Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_flow.h"
   6#include <net/gre.h>
   7
   8/* Describe properties of a protocol header field */
   9struct ice_flow_field_info {
  10	enum ice_flow_seg_hdr hdr;
  11	s16 off;	/* Offset from start of a protocol header, in bits */
  12	u16 size;	/* Size of fields in bits */
  13	u16 mask;	/* 16-bit mask for field */
  14};
  15
  16#define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
  17	.hdr = _hdr, \
  18	.off = (_offset_bytes) * BITS_PER_BYTE, \
  19	.size = (_size_bytes) * BITS_PER_BYTE, \
  20	.mask = 0, \
  21}
  22
  23#define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \
  24	.hdr = _hdr, \
  25	.off = (_offset_bytes) * BITS_PER_BYTE, \
  26	.size = (_size_bytes) * BITS_PER_BYTE, \
  27	.mask = _mask, \
  28}
  29
  30/* Table containing properties of supported protocol header fields */
  31static const
  32struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
  33	/* Ether */
  34	/* ICE_FLOW_FIELD_IDX_ETH_DA */
  35	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
  36	/* ICE_FLOW_FIELD_IDX_ETH_SA */
  37	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
  38	/* ICE_FLOW_FIELD_IDX_S_VLAN */
  39	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)),
  40	/* ICE_FLOW_FIELD_IDX_C_VLAN */
  41	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)),
  42	/* ICE_FLOW_FIELD_IDX_ETH_TYPE */
  43	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)),
  44	/* IPv4 / IPv6 */
  45	/* ICE_FLOW_FIELD_IDX_IPV4_DSCP */
  46	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc),
  47	/* ICE_FLOW_FIELD_IDX_IPV6_DSCP */
  48	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0),
  49	/* ICE_FLOW_FIELD_IDX_IPV4_TTL */
  50	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00),
  51	/* ICE_FLOW_FIELD_IDX_IPV4_PROT */
  52	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff),
  53	/* ICE_FLOW_FIELD_IDX_IPV6_TTL */
  54	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff),
  55	/* ICE_FLOW_FIELD_IDX_IPV6_PROT */
  56	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00),
  57	/* ICE_FLOW_FIELD_IDX_IPV4_SA */
  58	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
  59	/* ICE_FLOW_FIELD_IDX_IPV4_DA */
  60	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
  61	/* ICE_FLOW_FIELD_IDX_IPV6_SA */
  62	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
  63	/* ICE_FLOW_FIELD_IDX_IPV6_DA */
  64	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
  65	/* Transport */
  66	/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
  67	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
  68	/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
  69	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
  70	/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
  71	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
  72	/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
  73	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
  74	/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
  75	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
  76	/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
  77	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
  78	/* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
  79	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1),
  80	/* ARP */
  81	/* ICE_FLOW_FIELD_IDX_ARP_SIP */
  82	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)),
  83	/* ICE_FLOW_FIELD_IDX_ARP_DIP */
  84	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)),
  85	/* ICE_FLOW_FIELD_IDX_ARP_SHA */
  86	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
  87	/* ICE_FLOW_FIELD_IDX_ARP_DHA */
  88	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
  89	/* ICE_FLOW_FIELD_IDX_ARP_OP */
  90	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)),
  91	/* ICMP */
  92	/* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
  93	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1),
  94	/* ICE_FLOW_FIELD_IDX_ICMP_CODE */
  95	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1),
  96	/* GRE */
  97	/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
  98	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
  99			  sizeof_field(struct gre_full_hdr, key)),
 100	/* GTP */
 101	/* ICE_FLOW_FIELD_IDX_GTPC_TEID */
 102	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)),
 103	/* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */
 104	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)),
 105	/* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */
 106	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)),
 107	/* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */
 108	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16),
 109			      0x3f00),
 110	/* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */
 111	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)),
 112	/* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */
 113	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)),
 114	/* PPPoE */
 115	/* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */
 116	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)),
 117	/* PFCP */
 118	/* ICE_FLOW_FIELD_IDX_PFCP_SEID */
 119	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)),
 120	/* L2TPv3 */
 121	/* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */
 122	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)),
 123	/* ESP */
 124	/* ICE_FLOW_FIELD_IDX_ESP_SPI */
 125	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)),
 126	/* AH */
 127	/* ICE_FLOW_FIELD_IDX_AH_SPI */
 128	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)),
 129	/* NAT_T_ESP */
 130	/* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */
 131	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)),
 132};
 133
 134/* Bitmaps indicating relevant packet types for a particular protocol header
 135 *
 136 * Packet types for packets with an Outer/First/Single MAC header
 137 */
 138static const u32 ice_ptypes_mac_ofos[] = {
 139	0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB,
 140	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
 141	0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000,
 142	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 143	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 144	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 145	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 146	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 147};
 148
 149/* Packet types for packets with an Innermost/Last MAC VLAN header */
 150static const u32 ice_ptypes_macvlan_il[] = {
 151	0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
 152	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
 153	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 154	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 155	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 156	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 157	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 158	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 159};
 160
 161/* Packet types for packets with an Outer/First/Single IPv4 header, does NOT
 162 * include IPv4 other PTYPEs
 163 */
 164static const u32 ice_ptypes_ipv4_ofos[] = {
 165	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
 166	0x00000000, 0x00000155, 0x00000000, 0x00000000,
 167	0x00000000, 0x000FC000, 0x00000000, 0x00000000,
 168	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 169	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 170	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 171	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 172	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 173};
 174
 175/* Packet types for packets with an Outer/First/Single IPv4 header, includes
 176 * IPv4 other PTYPEs
 177 */
 178static const u32 ice_ptypes_ipv4_ofos_all[] = {
 179	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
 180	0x00000000, 0x00000155, 0x00000000, 0x00000000,
 181	0x00000000, 0x000FC000, 0x83E0F800, 0x00000101,
 182	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 183	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 184	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 185	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 186	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 187};
 188
 189/* Packet types for packets with an Innermost/Last IPv4 header */
 190static const u32 ice_ptypes_ipv4_il[] = {
 191	0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
 192	0x0000000E, 0x00000000, 0x00000000, 0x00000000,
 193	0x00000000, 0x00000000, 0x001FF800, 0x00000000,
 194	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 195	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 196	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 197	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 198	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 199};
 200
 201/* Packet types for packets with an Outer/First/Single IPv6 header, does NOT
 202 * include IPv6 other PTYPEs
 203 */
 204static const u32 ice_ptypes_ipv6_ofos[] = {
 205	0x00000000, 0x00000000, 0x77000000, 0x10002000,
 206	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
 207	0x00000000, 0x03F00000, 0x00000000, 0x00000000,
 208	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 209	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 210	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 211	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 212	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 213};
 214
 215/* Packet types for packets with an Outer/First/Single IPv6 header, includes
 216 * IPv6 other PTYPEs
 217 */
 218static const u32 ice_ptypes_ipv6_ofos_all[] = {
 219	0x00000000, 0x00000000, 0x77000000, 0x10002000,
 220	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
 221	0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206,
 222	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 223	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 224	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 225	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 226	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 227};
 228
 229/* Packet types for packets with an Innermost/Last IPv6 header */
 230static const u32 ice_ptypes_ipv6_il[] = {
 231	0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
 232	0x00000770, 0x00000000, 0x00000000, 0x00000000,
 233	0x00000000, 0x00000000, 0x7FE00000, 0x00000000,
 234	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 235	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 236	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 237	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 238	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 239};
 240
 241/* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */
 242static const u32 ice_ptypes_ipv4_ofos_no_l4[] = {
 243	0x10C00000, 0x04000800, 0x00000000, 0x00000000,
 244	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 245	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 246	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 247	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 248	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 249	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 250	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 251};
 252
 253/* Packet types for packets with an Outermost/First ARP header */
 254static const u32 ice_ptypes_arp_of[] = {
 255	0x00000800, 0x00000000, 0x00000000, 0x00000000,
 256	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 257	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 258	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 259	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 260	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 261	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 262	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 263};
 264
 265/* Packet types for packets with an Innermost/Last IPv4 header - no L4 */
 266static const u32 ice_ptypes_ipv4_il_no_l4[] = {
 267	0x60000000, 0x18043008, 0x80000002, 0x6010c021,
 268	0x00000008, 0x00000000, 0x00000000, 0x00000000,
 269	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 270	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 271	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 272	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 273	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 274	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 275};
 276
 277/* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */
 278static const u32 ice_ptypes_ipv6_ofos_no_l4[] = {
 279	0x00000000, 0x00000000, 0x43000000, 0x10002000,
 280	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 281	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 282	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 283	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 284	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 285	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 286	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 287};
 288
 289/* Packet types for packets with an Innermost/Last IPv6 header - no L4 */
 290static const u32 ice_ptypes_ipv6_il_no_l4[] = {
 291	0x00000000, 0x02180430, 0x0000010c, 0x086010c0,
 292	0x00000430, 0x00000000, 0x00000000, 0x00000000,
 293	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 294	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 295	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 296	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 297	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 298	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 299};
 300
 301/* UDP Packet types for non-tunneled packets or tunneled
 302 * packets with inner UDP.
 303 */
 304static const u32 ice_ptypes_udp_il[] = {
 305	0x81000000, 0x20204040, 0x04000010, 0x80810102,
 306	0x00000040, 0x00000000, 0x00000000, 0x00000000,
 307	0x00000000, 0x00410000, 0x90842000, 0x00000007,
 308	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 309	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 310	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 311	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 312	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 313};
 314
 315/* Packet types for packets with an Innermost/Last TCP header */
 316static const u32 ice_ptypes_tcp_il[] = {
 317	0x04000000, 0x80810102, 0x10000040, 0x02040408,
 318	0x00000102, 0x00000000, 0x00000000, 0x00000000,
 319	0x00000000, 0x00820000, 0x21084000, 0x00000000,
 320	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 321	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 322	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 323	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 324	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 325};
 326
 327/* Packet types for packets with an Innermost/Last SCTP header */
 328static const u32 ice_ptypes_sctp_il[] = {
 329	0x08000000, 0x01020204, 0x20000081, 0x04080810,
 330	0x00000204, 0x00000000, 0x00000000, 0x00000000,
 331	0x00000000, 0x01040000, 0x00000000, 0x00000000,
 332	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 333	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 334	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 335	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 336	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 337};
 338
 339/* Packet types for packets with an Outermost/First ICMP header */
 340static const u32 ice_ptypes_icmp_of[] = {
 341	0x10000000, 0x00000000, 0x00000000, 0x00000000,
 342	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 343	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 344	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 345	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 346	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 347	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 348	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 349};
 350
 351/* Packet types for packets with an Innermost/Last ICMP header */
 352static const u32 ice_ptypes_icmp_il[] = {
 353	0x00000000, 0x02040408, 0x40000102, 0x08101020,
 354	0x00000408, 0x00000000, 0x00000000, 0x00000000,
 355	0x00000000, 0x00000000, 0x42108000, 0x00000000,
 356	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 357	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 358	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 359	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 360	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 361};
 362
 363/* Packet types for packets with an Outermost/First GRE header */
 364static const u32 ice_ptypes_gre_of[] = {
 365	0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
 366	0x0000017E, 0x00000000, 0x00000000, 0x00000000,
 367	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 368	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 369	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 370	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 371	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 372	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 373};
 374
 375/* Packet types for packets with an Innermost/Last MAC header */
 376static const u32 ice_ptypes_mac_il[] = {
 377	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 378	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 379	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 380	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 381	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 382	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 383	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 384	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 385};
 386
 387/* Packet types for GTPC */
 388static const u32 ice_ptypes_gtpc[] = {
 389	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 390	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 391	0x00000000, 0x00000000, 0x00000180, 0x00000000,
 392	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 393	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 394	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 395	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 396	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 397};
 398
 399/* Packet types for GTPC with TEID */
 400static const u32 ice_ptypes_gtpc_tid[] = {
 401	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 402	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 403	0x00000000, 0x00000000, 0x00000060, 0x00000000,
 404	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 405	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 406	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 407	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 408	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 409};
 410
 411/* Packet types for GTPU */
 412static const struct ice_ptype_attributes ice_attr_gtpu_session[] = {
 413	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_SESSION },
 414	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_SESSION },
 415	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_SESSION },
 416	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_SESSION },
 417	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_SESSION },
 418	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_SESSION },
 419	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_SESSION },
 420	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_SESSION },
 421	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_SESSION },
 422	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_SESSION },
 423	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_SESSION },
 424	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_SESSION },
 425	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_SESSION },
 426	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_SESSION },
 427	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_SESSION },
 428	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_SESSION },
 429	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_SESSION },
 430	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_SESSION },
 431	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_SESSION },
 432	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_SESSION },
 433};
 434
 435static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = {
 436	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 437	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 438	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 439	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 440	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 441	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 442	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 443	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 444	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 445	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 446	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 447	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 448	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 449	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 450	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
 451	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 452	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 453	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 454	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 455	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
 456};
 457
 458static const struct ice_ptype_attributes ice_attr_gtpu_down[] = {
 459	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 460	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 461	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 462	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 463	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 464	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 465	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 466	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 467	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 468	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 469	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 470	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 471	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 472	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 473	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 474	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 475	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 476	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 477	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 478	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 479};
 480
 481static const struct ice_ptype_attributes ice_attr_gtpu_up[] = {
 482	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 483	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 484	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 485	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 486	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 487	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 488	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 489	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 490	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 491	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 492	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 493	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 494	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 495	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 496	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
 497	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 498	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 499	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 500	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 501	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
 502};
 503
 504static const u32 ice_ptypes_gtpu[] = {
 505	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 506	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 507	0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000,
 508	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 509	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 510	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 511	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 512	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 513};
 514
 515/* Packet types for PPPoE */
 516static const u32 ice_ptypes_pppoe[] = {
 517	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 518	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 519	0x00000000, 0x03ffe000, 0x00000000, 0x00000000,
 520	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 521	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 522	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 523	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 524	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 525};
 526
 527/* Packet types for packets with PFCP NODE header */
 528static const u32 ice_ptypes_pfcp_node[] = {
 529	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 530	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 531	0x00000000, 0x00000000, 0x80000000, 0x00000002,
 532	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 533	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 534	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 535	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 536	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 537};
 538
 539/* Packet types for packets with PFCP SESSION header */
 540static const u32 ice_ptypes_pfcp_session[] = {
 541	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 542	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 543	0x00000000, 0x00000000, 0x00000000, 0x00000005,
 544	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 545	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 546	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 547	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 548	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 549};
 550
 551/* Packet types for L2TPv3 */
 552static const u32 ice_ptypes_l2tpv3[] = {
 553	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 554	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 555	0x00000000, 0x00000000, 0x00000000, 0x00000300,
 556	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 557	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 558	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 559	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 560	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 561};
 562
 563/* Packet types for ESP */
 564static const u32 ice_ptypes_esp[] = {
 565	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 566	0x00000000, 0x00000003, 0x00000000, 0x00000000,
 567	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 568	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 569	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 570	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 571	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 572	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 573};
 574
 575/* Packet types for AH */
 576static const u32 ice_ptypes_ah[] = {
 577	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 578	0x00000000, 0x0000000C, 0x00000000, 0x00000000,
 579	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 580	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 581	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 582	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 583	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 584	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 585};
 586
 587/* Packet types for packets with NAT_T ESP header */
 588static const u32 ice_ptypes_nat_t_esp[] = {
 589	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 590	0x00000000, 0x00000030, 0x00000000, 0x00000000,
 591	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 592	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 593	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 594	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 595	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 596	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 597};
 598
 599static const u32 ice_ptypes_mac_non_ip_ofos[] = {
 600	0x00000846, 0x00000000, 0x00000000, 0x00000000,
 601	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 602	0x00400000, 0x03FFF000, 0x00000000, 0x00000000,
 603	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 604	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 605	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 606	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 607	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 608};
 609
 610/* Manage parameters and info. used during the creation of a flow profile */
 611struct ice_flow_prof_params {
 612	enum ice_block blk;
 613	u16 entry_length; /* # of bytes formatted entry will require */
 614	u8 es_cnt;
 615	struct ice_flow_prof *prof;
 616
 617	/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
 618	 * This will give us the direction flags.
 619	 */
 620	struct ice_fv_word es[ICE_MAX_FV_WORDS];
 621	/* attributes can be used to add attributes to a particular PTYPE */
 622	const struct ice_ptype_attributes *attr;
 623	u16 attr_cnt;
 624
 625	u16 mask[ICE_MAX_FV_WORDS];
 626	DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
 627};
 628
 629#define ICE_FLOW_RSS_HDRS_INNER_MASK \
 630	(ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \
 631	ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \
 632	ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \
 633	ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \
 634	ICE_FLOW_SEG_HDR_NAT_T_ESP)
 635
 636#define ICE_FLOW_SEG_HDRS_L3_MASK	\
 637	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP)
 638#define ICE_FLOW_SEG_HDRS_L4_MASK	\
 639	(ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
 640	 ICE_FLOW_SEG_HDR_SCTP)
 641/* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */
 642#define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER	\
 643	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
 644
 645/**
 646 * ice_flow_val_hdrs - validates packet segments for valid protocol headers
 647 * @segs: array of one or more packet segments that describe the flow
 648 * @segs_cnt: number of packet segments provided
 649 */
 650static int ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
 651{
 652	u8 i;
 653
 654	for (i = 0; i < segs_cnt; i++) {
 655		/* Multiple L3 headers */
 656		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
 657		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
 658			return -EINVAL;
 659
 660		/* Multiple L4 headers */
 661		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
 662		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
 663			return -EINVAL;
 664	}
 665
 666	return 0;
 667}
 668
 669/* Sizes of fixed known protocol headers without header options */
 670#define ICE_FLOW_PROT_HDR_SZ_MAC	14
 671#define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN	(ICE_FLOW_PROT_HDR_SZ_MAC + 2)
 672#define ICE_FLOW_PROT_HDR_SZ_IPV4	20
 673#define ICE_FLOW_PROT_HDR_SZ_IPV6	40
 674#define ICE_FLOW_PROT_HDR_SZ_ARP	28
 675#define ICE_FLOW_PROT_HDR_SZ_ICMP	8
 676#define ICE_FLOW_PROT_HDR_SZ_TCP	20
 677#define ICE_FLOW_PROT_HDR_SZ_UDP	8
 678#define ICE_FLOW_PROT_HDR_SZ_SCTP	12
 679
 680/**
 681 * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
 682 * @params: information about the flow to be processed
 683 * @seg: index of packet segment whose header size is to be determined
 684 */
 685static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
 686{
 687	u16 sz;
 688
 689	/* L2 headers */
 690	sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
 691		ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
 692
 693	/* L3 headers */
 694	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
 695		sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
 696	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
 697		sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
 698	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
 699		sz += ICE_FLOW_PROT_HDR_SZ_ARP;
 700	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
 701		/* An L3 header is required if L4 is specified */
 702		return 0;
 703
 704	/* L4 headers */
 705	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
 706		sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
 707	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
 708		sz += ICE_FLOW_PROT_HDR_SZ_TCP;
 709	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
 710		sz += ICE_FLOW_PROT_HDR_SZ_UDP;
 711	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
 712		sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
 713
 714	return sz;
 715}
 716
 717/**
 718 * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
 719 * @params: information about the flow to be processed
 720 *
 721 * This function identifies the packet types associated with the protocol
 722 * headers being present in packet segments of the specified flow profile.
