
1616	u16 num = num_qs;
1617	u8 i, qgl, vsil;
1618
1619	qgl = ice_sched_get_qgrp_layer(hw);
1620	vsil = ice_sched_get_vsi_layer(hw);
1621
1622	/* calculate num nodes from queue group to VSI layer */
1623	for (i = qgl; i > vsil; i--) {
1624		/* round to the next integer if there is a remainder */
1625		num = DIV_ROUND_UP(num, hw->max_children[i]);
1626
1627		/* need at least one node */
1628		num_nodes[i] = num ? num : 1;
1629	}
1630}
1631
1632/**
1633 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1634 * @pi: port information structure
1635 * @vsi_handle: software VSI handle
1636 * @tc_node: pointer to the TC node
1637 * @num_nodes: pointer to the num nodes that needs to be added per layer
1638 * @owner: node owner (LAN or RDMA)
1639 *
1640 * This function adds the VSI child nodes to tree. It gets called for
1641 * LAN and RDMA separately.
1642 */
1643static int
1644ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1645			      struct ice_sched_node *tc_node, u16 *num_nodes,
1646			      u8 owner)
1647{
1648	struct ice_sched_node *parent, *node;
1649	struct ice_hw *hw = pi->hw;
1650	u32 first_node_teid;
1651	u16 num_added = 0;
1652	u8 i, qgl, vsil;
1653
1654	qgl = ice_sched_get_qgrp_layer(hw);
1655	vsil = ice_sched_get_vsi_layer(hw);
1656	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1657	for (i = vsil + 1; i <= qgl; i++) {
1658		int status;
1659
1660		if (!parent)
1661			return -EIO;
1662
1663		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1664						      num_nodes[i],
1665						      &first_node_teid,
1666						      &num_added);
1667		if (status || num_nodes[i] != num_added)
1668			return -EIO;
1669
1670		/* The newly added node can be a new parent for the next
1671		 * layer nodes
1672		 */
1673		if (num_added) {
1674			parent = ice_sched_find_node_by_teid(tc_node,
1675							     first_node_teid);
1676			node = parent;
1677			while (node) {
1678				node->owner = owner;
1679				node = node->sibling;
1680			}
1681		} else {
1682			parent = parent->children[0];
1683		}
1684	}
1685
1686	return 0;
1687}
1688
1689/**
1690 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1691 * @pi: pointer to the port info structure
1692 * @tc_node: pointer to TC node
1693 * @num_nodes: pointer to num nodes array
1694 *
1695 * This function calculates the number of supported nodes needed to add this
1696 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1697 * layers
1698 */
1699static void
1700ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1701				 struct ice_sched_node *tc_node, u16 *num_nodes)
1702{
1703	struct ice_sched_node *node;
1704	u8 vsil;
1705	int i;
1706
1707	vsil = ice_sched_get_vsi_layer(pi->hw);
1708	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1709		/* Add intermediate nodes if TC has no children and
1710		 * need at least one node for VSI
1711		 */
1712		if (!tc_node->num_children || i == vsil) {
1713			num_nodes[i]++;
1714		} else {
1715			/* If intermediate nodes are reached max children
1716			 * then add a new one.
1717			 */
1718			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1719			/* scan all the siblings */
1720			while (node) {
1721				if (node->num_children < pi->hw->max_children[i])
1722					break;
1723				node = node->sibling;
1724			}
1725
1726			/* tree has one intermediate node to add this new VSI.
1727			 * So no need to calculate supported nodes for below
1728			 * layers.
1729			 */
1730			if (node)
1731				break;
1732			/* all the nodes are full, allocate a new one */
1733			num_nodes[i]++;
1734		}
1735}
1736
1737/**
1738 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1739 * @pi: port information structure
1740 * @vsi_handle: software VSI handle
1741 * @tc_node: pointer to TC node
1742 * @num_nodes: pointer to num nodes array
1743 *
1744 * This function adds the VSI supported nodes into Tx tree including the
1745 * VSI, its parent and intermediate nodes in below layers
1746 */
1747static int
1748ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1749				struct ice_sched_node *tc_node, u16 *num_nodes)
1750{
1751	struct ice_sched_node *parent = tc_node;
1752	u32 first_node_teid;
1753	u16 num_added = 0;
1754	u8 i, vsil;
1755
1756	if (!pi)
1757		return -EINVAL;
1758
1759	vsil = ice_sched_get_vsi_layer(pi->hw);
1760	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1761		int status;
1762
1763		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1764						      i, num_nodes[i],
1765						      &first_node_teid,
1766						      &num_added);
1767		if (status || num_nodes[i] != num_added)
1768			return -EIO;
1769
1770		/* The newly added node can be a new parent for the next
1771		 * layer nodes
1772		 */
1773		if (num_added)
1774			parent = ice_sched_find_node_by_teid(tc_node,
1775							     first_node_teid);
1776		else
1777			parent = parent->children[0];
1778
1779		if (!parent)
1780			return -EIO;
1781
1782		if (i == vsil)
1783			parent->vsi_handle = vsi_handle;
1784	}
1785
1786	return 0;
1787}
1788
1789/**
1790 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1791 * @pi: port information structure
1792 * @vsi_handle: software VSI handle
1793 * @tc: TC number
1794 *
1795 * This function adds a new VSI into scheduler tree
1796 */
1797static int
1798ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1799{
1800	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1801	struct ice_sched_node *tc_node;
1802
1803	tc_node = ice_sched_get_tc_node(pi, tc);
1804	if (!tc_node)
1805		return -EINVAL;
1806
1807	/* calculate number of supported nodes needed for this VSI */
1808	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1809
1810	/* add VSI supported nodes to TC subtree */
1811	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1812					       num_nodes);
1813}
1814
1815/**
1816 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1817 * @pi: port information structure
1818 * @vsi_handle: software VSI handle
1819 * @tc: TC number
1820 * @new_numqs: new number of max queues
1821 * @owner: owner of this subtree
1822 *
1823 * This function updates the VSI child nodes based on the number of queues
1824 */
1825static int
1826ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1827				 u8 tc, u16 new_numqs, u8 owner)
1828{
1829	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1830	struct ice_sched_node *vsi_node;
1831	struct ice_sched_node *tc_node;
1832	struct ice_vsi_ctx *vsi_ctx;
1833	struct ice_hw *hw = pi->hw;
1834	u16 prev_numqs;
1835	int status = 0;
1836
1837	tc_node = ice_sched_get_tc_node(pi, tc);
1838	if (!tc_node)
1839		return -EIO;
1840
1841	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1842	if (!vsi_node)
1843		return -EIO;
1844
1845	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1846	if (!vsi_ctx)
1847		return -EINVAL;
1848
1849	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1850		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1851	else
1852		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1853	/* num queues are not changed or less than the previous number */
1854	if (new_numqs <= prev_numqs)
1855		return status;
1856	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1857		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1858		if (status)
1859			return status;
1860	} else {
1861		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1862		if (status)
1863			return status;
1864	}
1865
1866	if (new_numqs)
1867		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1868	/* Keep the max number of queue configuration all the time. Update the
1869	 * tree only if number of queues > previous number of queues. This may
1870	 * leave some extra nodes in the tree if number of queues < previous
1871	 * number but that wouldn't harm anything. Removing those extra nodes
1872	 * may complicate the code if those nodes are part of SRL or
1873	 * individually rate limited.
1874	 */
1875	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1876					       new_num_nodes, owner);
1877	if (status)
1878		return status;
1879	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1880		vsi_ctx->sched.max_lanq[tc] = new_numqs;
1881	else
1882		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1883
1884	return 0;
1885}
1886
1887/**
1888 * ice_sched_cfg_vsi - configure the new/existing VSI
1889 * @pi: port information structure
1890 * @vsi_handle: software VSI handle
1891 * @tc: TC number
1892 * @maxqs: max number of queues
1893 * @owner: LAN or RDMA
1894 * @enable: TC enabled or disabled
1895 *
1896 * This function adds/updates VSI nodes based on the number of queues. If TC is
1897 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1898 * disabled then suspend the VSI if it is not already.
1899 */
1900int
1901ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1902		  u8 owner, bool enable)
1903{
1904	struct ice_sched_node *vsi_node, *tc_node;
1905	struct ice_vsi_ctx *vsi_ctx;
1906	struct ice_hw *hw = pi->hw;
1907	int status = 0;
1908
1909	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1910	tc_node = ice_sched_get_tc_node(pi, tc);
1911	if (!tc_node)
1912		return -EINVAL;
1913	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1914	if (!vsi_ctx)
1915		return -EINVAL;
1916	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1917
1918	/* suspend the VSI if TC is not enabled */
1919	if (!enable) {
1920		if (vsi_node && vsi_node->in_use) {
1921			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1922
1923			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1924								true);
1925			if (!status)
1926				vsi_node->in_use = false;
1927		}
1928		return status;
1929	}
1930
1931	/* TC is enabled, if it is a new VSI then add it to the tree */
1932	if (!vsi_node) {
1933		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1934		if (status)
1935			return status;
1936
1937		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1938		if (!vsi_node)
1939			return -EIO;
1940
1941		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1942		vsi_node->in_use = true;
1943		/* invalidate the max queues whenever VSI gets added first time
1944		 * into the scheduler tree (boot or after reset). We need to
1945		 * recreate the child nodes all the time in these cases.
1946		 */
1947		vsi_ctx->sched.max_lanq[tc] = 0;
1948		vsi_ctx->sched.max_rdmaq[tc] = 0;
1949	}
1950
1951	/* update the VSI child nodes */
1952	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1953						  owner);
1954	if (status)
1955		return status;
1956
1957	/* TC is enabled, resume the VSI if it is in the suspend state */
1958	if (!vsi_node->in_use) {
1959		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1960
1961		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1962		if (!status)
1963			vsi_node->in_use = true;
1964	}
1965
1966	return status;
1967}
1968
1969/**
1970 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1971 * @pi: port information structure
1972 * @vsi_handle: software VSI handle
1973 *
1974 * This function removes single aggregator VSI info entry from
1975 * aggregator list.
1976 */
1977static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1978{
1979	struct ice_sched_agg_info *agg_info;
1980	struct ice_sched_agg_info *atmp;
1981
1982	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1983				 list_entry) {
1984		struct ice_sched_agg_vsi_info *agg_vsi_info;
1985		struct ice_sched_agg_vsi_info *vtmp;
1986
1987		list_for_each_entry_safe(agg_vsi_info, vtmp,
1988					 &agg_info->agg_vsi_list, list_entry)
1989			if (agg_vsi_info->vsi_handle == vsi_handle) {
1990				list_del(&agg_vsi_info->list_entry);
1991				devm_kfree(ice_hw_to_dev(pi->hw),
1992					   agg_vsi_info);
1993				return;
1994			}
1995	}
1996}
1997
1998/**
1999 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2000 * @node: pointer to the sub-tree node
2001 *
2002 * This function checks for a leaf node presence in a given sub-tree node.
2003 */
2004static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2005{
2006	u8 i;
2007
2008	for (i = 0; i < node->num_children; i++)
2009		if (ice_sched_is_leaf_node_present(node->children[i]))
2010			return true;
2011	/* check for a leaf node */
2012	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2013}
2014
2015/**
2016 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2017 * @pi: port information structure
2018 * @vsi_handle: software VSI handle
2019 * @owner: LAN or RDMA
2020 *
2021 * This function removes the VSI and its LAN or RDMA children nodes from the
2022 * scheduler tree.
2023 */
2024static int
2025ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2026{
2027	struct ice_vsi_ctx *vsi_ctx;
2028	int status = -EINVAL;
2029	u8 i;
2030
2031	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2032	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2033		return status;
2034	mutex_lock(&pi->sched_lock);
2035	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2036	if (!vsi_ctx)
2037		goto exit_sched_rm_vsi_cfg;
2038
2039	ice_for_each_traffic_class(i) {
2040		struct ice_sched_node *vsi_node, *tc_node;
2041		u8 j = 0;
2042
2043		tc_node = ice_sched_get_tc_node(pi, i);
2044		if (!tc_node)
2045			continue;
2046
2047		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2048		if (!vsi_node)
2049			continue;
2050
2051		if (ice_sched_is_leaf_node_present(vsi_node)) {
2052			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2053			status = -EBUSY;
2054			goto exit_sched_rm_vsi_cfg;
2055		}
2056		while (j < vsi_node->num_children) {
2057			if (vsi_node->children[j]->owner == owner) {
2058				ice_free_sched_node(pi, vsi_node->children[j]);
2059
2060				/* reset the counter again since the num
2061				 * children will be updated after node removal
2062				 */
2063				j = 0;
2064			} else {
2065				j++;
2066			}
2067		}
2068		/* remove the VSI if it has no children */
2069		if (!vsi_node->num_children) {
2070			ice_free_sched_node(pi, vsi_node);
2071			vsi_ctx->sched.vsi_node[i] = NULL;
2072
2073			/* clean up aggregator related VSI info if any */
2074			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2075		}
2076		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2077			vsi_ctx->sched.max_lanq[i] = 0;
2078		else
2079			vsi_ctx->sched.max_rdmaq[i] = 0;
2080	}
2081	status = 0;
2082
2083exit_sched_rm_vsi_cfg:
2084	mutex_unlock(&pi->sched_lock);
2085	return status;
2086}
2087
2088/**
2089 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2090 * @pi: port information structure
2091 * @vsi_handle: software VSI handle
2092 *
2093 * This function clears the VSI and its LAN children nodes from scheduler tree
2094 * for all TCs.
2095 */
2096int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2097{
2098	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2099}
2100
2101/**
2102 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2103 * @pi: port information structure
2104 * @vsi_handle: software VSI handle
2105 *
2106 * This function clears the VSI and its RDMA children nodes from scheduler tree
2107 * for all TCs.
2108 */
2109int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2110{
2111	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2112}
2113
2114/**
2115 * ice_get_agg_info - get the aggregator ID
2116 * @hw: pointer to the hardware structure
2117 * @agg_id: aggregator ID
2118 *
2119 * This function validates aggregator ID. The function returns info if
2120 * aggregator ID is present in list otherwise it returns null.
2121 */
2122static struct ice_sched_agg_info *
2123ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2124{
2125	struct ice_sched_agg_info *agg_info;
2126
2127	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2128		if (agg_info->agg_id == agg_id)
2129			return agg_info;
2130
2131	return NULL;
2132}
2133
2134/**
2135 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2136 * @hw: pointer to the HW struct
2137 * @node: pointer to a child node
2138 * @num_nodes: num nodes count array
2139 *
2140 * This function walks through the aggregator subtree to find a free parent
2141 * node
2142 */
2143struct ice_sched_node *
2144ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2145			      u16 *num_nodes)
2146{
2147	u8 l = node->tx_sched_layer;
2148	u8 vsil, i;
2149
2150	vsil = ice_sched_get_vsi_layer(hw);
2151
2152	/* Is it VSI parent layer ? */
2153	if (l == vsil - 1)
2154		return (node->num_children < hw->max_children[l]) ? node : NULL;
2155
2156	/* We have intermediate nodes. Let's walk through the subtree. If the
2157	 * intermediate node has space to add a new node then clear the count
2158	 */
2159	if (node->num_children < hw->max_children[l])
2160		num_nodes[l] = 0;
2161	/* The below recursive call is intentional and wouldn't go more than
2162	 * 2 or 3 iterations.
2163	 */
2164
2165	for (i = 0; i < node->num_children; i++) {
2166		struct ice_sched_node *parent;
2167
2168		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2169						       num_nodes);
2170		if (parent)
2171			return parent;
2172	}
2173
2174	return NULL;
2175}
2176
2177/**
2178 * ice_sched_update_parent - update the new parent in SW DB
2179 * @new_parent: pointer to a new parent node
2180 * @node: pointer to a child node
2181 *
2182 * This function removes the child from the old parent and adds it to a new
2183 * parent
2184 */
2185void
2186ice_sched_update_parent(struct ice_sched_node *new_parent,
2187			struct ice_sched_node *node)
2188{
2189	struct ice_sched_node *old_parent;
2190	u8 i, j;
2191
2192	old_parent = node->parent;
2193
2194	/* update the old parent children */
2195	for (i = 0; i < old_parent->num_children; i++)
2196		if (old_parent->children[i] == node) {
2197			for (j = i + 1; j < old_parent->num_children; j++)
2198				old_parent->children[j - 1] =
2199					old_parent->children[j];
2200			old_parent->num_children--;
2201			break;
2202		}
2203
2204	/* now move the node to a new parent */
2205	new_parent->children[new_parent->num_children++] = node;
2206	node->parent = new_parent;
2207	node->info.parent_teid = new_parent->info.node_teid;
2208}
2209
2210/**
2211 * ice_sched_move_nodes - move child nodes to a given parent
2212 * @pi: port information structure
2213 * @parent: pointer to parent node
2214 * @num_items: number of child nodes to be moved
2215 * @list: pointer to child node teids
2216 *
2217 * This function move the child nodes to a given parent.
2218 */
2219int
2220ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2221		     u16 num_items, u32 *list)
2222{
2223	DEFINE_RAW_FLEX(struct ice_aqc_move_elem, buf, teid, 1);
2224	u16 buf_len = __struct_size(buf);
2225	struct ice_sched_node *node;
2226	u16 i, grps_movd = 0;
2227	struct ice_hw *hw;
2228	int status = 0;
2229
2230	hw = pi->hw;
2231
2232	if (!parent || !num_items)
2233		return -EINVAL;
2234
2235	/* Does parent have enough space */
2236	if (parent->num_children + num_items >
2237	    hw->max_children[parent->tx_sched_layer])
2238		return -ENOSPC;
2239
2240	for (i = 0; i < num_items; i++) {
2241		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2242		if (!node) {
2243			status = -EINVAL;
2244			break;
2245		}
2246
2247		buf->hdr.src_parent_teid = node->info.parent_teid;
2248		buf->hdr.dest_parent_teid = parent->info.node_teid;
2249		buf->teid[0] = node->info.node_teid;
2250		buf->hdr.num_elems = cpu_to_le16(1);
2251		status = ice_aq_move_sched_elems(hw, buf, buf_len, &grps_movd);
2252		if (status && grps_movd != 1) {
2253			status = -EIO;
2254			break;
2255		}
2256
2257		/* update the SW DB */
2258		ice_sched_update_parent(parent, node);
2259	}
2260
2261	return status;
2262}
2263
2264/**
2265 * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2266 * @pi: port information structure
2267 * @vsi_handle: software VSI handle
2268 * @agg_id: aggregator ID
2269 * @tc: TC number
2270 *
2271 * This function moves a VSI to an aggregator node or its subtree.
2272 * Intermediate nodes may be created if required.
2273 */
2274static int
2275ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2276			  u8 tc)
2277{
2278	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2279	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2280	u32 first_node_teid, vsi_teid;
2281	u16 num_nodes_added;
2282	u8 aggl, vsil, i;
2283	int status;
2284
2285	tc_node = ice_sched_get_tc_node(pi, tc);
2286	if (!tc_node)
2287		return -EIO;
2288
2289	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2290	if (!agg_node)
2291		return -ENOENT;
2292
2293	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2294	if (!vsi_node)
2295		return -ENOENT;
2296
2297	/* Is this VSI already part of given aggregator? */
2298	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2299		return 0;
2300
2301	aggl = ice_sched_get_agg_layer(pi->hw);
2302	vsil = ice_sched_get_vsi_layer(pi->hw);
2303
2304	/* set intermediate node count to 1 between aggregator and VSI layers */
2305	for (i = aggl + 1; i < vsil; i++)
2306		num_nodes[i] = 1;
2307
2308	/* Check if the aggregator subtree has any free node to add the VSI */
2309	for (i = 0; i < agg_node->num_children; i++) {
2310		parent = ice_sched_get_free_vsi_parent(pi->hw,
2311						       agg_node->children[i],
2312						       num_nodes);
2313		if (parent)
2314			goto move_nodes;
2315	}
2316
2317	/* add new nodes */
2318	parent = agg_node;
2319	for (i = aggl + 1; i < vsil; i++) {
2320		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2321						      num_nodes[i],
2322						      &first_node_teid,
2323						      &num_nodes_added);
2324		if (status || num_nodes[i] != num_nodes_added)
2325			return -EIO;
2326
2327		/* The newly added node can be a new parent for the next
2328		 * layer nodes
2329		 */
2330		if (num_nodes_added)
2331			parent = ice_sched_find_node_by_teid(tc_node,
2332							     first_node_teid);
2333		else
2334			parent = parent->children[0];
2335
2336		if (!parent)
2337			return -EIO;
2338	}
2339
2340move_nodes:
2341	vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2342	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2343}
2344
2345/**
2346 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2347 * @pi: port information structure
2348 * @agg_info: aggregator info
2349 * @tc: traffic class number
2350 * @rm_vsi_info: true or false
2351 *
2352 * This function move all the VSI(s) to the default aggregator and delete
2353 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2354 * caller holds the scheduler lock.
2355 */
2356static int
2357ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2358			     struct ice_sched_agg_info *agg_info, u8 tc,
2359			     bool rm_vsi_info)
2360{
2361	struct ice_sched_agg_vsi_info *agg_vsi_info;
2362	struct ice_sched_agg_vsi_info *tmp;
2363	int status = 0;
2364
2365	list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2366				 list_entry) {
2367		u16 vsi_handle = agg_vsi_info->vsi_handle;
2368
2369		/* Move VSI to default aggregator */
2370		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2371			continue;
2372
2373		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2374						   ICE_DFLT_AGG_ID, tc);
2375		if (status)
2376			break;
2377
2378		clear_bit(tc, agg_vsi_info->tc_bitmap);
2379		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2380			list_del(&agg_vsi_info->list_entry);
2381			devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2382		}
2383	}
2384
2385	return status;
2386}
2387
2388/**
2389 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2390 * @pi: port information structure
2391 * @node: node pointer
2392 *
2393 * This function checks whether the aggregator is attached with any VSI or not.
2394 */
2395static bool
2396ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2397{
2398	u8 vsil, i;
2399
2400	vsil = ice_sched_get_vsi_layer(pi->hw);
2401	if (node->tx_sched_layer < vsil - 1) {
2402		for (i = 0; i < node->num_children; i++)
2403			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2404				return true;
2405		return false;
2406	} else {
2407		return node->num_children ? true : false;
2408	}
2409}
2410
2411/**
2412 * ice_sched_rm_agg_cfg - remove the aggregator node
2413 * @pi: port information structure
2414 * @agg_id: aggregator ID
2415 * @tc: TC number
2416 *
2417 * This function removes the aggregator node and intermediate nodes if any
2418 * from the given TC
2419 */
2420static int
2421ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2422{
2423	struct ice_sched_node *tc_node, *agg_node;
2424	struct ice_hw *hw = pi->hw;
2425
2426	tc_node = ice_sched_get_tc_node(pi, tc);
2427	if (!tc_node)
2428		return -EIO;
2429
2430	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2431	if (!agg_node)
2432		return -ENOENT;
2433
2434	/* Can't remove the aggregator node if it has children */
2435	if (ice_sched_is_agg_inuse(pi, agg_node))
2436		return -EBUSY;
2437
2438	/* need to remove the whole subtree if aggregator node is the
2439	 * only child.
2440	 */
2441	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2442		struct ice_sched_node *parent = agg_node->parent;
2443
2444		if (!parent)
2445			return -EIO;
2446
2447		if (parent->num_children > 1)
2448			break;
2449
2450		agg_node = parent;
2451	}
2452
2453	ice_free_sched_node(pi, agg_node);
2454	return 0;
2455}
2456
2457/**
2458 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2459 * @pi: port information structure
2460 * @agg_info: aggregator ID
2461 * @tc: TC number
2462 * @rm_vsi_info: bool value true or false
2463 *
2464 * This function removes aggregator reference to VSI of given TC. It removes
2465 * the aggregator configuration completely for requested TC. The caller needs
2466 * to hold the scheduler lock.
2467 */
2468static int
2469ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2470		  u8 tc, bool rm_vsi_info)
2471{
2472	int status = 0;
2473
2474	/* If nothing to remove - return success */
2475	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2476		goto exit_rm_agg_cfg_tc;
2477
2478	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2479	if (status)
2480		goto exit_rm_agg_cfg_tc;
2481
2482	/* Delete aggregator node(s) */
2483	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2484	if (status)
2485		goto exit_rm_agg_cfg_tc;
2486
2487	clear_bit(tc, agg_info->tc_bitmap);
2488exit_rm_agg_cfg_tc:
2489	return status;
2490}
2491
2492/**
2493 * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2494 * @pi: port information structure
2495 * @agg_id: aggregator ID
2496 * @tc_bitmap: 8 bits TC bitmap
2497 *
2498 * Save aggregator TC bitmap. This function needs to be called with scheduler
2499 * lock held.