 723 */
 724static int ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
 725{
 726	struct ice_flow_prof *prof;
 727	u8 i;
 728
 729	memset(params->ptypes, 0xff, sizeof(params->ptypes));
 730
 731	prof = params->prof;
 732
 733	for (i = 0; i < params->prof->segs_cnt; i++) {
 734		const unsigned long *src;
 735		u32 hdrs;
 736
 737		hdrs = prof->segs[i].hdrs;
 738
 739		if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
 740			src = !i ? (const unsigned long *)ice_ptypes_mac_ofos :
 741				(const unsigned long *)ice_ptypes_mac_il;
 742			bitmap_and(params->ptypes, params->ptypes, src,
 743				   ICE_FLOW_PTYPE_MAX);
 744		}
 745
 746		if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
 747			src = (const unsigned long *)ice_ptypes_macvlan_il;
 748			bitmap_and(params->ptypes, params->ptypes, src,
 749				   ICE_FLOW_PTYPE_MAX);
 750		}
 751
 752		if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
 753			bitmap_and(params->ptypes, params->ptypes,
 754				   (const unsigned long *)ice_ptypes_arp_of,
 755				   ICE_FLOW_PTYPE_MAX);
 756		}
 757
 758		if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
 759		    (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
 760			src = i ? (const unsigned long *)ice_ptypes_ipv4_il :
 761				(const unsigned long *)ice_ptypes_ipv4_ofos_all;
 762			bitmap_and(params->ptypes, params->ptypes, src,
 763				   ICE_FLOW_PTYPE_MAX);
 764		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
 765			   (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
 766			src = i ? (const unsigned long *)ice_ptypes_ipv6_il :
 767				(const unsigned long *)ice_ptypes_ipv6_ofos_all;
 768			bitmap_and(params->ptypes, params->ptypes, src,
 769				   ICE_FLOW_PTYPE_MAX);
 770		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
 771			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
 772			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 :
 773				(const unsigned long *)ice_ptypes_ipv4_il_no_l4;
 774			bitmap_and(params->ptypes, params->ptypes, src,
 775				   ICE_FLOW_PTYPE_MAX);
 776		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
 777			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
 778				(const unsigned long *)ice_ptypes_ipv4_il;
 779			bitmap_and(params->ptypes, params->ptypes, src,
 780				   ICE_FLOW_PTYPE_MAX);
 781		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
 782			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
 783			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 :
 784				(const unsigned long *)ice_ptypes_ipv6_il_no_l4;
 785			bitmap_and(params->ptypes, params->ptypes, src,
 786				   ICE_FLOW_PTYPE_MAX);
 787		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
 788			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
 789				(const unsigned long *)ice_ptypes_ipv6_il;
 790			bitmap_and(params->ptypes, params->ptypes, src,
 791				   ICE_FLOW_PTYPE_MAX);
 792		}
 793
 794		if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) {
 795			src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos;
 796			bitmap_and(params->ptypes, params->ptypes, src,
 797				   ICE_FLOW_PTYPE_MAX);
 798		} else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
 799			src = (const unsigned long *)ice_ptypes_pppoe;
 800			bitmap_and(params->ptypes, params->ptypes, src,
 801				   ICE_FLOW_PTYPE_MAX);
 802		} else {
 803			src = (const unsigned long *)ice_ptypes_pppoe;
 804			bitmap_andnot(params->ptypes, params->ptypes, src,
 805				      ICE_FLOW_PTYPE_MAX);
 806		}
 807
 808		if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
 809			src = (const unsigned long *)ice_ptypes_udp_il;
 810			bitmap_and(params->ptypes, params->ptypes, src,
 811				   ICE_FLOW_PTYPE_MAX);
 812		} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
 813			bitmap_and(params->ptypes, params->ptypes,
 814				   (const unsigned long *)ice_ptypes_tcp_il,
 815				   ICE_FLOW_PTYPE_MAX);
 816		} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
 817			src = (const unsigned long *)ice_ptypes_sctp_il;
 818			bitmap_and(params->ptypes, params->ptypes, src,
 819				   ICE_FLOW_PTYPE_MAX);
 820		}
 821
 822		if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
 823			src = !i ? (const unsigned long *)ice_ptypes_icmp_of :
 824				(const unsigned long *)ice_ptypes_icmp_il;
 825			bitmap_and(params->ptypes, params->ptypes, src,
 826				   ICE_FLOW_PTYPE_MAX);
 827		} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
 828			if (!i) {
 829				src = (const unsigned long *)ice_ptypes_gre_of;
 830				bitmap_and(params->ptypes, params->ptypes,
 831					   src, ICE_FLOW_PTYPE_MAX);
 832			}
 833		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) {
 834			src = (const unsigned long *)ice_ptypes_gtpc;
 835			bitmap_and(params->ptypes, params->ptypes, src,
 836				   ICE_FLOW_PTYPE_MAX);
 837		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) {
 838			src = (const unsigned long *)ice_ptypes_gtpc_tid;
 839			bitmap_and(params->ptypes, params->ptypes, src,
 840				   ICE_FLOW_PTYPE_MAX);
 841		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) {
 842			src = (const unsigned long *)ice_ptypes_gtpu;
 843			bitmap_and(params->ptypes, params->ptypes, src,
 844				   ICE_FLOW_PTYPE_MAX);
 845
 846			/* Attributes for GTP packet with downlink */
 847			params->attr = ice_attr_gtpu_down;
 848			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
 849		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) {
 850			src = (const unsigned long *)ice_ptypes_gtpu;
 851			bitmap_and(params->ptypes, params->ptypes, src,
 852				   ICE_FLOW_PTYPE_MAX);
 853
 854			/* Attributes for GTP packet with uplink */
 855			params->attr = ice_attr_gtpu_up;
 856			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
 857		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) {
 858			src = (const unsigned long *)ice_ptypes_gtpu;
 859			bitmap_and(params->ptypes, params->ptypes, src,
 860				   ICE_FLOW_PTYPE_MAX);
 861
 862			/* Attributes for GTP packet with Extension Header */
 863			params->attr = ice_attr_gtpu_eh;
 864			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh);
 865		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) {
 866			src = (const unsigned long *)ice_ptypes_gtpu;
 867			bitmap_and(params->ptypes, params->ptypes, src,
 868				   ICE_FLOW_PTYPE_MAX);
 869		} else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) {
 870			src = (const unsigned long *)ice_ptypes_l2tpv3;
 871			bitmap_and(params->ptypes, params->ptypes, src,
 872				   ICE_FLOW_PTYPE_MAX);
 873		} else if (hdrs & ICE_FLOW_SEG_HDR_ESP) {
 874			src = (const unsigned long *)ice_ptypes_esp;
 875			bitmap_and(params->ptypes, params->ptypes, src,
 876				   ICE_FLOW_PTYPE_MAX);
 877		} else if (hdrs & ICE_FLOW_SEG_HDR_AH) {
 878			src = (const unsigned long *)ice_ptypes_ah;
 879			bitmap_and(params->ptypes, params->ptypes, src,
 880				   ICE_FLOW_PTYPE_MAX);
 881		} else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) {
 882			src = (const unsigned long *)ice_ptypes_nat_t_esp;
 883			bitmap_and(params->ptypes, params->ptypes, src,
 884				   ICE_FLOW_PTYPE_MAX);
 885		}
 886
 887		if (hdrs & ICE_FLOW_SEG_HDR_PFCP) {
 888			if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE)
 889				src = (const unsigned long *)ice_ptypes_pfcp_node;
 890			else
 891				src = (const unsigned long *)ice_ptypes_pfcp_session;
 892
 893			bitmap_and(params->ptypes, params->ptypes, src,
 894				   ICE_FLOW_PTYPE_MAX);
 895		} else {
 896			src = (const unsigned long *)ice_ptypes_pfcp_node;
 897			bitmap_andnot(params->ptypes, params->ptypes, src,
 898				      ICE_FLOW_PTYPE_MAX);
 899
 900			src = (const unsigned long *)ice_ptypes_pfcp_session;
 901			bitmap_andnot(params->ptypes, params->ptypes, src,
 902				      ICE_FLOW_PTYPE_MAX);
 903		}
 904	}
 905
 906	return 0;
 907}
 908
 909/**
 910 * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
 911 * @hw: pointer to the HW struct
 912 * @params: information about the flow to be processed
 913 * @seg: packet segment index of the field to be extracted
 914 * @fld: ID of field to be extracted
 915 * @match: bit field of all fields
 916 *
 917 * This function determines the protocol ID, offset, and size of the given
 918 * field. It then allocates one or more extraction sequence entries for the
 919 * given field, and fill the entries with protocol ID and offset information.
 920 */
 921static int
 922ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
 923		    u8 seg, enum ice_flow_field fld, u64 match)
 924{
 925	enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
 926	enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
 927	u8 fv_words = hw->blk[params->blk].es.fvw;
 928	struct ice_flow_fld_info *flds;
 929	u16 cnt, ese_bits, i;
 930	u16 sib_mask = 0;
 931	u16 mask;
 932	u16 off;
 933
 934	flds = params->prof->segs[seg].fields;
 935
 936	switch (fld) {
 937	case ICE_FLOW_FIELD_IDX_ETH_DA:
 938	case ICE_FLOW_FIELD_IDX_ETH_SA:
 939	case ICE_FLOW_FIELD_IDX_S_VLAN:
 940	case ICE_FLOW_FIELD_IDX_C_VLAN:
 941		prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
 942		break;
 943	case ICE_FLOW_FIELD_IDX_ETH_TYPE:
 944		prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
 945		break;
 946	case ICE_FLOW_FIELD_IDX_IPV4_DSCP:
 947		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 948		break;
 949	case ICE_FLOW_FIELD_IDX_IPV6_DSCP:
 950		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 951		break;
 952	case ICE_FLOW_FIELD_IDX_IPV4_TTL:
 953	case ICE_FLOW_FIELD_IDX_IPV4_PROT:
 954		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 955
 956		/* TTL and PROT share the same extraction seq. entry.
 957		 * Each is considered a sibling to the other in terms of sharing
 958		 * the same extraction sequence entry.
 959		 */
 960		if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL)
 961			sib = ICE_FLOW_FIELD_IDX_IPV4_PROT;
 962		else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT)
 963			sib = ICE_FLOW_FIELD_IDX_IPV4_TTL;
 964
 965		/* If the sibling field is also included, that field's
 966		 * mask needs to be included.
 967		 */
 968		if (match & BIT(sib))
 969			sib_mask = ice_flds_info[sib].mask;
 970		break;
 971	case ICE_FLOW_FIELD_IDX_IPV6_TTL:
 972	case ICE_FLOW_FIELD_IDX_IPV6_PROT:
 973		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 974
 975		/* TTL and PROT share the same extraction seq. entry.
 976		 * Each is considered a sibling to the other in terms of sharing
 977		 * the same extraction sequence entry.
 978		 */
 979		if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL)
 980			sib = ICE_FLOW_FIELD_IDX_IPV6_PROT;
 981		else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT)
 982			sib = ICE_FLOW_FIELD_IDX_IPV6_TTL;
 983
 984		/* If the sibling field is also included, that field's
 985		 * mask needs to be included.
 986		 */
 987		if (match & BIT(sib))
 988			sib_mask = ice_flds_info[sib].mask;
 989		break;
 990	case ICE_FLOW_FIELD_IDX_IPV4_SA:
 991	case ICE_FLOW_FIELD_IDX_IPV4_DA:
 992		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 993		break;
 994	case ICE_FLOW_FIELD_IDX_IPV6_SA:
 995	case ICE_FLOW_FIELD_IDX_IPV6_DA:
 996		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 997		break;
 998	case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
 999	case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
1000	case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
1001		prot_id = ICE_PROT_TCP_IL;
1002		break;
1003	case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
1004	case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
1005		prot_id = ICE_PROT_UDP_IL_OR_S;
1006		break;
1007	case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
1008	case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
1009		prot_id = ICE_PROT_SCTP_IL;
1010		break;
1011	case ICE_FLOW_FIELD_IDX_GTPC_TEID:
1012	case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID:
1013	case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID:
1014	case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID:
1015	case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID:
1016	case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI:
1017		/* GTP is accessed through UDP OF protocol */
1018		prot_id = ICE_PROT_UDP_OF;
1019		break;
1020	case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID:
1021		prot_id = ICE_PROT_PPPOE;
1022		break;
1023	case ICE_FLOW_FIELD_IDX_PFCP_SEID:
1024		prot_id = ICE_PROT_UDP_IL_OR_S;
1025		break;
1026	case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID:
1027		prot_id = ICE_PROT_L2TPV3;
1028		break;
1029	case ICE_FLOW_FIELD_IDX_ESP_SPI:
1030		prot_id = ICE_PROT_ESP_F;
1031		break;
1032	case ICE_FLOW_FIELD_IDX_AH_SPI:
1033		prot_id = ICE_PROT_ESP_2;
1034		break;
1035	case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI:
1036		prot_id = ICE_PROT_UDP_IL_OR_S;
1037		break;
1038	case ICE_FLOW_FIELD_IDX_ARP_SIP:
1039	case ICE_FLOW_FIELD_IDX_ARP_DIP:
1040	case ICE_FLOW_FIELD_IDX_ARP_SHA:
1041	case ICE_FLOW_FIELD_IDX_ARP_DHA:
1042	case ICE_FLOW_FIELD_IDX_ARP_OP:
1043		prot_id = ICE_PROT_ARP_OF;
1044		break;
1045	case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
1046	case ICE_FLOW_FIELD_IDX_ICMP_CODE:
1047		/* ICMP type and code share the same extraction seq. entry */
1048		prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ?
1049				ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
1050		sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
1051			ICE_FLOW_FIELD_IDX_ICMP_CODE :
1052			ICE_FLOW_FIELD_IDX_ICMP_TYPE;
1053		break;
1054	case ICE_FLOW_FIELD_IDX_GRE_KEYID:
1055		prot_id = ICE_PROT_GRE_OF;
1056		break;
1057	default:
1058		return -EOPNOTSUPP;
1059	}
1060
1061	/* Each extraction sequence entry is a word in size, and extracts a
1062	 * word-aligned offset from a protocol header.
1063	 */
1064	ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
1065
1066	flds[fld].xtrct.prot_id = prot_id;
1067	flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
1068		ICE_FLOW_FV_EXTRACT_SZ;
1069	flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
1070	flds[fld].xtrct.idx = params->es_cnt;
1071	flds[fld].xtrct.mask = ice_flds_info[fld].mask;
1072
1073	/* Adjust the next field-entry index after accommodating the number of
1074	 * entries this field consumes
1075	 */
1076	cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
1077			   ese_bits);
1078
1079	/* Fill in the extraction sequence entries needed for this field */
1080	off = flds[fld].xtrct.off;
1081	mask = flds[fld].xtrct.mask;
1082	for (i = 0; i < cnt; i++) {
1083		/* Only consume an extraction sequence entry if there is no
1084		 * sibling field associated with this field or the sibling entry
1085		 * already extracts the word shared with this field.
1086		 */
1087		if (sib == ICE_FLOW_FIELD_IDX_MAX ||
1088		    flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
1089		    flds[sib].xtrct.off != off) {
1090			u8 idx;
1091
1092			/* Make sure the number of extraction sequence required
1093			 * does not exceed the block's capability
1094			 */
1095			if (params->es_cnt >= fv_words)
1096				return -ENOSPC;
1097
1098			/* some blocks require a reversed field vector layout */
1099			if (hw->blk[params->blk].es.reverse)
1100				idx = fv_words - params->es_cnt - 1;
1101			else
1102				idx = params->es_cnt;
1103
1104			params->es[idx].prot_id = prot_id;
1105			params->es[idx].off = off;
1106			params->mask[idx] = mask | sib_mask;
1107			params->es_cnt++;
1108		}
1109
1110		off += ICE_FLOW_FV_EXTRACT_SZ;
1111	}
1112
1113	return 0;
1114}
1115
1116/**
1117 * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
1118 * @hw: pointer to the HW struct
1119 * @params: information about the flow to be processed
1120 * @seg: index of packet segment whose raw fields are to be extracted
1121 */
1122static int
1123ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
1124		     u8 seg)
1125{
1126	u16 fv_words;
1127	u16 hdrs_sz;
1128	u8 i;
1129
1130	if (!params->prof->segs[seg].raws_cnt)
1131		return 0;
1132
1133	if (params->prof->segs[seg].raws_cnt >
1134	    ARRAY_SIZE(params->prof->segs[seg].raws))
1135		return -ENOSPC;
1136
1137	/* Offsets within the segment headers are not supported */
1138	hdrs_sz = ice_flow_calc_seg_sz(params, seg);
1139	if (!hdrs_sz)
1140		return -EINVAL;
1141
1142	fv_words = hw->blk[params->blk].es.fvw;
1143
1144	for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
1145		struct ice_flow_seg_fld_raw *raw;
1146		u16 off, cnt, j;
1147
1148		raw = &params->prof->segs[seg].raws[i];
1149
1150		/* Storing extraction information */
1151		raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
1152		raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
1153			ICE_FLOW_FV_EXTRACT_SZ;
1154		raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
1155			BITS_PER_BYTE;
1156		raw->info.xtrct.idx = params->es_cnt;
1157
1158		/* Determine the number of field vector entries this raw field
1159		 * consumes.
1160		 */
1161		cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
1162				   (raw->info.src.last * BITS_PER_BYTE),
1163				   (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
1164		off = raw->info.xtrct.off;
1165		for (j = 0; j < cnt; j++) {
1166			u16 idx;
1167
1168			/* Make sure the number of extraction sequence required
1169			 * does not exceed the block's capability
1170			 */
1171			if (params->es_cnt >= hw->blk[params->blk].es.count ||
1172			    params->es_cnt >= ICE_MAX_FV_WORDS)
1173				return -ENOSPC;
1174
1175			/* some blocks require a reversed field vector layout */
1176			if (hw->blk[params->blk].es.reverse)
1177				idx = fv_words - params->es_cnt - 1;
1178			else
1179				idx = params->es_cnt;
1180
1181			params->es[idx].prot_id = raw->info.xtrct.prot_id;
1182			params->es[idx].off = off;
1183			params->es_cnt++;
1184			off += ICE_FLOW_FV_EXTRACT_SZ;
1185		}
1186	}
1187
1188	return 0;
1189}
1190
1191/**
1192 * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
1193 * @hw: pointer to the HW struct
1194 * @params: information about the flow to be processed
1195 *
1196 * This function iterates through all matched fields in the given segments, and
1197 * creates an extraction sequence for the fields.
1198 */
1199static int
1200ice_flow_create_xtrct_seq(struct ice_hw *hw,
1201			  struct ice_flow_prof_params *params)
1202{
1203	struct ice_flow_prof *prof = params->prof;
1204	int status = 0;
1205	u8 i;
1206
1207	for (i = 0; i < prof->segs_cnt; i++) {
1208		u64 match = params->prof->segs[i].match;
1209		enum ice_flow_field j;
1210
1211		for_each_set_bit(j, (unsigned long *)&match,
1212				 ICE_FLOW_FIELD_IDX_MAX) {
1213			status = ice_flow_xtract_fld(hw, params, i, j, match);
1214			if (status)
1215				return status;
1216			clear_bit(j, (unsigned long *)&match);
1217		}
1218
1219		/* Process raw matching bytes */
1220		status = ice_flow_xtract_raws(hw, params, i);
1221		if (status)
1222			return status;
1223	}
1224
1225	return status;
1226}
1227
1228/**
1229 * ice_flow_proc_segs - process all packet segments associated with a profile
1230 * @hw: pointer to the HW struct
1231 * @params: information about the flow to be processed
1232 */
1233static int
1234ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
1235{
1236	int status;
1237
1238	status = ice_flow_proc_seg_hdrs(params);
1239	if (status)
1240		return status;
1241
1242	status = ice_flow_create_xtrct_seq(hw, params);
1243	if (status)
1244		return status;
1245
1246	switch (params->blk) {
1247	case ICE_BLK_FD:
1248	case ICE_BLK_RSS:
1249		status = 0;
1250		break;
1251	default:
1252		return -EOPNOTSUPP;
1253	}
1254
1255	return status;
1256}
1257
1258#define ICE_FLOW_FIND_PROF_CHK_FLDS	0x00000001
1259#define ICE_FLOW_FIND_PROF_CHK_VSI	0x00000002
1260#define ICE_FLOW_FIND_PROF_NOT_CHK_DIR	0x00000004
1261#define ICE_FLOW_FIND_PROF_CHK_SYMM	0x00000008
1262
1263/**
1264 * ice_flow_find_prof_conds - Find a profile matching headers and conditions
1265 * @hw: pointer to the HW struct
1266 * @blk: classification stage
1267 * @dir: flow direction
1268 * @segs: array of one or more packet segments that describe the flow
1269 * @segs_cnt: number of packet segments provided
1270 * @symm: symmetric setting for RSS profiles
1271 * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
1272 * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
1273 */
1274static struct ice_flow_prof *
1275ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
1276			 enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
1277			 u8 segs_cnt, bool symm, u16 vsi_handle, u32 conds)
1278{
1279	struct ice_flow_prof *p, *prof = NULL;
1280
1281	mutex_lock(&hw->fl_profs_locks[blk]);
1282	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1283		if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
1284		    segs_cnt && segs_cnt == p->segs_cnt) {
1285			u8 i;
1286
1287			/* Check for profile-VSI association if specified */
1288			if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
1289			    ice_is_vsi_valid(hw, vsi_handle) &&
1290			    !test_bit(vsi_handle, p->vsis))
1291				continue;
1292
1293			/* Check for symmetric settings */
1294			if ((conds & ICE_FLOW_FIND_PROF_CHK_SYMM) &&
1295			    p->symm != symm)
1296				continue;
1297
1298			/* Protocol headers must be checked. Matched fields are
1299			 * checked if specified.
1300			 */
1301			for (i = 0; i < segs_cnt; i++)
1302				if (segs[i].hdrs != p->segs[i].hdrs ||
1303				    ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
1304				     segs[i].match != p->segs[i].match))
1305					break;
1306
1307			/* A match is found if all segments are matched */
1308			if (i == segs_cnt) {
1309				prof = p;
1310				break;
1311			}
1312		}
1313	mutex_unlock(&hw->fl_profs_locks[blk]);
1314
1315	return prof;
1316}
1317
1318/**
1319 * ice_flow_find_prof_id - Look up a profile with given profile ID
1320 * @hw: pointer to the HW struct
1321 * @blk: classification stage
1322 * @prof_id: unique ID to identify this flow profile
1323 */
1324static struct ice_flow_prof *
1325ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1326{
1327	struct ice_flow_prof *p;
1328
1329	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1330		if (p->id == prof_id)
1331			return p;
1332
1333	return NULL;
1334}
1335
1336/**
1337 * ice_flow_rem_entry_sync - Remove a flow entry
1338 * @hw: pointer to the HW struct
1339 * @blk: classification stage
1340 * @entry: flow entry to be removed
1341 */
1342static int
1343ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
1344			struct ice_flow_entry *entry)
1345{
1346	if (!entry)
1347		return -EINVAL;
1348
1349	list_del(&entry->l_entry);
1350
1351	devm_kfree(ice_hw_to_dev(hw), entry);
1352
1353	return 0;
1354}
1355
1356/**
1357 * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
1358 * @hw: pointer to the HW struct
1359 * @blk: classification stage
1360 * @dir: flow direction
1361 * @segs: array of one or more packet segments that describe the flow
1362 * @segs_cnt: number of packet segments provided
1363 * @symm: symmetric setting for RSS profiles
1364 * @prof: stores the returned flow profile added
1365 *
1366 * Assumption: the caller has acquired the lock to the profile list
1367 */
1368static int
1369ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
1370		       enum ice_flow_dir dir,
1371		       struct ice_flow_seg_info *segs, u8 segs_cnt,
1372		       bool symm, struct ice_flow_prof **prof)
1373{
1374	struct ice_flow_prof_params *params;
1375	struct ice_prof_id *ids;
1376	int status;
1377	u64 prof_id;
1378	u8 i;
1379
1380	if (!prof)
1381		return -EINVAL;
1382
1383	ids = &hw->blk[blk].prof_id;
1384	prof_id = find_first_zero_bit(ids->id, ids->count);
1385	if (prof_id >= ids->count)
1386		return -ENOSPC;
1387
1388	params = kzalloc(sizeof(*params), GFP_KERNEL);
1389	if (!params)
1390		return -ENOMEM;
1391
1392	params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof),
1393				    GFP_KERNEL);
1394	if (!params->prof) {
1395		status = -ENOMEM;
1396		goto free_params;
1397	}
1398
1399	/* initialize extraction sequence to all invalid (0xff) */
1400	for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
1401		params->es[i].prot_id = ICE_PROT_INVALID;
1402		params->es[i].off = ICE_FV_OFFSET_INVAL;
1403	}
1404
1405	params->blk = blk;
1406	params->prof->id = prof_id;
1407	params->prof->dir = dir;
1408	params->prof->segs_cnt = segs_cnt;
1409	params->prof->symm = symm;
1410
1411	/* Make a copy of the segments that need to be persistent in the flow
1412	 * profile instance
1413	 */
1414	for (i = 0; i < segs_cnt; i++)
1415		memcpy(&params->prof->segs[i], &segs[i], sizeof(*segs));
1416
1417	status = ice_flow_proc_segs(hw, params);
1418	if (status) {
1419		ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n");
1420		goto out;
1421	}
1422
1423	/* Add a HW profile for this flow profile */
1424	status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes,
1425			      params->attr, params->attr_cnt, params->es,
1426			      params->mask, symm, true);
1427	if (status) {
1428		ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
1429		goto out;
1430	}
1431
1432	INIT_LIST_HEAD(&params->prof->entries);
1433	mutex_init(&params->prof->entries_lock);
1434	set_bit(prof_id, ids->id);
1435	*prof = params->prof;
1436
1437out:
1438	if (status)
1439		devm_kfree(ice_hw_to_dev(hw), params->prof);
1440free_params:
1441	kfree(params);
1442
1443	return status;
1444}
1445
1446/**
1447 * ice_flow_rem_prof_sync - remove a flow profile
1448 * @hw: pointer to the hardware structure
1449 * @blk: classification stage
1450 * @prof: pointer to flow profile to remove
1451 *
1452 * Assumption: the caller has acquired the lock to the profile list
1453 */
1454static int
1455ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
1456		       struct ice_flow_prof *prof)
1457{
1458	int status;
1459
1460	/* Remove all remaining flow entries before removing the flow profile */
1461	if (!list_empty(&prof->entries)) {
1462		struct ice_flow_entry *e, *t;
1463
1464		mutex_lock(&prof->entries_lock);
1465
1466		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1467			status = ice_flow_rem_entry_sync(hw, blk, e);
1468			if (status)
1469				break;
1470		}
1471
1472		mutex_unlock(&prof->entries_lock);
1473	}
1474
1475	/* Remove all hardware profiles associated with this flow profile */
1476	status = ice_rem_prof(hw, blk, prof->id);
1477	if (!status) {
1478		clear_bit(prof->id, hw->blk[blk].prof_id.id);
1479		list_del(&prof->l_entry);
1480		mutex_destroy(&prof->entries_lock);
1481		devm_kfree(ice_hw_to_dev(hw), prof);
1482	}
1483
1484	return status;
1485}
1486
1487/**
1488 * ice_flow_assoc_prof - associate a VSI with a flow profile
1489 * @hw: pointer to the hardware structure
1490 * @blk: classification stage
1491 * @prof: pointer to flow profile
1492 * @vsi_handle: software VSI handle
1493 *
1494 * Assumption: the caller has acquired the lock to the profile list
1495 * and the software VSI handle has been validated
1496 */
1497static int
1498ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
1499		    struct ice_flow_prof *prof, u16 vsi_handle)
1500{
1501	int status = 0;
1502
1503	if (!test_bit(vsi_handle, prof->vsis)) {
1504		status = ice_add_prof_id_flow(hw, blk,
1505					      ice_get_hw_vsi_num(hw,
1506								 vsi_handle),
1507					      prof->id);
1508		if (!status)
1509			set_bit(vsi_handle, prof->vsis);
1510		else
1511			ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n",
1512				  status);
1513	}
1514
1515	return status;
1516}
1517
1518/**
1519 * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
1520 * @hw: pointer to the hardware structure
1521 * @blk: classification stage
1522 * @prof: pointer to flow profile
1523 * @vsi_handle: software VSI handle
1524 *
1525 * Assumption: the caller has acquired the lock to the profile list
1526 * and the software VSI handle has been validated
1527 */
1528static int
1529ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
1530		       struct ice_flow_prof *prof, u16 vsi_handle)
1531{
1532	int status = 0;
1533
1534	if (test_bit(vsi_handle, prof->vsis)) {
1535		status = ice_rem_prof_id_flow(hw, blk,
1536					      ice_get_hw_vsi_num(hw,
1537								 vsi_handle),
1538					      prof->id);
1539		if (!status)
1540			clear_bit(vsi_handle, prof->vsis);
1541		else
1542			ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n",
1543				  status);
1544	}
1545
1546	return status;
1547}
1548
1549#define FLAG_GTP_EH_PDU_LINK	BIT_ULL(13)
1550#define FLAG_GTP_EH_PDU		BIT_ULL(14)
1551
1552#define HI_BYTE_IN_WORD		GENMASK(15, 8)
1553#define LO_BYTE_IN_WORD		GENMASK(7, 0)
1554
1555#define FLAG_GTPU_MSK	\
1556	(FLAG_GTP_EH_PDU | FLAG_GTP_EH_PDU_LINK)
1557#define FLAG_GTPU_UP	\
1558	(FLAG_GTP_EH_PDU | FLAG_GTP_EH_PDU_LINK)
1559#define FLAG_GTPU_DW	FLAG_GTP_EH_PDU
1560
1561/**
1562 * ice_flow_set_parser_prof - Set flow profile based on the parsed profile info
1563 * @hw: pointer to the HW struct
1564 * @dest_vsi: dest VSI
1565 * @fdir_vsi: fdir programming VSI
1566 * @prof: stores parsed profile info from raw flow
1567 * @blk: classification blk
1568 *
1569 * Return: 0 on success or negative errno on failure.
1570 */
1571int
1572ice_flow_set_parser_prof(struct ice_hw *hw, u16 dest_vsi, u16 fdir_vsi,
1573			 struct ice_parser_profile *prof, enum ice_block blk)
1574{
1575	u64 id = find_first_bit(prof->ptypes, ICE_FLOW_PTYPE_MAX);
1576	struct ice_flow_prof_params *params __free(kfree);
1577	u8 fv_words = hw->blk[blk].es.fvw;
1578	int status;
1579	int i, idx;
1580
1581	params = kzalloc(sizeof(*params), GFP_KERNEL);
1582	if (!params)
1583		return -ENOMEM;
1584
1585	for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
1586		params->es[i].prot_id = ICE_PROT_INVALID;
1587		params->es[i].off = ICE_FV_OFFSET_INVAL;
1588	}
1589
1590	for (i = 0; i < prof->fv_num; i++) {
1591		if (hw->blk[blk].es.reverse)
1592			idx = fv_words - i - 1;
1593		else
1594			idx = i;
1595		params->es[idx].prot_id = prof->fv[i].proto_id;
1596		params->es[idx].off = prof->fv[i].offset;
1597		params->mask[idx] = (((prof->fv[i].msk) << BITS_PER_BYTE) &
1598				      HI_BYTE_IN_WORD) |
1599				    (((prof->fv[i].msk) >> BITS_PER_BYTE) &
1600				      LO_BYTE_IN_WORD);
1601	}
1602
1603	switch (prof->flags) {
1604	case FLAG_GTPU_DW:
1605		params->attr = ice_attr_gtpu_down;
1606		params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
1607		break;
1608	case FLAG_GTPU_UP:
1609		params->attr = ice_attr_gtpu_up;
1610		params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
1611		break;
1612	default:
1613		if (prof->flags_msk & FLAG_GTPU_MSK) {
1614			params->attr = ice_attr_gtpu_session;
1615			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_session);
1616		}
1617		break;
1618	}
1619
1620	status = ice_add_prof(hw, blk, id, (u8 *)prof->ptypes,
1621			      params->attr, params->attr_cnt,
1622			      params->es, params->mask, false, false);
1623	if (status)
1624		return status;
1625
1626	status = ice_flow_assoc_fdir_prof(hw, blk, dest_vsi, fdir_vsi, id);
1627	if (status)
1628		ice_rem_prof(hw, blk, id);
1629
1630	return status;
1631}
1632
1633/**
1634 * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
1635 * @hw: pointer to the HW struct
1636 * @blk: classification stage
1637 * @dir: flow direction
1638 * @segs: array of one or more packet segments that describe the flow
1639 * @segs_cnt: number of packet segments provided
1640 * @symm: symmetric setting for RSS profiles
1641 * @prof: stores the returned flow profile added
1642 */
1643int
1644ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
1645		  struct ice_flow_seg_info *segs, u8 segs_cnt,
1646		  bool symm, struct ice_flow_prof **prof)
1647{
1648	int status;
1649
1650	if (segs_cnt > ICE_FLOW_SEG_MAX)
1651		return -ENOSPC;
1652
1653	if (!segs_cnt)
1654		return -EINVAL;
1655
1656	if (!segs)
1657		return -EINVAL;
1658
1659	status = ice_flow_val_hdrs(segs, segs_cnt);
1660	if (status)
1661		return status;
1662
1663	mutex_lock(&hw->fl_profs_locks[blk]);
1664
1665	status = ice_flow_add_prof_sync(hw, blk, dir, segs, segs_cnt,
1666					symm, prof);
1667	if (!status)
1668		list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
1669
1670	mutex_unlock(&hw->fl_profs_locks[blk]);
1671
1672	return status;
1673}
1674
1675/**
1676 * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
1677 * @hw: pointer to the HW struct
1678 * @blk: the block for which the flow profile is to be removed
1679 * @prof_id: unique ID of the flow profile to be removed
1680 */
1681int ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1682{
1683	struct ice_flow_prof *prof;
1684	int status;
1685
1686	mutex_lock(&hw->fl_profs_locks[blk]);
1687
1688	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1689	if (!prof) {
1690		status = -ENOENT;
1691		goto out;
1692	}
1693
1694	/* prof becomes invalid after the call */
1695	status = ice_flow_rem_prof_sync(hw, blk, prof);
1696
1697out:
1698	mutex_unlock(&hw->fl_profs_locks[blk]);
1699
1700	return status;
1701}
1702
1703/**
1704 * ice_flow_add_entry - Add a flow entry
1705 * @hw: pointer to the HW struct
1706 * @blk: classification stage
1707 * @prof_id: ID of the profile to add a new flow entry to
1708 * @entry_id: unique ID to identify this flow entry
1709 * @vsi_handle: software VSI handle for the flow entry
1710 * @prio: priority of the flow entry
1711 * @data: pointer to a data buffer containing flow entry's match values/masks
1712 * @entry_h: pointer to buffer that receives the new flow entry's handle
1713 */
1714int
1715ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
1716		   u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
1717		   void *data, u64 *entry_h)
1718{
1719	struct ice_flow_entry *e = NULL;
1720	struct ice_flow_prof *prof;
1721	int status;
1722
1723	/* No flow entry data is expected for RSS */
1724	if (!entry_h || (!data && blk != ICE_BLK_RSS))
1725		return -EINVAL;
1726
1727	if (!ice_is_vsi_valid(hw, vsi_handle))
1728		return -EINVAL;
1729
1730	mutex_lock(&hw->fl_profs_locks[blk]);
1731
1732	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1733	if (!prof) {
1734		status = -ENOENT;
1735	} else {
1736		/* Allocate memory for the entry being added and associate
1737		 * the VSI to the found flow profile
1738		 */
1739		e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
1740		if (!e)
1741			status = -ENOMEM;
1742		else
1743			status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1744	}
1745
1746	mutex_unlock(&hw->fl_profs_locks[blk]);
1747	if (status)
1748		goto out;
1749
1750	e->id = entry_id;
1751	e->vsi_handle = vsi_handle;
1752	e->prof = prof;
1753	e->priority = prio;
1754
1755	switch (blk) {
1756	case ICE_BLK_FD:
1757	case ICE_BLK_RSS:
1758		break;
1759	default:
1760		status = -EOPNOTSUPP;
1761		goto out;
1762	}
1763
1764	mutex_lock(&prof->entries_lock);
1765	list_add(&e->l_entry, &prof->entries);
1766	mutex_unlock(&prof->entries_lock);
1767
1768	*entry_h = ICE_FLOW_ENTRY_HNDL(e);
1769
1770out:
1771	if (status)
1772		devm_kfree(ice_hw_to_dev(hw), e);
1773
1774	return status;
1775}
1776
1777/**
1778 * ice_flow_rem_entry - Remove a flow entry
1779 * @hw: pointer to the HW struct
1780 * @blk: classification stage
1781 * @entry_h: handle to the flow entry to be removed
1782 */
1783int ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_h)
1784{
1785	struct ice_flow_entry *entry;
1786	struct ice_flow_prof *prof;
1787	int status = 0;
1788
1789	if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
1790		return -EINVAL;
1791
1792	entry = ICE_FLOW_ENTRY_PTR(entry_h);
1793
1794	/* Retain the pointer to the flow profile as the entry will be freed */
1795	prof = entry->prof;
1796
1797	if (prof) {
1798		mutex_lock(&prof->entries_lock);
1799		status = ice_flow_rem_entry_sync(hw, blk, entry);
1800		mutex_unlock(&prof->entries_lock);
1801	}
1802
1803	return status;
1804}
1805
1806/**
1807 * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
1808 * @seg: packet segment the field being set belongs to
1809 * @fld: field to be set
1810 * @field_type: type of the field
1811 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1812 *           entry's input buffer
1813 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1814 *            input buffer
1815 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1816 *            entry's input buffer
1817 *
1818 * This helper function stores information of a field being matched, including
1819 * the type of the field and the locations of the value to match, the mask, and
1820 * the upper-bound value in the start of the input buffer for a flow entry.