2500 */
2501static int
2502ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2503		       unsigned long *tc_bitmap)
2504{
2505	struct ice_sched_agg_info *agg_info;
2506
2507	agg_info = ice_get_agg_info(pi->hw, agg_id);
2508	if (!agg_info)
2509		return -EINVAL;
2510	bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2511		    ICE_MAX_TRAFFIC_CLASS);
2512	return 0;
2513}
2514
2515/**
2516 * ice_sched_add_agg_cfg - create an aggregator node
2517 * @pi: port information structure
2518 * @agg_id: aggregator ID
2519 * @tc: TC number
2520 *
2521 * This function creates an aggregator node and intermediate nodes if required
2522 * for the given TC
2523 */
2524static int
2525ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2526{
2527	struct ice_sched_node *parent, *agg_node, *tc_node;
2528	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2529	struct ice_hw *hw = pi->hw;
2530	u32 first_node_teid;
2531	u16 num_nodes_added;
2532	int status = 0;
2533	u8 i, aggl;
2534
2535	tc_node = ice_sched_get_tc_node(pi, tc);
2536	if (!tc_node)
2537		return -EIO;
2538
2539	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2540	/* Does Agg node already exist ? */
2541	if (agg_node)
2542		return status;
2543
2544	aggl = ice_sched_get_agg_layer(hw);
2545
2546	/* need one node in Agg layer */
2547	num_nodes[aggl] = 1;
2548
2549	/* Check whether the intermediate nodes have space to add the
2550	 * new aggregator. If they are full, then SW needs to allocate a new
2551	 * intermediate node on those layers
2552	 */
2553	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2554		parent = ice_sched_get_first_node(pi, tc_node, i);
2555
2556		/* scan all the siblings */
2557		while (parent) {
2558			if (parent->num_children < hw->max_children[i])
2559				break;
2560			parent = parent->sibling;
2561		}
2562
2563		/* all the nodes are full, reserve one for this layer */
2564		if (!parent)
2565			num_nodes[i]++;
2566	}
2567
2568	/* add the aggregator node */
2569	parent = tc_node;
2570	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2571		if (!parent)
2572			return -EIO;
2573
2574		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2575						      num_nodes[i],
2576						      &first_node_teid,
2577						      &num_nodes_added);
2578		if (status || num_nodes[i] != num_nodes_added)
2579			return -EIO;
2580
2581		/* The newly added node can be a new parent for the next
2582		 * layer nodes
2583		 */
2584		if (num_nodes_added) {
2585			parent = ice_sched_find_node_by_teid(tc_node,
2586							     first_node_teid);
2587			/* register aggregator ID with the aggregator node */
2588			if (parent && i == aggl)
2589				parent->agg_id = agg_id;
2590		} else {
2591			parent = parent->children[0];
2592		}
2593	}
2594
2595	return 0;
2596}
2597
2598/**
2599 * ice_sched_cfg_agg - configure aggregator node
2600 * @pi: port information structure
2601 * @agg_id: aggregator ID
2602 * @agg_type: aggregator type queue, VSI, or aggregator group
2603 * @tc_bitmap: bits TC bitmap
2604 *
2605 * It registers a unique aggregator node into scheduler services. It
2606 * allows a user to register with a unique ID to track it's resources.
2607 * The aggregator type determines if this is a queue group, VSI group
2608 * or aggregator group. It then creates the aggregator node(s) for requested
2609 * TC(s) or removes an existing aggregator node including its configuration
2610 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2611 * resources and remove aggregator ID.
2612 * This function needs to be called with scheduler lock held.
2613 */
2614static int
2615ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2616		  enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2617{
2618	struct ice_sched_agg_info *agg_info;
2619	struct ice_hw *hw = pi->hw;
2620	int status = 0;
2621	u8 tc;
2622
2623	agg_info = ice_get_agg_info(hw, agg_id);
2624	if (!agg_info) {
2625		/* Create new entry for new aggregator ID */
2626		agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2627					GFP_KERNEL);
2628		if (!agg_info)
2629			return -ENOMEM;
2630
2631		agg_info->agg_id = agg_id;
2632		agg_info->agg_type = agg_type;
2633		agg_info->tc_bitmap[0] = 0;
2634
2635		/* Initialize the aggregator VSI list head */
2636		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2637
2638		/* Add new entry in aggregator list */
2639		list_add(&agg_info->list_entry, &hw->agg_list);
2640	}
2641	/* Create aggregator node(s) for requested TC(s) */
2642	ice_for_each_traffic_class(tc) {
2643		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2644			/* Delete aggregator cfg TC if it exists previously */
2645			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2646			if (status)
2647				break;
2648			continue;
2649		}
2650
2651		/* Check if aggregator node for TC already exists */
2652		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2653			continue;
2654
2655		/* Create new aggregator node for TC */
2656		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2657		if (status)
2658			break;
2659
2660		/* Save aggregator node's TC information */
2661		set_bit(tc, agg_info->tc_bitmap);
2662	}
2663
2664	return status;
2665}
2666
2667/**
2668 * ice_cfg_agg - config aggregator node
2669 * @pi: port information structure
2670 * @agg_id: aggregator ID
2671 * @agg_type: aggregator type queue, VSI, or aggregator group
2672 * @tc_bitmap: bits TC bitmap
2673 *
2674 * This function configures aggregator node(s).
2675 */
2676int
2677ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2678	    u8 tc_bitmap)
2679{
2680	unsigned long bitmap = tc_bitmap;
2681	int status;
2682
2683	mutex_lock(&pi->sched_lock);
2684	status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2685	if (!status)
2686		status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2687	mutex_unlock(&pi->sched_lock);
2688	return status;
2689}
2690
2691/**
2692 * ice_get_agg_vsi_info - get the aggregator ID
2693 * @agg_info: aggregator info
2694 * @vsi_handle: software VSI handle
2695 *
2696 * The function returns aggregator VSI info based on VSI handle. This function
2697 * needs to be called with scheduler lock held.
2698 */
2699static struct ice_sched_agg_vsi_info *
2700ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2701{
2702	struct ice_sched_agg_vsi_info *agg_vsi_info;
2703
2704	list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2705		if (agg_vsi_info->vsi_handle == vsi_handle)
2706			return agg_vsi_info;
2707
2708	return NULL;
2709}
2710
2711/**
2712 * ice_get_vsi_agg_info - get the aggregator info of VSI
2713 * @hw: pointer to the hardware structure
2714 * @vsi_handle: Sw VSI handle
2715 *
2716 * The function returns aggregator info of VSI represented via vsi_handle. The
2717 * VSI has in this case a different aggregator than the default one. This
2718 * function needs to be called with scheduler lock held.
2719 */
2720static struct ice_sched_agg_info *
2721ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2722{
2723	struct ice_sched_agg_info *agg_info;
2724
2725	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2726		struct ice_sched_agg_vsi_info *agg_vsi_info;
2727
2728		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2729		if (agg_vsi_info)
2730			return agg_info;
2731	}
2732	return NULL;
2733}
2734
2735/**
2736 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2737 * @pi: port information structure
2738 * @agg_id: aggregator ID
2739 * @vsi_handle: software VSI handle
2740 * @tc_bitmap: TC bitmap of enabled TC(s)
2741 *
2742 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2743 * lock held.
2744 */
2745static int
2746ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2747			   unsigned long *tc_bitmap)
2748{
2749	struct ice_sched_agg_vsi_info *agg_vsi_info;
2750	struct ice_sched_agg_info *agg_info;
2751
2752	agg_info = ice_get_agg_info(pi->hw, agg_id);
2753	if (!agg_info)
2754		return -EINVAL;
2755	/* check if entry already exist */
2756	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2757	if (!agg_vsi_info)
2758		return -EINVAL;
2759	bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2760		    ICE_MAX_TRAFFIC_CLASS);
2761	return 0;
2762}
2763
2764/**
2765 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2766 * @pi: port information structure
2767 * @agg_id: aggregator ID
2768 * @vsi_handle: software VSI handle
2769 * @tc_bitmap: TC bitmap of enabled TC(s)
2770 *
2771 * This function moves VSI to a new or default aggregator node. If VSI is
2772 * already associated to the aggregator node then no operation is performed on
2773 * the tree. This function needs to be called with scheduler lock held.
2774 */
2775static int
2776ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2777			   u16 vsi_handle, unsigned long *tc_bitmap)
2778{
2779	struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
2780	struct ice_sched_agg_info *agg_info, *old_agg_info;
2781	struct ice_hw *hw = pi->hw;
2782	int status = 0;
2783	u8 tc;
2784
2785	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2786		return -EINVAL;
2787	agg_info = ice_get_agg_info(hw, agg_id);
2788	if (!agg_info)
2789		return -EINVAL;
2790	/* If the VSI is already part of another aggregator then update
2791	 * its VSI info list
2792	 */
2793	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2794	if (old_agg_info && old_agg_info != agg_info) {
2795		struct ice_sched_agg_vsi_info *vtmp;
2796
2797		list_for_each_entry_safe(iter, vtmp,
2798					 &old_agg_info->agg_vsi_list,
2799					 list_entry)
2800			if (iter->vsi_handle == vsi_handle) {
2801				old_agg_vsi_info = iter;
2802				break;
2803			}
2804	}
2805
2806	/* check if entry already exist */
2807	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2808	if (!agg_vsi_info) {
2809		/* Create new entry for VSI under aggregator list */
2810		agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2811					    sizeof(*agg_vsi_info), GFP_KERNEL);
2812		if (!agg_vsi_info)
2813			return -EINVAL;
2814
2815		/* add VSI ID into the aggregator list */
2816		agg_vsi_info->vsi_handle = vsi_handle;
2817		list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2818	}
2819	/* Move VSI node to new aggregator node for requested TC(s) */
2820	ice_for_each_traffic_class(tc) {
2821		if (!ice_is_tc_ena(*tc_bitmap, tc))
2822			continue;
2823
2824		/* Move VSI to new aggregator */
2825		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2826		if (status)
2827			break;
2828
2829		set_bit(tc, agg_vsi_info->tc_bitmap);
2830		if (old_agg_vsi_info)
2831			clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2832	}
2833	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2834		list_del(&old_agg_vsi_info->list_entry);
2835		devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2836	}
2837	return status;
2838}
2839
2840/**
2841 * ice_sched_rm_unused_rl_prof - remove unused RL profile
2842 * @pi: port information structure
2843 *
2844 * This function removes unused rate limit profiles from the HW and
2845 * SW DB. The caller needs to hold scheduler lock.
2846 */
2847static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2848{
2849	u16 ln;
2850
2851	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2852		struct ice_aqc_rl_profile_info *rl_prof_elem;
2853		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2854
2855		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2856					 &pi->rl_prof_list[ln], list_entry) {
2857			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2858				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2859		}
2860	}
2861}
2862
2863/**
2864 * ice_sched_update_elem - update element
2865 * @hw: pointer to the HW struct
2866 * @node: pointer to node
2867 * @info: node info to update
2868 *
2869 * Update the HW DB, and local SW DB of node. Update the scheduling
2870 * parameters of node from argument info data buffer (Info->data buf) and
2871 * returns success or error on config sched element failure. The caller
2872 * needs to hold scheduler lock.
2873 */
2874static int
2875ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2876		      struct ice_aqc_txsched_elem_data *info)
2877{
2878	struct ice_aqc_txsched_elem_data buf;
2879	u16 elem_cfgd = 0;
2880	u16 num_elems = 1;
2881	int status;
2882
2883	buf = *info;
2884	/* Parent TEID is reserved field in this aq call */
2885	buf.parent_teid = 0;
2886	/* Element type is reserved field in this aq call */
2887	buf.data.elem_type = 0;
2888	/* Flags is reserved field in this aq call */
2889	buf.data.flags = 0;
2890
2891	/* Update HW DB */
2892	/* Configure element node */
2893	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2894					&elem_cfgd, NULL);
2895	if (status || elem_cfgd != num_elems) {
2896		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2897		return -EIO;
2898	}
2899
2900	/* Config success case */
2901	/* Now update local SW DB */
2902	/* Only copy the data portion of info buffer */
2903	node->info.data = info->data;
2904	return status;
2905}
2906
2907/**
2908 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2909 * @hw: pointer to the HW struct
2910 * @node: sched node to configure
2911 * @rl_type: rate limit type CIR, EIR, or shared
2912 * @bw_alloc: BW weight/allocation
2913 *
2914 * This function configures node element's BW allocation.
2915 */
2916static int
2917ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2918			    enum ice_rl_type rl_type, u16 bw_alloc)
2919{
2920	struct ice_aqc_txsched_elem_data buf;
2921	struct ice_aqc_txsched_elem *data;
2922
2923	buf = node->info;
2924	data = &buf.data;
2925	if (rl_type == ICE_MIN_BW) {
2926		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2927		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2928	} else if (rl_type == ICE_MAX_BW) {
2929		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2930		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2931	} else {
2932		return -EINVAL;
2933	}
2934
2935	/* Configure element */
2936	return ice_sched_update_elem(hw, node, &buf);
2937}
2938
2939/**
2940 * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2941 * @pi: port information structure
2942 * @agg_id: aggregator ID
2943 * @vsi_handle: software VSI handle
2944 * @tc_bitmap: TC bitmap of enabled TC(s)
2945 *
2946 * Move or associate VSI to a new or default aggregator node.
2947 */
2948int
2949ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2950		    u8 tc_bitmap)
2951{
2952	unsigned long bitmap = tc_bitmap;
2953	int status;
2954
2955	mutex_lock(&pi->sched_lock);
2956	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2957					    (unsigned long *)&bitmap);
2958	if (!status)
2959		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2960						    (unsigned long *)&bitmap);
2961	mutex_unlock(&pi->sched_lock);
2962	return status;
2963}
2964
2965/**
2966 * ice_set_clear_cir_bw - set or clear CIR BW
2967 * @bw_t_info: bandwidth type information structure
2968 * @bw: bandwidth in Kbps - Kilo bits per sec
2969 *
2970 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2971 */
2972static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2973{
2974	if (bw == ICE_SCHED_DFLT_BW) {
2975		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2976		bw_t_info->cir_bw.bw = 0;
2977	} else {
2978		/* Save type of BW information */
2979		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2980		bw_t_info->cir_bw.bw = bw;
2981	}
2982}
2983
2984/**
2985 * ice_set_clear_eir_bw - set or clear EIR BW
2986 * @bw_t_info: bandwidth type information structure
2987 * @bw: bandwidth in Kbps - Kilo bits per sec
2988 *
2989 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2990 */
2991static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2992{
2993	if (bw == ICE_SCHED_DFLT_BW) {
2994		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2995		bw_t_info->eir_bw.bw = 0;
2996	} else {
2997		/* EIR BW and Shared BW profiles are mutually exclusive and
2998		 * hence only one of them may be set for any given element.
2999		 * First clear earlier saved shared BW information.
3000		 */
3001		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3002		bw_t_info->shared_bw = 0;
3003		/* save EIR BW information */
3004		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3005		bw_t_info->eir_bw.bw = bw;
3006	}
3007}
3008
3009/**
3010 * ice_set_clear_shared_bw - set or clear shared BW
3011 * @bw_t_info: bandwidth type information structure
3012 * @bw: bandwidth in Kbps - Kilo bits per sec
3013 *
3014 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3015 */
3016static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3017{
3018	if (bw == ICE_SCHED_DFLT_BW) {
3019		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3020		bw_t_info->shared_bw = 0;
3021	} else {
3022		/* EIR BW and Shared BW profiles are mutually exclusive and
3023		 * hence only one of them may be set for any given element.
3024		 * First clear earlier saved EIR BW information.
3025		 */
3026		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3027		bw_t_info->eir_bw.bw = 0;
3028		/* save shared BW information */
3029		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3030		bw_t_info->shared_bw = bw;
3031	}
3032}
3033
3034/**
3035 * ice_sched_save_vsi_bw - save VSI node's BW information
3036 * @pi: port information structure
3037 * @vsi_handle: sw VSI handle
3038 * @tc: traffic class
3039 * @rl_type: rate limit type min, max, or shared
3040 * @bw: bandwidth in Kbps - Kilo bits per sec
3041 *
3042 * Save BW information of VSI type node for post replay use.
3043 */
3044static int
3045ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3046		      enum ice_rl_type rl_type, u32 bw)
3047{
3048	struct ice_vsi_ctx *vsi_ctx;
3049
3050	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3051		return -EINVAL;
3052	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3053	if (!vsi_ctx)
3054		return -EINVAL;
3055	switch (rl_type) {
3056	case ICE_MIN_BW:
3057		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3058		break;
3059	case ICE_MAX_BW:
3060		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3061		break;
3062	case ICE_SHARED_BW:
3063		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3064		break;
3065	default:
3066		return -EINVAL;
3067	}
3068	return 0;
3069}
3070
3071/**
3072 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3073 * @hw: pointer to the HW struct
3074 * @bw: bandwidth in Kbps
3075 *
3076 * This function calculates the wakeup parameter of RL profile.
3077 */
3078static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3079{
3080	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3081	s32 wakeup_f_int;
3082	u16 wakeup = 0;
3083
3084	/* Get the wakeup integer value */
3085	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3086	wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3087	if (wakeup_int > 63) {
3088		wakeup = (u16)((1 << 15) | wakeup_int);
3089	} else {
3090		/* Calculate fraction value up to 4 decimals
3091		 * Convert Integer value to a constant multiplier
3092		 */
3093		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3094		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3095					   hw->psm_clk_freq, bytes_per_sec);
3096
3097		/* Get Fraction value */
3098		wakeup_f = wakeup_a - wakeup_b;
3099
3100		/* Round up the Fractional value via Ceil(Fractional value) */
3101		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3102			wakeup_f += 1;
3103
3104		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3105					       ICE_RL_PROF_MULTIPLIER);
3106		wakeup |= (u16)(wakeup_int << 9);
3107		wakeup |= (u16)(0x1ff & wakeup_f_int);
3108	}
3109
3110	return wakeup;
3111}
3112
3113/**
3114 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3115 * @hw: pointer to the HW struct
3116 * @bw: bandwidth in Kbps
3117 * @profile: profile parameters to return
3118 *
3119 * This function converts the BW to profile structure format.
3120 */
3121static int
3122ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3123			   struct ice_aqc_rl_profile_elem *profile)
3124{
3125	s64 bytes_per_sec, ts_rate, mv_tmp;
3126	int status = -EINVAL;
3127	bool found = false;
3128	s32 encode = 0;
3129	s64 mv = 0;
3130	s32 i;
3131
3132	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3133	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3134		return status;
3135
3136	/* Bytes per second from Kbps */
3137	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3138
3139	/* encode is 6 bits but really useful are 5 bits */
3140	for (i = 0; i < 64; i++) {
3141		u64 pow_result = BIT_ULL(i);
3142
3143		ts_rate = div64_long((s64)hw->psm_clk_freq,
3144				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3145		if (ts_rate <= 0)
3146			continue;
3147
3148		/* Multiplier value */
3149		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3150				    ts_rate);
3151
3152		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3153		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3154
3155		/* First multiplier value greater than the given
3156		 * accuracy bytes
3157		 */
3158		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3159			encode = i;
3160			found = true;
3161			break;
3162		}
3163	}
3164	if (found) {
3165		u16 wm;
3166
3167		wm = ice_sched_calc_wakeup(hw, bw);
3168		profile->rl_multiply = cpu_to_le16(mv);
3169		profile->wake_up_calc = cpu_to_le16(wm);
3170		profile->rl_encode = cpu_to_le16(encode);
3171		status = 0;
3172	} else {
3173		status = -ENOENT;
3174	}
3175
3176	return status;
3177}
3178
3179/**
3180 * ice_sched_add_rl_profile - add RL profile
3181 * @pi: port information structure
3182 * @rl_type: type of rate limit BW - min, max, or shared
3183 * @bw: bandwidth in Kbps - Kilo bits per sec
3184 * @layer_num: specifies in which layer to create profile
3185 *
3186 * This function first checks the existing list for corresponding BW
3187 * parameter. If it exists, it returns the associated profile otherwise
3188 * it creates a new rate limit profile for requested BW, and adds it to
3189 * the HW DB and local list. It returns the new profile or null on error.
3190 * The caller needs to hold the scheduler lock.
3191 */
3192static struct ice_aqc_rl_profile_info *
3193ice_sched_add_rl_profile(struct ice_port_info *pi,
3194			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3195{
3196	struct ice_aqc_rl_profile_info *rl_prof_elem;
3197	u16 profiles_added = 0, num_profiles = 1;
3198	struct ice_aqc_rl_profile_elem *buf;
3199	struct ice_hw *hw;
3200	u8 profile_type;
3201	int status;
3202
3203	if (!pi || layer_num >= pi->hw->num_tx_sched_layers)
3204		return NULL;
3205	switch (rl_type) {
3206	case ICE_MIN_BW:
3207		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3208		break;
3209	case ICE_MAX_BW:
3210		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3211		break;
3212	case ICE_SHARED_BW:
3213		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3214		break;
3215	default:
3216		return NULL;
3217	}
3218
 
 
3219	hw = pi->hw;
3220	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3221			    list_entry)
3222		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3223		    profile_type && rl_prof_elem->bw == bw)
3224			/* Return existing profile ID info */
3225			return rl_prof_elem;
3226
3227	/* Create new profile ID */
3228	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3229				    GFP_KERNEL);
3230
3231	if (!rl_prof_elem)
3232		return NULL;
3233
3234	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3235	if (status)
3236		goto exit_add_rl_prof;
3237
3238	rl_prof_elem->bw = bw;
3239	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3240	rl_prof_elem->profile.level = layer_num + 1;
3241	rl_prof_elem->profile.flags = profile_type;
3242	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3243
3244	/* Create new entry in HW DB */
3245	buf = &rl_prof_elem->profile;
3246	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3247				       &profiles_added, NULL);
3248	if (status || profiles_added != num_profiles)
3249		goto exit_add_rl_prof;
3250
3251	/* Good entry - add in the list */
3252	rl_prof_elem->prof_id_ref = 0;
3253	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3254	return rl_prof_elem;
3255
3256exit_add_rl_prof:
3257	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3258	return NULL;
3259}
3260
3261/**
3262 * ice_sched_cfg_node_bw_lmt - configure node sched params
3263 * @hw: pointer to the HW struct
3264 * @node: sched node to configure
3265 * @rl_type: rate limit type CIR, EIR, or shared
3266 * @rl_prof_id: rate limit profile ID
3267 *
3268 * This function configures node element's BW limit.
3269 */
3270static int
3271ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3272			  enum ice_rl_type rl_type, u16 rl_prof_id)
3273{
3274	struct ice_aqc_txsched_elem_data buf;
3275	struct ice_aqc_txsched_elem *data;
3276
3277	buf = node->info;
3278	data = &buf.data;
3279	switch (rl_type) {
3280	case ICE_MIN_BW:
3281		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3282		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3283		break;
3284	case ICE_MAX_BW:
3285		/* EIR BW and Shared BW profiles are mutually exclusive and
3286		 * hence only one of them may be set for any given element
3287		 */
3288		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3289			return -EIO;
3290		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3291		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3292		break;
3293	case ICE_SHARED_BW:
3294		/* Check for removing shared BW */
3295		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3296			/* remove shared profile */
3297			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3298			data->srl_id = 0; /* clear SRL field */
3299
3300			/* enable back EIR to default profile */
3301			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3302			data->eir_bw.bw_profile_idx =
3303				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3304			break;
3305		}
3306		/* EIR BW and Shared BW profiles are mutually exclusive and
3307		 * hence only one of them may be set for any given element
3308		 */
3309		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3310		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3311			    ICE_SCHED_DFLT_RL_PROF_ID))
3312			return -EIO;
3313		/* EIR BW is set to default, disable it */
3314		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3315		/* Okay to enable shared BW now */
3316		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3317		data->srl_id = cpu_to_le16(rl_prof_id);
3318		break;
3319	default:
3320		/* Unknown rate limit type */
3321		return -EINVAL;
3322	}
3323
3324	/* Configure element */
3325	return ice_sched_update_elem(hw, node, &buf);
3326}
3327
3328/**
3329 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3330 * @node: sched node
3331 * @rl_type: rate limit type
3332 *
3333 * If existing profile matches, it returns the corresponding rate
3334 * limit profile ID, otherwise it returns an invalid ID as error.
3335 */
3336static u16
3337ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3338			      enum ice_rl_type rl_type)
3339{
3340	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3341	struct ice_aqc_txsched_elem *data;
3342
3343	data = &node->info.data;
3344	switch (rl_type) {
3345	case ICE_MIN_BW:
3346		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3347			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3348		break;
3349	case ICE_MAX_BW:
3350		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3351			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3352		break;
3353	case ICE_SHARED_BW:
3354		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3355			rl_prof_id = le16_to_cpu(data->srl_id);
3356		break;
3357	default:
3358		break;
3359	}
3360
3361	return rl_prof_id;
3362}
3363
3364/**
3365 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3366 * @pi: port information structure
3367 * @rl_type: type of rate limit BW - min, max, or shared
3368 * @layer_index: layer index
3369 *
3370 * This function returns requested profile creation layer.
3371 */
3372static u8
3373ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3374			    u8 layer_index)
3375{
3376	struct ice_hw *hw = pi->hw;
3377
3378	if (layer_index >= hw->num_tx_sched_layers)
3379		return ICE_SCHED_INVAL_LAYER_NUM;
3380	switch (rl_type) {
3381	case ICE_MIN_BW:
3382		if (hw->layer_info[layer_index].max_cir_rl_profiles)
3383			return layer_index;
3384		break;
3385	case ICE_MAX_BW:
3386		if (hw->layer_info[layer_index].max_eir_rl_profiles)
3387			return layer_index;
3388		break;
3389	case ICE_SHARED_BW:
3390		/* if current layer doesn't support SRL profile creation
3391		 * then try a layer up or down.