1821 * This function should only be used for fixed-size data structures.
1822 *
1823 * This function also opportunistically determines the protocol headers to be
1824 * present based on the fields being set. Some fields cannot be used alone to
1825 * determine the protocol headers present. Sometimes, fields for particular
1826 * protocol headers are not matched. In those cases, the protocol headers
1827 * must be explicitly set.
1828 */
1829static void
1830ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1831		     enum ice_flow_fld_match_type field_type, u16 val_loc,
1832		     u16 mask_loc, u16 last_loc)
1833{
1834	u64 bit = BIT_ULL(fld);
1835
1836	seg->match |= bit;
1837	if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
1838		seg->range |= bit;
1839
1840	seg->fields[fld].type = field_type;
1841	seg->fields[fld].src.val = val_loc;
1842	seg->fields[fld].src.mask = mask_loc;
1843	seg->fields[fld].src.last = last_loc;
1844
1845	ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1846}
1847
1848/**
1849 * ice_flow_set_fld - specifies locations of field from entry's input buffer
1850 * @seg: packet segment the field being set belongs to
1851 * @fld: field to be set
1852 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1853 *           entry's input buffer
1854 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1855 *            input buffer
1856 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1857 *            entry's input buffer
1858 * @range: indicate if field being matched is to be in a range
1859 *
1860 * This function specifies the locations, in the form of byte offsets from the
1861 * start of the input buffer for a flow entry, from where the value to match,
1862 * the mask value, and upper value can be extracted. These locations are then
1863 * stored in the flow profile. When adding a flow entry associated with the
1864 * flow profile, these locations will be used to quickly extract the values and
1865 * create the content of a match entry. This function should only be used for
1866 * fixed-size data structures.
1867 */
1868void
1869ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1870		 u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1871{
1872	enum ice_flow_fld_match_type t = range ?
1873		ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1874
1875	ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1876}
1877
1878/**
1879 * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1880 * @seg: packet segment the field being set belongs to
1881 * @off: offset of the raw field from the beginning of the segment in bytes
1882 * @len: length of the raw pattern to be matched
1883 * @val_loc: location of the value to match from entry's input buffer
1884 * @mask_loc: location of mask value from entry's input buffer
1885 *
1886 * This function specifies the offset of the raw field to be match from the
1887 * beginning of the specified packet segment, and the locations, in the form of
1888 * byte offsets from the start of the input buffer for a flow entry, from where
1889 * the value to match and the mask value to be extracted. These locations are
1890 * then stored in the flow profile. When adding flow entries to the associated
1891 * flow profile, these locations can be used to quickly extract the values to
1892 * create the content of a match entry. This function should only be used for
1893 * fixed-size data structures.
1894 */
1895void
1896ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1897		     u16 val_loc, u16 mask_loc)
1898{
1899	if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1900		seg->raws[seg->raws_cnt].off = off;
1901		seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1902		seg->raws[seg->raws_cnt].info.src.val = val_loc;
1903		seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1904		/* The "last" field is used to store the length of the field */
1905		seg->raws[seg->raws_cnt].info.src.last = len;
1906	}
1907
1908	/* Overflows of "raws" will be handled as an error condition later in
1909	 * the flow when this information is processed.
1910	 */
1911	seg->raws_cnt++;
1912}
1913
1914/**
1915 * ice_flow_rem_vsi_prof - remove VSI from flow profile
1916 * @hw: pointer to the hardware structure
1917 * @vsi_handle: software VSI handle
1918 * @prof_id: unique ID to identify this flow profile
1919 *
1920 * This function removes the flow entries associated to the input
1921 * VSI handle and disassociate the VSI from the flow profile.
1922 */
1923int ice_flow_rem_vsi_prof(struct ice_hw *hw, u16 vsi_handle, u64 prof_id)
1924{
1925	struct ice_flow_prof *prof;
1926	int status = 0;
1927
1928	if (!ice_is_vsi_valid(hw, vsi_handle))
1929		return -EINVAL;
1930
1931	/* find flow profile pointer with input package block and profile ID */
1932	prof = ice_flow_find_prof_id(hw, ICE_BLK_FD, prof_id);
1933	if (!prof) {
1934		ice_debug(hw, ICE_DBG_PKG, "Cannot find flow profile id=%llu\n",
1935			  prof_id);
1936		return -ENOENT;
1937	}
1938
1939	/* Remove all remaining flow entries before removing the flow profile */
1940	if (!list_empty(&prof->entries)) {
1941		struct ice_flow_entry *e, *t;
1942
1943		mutex_lock(&prof->entries_lock);
1944		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1945			if (e->vsi_handle != vsi_handle)
1946				continue;
1947
1948			status = ice_flow_rem_entry_sync(hw, ICE_BLK_FD, e);
1949			if (status)
1950				break;
1951		}
1952		mutex_unlock(&prof->entries_lock);
1953	}
1954	if (status)
1955		return status;
1956
1957	/* disassociate the flow profile from sw VSI handle */
1958	status = ice_flow_disassoc_prof(hw, ICE_BLK_FD, prof, vsi_handle);
1959	if (status)
1960		ice_debug(hw, ICE_DBG_PKG, "ice_flow_disassoc_prof() failed with status=%d\n",
1961			  status);
1962	return status;
1963}
1964
1965#define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \
1966	(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
1967
1968#define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1969	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1970
1971#define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1972	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
1973
1974#define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1975	(ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \
1976	 ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
1977	 ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1978
1979/**
1980 * ice_flow_set_rss_seg_info - setup packet segments for RSS
1981 * @segs: pointer to the flow field segment(s)
1982 * @seg_cnt: segment count
1983 * @cfg: configure parameters
1984 *
1985 * Helper function to extract fields from hash bitmap and use flow
1986 * header value to set flow field segment for further use in flow
1987 * profile entry or removal.
1988 */
1989static int
1990ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u8 seg_cnt,
1991			  const struct ice_rss_hash_cfg *cfg)
1992{
1993	struct ice_flow_seg_info *seg;
1994	u64 val;
1995	u16 i;
1996
1997	/* set inner most segment */
1998	seg = &segs[seg_cnt - 1];
1999
2000	for_each_set_bit(i, (const unsigned long *)&cfg->hash_flds,
2001			 (u16)ICE_FLOW_FIELD_IDX_MAX)
2002		ice_flow_set_fld(seg, (enum ice_flow_field)i,
2003				 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
2004				 ICE_FLOW_FLD_OFF_INVAL, false);
2005
2006	ICE_FLOW_SET_HDRS(seg, cfg->addl_hdrs);
2007
2008	/* set outer most header */
2009	if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV4)
2010		segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV4 |
2011						    ICE_FLOW_SEG_HDR_IPV_OTHER;
2012	else if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV6)
2013		segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV6 |
2014						    ICE_FLOW_SEG_HDR_IPV_OTHER;
2015
2016	if (seg->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS &
2017	    ~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER)
2018		return -EINVAL;
2019
2020	val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
2021	if (val && !is_power_of_2(val))
2022		return -EIO;
2023
2024	val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
2025	if (val && !is_power_of_2(val))
2026		return -EIO;
2027
2028	return 0;
2029}
2030
2031/**
2032 * ice_rem_vsi_rss_list - remove VSI from RSS list
2033 * @hw: pointer to the hardware structure
2034 * @vsi_handle: software VSI handle
2035 *
2036 * Remove the VSI from all RSS configurations in the list.
2037 */
2038void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
2039{
2040	struct ice_rss_cfg *r, *tmp;
2041
2042	if (list_empty(&hw->rss_list_head))
2043		return;
2044
2045	mutex_lock(&hw->rss_locks);
2046	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
2047		if (test_and_clear_bit(vsi_handle, r->vsis))
2048			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
2049				list_del(&r->l_entry);
2050				devm_kfree(ice_hw_to_dev(hw), r);
2051			}
2052	mutex_unlock(&hw->rss_locks);
2053}
2054
2055/**
2056 * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
2057 * @hw: pointer to the hardware structure
2058 * @vsi_handle: software VSI handle
2059 *
2060 * This function will iterate through all flow profiles and disassociate
2061 * the VSI from that profile. If the flow profile has no VSIs it will
2062 * be removed.
2063 */
2064int ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
2065{
2066	const enum ice_block blk = ICE_BLK_RSS;
2067	struct ice_flow_prof *p, *t;
2068	int status = 0;
2069
2070	if (!ice_is_vsi_valid(hw, vsi_handle))
2071		return -EINVAL;
2072
2073	if (list_empty(&hw->fl_profs[blk]))
2074		return 0;
2075
2076	mutex_lock(&hw->rss_locks);
2077	list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
2078		if (test_bit(vsi_handle, p->vsis)) {
2079			status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
2080			if (status)
2081				break;
2082
2083			if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
2084				status = ice_flow_rem_prof(hw, blk, p->id);
2085				if (status)
2086					break;
2087			}
2088		}
2089	mutex_unlock(&hw->rss_locks);
2090
2091	return status;
2092}
2093
2094/**
2095 * ice_get_rss_hdr_type - get a RSS profile's header type
2096 * @prof: RSS flow profile
2097 */
2098static enum ice_rss_cfg_hdr_type
2099ice_get_rss_hdr_type(struct ice_flow_prof *prof)
2100{
2101	if (prof->segs_cnt == ICE_FLOW_SEG_SINGLE) {
2102		return ICE_RSS_OUTER_HEADERS;
2103	} else if (prof->segs_cnt == ICE_FLOW_SEG_MAX) {
2104		const struct ice_flow_seg_info *s;
2105
2106		s = &prof->segs[ICE_RSS_OUTER_HEADERS];
2107		if (s->hdrs == ICE_FLOW_SEG_HDR_NONE)
2108			return ICE_RSS_INNER_HEADERS;
2109		if (s->hdrs & ICE_FLOW_SEG_HDR_IPV4)
2110			return ICE_RSS_INNER_HEADERS_W_OUTER_IPV4;
2111		if (s->hdrs & ICE_FLOW_SEG_HDR_IPV6)
2112			return ICE_RSS_INNER_HEADERS_W_OUTER_IPV6;
2113	}
2114
2115	return ICE_RSS_ANY_HEADERS;
2116}
2117
2118static bool
2119ice_rss_match_prof(struct ice_rss_cfg *r, struct ice_flow_prof *prof,
2120		   enum ice_rss_cfg_hdr_type hdr_type)
2121{
2122	return (r->hash.hdr_type == hdr_type &&
2123		r->hash.hash_flds == prof->segs[prof->segs_cnt - 1].match &&
2124		r->hash.addl_hdrs == prof->segs[prof->segs_cnt - 1].hdrs);
2125}
2126
2127/**
2128 * ice_rem_rss_list - remove RSS configuration from list
2129 * @hw: pointer to the hardware structure
2130 * @vsi_handle: software VSI handle
2131 * @prof: pointer to flow profile
2132 *
2133 * Assumption: lock has already been acquired for RSS list
2134 */
2135static void
2136ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
2137{
2138	enum ice_rss_cfg_hdr_type hdr_type;
2139	struct ice_rss_cfg *r, *tmp;
2140
2141	/* Search for RSS hash fields associated to the VSI that match the
2142	 * hash configurations associated to the flow profile. If found
2143	 * remove from the RSS entry list of the VSI context and delete entry.
2144	 */
2145	hdr_type = ice_get_rss_hdr_type(prof);
2146	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
2147		if (ice_rss_match_prof(r, prof, hdr_type)) {
2148			clear_bit(vsi_handle, r->vsis);
2149			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
2150				list_del(&r->l_entry);
2151				devm_kfree(ice_hw_to_dev(hw), r);
2152			}
2153			return;
2154		}
2155}
2156
2157/**
2158 * ice_add_rss_list - add RSS configuration to list
2159 * @hw: pointer to the hardware structure
2160 * @vsi_handle: software VSI handle
2161 * @prof: pointer to flow profile
2162 *
2163 * Assumption: lock has already been acquired for RSS list
2164 */
2165static int
2166ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
2167{
2168	enum ice_rss_cfg_hdr_type hdr_type;
2169	struct ice_rss_cfg *r, *rss_cfg;
2170
2171	hdr_type = ice_get_rss_hdr_type(prof);
2172	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2173		if (ice_rss_match_prof(r, prof, hdr_type)) {
2174			set_bit(vsi_handle, r->vsis);
2175			return 0;
2176		}
2177
2178	rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
2179			       GFP_KERNEL);
2180	if (!rss_cfg)
2181		return -ENOMEM;
2182
2183	rss_cfg->hash.hash_flds = prof->segs[prof->segs_cnt - 1].match;
2184	rss_cfg->hash.addl_hdrs = prof->segs[prof->segs_cnt - 1].hdrs;
2185	rss_cfg->hash.hdr_type = hdr_type;
2186	rss_cfg->hash.symm = prof->symm;
2187	set_bit(vsi_handle, rss_cfg->vsis);
2188
2189	list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
2190
2191	return 0;
2192}
2193
2194/**
2195 * ice_rss_config_xor_word - set the HSYMM registers for one input set word
2196 * @hw: pointer to the hardware structure
2197 * @prof_id: RSS hardware profile id
2198 * @src: the FV index used by the protocol's source field
2199 * @dst: the FV index used by the protocol's destination field
2200 *
2201 * Write to the HSYMM register with the index of @src FV the value of the @dst
2202 * FV index. This will tell the hardware to XOR HSYMM[src] with INSET[dst]
2203 * while calculating the RSS input set.
2204 */
2205static void
2206ice_rss_config_xor_word(struct ice_hw *hw, u8 prof_id, u8 src, u8 dst)
2207{
2208	u32 val, reg, bits_shift;
2209	u8 reg_idx;
2210
2211	reg_idx = src / GLQF_HSYMM_REG_SIZE;
2212	bits_shift = ((src % GLQF_HSYMM_REG_SIZE) << 3);
2213	val = dst | GLQF_HSYMM_ENABLE_BIT;
2214
2215	reg = rd32(hw, GLQF_HSYMM(prof_id, reg_idx));
2216	reg = (reg & ~(0xff << bits_shift)) | (val << bits_shift);
2217	wr32(hw, GLQF_HSYMM(prof_id, reg_idx), reg);
2218}
2219
2220/**
2221 * ice_rss_config_xor - set the symmetric registers for a profile's protocol
2222 * @hw: pointer to the hardware structure
2223 * @prof_id: RSS hardware profile id
2224 * @src: the FV index used by the protocol's source field
2225 * @dst: the FV index used by the protocol's destination field
2226 * @len: length of the source/destination fields in words
2227 */
2228static void
2229ice_rss_config_xor(struct ice_hw *hw, u8 prof_id, u8 src, u8 dst, u8 len)
2230{
2231	int fv_last_word =
2232		ICE_FLOW_SW_FIELD_VECTOR_MAX / ICE_FLOW_FV_EXTRACT_SZ - 1;
2233	int i;
2234
2235	for (i = 0; i < len; i++) {
2236		ice_rss_config_xor_word(hw, prof_id,
2237					/* Yes, field vector in GLQF_HSYMM and
2238					 * GLQF_HINSET is inversed!
2239					 */
2240					fv_last_word - (src + i),
2241					fv_last_word - (dst + i));
2242		ice_rss_config_xor_word(hw, prof_id,
2243					fv_last_word - (dst + i),
2244					fv_last_word - (src + i));
2245	}
2246}
2247
2248/**
2249 * ice_rss_set_symm - set the symmetric settings for an RSS profile
2250 * @hw: pointer to the hardware structure
2251 * @prof: pointer to flow profile
2252 *
2253 * The symmetric hash will result from XORing the protocol's fields with
2254 * indexes in GLQF_HSYMM and GLQF_HINSET. This function configures the profile's
2255 * GLQF_HSYMM registers.
2256 */
2257static void ice_rss_set_symm(struct ice_hw *hw, struct ice_flow_prof *prof)
2258{
2259	struct ice_prof_map *map;
2260	u8 prof_id, m;
2261
2262	mutex_lock(&hw->blk[ICE_BLK_RSS].es.prof_map_lock);
2263	map = ice_search_prof_id(hw, ICE_BLK_RSS, prof->id);
2264	if (map)
2265		prof_id = map->prof_id;
2266	mutex_unlock(&hw->blk[ICE_BLK_RSS].es.prof_map_lock);
2267
2268	if (!map)
2269		return;
2270
2271	/* clear to default */
2272	for (m = 0; m < GLQF_HSYMM_REG_PER_PROF; m++)
2273		wr32(hw, GLQF_HSYMM(prof_id, m), 0);
2274
2275	if (prof->symm) {
2276		struct ice_flow_seg_xtrct *ipv4_src, *ipv4_dst;
2277		struct ice_flow_seg_xtrct *ipv6_src, *ipv6_dst;
2278		struct ice_flow_seg_xtrct *sctp_src, *sctp_dst;
2279		struct ice_flow_seg_xtrct *tcp_src, *tcp_dst;
2280		struct ice_flow_seg_xtrct *udp_src, *udp_dst;
2281		struct ice_flow_seg_info *seg;
2282
2283		seg = &prof->segs[prof->segs_cnt - 1];
2284
2285		ipv4_src = &seg->fields[ICE_FLOW_FIELD_IDX_IPV4_SA].xtrct;
2286		ipv4_dst = &seg->fields[ICE_FLOW_FIELD_IDX_IPV4_DA].xtrct;
2287
2288		ipv6_src = &seg->fields[ICE_FLOW_FIELD_IDX_IPV6_SA].xtrct;
2289		ipv6_dst = &seg->fields[ICE_FLOW_FIELD_IDX_IPV6_DA].xtrct;
2290
2291		tcp_src = &seg->fields[ICE_FLOW_FIELD_IDX_TCP_SRC_PORT].xtrct;
2292		tcp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_TCP_DST_PORT].xtrct;
2293
2294		udp_src = &seg->fields[ICE_FLOW_FIELD_IDX_UDP_SRC_PORT].xtrct;
2295		udp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_UDP_DST_PORT].xtrct;
2296
2297		sctp_src = &seg->fields[ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT].xtrct;
2298		sctp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_SCTP_DST_PORT].xtrct;
2299
2300		/* xor IPv4 */
2301		if (ipv4_src->prot_id != 0 && ipv4_dst->prot_id != 0)
2302			ice_rss_config_xor(hw, prof_id,
2303					   ipv4_src->idx, ipv4_dst->idx, 2);
2304
2305		/* xor IPv6 */
2306		if (ipv6_src->prot_id != 0 && ipv6_dst->prot_id != 0)
2307			ice_rss_config_xor(hw, prof_id,
2308					   ipv6_src->idx, ipv6_dst->idx, 8);
2309
2310		/* xor TCP */
2311		if (tcp_src->prot_id != 0 && tcp_dst->prot_id != 0)
2312			ice_rss_config_xor(hw, prof_id,
2313					   tcp_src->idx, tcp_dst->idx, 1);
2314
2315		/* xor UDP */
2316		if (udp_src->prot_id != 0 && udp_dst->prot_id != 0)
2317			ice_rss_config_xor(hw, prof_id,
2318					   udp_src->idx, udp_dst->idx, 1);
2319
2320		/* xor SCTP */
2321		if (sctp_src->prot_id != 0 && sctp_dst->prot_id != 0)
2322			ice_rss_config_xor(hw, prof_id,
2323					   sctp_src->idx, sctp_dst->idx, 1);
2324	}
2325}
2326
2327/**
2328 * ice_add_rss_cfg_sync - add an RSS configuration
2329 * @hw: pointer to the hardware structure
2330 * @vsi_handle: software VSI handle
2331 * @cfg: configure parameters
2332 *
2333 * Assumption: lock has already been acquired for RSS list
2334 */
2335static int
2336ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle,
2337		     const struct ice_rss_hash_cfg *cfg)
2338{
2339	const enum ice_block blk = ICE_BLK_RSS;
2340	struct ice_flow_prof *prof = NULL;
2341	struct ice_flow_seg_info *segs;
2342	u8 segs_cnt;
2343	int status;
2344
2345	segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ?
2346			ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX;
2347
2348	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2349	if (!segs)
2350		return -ENOMEM;
2351
2352	/* Construct the packet segment info from the hashed fields */
2353	status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg);
2354	if (status)
2355		goto exit;
2356
2357	/* Search for a flow profile that has matching headers, hash fields,
2358	 * symm and has the input VSI associated to it. If found, no further
2359	 * operations required and exit.
2360	 */
2361	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2362					cfg->symm, vsi_handle,
2363					ICE_FLOW_FIND_PROF_CHK_FLDS |
2364					ICE_FLOW_FIND_PROF_CHK_SYMM |
2365					ICE_FLOW_FIND_PROF_CHK_VSI);
2366	if (prof)
2367		goto exit;
2368
2369	/* Check if a flow profile exists with the same protocol headers and
2370	 * associated with the input VSI. If so disassociate the VSI from
2371	 * this profile. The VSI will be added to a new profile created with
2372	 * the protocol header and new hash field configuration.
2373	 */
2374	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2375					cfg->symm, vsi_handle,
2376					ICE_FLOW_FIND_PROF_CHK_VSI);
2377	if (prof) {
2378		status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2379		if (!status)
2380			ice_rem_rss_list(hw, vsi_handle, prof);
2381		else
2382			goto exit;
2383
2384		/* Remove profile if it has no VSIs associated */
2385		if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
2386			status = ice_flow_rem_prof(hw, blk, prof->id);
2387			if (status)
2388				goto exit;
2389		}
2390	}
2391
2392	/* Search for a profile that has the same match fields and symmetric
2393	 * setting. If this exists then associate the VSI to this profile.
2394	 */
2395	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2396					cfg->symm, vsi_handle,
2397					ICE_FLOW_FIND_PROF_CHK_SYMM |
2398					ICE_FLOW_FIND_PROF_CHK_FLDS);
2399	if (prof) {
2400		status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2401		if (!status)
2402			status = ice_add_rss_list(hw, vsi_handle, prof);
2403		goto exit;
2404	}
2405
2406	/* Create a new flow profile with packet segment information. */
2407	status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
2408				   segs, segs_cnt, cfg->symm, &prof);
2409	if (status)
2410		goto exit;
2411
2412	prof->symm = cfg->symm;
2413	ice_rss_set_symm(hw, prof);
2414	status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2415	/* If association to a new flow profile failed then this profile can
2416	 * be removed.
2417	 */
2418	if (status) {
2419		ice_flow_rem_prof(hw, blk, prof->id);
2420		goto exit;
2421	}
2422
2423	status = ice_add_rss_list(hw, vsi_handle, prof);
2424
2425exit:
2426	kfree(segs);
2427	return status;
2428}
2429
2430/**
2431 * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
2432 * @hw: pointer to the hardware structure
2433 * @vsi: VSI to add the RSS configuration to
2434 * @cfg: configure parameters
2435 *
2436 * This function will generate a flow profile based on fields associated with
2437 * the input fields to hash on, the flow type and use the VSI number to add
2438 * a flow entry to the profile.
2439 */
2440int
2441ice_add_rss_cfg(struct ice_hw *hw, struct ice_vsi *vsi,
2442		const struct ice_rss_hash_cfg *cfg)
2443{
2444	struct ice_rss_hash_cfg local_cfg;
2445	u16 vsi_handle;
2446	int status;
2447
2448	if (!vsi)
2449		return -EINVAL;
2450
2451	vsi_handle = vsi->idx;
2452	if (!ice_is_vsi_valid(hw, vsi_handle) ||
2453	    !cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS ||
2454	    cfg->hash_flds == ICE_HASH_INVALID)
2455		return -EINVAL;
2456
2457	mutex_lock(&hw->rss_locks);
2458	local_cfg = *cfg;
2459	if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) {
2460		status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2461	} else {
2462		local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS;
2463		status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2464		if (!status) {
2465			local_cfg.hdr_type = ICE_RSS_INNER_HEADERS;
2466			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2467						      &local_cfg);
2468		}
2469	}
2470	mutex_unlock(&hw->rss_locks);
2471
2472	return status;
2473}
2474
2475/**
2476 * ice_rem_rss_cfg_sync - remove an existing RSS configuration
2477 * @hw: pointer to the hardware structure
2478 * @vsi_handle: software VSI handle
2479 * @cfg: configure parameters
2480 *
2481 * Assumption: lock has already been acquired for RSS list
2482 */
2483static int
2484ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle,
2485		     const struct ice_rss_hash_cfg *cfg)
2486{
2487	const enum ice_block blk = ICE_BLK_RSS;
2488	struct ice_flow_seg_info *segs;
2489	struct ice_flow_prof *prof;
2490	u8 segs_cnt;
2491	int status;
2492
2493	segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ?
2494			ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX;
2495	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2496	if (!segs)
2497		return -ENOMEM;
2498
2499	/* Construct the packet segment info from the hashed fields */
2500	status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg);
2501	if (status)
2502		goto out;
2503
2504	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2505					cfg->symm, vsi_handle,
2506					ICE_FLOW_FIND_PROF_CHK_FLDS);
2507	if (!prof) {
2508		status = -ENOENT;
2509		goto out;
2510	}
2511
2512	status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2513	if (status)
2514		goto out;
2515
2516	/* Remove RSS configuration from VSI context before deleting
2517	 * the flow profile.
2518	 */
2519	ice_rem_rss_list(hw, vsi_handle, prof);
2520
2521	if (bitmap_empty(prof->vsis, ICE_MAX_VSI))
2522		status = ice_flow_rem_prof(hw, blk, prof->id);
2523
2524out:
2525	kfree(segs);
2526	return status;
2527}
2528
2529/**
2530 * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
2531 * @hw: pointer to the hardware structure
2532 * @vsi_handle: software VSI handle
2533 * @cfg: configure parameters
2534 *
2535 * This function will lookup the flow profile based on the input
2536 * hash field bitmap, iterate through the profile entry list of
2537 * that profile and find entry associated with input VSI to be
2538 * removed. Calls are made to underlying flow apis which will in
2539 * turn build or update buffers for RSS XLT1 section.
2540 */
2541int
2542ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle,
2543		const struct ice_rss_hash_cfg *cfg)
2544{
2545	struct ice_rss_hash_cfg local_cfg;
2546	int status;
2547
2548	if (!ice_is_vsi_valid(hw, vsi_handle) ||
2549	    !cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS ||
2550	    cfg->hash_flds == ICE_HASH_INVALID)
2551		return -EINVAL;
2552
2553	mutex_lock(&hw->rss_locks);
2554	local_cfg = *cfg;
2555	if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) {
2556		status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2557	} else {
2558		local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS;
2559		status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2560		if (!status) {
2561			local_cfg.hdr_type = ICE_RSS_INNER_HEADERS;
2562			status = ice_rem_rss_cfg_sync(hw, vsi_handle,
2563						      &local_cfg);
2564		}
2565	}
2566	mutex_unlock(&hw->rss_locks);
2567
2568	return status;
2569}
2570
2571/* Mapping of AVF hash bit fields to an L3-L4 hash combination.
2572 * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
2573 * convert its values to their appropriate flow L3, L4 values.
2574 */
2575#define ICE_FLOW_AVF_RSS_IPV4_MASKS \
2576	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
2577	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
2578#define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
2579	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
2580	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
2581#define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
2582	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
2583	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
2584	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
2585#define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
2586	(ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
2587	 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
2588
2589#define ICE_FLOW_AVF_RSS_IPV6_MASKS \
2590	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
2591	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
2592#define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
2593	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
2594	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
2595	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
2596#define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
2597	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
2598	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
2599#define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
2600	(ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
2601	 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
2602
2603/**
2604 * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
2605 * @hw: pointer to the hardware structure
2606 * @vsi: VF's VSI
2607 * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
2608 *
2609 * This function will take the hash bitmap provided by the AVF driver via a
2610 * message, convert it to ICE-compatible values, and configure RSS flow
2611 * profiles.
2612 */
2613int ice_add_avf_rss_cfg(struct ice_hw *hw, struct ice_vsi *vsi, u64 avf_hash)
2614{
2615	struct ice_rss_hash_cfg hcfg;
2616	u16 vsi_handle;
2617	int status = 0;
2618	u64 hash_flds;
2619
2620	if (!vsi)
2621		return -EINVAL;
2622
2623	vsi_handle = vsi->idx;
2624	if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
2625	    !ice_is_vsi_valid(hw, vsi_handle))
2626		return -EINVAL;
2627
2628	/* Make sure no unsupported bits are specified */
2629	if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
2630			 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
2631		return -EIO;
2632
2633	hash_flds = avf_hash;
2634
2635	/* Always create an L3 RSS configuration for any L4 RSS configuration */
2636	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
2637		hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
2638
2639	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
2640		hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
2641
2642	/* Create the corresponding RSS configuration for each valid hash bit */
2643	while (hash_flds) {
2644		u64 rss_hash = ICE_HASH_INVALID;
2645
2646		if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
2647			if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
2648				rss_hash = ICE_FLOW_HASH_IPV4;
2649				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
2650			} else if (hash_flds &
2651				   ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
2652				rss_hash = ICE_FLOW_HASH_IPV4 |
2653					ICE_FLOW_HASH_TCP_PORT;
2654				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
2655			} else if (hash_flds &
2656				   ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
2657				rss_hash = ICE_FLOW_HASH_IPV4 |
2658					ICE_FLOW_HASH_UDP_PORT;
2659				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
2660			} else if (hash_flds &
2661				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
2662				rss_hash = ICE_FLOW_HASH_IPV4 |
2663					ICE_FLOW_HASH_SCTP_PORT;
2664				hash_flds &=
2665					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
2666			}
2667		} else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
2668			if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
2669				rss_hash = ICE_FLOW_HASH_IPV6;
2670				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
2671			} else if (hash_flds &
2672				   ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
2673				rss_hash = ICE_FLOW_HASH_IPV6 |
2674					ICE_FLOW_HASH_TCP_PORT;
2675				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
2676			} else if (hash_flds &
2677				   ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
2678				rss_hash = ICE_FLOW_HASH_IPV6 |
2679					ICE_FLOW_HASH_UDP_PORT;
2680				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
2681			} else if (hash_flds &
2682				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
2683				rss_hash = ICE_FLOW_HASH_IPV6 |
2684					ICE_FLOW_HASH_SCTP_PORT;
2685				hash_flds &=
2686					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
2687			}
2688		}
2689
2690		if (rss_hash == ICE_HASH_INVALID)
2691			return -EIO;
2692
2693		hcfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
2694		hcfg.hash_flds = rss_hash;
2695		hcfg.hdr_type = ICE_RSS_ANY_HEADERS;
2696		hcfg.symm = false;
2697		status = ice_add_rss_cfg(hw, vsi, &hcfg);
2698		if (status)
2699			break;
2700	}
2701
2702	return status;
2703}
2704
2705static bool rss_cfg_symm_valid(u64 hfld)
2706{
2707	return !((!!(hfld & ICE_FLOW_HASH_FLD_IPV4_SA) ^
2708		  !!(hfld & ICE_FLOW_HASH_FLD_IPV4_DA)) ||
2709		 (!!(hfld & ICE_FLOW_HASH_FLD_IPV6_SA) ^
2710		  !!(hfld & ICE_FLOW_HASH_FLD_IPV6_DA)) ||
2711		 (!!(hfld & ICE_FLOW_HASH_FLD_TCP_SRC_PORT) ^
2712		  !!(hfld & ICE_FLOW_HASH_FLD_TCP_DST_PORT)) ||
2713		 (!!(hfld & ICE_FLOW_HASH_FLD_UDP_SRC_PORT) ^
2714		  !!(hfld & ICE_FLOW_HASH_FLD_UDP_DST_PORT)) ||
2715		 (!!(hfld & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT) ^
2716		  !!(hfld & ICE_FLOW_HASH_FLD_SCTP_DST_PORT)));
2717}
2718
2719/**
2720 * ice_set_rss_cfg_symm - set symmtery for all VSI's RSS configurations
2721 * @hw: pointer to the hardware structure
2722 * @vsi: VSI to set/unset Symmetric RSS
2723 * @symm: TRUE to set Symmetric RSS hashing
2724 */
2725int ice_set_rss_cfg_symm(struct ice_hw *hw, struct ice_vsi *vsi, bool symm)
2726{
2727	struct ice_rss_hash_cfg	local;
2728	struct ice_rss_cfg *r, *tmp;
2729	u16 vsi_handle = vsi->idx;
2730	int status = 0;
2731
2732	if (!ice_is_vsi_valid(hw, vsi_handle))
2733		return -EINVAL;
2734
2735	mutex_lock(&hw->rss_locks);
2736	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry) {
2737		if (test_bit(vsi_handle, r->vsis) && r->hash.symm != symm) {
2738			local = r->hash;
2739			local.symm = symm;
2740			if (symm && !rss_cfg_symm_valid(r->hash.hash_flds))
2741				continue;
2742
2743			status = ice_add_rss_cfg_sync(hw, vsi_handle, &local);
2744			if (status)
2745				break;
2746		}
2747	}
2748	mutex_unlock(&hw->rss_locks);
2749
2750	return status;
2751}
2752
2753/**
2754 * ice_replay_rss_cfg - replay RSS configurations associated with VSI
2755 * @hw: pointer to the hardware structure
2756 * @vsi_handle: software VSI handle
2757 */
2758int ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
2759{
2760	struct ice_rss_cfg *r;
2761	int status = 0;
2762
2763	if (!ice_is_vsi_valid(hw, vsi_handle))
2764		return -EINVAL;
2765
2766	mutex_lock(&hw->rss_locks);
2767	list_for_each_entry(r, &hw->rss_list_head, l_entry) {
2768		if (test_bit(vsi_handle, r->vsis)) {
2769			status = ice_add_rss_cfg_sync(hw, vsi_handle, &r->hash);
2770			if (status)
2771				break;
2772		}
2773	}
2774	mutex_unlock(&hw->rss_locks);
2775
2776	return status;
2777}
2778
2779/**
2780 * ice_get_rss_cfg - returns hashed fields for the given header types
2781 * @hw: pointer to the hardware structure
2782 * @vsi_handle: software VSI handle
2783 * @hdrs: protocol header type
2784 * @symm: whether the RSS is symmetric (bool, output)
2785 *
2786 * This function will return the match fields of the first instance of flow
2787 * profile having the given header types and containing input VSI
2788 */
2789u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs, bool *symm)
2790{
2791	u64 rss_hash = ICE_HASH_INVALID;
2792	struct ice_rss_cfg *r;
2793
2794	/* verify if the protocol header is non zero and VSI is valid */
2795	if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
2796		return ICE_HASH_INVALID;
2797
2798	mutex_lock(&hw->rss_locks);
2799	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2800		if (test_bit(vsi_handle, r->vsis) &&
2801		    r->hash.addl_hdrs == hdrs) {
2802			rss_hash = r->hash.hash_flds;
2803			*symm = r->hash.symm;
2804			break;
2805		}
2806	mutex_unlock(&hw->rss_locks);
2807
2808	return rss_hash;
2809}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_flow.h"
   6#include <net/gre.h>
   7
   8/* Describe properties of a protocol header field */
   9struct ice_flow_field_info {
  10	enum ice_flow_seg_hdr hdr;
  11	s16 off;	/* Offset from start of a protocol header, in bits */
  12	u16 size;	/* Size of fields in bits */
  13	u16 mask;	/* 16-bit mask for field */
  14};
  15
  16#define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
  17	.hdr = _hdr, \
  18	.off = (_offset_bytes) * BITS_PER_BYTE, \
  19	.size = (_size_bytes) * BITS_PER_BYTE, \
  20	.mask = 0, \
  21}
  22
  23#define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \
  24	.hdr = _hdr, \
  25	.off = (_offset_bytes) * BITS_PER_BYTE, \
  26	.size = (_size_bytes) * BITS_PER_BYTE, \
  27	.mask = _mask, \
  28}
  29
  30/* Table containing properties of supported protocol header fields */
  31static const
  32struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
  33	/* Ether */
  34	/* ICE_FLOW_FIELD_IDX_ETH_DA */
  35	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
  36	/* ICE_FLOW_FIELD_IDX_ETH_SA */
  37	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
  38	/* ICE_FLOW_FIELD_IDX_S_VLAN */
  39	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)),
  40	/* ICE_FLOW_FIELD_IDX_C_VLAN */
  41	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)),
  42	/* ICE_FLOW_FIELD_IDX_ETH_TYPE */
  43	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)),
  44	/* IPv4 / IPv6 */
  45	/* ICE_FLOW_FIELD_IDX_IPV4_DSCP */
  46	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc),
  47	/* ICE_FLOW_FIELD_IDX_IPV6_DSCP */
  48	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0),
  49	/* ICE_FLOW_FIELD_IDX_IPV4_TTL */
  50	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00),
  51	/* ICE_FLOW_FIELD_IDX_IPV4_PROT */
  52	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff),
  53	/* ICE_FLOW_FIELD_IDX_IPV6_TTL */
  54	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff),
  55	/* ICE_FLOW_FIELD_IDX_IPV6_PROT */
  56	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00),
  57	/* ICE_FLOW_FIELD_IDX_IPV4_SA */
  58	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
  59	/* ICE_FLOW_FIELD_IDX_IPV4_DA */
  60	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
  61	/* ICE_FLOW_FIELD_IDX_IPV6_SA */
  62	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
  63	/* ICE_FLOW_FIELD_IDX_IPV6_DA */
  64	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
  65	/* Transport */
  66	/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
  67	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
  68	/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
  69	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
  70	/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
  71	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
  72	/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
  73	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
  74	/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
  75	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
  76	/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
  77	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
  78	/* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
  79	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1),
  80	/* ARP */
  81	/* ICE_FLOW_FIELD_IDX_ARP_SIP */
  82	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)),
  83	/* ICE_FLOW_FIELD_IDX_ARP_DIP */
  84	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)),
  85	/* ICE_FLOW_FIELD_IDX_ARP_SHA */
  86	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
  87	/* ICE_FLOW_FIELD_IDX_ARP_DHA */
  88	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
  89	/* ICE_FLOW_FIELD_IDX_ARP_OP */
  90	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)),
  91	/* ICMP */
  92	/* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
  93	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1),
  94	/* ICE_FLOW_FIELD_IDX_ICMP_CODE */
  95	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1),
  96	/* GRE */
  97	/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
  98	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
  99			  sizeof_field(struct gre_full_hdr, key)),
 100	/* GTP */
 101	/* ICE_FLOW_FIELD_IDX_GTPC_TEID */
 102	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)),
 103	/* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */
 104	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)),
 105	/* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */
 106	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)),
 107	/* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */
 108	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16),
 109			      0x3f00),
 110	/* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */
 111	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)),
 112	/* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */
 113	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)),
 114	/* PPPoE */
 115	/* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */
 116	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)),
 117	/* PFCP */
 118	/* ICE_FLOW_FIELD_IDX_PFCP_SEID */
 119	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)),
 120	/* L2TPv3 */
 121	/* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */
 122	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)),
 123	/* ESP */
 124	/* ICE_FLOW_FIELD_IDX_ESP_SPI */
 125	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)),
 126	/* AH */
 127	/* ICE_FLOW_FIELD_IDX_AH_SPI */
 128	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)),
 129	/* NAT_T_ESP */
 130	/* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */
 131	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)),
 132};
 133
 134/* Bitmaps indicating relevant packet types for a particular protocol header
 135 *
 136 * Packet types for packets with an Outer/First/Single MAC header
 137 */
 138static const u32 ice_ptypes_mac_ofos[] = {
 139	0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB,
 140	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
 141	0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000,
 142	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 143	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 144	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 145	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 146	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 147};