3392		 */
3393		if (hw->layer_info[layer_index].max_srl_profiles)
3394			return layer_index;
3395		else if (layer_index < hw->num_tx_sched_layers - 1 &&
3396			 hw->layer_info[layer_index + 1].max_srl_profiles)
3397			return layer_index + 1;
3398		else if (layer_index > 0 &&
3399			 hw->layer_info[layer_index - 1].max_srl_profiles)
3400			return layer_index - 1;
3401		break;
3402	default:
3403		break;
3404	}
3405	return ICE_SCHED_INVAL_LAYER_NUM;
3406}
3407
3408/**
3409 * ice_sched_get_srl_node - get shared rate limit node
3410 * @node: tree node
3411 * @srl_layer: shared rate limit layer
3412 *
3413 * This function returns SRL node to be used for shared rate limit purpose.
3414 * The caller needs to hold scheduler lock.
3415 */
3416static struct ice_sched_node *
3417ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3418{
3419	if (srl_layer > node->tx_sched_layer)
3420		return node->children[0];
3421	else if (srl_layer < node->tx_sched_layer)
3422		/* Node can't be created without a parent. It will always
3423		 * have a valid parent except root node.
3424		 */
3425		return node->parent;
3426	else
3427		return node;
3428}
3429
3430/**
3431 * ice_sched_rm_rl_profile - remove RL profile ID
3432 * @pi: port information structure
3433 * @layer_num: layer number where profiles are saved
3434 * @profile_type: profile type like EIR, CIR, or SRL
3435 * @profile_id: profile ID to remove
3436 *
3437 * This function removes rate limit profile from layer 'layer_num' of type
3438 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3439 * scheduler lock.
3440 */
3441static int
3442ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3443			u16 profile_id)
3444{
3445	struct ice_aqc_rl_profile_info *rl_prof_elem;
3446	int status = 0;
3447
3448	if (layer_num >= pi->hw->num_tx_sched_layers)
3449		return -EINVAL;
3450	/* Check the existing list for RL profile */
3451	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3452			    list_entry)
3453		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3454		    profile_type &&
3455		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3456		    profile_id) {
3457			if (rl_prof_elem->prof_id_ref)
3458				rl_prof_elem->prof_id_ref--;
3459
3460			/* Remove old profile ID from database */
3461			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3462			if (status && status != -EBUSY)
3463				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3464			break;
3465		}
3466	if (status == -EBUSY)
3467		status = 0;
3468	return status;
3469}
3470
3471/**
3472 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3473 * @pi: port information structure
3474 * @node: pointer to node structure
3475 * @rl_type: rate limit type min, max, or shared
3476 * @layer_num: layer number where RL profiles are saved
3477 *
3478 * This function configures node element's BW rate limit profile ID of
3479 * type CIR, EIR, or SRL to default. This function needs to be called
3480 * with the scheduler lock held.
3481 */
3482static int
3483ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3484			   struct ice_sched_node *node,
3485			   enum ice_rl_type rl_type, u8 layer_num)
3486{
3487	struct ice_hw *hw;
3488	u8 profile_type;
3489	u16 rl_prof_id;
3490	u16 old_id;
3491	int status;
3492
3493	hw = pi->hw;
3494	switch (rl_type) {
3495	case ICE_MIN_BW:
3496		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3497		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3498		break;
3499	case ICE_MAX_BW:
3500		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3501		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3502		break;
3503	case ICE_SHARED_BW:
3504		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3505		/* No SRL is configured for default case */
3506		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3507		break;
3508	default:
3509		return -EINVAL;
3510	}
3511	/* Save existing RL prof ID for later clean up */
3512	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3513	/* Configure BW scheduling parameters */
3514	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3515	if (status)
3516		return status;
3517
3518	/* Remove stale RL profile ID */
3519	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3520	    old_id == ICE_SCHED_INVAL_PROF_ID)
3521		return 0;
3522
3523	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3524}
3525
3526/**
3527 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3528 * @pi: port information structure
3529 * @node: pointer to node structure
3530 * @layer_num: layer number where rate limit profiles are saved
3531 * @rl_type: rate limit type min, max, or shared
3532 * @bw: bandwidth value
3533 *
3534 * This function prepares node element's bandwidth to SRL or EIR exclusively.
3535 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3536 * them may be set for any given element. This function needs to be called
3537 * with the scheduler lock held.
3538 */
3539static int
3540ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3541			   struct ice_sched_node *node,
3542			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3543{
3544	if (rl_type == ICE_SHARED_BW) {
3545		/* SRL node passed in this case, it may be different node */
3546		if (bw == ICE_SCHED_DFLT_BW)
3547			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
3548			 * enables EIR to default. EIR is not set in this
3549			 * case, so no additional action is required.
3550			 */
3551			return 0;
3552
3553		/* SRL being configured, set EIR to default here.
3554		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3555		 * configures SRL
3556		 */
3557		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3558						  layer_num);
3559	} else if (rl_type == ICE_MAX_BW &&
3560		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3561		/* Remove Shared profile. Set default shared BW call
3562		 * removes shared profile for a node.
3563		 */
3564		return ice_sched_set_node_bw_dflt(pi, node,
3565						  ICE_SHARED_BW,
3566						  layer_num);
3567	}
3568	return 0;
3569}
3570
3571/**
3572 * ice_sched_set_node_bw - set node's bandwidth
3573 * @pi: port information structure
3574 * @node: tree node
3575 * @rl_type: rate limit type min, max, or shared
3576 * @bw: bandwidth in Kbps - Kilo bits per sec
3577 * @layer_num: layer number
3578 *
3579 * This function adds new profile corresponding to requested BW, configures
3580 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3581 * ID from local database. The caller needs to hold scheduler lock.
3582 */
3583int
3584ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3585		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3586{
3587	struct ice_aqc_rl_profile_info *rl_prof_info;
3588	struct ice_hw *hw = pi->hw;
3589	u16 old_id, rl_prof_id;
3590	int status = -EINVAL;
3591
3592	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3593	if (!rl_prof_info)
3594		return status;
3595
3596	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3597
3598	/* Save existing RL prof ID for later clean up */
3599	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3600	/* Configure BW scheduling parameters */
3601	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3602	if (status)
3603		return status;
3604
3605	/* New changes has been applied */
3606	/* Increment the profile ID reference count */
3607	rl_prof_info->prof_id_ref++;
3608
3609	/* Check for old ID removal */
3610	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3611	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3612		return 0;
3613
3614	return ice_sched_rm_rl_profile(pi, layer_num,
3615				       rl_prof_info->profile.flags &
3616				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3617}
3618
3619/**
3620 * ice_sched_set_node_priority - set node's priority
3621 * @pi: port information structure
3622 * @node: tree node
3623 * @priority: number 0-7 representing priority among siblings
3624 *
3625 * This function sets priority of a node among it's siblings.
3626 */
3627int
3628ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3629			    u16 priority)
3630{
3631	struct ice_aqc_txsched_elem_data buf;
3632	struct ice_aqc_txsched_elem *data;
3633
3634	buf = node->info;
3635	data = &buf.data;
3636
3637	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3638	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3639
3640	return ice_sched_update_elem(pi->hw, node, &buf);
3641}
3642
3643/**
3644 * ice_sched_set_node_weight - set node's weight
3645 * @pi: port information structure
3646 * @node: tree node
3647 * @weight: number 1-200 representing weight for WFQ
3648 *
3649 * This function sets weight of the node for WFQ algorithm.
3650 */
3651int
3652ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3653{
3654	struct ice_aqc_txsched_elem_data buf;
3655	struct ice_aqc_txsched_elem *data;
3656
3657	buf = node->info;
3658	data = &buf.data;
3659
3660	data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3661			       ICE_AQC_ELEM_VALID_GENERIC;
3662	data->cir_bw.bw_alloc = cpu_to_le16(weight);
3663	data->eir_bw.bw_alloc = cpu_to_le16(weight);
3664
3665	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3666
3667	return ice_sched_update_elem(pi->hw, node, &buf);
3668}
3669
3670/**
3671 * ice_sched_set_node_bw_lmt - set node's BW limit
3672 * @pi: port information structure
3673 * @node: tree node
3674 * @rl_type: rate limit type min, max, or shared
3675 * @bw: bandwidth in Kbps - Kilo bits per sec
3676 *
3677 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3678 * EIR, or SRL. The caller needs to hold scheduler lock.
3679 */
3680int
3681ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3682			  enum ice_rl_type rl_type, u32 bw)
3683{
3684	struct ice_sched_node *cfg_node = node;
3685	int status;
3686
3687	struct ice_hw *hw;
3688	u8 layer_num;
3689
3690	if (!pi)
3691		return -EINVAL;
3692	hw = pi->hw;
3693	/* Remove unused RL profile IDs from HW and SW DB */
3694	ice_sched_rm_unused_rl_prof(pi);
3695	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3696						node->tx_sched_layer);
3697	if (layer_num >= hw->num_tx_sched_layers)
3698		return -EINVAL;
3699
3700	if (rl_type == ICE_SHARED_BW) {
3701		/* SRL node may be different */
3702		cfg_node = ice_sched_get_srl_node(node, layer_num);
3703		if (!cfg_node)
3704			return -EIO;
3705	}
3706	/* EIR BW and Shared BW profiles are mutually exclusive and
3707	 * hence only one of them may be set for any given element
3708	 */
3709	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3710					    bw);
3711	if (status)
3712		return status;
3713	if (bw == ICE_SCHED_DFLT_BW)
3714		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3715						  layer_num);
3716	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3717}
3718
3719/**
3720 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3721 * @pi: port information structure
3722 * @node: pointer to node structure
3723 * @rl_type: rate limit type min, max, or shared
3724 *
3725 * This function configures node element's BW rate limit profile ID of
3726 * type CIR, EIR, or SRL to default. This function needs to be called
3727 * with the scheduler lock held.
3728 */
3729static int
3730ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3731			       struct ice_sched_node *node,
3732			       enum ice_rl_type rl_type)
3733{
3734	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3735					 ICE_SCHED_DFLT_BW);
3736}
3737
3738/**
3739 * ice_sched_validate_srl_node - Check node for SRL applicability
3740 * @node: sched node to configure
3741 * @sel_layer: selected SRL layer
3742 *
3743 * This function checks if the SRL can be applied to a selected layer node on
3744 * behalf of the requested node (first argument). This function needs to be
3745 * called with scheduler lock held.
3746 */
3747static int
3748ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3749{
3750	/* SRL profiles are not available on all layers. Check if the
3751	 * SRL profile can be applied to a node above or below the
3752	 * requested node. SRL configuration is possible only if the
3753	 * selected layer's node has single child.
3754	 */
3755	if (sel_layer == node->tx_sched_layer ||
3756	    ((sel_layer == node->tx_sched_layer + 1) &&
3757	    node->num_children == 1) ||
3758	    ((sel_layer == node->tx_sched_layer - 1) &&
3759	    (node->parent && node->parent->num_children == 1)))
3760		return 0;
3761
3762	return -EIO;
3763}
3764
3765/**
3766 * ice_sched_save_q_bw - save queue node's BW information
3767 * @q_ctx: queue context structure
3768 * @rl_type: rate limit type min, max, or shared
3769 * @bw: bandwidth in Kbps - Kilo bits per sec
3770 *
3771 * Save BW information of queue type node for post replay use.
3772 */
3773static int
3774ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3775{
3776	switch (rl_type) {
3777	case ICE_MIN_BW:
3778		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3779		break;
3780	case ICE_MAX_BW:
3781		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3782		break;
3783	case ICE_SHARED_BW:
3784		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3785		break;
3786	default:
3787		return -EINVAL;
3788	}
3789	return 0;
3790}
3791
3792/**
3793 * ice_sched_set_q_bw_lmt - sets queue BW limit
3794 * @pi: port information structure
3795 * @vsi_handle: sw VSI handle
3796 * @tc: traffic class
3797 * @q_handle: software queue handle
3798 * @rl_type: min, max, or shared
3799 * @bw: bandwidth in Kbps
3800 *
3801 * This function sets BW limit of queue scheduling node.
3802 */
3803static int
3804ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3805		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3806{
3807	struct ice_sched_node *node;
3808	struct ice_q_ctx *q_ctx;
3809	int status = -EINVAL;
3810
3811	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3812		return -EINVAL;
3813	mutex_lock(&pi->sched_lock);
3814	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3815	if (!q_ctx)
3816		goto exit_q_bw_lmt;
3817	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3818	if (!node) {
3819		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3820		goto exit_q_bw_lmt;
3821	}
3822
3823	/* Return error if it is not a leaf node */
3824	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3825		goto exit_q_bw_lmt;
3826
3827	/* SRL bandwidth layer selection */
3828	if (rl_type == ICE_SHARED_BW) {
3829		u8 sel_layer; /* selected layer */
3830
3831		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3832							node->tx_sched_layer);
3833		if (sel_layer >= pi->hw->num_tx_sched_layers) {
3834			status = -EINVAL;
3835			goto exit_q_bw_lmt;
3836		}
3837		status = ice_sched_validate_srl_node(node, sel_layer);
3838		if (status)
3839			goto exit_q_bw_lmt;
3840	}
3841
3842	if (bw == ICE_SCHED_DFLT_BW)
3843		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3844	else
3845		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3846
3847	if (!status)
3848		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3849
3850exit_q_bw_lmt:
3851	mutex_unlock(&pi->sched_lock);
3852	return status;
3853}
3854
3855/**
3856 * ice_cfg_q_bw_lmt - configure queue BW limit
3857 * @pi: port information structure
3858 * @vsi_handle: sw VSI handle
3859 * @tc: traffic class
3860 * @q_handle: software queue handle
3861 * @rl_type: min, max, or shared
3862 * @bw: bandwidth in Kbps
3863 *
3864 * This function configures BW limit of queue scheduling node.
3865 */
3866int
3867ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3868		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3869{
3870	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3871				      bw);
3872}
3873
3874/**
3875 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3876 * @pi: port information structure
3877 * @vsi_handle: sw VSI handle
3878 * @tc: traffic class
3879 * @q_handle: software queue handle
3880 * @rl_type: min, max, or shared
3881 *
3882 * This function configures BW default limit of queue scheduling node.
3883 */
3884int
3885ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3886		      u16 q_handle, enum ice_rl_type rl_type)
3887{
3888	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3889				      ICE_SCHED_DFLT_BW);
3890}
3891
3892/**
3893 * ice_sched_get_node_by_id_type - get node from ID type
3894 * @pi: port information structure
3895 * @id: identifier
3896 * @agg_type: type of aggregator
3897 * @tc: traffic class
3898 *
3899 * This function returns node identified by ID of type aggregator, and
3900 * based on traffic class (TC). This function needs to be called with
3901 * the scheduler lock held.
3902 */
3903static struct ice_sched_node *
3904ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3905			      enum ice_agg_type agg_type, u8 tc)
3906{
3907	struct ice_sched_node *node = NULL;
3908
3909	switch (agg_type) {
3910	case ICE_AGG_TYPE_VSI: {
3911		struct ice_vsi_ctx *vsi_ctx;
3912		u16 vsi_handle = (u16)id;
3913
3914		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3915			break;
3916		/* Get sched_vsi_info */
3917		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3918		if (!vsi_ctx)
3919			break;
3920		node = vsi_ctx->sched.vsi_node[tc];
3921		break;
3922	}
3923
3924	case ICE_AGG_TYPE_AGG: {
3925		struct ice_sched_node *tc_node;
3926
3927		tc_node = ice_sched_get_tc_node(pi, tc);
3928		if (tc_node)
3929			node = ice_sched_get_agg_node(pi, tc_node, id);
3930		break;
3931	}
3932
3933	default:
3934		break;
3935	}
3936
3937	return node;
3938}
3939
3940/**
3941 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3942 * @pi: port information structure
3943 * @id: ID (software VSI handle or AGG ID)
3944 * @agg_type: aggregator type (VSI or AGG type node)
3945 * @tc: traffic class
3946 * @rl_type: min or max
3947 * @bw: bandwidth in Kbps
3948 *
3949 * This function sets BW limit of VSI or Aggregator scheduling node
3950 * based on TC information from passed in argument BW.
3951 */
3952static int
3953ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3954				 enum ice_agg_type agg_type, u8 tc,
3955				 enum ice_rl_type rl_type, u32 bw)
3956{
3957	struct ice_sched_node *node;
3958	int status = -EINVAL;
3959
3960	if (!pi)
3961		return status;
3962
3963	if (rl_type == ICE_UNKNOWN_BW)
3964		return status;
3965
3966	mutex_lock(&pi->sched_lock);
3967	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3968	if (!node) {
3969		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3970		goto exit_set_node_bw_lmt_per_tc;
3971	}
3972	if (bw == ICE_SCHED_DFLT_BW)
3973		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3974	else
3975		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3976
3977exit_set_node_bw_lmt_per_tc:
3978	mutex_unlock(&pi->sched_lock);
3979	return status;
3980}
3981
3982/**
3983 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3984 * @pi: port information structure
3985 * @vsi_handle: software VSI handle
3986 * @tc: traffic class
3987 * @rl_type: min or max
3988 * @bw: bandwidth in Kbps
3989 *
3990 * This function configures BW limit of VSI scheduling node based on TC
3991 * information.
3992 */
3993int
3994ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3995			  enum ice_rl_type rl_type, u32 bw)
3996{
3997	int status;
3998
3999	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4000						  ICE_AGG_TYPE_VSI,
4001						  tc, rl_type, bw);
4002	if (!status) {
4003		mutex_lock(&pi->sched_lock);
4004		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4005		mutex_unlock(&pi->sched_lock);
4006	}
4007	return status;
4008}
4009
4010/**
4011 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4012 * @pi: port information structure
4013 * @vsi_handle: software VSI handle
4014 * @tc: traffic class
4015 * @rl_type: min or max
4016 *
4017 * This function configures default BW limit of VSI scheduling node based on TC
4018 * information.
4019 */
4020int
4021ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4022			       enum ice_rl_type rl_type)
4023{
4024	int status;
4025
4026	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4027						  ICE_AGG_TYPE_VSI,
4028						  tc, rl_type,
4029						  ICE_SCHED_DFLT_BW);
4030	if (!status) {
4031		mutex_lock(&pi->sched_lock);
4032		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4033					       ICE_SCHED_DFLT_BW);
4034		mutex_unlock(&pi->sched_lock);
4035	}
4036	return status;
4037}
4038
4039/**
4040 * ice_cfg_rl_burst_size - Set burst size value
4041 * @hw: pointer to the HW struct
4042 * @bytes: burst size in bytes
4043 *
4044 * This function configures/set the burst size to requested new value. The new
4045 * burst size value is used for future rate limit calls. It doesn't change the
4046 * existing or previously created RL profiles.
4047 */
4048int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4049{
4050	u16 burst_size_to_prog;
4051
4052	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4053	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4054		return -EINVAL;
4055	if (ice_round_to_num(bytes, 64) <=
4056	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4057		/* 64 byte granularity case */
4058		/* Disable MSB granularity bit */
4059		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4060		/* round number to nearest 64 byte granularity */
4061		bytes = ice_round_to_num(bytes, 64);
4062		/* The value is in 64 byte chunks */
4063		burst_size_to_prog |= (u16)(bytes / 64);
4064	} else {
4065		/* k bytes granularity case */
4066		/* Enable MSB granularity bit */
4067		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4068		/* round number to nearest 1024 granularity */
4069		bytes = ice_round_to_num(bytes, 1024);
4070		/* check rounding doesn't go beyond allowed */
4071		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4072			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4073		/* The value is in k bytes */
4074		burst_size_to_prog |= (u16)(bytes / 1024);
4075	}
4076	hw->max_burst_size = burst_size_to_prog;
4077	return 0;
4078}
4079
4080/**
4081 * ice_sched_replay_node_prio - re-configure node priority
4082 * @hw: pointer to the HW struct
4083 * @node: sched node to configure
4084 * @priority: priority value
4085 *
4086 * This function configures node element's priority value. It
4087 * needs to be called with scheduler lock held.
4088 */
4089static int
4090ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4091			   u8 priority)
4092{
4093	struct ice_aqc_txsched_elem_data buf;
4094	struct ice_aqc_txsched_elem *data;
4095	int status;
4096
4097	buf = node->info;
4098	data = &buf.data;
4099	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4100	data->generic = priority;
4101
4102	/* Configure element */
4103	status = ice_sched_update_elem(hw, node, &buf);
4104	return status;
4105}
4106
4107/**
4108 * ice_sched_replay_node_bw - replay node(s) BW
4109 * @hw: pointer to the HW struct
4110 * @node: sched node to configure
4111 * @bw_t_info: BW type information
4112 *
4113 * This function restores node's BW from bw_t_info. The caller needs
4114 * to hold the scheduler lock.
4115 */
4116static int
4117ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4118			 struct ice_bw_type_info *bw_t_info)
4119{
4120	struct ice_port_info *pi = hw->port_info;
4121	int status = -EINVAL;
4122	u16 bw_alloc;
4123
4124	if (!node)
4125		return status;
4126	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4127		return 0;
4128	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4129		status = ice_sched_replay_node_prio(hw, node,
4130						    bw_t_info->generic);
4131		if (status)
4132			return status;
4133	}
4134	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4135		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4136						   bw_t_info->cir_bw.bw);
4137		if (status)
4138			return status;
4139	}
4140	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4141		bw_alloc = bw_t_info->cir_bw.bw_alloc;
4142		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4143						     bw_alloc);
4144		if (status)
4145			return status;
4146	}
4147	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4148		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4149						   bw_t_info->eir_bw.bw);
4150		if (status)
4151			return status;
4152	}
4153	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4154		bw_alloc = bw_t_info->eir_bw.bw_alloc;
4155		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4156						     bw_alloc);
4157		if (status)
4158			return status;
4159	}
4160	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4161		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4162						   bw_t_info->shared_bw);
4163	return status;
4164}
4165
4166/**
4167 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4168 * @pi: port info struct
4169 * @tc_bitmap: 8 bits TC bitmap to check
4170 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4171 *
4172 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4173 * may be missing, it returns enabled TCs. This function needs to be called with
4174 * scheduler lock held.
4175 */
4176static void
4177ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4178			    unsigned long *tc_bitmap,
4179			    unsigned long *ena_tc_bitmap)
4180{
4181	u8 tc;
4182
4183	/* Some TC(s) may be missing after reset, adjust for replay */
4184	ice_for_each_traffic_class(tc)
4185		if (ice_is_tc_ena(*tc_bitmap, tc) &&
4186		    (ice_sched_get_tc_node(pi, tc)))
4187			set_bit(tc, ena_tc_bitmap);
4188}
4189
4190/**
4191 * ice_sched_replay_agg - recreate aggregator node(s)
4192 * @hw: pointer to the HW struct
4193 *
4194 * This function recreate aggregator type nodes which are not replayed earlier.
4195 * It also replay aggregator BW information. These aggregator nodes are not
4196 * associated with VSI type node yet.
4197 */
4198void ice_sched_replay_agg(struct ice_hw *hw)
4199{
4200	struct ice_port_info *pi = hw->port_info;
4201	struct ice_sched_agg_info *agg_info;
4202
4203	mutex_lock(&pi->sched_lock);
4204	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4205		/* replay aggregator (re-create aggregator node) */
4206		if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4207				  ICE_MAX_TRAFFIC_CLASS)) {
4208			DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4209			int status;
4210
4211			bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4212			ice_sched_get_ena_tc_bitmap(pi,
4213						    agg_info->replay_tc_bitmap,
4214						    replay_bitmap);
4215			status = ice_sched_cfg_agg(hw->port_info,
4216						   agg_info->agg_id,
4217						   ICE_AGG_TYPE_AGG,
4218						   replay_bitmap);
4219			if (status) {
4220				dev_info(ice_hw_to_dev(hw),
4221					 "Replay agg id[%d] failed\n",
4222					 agg_info->agg_id);
4223				/* Move on to next one */
4224				continue;
4225			}
4226		}
4227	mutex_unlock(&pi->sched_lock);
4228}
4229
4230/**
4231 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4232 * @hw: pointer to the HW struct
4233 *
4234 * This function initialize aggregator(s) TC bitmap to zero. A required
4235 * preinit step for replaying aggregators.
4236 */
4237void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4238{
4239	struct ice_port_info *pi = hw->port_info;
4240	struct ice_sched_agg_info *agg_info;
4241
4242	mutex_lock(&pi->sched_lock);
4243	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4244		struct ice_sched_agg_vsi_info *agg_vsi_info;
4245
4246		agg_info->tc_bitmap[0] = 0;
4247		list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4248				    list_entry)
4249			agg_vsi_info->tc_bitmap[0] = 0;
4250	}
4251	mutex_unlock(&pi->sched_lock);
4252}
4253
4254/**
4255 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4256 * @hw: pointer to the HW struct
4257 * @vsi_handle: software VSI handle
4258 *
4259 * This function replays aggregator node, VSI to aggregator type nodes, and
4260 * their node bandwidth information. This function needs to be called with
4261 * scheduler lock held.