 148
 149/* Packet types for packets with an Innermost/Last MAC VLAN header */
 150static const u32 ice_ptypes_macvlan_il[] = {
 151	0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
 152	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
 153	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 154	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 155	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 156	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 157	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 158	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 159};
 160
 161/* Packet types for packets with an Outer/First/Single IPv4 header, does NOT
 162 * include IPv4 other PTYPEs
 163 */
 164static const u32 ice_ptypes_ipv4_ofos[] = {
 165	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
 166	0x00000000, 0x00000155, 0x00000000, 0x00000000,
 167	0x00000000, 0x000FC000, 0x00000000, 0x00000000,
 168	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 169	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 170	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 171	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 172	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 173};
 174
 175/* Packet types for packets with an Outer/First/Single IPv4 header, includes
 176 * IPv4 other PTYPEs
 177 */
 178static const u32 ice_ptypes_ipv4_ofos_all[] = {
 179	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
 180	0x00000000, 0x00000155, 0x00000000, 0x00000000,
 181	0x00000000, 0x000FC000, 0x83E0F800, 0x00000101,
 182	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 183	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 184	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 185	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 186	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 187};
 188
 189/* Packet types for packets with an Innermost/Last IPv4 header */
 190static const u32 ice_ptypes_ipv4_il[] = {
 191	0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
 192	0x0000000E, 0x00000000, 0x00000000, 0x00000000,
 193	0x00000000, 0x00000000, 0x001FF800, 0x00000000,
 194	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 195	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 196	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 197	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 198	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 199};
 200
 201/* Packet types for packets with an Outer/First/Single IPv6 header, does NOT
 202 * include IPv6 other PTYPEs
 203 */
 204static const u32 ice_ptypes_ipv6_ofos[] = {
 205	0x00000000, 0x00000000, 0x77000000, 0x10002000,
 206	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
 207	0x00000000, 0x03F00000, 0x00000000, 0x00000000,
 208	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 209	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 210	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 211	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 212	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 213};
 214
 215/* Packet types for packets with an Outer/First/Single IPv6 header, includes
 216 * IPv6 other PTYPEs
 217 */
 218static const u32 ice_ptypes_ipv6_ofos_all[] = {
 219	0x00000000, 0x00000000, 0x77000000, 0x10002000,
 220	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
 221	0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206,
 222	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 223	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 224	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 225	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 226	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 227};
 228
 229/* Packet types for packets with an Innermost/Last IPv6 header */
 230static const u32 ice_ptypes_ipv6_il[] = {
 231	0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
 232	0x00000770, 0x00000000, 0x00000000, 0x00000000,
 233	0x00000000, 0x00000000, 0x7FE00000, 0x00000000,
 234	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 235	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 236	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 237	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 238	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 239};
 240
 241/* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */
 242static const u32 ice_ptypes_ipv4_ofos_no_l4[] = {
 243	0x10C00000, 0x04000800, 0x00000000, 0x00000000,
 244	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 245	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 246	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 247	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 248	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 249	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 250	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 251};
 252
 253/* Packet types for packets with an Outermost/First ARP header */
 254static const u32 ice_ptypes_arp_of[] = {
 255	0x00000800, 0x00000000, 0x00000000, 0x00000000,
 256	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 257	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 258	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 259	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 260	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 261	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 262	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 263};
 264
 265/* Packet types for packets with an Innermost/Last IPv4 header - no L4 */
 266static const u32 ice_ptypes_ipv4_il_no_l4[] = {
 267	0x60000000, 0x18043008, 0x80000002, 0x6010c021,
 268	0x00000008, 0x00000000, 0x00000000, 0x00000000,
 269	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 270	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 271	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 272	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 273	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 274	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 275};
 276
 277/* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */
 278static const u32 ice_ptypes_ipv6_ofos_no_l4[] = {
 279	0x00000000, 0x00000000, 0x43000000, 0x10002000,
 280	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 281	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 282	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 283	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 284	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 285	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 286	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 287};
 288
 289/* Packet types for packets with an Innermost/Last IPv6 header - no L4 */
 290static const u32 ice_ptypes_ipv6_il_no_l4[] = {
 291	0x00000000, 0x02180430, 0x0000010c, 0x086010c0,
 292	0x00000430, 0x00000000, 0x00000000, 0x00000000,
 293	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 294	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 295	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 296	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 297	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 298	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 299};
 300
 301/* UDP Packet types for non-tunneled packets or tunneled
 302 * packets with inner UDP.
 303 */
 304static const u32 ice_ptypes_udp_il[] = {
 305	0x81000000, 0x20204040, 0x04000010, 0x80810102,
 306	0x00000040, 0x00000000, 0x00000000, 0x00000000,
 307	0x00000000, 0x00410000, 0x90842000, 0x00000007,
 308	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 309	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 310	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 311	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 312	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 313};
 314
 315/* Packet types for packets with an Innermost/Last TCP header */
 316static const u32 ice_ptypes_tcp_il[] = {
 317	0x04000000, 0x80810102, 0x10000040, 0x02040408,
 318	0x00000102, 0x00000000, 0x00000000, 0x00000000,
 319	0x00000000, 0x00820000, 0x21084000, 0x00000000,
 320	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 321	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 322	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 323	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 324	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 325};
 326
 327/* Packet types for packets with an Innermost/Last SCTP header */
 328static const u32 ice_ptypes_sctp_il[] = {
 329	0x08000000, 0x01020204, 0x20000081, 0x04080810,
 330	0x00000204, 0x00000000, 0x00000000, 0x00000000,
 331	0x00000000, 0x01040000, 0x00000000, 0x00000000,
 332	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 333	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 334	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 335	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 336	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 337};
 338
 339/* Packet types for packets with an Outermost/First ICMP header */
 340static const u32 ice_ptypes_icmp_of[] = {
 341	0x10000000, 0x00000000, 0x00000000, 0x00000000,
 342	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 343	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 344	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 345	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 346	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 347	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 348	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 349};
 350
 351/* Packet types for packets with an Innermost/Last ICMP header */
 352static const u32 ice_ptypes_icmp_il[] = {
 353	0x00000000, 0x02040408, 0x40000102, 0x08101020,
 354	0x00000408, 0x00000000, 0x00000000, 0x00000000,
 355	0x00000000, 0x00000000, 0x42108000, 0x00000000,
 356	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 357	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 358	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 359	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 360	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 361};
 362
 363/* Packet types for packets with an Outermost/First GRE header */
 364static const u32 ice_ptypes_gre_of[] = {
 365	0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
 366	0x0000017E, 0x00000000, 0x00000000, 0x00000000,
 367	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 368	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 369	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 370	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 371	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 372	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 373};
 374
 375/* Packet types for packets with an Innermost/Last MAC header */
 376static const u32 ice_ptypes_mac_il[] = {
 377	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 378	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 379	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 380	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 381	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 382	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 383	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 384	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 385};
 386
 387/* Packet types for GTPC */
 388static const u32 ice_ptypes_gtpc[] = {
 389	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 390	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 391	0x00000000, 0x00000000, 0x00000180, 0x00000000,
 392	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 393	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 394	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 395	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 396	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 397};
 398
 399/* Packet types for GTPC with TEID */
 400static const u32 ice_ptypes_gtpc_tid[] = {
 401	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 402	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 403	0x00000000, 0x00000000, 0x00000060, 0x00000000,
 404	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 405	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 406	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 407	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 408	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 409};
 410
 411/* Packet types for GTPU */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = {
 413	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 414	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 415	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 416	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 417	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 418	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 419	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 420	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 421	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 422	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 423	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 424	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 425	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 426	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 427	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
 428	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 429	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 430	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 431	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 432	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
 433};
 434
 435static const struct ice_ptype_attributes ice_attr_gtpu_down[] = {
 436	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 437	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 438	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 439	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 440	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 441	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 442	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 443	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 444	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 445	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 446	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 447	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 448	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 449	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 450	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 451	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 452	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 453	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 454	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 455	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 456};
 457
 458static const struct ice_ptype_attributes ice_attr_gtpu_up[] = {
 459	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 460	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 461	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 462	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 463	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 464	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 465	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 466	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 467	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 468	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 469	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 470	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 471	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 472	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 473	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
 474	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 475	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 476	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 477	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 478	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
 479};
 480
 481static const u32 ice_ptypes_gtpu[] = {
 482	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 483	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 484	0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000,
 485	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 486	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 487	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 488	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 489	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 490};
 491
 492/* Packet types for PPPoE */
 493static const u32 ice_ptypes_pppoe[] = {
 494	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 495	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 496	0x00000000, 0x03ffe000, 0x00000000, 0x00000000,
 497	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 498	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 499	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 500	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 501	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 502};
 503
 504/* Packet types for packets with PFCP NODE header */
 505static const u32 ice_ptypes_pfcp_node[] = {
 506	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 507	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 508	0x00000000, 0x00000000, 0x80000000, 0x00000002,
 509	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 510	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 511	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 512	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 513	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 514};
 515
 516/* Packet types for packets with PFCP SESSION header */
 517static const u32 ice_ptypes_pfcp_session[] = {
 518	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 519	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 520	0x00000000, 0x00000000, 0x00000000, 0x00000005,
 521	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 522	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 523	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 524	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 525	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 526};
 527
 528/* Packet types for L2TPv3 */
 529static const u32 ice_ptypes_l2tpv3[] = {
 530	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 531	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 532	0x00000000, 0x00000000, 0x00000000, 0x00000300,
 533	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 534	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 535	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 536	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 537	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 538};
 539
 540/* Packet types for ESP */
 541static const u32 ice_ptypes_esp[] = {
 542	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 543	0x00000000, 0x00000003, 0x00000000, 0x00000000,
 544	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 545	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 546	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 547	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 548	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 549	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 550};
 551
 552/* Packet types for AH */
 553static const u32 ice_ptypes_ah[] = {
 554	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 555	0x00000000, 0x0000000C, 0x00000000, 0x00000000,
 556	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 557	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 558	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 559	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 560	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 561	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 562};
 563
 564/* Packet types for packets with NAT_T ESP header */
 565static const u32 ice_ptypes_nat_t_esp[] = {
 566	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 567	0x00000000, 0x00000030, 0x00000000, 0x00000000,
 568	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 569	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 570	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 571	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 572	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 573	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 574};
 575
 576static const u32 ice_ptypes_mac_non_ip_ofos[] = {
 577	0x00000846, 0x00000000, 0x00000000, 0x00000000,
 578	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 579	0x00400000, 0x03FFF000, 0x00000000, 0x00000000,
 580	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 581	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 582	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 583	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 584	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 585};
 586
 587/* Manage parameters and info. used during the creation of a flow profile */
 588struct ice_flow_prof_params {
 589	enum ice_block blk;
 590	u16 entry_length; /* # of bytes formatted entry will require */
 591	u8 es_cnt;
 592	struct ice_flow_prof *prof;
 593
 594	/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
 595	 * This will give us the direction flags.
 596	 */
 597	struct ice_fv_word es[ICE_MAX_FV_WORDS];
 598	/* attributes can be used to add attributes to a particular PTYPE */
 599	const struct ice_ptype_attributes *attr;
 600	u16 attr_cnt;
 601
 602	u16 mask[ICE_MAX_FV_WORDS];
 603	DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
 604};
 605
 606#define ICE_FLOW_RSS_HDRS_INNER_MASK \
 607	(ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \
 608	ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \
 609	ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \
 610	ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \
 611	ICE_FLOW_SEG_HDR_NAT_T_ESP)
 612
 613#define ICE_FLOW_SEG_HDRS_L3_MASK	\
 614	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP)
 615#define ICE_FLOW_SEG_HDRS_L4_MASK	\
 616	(ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
 617	 ICE_FLOW_SEG_HDR_SCTP)
 618/* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */
 619#define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER	\
 620	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
 621
 622/**
 623 * ice_flow_val_hdrs - validates packet segments for valid protocol headers
 624 * @segs: array of one or more packet segments that describe the flow
 625 * @segs_cnt: number of packet segments provided
 626 */
 627static int ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
 628{
 629	u8 i;
 630
 631	for (i = 0; i < segs_cnt; i++) {
 632		/* Multiple L3 headers */
 633		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
 634		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
 635			return -EINVAL;
 636
 637		/* Multiple L4 headers */
 638		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
 639		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
 640			return -EINVAL;
 641	}
 642
 643	return 0;
 644}
 645
 646/* Sizes of fixed known protocol headers without header options */
 647#define ICE_FLOW_PROT_HDR_SZ_MAC	14
 648#define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN	(ICE_FLOW_PROT_HDR_SZ_MAC + 2)
 649#define ICE_FLOW_PROT_HDR_SZ_IPV4	20
 650#define ICE_FLOW_PROT_HDR_SZ_IPV6	40
 651#define ICE_FLOW_PROT_HDR_SZ_ARP	28
 652#define ICE_FLOW_PROT_HDR_SZ_ICMP	8
 653#define ICE_FLOW_PROT_HDR_SZ_TCP	20
 654#define ICE_FLOW_PROT_HDR_SZ_UDP	8
 655#define ICE_FLOW_PROT_HDR_SZ_SCTP	12
 656
 657/**
 658 * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
 659 * @params: information about the flow to be processed
 660 * @seg: index of packet segment whose header size is to be determined
 661 */
 662static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
 663{
 664	u16 sz;
 665
 666	/* L2 headers */
 667	sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
 668		ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
 669
 670	/* L3 headers */
 671	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
 672		sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
 673	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
 674		sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
 675	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
 676		sz += ICE_FLOW_PROT_HDR_SZ_ARP;
 677	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
 678		/* An L3 header is required if L4 is specified */
 679		return 0;
 680
 681	/* L4 headers */
 682	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
 683		sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
 684	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
 685		sz += ICE_FLOW_PROT_HDR_SZ_TCP;
 686	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
 687		sz += ICE_FLOW_PROT_HDR_SZ_UDP;
 688	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
 689		sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
 690
 691	return sz;
 692}
 693
 694/**
 695 * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
 696 * @params: information about the flow to be processed
 697 *
 698 * This function identifies the packet types associated with the protocol
 699 * headers being present in packet segments of the specified flow profile.
 700 */
 701static int ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
 702{
 703	struct ice_flow_prof *prof;
 704	u8 i;
 705
 706	memset(params->ptypes, 0xff, sizeof(params->ptypes));
 707
 708	prof = params->prof;
 709
 710	for (i = 0; i < params->prof->segs_cnt; i++) {
 711		const unsigned long *src;
 712		u32 hdrs;
 713
 714		hdrs = prof->segs[i].hdrs;
 715
 716		if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
 717			src = !i ? (const unsigned long *)ice_ptypes_mac_ofos :
 718				(const unsigned long *)ice_ptypes_mac_il;
 719			bitmap_and(params->ptypes, params->ptypes, src,
 720				   ICE_FLOW_PTYPE_MAX);
 721		}
 722
 723		if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
 724			src = (const unsigned long *)ice_ptypes_macvlan_il;
 725			bitmap_and(params->ptypes, params->ptypes, src,
 726				   ICE_FLOW_PTYPE_MAX);
 727		}
 728
 729		if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
 730			bitmap_and(params->ptypes, params->ptypes,
 731				   (const unsigned long *)ice_ptypes_arp_of,
 732				   ICE_FLOW_PTYPE_MAX);
 733		}
 734
 735		if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
 736		    (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
 737			src = i ? (const unsigned long *)ice_ptypes_ipv4_il :
 738				(const unsigned long *)ice_ptypes_ipv4_ofos_all;
 739			bitmap_and(params->ptypes, params->ptypes, src,
 740				   ICE_FLOW_PTYPE_MAX);
 741		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
 742			   (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
 743			src = i ? (const unsigned long *)ice_ptypes_ipv6_il :
 744				(const unsigned long *)ice_ptypes_ipv6_ofos_all;
 745			bitmap_and(params->ptypes, params->ptypes, src,
 746				   ICE_FLOW_PTYPE_MAX);
 747		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
 748			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
 749			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 :
 750				(const unsigned long *)ice_ptypes_ipv4_il_no_l4;
 751			bitmap_and(params->ptypes, params->ptypes, src,
 752				   ICE_FLOW_PTYPE_MAX);
 753		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
 754			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
 755				(const unsigned long *)ice_ptypes_ipv4_il;
 756			bitmap_and(params->ptypes, params->ptypes, src,
 757				   ICE_FLOW_PTYPE_MAX);
 758		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
 759			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
 760			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 :
 761				(const unsigned long *)ice_ptypes_ipv6_il_no_l4;
 762			bitmap_and(params->ptypes, params->ptypes, src,
 763				   ICE_FLOW_PTYPE_MAX);
 764		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
 765			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
 766				(const unsigned long *)ice_ptypes_ipv6_il;
 767			bitmap_and(params->ptypes, params->ptypes, src,
 768				   ICE_FLOW_PTYPE_MAX);
 769		}
 770
 771		if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) {
 772			src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos;
 773			bitmap_and(params->ptypes, params->ptypes, src,
 774				   ICE_FLOW_PTYPE_MAX);
 775		} else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
 776			src = (const unsigned long *)ice_ptypes_pppoe;
 777			bitmap_and(params->ptypes, params->ptypes, src,
 778				   ICE_FLOW_PTYPE_MAX);
 779		} else {
 780			src = (const unsigned long *)ice_ptypes_pppoe;
 781			bitmap_andnot(params->ptypes, params->ptypes, src,
 782				      ICE_FLOW_PTYPE_MAX);
 783		}
 784
 785		if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
 786			src = (const unsigned long *)ice_ptypes_udp_il;
 787			bitmap_and(params->ptypes, params->ptypes, src,
 788				   ICE_FLOW_PTYPE_MAX);
 789		} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
 790			bitmap_and(params->ptypes, params->ptypes,
 791				   (const unsigned long *)ice_ptypes_tcp_il,
 792				   ICE_FLOW_PTYPE_MAX);
 793		} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
 794			src = (const unsigned long *)ice_ptypes_sctp_il;
 795			bitmap_and(params->ptypes, params->ptypes, src,
 796				   ICE_FLOW_PTYPE_MAX);
 797		}
 798
 799		if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
 800			src = !i ? (const unsigned long *)ice_ptypes_icmp_of :
 801				(const unsigned long *)ice_ptypes_icmp_il;
 802			bitmap_and(params->ptypes, params->ptypes, src,
 803				   ICE_FLOW_PTYPE_MAX);
 804		} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
 805			if (!i) {
 806				src = (const unsigned long *)ice_ptypes_gre_of;
 807				bitmap_and(params->ptypes, params->ptypes,
 808					   src, ICE_FLOW_PTYPE_MAX);
 809			}
 810		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) {
 811			src = (const unsigned long *)ice_ptypes_gtpc;
 812			bitmap_and(params->ptypes, params->ptypes, src,
 813				   ICE_FLOW_PTYPE_MAX);
 814		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) {
 815			src = (const unsigned long *)ice_ptypes_gtpc_tid;
 816			bitmap_and(params->ptypes, params->ptypes, src,
 817				   ICE_FLOW_PTYPE_MAX);
 818		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) {
 819			src = (const unsigned long *)ice_ptypes_gtpu;
 820			bitmap_and(params->ptypes, params->ptypes, src,
 821				   ICE_FLOW_PTYPE_MAX);
 822
 823			/* Attributes for GTP packet with downlink */
 824			params->attr = ice_attr_gtpu_down;
 825			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
 826		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) {
 827			src = (const unsigned long *)ice_ptypes_gtpu;
 828			bitmap_and(params->ptypes, params->ptypes, src,
 829				   ICE_FLOW_PTYPE_MAX);
 830
 831			/* Attributes for GTP packet with uplink */
 832			params->attr = ice_attr_gtpu_up;
 833			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
 834		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) {
 835			src = (const unsigned long *)ice_ptypes_gtpu;
 836			bitmap_and(params->ptypes, params->ptypes, src,
 837				   ICE_FLOW_PTYPE_MAX);
 838
 839			/* Attributes for GTP packet with Extension Header */
 840			params->attr = ice_attr_gtpu_eh;
 841			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh);
 842		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) {
 843			src = (const unsigned long *)ice_ptypes_gtpu;
 844			bitmap_and(params->ptypes, params->ptypes, src,
 845				   ICE_FLOW_PTYPE_MAX);
 846		} else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) {
 847			src = (const unsigned long *)ice_ptypes_l2tpv3;
 848			bitmap_and(params->ptypes, params->ptypes, src,
 849				   ICE_FLOW_PTYPE_MAX);
 850		} else if (hdrs & ICE_FLOW_SEG_HDR_ESP) {
 851			src = (const unsigned long *)ice_ptypes_esp;
 852			bitmap_and(params->ptypes, params->ptypes, src,
 853				   ICE_FLOW_PTYPE_MAX);
 854		} else if (hdrs & ICE_FLOW_SEG_HDR_AH) {
 855			src = (const unsigned long *)ice_ptypes_ah;
 856			bitmap_and(params->ptypes, params->ptypes, src,
 857				   ICE_FLOW_PTYPE_MAX);
 858		} else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) {
 859			src = (const unsigned long *)ice_ptypes_nat_t_esp;
 860			bitmap_and(params->ptypes, params->ptypes, src,
 861				   ICE_FLOW_PTYPE_MAX);
 862		}
 863
 864		if (hdrs & ICE_FLOW_SEG_HDR_PFCP) {
 865			if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE)
 866				src = (const unsigned long *)ice_ptypes_pfcp_node;
 867			else
 868				src = (const unsigned long *)ice_ptypes_pfcp_session;
 869
 870			bitmap_and(params->ptypes, params->ptypes, src,
 871				   ICE_FLOW_PTYPE_MAX);
 872		} else {
 873			src = (const unsigned long *)ice_ptypes_pfcp_node;
 874			bitmap_andnot(params->ptypes, params->ptypes, src,
 875				      ICE_FLOW_PTYPE_MAX);
 876
 877			src = (const unsigned long *)ice_ptypes_pfcp_session;
 878			bitmap_andnot(params->ptypes, params->ptypes, src,
 879				      ICE_FLOW_PTYPE_MAX);
 880		}
 881	}
 882
 883	return 0;
 884}
 885
 886/**
 887 * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
 888 * @hw: pointer to the HW struct
 889 * @params: information about the flow to be processed
 890 * @seg: packet segment index of the field to be extracted
 891 * @fld: ID of field to be extracted
 892 * @match: bit field of all fields
 893 *
 894 * This function determines the protocol ID, offset, and size of the given
 895 * field. It then allocates one or more extraction sequence entries for the
 896 * given field, and fill the entries with protocol ID and offset information.
 897 */
 898static int
 899ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
 900		    u8 seg, enum ice_flow_field fld, u64 match)
 901{
 902	enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
 903	enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
 904	u8 fv_words = hw->blk[params->blk].es.fvw;
 905	struct ice_flow_fld_info *flds;
 906	u16 cnt, ese_bits, i;
 907	u16 sib_mask = 0;
 908	u16 mask;
 909	u16 off;
 910
 911	flds = params->prof->segs[seg].fields;
 912
 913	switch (fld) {
 914	case ICE_FLOW_FIELD_IDX_ETH_DA:
 915	case ICE_FLOW_FIELD_IDX_ETH_SA:
 916	case ICE_FLOW_FIELD_IDX_S_VLAN:
 917	case ICE_FLOW_FIELD_IDX_C_VLAN:
 918		prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
 919		break;
 920	case ICE_FLOW_FIELD_IDX_ETH_TYPE:
 921		prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
 922		break;
 923	case ICE_FLOW_FIELD_IDX_IPV4_DSCP:
 924		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 925		break;
 926	case ICE_FLOW_FIELD_IDX_IPV6_DSCP:
 927		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 928		break;
 929	case ICE_FLOW_FIELD_IDX_IPV4_TTL:
 930	case ICE_FLOW_FIELD_IDX_IPV4_PROT:
 931		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 932
 933		/* TTL and PROT share the same extraction seq. entry.
 934		 * Each is considered a sibling to the other in terms of sharing
 935		 * the same extraction sequence entry.
 936		 */
 937		if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL)
 938			sib = ICE_FLOW_FIELD_IDX_IPV4_PROT;
 939		else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT)
 940			sib = ICE_FLOW_FIELD_IDX_IPV4_TTL;
 941
 942		/* If the sibling field is also included, that field's
 943		 * mask needs to be included.
 944		 */
 945		if (match & BIT(sib))
 946			sib_mask = ice_flds_info[sib].mask;
 947		break;
 948	case ICE_FLOW_FIELD_IDX_IPV6_TTL:
 949	case ICE_FLOW_FIELD_IDX_IPV6_PROT:
 950		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 951
 952		/* TTL and PROT share the same extraction seq. entry.
 953		 * Each is considered a sibling to the other in terms of sharing
 954		 * the same extraction sequence entry.
 955		 */
 956		if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL)
 957			sib = ICE_FLOW_FIELD_IDX_IPV6_PROT;
 958		else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT)
 959			sib = ICE_FLOW_FIELD_IDX_IPV6_TTL;
 960
 961		/* If the sibling field is also included, that field's
 962		 * mask needs to be included.
 963		 */
 964		if (match & BIT(sib))
 965			sib_mask = ice_flds_info[sib].mask;
 966		break;
 967	case ICE_FLOW_FIELD_IDX_IPV4_SA:
 968	case ICE_FLOW_FIELD_IDX_IPV4_DA:
 969		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 970		break;
 971	case ICE_FLOW_FIELD_IDX_IPV6_SA:
 972	case ICE_FLOW_FIELD_IDX_IPV6_DA:
 973		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 974		break;
 975	case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
 976	case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
 977	case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
 978		prot_id = ICE_PROT_TCP_IL;
 979		break;
 980	case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
 981	case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
 982		prot_id = ICE_PROT_UDP_IL_OR_S;
 983		break;
 984	case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
 985	case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
 986		prot_id = ICE_PROT_SCTP_IL;
 987		break;
 988	case ICE_FLOW_FIELD_IDX_GTPC_TEID:
 989	case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID:
 990	case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID:
 991	case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID:
 992	case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID:
 993	case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI:
 994		/* GTP is accessed through UDP OF protocol */
 995		prot_id = ICE_PROT_UDP_OF;
 996		break;
 997	case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID:
 998		prot_id = ICE_PROT_PPPOE;
 999		break;
1000	case ICE_FLOW_FIELD_IDX_PFCP_SEID:
1001		prot_id = ICE_PROT_UDP_IL_OR_S;
1002		break;
1003	case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID:
1004		prot_id = ICE_PROT_L2TPV3;
1005		break;
1006	case ICE_FLOW_FIELD_IDX_ESP_SPI:
1007		prot_id = ICE_PROT_ESP_F;
1008		break;
1009	case ICE_FLOW_FIELD_IDX_AH_SPI:
1010		prot_id = ICE_PROT_ESP_2;
1011		break;
1012	case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI:
1013		prot_id = ICE_PROT_UDP_IL_OR_S;
1014		break;
1015	case ICE_FLOW_FIELD_IDX_ARP_SIP:
1016	case ICE_FLOW_FIELD_IDX_ARP_DIP:
1017	case ICE_FLOW_FIELD_IDX_ARP_SHA:
1018	case ICE_FLOW_FIELD_IDX_ARP_DHA:
1019	case ICE_FLOW_FIELD_IDX_ARP_OP:
1020		prot_id = ICE_PROT_ARP_OF;
1021		break;
1022	case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
1023	case ICE_FLOW_FIELD_IDX_ICMP_CODE:
1024		/* ICMP type and code share the same extraction seq. entry */
1025		prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ?
1026				ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
1027		sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
1028			ICE_FLOW_FIELD_IDX_ICMP_CODE :
1029			ICE_FLOW_FIELD_IDX_ICMP_TYPE;
1030		break;
1031	case ICE_FLOW_FIELD_IDX_GRE_KEYID:
1032		prot_id = ICE_PROT_GRE_OF;
1033		break;
1034	default:
1035		return -EOPNOTSUPP;
1036	}
1037
1038	/* Each extraction sequence entry is a word in size, and extracts a
1039	 * word-aligned offset from a protocol header.
1040	 */
1041	ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
1042
1043	flds[fld].xtrct.prot_id = prot_id;
1044	flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
1045		ICE_FLOW_FV_EXTRACT_SZ;
1046	flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
1047	flds[fld].xtrct.idx = params->es_cnt;
1048	flds[fld].xtrct.mask = ice_flds_info[fld].mask;
1049
1050	/* Adjust the next field-entry index after accommodating the number of
1051	 * entries this field consumes
1052	 */
1053	cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
1054			   ese_bits);
1055
1056	/* Fill in the extraction sequence entries needed for this field */
1057	off = flds[fld].xtrct.off;
1058	mask = flds[fld].xtrct.mask;
1059	for (i = 0; i < cnt; i++) {
1060		/* Only consume an extraction sequence entry if there is no
1061		 * sibling field associated with this field or the sibling entry
1062		 * already extracts the word shared with this field.
1063		 */
1064		if (sib == ICE_FLOW_FIELD_IDX_MAX ||
1065		    flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
1066		    flds[sib].xtrct.off != off) {
1067			u8 idx;
1068
1069			/* Make sure the number of extraction sequence required
1070			 * does not exceed the block's capability
1071			 */
1072			if (params->es_cnt >= fv_words)
1073				return -ENOSPC;
1074
1075			/* some blocks require a reversed field vector layout */
1076			if (hw->blk[params->blk].es.reverse)
1077				idx = fv_words - params->es_cnt - 1;
1078			else
1079				idx = params->es_cnt;
1080
1081			params->es[idx].prot_id = prot_id;
1082			params->es[idx].off = off;
1083			params->mask[idx] = mask | sib_mask;
1084			params->es_cnt++;
1085		}
1086
1087		off += ICE_FLOW_FV_EXTRACT_SZ;
1088	}
1089
1090	return 0;
1091}
1092
1093/**
1094 * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
1095 * @hw: pointer to the HW struct
1096 * @params: information about the flow to be processed
1097 * @seg: index of packet segment whose raw fields are to be extracted
1098 */
1099static int
1100ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
1101		     u8 seg)
1102{
1103	u16 fv_words;
1104	u16 hdrs_sz;
1105	u8 i;
1106
1107	if (!params->prof->segs[seg].raws_cnt)
1108		return 0;
1109
1110	if (params->prof->segs[seg].raws_cnt >
1111	    ARRAY_SIZE(params->prof->segs[seg].raws))
1112		return -ENOSPC;
1113
1114	/* Offsets within the segment headers are not supported */
1115	hdrs_sz = ice_flow_calc_seg_sz(params, seg);
1116	if (!hdrs_sz)
1117		return -EINVAL;
1118
1119	fv_words = hw->blk[params->blk].es.fvw;
1120
1121	for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
1122		struct ice_flow_seg_fld_raw *raw;
1123		u16 off, cnt, j;
1124
1125		raw = &params->prof->segs[seg].raws[i];
1126
1127		/* Storing extraction information */
1128		raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
1129		raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
1130			ICE_FLOW_FV_EXTRACT_SZ;
1131		raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
1132			BITS_PER_BYTE;
1133		raw->info.xtrct.idx = params->es_cnt;
1134
1135		/* Determine the number of field vector entries this raw field
1136		 * consumes.
1137		 */
1138		cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
1139				   (raw->info.src.last * BITS_PER_BYTE),
1140				   (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
1141		off = raw->info.xtrct.off;
1142		for (j = 0; j < cnt; j++) {
1143			u16 idx;
1144
1145			/* Make sure the number of extraction sequence required
1146			 * does not exceed the block's capability
1147			 */
1148			if (params->es_cnt >= hw->blk[params->blk].es.count ||
1149			    params->es_cnt >= ICE_MAX_FV_WORDS)
1150				return -ENOSPC;
1151
1152			/* some blocks require a reversed field vector layout */
1153			if (hw->blk[params->blk].es.reverse)
1154				idx = fv_words - params->es_cnt - 1;
1155			else
1156				idx = params->es_cnt;
1157
1158			params->es[idx].prot_id = raw->info.xtrct.prot_id;
1159			params->es[idx].off = off;
1160			params->es_cnt++;
1161			off += ICE_FLOW_FV_EXTRACT_SZ;
1162		}
1163	}
1164
1165	return 0;
1166}
1167
1168/**
1169 * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
1170 * @hw: pointer to the HW struct
1171 * @params: information about the flow to be processed
1172 *
1173 * This function iterates through all matched fields in the given segments, and
1174 * creates an extraction sequence for the fields.