4262 */
4263static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4264{
4265	DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4266	struct ice_sched_agg_vsi_info *agg_vsi_info;
4267	struct ice_port_info *pi = hw->port_info;
4268	struct ice_sched_agg_info *agg_info;
4269	int status;
4270
4271	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4272	if (!ice_is_vsi_valid(hw, vsi_handle))
4273		return -EINVAL;
4274	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4275	if (!agg_info)
4276		return 0; /* Not present in list - default Agg case */
4277	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4278	if (!agg_vsi_info)
4279		return 0; /* Not present in list - default Agg case */
4280	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4281				    replay_bitmap);
4282	/* Replay aggregator node associated to vsi_handle */
4283	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4284				   ICE_AGG_TYPE_AGG, replay_bitmap);
4285	if (status)
4286		return status;
4287
4288	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4289	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4290				    replay_bitmap);
4291	/* Move this VSI (vsi_handle) to above aggregator */
4292	return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4293					  replay_bitmap);
4294}
4295
4296/**
4297 * ice_replay_vsi_agg - replay VSI to aggregator node
4298 * @hw: pointer to the HW struct
4299 * @vsi_handle: software VSI handle
4300 *
4301 * This function replays association of VSI to aggregator type nodes, and
4302 * node bandwidth information.
4303 */
4304int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4305{
4306	struct ice_port_info *pi = hw->port_info;
4307	int status;
4308
4309	mutex_lock(&pi->sched_lock);
4310	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4311	mutex_unlock(&pi->sched_lock);
4312	return status;
4313}
4314
4315/**
4316 * ice_sched_replay_q_bw - replay queue type node BW
4317 * @pi: port information structure
4318 * @q_ctx: queue context structure
4319 *
4320 * This function replays queue type node bandwidth. This function needs to be
4321 * called with scheduler lock held.
4322 */
4323int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4324{
4325	struct ice_sched_node *q_node;
4326
4327	/* Following also checks the presence of node in tree */
4328	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4329	if (!q_node)
4330		return -EINVAL;
4331	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4332}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include <net/devlink.h>
   5#include "ice_sched.h"
   6
   7/**
   8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
   9 * @pi: port information structure
  10 * @info: Scheduler element information from firmware
  11 *
  12 * This function inserts the root node of the scheduling tree topology
  13 * to the SW DB.
  14 */
  15static int
  16ice_sched_add_root_node(struct ice_port_info *pi,
  17			struct ice_aqc_txsched_elem_data *info)
  18{
  19	struct ice_sched_node *root;
  20	struct ice_hw *hw;
  21
  22	if (!pi)
  23		return -EINVAL;
  24
  25	hw = pi->hw;
  26
  27	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
  28	if (!root)
  29		return -ENOMEM;
  30
  31	/* coverity[suspicious_sizeof] */
  32	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
  33				      sizeof(*root), GFP_KERNEL);
  34	if (!root->children) {
  35		devm_kfree(ice_hw_to_dev(hw), root);
  36		return -ENOMEM;
  37	}
  38
  39	memcpy(&root->info, info, sizeof(*info));
  40	pi->root = root;
  41	return 0;
  42}
  43
  44/**
  45 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
  46 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
  47 * @teid: node TEID to search
  48 *
  49 * This function searches for a node matching the TEID in the scheduling tree
  50 * from the SW DB. The search is recursive and is restricted by the number of
  51 * layers it has searched through; stopping at the max supported layer.
  52 *
  53 * This function needs to be called when holding the port_info->sched_lock
  54 */
  55struct ice_sched_node *
  56ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
  57{
  58	u16 i;
  59
  60	/* The TEID is same as that of the start_node */
  61	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
  62		return start_node;
  63
  64	/* The node has no children or is at the max layer */
  65	if (!start_node->num_children ||
  66	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
  67	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
  68		return NULL;
  69
  70	/* Check if TEID matches to any of the children nodes */
  71	for (i = 0; i < start_node->num_children; i++)
  72		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
  73			return start_node->children[i];
  74
  75	/* Search within each child's sub-tree */
  76	for (i = 0; i < start_node->num_children; i++) {
  77		struct ice_sched_node *tmp;
  78
  79		tmp = ice_sched_find_node_by_teid(start_node->children[i],
  80						  teid);
  81		if (tmp)
  82			return tmp;
  83	}
  84
  85	return NULL;
  86}
  87
  88/**
  89 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
  90 * @hw: pointer to the HW struct
  91 * @cmd_opc: cmd opcode
  92 * @elems_req: number of elements to request
  93 * @buf: pointer to buffer
  94 * @buf_size: buffer size in bytes
  95 * @elems_resp: returns total number of elements response
  96 * @cd: pointer to command details structure or NULL
  97 *
  98 * This function sends a scheduling elements cmd (cmd_opc)
  99 */
 100static int
 101ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
 102			    u16 elems_req, void *buf, u16 buf_size,
 103			    u16 *elems_resp, struct ice_sq_cd *cd)
 104{
 105	struct ice_aqc_sched_elem_cmd *cmd;
 106	struct ice_aq_desc desc;
 107	int status;
 108
 109	cmd = &desc.params.sched_elem_cmd;
 110	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
 111	cmd->num_elem_req = cpu_to_le16(elems_req);
 112	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 113	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 114	if (!status && elems_resp)
 115		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
 116
 117	return status;
 118}
 119
 120/**
 121 * ice_aq_query_sched_elems - query scheduler elements
 122 * @hw: pointer to the HW struct
 123 * @elems_req: number of elements to query
 124 * @buf: pointer to buffer
 125 * @buf_size: buffer size in bytes
 126 * @elems_ret: returns total number of elements returned
 127 * @cd: pointer to command details structure or NULL
 128 *
 129 * Query scheduling elements (0x0404)
 130 */
 131int
 132ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
 133			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
 134			 u16 *elems_ret, struct ice_sq_cd *cd)
 135{
 136	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
 137					   elems_req, (void *)buf, buf_size,
 138					   elems_ret, cd);
 139}
 140
 141/**
 142 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
 143 * @pi: port information structure
 144 * @layer: Scheduler layer of the node
 145 * @info: Scheduler element information from firmware
 146 * @prealloc_node: preallocated ice_sched_node struct for SW DB
 147 *
 148 * This function inserts a scheduler node to the SW DB.
 149 */
 150int
 151ice_sched_add_node(struct ice_port_info *pi, u8 layer,
 152		   struct ice_aqc_txsched_elem_data *info,
 153		   struct ice_sched_node *prealloc_node)
 154{
 155	struct ice_aqc_txsched_elem_data elem;
 156	struct ice_sched_node *parent;
 157	struct ice_sched_node *node;
 158	struct ice_hw *hw;
 159	int status;
 160
 161	if (!pi)
 162		return -EINVAL;
 163
 164	hw = pi->hw;
 165
 166	/* A valid parent node should be there */
 167	parent = ice_sched_find_node_by_teid(pi->root,
 168					     le32_to_cpu(info->parent_teid));
 169	if (!parent) {
 170		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
 171			  le32_to_cpu(info->parent_teid));
 172		return -EINVAL;
 173	}
 174
 175	/* query the current node information from FW before adding it
 176	 * to the SW DB
 177	 */
 178	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
 179	if (status)
 180		return status;
 181
 182	if (prealloc_node)
 183		node = prealloc_node;
 184	else
 185		node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
 186	if (!node)
 187		return -ENOMEM;
 188	if (hw->max_children[layer]) {
 189		/* coverity[suspicious_sizeof] */
 190		node->children = devm_kcalloc(ice_hw_to_dev(hw),
 191					      hw->max_children[layer],
 192					      sizeof(*node), GFP_KERNEL);
 193		if (!node->children) {
 194			devm_kfree(ice_hw_to_dev(hw), node);
 195			return -ENOMEM;
 196		}
 197	}
 198
 199	node->in_use = true;
 200	node->parent = parent;
 201	node->tx_sched_layer = layer;
 202	parent->children[parent->num_children++] = node;
 203	node->info = elem;
 204	return 0;
 205}
 206
 207/**
 208 * ice_aq_delete_sched_elems - delete scheduler elements
 209 * @hw: pointer to the HW struct
 210 * @grps_req: number of groups to delete
 211 * @buf: pointer to buffer
 212 * @buf_size: buffer size in bytes
 213 * @grps_del: returns total number of elements deleted
 214 * @cd: pointer to command details structure or NULL
 215 *
 216 * Delete scheduling elements (0x040F)
 217 */
 218static int
 219ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
 220			  struct ice_aqc_delete_elem *buf, u16 buf_size,
 221			  u16 *grps_del, struct ice_sq_cd *cd)
 222{
 223	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
 224					   grps_req, (void *)buf, buf_size,
 225					   grps_del, cd);
 226}
 227
 228/**
 229 * ice_sched_remove_elems - remove nodes from HW
 230 * @hw: pointer to the HW struct
 231 * @parent: pointer to the parent node
 232 * @node_teid: node teid to be deleted
 233 *
 234 * This function remove nodes from HW
 235 */
 236static int
 237ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
 238		       u32 node_teid)
 239{
 240	DEFINE_FLEX(struct ice_aqc_delete_elem, buf, teid, 1);
 241	u16 buf_size = __struct_size(buf);
 242	u16 num_groups_removed = 0;
 243	int status;
 244
 245	buf->hdr.parent_teid = parent->info.node_teid;
 246	buf->hdr.num_elems = cpu_to_le16(1);
 247	buf->teid[0] = cpu_to_le32(node_teid);
 248
 249	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
 250					   &num_groups_removed, NULL);
 251	if (status || num_groups_removed != 1)
 252		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
 253			  hw->adminq.sq_last_status);
 254
 255	return status;
 256}
 257
 258/**
 259 * ice_sched_get_first_node - get the first node of the given layer
 260 * @pi: port information structure
 261 * @parent: pointer the base node of the subtree
 262 * @layer: layer number
 263 *
 264 * This function retrieves the first node of the given layer from the subtree
 265 */
 266static struct ice_sched_node *
 267ice_sched_get_first_node(struct ice_port_info *pi,
 268			 struct ice_sched_node *parent, u8 layer)
 269{
 270	return pi->sib_head[parent->tc_num][layer];
 271}
 272
 273/**
 274 * ice_sched_get_tc_node - get pointer to TC node
 275 * @pi: port information structure
 276 * @tc: TC number
 277 *
 278 * This function returns the TC node pointer
 279 */
 280struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
 281{
 282	u8 i;
 283
 284	if (!pi || !pi->root)
 285		return NULL;
 286	for (i = 0; i < pi->root->num_children; i++)
 287		if (pi->root->children[i]->tc_num == tc)
 288			return pi->root->children[i];
 289	return NULL;
 290}
 291
 292/**
 293 * ice_free_sched_node - Free a Tx scheduler node from SW DB
 294 * @pi: port information structure
 295 * @node: pointer to the ice_sched_node struct
 296 *
 297 * This function frees up a node from SW DB as well as from HW
 298 *
 299 * This function needs to be called with the port_info->sched_lock held
 300 */
 301void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
 302{
 303	struct ice_sched_node *parent;
 304	struct ice_hw *hw = pi->hw;
 305	u8 i, j;
 306
 307	/* Free the children before freeing up the parent node
 308	 * The parent array is updated below and that shifts the nodes
 309	 * in the array. So always pick the first child if num children > 0
 310	 */
 311	while (node->num_children)
 312		ice_free_sched_node(pi, node->children[0]);
 313
 314	/* Leaf, TC and root nodes can't be deleted by SW */
 315	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
 316	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
 317	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
 318	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
 319		u32 teid = le32_to_cpu(node->info.node_teid);
 320
 321		ice_sched_remove_elems(hw, node->parent, teid);
 322	}
 323	parent = node->parent;
 324	/* root has no parent */
 325	if (parent) {
 326		struct ice_sched_node *p;
 327
 328		/* update the parent */
 329		for (i = 0; i < parent->num_children; i++)
 330			if (parent->children[i] == node) {
 331				for (j = i + 1; j < parent->num_children; j++)
 332					parent->children[j - 1] =
 333						parent->children[j];
 334				parent->num_children--;
 335				break;
 336			}
 337
 338		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
 339		while (p) {
 340			if (p->sibling == node) {
 341				p->sibling = node->sibling;
 342				break;
 343			}
 344			p = p->sibling;
 345		}
 346
 347		/* update the sibling head if head is getting removed */
 348		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
 349			pi->sib_head[node->tc_num][node->tx_sched_layer] =
 350				node->sibling;
 351	}
 352
 353	devm_kfree(ice_hw_to_dev(hw), node->children);
 354	kfree(node->name);
 355	xa_erase(&pi->sched_node_ids, node->id);
 356	devm_kfree(ice_hw_to_dev(hw), node);
 357}
 358
 359/**
 360 * ice_aq_get_dflt_topo - gets default scheduler topology
 361 * @hw: pointer to the HW struct
 362 * @lport: logical port number
 363 * @buf: pointer to buffer
 364 * @buf_size: buffer size in bytes
 365 * @num_branches: returns total number of queue to port branches
 366 * @cd: pointer to command details structure or NULL
 367 *
 368 * Get default scheduler topology (0x400)
 369 */
 370static int
 371ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
 372		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
 373		     u8 *num_branches, struct ice_sq_cd *cd)
 374{
 375	struct ice_aqc_get_topo *cmd;
 376	struct ice_aq_desc desc;
 377	int status;
 378
 379	cmd = &desc.params.get_topo;
 380	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
 381	cmd->port_num = lport;
 382	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 383	if (!status && num_branches)
 384		*num_branches = cmd->num_branches;
 385
 386	return status;
 387}
 388
 389/**
 390 * ice_aq_add_sched_elems - adds scheduling element
 391 * @hw: pointer to the HW struct
 392 * @grps_req: the number of groups that are requested to be added
 393 * @buf: pointer to buffer
 394 * @buf_size: buffer size in bytes
 395 * @grps_added: returns total number of groups added
 396 * @cd: pointer to command details structure or NULL
 397 *
 398 * Add scheduling elements (0x0401)
 399 */
 400static int
 401ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
 402		       struct ice_aqc_add_elem *buf, u16 buf_size,
 403		       u16 *grps_added, struct ice_sq_cd *cd)
 404{
 405	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
 406					   grps_req, (void *)buf, buf_size,
 407					   grps_added, cd);
 408}
 409
 410/**
 411 * ice_aq_cfg_sched_elems - configures scheduler elements
 412 * @hw: pointer to the HW struct
 413 * @elems_req: number of elements to configure
 414 * @buf: pointer to buffer
 415 * @buf_size: buffer size in bytes
 416 * @elems_cfgd: returns total number of elements configured
 417 * @cd: pointer to command details structure or NULL
 418 *
 419 * Configure scheduling elements (0x0403)
 420 */
 421static int
 422ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
 423		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
 424		       u16 *elems_cfgd, struct ice_sq_cd *cd)
 425{
 426	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
 427					   elems_req, (void *)buf, buf_size,
 428					   elems_cfgd, cd);
 429}
 430
 431/**
 432 * ice_aq_move_sched_elems - move scheduler element (just 1 group)
 433 * @hw: pointer to the HW struct
 434 * @buf: pointer to buffer
 435 * @buf_size: buffer size in bytes
 436 * @grps_movd: returns total number of groups moved
 437 *
 438 * Move scheduling elements (0x0408)
 439 */
 440int
 441ice_aq_move_sched_elems(struct ice_hw *hw, struct ice_aqc_move_elem *buf,
 442			u16 buf_size, u16 *grps_movd)
 443{
 444	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
 445					   1, buf, buf_size, grps_movd, NULL);
 446}
 447
 448/**
 449 * ice_aq_suspend_sched_elems - suspend scheduler elements
 450 * @hw: pointer to the HW struct
 451 * @elems_req: number of elements to suspend
 452 * @buf: pointer to buffer
 453 * @buf_size: buffer size in bytes
 454 * @elems_ret: returns total number of elements suspended
 455 * @cd: pointer to command details structure or NULL
 456 *
 457 * Suspend scheduling elements (0x0409)
 458 */
 459static int
 460ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
 461			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
 462{
 463	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
 464					   elems_req, (void *)buf, buf_size,
 465					   elems_ret, cd);
 466}
 467
 468/**
 469 * ice_aq_resume_sched_elems - resume scheduler elements
 470 * @hw: pointer to the HW struct
 471 * @elems_req: number of elements to resume
 472 * @buf: pointer to buffer
 473 * @buf_size: buffer size in bytes
 474 * @elems_ret: returns total number of elements resumed
 475 * @cd: pointer to command details structure or NULL
 476 *
 477 * resume scheduling elements (0x040A)
 478 */
 479static int
 480ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
 481			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
 482{
 483	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
 484					   elems_req, (void *)buf, buf_size,
 485					   elems_ret, cd);
 486}
 487
 488/**
 489 * ice_aq_query_sched_res - query scheduler resource
 490 * @hw: pointer to the HW struct
 491 * @buf_size: buffer size in bytes
 492 * @buf: pointer to buffer
 493 * @cd: pointer to command details structure or NULL
 494 *
 495 * Query scheduler resource allocation (0x0412)
 496 */
 497static int
 498ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
 499		       struct ice_aqc_query_txsched_res_resp *buf,
 500		       struct ice_sq_cd *cd)
 501{
 502	struct ice_aq_desc desc;
 503
 504	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
 505	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 506}
 507
 508/**
 509 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
 510 * @hw: pointer to the HW struct
 511 * @num_nodes: number of nodes
 512 * @node_teids: array of node teids to be suspended or resumed
 513 * @suspend: true means suspend / false means resume
 514 *
 515 * This function suspends or resumes HW nodes
 516 */
 517int
 518ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
 519			       bool suspend)
 520{
 521	u16 i, buf_size, num_elem_ret = 0;
 522	__le32 *buf;
 523	int status;
 524
 525	buf_size = sizeof(*buf) * num_nodes;
 526	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
 527	if (!buf)
 528		return -ENOMEM;
 529
 530	for (i = 0; i < num_nodes; i++)
 531		buf[i] = cpu_to_le32(node_teids[i]);
 532
 533	if (suspend)
 534		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
 535						    buf_size, &num_elem_ret,
 536						    NULL);
 537	else
 538		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
 539						   buf_size, &num_elem_ret,
 540						   NULL);
 541	if (status || num_elem_ret != num_nodes)
 542		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
 543
 544	devm_kfree(ice_hw_to_dev(hw), buf);
 545	return status;
 546}
 547
 548/**
 549 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
 550 * @hw: pointer to the HW struct
 551 * @vsi_handle: VSI handle
 552 * @tc: TC number
 553 * @new_numqs: number of queues
 554 */
 555static int
 556ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
 557{
 558	struct ice_vsi_ctx *vsi_ctx;
 559	struct ice_q_ctx *q_ctx;
 560	u16 idx;
 561
 562	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
 563	if (!vsi_ctx)
 564		return -EINVAL;
 565	/* allocate LAN queue contexts */
 566	if (!vsi_ctx->lan_q_ctx[tc]) {
 567		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
 568				     sizeof(*q_ctx), GFP_KERNEL);
 569		if (!q_ctx)
 570			return -ENOMEM;
 571
 572		for (idx = 0; idx < new_numqs; idx++) {
 573			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
 574			q_ctx[idx].q_teid = ICE_INVAL_TEID;
 575		}
 576
 577		vsi_ctx->lan_q_ctx[tc] = q_ctx;
 578		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
 579		return 0;
 580	}
 581	/* num queues are increased, update the queue contexts */
 582	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
 583		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
 584
 585		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
 586				     sizeof(*q_ctx), GFP_KERNEL);
 587		if (!q_ctx)
 588			return -ENOMEM;
 589
 590		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
 591		       prev_num * sizeof(*q_ctx));
 592		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
 593
 594		for (idx = prev_num; idx < new_numqs; idx++) {
 595			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
 596			q_ctx[idx].q_teid = ICE_INVAL_TEID;
 597		}
 598
 599		vsi_ctx->lan_q_ctx[tc] = q_ctx;
 600		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
 601	}
 602	return 0;
 603}
 604
 605/**
 606 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
 607 * @hw: pointer to the HW struct
 608 * @vsi_handle: VSI handle
 609 * @tc: TC number
 610 * @new_numqs: number of queues
 611 */
 612static int
 613ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
 614{
 615	struct ice_vsi_ctx *vsi_ctx;
 616	struct ice_q_ctx *q_ctx;
 617
 618	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
 619	if (!vsi_ctx)
 620		return -EINVAL;
 621	/* allocate RDMA queue contexts */
 622	if (!vsi_ctx->rdma_q_ctx[tc]) {
 623		vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
 624						       new_numqs,
 625						       sizeof(*q_ctx),
 626						       GFP_KERNEL);
 627		if (!vsi_ctx->rdma_q_ctx[tc])
 628			return -ENOMEM;
 629		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
 630		return 0;
 631	}
 632	/* num queues are increased, update the queue contexts */
 633	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
 634		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
 635
 636		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
 637				     sizeof(*q_ctx), GFP_KERNEL);
 638		if (!q_ctx)
 639			return -ENOMEM;
 640		memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
 641		       prev_num * sizeof(*q_ctx));
 642		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
 643		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
 644		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
 645	}
 646	return 0;
 647}
 648
 649/**
 650 * ice_aq_rl_profile - performs a rate limiting task
 651 * @hw: pointer to the HW struct
 652 * @opcode: opcode for add, query, or remove profile(s)
 653 * @num_profiles: the number of profiles
 654 * @buf: pointer to buffer
 655 * @buf_size: buffer size in bytes
 656 * @num_processed: number of processed add or remove profile(s) to return
 657 * @cd: pointer to command details structure
 658 *
 659 * RL profile function to add, query, or remove profile(s)
 660 */
 661static int
 662ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
 663		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
 664		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
 665{
 666	struct ice_aqc_rl_profile *cmd;
 667	struct ice_aq_desc desc;
 668	int status;
 669
 670	cmd = &desc.params.rl_profile;
 671
 672	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
 673	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 674	cmd->num_profiles = cpu_to_le16(num_profiles);
 675	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 676	if (!status && num_processed)
 677		*num_processed = le16_to_cpu(cmd->num_processed);
 678	return status;
 679}
 680
 681/**
 682 * ice_aq_add_rl_profile - adds rate limiting profile(s)
 683 * @hw: pointer to the HW struct
 684 * @num_profiles: the number of profile(s) to be add
 685 * @buf: pointer to buffer
 686 * @buf_size: buffer size in bytes
 687 * @num_profiles_added: total number of profiles added to return
 688 * @cd: pointer to command details structure
 689 *
 690 * Add RL profile (0x0410)
 691 */
 692static int
 693ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
 694		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
 695		      u16 *num_profiles_added, struct ice_sq_cd *cd)
 696{
 697	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
 698				 buf, buf_size, num_profiles_added, cd);
 699}
 700
 701/**
 702 * ice_aq_remove_rl_profile - removes RL profile(s)
 703 * @hw: pointer to the HW struct
 704 * @num_profiles: the number of profile(s) to remove
 705 * @buf: pointer to buffer
 706 * @buf_size: buffer size in bytes
 707 * @num_profiles_removed: total number of profiles removed to return
 708 * @cd: pointer to command details structure or NULL
 709 *
 710 * Remove RL profile (0x0415)
 711 */
 712static int
 713ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
 714			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
 715			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
 716{
 717	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
 718				 num_profiles, buf, buf_size,
 719				 num_profiles_removed, cd);
 720}
 721
 722/**
 723 * ice_sched_del_rl_profile - remove RL profile
 724 * @hw: pointer to the HW struct
 725 * @rl_info: rate limit profile information
 726 *
 727 * If the profile ID is not referenced anymore, it removes profile ID with
 728 * its associated parameters from HW DB,and locally. The caller needs to
 729 * hold scheduler lock.
 730 */
 731static int
 732ice_sched_del_rl_profile(struct ice_hw *hw,
 733			 struct ice_aqc_rl_profile_info *rl_info)
 734{
 735	struct ice_aqc_rl_profile_elem *buf;
 736	u16 num_profiles_removed;
 737	u16 num_profiles = 1;
 738	int status;
 739
 740	if (rl_info->prof_id_ref != 0)
 741		return -EBUSY;
 742
 743	/* Safe to remove profile ID */
 744	buf = &rl_info->profile;
 745	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
 746					  &num_profiles_removed, NULL);
 747	if (status || num_profiles_removed != num_profiles)
 748		return -EIO;
 749
 750	/* Delete stale entry now */
 751	list_del(&rl_info->list_entry);
 752	devm_kfree(ice_hw_to_dev(hw), rl_info);
 753	return status;
 754}
 755
 756/**
 757 * ice_sched_clear_rl_prof - clears RL prof entries
 758 * @pi: port information structure
 759 *
 760 * This function removes all RL profile from HW as well as from SW DB.
 761 */
 762static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
 763{
 764	u16 ln;
 765
 766	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
 767		struct ice_aqc_rl_profile_info *rl_prof_elem;
 768		struct ice_aqc_rl_profile_info *rl_prof_tmp;
 769
 770		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
 771					 &pi->rl_prof_list[ln], list_entry) {
 772			struct ice_hw *hw = pi->hw;
 773			int status;
 774
 775			rl_prof_elem->prof_id_ref = 0;
 776			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
 777			if (status) {
 778				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
 779				/* On error, free mem required */
 780				list_del(&rl_prof_elem->list_entry);
 781				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
 782			}
 783		}
 784	}
 785}
 786
 787/**
 788 * ice_sched_clear_agg - clears the aggregator related information
 789 * @hw: pointer to the hardware structure
 790 *
 791 * This function removes aggregator list and free up aggregator related memory
 792 * previously allocated.
 793 */
 794void ice_sched_clear_agg(struct ice_hw *hw)
 795{
 796	struct ice_sched_agg_info *agg_info;
 797	struct ice_sched_agg_info *atmp;
 798
 799	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
 800		struct ice_sched_agg_vsi_info *agg_vsi_info;
 801		struct ice_sched_agg_vsi_info *vtmp;
 802
 803		list_for_each_entry_safe(agg_vsi_info, vtmp,
 804					 &agg_info->agg_vsi_list, list_entry) {
 805			list_del(&agg_vsi_info->list_entry);
 806			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
 807		}
 808		list_del(&agg_info->list_entry);
 809		devm_kfree(ice_hw_to_dev(hw), agg_info);
 810	}
 811}
 812
 813/**
 814 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
 815 * @pi: port information structure
 816 *
 817 * This function removes all the nodes from HW as well as from SW DB.
 818 */
 819static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
 820{
 821	if (!pi)
 822		return;
 823	/* remove RL profiles related lists */
 824	ice_sched_clear_rl_prof(pi);
 825	if (pi->root) {
 826		ice_free_sched_node(pi, pi->root);
 827		pi->root = NULL;
 828	}
 829}
 830
 831/**
 832 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
 833 * @pi: port information structure
 834 *
 835 * Cleanup scheduling elements from SW DB
 836 */
 837void ice_sched_clear_port(struct ice_port_info *pi)
 838{
 839	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
 840		return;
 841
 842	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
 843	mutex_lock(&pi->sched_lock);
 844	ice_sched_clear_tx_topo(pi);
 845	mutex_unlock(&pi->sched_lock);
 846	mutex_destroy(&pi->sched_lock);
 847}
 848
 849/**
 850 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
 851 * @hw: pointer to the HW struct
 852 *
 853 * Cleanup scheduling elements from SW DB for all the ports
 854 */
 855void ice_sched_cleanup_all(struct ice_hw *hw)
 856{
 857	if (!hw)
 858		return;
 859
 860	devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
 861	hw->layer_info = NULL;
 862
 863	ice_sched_clear_port(hw->port_info);
 864
 865	hw->num_tx_sched_layers = 0;
 866	hw->num_tx_sched_phys_layers = 0;
 867	hw->flattened_layers = 0;
 868	hw->max_cgds = 0;
 869}
 870
 871/**
 872 * ice_sched_add_elems - add nodes to HW and SW DB
 873 * @pi: port information structure
 874 * @tc_node: pointer to the branch node
 875 * @parent: pointer to the parent node
 876 * @layer: layer number to add nodes
 877 * @num_nodes: number of nodes
 878 * @num_nodes_added: pointer to num nodes added
 879 * @first_node_teid: if new nodes are added then return the TEID of first node
 880 * @prealloc_nodes: preallocated nodes struct for software DB
 881 *
 882 * This function add nodes to HW as well as to SW DB for a given layer
 883 */
 884int
 885ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
 886		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
 887		    u16 *num_nodes_added, u32 *first_node_teid,
 888		    struct ice_sched_node **prealloc_nodes)
 889{
 890	struct ice_sched_node *prev, *new_node;
 891	struct ice_aqc_add_elem *buf;
 892	u16 i, num_groups_added = 0;
 893	struct ice_hw *hw = pi->hw;
 894	size_t buf_size;
 895	int status = 0;
 896	u32 teid;
 897
 898	buf_size = struct_size(buf, generic, num_nodes);
 899	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
 900	if (!buf)
 901		return -ENOMEM;
 902
 903	buf->hdr.parent_teid = parent->info.node_teid;
 904	buf->hdr.num_elems = cpu_to_le16(num_nodes);
 905	for (i = 0; i < num_nodes; i++) {
 906		buf->generic[i].parent_teid = parent->info.node_teid;
 907		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
 908		buf->generic[i].data.valid_sections =
 909			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
 910			ICE_AQC_ELEM_VALID_EIR;
 911		buf->generic[i].data.generic = 0;
 912		buf->generic[i].data.cir_bw.bw_profile_idx =
 913			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
 914		buf->generic[i].data.cir_bw.bw_alloc =
 915			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
 916		buf->generic[i].data.eir_bw.bw_profile_idx =
 917			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
 918		buf->generic[i].data.eir_bw.bw_alloc =
 919			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
 920	}
 921
 922	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
 923					&num_groups_added, NULL);
 924	if (status || num_groups_added != 1) {
 925		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
 926			  hw->adminq.sq_last_status);
 927		devm_kfree(ice_hw_to_dev(hw), buf);
 928		return -EIO;
 929	}
 930
 931	*num_nodes_added = num_nodes;
 932	/* add nodes to the SW DB */
 933	for (i = 0; i < num_nodes; i++) {
 934		if (prealloc_nodes)
 935			status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
 936		else
 937			status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
 938
 939		if (status) {
 940			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
 941				  status);
 942			break;
 943		}
 944
 945		teid = le32_to_cpu(buf->generic[i].node_teid);
 946		new_node = ice_sched_find_node_by_teid(parent, teid);
 947		if (!new_node) {
 948			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
 949			break;
 950		}
 951
 952		new_node->sibling = NULL;
 953		new_node->tc_num = tc_node->tc_num;
 954		new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
 955		new_node->tx_share = ICE_SCHED_DFLT_BW;
 956		new_node->tx_max = ICE_SCHED_DFLT_BW;
 957		new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
 958		if (!new_node->name)
 959			return -ENOMEM;
 960
 961		status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
 962				  GFP_KERNEL);
 963		if (status) {
 964			ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
 965				  status);
 966			break;
 967		}
 968
 969		snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
 970
 971		/* add it to previous node sibling pointer */
 972		/* Note: siblings are not linked across branches */
 973		prev = ice_sched_get_first_node(pi, tc_node, layer);
 974		if (prev && prev != new_node) {
 975			while (prev->sibling)
 976				prev = prev->sibling;
 977			prev->sibling = new_node;
 978		}
 979
 980		/* initialize the sibling head */
 981		if (!pi->sib_head[tc_node->tc_num][layer])
 982			pi->sib_head[tc_node->tc_num][layer] = new_node;
 983
 984		if (i == 0)
 985			*first_node_teid = teid;
 986	}
 987
 988	devm_kfree(ice_hw_to_dev(hw), buf);
 989	return status;
 990}
 991
 992/**
 993 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
 994 * @pi: port information structure
 995 * @tc_node: pointer to TC node
 996 * @parent: pointer to parent node
 997 * @layer: layer number to add nodes
 998 * @num_nodes: number of nodes to be added
 999 * @first_node_teid: pointer to the first node TEID
1000 * @num_nodes_added: pointer to number of nodes added
1001 *
1002 * Add nodes into specific HW layer.
1003 */
1004static int
1005ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1006				struct ice_sched_node *tc_node,
1007				struct ice_sched_node *parent, u8 layer,
1008				u16 num_nodes, u32 *first_node_teid,
1009				u16 *num_nodes_added)
1010{
1011	u16 max_child_nodes;
1012
1013	*num_nodes_added = 0;
1014
1015	if (!num_nodes)
1016		return 0;
1017
1018	if (!parent || layer < pi->hw->sw_entry_point_layer)
1019		return -EINVAL;
1020
1021	/* max children per node per layer */
1022	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1023
1024	/* current number of children + required nodes exceed max children */
1025	if ((parent->num_children + num_nodes) > max_child_nodes) {
1026		/* Fail if the parent is a TC node */
1027		if (parent == tc_node)
1028			return -EIO;
1029		return -ENOSPC;
1030	}
1031
1032	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1033				   num_nodes_added, first_node_teid, NULL);
1034}
1035
1036/**
1037 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1038 * @pi: port information structure
1039 * @tc_node: pointer to TC node
1040 * @parent: pointer to parent node
1041 * @layer: layer number to add nodes
1042 * @num_nodes: number of nodes to be added
1043 * @first_node_teid: pointer to the first node TEID
1044 * @num_nodes_added: pointer to number of nodes added
1045 *
1046 * This function add nodes to a given layer.
1047 */
1048int
1049ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1050			     struct ice_sched_node *tc_node,
1051			     struct ice_sched_node *parent, u8 layer,
1052			     u16 num_nodes, u32 *first_node_teid,
1053			     u16 *num_nodes_added)
1054{
1055	u32 *first_teid_ptr = first_node_teid;
1056	u16 new_num_nodes = num_nodes;
1057	int status = 0;
1058
1059	*num_nodes_added = 0;
1060	while (*num_nodes_added < num_nodes) {
1061		u16 max_child_nodes, num_added = 0;
1062		u32 temp;
1063
1064		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1065							 layer,	new_num_nodes,
1066							 first_teid_ptr,
1067							 &num_added);
1068		if (!status)
1069			*num_nodes_added += num_added;
1070		/* added more nodes than requested ? */
1071		if (*num_nodes_added > num_nodes) {
1072			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1073				  *num_nodes_added);
1074			status = -EIO;
1075			break;
1076		}
1077		/* break if all the nodes are added successfully */
1078		if (!status && (*num_nodes_added == num_nodes))
1079			break;
1080		/* break if the error is not max limit */
1081		if (status && status != -ENOSPC)
1082			break;
1083		/* Exceeded the max children */
1084		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1085		/* utilize all the spaces if the parent is not full */
1086		if (parent->num_children < max_child_nodes) {
1087			new_num_nodes = max_child_nodes - parent->num_children;
1088		} else {
1089			/* This parent is full, try the next sibling */
1090			parent = parent->sibling;
1091			/* Don't modify the first node TEID memory if the
1092			 * first node was added already in the above call.
1093			 * Instead send some temp memory for all other
1094			 * recursive calls.
1095			 */
1096			if (num_added)
1097				first_teid_ptr = &temp;
1098
1099			new_num_nodes = num_nodes - *num_nodes_added;
1100		}
1101	}
1102	return status;
1103}
1104
1105/**
1106 * ice_sched_get_qgrp_layer - get the current queue group layer number
1107 * @hw: pointer to the HW struct
1108 *
1109 * This function returns the current queue group layer number
1110 */
1111static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1112{
1113	/* It's always total layers - 1, the array is 0 relative so -2 */
1114	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1115}
1116
1117/**
1118 * ice_sched_get_vsi_layer - get the current VSI layer number
1119 * @hw: pointer to the HW struct
1120 *
1121 * This function returns the current VSI layer number
1122 */
1123u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1124{
1125	/* Num Layers       VSI layer
1126	 *     9               6
1127	 *     7               4
1128	 *     5 or less       sw_entry_point_layer
1129	 */
1130	/* calculate the VSI layer based on number of layers. */
1131	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1132		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1133
1134		if (layer > hw->sw_entry_point_layer)
1135			return layer;
1136	}
1137	return hw->sw_entry_point_layer;
1138}
1139
1140/**
1141 * ice_sched_get_agg_layer - get the current aggregator layer number
1142 * @hw: pointer to the HW struct
1143 *
1144 * This function returns the current aggregator layer number
1145 */
1146u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1147{
1148	/* Num Layers       aggregator layer
1149	 *     9               4
1150	 *     7 or less       sw_entry_point_layer
1151	 */
1152	/* calculate the aggregator layer based on number of layers. */
1153	if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1154		u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1155
1156		if (layer > hw->sw_entry_point_layer)
1157			return layer;
1158	}
1159	return hw->sw_entry_point_layer;
1160}
1161
1162/**
1163 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1164 * @pi: port information structure
1165 *
1166 * This function removes the leaf node that was created by the FW
1167 * during initialization
1168 */
1169static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1170{
1171	struct ice_sched_node *node;
1172
1173	node = pi->root;
1174	while (node) {
1175		if (!node->num_children)
1176			break;
1177		node = node->children[0];
1178	}
1179	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1180		u32 teid = le32_to_cpu(node->info.node_teid);
1181		int status;
1182
1183		/* remove the default leaf node */
1184		status = ice_sched_remove_elems(pi->hw, node->parent, teid);
1185		if (!status)
1186			ice_free_sched_node(pi, node);
1187	}
1188}
1189
1190/**
1191 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1192 * @pi: port information structure
1193 *
1194 * This function frees all the nodes except root and TC that were created by
1195 * the FW during initialization
1196 */
1197static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1198{
1199	struct ice_sched_node *node;
1200
1201	ice_rm_dflt_leaf_node(pi);
1202
1203	/* remove the default nodes except TC and root nodes */
1204	node = pi->root;
1205	while (node) {
1206		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1207		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1208		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1209			ice_free_sched_node(pi, node);
1210			break;
1211		}
1212
1213		if (!node->num_children)
1214			break;
1215		node = node->children[0];
1216	}
1217}
1218
1219/**
1220 * ice_sched_init_port - Initialize scheduler by querying information from FW
1221 * @pi: port info structure for the tree to cleanup
1222 *
1223 * This function is the initial call to find the total number of Tx scheduler
1224 * resources, default topology created by firmware and storing the information
1225 * in SW DB.
1226 */
1227int ice_sched_init_port(struct ice_port_info *pi)
1228{
1229	struct ice_aqc_get_topo_elem *buf;
1230	struct ice_hw *hw;
1231	u8 num_branches;
1232	u16 num_elems;
1233	int status;
1234	u8 i, j;
1235
1236	if (!pi)
1237		return -EINVAL;
1238	hw = pi->hw;
1239
1240	/* Query the Default Topology from FW */
1241	buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1242	if (!buf)
1243		return -ENOMEM;
1244
1245	/* Query default scheduling tree topology */
1246	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1247				      &num_branches, NULL);
1248	if (status)
1249		goto err_init_port;
1250
1251	/* num_branches should be between 1-8 */
1252	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1253		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1254			  num_branches);
1255		status = -EINVAL;
1256		goto err_init_port;
1257	}
1258
1259	/* get the number of elements on the default/first branch */
1260	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1261
1262	/* num_elems should always be between 1-9 */
1263	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1264		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1265			  num_elems);
1266		status = -EINVAL;
1267		goto err_init_port;
1268	}
1269
1270	/* If the last node is a leaf node then the index of the queue group
1271	 * layer is two less than the number of elements.
1272	 */
1273	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1274	    ICE_AQC_ELEM_TYPE_LEAF)
1275		pi->last_node_teid =
1276			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1277	else
1278		pi->last_node_teid =
1279			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1280
1281	/* Insert the Tx Sched root node */
1282	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1283	if (status)
1284		goto err_init_port;
1285
1286	/* Parse the default tree and cache the information */
1287	for (i = 0; i < num_branches; i++) {
1288		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1289
1290		/* Skip root element as already inserted */
1291		for (j = 1; j < num_elems; j++) {
1292			/* update the sw entry point */
1293			if (buf[0].generic[j].data.elem_type ==
1294			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1295				hw->sw_entry_point_layer = j;
1296
1297			status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1298			if (status)
1299				goto err_init_port;
1300		}
1301	}
1302
1303	/* Remove the default nodes. */
1304	if (pi->root)
1305		ice_sched_rm_dflt_nodes(pi);
1306
1307	/* initialize the port for handling the scheduler tree */
1308	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1309	mutex_init(&pi->sched_lock);
1310	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1311		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1312
1313err_init_port:
1314	if (status && pi->root) {
1315		ice_free_sched_node(pi, pi->root);
1316		pi->root = NULL;
1317	}
1318
1319	kfree(buf);
1320	return status;
1321}
1322
1323/**
1324 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1325 * @hw: pointer to the HW struct
1326 *
1327 * query FW for allocated scheduler resources and store in HW struct
1328 */
1329int ice_sched_query_res_alloc(struct ice_hw *hw)
1330{
1331	struct ice_aqc_query_txsched_res_resp *buf;
1332	__le16 max_sibl;
1333	int status = 0;
1334	u16 i;
1335
1336	if (hw->layer_info)
1337		return status;
1338
1339	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1340	if (!buf)
1341		return -ENOMEM;
1342
1343	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1344	if (status)
1345		goto sched_query_out;
1346
1347	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1348	hw->num_tx_sched_phys_layers =
1349		le16_to_cpu(buf->sched_props.phys_levels);
1350	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1351	hw->max_cgds = buf->sched_props.max_pf_cgds;
1352
1353	/* max sibling group size of current layer refers to the max children
1354	 * of the below layer node.
1355	 * layer 1 node max children will be layer 2 max sibling group size
1356	 * layer 2 node max children will be layer 3 max sibling group size
1357	 * and so on. This array will be populated from root (index 0) to
1358	 * qgroup layer 7. Leaf node has no children.
1359	 */
1360	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1361		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1362		hw->max_children[i] = le16_to_cpu(max_sibl);
1363	}
1364
1365	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1366				      (hw->num_tx_sched_layers *
1367				       sizeof(*hw->layer_info)),
1368				      GFP_KERNEL);
1369	if (!hw->layer_info) {
1370		status = -ENOMEM;
1371		goto sched_query_out;
1372	}
1373
1374sched_query_out:
1375	devm_kfree(ice_hw_to_dev(hw), buf);
1376	return status;
1377}
1378
1379/**
1380 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1381 * @hw: pointer to the HW struct
1382 *
1383 * Determine the PSM clock frequency and store in HW struct
1384 */
1385void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1386{
1387	u32 val, clk_src;
1388
1389	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1390	clk_src = FIELD_GET(GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M, val);
1391
1392#define PSM_CLK_SRC_367_MHZ 0x0
1393#define PSM_CLK_SRC_416_MHZ 0x1
1394#define PSM_CLK_SRC_446_MHZ 0x2
1395#define PSM_CLK_SRC_390_MHZ 0x3
1396
1397	switch (clk_src) {
1398	case PSM_CLK_SRC_367_MHZ:
1399		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1400		break;
1401	case PSM_CLK_SRC_416_MHZ:
1402		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1403		break;
1404	case PSM_CLK_SRC_446_MHZ:
1405		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1406		break;
1407	case PSM_CLK_SRC_390_MHZ:
1408		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1409		break;
1410	default:
1411		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1412			  clk_src);
1413		/* fall back to a safe default */
1414		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1415	}
1416}
1417
1418/**
1419 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1420 * @hw: pointer to the HW struct
1421 * @base: pointer to the base node
1422 * @node: pointer to the node to search
1423 *
1424 * This function checks whether a given node is part of the base node
1425 * subtree or not
1426 */
1427static bool
1428ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1429			       struct ice_sched_node *node)
1430{
1431	u8 i;
1432
1433	for (i = 0; i < base->num_children; i++) {
1434		struct ice_sched_node *child = base->children[i];
1435
1436		if (node == child)
1437			return true;
1438
1439		if (child->tx_sched_layer > node->tx_sched_layer)
1440			return false;
1441
1442		/* this recursion is intentional, and wouldn't
1443		 * go more than 8 calls
1444		 */
1445		if (ice_sched_find_node_in_subtree(hw, child, node))
1446			return true;
1447	}
1448	return false;
1449}
1450
1451/**
1452 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1453 * @pi: port information structure
1454 * @vsi_node: software VSI handle
1455 * @qgrp_node: first queue group node identified for scanning
1456 * @owner: LAN or RDMA
1457 *
1458 * This function retrieves a free LAN or RDMA queue group node by scanning
1459 * qgrp_node and its siblings for the queue group with the fewest number
1460 * of queues currently assigned.
1461 */
1462static struct ice_sched_node *
1463ice_sched_get_free_qgrp(struct ice_port_info *pi,
1464			struct ice_sched_node *vsi_node,
1465			struct ice_sched_node *qgrp_node, u8 owner)
1466{
1467	struct ice_sched_node *min_qgrp;
1468	u8 min_children;
1469
1470	if (!qgrp_node)
1471		return qgrp_node;
1472	min_children = qgrp_node->num_children;
1473	if (!min_children)
1474		return qgrp_node;
1475	min_qgrp = qgrp_node;
1476	/* scan all queue groups until find a node which has less than the
1477	 * minimum number of children. This way all queue group nodes get
1478	 * equal number of shares and active. The bandwidth will be equally
1479	 * distributed across all queues.
1480	 */
1481	while (qgrp_node) {
1482		/* make sure the qgroup node is part of the VSI subtree */
1483		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1484			if (qgrp_node->num_children < min_children &&
1485			    qgrp_node->owner == owner) {
1486				/* replace the new min queue group node */
1487				min_qgrp = qgrp_node;
1488				min_children = min_qgrp->num_children;
1489				/* break if it has no children, */
1490				if (!min_children)
1491					break;
1492			}
1493		qgrp_node = qgrp_node->sibling;
1494	}
1495	return min_qgrp;
1496}
1497
1498/**
1499 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1500 * @pi: port information structure
1501 * @vsi_handle: software VSI handle
1502 * @tc: branch number
1503 * @owner: LAN or RDMA
1504 *
1505 * This function retrieves a free LAN or RDMA queue group node
1506 */
1507struct ice_sched_node *
1508ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1509			   u8 owner)
1510{
1511	struct ice_sched_node *vsi_node, *qgrp_node;
1512	struct ice_vsi_ctx *vsi_ctx;
 
1513	u16 max_children;
1514	u8 qgrp_layer;
1515
1516	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
 
1517	max_children = pi->hw->max_children[qgrp_layer];
1518
1519	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1520	if (!vsi_ctx)
1521		return NULL;
1522	vsi_node = vsi_ctx->sched.vsi_node[tc];
1523	/* validate invalid VSI ID */
1524	if (!vsi_node)
1525		return NULL;
1526
 
 
 
 
 
 
1527	/* get the first queue group node from VSI sub-tree */
1528	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1529	while (qgrp_node) {
1530		/* make sure the qgroup node is part of the VSI subtree */
1531		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1532			if (qgrp_node->num_children < max_children &&
1533			    qgrp_node->owner == owner)
1534				break;
1535		qgrp_node = qgrp_node->sibling;
1536	}
1537
1538	/* Select the best queue group */
1539	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1540}
1541
1542/**
1543 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1544 * @pi: pointer to the port information structure
1545 * @tc_node: pointer to the TC node
1546 * @vsi_handle: software VSI handle
1547 *
1548 * This function retrieves a VSI node for a given VSI ID from a given
1549 * TC branch
1550 */
1551static struct ice_sched_node *
1552ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1553		       u16 vsi_handle)
1554{
1555	struct ice_sched_node *node;
1556	u8 vsi_layer;
1557
1558	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1559	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1560
1561	/* Check whether it already exists */
1562	while (node) {
1563		if (node->vsi_handle == vsi_handle)
1564			return node;
1565		node = node->sibling;
1566	}
1567
1568	return node;
1569}
1570
1571/**
1572 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1573 * @pi: pointer to the port information structure
1574 * @tc_node: pointer to the TC node
1575 * @agg_id: aggregator ID
1576 *
1577 * This function retrieves an aggregator node for a given aggregator ID from
1578 * a given TC branch
1579 */
1580struct ice_sched_node *
1581ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1582		       u32 agg_id)
1583{
1584	struct ice_sched_node *node;
1585	struct ice_hw *hw = pi->hw;
1586	u8 agg_layer;
1587
1588	if (!hw)
1589		return NULL;
1590	agg_layer = ice_sched_get_agg_layer(hw);
1591	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1592
1593	/* Check whether it already exists */
1594	while (node) {
1595		if (node->agg_id == agg_id)
1596			return node;
1597		node = node->sibling;
1598	}
1599
1600	return node;
1601}
1602
1603/**
1604 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1605 * @hw: pointer to the HW struct
1606 * @num_qs: number of queues
1607 * @num_nodes: num nodes array
1608 *
1609 * This function calculates the number of VSI child nodes based on the
1610 * number of queues.
1611 */
1612static void
1613ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1614{
1615	u16 num = num_qs;
1616	u8 i, qgl, vsil;
1617
1618	qgl = ice_sched_get_qgrp_layer(hw);
1619	vsil = ice_sched_get_vsi_layer(hw);
1620
1621	/* calculate num nodes from queue group to VSI layer */
1622	for (i = qgl; i > vsil; i--) {
1623		/* round to the next integer if there is a remainder */
1624		num = DIV_ROUND_UP(num, hw->max_children[i]);
1625
1626		/* need at least one node */
1627		num_nodes[i] = num ? num : 1;
1628	}
1629}
1630
1631/**
1632 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1633 * @pi: port information structure
1634 * @vsi_handle: software VSI handle
1635 * @tc_node: pointer to the TC node
1636 * @num_nodes: pointer to the num nodes that needs to be added per layer
1637 * @owner: node owner (LAN or RDMA)
1638 *
1639 * This function adds the VSI child nodes to tree. It gets called for
1640 * LAN and RDMA separately.
1641 */
1642static int
1643ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1644			      struct ice_sched_node *tc_node, u16 *num_nodes,
1645			      u8 owner)
1646{
1647	struct ice_sched_node *parent, *node;
1648	struct ice_hw *hw = pi->hw;
1649	u32 first_node_teid;
1650	u16 num_added = 0;
1651	u8 i, qgl, vsil;
1652
1653	qgl = ice_sched_get_qgrp_layer(hw);
1654	vsil = ice_sched_get_vsi_layer(hw);
1655	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1656	for (i = vsil + 1; i <= qgl; i++) {
1657		int status;
1658
1659		if (!parent)
1660			return -EIO;
1661
1662		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1663						      num_nodes[i],
1664						      &first_node_teid,
1665						      &num_added);
1666		if (status || num_nodes[i] != num_added)
1667			return -EIO;
1668
1669		/* The newly added node can be a new parent for the next
1670		 * layer nodes
1671		 */
1672		if (num_added) {
1673			parent = ice_sched_find_node_by_teid(tc_node,
1674							     first_node_teid);
1675			node = parent;
1676			while (node) {
1677				node->owner = owner;
1678				node = node->sibling;
1679			}
1680		} else {
1681			parent = parent->children[0];
1682		}
1683	}
1684
1685	return 0;
1686}
1687
1688/**
1689 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1690 * @pi: pointer to the port info structure
1691 * @tc_node: pointer to TC node
1692 * @num_nodes: pointer to num nodes array
1693 *
1694 * This function calculates the number of supported nodes needed to add this
1695 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1696 * layers
1697 */
1698static void
1699ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1700				 struct ice_sched_node *tc_node, u16 *num_nodes)
1701{
1702	struct ice_sched_node *node;
1703	u8 vsil;
1704	int i;
1705
1706	vsil = ice_sched_get_vsi_layer(pi->hw);
1707	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1708		/* Add intermediate nodes if TC has no children and
1709		 * need at least one node for VSI
1710		 */
1711		if (!tc_node->num_children || i == vsil) {
1712			num_nodes[i]++;
1713		} else {
1714			/* If intermediate nodes are reached max children
1715			 * then add a new one.
1716			 */
1717			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1718			/* scan all the siblings */
1719			while (node) {
1720				if (node->num_children < pi->hw->max_children[i])
1721					break;
1722				node = node->sibling;
1723			}
1724
1725			/* tree has one intermediate node to add this new VSI.
1726			 * So no need to calculate supported nodes for below
1727			 * layers.
1728			 */
1729			if (node)
1730				break;
1731			/* all the nodes are full, allocate a new one */
1732			num_nodes[i]++;
1733		}
1734}
1735
1736/**
1737 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1738 * @pi: port information structure
1739 * @vsi_handle: software VSI handle
1740 * @tc_node: pointer to TC node
1741 * @num_nodes: pointer to num nodes array
1742 *
1743 * This function adds the VSI supported nodes into Tx tree including the
1744 * VSI, its parent and intermediate nodes in below layers
1745 */
1746static int
1747ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1748				struct ice_sched_node *tc_node, u16 *num_nodes)
1749{
1750	struct ice_sched_node *parent = tc_node;
1751	u32 first_node_teid;
1752	u16 num_added = 0;
1753	u8 i, vsil;
1754
1755	if (!pi)
1756		return -EINVAL;
1757
1758	vsil = ice_sched_get_vsi_layer(pi->hw);
1759	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1760		int status;
1761
1762		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1763						      i, num_nodes[i],
1764						      &first_node_teid,
1765						      &num_added);
1766		if (status || num_nodes[i] != num_added)
1767			return -EIO;
1768
1769		/* The newly added node can be a new parent for the next
1770		 * layer nodes
1771		 */
1772		if (num_added)
1773			parent = ice_sched_find_node_by_teid(tc_node,
1774							     first_node_teid);
1775		else
1776			parent = parent->children[0];
1777
1778		if (!parent)
1779			return -EIO;
1780
1781		if (i == vsil)
1782			parent->vsi_handle = vsi_handle;
1783	}
1784
1785	return 0;
1786}
1787
1788/**
1789 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1790 * @pi: port information structure
1791 * @vsi_handle: software VSI handle
1792 * @tc: TC number
1793 *
1794 * This function adds a new VSI into scheduler tree
1795 */
1796static int
1797ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1798{
1799	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1800	struct ice_sched_node *tc_node;
1801
1802	tc_node = ice_sched_get_tc_node(pi, tc);
1803	if (!tc_node)
1804		return -EINVAL;
1805
1806	/* calculate number of supported nodes needed for this VSI */
1807	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1808
1809	/* add VSI supported nodes to TC subtree */
1810	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1811					       num_nodes);
1812}
1813
1814/**
1815 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1816 * @pi: port information structure
1817 * @vsi_handle: software VSI handle
1818 * @tc: TC number
1819 * @new_numqs: new number of max queues
1820 * @owner: owner of this subtree
1821 *
1822 * This function updates the VSI child nodes based on the number of queues
1823 */
1824static int
1825ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1826				 u8 tc, u16 new_numqs, u8 owner)
1827{
1828	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1829	struct ice_sched_node *vsi_node;
1830	struct ice_sched_node *tc_node;
1831	struct ice_vsi_ctx *vsi_ctx;
1832	struct ice_hw *hw = pi->hw;
1833	u16 prev_numqs;
1834	int status = 0;
1835
1836	tc_node = ice_sched_get_tc_node(pi, tc);
1837	if (!tc_node)
1838		return -EIO;
1839
1840	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1841	if (!vsi_node)
1842		return -EIO;
1843
1844	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1845	if (!vsi_ctx)
1846		return -EINVAL;
1847
1848	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1849		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1850	else
1851		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1852	/* num queues are not changed or less than the previous number */
1853	if (new_numqs <= prev_numqs)
1854		return status;
1855	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1856		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1857		if (status)
1858			return status;
1859	} else {
1860		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1861		if (status)
1862			return status;
1863	}
1864
1865	if (new_numqs)
1866		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1867	/* Keep the max number of queue configuration all the time. Update the
1868	 * tree only if number of queues > previous number of queues. This may
1869	 * leave some extra nodes in the tree if number of queues < previous
1870	 * number but that wouldn't harm anything. Removing those extra nodes
1871	 * may complicate the code if those nodes are part of SRL or
1872	 * individually rate limited.
1873	 */
1874	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1875					       new_num_nodes, owner);
1876	if (status)
1877		return status;
1878	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1879		vsi_ctx->sched.max_lanq[tc] = new_numqs;
1880	else
1881		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1882
1883	return 0;
1884}
1885
1886/**
1887 * ice_sched_cfg_vsi - configure the new/existing VSI
1888 * @pi: port information structure
1889 * @vsi_handle: software VSI handle
1890 * @tc: TC number
1891 * @maxqs: max number of queues
1892 * @owner: LAN or RDMA
1893 * @enable: TC enabled or disabled
1894 *
1895 * This function adds/updates VSI nodes based on the number of queues. If TC is
1896 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1897 * disabled then suspend the VSI if it is not already.
1898 */
1899int
1900ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1901		  u8 owner, bool enable)
1902{
1903	struct ice_sched_node *vsi_node, *tc_node;
1904	struct ice_vsi_ctx *vsi_ctx;
1905	struct ice_hw *hw = pi->hw;
1906	int status = 0;
1907
1908	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1909	tc_node = ice_sched_get_tc_node(pi, tc);
1910	if (!tc_node)
1911		return -EINVAL;
1912	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1913	if (!vsi_ctx)
1914		return -EINVAL;
1915	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1916
1917	/* suspend the VSI if TC is not enabled */
1918	if (!enable) {
1919		if (vsi_node && vsi_node->in_use) {
1920			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1921
1922			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1923								true);
1924			if (!status)
1925				vsi_node->in_use = false;
1926		}
1927		return status;
1928	}
1929
1930	/* TC is enabled, if it is a new VSI then add it to the tree */
1931	if (!vsi_node) {
1932		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1933		if (status)
1934			return status;
1935
1936		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1937		if (!vsi_node)
1938			return -EIO;
1939
1940		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1941		vsi_node->in_use = true;
1942		/* invalidate the max queues whenever VSI gets added first time
1943		 * into the scheduler tree (boot or after reset). We need to
1944		 * recreate the child nodes all the time in these cases.
1945		 */
1946		vsi_ctx->sched.max_lanq[tc] = 0;
1947		vsi_ctx->sched.max_rdmaq[tc] = 0;
1948	}
1949
1950	/* update the VSI child nodes */
1951	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1952						  owner);
1953	if (status)
1954		return status;
1955
1956	/* TC is enabled, resume the VSI if it is in the suspend state */
1957	if (!vsi_node->in_use) {
1958		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1959
1960		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1961		if (!status)
1962			vsi_node->in_use = true;
1963	}
1964
1965	return status;
1966}
1967
1968/**
1969 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1970 * @pi: port information structure
1971 * @vsi_handle: software VSI handle
1972 *
1973 * This function removes single aggregator VSI info entry from
1974 * aggregator list.
1975 */
1976static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1977{
1978	struct ice_sched_agg_info *agg_info;
1979	struct ice_sched_agg_info *atmp;
1980
1981	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1982				 list_entry) {
1983		struct ice_sched_agg_vsi_info *agg_vsi_info;
1984		struct ice_sched_agg_vsi_info *vtmp;
1985
1986		list_for_each_entry_safe(agg_vsi_info, vtmp,
1987					 &agg_info->agg_vsi_list, list_entry)
1988			if (agg_vsi_info->vsi_handle == vsi_handle) {
1989				list_del(&agg_vsi_info->list_entry);
1990				devm_kfree(ice_hw_to_dev(pi->hw),
1991					   agg_vsi_info);
1992				return;
1993			}
1994	}
1995}
1996
1997/**
1998 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
1999 * @node: pointer to the sub-tree node
2000 *
2001 * This function checks for a leaf node presence in a given sub-tree node.
2002 */
2003static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2004{
2005	u8 i;
2006
2007	for (i = 0; i < node->num_children; i++)
2008		if (ice_sched_is_leaf_node_present(node->children[i]))
2009			return true;
2010	/* check for a leaf node */
2011	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2012}
2013
2014/**
2015 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2016 * @pi: port information structure
2017 * @vsi_handle: software VSI handle
2018 * @owner: LAN or RDMA
2019 *
2020 * This function removes the VSI and its LAN or RDMA children nodes from the
2021 * scheduler tree.
2022 */
2023static int
2024ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2025{
2026	struct ice_vsi_ctx *vsi_ctx;
2027	int status = -EINVAL;
2028	u8 i;
2029
2030	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2031	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2032		return status;
2033	mutex_lock(&pi->sched_lock);
2034	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2035	if (!vsi_ctx)
2036		goto exit_sched_rm_vsi_cfg;
2037
2038	ice_for_each_traffic_class(i) {
2039		struct ice_sched_node *vsi_node, *tc_node;
2040		u8 j = 0;
2041
2042		tc_node = ice_sched_get_tc_node(pi, i);
2043		if (!tc_node)
2044			continue;
2045
2046		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2047		if (!vsi_node)
2048			continue;
2049
2050		if (ice_sched_is_leaf_node_present(vsi_node)) {
2051			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2052			status = -EBUSY;
2053			goto exit_sched_rm_vsi_cfg;
2054		}
2055		while (j < vsi_node->num_children) {
2056			if (vsi_node->children[j]->owner == owner) {
2057				ice_free_sched_node(pi, vsi_node->children[j]);
2058
2059				/* reset the counter again since the num
2060				 * children will be updated after node removal
2061				 */
2062				j = 0;
2063			} else {
2064				j++;
2065			}
2066		}
2067		/* remove the VSI if it has no children */
2068		if (!vsi_node->num_children) {
2069			ice_free_sched_node(pi, vsi_node);
2070			vsi_ctx->sched.vsi_node[i] = NULL;
2071
2072			/* clean up aggregator related VSI info if any */
2073			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2074		}
2075		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2076			vsi_ctx->sched.max_lanq[i] = 0;
2077		else
2078			vsi_ctx->sched.max_rdmaq[i] = 0;
2079	}
2080	status = 0;
2081
2082exit_sched_rm_vsi_cfg:
2083	mutex_unlock(&pi->sched_lock);
2084	return status;
2085}
2086
2087/**
2088 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2089 * @pi: port information structure
2090 * @vsi_handle: software VSI handle
2091 *
2092 * This function clears the VSI and its LAN children nodes from scheduler tree
2093 * for all TCs.
2094 */
2095int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2096{
2097	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2098}
2099
2100/**
2101 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2102 * @pi: port information structure
2103 * @vsi_handle: software VSI handle
2104 *
2105 * This function clears the VSI and its RDMA children nodes from scheduler tree
2106 * for all TCs.
2107 */
2108int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2109{
2110	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2111}
2112
2113/**
2114 * ice_get_agg_info - get the aggregator ID
2115 * @hw: pointer to the hardware structure
2116 * @agg_id: aggregator ID
2117 *
2118 * This function validates aggregator ID. The function returns info if
2119 * aggregator ID is present in list otherwise it returns null.
2120 */
2121static struct ice_sched_agg_info *
2122ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2123{
2124	struct ice_sched_agg_info *agg_info;
2125
2126	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2127		if (agg_info->agg_id == agg_id)
2128			return agg_info;
2129
2130	return NULL;
2131}
2132
2133/**
2134 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2135 * @hw: pointer to the HW struct
2136 * @node: pointer to a child node
2137 * @num_nodes: num nodes count array
2138 *
2139 * This function walks through the aggregator subtree to find a free parent
2140 * node
2141 */
2142struct ice_sched_node *
2143ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2144			      u16 *num_nodes)
2145{
2146	u8 l = node->tx_sched_layer;
2147	u8 vsil, i;
2148
2149	vsil = ice_sched_get_vsi_layer(hw);
2150
2151	/* Is it VSI parent layer ? */
2152	if (l == vsil - 1)
2153		return (node->num_children < hw->max_children[l]) ? node : NULL;
2154
2155	/* We have intermediate nodes. Let's walk through the subtree. If the
2156	 * intermediate node has space to add a new node then clear the count
2157	 */
2158	if (node->num_children < hw->max_children[l])
2159		num_nodes[l] = 0;
2160	/* The below recursive call is intentional and wouldn't go more than
2161	 * 2 or 3 iterations.
2162	 */
2163
2164	for (i = 0; i < node->num_children; i++) {
2165		struct ice_sched_node *parent;
2166
2167		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2168						       num_nodes);
2169		if (parent)
2170			return parent;
2171	}
2172
2173	return NULL;
2174}
2175
2176/**
2177 * ice_sched_update_parent - update the new parent in SW DB
2178 * @new_parent: pointer to a new parent node
2179 * @node: pointer to a child node
2180 *
2181 * This function removes the child from the old parent and adds it to a new
2182 * parent
2183 */
2184void
2185ice_sched_update_parent(struct ice_sched_node *new_parent,
2186			struct ice_sched_node *node)
2187{
2188	struct ice_sched_node *old_parent;
2189	u8 i, j;
2190
2191	old_parent = node->parent;
2192
2193	/* update the old parent children */
2194	for (i = 0; i < old_parent->num_children; i++)
2195		if (old_parent->children[i] == node) {
2196			for (j = i + 1; j < old_parent->num_children; j++)
2197				old_parent->children[j - 1] =
2198					old_parent->children[j];
2199			old_parent->num_children--;
2200			break;
2201		}
2202
2203	/* now move the node to a new parent */
2204	new_parent->children[new_parent->num_children++] = node;
2205	node->parent = new_parent;
2206	node->info.parent_teid = new_parent->info.node_teid;
2207}
2208
2209/**
2210 * ice_sched_move_nodes - move child nodes to a given parent
2211 * @pi: port information structure
2212 * @parent: pointer to parent node
2213 * @num_items: number of child nodes to be moved
2214 * @list: pointer to child node teids
2215 *
2216 * This function move the child nodes to a given parent.
2217 */
2218int
2219ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2220		     u16 num_items, u32 *list)
2221{
2222	DEFINE_FLEX(struct ice_aqc_move_elem, buf, teid, 1);
2223	u16 buf_len = __struct_size(buf);
2224	struct ice_sched_node *node;
2225	u16 i, grps_movd = 0;
2226	struct ice_hw *hw;
2227	int status = 0;
2228
2229	hw = pi->hw;
2230
2231	if (!parent || !num_items)
2232		return -EINVAL;
2233
2234	/* Does parent have enough space */
2235	if (parent->num_children + num_items >
2236	    hw->max_children[parent->tx_sched_layer])
2237		return -ENOSPC;
2238
2239	for (i = 0; i < num_items; i++) {
2240		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2241		if (!node) {
2242			status = -EINVAL;
2243			break;
2244		}
2245
2246		buf->hdr.src_parent_teid = node->info.parent_teid;
2247		buf->hdr.dest_parent_teid = parent->info.node_teid;
2248		buf->teid[0] = node->info.node_teid;
2249		buf->hdr.num_elems = cpu_to_le16(1);
2250		status = ice_aq_move_sched_elems(hw, buf, buf_len, &grps_movd);
2251		if (status && grps_movd != 1) {
2252			status = -EIO;
2253			break;
2254		}
2255
2256		/* update the SW DB */
2257		ice_sched_update_parent(parent, node);
2258	}
2259
2260	return status;
2261}
2262
2263/**
2264 * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2265 * @pi: port information structure
2266 * @vsi_handle: software VSI handle
2267 * @agg_id: aggregator ID
2268 * @tc: TC number
2269 *
2270 * This function moves a VSI to an aggregator node or its subtree.
2271 * Intermediate nodes may be created if required.
2272 */
2273static int
2274ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2275			  u8 tc)
2276{
2277	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2278	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2279	u32 first_node_teid, vsi_teid;
2280	u16 num_nodes_added;
2281	u8 aggl, vsil, i;
2282	int status;
2283
2284	tc_node = ice_sched_get_tc_node(pi, tc);
2285	if (!tc_node)
2286		return -EIO;
2287
2288	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2289	if (!agg_node)
2290		return -ENOENT;
2291
2292	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2293	if (!vsi_node)
2294		return -ENOENT;
2295
2296	/* Is this VSI already part of given aggregator? */
2297	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2298		return 0;
2299
2300	aggl = ice_sched_get_agg_layer(pi->hw);
2301	vsil = ice_sched_get_vsi_layer(pi->hw);
2302
2303	/* set intermediate node count to 1 between aggregator and VSI layers */
2304	for (i = aggl + 1; i < vsil; i++)
2305		num_nodes[i] = 1;
2306
2307	/* Check if the aggregator subtree has any free node to add the VSI */
2308	for (i = 0; i < agg_node->num_children; i++) {
2309		parent = ice_sched_get_free_vsi_parent(pi->hw,
2310						       agg_node->children[i],
2311						       num_nodes);
2312		if (parent)
2313			goto move_nodes;
2314	}
2315
2316	/* add new nodes */
2317	parent = agg_node;
2318	for (i = aggl + 1; i < vsil; i++) {
2319		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2320						      num_nodes[i],
2321						      &first_node_teid,
2322						      &num_nodes_added);
2323		if (status || num_nodes[i] != num_nodes_added)
2324			return -EIO;
2325
2326		/* The newly added node can be a new parent for the next
2327		 * layer nodes
2328		 */
2329		if (num_nodes_added)
2330			parent = ice_sched_find_node_by_teid(tc_node,
2331							     first_node_teid);
2332		else
2333			parent = parent->children[0];
2334
2335		if (!parent)
2336			return -EIO;
2337	}
2338
2339move_nodes:
2340	vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2341	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2342}
2343
2344/**
2345 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2346 * @pi: port information structure
2347 * @agg_info: aggregator info
2348 * @tc: traffic class number
2349 * @rm_vsi_info: true or false
2350 *
2351 * This function move all the VSI(s) to the default aggregator and delete
2352 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2353 * caller holds the scheduler lock.
2354 */
2355static int
2356ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2357			     struct ice_sched_agg_info *agg_info, u8 tc,
2358			     bool rm_vsi_info)
2359{
2360	struct ice_sched_agg_vsi_info *agg_vsi_info;
2361	struct ice_sched_agg_vsi_info *tmp;
2362	int status = 0;
2363
2364	list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2365				 list_entry) {
2366		u16 vsi_handle = agg_vsi_info->vsi_handle;
2367
2368		/* Move VSI to default aggregator */
2369		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2370			continue;
2371
2372		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2373						   ICE_DFLT_AGG_ID, tc);
2374		if (status)
2375			break;
2376
2377		clear_bit(tc, agg_vsi_info->tc_bitmap);
2378		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2379			list_del(&agg_vsi_info->list_entry);
2380			devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2381		}
2382	}
2383
2384	return status;
2385}
2386
2387/**
2388 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2389 * @pi: port information structure
2390 * @node: node pointer
2391 *
2392 * This function checks whether the aggregator is attached with any VSI or not.
2393 */
2394static bool
2395ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2396{
2397	u8 vsil, i;
2398
2399	vsil = ice_sched_get_vsi_layer(pi->hw);
2400	if (node->tx_sched_layer < vsil - 1) {
2401		for (i = 0; i < node->num_children; i++)
2402			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2403				return true;
2404		return false;
2405	} else {
2406		return node->num_children ? true : false;
2407	}
2408}
2409
2410/**
2411 * ice_sched_rm_agg_cfg - remove the aggregator node
2412 * @pi: port information structure
2413 * @agg_id: aggregator ID
2414 * @tc: TC number
2415 *
2416 * This function removes the aggregator node and intermediate nodes if any
2417 * from the given TC
2418 */
2419static int
2420ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2421{
2422	struct ice_sched_node *tc_node, *agg_node;
2423	struct ice_hw *hw = pi->hw;
2424
2425	tc_node = ice_sched_get_tc_node(pi, tc);
2426	if (!tc_node)
2427		return -EIO;
2428
2429	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2430	if (!agg_node)
2431		return -ENOENT;
2432
2433	/* Can't remove the aggregator node if it has children */
2434	if (ice_sched_is_agg_inuse(pi, agg_node))
2435		return -EBUSY;
2436
2437	/* need to remove the whole subtree if aggregator node is the
2438	 * only child.
2439	 */
2440	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2441		struct ice_sched_node *parent = agg_node->parent;
2442
2443		if (!parent)
2444			return -EIO;
2445
2446		if (parent->num_children > 1)
2447			break;
2448
2449		agg_node = parent;
2450	}
2451
2452	ice_free_sched_node(pi, agg_node);
2453	return 0;
2454}
2455
2456/**
2457 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2458 * @pi: port information structure
2459 * @agg_info: aggregator ID
2460 * @tc: TC number
2461 * @rm_vsi_info: bool value true or false
2462 *
2463 * This function removes aggregator reference to VSI of given TC. It removes
2464 * the aggregator configuration completely for requested TC. The caller needs
2465 * to hold the scheduler lock.
2466 */
2467static int
2468ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2469		  u8 tc, bool rm_vsi_info)
2470{
2471	int status = 0;
2472
2473	/* If nothing to remove - return success */
2474	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2475		goto exit_rm_agg_cfg_tc;
2476
2477	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2478	if (status)
2479		goto exit_rm_agg_cfg_tc;
2480
2481	/* Delete aggregator node(s) */
2482	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2483	if (status)
2484		goto exit_rm_agg_cfg_tc;
2485
2486	clear_bit(tc, agg_info->tc_bitmap);
2487exit_rm_agg_cfg_tc:
2488	return status;
2489}
2490
2491/**
2492 * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2493 * @pi: port information structure
2494 * @agg_id: aggregator ID
2495 * @tc_bitmap: 8 bits TC bitmap
2496 *
2497 * Save aggregator TC bitmap. This function needs to be called with scheduler
2498 * lock held.
2499 */
2500static int
2501ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2502		       unsigned long *tc_bitmap)
2503{
2504	struct ice_sched_agg_info *agg_info;
2505
2506	agg_info = ice_get_agg_info(pi->hw, agg_id);
2507	if (!agg_info)
2508		return -EINVAL;
2509	bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2510		    ICE_MAX_TRAFFIC_CLASS);
2511	return 0;
2512}
2513
2514/**
2515 * ice_sched_add_agg_cfg - create an aggregator node
2516 * @pi: port information structure
2517 * @agg_id: aggregator ID
2518 * @tc: TC number
2519 *
2520 * This function creates an aggregator node and intermediate nodes if required
2521 * for the given TC
2522 */
2523static int
2524ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2525{
2526	struct ice_sched_node *parent, *agg_node, *tc_node;
2527	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2528	struct ice_hw *hw = pi->hw;
2529	u32 first_node_teid;
2530	u16 num_nodes_added;
2531	int status = 0;
2532	u8 i, aggl;
2533
2534	tc_node = ice_sched_get_tc_node(pi, tc);
2535	if (!tc_node)
2536		return -EIO;
2537
2538	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2539	/* Does Agg node already exist ? */
2540	if (agg_node)
2541		return status;
2542
2543	aggl = ice_sched_get_agg_layer(hw);
2544
2545	/* need one node in Agg layer */
2546	num_nodes[aggl] = 1;
2547
2548	/* Check whether the intermediate nodes have space to add the
2549	 * new aggregator. If they are full, then SW needs to allocate a new
2550	 * intermediate node on those layers
2551	 */
2552	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2553		parent = ice_sched_get_first_node(pi, tc_node, i);
2554
2555		/* scan all the siblings */
2556		while (parent) {
2557			if (parent->num_children < hw->max_children[i])
2558				break;
2559			parent = parent->sibling;
2560		}
2561
2562		/* all the nodes are full, reserve one for this layer */
2563		if (!parent)
2564			num_nodes[i]++;
2565	}
2566
2567	/* add the aggregator node */
2568	parent = tc_node;
2569	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2570		if (!parent)
2571			return -EIO;
2572
2573		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2574						      num_nodes[i],
2575						      &first_node_teid,
2576						      &num_nodes_added);
2577		if (status || num_nodes[i] != num_nodes_added)
2578			return -EIO;
2579
2580		/* The newly added node can be a new parent for the next
2581		 * layer nodes
2582		 */
2583		if (num_nodes_added) {
2584			parent = ice_sched_find_node_by_teid(tc_node,
2585							     first_node_teid);
2586			/* register aggregator ID with the aggregator node */
2587			if (parent && i == aggl)
2588				parent->agg_id = agg_id;
2589		} else {
2590			parent = parent->children[0];
2591		}
2592	}
2593
2594	return 0;
2595}
2596
2597/**
2598 * ice_sched_cfg_agg - configure aggregator node
2599 * @pi: port information structure
2600 * @agg_id: aggregator ID
2601 * @agg_type: aggregator type queue, VSI, or aggregator group
2602 * @tc_bitmap: bits TC bitmap
2603 *
2604 * It registers a unique aggregator node into scheduler services. It
2605 * allows a user to register with a unique ID to track it's resources.
2606 * The aggregator type determines if this is a queue group, VSI group
2607 * or aggregator group. It then creates the aggregator node(s) for requested
2608 * TC(s) or removes an existing aggregator node including its configuration
2609 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2610 * resources and remove aggregator ID.
2611 * This function needs to be called with scheduler lock held.
2612 */
2613static int
2614ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2615		  enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2616{
2617	struct ice_sched_agg_info *agg_info;
2618	struct ice_hw *hw = pi->hw;
2619	int status = 0;
2620	u8 tc;
2621
2622	agg_info = ice_get_agg_info(hw, agg_id);
2623	if (!agg_info) {
2624		/* Create new entry for new aggregator ID */
2625		agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2626					GFP_KERNEL);
2627		if (!agg_info)
2628			return -ENOMEM;
2629
2630		agg_info->agg_id = agg_id;
2631		agg_info->agg_type = agg_type;
2632		agg_info->tc_bitmap[0] = 0;
2633
2634		/* Initialize the aggregator VSI list head */
2635		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2636
2637		/* Add new entry in aggregator list */
2638		list_add(&agg_info->list_entry, &hw->agg_list);
2639	}
2640	/* Create aggregator node(s) for requested TC(s) */
2641	ice_for_each_traffic_class(tc) {
2642		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2643			/* Delete aggregator cfg TC if it exists previously */
2644			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2645			if (status)
2646				break;
2647			continue;
2648		}
2649
2650		/* Check if aggregator node for TC already exists */
2651		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2652			continue;
2653
2654		/* Create new aggregator node for TC */
2655		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2656		if (status)
2657			break;
2658
2659		/* Save aggregator node's TC information */
2660		set_bit(tc, agg_info->tc_bitmap);
2661	}
2662
2663	return status;
2664}
2665
2666/**
2667 * ice_cfg_agg - config aggregator node
2668 * @pi: port information structure
2669 * @agg_id: aggregator ID
2670 * @agg_type: aggregator type queue, VSI, or aggregator group
2671 * @tc_bitmap: bits TC bitmap
2672 *
2673 * This function configures aggregator node(s).
2674 */
2675int
2676ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2677	    u8 tc_bitmap)
2678{
2679	unsigned long bitmap = tc_bitmap;
2680	int status;
2681
2682	mutex_lock(&pi->sched_lock);
2683	status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2684	if (!status)
2685		status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2686	mutex_unlock(&pi->sched_lock);
2687	return status;
2688}
2689
2690/**
2691 * ice_get_agg_vsi_info - get the aggregator ID
2692 * @agg_info: aggregator info
2693 * @vsi_handle: software VSI handle
2694 *
2695 * The function returns aggregator VSI info based on VSI handle. This function
2696 * needs to be called with scheduler lock held.
2697 */
2698static struct ice_sched_agg_vsi_info *
2699ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2700{
2701	struct ice_sched_agg_vsi_info *agg_vsi_info;
2702
2703	list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2704		if (agg_vsi_info->vsi_handle == vsi_handle)
2705			return agg_vsi_info;
2706
2707	return NULL;
2708}
2709
2710/**
2711 * ice_get_vsi_agg_info - get the aggregator info of VSI
2712 * @hw: pointer to the hardware structure
2713 * @vsi_handle: Sw VSI handle
2714 *
2715 * The function returns aggregator info of VSI represented via vsi_handle. The
2716 * VSI has in this case a different aggregator than the default one. This
2717 * function needs to be called with scheduler lock held.
2718 */
2719static struct ice_sched_agg_info *
2720ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2721{
2722	struct ice_sched_agg_info *agg_info;
2723
2724	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2725		struct ice_sched_agg_vsi_info *agg_vsi_info;
2726
2727		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2728		if (agg_vsi_info)
2729			return agg_info;
2730	}
2731	return NULL;
2732}
2733
2734/**
2735 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2736 * @pi: port information structure
2737 * @agg_id: aggregator ID
2738 * @vsi_handle: software VSI handle
2739 * @tc_bitmap: TC bitmap of enabled TC(s)
2740 *
2741 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2742 * lock held.
2743 */
2744static int
2745ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2746			   unsigned long *tc_bitmap)
2747{
2748	struct ice_sched_agg_vsi_info *agg_vsi_info;
2749	struct ice_sched_agg_info *agg_info;
2750
2751	agg_info = ice_get_agg_info(pi->hw, agg_id);
2752	if (!agg_info)
2753		return -EINVAL;
2754	/* check if entry already exist */
2755	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2756	if (!agg_vsi_info)
2757		return -EINVAL;
2758	bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2759		    ICE_MAX_TRAFFIC_CLASS);
2760	return 0;
2761}
2762
2763/**
2764 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2765 * @pi: port information structure
2766 * @agg_id: aggregator ID
2767 * @vsi_handle: software VSI handle
2768 * @tc_bitmap: TC bitmap of enabled TC(s)
2769 *
2770 * This function moves VSI to a new or default aggregator node. If VSI is
2771 * already associated to the aggregator node then no operation is performed on
2772 * the tree. This function needs to be called with scheduler lock held.
2773 */
2774static int
2775ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2776			   u16 vsi_handle, unsigned long *tc_bitmap)
2777{
2778	struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
2779	struct ice_sched_agg_info *agg_info, *old_agg_info;
2780	struct ice_hw *hw = pi->hw;
2781	int status = 0;
2782	u8 tc;
2783
2784	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2785		return -EINVAL;
2786	agg_info = ice_get_agg_info(hw, agg_id);
2787	if (!agg_info)
2788		return -EINVAL;
2789	/* If the VSI is already part of another aggregator then update
2790	 * its VSI info list
2791	 */
2792	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2793	if (old_agg_info && old_agg_info != agg_info) {
2794		struct ice_sched_agg_vsi_info *vtmp;
2795
2796		list_for_each_entry_safe(iter, vtmp,
2797					 &old_agg_info->agg_vsi_list,
2798					 list_entry)
2799			if (iter->vsi_handle == vsi_handle) {
2800				old_agg_vsi_info = iter;
2801				break;
2802			}
2803	}
2804
2805	/* check if entry already exist */
2806	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2807	if (!agg_vsi_info) {
2808		/* Create new entry for VSI under aggregator list */
2809		agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2810					    sizeof(*agg_vsi_info), GFP_KERNEL);
2811		if (!agg_vsi_info)
2812			return -EINVAL;
2813
2814		/* add VSI ID into the aggregator list */
2815		agg_vsi_info->vsi_handle = vsi_handle;
2816		list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2817	}
2818	/* Move VSI node to new aggregator node for requested TC(s) */
2819	ice_for_each_traffic_class(tc) {
2820		if (!ice_is_tc_ena(*tc_bitmap, tc))
2821			continue;
2822
2823		/* Move VSI to new aggregator */
2824		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2825		if (status)
2826			break;
2827
2828		set_bit(tc, agg_vsi_info->tc_bitmap);
2829		if (old_agg_vsi_info)
2830			clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2831	}
2832	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2833		list_del(&old_agg_vsi_info->list_entry);
2834		devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2835	}
2836	return status;
2837}
2838
2839/**
2840 * ice_sched_rm_unused_rl_prof - remove unused RL profile
2841 * @pi: port information structure
2842 *
2843 * This function removes unused rate limit profiles from the HW and
2844 * SW DB. The caller needs to hold scheduler lock.
2845 */
2846static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2847{
2848	u16 ln;
2849
2850	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2851		struct ice_aqc_rl_profile_info *rl_prof_elem;
2852		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2853
2854		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2855					 &pi->rl_prof_list[ln], list_entry) {
2856			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2857				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2858		}
2859	}
2860}
2861
2862/**
2863 * ice_sched_update_elem - update element
2864 * @hw: pointer to the HW struct
2865 * @node: pointer to node
2866 * @info: node info to update
2867 *
2868 * Update the HW DB, and local SW DB of node. Update the scheduling
2869 * parameters of node from argument info data buffer (Info->data buf) and
2870 * returns success or error on config sched element failure. The caller
2871 * needs to hold scheduler lock.
2872 */
2873static int
2874ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2875		      struct ice_aqc_txsched_elem_data *info)
2876{
2877	struct ice_aqc_txsched_elem_data buf;
2878	u16 elem_cfgd = 0;
2879	u16 num_elems = 1;
2880	int status;
2881
2882	buf = *info;
2883	/* Parent TEID is reserved field in this aq call */
2884	buf.parent_teid = 0;
2885	/* Element type is reserved field in this aq call */
2886	buf.data.elem_type = 0;
2887	/* Flags is reserved field in this aq call */
2888	buf.data.flags = 0;
2889
2890	/* Update HW DB */
2891	/* Configure element node */
2892	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2893					&elem_cfgd, NULL);
2894	if (status || elem_cfgd != num_elems) {
2895		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2896		return -EIO;
2897	}
2898
2899	/* Config success case */
2900	/* Now update local SW DB */
2901	/* Only copy the data portion of info buffer */
2902	node->info.data = info->data;
2903	return status;
2904}
2905
2906/**
2907 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2908 * @hw: pointer to the HW struct
2909 * @node: sched node to configure
2910 * @rl_type: rate limit type CIR, EIR, or shared
2911 * @bw_alloc: BW weight/allocation
2912 *
2913 * This function configures node element's BW allocation.
2914 */
2915static int
2916ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2917			    enum ice_rl_type rl_type, u16 bw_alloc)
2918{
2919	struct ice_aqc_txsched_elem_data buf;
2920	struct ice_aqc_txsched_elem *data;
2921
2922	buf = node->info;
2923	data = &buf.data;
2924	if (rl_type == ICE_MIN_BW) {
2925		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2926		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2927	} else if (rl_type == ICE_MAX_BW) {
2928		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2929		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2930	} else {
2931		return -EINVAL;
2932	}
2933
2934	/* Configure element */
2935	return ice_sched_update_elem(hw, node, &buf);
2936}
2937
2938/**
2939 * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2940 * @pi: port information structure
2941 * @agg_id: aggregator ID
2942 * @vsi_handle: software VSI handle
2943 * @tc_bitmap: TC bitmap of enabled TC(s)
2944 *
2945 * Move or associate VSI to a new or default aggregator node.
2946 */
2947int
2948ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2949		    u8 tc_bitmap)
2950{
2951	unsigned long bitmap = tc_bitmap;
2952	int status;
2953
2954	mutex_lock(&pi->sched_lock);
2955	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2956					    (unsigned long *)&bitmap);
2957	if (!status)
2958		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2959						    (unsigned long *)&bitmap);
2960	mutex_unlock(&pi->sched_lock);
2961	return status;
2962}
2963
2964/**
2965 * ice_set_clear_cir_bw - set or clear CIR BW
2966 * @bw_t_info: bandwidth type information structure
2967 * @bw: bandwidth in Kbps - Kilo bits per sec
2968 *
2969 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2970 */
2971static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2972{
2973	if (bw == ICE_SCHED_DFLT_BW) {
2974		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2975		bw_t_info->cir_bw.bw = 0;
2976	} else {
2977		/* Save type of BW information */
2978		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2979		bw_t_info->cir_bw.bw = bw;
2980	}
2981}
2982
2983/**
2984 * ice_set_clear_eir_bw - set or clear EIR BW
2985 * @bw_t_info: bandwidth type information structure
2986 * @bw: bandwidth in Kbps - Kilo bits per sec
2987 *
2988 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2989 */
2990static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2991{
2992	if (bw == ICE_SCHED_DFLT_BW) {
2993		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2994		bw_t_info->eir_bw.bw = 0;
2995	} else {
2996		/* EIR BW and Shared BW profiles are mutually exclusive and
2997		 * hence only one of them may be set for any given element.
2998		 * First clear earlier saved shared BW information.
2999		 */
3000		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3001		bw_t_info->shared_bw = 0;
3002		/* save EIR BW information */
3003		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3004		bw_t_info->eir_bw.bw = bw;
3005	}
3006}
3007
3008/**
3009 * ice_set_clear_shared_bw - set or clear shared BW
3010 * @bw_t_info: bandwidth type information structure
3011 * @bw: bandwidth in Kbps - Kilo bits per sec
3012 *
3013 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3014 */
3015static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3016{
3017	if (bw == ICE_SCHED_DFLT_BW) {
3018		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3019		bw_t_info->shared_bw = 0;
3020	} else {
3021		/* EIR BW and Shared BW profiles are mutually exclusive and
3022		 * hence only one of them may be set for any given element.
3023		 * First clear earlier saved EIR BW information.
3024		 */
3025		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3026		bw_t_info->eir_bw.bw = 0;
3027		/* save shared BW information */
3028		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3029		bw_t_info->shared_bw = bw;
3030	}
3031}
3032
3033/**
3034 * ice_sched_save_vsi_bw - save VSI node's BW information
3035 * @pi: port information structure
3036 * @vsi_handle: sw VSI handle
3037 * @tc: traffic class
3038 * @rl_type: rate limit type min, max, or shared
3039 * @bw: bandwidth in Kbps - Kilo bits per sec
3040 *
3041 * Save BW information of VSI type node for post replay use.
3042 */
3043static int
3044ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3045		      enum ice_rl_type rl_type, u32 bw)
3046{
3047	struct ice_vsi_ctx *vsi_ctx;
3048
3049	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3050		return -EINVAL;
3051	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3052	if (!vsi_ctx)
3053		return -EINVAL;
3054	switch (rl_type) {
3055	case ICE_MIN_BW:
3056		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3057		break;
3058	case ICE_MAX_BW:
3059		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3060		break;
3061	case ICE_SHARED_BW:
3062		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3063		break;
3064	default:
3065		return -EINVAL;
3066	}
3067	return 0;
3068}
3069
3070/**
3071 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3072 * @hw: pointer to the HW struct
3073 * @bw: bandwidth in Kbps
3074 *
3075 * This function calculates the wakeup parameter of RL profile.
3076 */
3077static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3078{
3079	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3080	s32 wakeup_f_int;
3081	u16 wakeup = 0;
3082
3083	/* Get the wakeup integer value */
3084	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3085	wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3086	if (wakeup_int > 63) {
3087		wakeup = (u16)((1 << 15) | wakeup_int);
3088	} else {
3089		/* Calculate fraction value up to 4 decimals
3090		 * Convert Integer value to a constant multiplier
3091		 */
3092		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3093		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3094					   hw->psm_clk_freq, bytes_per_sec);
3095
3096		/* Get Fraction value */
3097		wakeup_f = wakeup_a - wakeup_b;
3098
3099		/* Round up the Fractional value via Ceil(Fractional value) */
3100		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3101			wakeup_f += 1;
3102
3103		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3104					       ICE_RL_PROF_MULTIPLIER);
3105		wakeup |= (u16)(wakeup_int << 9);
3106		wakeup |= (u16)(0x1ff & wakeup_f_int);
3107	}
3108
3109	return wakeup;
3110}
3111
3112/**
3113 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3114 * @hw: pointer to the HW struct
3115 * @bw: bandwidth in Kbps
3116 * @profile: profile parameters to return
3117 *
3118 * This function converts the BW to profile structure format.
3119 */
3120static int
3121ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3122			   struct ice_aqc_rl_profile_elem *profile)
3123{
3124	s64 bytes_per_sec, ts_rate, mv_tmp;
3125	int status = -EINVAL;
3126	bool found = false;
3127	s32 encode = 0;
3128	s64 mv = 0;
3129	s32 i;
3130
3131	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3132	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3133		return status;
3134
3135	/* Bytes per second from Kbps */
3136	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3137
3138	/* encode is 6 bits but really useful are 5 bits */
3139	for (i = 0; i < 64; i++) {
3140		u64 pow_result = BIT_ULL(i);
3141
3142		ts_rate = div64_long((s64)hw->psm_clk_freq,
3143				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3144		if (ts_rate <= 0)
3145			continue;
3146
3147		/* Multiplier value */
3148		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3149				    ts_rate);
3150
3151		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3152		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3153
3154		/* First multiplier value greater than the given
3155		 * accuracy bytes
3156		 */
3157		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3158			encode = i;
3159			found = true;
3160			break;
3161		}
3162	}
3163	if (found) {
3164		u16 wm;
3165
3166		wm = ice_sched_calc_wakeup(hw, bw);
3167		profile->rl_multiply = cpu_to_le16(mv);
3168		profile->wake_up_calc = cpu_to_le16(wm);
3169		profile->rl_encode = cpu_to_le16(encode);
3170		status = 0;
3171	} else {
3172		status = -ENOENT;
3173	}
3174
3175	return status;
3176}
3177
3178/**
3179 * ice_sched_add_rl_profile - add RL profile
3180 * @pi: port information structure
3181 * @rl_type: type of rate limit BW - min, max, or shared
3182 * @bw: bandwidth in Kbps - Kilo bits per sec
3183 * @layer_num: specifies in which layer to create profile
3184 *
3185 * This function first checks the existing list for corresponding BW
3186 * parameter. If it exists, it returns the associated profile otherwise
3187 * it creates a new rate limit profile for requested BW, and adds it to
3188 * the HW DB and local list. It returns the new profile or null on error.
3189 * The caller needs to hold the scheduler lock.
3190 */
3191static struct ice_aqc_rl_profile_info *
3192ice_sched_add_rl_profile(struct ice_port_info *pi,
3193			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3194{
3195	struct ice_aqc_rl_profile_info *rl_prof_elem;
3196	u16 profiles_added = 0, num_profiles = 1;
3197	struct ice_aqc_rl_profile_elem *buf;
3198	struct ice_hw *hw;
3199	u8 profile_type;
3200	int status;
3201
3202	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3203		return NULL;
3204	switch (rl_type) {
3205	case ICE_MIN_BW:
3206		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3207		break;
3208	case ICE_MAX_BW:
3209		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3210		break;
3211	case ICE_SHARED_BW:
3212		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3213		break;
3214	default:
3215		return NULL;
3216	}
3217
3218	if (!pi)
3219		return NULL;
3220	hw = pi->hw;
3221	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3222			    list_entry)
3223		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3224		    profile_type && rl_prof_elem->bw == bw)
3225			/* Return existing profile ID info */
3226			return rl_prof_elem;
3227
3228	/* Create new profile ID */
3229	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3230				    GFP_KERNEL);
3231
3232	if (!rl_prof_elem)
3233		return NULL;
3234
3235	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3236	if (status)
3237		goto exit_add_rl_prof;
3238
3239	rl_prof_elem->bw = bw;
3240	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3241	rl_prof_elem->profile.level = layer_num + 1;
3242	rl_prof_elem->profile.flags = profile_type;
3243	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3244
3245	/* Create new entry in HW DB */
3246	buf = &rl_prof_elem->profile;
3247	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3248				       &profiles_added, NULL);
3249	if (status || profiles_added != num_profiles)
3250		goto exit_add_rl_prof;
3251
3252	/* Good entry - add in the list */
3253	rl_prof_elem->prof_id_ref = 0;
3254	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3255	return rl_prof_elem;
3256
3257exit_add_rl_prof:
3258	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3259	return NULL;
3260}
3261
3262/**
3263 * ice_sched_cfg_node_bw_lmt - configure node sched params
3264 * @hw: pointer to the HW struct
3265 * @node: sched node to configure
3266 * @rl_type: rate limit type CIR, EIR, or shared
3267 * @rl_prof_id: rate limit profile ID
3268 *
3269 * This function configures node element's BW limit.
3270 */
3271static int
3272ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3273			  enum ice_rl_type rl_type, u16 rl_prof_id)
3274{
3275	struct ice_aqc_txsched_elem_data buf;
3276	struct ice_aqc_txsched_elem *data;
3277
3278	buf = node->info;
3279	data = &buf.data;
3280	switch (rl_type) {
3281	case ICE_MIN_BW:
3282		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3283		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3284		break;
3285	case ICE_MAX_BW:
3286		/* EIR BW and Shared BW profiles are mutually exclusive and
3287		 * hence only one of them may be set for any given element
3288		 */
3289		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3290			return -EIO;
3291		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3292		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3293		break;
3294	case ICE_SHARED_BW:
3295		/* Check for removing shared BW */
3296		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3297			/* remove shared profile */
3298			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3299			data->srl_id = 0; /* clear SRL field */
3300
3301			/* enable back EIR to default profile */
3302			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3303			data->eir_bw.bw_profile_idx =
3304				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3305			break;
3306		}
3307		/* EIR BW and Shared BW profiles are mutually exclusive and
3308		 * hence only one of them may be set for any given element
3309		 */
3310		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3311		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3312			    ICE_SCHED_DFLT_RL_PROF_ID))
3313			return -EIO;
3314		/* EIR BW is set to default, disable it */
3315		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3316		/* Okay to enable shared BW now */
3317		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3318		data->srl_id = cpu_to_le16(rl_prof_id);
3319		break;
3320	default:
3321		/* Unknown rate limit type */
3322		return -EINVAL;
3323	}
3324
3325	/* Configure element */
3326	return ice_sched_update_elem(hw, node, &buf);
3327}
3328
3329/**
3330 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3331 * @node: sched node
3332 * @rl_type: rate limit type
3333 *
3334 * If existing profile matches, it returns the corresponding rate
3335 * limit profile ID, otherwise it returns an invalid ID as error.
3336 */
3337static u16
3338ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3339			      enum ice_rl_type rl_type)
3340{
3341	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3342	struct ice_aqc_txsched_elem *data;
3343
3344	data = &node->info.data;
3345	switch (rl_type) {
3346	case ICE_MIN_BW:
3347		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3348			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3349		break;
3350	case ICE_MAX_BW:
3351		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3352			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3353		break;
3354	case ICE_SHARED_BW:
3355		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3356			rl_prof_id = le16_to_cpu(data->srl_id);
3357		break;
3358	default:
3359		break;
3360	}
3361
3362	return rl_prof_id;
3363}
3364
3365/**
3366 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3367 * @pi: port information structure
3368 * @rl_type: type of rate limit BW - min, max, or shared
3369 * @layer_index: layer index
3370 *
3371 * This function returns requested profile creation layer.
3372 */
3373static u8
3374ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3375			    u8 layer_index)
3376{
3377	struct ice_hw *hw = pi->hw;
3378
3379	if (layer_index >= hw->num_tx_sched_layers)
3380		return ICE_SCHED_INVAL_LAYER_NUM;
3381	switch (rl_type) {
3382	case ICE_MIN_BW:
3383		if (hw->layer_info[layer_index].max_cir_rl_profiles)
3384			return layer_index;
3385		break;
3386	case ICE_MAX_BW:
3387		if (hw->layer_info[layer_index].max_eir_rl_profiles)
3388			return layer_index;
3389		break;
3390	case ICE_SHARED_BW:
3391		/* if current layer doesn't support SRL profile creation
3392		 * then try a layer up or down.
3393		 */
3394		if (hw->layer_info[layer_index].max_srl_profiles)
3395			return layer_index;
3396		else if (layer_index < hw->num_tx_sched_layers - 1 &&
3397			 hw->layer_info[layer_index + 1].max_srl_profiles)
3398			return layer_index + 1;
3399		else if (layer_index > 0 &&
3400			 hw->layer_info[layer_index - 1].max_srl_profiles)
3401			return layer_index - 1;
3402		break;
3403	default:
3404		break;
3405	}
3406	return ICE_SCHED_INVAL_LAYER_NUM;
3407}
3408
3409/**
3410 * ice_sched_get_srl_node - get shared rate limit node
3411 * @node: tree node
3412 * @srl_layer: shared rate limit layer
3413 *
3414 * This function returns SRL node to be used for shared rate limit purpose.
3415 * The caller needs to hold scheduler lock.
3416 */
3417static struct ice_sched_node *
3418ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3419{
3420	if (srl_layer > node->tx_sched_layer)
3421		return node->children[0];
3422	else if (srl_layer < node->tx_sched_layer)
3423		/* Node can't be created without a parent. It will always
3424		 * have a valid parent except root node.
3425		 */
3426		return node->parent;
3427	else
3428		return node;
3429}
3430
3431/**
3432 * ice_sched_rm_rl_profile - remove RL profile ID
3433 * @pi: port information structure
3434 * @layer_num: layer number where profiles are saved
3435 * @profile_type: profile type like EIR, CIR, or SRL
3436 * @profile_id: profile ID to remove
3437 *
3438 * This function removes rate limit profile from layer 'layer_num' of type
3439 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3440 * scheduler lock.
3441 */
3442static int
3443ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3444			u16 profile_id)
3445{
3446	struct ice_aqc_rl_profile_info *rl_prof_elem;
3447	int status = 0;
3448
3449	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3450		return -EINVAL;
3451	/* Check the existing list for RL profile */
3452	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3453			    list_entry)
3454		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3455		    profile_type &&
3456		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3457		    profile_id) {
3458			if (rl_prof_elem->prof_id_ref)
3459				rl_prof_elem->prof_id_ref--;
3460
3461			/* Remove old profile ID from database */
3462			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3463			if (status && status != -EBUSY)
3464				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3465			break;
3466		}
3467	if (status == -EBUSY)
3468		status = 0;
3469	return status;
3470}
3471
3472/**
3473 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3474 * @pi: port information structure
3475 * @node: pointer to node structure
3476 * @rl_type: rate limit type min, max, or shared
3477 * @layer_num: layer number where RL profiles are saved
3478 *
3479 * This function configures node element's BW rate limit profile ID of
3480 * type CIR, EIR, or SRL to default. This function needs to be called
3481 * with the scheduler lock held.
3482 */
3483static int
3484ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3485			   struct ice_sched_node *node,
3486			   enum ice_rl_type rl_type, u8 layer_num)
3487{
3488	struct ice_hw *hw;
3489	u8 profile_type;
3490	u16 rl_prof_id;
3491	u16 old_id;
3492	int status;
3493
3494	hw = pi->hw;
3495	switch (rl_type) {
3496	case ICE_MIN_BW:
3497		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3498		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3499		break;
3500	case ICE_MAX_BW:
3501		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3502		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3503		break;
3504	case ICE_SHARED_BW:
3505		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3506		/* No SRL is configured for default case */
3507		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3508		break;
3509	default:
3510		return -EINVAL;
3511	}
3512	/* Save existing RL prof ID for later clean up */
3513	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3514	/* Configure BW scheduling parameters */
3515	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3516	if (status)
3517		return status;
3518
3519	/* Remove stale RL profile ID */
3520	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3521	    old_id == ICE_SCHED_INVAL_PROF_ID)
3522		return 0;
3523
3524	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3525}
3526
3527/**
3528 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3529 * @pi: port information structure
3530 * @node: pointer to node structure
3531 * @layer_num: layer number where rate limit profiles are saved
3532 * @rl_type: rate limit type min, max, or shared
3533 * @bw: bandwidth value
3534 *
3535 * This function prepares node element's bandwidth to SRL or EIR exclusively.
3536 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3537 * them may be set for any given element. This function needs to be called
3538 * with the scheduler lock held.
3539 */
3540static int
3541ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3542			   struct ice_sched_node *node,
3543			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3544{
3545	if (rl_type == ICE_SHARED_BW) {
3546		/* SRL node passed in this case, it may be different node */
3547		if (bw == ICE_SCHED_DFLT_BW)
3548			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
3549			 * enables EIR to default. EIR is not set in this
3550			 * case, so no additional action is required.
3551			 */
3552			return 0;
3553
3554		/* SRL being configured, set EIR to default here.
3555		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3556		 * configures SRL
3557		 */
3558		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3559						  layer_num);
3560	} else if (rl_type == ICE_MAX_BW &&
3561		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3562		/* Remove Shared profile. Set default shared BW call
3563		 * removes shared profile for a node.
3564		 */
3565		return ice_sched_set_node_bw_dflt(pi, node,
3566						  ICE_SHARED_BW,
3567						  layer_num);
3568	}
3569	return 0;
3570}
3571
3572/**
3573 * ice_sched_set_node_bw - set node's bandwidth
3574 * @pi: port information structure
3575 * @node: tree node
3576 * @rl_type: rate limit type min, max, or shared
3577 * @bw: bandwidth in Kbps - Kilo bits per sec
3578 * @layer_num: layer number
3579 *
3580 * This function adds new profile corresponding to requested BW, configures
3581 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3582 * ID from local database. The caller needs to hold scheduler lock.
3583 */
3584int
3585ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3586		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3587{
3588	struct ice_aqc_rl_profile_info *rl_prof_info;
3589	struct ice_hw *hw = pi->hw;
3590	u16 old_id, rl_prof_id;
3591	int status = -EINVAL;
3592
3593	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3594	if (!rl_prof_info)
3595		return status;
3596
3597	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3598
3599	/* Save existing RL prof ID for later clean up */
3600	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3601	/* Configure BW scheduling parameters */
3602	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3603	if (status)
3604		return status;
3605
3606	/* New changes has been applied */
3607	/* Increment the profile ID reference count */
3608	rl_prof_info->prof_id_ref++;
3609
3610	/* Check for old ID removal */
3611	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3612	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3613		return 0;
3614
3615	return ice_sched_rm_rl_profile(pi, layer_num,
3616				       rl_prof_info->profile.flags &
3617				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3618}
3619
3620/**
3621 * ice_sched_set_node_priority - set node's priority
3622 * @pi: port information structure
3623 * @node: tree node
3624 * @priority: number 0-7 representing priority among siblings
3625 *
3626 * This function sets priority of a node among it's siblings.
3627 */
3628int
3629ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3630			    u16 priority)
3631{
3632	struct ice_aqc_txsched_elem_data buf;
3633	struct ice_aqc_txsched_elem *data;
3634
3635	buf = node->info;
3636	data = &buf.data;
3637
3638	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3639	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3640
3641	return ice_sched_update_elem(pi->hw, node, &buf);
3642}
3643
3644/**
3645 * ice_sched_set_node_weight - set node's weight
3646 * @pi: port information structure
3647 * @node: tree node
3648 * @weight: number 1-200 representing weight for WFQ
3649 *
3650 * This function sets weight of the node for WFQ algorithm.
3651 */
3652int
3653ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3654{
3655	struct ice_aqc_txsched_elem_data buf;
3656	struct ice_aqc_txsched_elem *data;
3657
3658	buf = node->info;
3659	data = &buf.data;
3660
3661	data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3662			       ICE_AQC_ELEM_VALID_GENERIC;
3663	data->cir_bw.bw_alloc = cpu_to_le16(weight);
3664	data->eir_bw.bw_alloc = cpu_to_le16(weight);
3665
3666	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3667
3668	return ice_sched_update_elem(pi->hw, node, &buf);
3669}
3670
3671/**
3672 * ice_sched_set_node_bw_lmt - set node's BW limit
3673 * @pi: port information structure
3674 * @node: tree node
3675 * @rl_type: rate limit type min, max, or shared
3676 * @bw: bandwidth in Kbps - Kilo bits per sec
3677 *
3678 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3679 * EIR, or SRL. The caller needs to hold scheduler lock.
3680 */
3681int
3682ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3683			  enum ice_rl_type rl_type, u32 bw)
3684{
3685	struct ice_sched_node *cfg_node = node;
3686	int status;
3687
3688	struct ice_hw *hw;
3689	u8 layer_num;
3690
3691	if (!pi)
3692		return -EINVAL;
3693	hw = pi->hw;
3694	/* Remove unused RL profile IDs from HW and SW DB */
3695	ice_sched_rm_unused_rl_prof(pi);
3696	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3697						node->tx_sched_layer);
3698	if (layer_num >= hw->num_tx_sched_layers)
3699		return -EINVAL;
3700
3701	if (rl_type == ICE_SHARED_BW) {
3702		/* SRL node may be different */
3703		cfg_node = ice_sched_get_srl_node(node, layer_num);
3704		if (!cfg_node)
3705			return -EIO;
3706	}
3707	/* EIR BW and Shared BW profiles are mutually exclusive and
3708	 * hence only one of them may be set for any given element
3709	 */
3710	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3711					    bw);
3712	if (status)
3713		return status;
3714	if (bw == ICE_SCHED_DFLT_BW)
3715		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3716						  layer_num);
3717	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3718}
3719
3720/**
3721 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3722 * @pi: port information structure
3723 * @node: pointer to node structure
3724 * @rl_type: rate limit type min, max, or shared
3725 *
3726 * This function configures node element's BW rate limit profile ID of
3727 * type CIR, EIR, or SRL to default. This function needs to be called
3728 * with the scheduler lock held.
3729 */
3730static int
3731ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3732			       struct ice_sched_node *node,
3733			       enum ice_rl_type rl_type)
3734{
3735	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3736					 ICE_SCHED_DFLT_BW);
3737}
3738
3739/**
3740 * ice_sched_validate_srl_node - Check node for SRL applicability
3741 * @node: sched node to configure
3742 * @sel_layer: selected SRL layer
3743 *
3744 * This function checks if the SRL can be applied to a selected layer node on
3745 * behalf of the requested node (first argument). This function needs to be
3746 * called with scheduler lock held.
3747 */
3748static int
3749ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3750{
3751	/* SRL profiles are not available on all layers. Check if the
3752	 * SRL profile can be applied to a node above or below the
3753	 * requested node. SRL configuration is possible only if the
3754	 * selected layer's node has single child.
3755	 */
3756	if (sel_layer == node->tx_sched_layer ||
3757	    ((sel_layer == node->tx_sched_layer + 1) &&
3758	    node->num_children == 1) ||
3759	    ((sel_layer == node->tx_sched_layer - 1) &&
3760	    (node->parent && node->parent->num_children == 1)))
3761		return 0;
3762
3763	return -EIO;
3764}
3765
3766/**
3767 * ice_sched_save_q_bw - save queue node's BW information
3768 * @q_ctx: queue context structure
3769 * @rl_type: rate limit type min, max, or shared
3770 * @bw: bandwidth in Kbps - Kilo bits per sec
3771 *
3772 * Save BW information of queue type node for post replay use.
3773 */
3774static int
3775ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3776{
3777	switch (rl_type) {
3778	case ICE_MIN_BW:
3779		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3780		break;
3781	case ICE_MAX_BW:
3782		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3783		break;
3784	case ICE_SHARED_BW:
3785		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3786		break;
3787	default:
3788		return -EINVAL;
3789	}
3790	return 0;
3791}
3792
3793/**
3794 * ice_sched_set_q_bw_lmt - sets queue BW limit
3795 * @pi: port information structure
3796 * @vsi_handle: sw VSI handle
3797 * @tc: traffic class
3798 * @q_handle: software queue handle
3799 * @rl_type: min, max, or shared
3800 * @bw: bandwidth in Kbps
3801 *
3802 * This function sets BW limit of queue scheduling node.
3803 */
3804static int
3805ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3806		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3807{
3808	struct ice_sched_node *node;
3809	struct ice_q_ctx *q_ctx;
3810	int status = -EINVAL;
3811
3812	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3813		return -EINVAL;
3814	mutex_lock(&pi->sched_lock);
3815	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3816	if (!q_ctx)
3817		goto exit_q_bw_lmt;
3818	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3819	if (!node) {
3820		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3821		goto exit_q_bw_lmt;
3822	}
3823
3824	/* Return error if it is not a leaf node */
3825	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3826		goto exit_q_bw_lmt;
3827
3828	/* SRL bandwidth layer selection */
3829	if (rl_type == ICE_SHARED_BW) {
3830		u8 sel_layer; /* selected layer */
3831
3832		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3833							node->tx_sched_layer);
3834		if (sel_layer >= pi->hw->num_tx_sched_layers) {
3835			status = -EINVAL;
3836			goto exit_q_bw_lmt;
3837		}
3838		status = ice_sched_validate_srl_node(node, sel_layer);
3839		if (status)
3840			goto exit_q_bw_lmt;
3841	}
3842
3843	if (bw == ICE_SCHED_DFLT_BW)
3844		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3845	else
3846		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3847
3848	if (!status)
3849		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3850
3851exit_q_bw_lmt:
3852	mutex_unlock(&pi->sched_lock);
3853	return status;
3854}
3855
3856/**
3857 * ice_cfg_q_bw_lmt - configure queue BW limit
3858 * @pi: port information structure
3859 * @vsi_handle: sw VSI handle
3860 * @tc: traffic class
3861 * @q_handle: software queue handle
3862 * @rl_type: min, max, or shared
3863 * @bw: bandwidth in Kbps
3864 *
3865 * This function configures BW limit of queue scheduling node.
3866 */
3867int
3868ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3869		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3870{
3871	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3872				      bw);
3873}
3874
3875/**
3876 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3877 * @pi: port information structure
3878 * @vsi_handle: sw VSI handle
3879 * @tc: traffic class
3880 * @q_handle: software queue handle
3881 * @rl_type: min, max, or shared
3882 *
3883 * This function configures BW default limit of queue scheduling node.
3884 */
3885int
3886ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3887		      u16 q_handle, enum ice_rl_type rl_type)
3888{
3889	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3890				      ICE_SCHED_DFLT_BW);
3891}
3892
3893/**
3894 * ice_sched_get_node_by_id_type - get node from ID type
3895 * @pi: port information structure
3896 * @id: identifier
3897 * @agg_type: type of aggregator
3898 * @tc: traffic class
3899 *
3900 * This function returns node identified by ID of type aggregator, and
3901 * based on traffic class (TC). This function needs to be called with
3902 * the scheduler lock held.
3903 */
3904static struct ice_sched_node *
3905ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3906			      enum ice_agg_type agg_type, u8 tc)
3907{
3908	struct ice_sched_node *node = NULL;
3909
3910	switch (agg_type) {
3911	case ICE_AGG_TYPE_VSI: {
3912		struct ice_vsi_ctx *vsi_ctx;
3913		u16 vsi_handle = (u16)id;
3914
3915		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3916			break;
3917		/* Get sched_vsi_info */
3918		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3919		if (!vsi_ctx)
3920			break;
3921		node = vsi_ctx->sched.vsi_node[tc];
3922		break;
3923	}
3924
3925	case ICE_AGG_TYPE_AGG: {
3926		struct ice_sched_node *tc_node;
3927
3928		tc_node = ice_sched_get_tc_node(pi, tc);
3929		if (tc_node)
3930			node = ice_sched_get_agg_node(pi, tc_node, id);
3931		break;
3932	}
3933
3934	default:
3935		break;
3936	}
3937
3938	return node;
3939}
3940
3941/**
3942 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3943 * @pi: port information structure
3944 * @id: ID (software VSI handle or AGG ID)
3945 * @agg_type: aggregator type (VSI or AGG type node)
3946 * @tc: traffic class
3947 * @rl_type: min or max
3948 * @bw: bandwidth in Kbps
3949 *
3950 * This function sets BW limit of VSI or Aggregator scheduling node
3951 * based on TC information from passed in argument BW.
3952 */
3953static int
3954ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3955				 enum ice_agg_type agg_type, u8 tc,
3956				 enum ice_rl_type rl_type, u32 bw)
3957{
3958	struct ice_sched_node *node;
3959	int status = -EINVAL;
3960
3961	if (!pi)
3962		return status;
3963
3964	if (rl_type == ICE_UNKNOWN_BW)
3965		return status;
3966
3967	mutex_lock(&pi->sched_lock);
3968	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3969	if (!node) {
3970		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3971		goto exit_set_node_bw_lmt_per_tc;
3972	}
3973	if (bw == ICE_SCHED_DFLT_BW)
3974		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3975	else
3976		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3977
3978exit_set_node_bw_lmt_per_tc:
3979	mutex_unlock(&pi->sched_lock);
3980	return status;
3981}
3982
3983/**
3984 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3985 * @pi: port information structure
3986 * @vsi_handle: software VSI handle
3987 * @tc: traffic class
3988 * @rl_type: min or max
3989 * @bw: bandwidth in Kbps
3990 *
3991 * This function configures BW limit of VSI scheduling node based on TC
3992 * information.
3993 */
3994int
3995ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3996			  enum ice_rl_type rl_type, u32 bw)
3997{
3998	int status;
3999
4000	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4001						  ICE_AGG_TYPE_VSI,
4002						  tc, rl_type, bw);
4003	if (!status) {
4004		mutex_lock(&pi->sched_lock);
4005		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4006		mutex_unlock(&pi->sched_lock);
4007	}
4008	return status;
4009}
4010
4011/**
4012 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4013 * @pi: port information structure
4014 * @vsi_handle: software VSI handle
4015 * @tc: traffic class
4016 * @rl_type: min or max
4017 *
4018 * This function configures default BW limit of VSI scheduling node based on TC
4019 * information.
4020 */
4021int
4022ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4023			       enum ice_rl_type rl_type)
4024{
4025	int status;
4026
4027	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4028						  ICE_AGG_TYPE_VSI,
4029						  tc, rl_type,
4030						  ICE_SCHED_DFLT_BW);
4031	if (!status) {
4032		mutex_lock(&pi->sched_lock);
4033		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4034					       ICE_SCHED_DFLT_BW);
4035		mutex_unlock(&pi->sched_lock);
4036	}
4037	return status;
4038}
4039
4040/**
4041 * ice_cfg_rl_burst_size - Set burst size value
4042 * @hw: pointer to the HW struct
4043 * @bytes: burst size in bytes
4044 *
4045 * This function configures/set the burst size to requested new value. The new
4046 * burst size value is used for future rate limit calls. It doesn't change the
4047 * existing or previously created RL profiles.
4048 */
4049int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4050{
4051	u16 burst_size_to_prog;
4052
4053	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4054	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4055		return -EINVAL;
4056	if (ice_round_to_num(bytes, 64) <=
4057	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4058		/* 64 byte granularity case */
4059		/* Disable MSB granularity bit */
4060		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4061		/* round number to nearest 64 byte granularity */
4062		bytes = ice_round_to_num(bytes, 64);
4063		/* The value is in 64 byte chunks */
4064		burst_size_to_prog |= (u16)(bytes / 64);
4065	} else {
4066		/* k bytes granularity case */
4067		/* Enable MSB granularity bit */
4068		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4069		/* round number to nearest 1024 granularity */
4070		bytes = ice_round_to_num(bytes, 1024);
4071		/* check rounding doesn't go beyond allowed */
4072		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4073			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4074		/* The value is in k bytes */
4075		burst_size_to_prog |= (u16)(bytes / 1024);
4076	}
4077	hw->max_burst_size = burst_size_to_prog;
4078	return 0;
4079}
4080
4081/**
4082 * ice_sched_replay_node_prio - re-configure node priority
4083 * @hw: pointer to the HW struct
4084 * @node: sched node to configure
4085 * @priority: priority value
4086 *
4087 * This function configures node element's priority value. It
4088 * needs to be called with scheduler lock held.
4089 */
4090static int
4091ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4092			   u8 priority)
4093{
4094	struct ice_aqc_txsched_elem_data buf;
4095	struct ice_aqc_txsched_elem *data;
4096	int status;
4097
4098	buf = node->info;
4099	data = &buf.data;
4100	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4101	data->generic = priority;
4102
4103	/* Configure element */
4104	status = ice_sched_update_elem(hw, node, &buf);
4105	return status;
4106}
4107
4108/**
4109 * ice_sched_replay_node_bw - replay node(s) BW
4110 * @hw: pointer to the HW struct
4111 * @node: sched node to configure
4112 * @bw_t_info: BW type information
4113 *
4114 * This function restores node's BW from bw_t_info. The caller needs
4115 * to hold the scheduler lock.
4116 */
4117static int
4118ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4119			 struct ice_bw_type_info *bw_t_info)
4120{
4121	struct ice_port_info *pi = hw->port_info;
4122	int status = -EINVAL;
4123	u16 bw_alloc;
4124
4125	if (!node)
4126		return status;
4127	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4128		return 0;
4129	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4130		status = ice_sched_replay_node_prio(hw, node,
4131						    bw_t_info->generic);
4132		if (status)
4133			return status;
4134	}
4135	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4136		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4137						   bw_t_info->cir_bw.bw);
4138		if (status)
4139			return status;
4140	}
4141	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4142		bw_alloc = bw_t_info->cir_bw.bw_alloc;
4143		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4144						     bw_alloc);
4145		if (status)
4146			return status;
4147	}
4148	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4149		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4150						   bw_t_info->eir_bw.bw);
4151		if (status)
4152			return status;
4153	}
4154	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4155		bw_alloc = bw_t_info->eir_bw.bw_alloc;
4156		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4157						     bw_alloc);
4158		if (status)
4159			return status;
4160	}
4161	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4162		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4163						   bw_t_info->shared_bw);
4164	return status;
4165}
4166
4167/**
4168 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4169 * @pi: port info struct
4170 * @tc_bitmap: 8 bits TC bitmap to check
4171 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4172 *
4173 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4174 * may be missing, it returns enabled TCs. This function needs to be called with
4175 * scheduler lock held.
4176 */
4177static void
4178ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4179			    unsigned long *tc_bitmap,
4180			    unsigned long *ena_tc_bitmap)
4181{
4182	u8 tc;
4183
4184	/* Some TC(s) may be missing after reset, adjust for replay */
4185	ice_for_each_traffic_class(tc)
4186		if (ice_is_tc_ena(*tc_bitmap, tc) &&
4187		    (ice_sched_get_tc_node(pi, tc)))
4188			set_bit(tc, ena_tc_bitmap);
4189}
4190
4191/**
4192 * ice_sched_replay_agg - recreate aggregator node(s)
4193 * @hw: pointer to the HW struct
4194 *
4195 * This function recreate aggregator type nodes which are not replayed earlier.
4196 * It also replay aggregator BW information. These aggregator nodes are not
4197 * associated with VSI type node yet.
4198 */
4199void ice_sched_replay_agg(struct ice_hw *hw)
4200{
4201	struct ice_port_info *pi = hw->port_info;
4202	struct ice_sched_agg_info *agg_info;
4203
4204	mutex_lock(&pi->sched_lock);
4205	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4206		/* replay aggregator (re-create aggregator node) */
4207		if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4208				  ICE_MAX_TRAFFIC_CLASS)) {
4209			DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4210			int status;
4211
4212			bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4213			ice_sched_get_ena_tc_bitmap(pi,
4214						    agg_info->replay_tc_bitmap,
4215						    replay_bitmap);
4216			status = ice_sched_cfg_agg(hw->port_info,
4217						   agg_info->agg_id,
4218						   ICE_AGG_TYPE_AGG,
4219						   replay_bitmap);
4220			if (status) {
4221				dev_info(ice_hw_to_dev(hw),
4222					 "Replay agg id[%d] failed\n",
4223					 agg_info->agg_id);
4224				/* Move on to next one */
4225				continue;
4226			}
4227		}
4228	mutex_unlock(&pi->sched_lock);
4229}
4230
4231/**
4232 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4233 * @hw: pointer to the HW struct
4234 *
4235 * This function initialize aggregator(s) TC bitmap to zero. A required
4236 * preinit step for replaying aggregators.
4237 */
4238void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4239{
4240	struct ice_port_info *pi = hw->port_info;
4241	struct ice_sched_agg_info *agg_info;
4242
4243	mutex_lock(&pi->sched_lock);
4244	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4245		struct ice_sched_agg_vsi_info *agg_vsi_info;
4246
4247		agg_info->tc_bitmap[0] = 0;
4248		list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4249				    list_entry)
4250			agg_vsi_info->tc_bitmap[0] = 0;
4251	}
4252	mutex_unlock(&pi->sched_lock);
4253}
4254
4255/**
4256 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4257 * @hw: pointer to the HW struct
4258 * @vsi_handle: software VSI handle
4259 *
4260 * This function replays aggregator node, VSI to aggregator type nodes, and
4261 * their node bandwidth information. This function needs to be called with
4262 * scheduler lock held.
4263 */
4264static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4265{
4266	DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4267	struct ice_sched_agg_vsi_info *agg_vsi_info;
4268	struct ice_port_info *pi = hw->port_info;
4269	struct ice_sched_agg_info *agg_info;
4270	int status;
4271
4272	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4273	if (!ice_is_vsi_valid(hw, vsi_handle))
4274		return -EINVAL;
4275	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4276	if (!agg_info)
4277		return 0; /* Not present in list - default Agg case */
4278	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4279	if (!agg_vsi_info)
4280		return 0; /* Not present in list - default Agg case */
4281	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4282				    replay_bitmap);
4283	/* Replay aggregator node associated to vsi_handle */
4284	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4285				   ICE_AGG_TYPE_AGG, replay_bitmap);
4286	if (status)
4287		return status;
4288
4289	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4290	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4291				    replay_bitmap);
4292	/* Move this VSI (vsi_handle) to above aggregator */
4293	return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4294					  replay_bitmap);
4295}
4296
4297/**
4298 * ice_replay_vsi_agg - replay VSI to aggregator node
4299 * @hw: pointer to the HW struct
4300 * @vsi_handle: software VSI handle
4301 *
4302 * This function replays association of VSI to aggregator type nodes, and
4303 * node bandwidth information.
4304 */
4305int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4306{
4307	struct ice_port_info *pi = hw->port_info;
4308	int status;
4309
4310	mutex_lock(&pi->sched_lock);
4311	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4312	mutex_unlock(&pi->sched_lock);
4313	return status;
4314}
4315
4316/**
4317 * ice_sched_replay_q_bw - replay queue type node BW
4318 * @pi: port information structure
4319 * @q_ctx: queue context structure
4320 *
4321 * This function replays queue type node bandwidth. This function needs to be
4322 * called with scheduler lock held.
4323 */
4324int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4325{
4326	struct ice_sched_node *q_node;
4327
4328	/* Following also checks the presence of node in tree */
4329	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4330	if (!q_node)
4331		return -EINVAL;
4332	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4333}