1175 */
1176static int
1177ice_flow_create_xtrct_seq(struct ice_hw *hw,
1178			  struct ice_flow_prof_params *params)
1179{
1180	struct ice_flow_prof *prof = params->prof;
1181	int status = 0;
1182	u8 i;
1183
1184	for (i = 0; i < prof->segs_cnt; i++) {
1185		u64 match = params->prof->segs[i].match;
1186		enum ice_flow_field j;
1187
1188		for_each_set_bit(j, (unsigned long *)&match,
1189				 ICE_FLOW_FIELD_IDX_MAX) {
1190			status = ice_flow_xtract_fld(hw, params, i, j, match);
1191			if (status)
1192				return status;
1193			clear_bit(j, (unsigned long *)&match);
1194		}
1195
1196		/* Process raw matching bytes */
1197		status = ice_flow_xtract_raws(hw, params, i);
1198		if (status)
1199			return status;
1200	}
1201
1202	return status;
1203}
1204
1205/**
1206 * ice_flow_proc_segs - process all packet segments associated with a profile
1207 * @hw: pointer to the HW struct
1208 * @params: information about the flow to be processed
1209 */
1210static int
1211ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
1212{
1213	int status;
1214
1215	status = ice_flow_proc_seg_hdrs(params);
1216	if (status)
1217		return status;
1218
1219	status = ice_flow_create_xtrct_seq(hw, params);
1220	if (status)
1221		return status;
1222
1223	switch (params->blk) {
1224	case ICE_BLK_FD:
1225	case ICE_BLK_RSS:
1226		status = 0;
1227		break;
1228	default:
1229		return -EOPNOTSUPP;
1230	}
1231
1232	return status;
1233}
1234
1235#define ICE_FLOW_FIND_PROF_CHK_FLDS	0x00000001
1236#define ICE_FLOW_FIND_PROF_CHK_VSI	0x00000002
1237#define ICE_FLOW_FIND_PROF_NOT_CHK_DIR	0x00000004
1238#define ICE_FLOW_FIND_PROF_CHK_SYMM	0x00000008
1239
1240/**
1241 * ice_flow_find_prof_conds - Find a profile matching headers and conditions
1242 * @hw: pointer to the HW struct
1243 * @blk: classification stage
1244 * @dir: flow direction
1245 * @segs: array of one or more packet segments that describe the flow
1246 * @segs_cnt: number of packet segments provided
1247 * @symm: symmetric setting for RSS profiles
1248 * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
1249 * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
1250 */
1251static struct ice_flow_prof *
1252ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
1253			 enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
1254			 u8 segs_cnt, bool symm, u16 vsi_handle, u32 conds)
1255{
1256	struct ice_flow_prof *p, *prof = NULL;
1257
1258	mutex_lock(&hw->fl_profs_locks[blk]);
1259	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1260		if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
1261		    segs_cnt && segs_cnt == p->segs_cnt) {
1262			u8 i;
1263
1264			/* Check for profile-VSI association if specified */
1265			if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
1266			    ice_is_vsi_valid(hw, vsi_handle) &&
1267			    !test_bit(vsi_handle, p->vsis))
1268				continue;
1269
1270			/* Check for symmetric settings */
1271			if ((conds & ICE_FLOW_FIND_PROF_CHK_SYMM) &&
1272			    p->symm != symm)
1273				continue;
1274
1275			/* Protocol headers must be checked. Matched fields are
1276			 * checked if specified.
1277			 */
1278			for (i = 0; i < segs_cnt; i++)
1279				if (segs[i].hdrs != p->segs[i].hdrs ||
1280				    ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
1281				     segs[i].match != p->segs[i].match))
1282					break;
1283
1284			/* A match is found if all segments are matched */
1285			if (i == segs_cnt) {
1286				prof = p;
1287				break;
1288			}
1289		}
1290	mutex_unlock(&hw->fl_profs_locks[blk]);
1291
1292	return prof;
1293}
1294
1295/**
1296 * ice_flow_find_prof_id - Look up a profile with given profile ID
1297 * @hw: pointer to the HW struct
1298 * @blk: classification stage
1299 * @prof_id: unique ID to identify this flow profile
1300 */
1301static struct ice_flow_prof *
1302ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1303{
1304	struct ice_flow_prof *p;
1305
1306	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1307		if (p->id == prof_id)
1308			return p;
1309
1310	return NULL;
1311}
1312
1313/**
1314 * ice_flow_rem_entry_sync - Remove a flow entry
1315 * @hw: pointer to the HW struct
1316 * @blk: classification stage
1317 * @entry: flow entry to be removed
1318 */
1319static int
1320ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
1321			struct ice_flow_entry *entry)
1322{
1323	if (!entry)
1324		return -EINVAL;
1325
1326	list_del(&entry->l_entry);
1327
1328	devm_kfree(ice_hw_to_dev(hw), entry);
1329
1330	return 0;
1331}
1332
1333/**
1334 * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
1335 * @hw: pointer to the HW struct
1336 * @blk: classification stage
1337 * @dir: flow direction
1338 * @segs: array of one or more packet segments that describe the flow
1339 * @segs_cnt: number of packet segments provided
1340 * @symm: symmetric setting for RSS profiles
1341 * @prof: stores the returned flow profile added
1342 *
1343 * Assumption: the caller has acquired the lock to the profile list
1344 */
1345static int
1346ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
1347		       enum ice_flow_dir dir,
1348		       struct ice_flow_seg_info *segs, u8 segs_cnt,
1349		       bool symm, struct ice_flow_prof **prof)
1350{
1351	struct ice_flow_prof_params *params;
1352	struct ice_prof_id *ids;
1353	int status;
1354	u64 prof_id;
1355	u8 i;
1356
1357	if (!prof)
1358		return -EINVAL;
1359
1360	ids = &hw->blk[blk].prof_id;
1361	prof_id = find_first_zero_bit(ids->id, ids->count);
1362	if (prof_id >= ids->count)
1363		return -ENOSPC;
1364
1365	params = kzalloc(sizeof(*params), GFP_KERNEL);
1366	if (!params)
1367		return -ENOMEM;
1368
1369	params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof),
1370				    GFP_KERNEL);
1371	if (!params->prof) {
1372		status = -ENOMEM;
1373		goto free_params;
1374	}
1375
1376	/* initialize extraction sequence to all invalid (0xff) */
1377	for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
1378		params->es[i].prot_id = ICE_PROT_INVALID;
1379		params->es[i].off = ICE_FV_OFFSET_INVAL;
1380	}
1381
1382	params->blk = blk;
1383	params->prof->id = prof_id;
1384	params->prof->dir = dir;
1385	params->prof->segs_cnt = segs_cnt;
1386	params->prof->symm = symm;
1387
1388	/* Make a copy of the segments that need to be persistent in the flow
1389	 * profile instance
1390	 */
1391	for (i = 0; i < segs_cnt; i++)
1392		memcpy(&params->prof->segs[i], &segs[i], sizeof(*segs));
1393
1394	status = ice_flow_proc_segs(hw, params);
1395	if (status) {
1396		ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n");
1397		goto out;
1398	}
1399
1400	/* Add a HW profile for this flow profile */
1401	status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes,
1402			      params->attr, params->attr_cnt, params->es,
1403			      params->mask, symm);
1404	if (status) {
1405		ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
1406		goto out;
1407	}
1408
1409	INIT_LIST_HEAD(&params->prof->entries);
1410	mutex_init(&params->prof->entries_lock);
1411	set_bit(prof_id, ids->id);
1412	*prof = params->prof;
1413
1414out:
1415	if (status)
1416		devm_kfree(ice_hw_to_dev(hw), params->prof);
1417free_params:
1418	kfree(params);
1419
1420	return status;
1421}
1422
1423/**
1424 * ice_flow_rem_prof_sync - remove a flow profile
1425 * @hw: pointer to the hardware structure
1426 * @blk: classification stage
1427 * @prof: pointer to flow profile to remove
1428 *
1429 * Assumption: the caller has acquired the lock to the profile list
1430 */
1431static int
1432ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
1433		       struct ice_flow_prof *prof)
1434{
1435	int status;
1436
1437	/* Remove all remaining flow entries before removing the flow profile */
1438	if (!list_empty(&prof->entries)) {
1439		struct ice_flow_entry *e, *t;
1440
1441		mutex_lock(&prof->entries_lock);
1442
1443		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1444			status = ice_flow_rem_entry_sync(hw, blk, e);
1445			if (status)
1446				break;
1447		}
1448
1449		mutex_unlock(&prof->entries_lock);
1450	}
1451
1452	/* Remove all hardware profiles associated with this flow profile */
1453	status = ice_rem_prof(hw, blk, prof->id);
1454	if (!status) {
1455		clear_bit(prof->id, hw->blk[blk].prof_id.id);
1456		list_del(&prof->l_entry);
1457		mutex_destroy(&prof->entries_lock);
1458		devm_kfree(ice_hw_to_dev(hw), prof);
1459	}
1460
1461	return status;
1462}
1463
1464/**
1465 * ice_flow_assoc_prof - associate a VSI with a flow profile
1466 * @hw: pointer to the hardware structure
1467 * @blk: classification stage
1468 * @prof: pointer to flow profile
1469 * @vsi_handle: software VSI handle
1470 *
1471 * Assumption: the caller has acquired the lock to the profile list
1472 * and the software VSI handle has been validated
1473 */
1474static int
1475ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
1476		    struct ice_flow_prof *prof, u16 vsi_handle)
1477{
1478	int status = 0;
1479
1480	if (!test_bit(vsi_handle, prof->vsis)) {
1481		status = ice_add_prof_id_flow(hw, blk,
1482					      ice_get_hw_vsi_num(hw,
1483								 vsi_handle),
1484					      prof->id);
1485		if (!status)
1486			set_bit(vsi_handle, prof->vsis);
1487		else
1488			ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n",
1489				  status);
1490	}
1491
1492	return status;
1493}
1494
1495/**
1496 * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
1497 * @hw: pointer to the hardware structure
1498 * @blk: classification stage
1499 * @prof: pointer to flow profile
1500 * @vsi_handle: software VSI handle
1501 *
1502 * Assumption: the caller has acquired the lock to the profile list
1503 * and the software VSI handle has been validated
1504 */
1505static int
1506ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
1507		       struct ice_flow_prof *prof, u16 vsi_handle)
1508{
1509	int status = 0;
1510
1511	if (test_bit(vsi_handle, prof->vsis)) {
1512		status = ice_rem_prof_id_flow(hw, blk,
1513					      ice_get_hw_vsi_num(hw,
1514								 vsi_handle),
1515					      prof->id);
1516		if (!status)
1517			clear_bit(vsi_handle, prof->vsis);
1518		else
1519			ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n",
1520				  status);
1521	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522
1523	return status;
1524}
1525
1526/**
1527 * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
1528 * @hw: pointer to the HW struct
1529 * @blk: classification stage
1530 * @dir: flow direction
1531 * @segs: array of one or more packet segments that describe the flow
1532 * @segs_cnt: number of packet segments provided
1533 * @symm: symmetric setting for RSS profiles
1534 * @prof: stores the returned flow profile added
1535 */
1536int
1537ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
1538		  struct ice_flow_seg_info *segs, u8 segs_cnt,
1539		  bool symm, struct ice_flow_prof **prof)
1540{
1541	int status;
1542
1543	if (segs_cnt > ICE_FLOW_SEG_MAX)
1544		return -ENOSPC;
1545
1546	if (!segs_cnt)
1547		return -EINVAL;
1548
1549	if (!segs)
1550		return -EINVAL;
1551
1552	status = ice_flow_val_hdrs(segs, segs_cnt);
1553	if (status)
1554		return status;
1555
1556	mutex_lock(&hw->fl_profs_locks[blk]);
1557
1558	status = ice_flow_add_prof_sync(hw, blk, dir, segs, segs_cnt,
1559					symm, prof);
1560	if (!status)
1561		list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
1562
1563	mutex_unlock(&hw->fl_profs_locks[blk]);
1564
1565	return status;
1566}
1567
1568/**
1569 * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
1570 * @hw: pointer to the HW struct
1571 * @blk: the block for which the flow profile is to be removed
1572 * @prof_id: unique ID of the flow profile to be removed
1573 */
1574int ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1575{
1576	struct ice_flow_prof *prof;
1577	int status;
1578
1579	mutex_lock(&hw->fl_profs_locks[blk]);
1580
1581	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1582	if (!prof) {
1583		status = -ENOENT;
1584		goto out;
1585	}
1586
1587	/* prof becomes invalid after the call */
1588	status = ice_flow_rem_prof_sync(hw, blk, prof);
1589
1590out:
1591	mutex_unlock(&hw->fl_profs_locks[blk]);
1592
1593	return status;
1594}
1595
1596/**
1597 * ice_flow_add_entry - Add a flow entry
1598 * @hw: pointer to the HW struct
1599 * @blk: classification stage
1600 * @prof_id: ID of the profile to add a new flow entry to
1601 * @entry_id: unique ID to identify this flow entry
1602 * @vsi_handle: software VSI handle for the flow entry
1603 * @prio: priority of the flow entry
1604 * @data: pointer to a data buffer containing flow entry's match values/masks
1605 * @entry_h: pointer to buffer that receives the new flow entry's handle
1606 */
1607int
1608ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
1609		   u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
1610		   void *data, u64 *entry_h)
1611{
1612	struct ice_flow_entry *e = NULL;
1613	struct ice_flow_prof *prof;
1614	int status;
1615
1616	/* No flow entry data is expected for RSS */
1617	if (!entry_h || (!data && blk != ICE_BLK_RSS))
1618		return -EINVAL;
1619
1620	if (!ice_is_vsi_valid(hw, vsi_handle))
1621		return -EINVAL;
1622
1623	mutex_lock(&hw->fl_profs_locks[blk]);
1624
1625	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1626	if (!prof) {
1627		status = -ENOENT;
1628	} else {
1629		/* Allocate memory for the entry being added and associate
1630		 * the VSI to the found flow profile
1631		 */
1632		e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
1633		if (!e)
1634			status = -ENOMEM;
1635		else
1636			status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1637	}
1638
1639	mutex_unlock(&hw->fl_profs_locks[blk]);
1640	if (status)
1641		goto out;
1642
1643	e->id = entry_id;
1644	e->vsi_handle = vsi_handle;
1645	e->prof = prof;
1646	e->priority = prio;
1647
1648	switch (blk) {
1649	case ICE_BLK_FD:
1650	case ICE_BLK_RSS:
1651		break;
1652	default:
1653		status = -EOPNOTSUPP;
1654		goto out;
1655	}
1656
1657	mutex_lock(&prof->entries_lock);
1658	list_add(&e->l_entry, &prof->entries);
1659	mutex_unlock(&prof->entries_lock);
1660
1661	*entry_h = ICE_FLOW_ENTRY_HNDL(e);
1662
1663out:
1664	if (status)
1665		devm_kfree(ice_hw_to_dev(hw), e);
1666
1667	return status;
1668}
1669
1670/**
1671 * ice_flow_rem_entry - Remove a flow entry
1672 * @hw: pointer to the HW struct
1673 * @blk: classification stage
1674 * @entry_h: handle to the flow entry to be removed
1675 */
1676int ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_h)
1677{
1678	struct ice_flow_entry *entry;
1679	struct ice_flow_prof *prof;
1680	int status = 0;
1681
1682	if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
1683		return -EINVAL;
1684
1685	entry = ICE_FLOW_ENTRY_PTR(entry_h);
1686
1687	/* Retain the pointer to the flow profile as the entry will be freed */
1688	prof = entry->prof;
1689
1690	if (prof) {
1691		mutex_lock(&prof->entries_lock);
1692		status = ice_flow_rem_entry_sync(hw, blk, entry);
1693		mutex_unlock(&prof->entries_lock);
1694	}
1695
1696	return status;
1697}
1698
1699/**
1700 * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
1701 * @seg: packet segment the field being set belongs to
1702 * @fld: field to be set
1703 * @field_type: type of the field
1704 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1705 *           entry's input buffer
1706 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1707 *            input buffer
1708 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1709 *            entry's input buffer
1710 *
1711 * This helper function stores information of a field being matched, including
1712 * the type of the field and the locations of the value to match, the mask, and
1713 * the upper-bound value in the start of the input buffer for a flow entry.
1714 * This function should only be used for fixed-size data structures.
1715 *
1716 * This function also opportunistically determines the protocol headers to be
1717 * present based on the fields being set. Some fields cannot be used alone to
1718 * determine the protocol headers present. Sometimes, fields for particular
1719 * protocol headers are not matched. In those cases, the protocol headers
1720 * must be explicitly set.
1721 */
1722static void
1723ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1724		     enum ice_flow_fld_match_type field_type, u16 val_loc,
1725		     u16 mask_loc, u16 last_loc)
1726{
1727	u64 bit = BIT_ULL(fld);
1728
1729	seg->match |= bit;
1730	if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
1731		seg->range |= bit;
1732
1733	seg->fields[fld].type = field_type;
1734	seg->fields[fld].src.val = val_loc;
1735	seg->fields[fld].src.mask = mask_loc;
1736	seg->fields[fld].src.last = last_loc;
1737
1738	ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1739}
1740
1741/**
1742 * ice_flow_set_fld - specifies locations of field from entry's input buffer
1743 * @seg: packet segment the field being set belongs to
1744 * @fld: field to be set
1745 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1746 *           entry's input buffer
1747 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1748 *            input buffer
1749 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1750 *            entry's input buffer
1751 * @range: indicate if field being matched is to be in a range
1752 *
1753 * This function specifies the locations, in the form of byte offsets from the
1754 * start of the input buffer for a flow entry, from where the value to match,
1755 * the mask value, and upper value can be extracted. These locations are then
1756 * stored in the flow profile. When adding a flow entry associated with the
1757 * flow profile, these locations will be used to quickly extract the values and
1758 * create the content of a match entry. This function should only be used for
1759 * fixed-size data structures.
1760 */
1761void
1762ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1763		 u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1764{
1765	enum ice_flow_fld_match_type t = range ?
1766		ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1767
1768	ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1769}
1770
1771/**
1772 * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1773 * @seg: packet segment the field being set belongs to
1774 * @off: offset of the raw field from the beginning of the segment in bytes
1775 * @len: length of the raw pattern to be matched
1776 * @val_loc: location of the value to match from entry's input buffer
1777 * @mask_loc: location of mask value from entry's input buffer
1778 *
1779 * This function specifies the offset of the raw field to be match from the
1780 * beginning of the specified packet segment, and the locations, in the form of
1781 * byte offsets from the start of the input buffer for a flow entry, from where
1782 * the value to match and the mask value to be extracted. These locations are
1783 * then stored in the flow profile. When adding flow entries to the associated
1784 * flow profile, these locations can be used to quickly extract the values to
1785 * create the content of a match entry. This function should only be used for
1786 * fixed-size data structures.
1787 */
1788void
1789ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1790		     u16 val_loc, u16 mask_loc)
1791{
1792	if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1793		seg->raws[seg->raws_cnt].off = off;
1794		seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1795		seg->raws[seg->raws_cnt].info.src.val = val_loc;
1796		seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1797		/* The "last" field is used to store the length of the field */
1798		seg->raws[seg->raws_cnt].info.src.last = len;
1799	}
1800
1801	/* Overflows of "raws" will be handled as an error condition later in
1802	 * the flow when this information is processed.
1803	 */
1804	seg->raws_cnt++;
1805}
1806
1807/**
1808 * ice_flow_rem_vsi_prof - remove VSI from flow profile
1809 * @hw: pointer to the hardware structure
1810 * @vsi_handle: software VSI handle
1811 * @prof_id: unique ID to identify this flow profile
1812 *
1813 * This function removes the flow entries associated to the input
1814 * VSI handle and disassociate the VSI from the flow profile.
1815 */
1816int ice_flow_rem_vsi_prof(struct ice_hw *hw, u16 vsi_handle, u64 prof_id)
1817{
1818	struct ice_flow_prof *prof;
1819	int status = 0;
1820
1821	if (!ice_is_vsi_valid(hw, vsi_handle))
1822		return -EINVAL;
1823
1824	/* find flow profile pointer with input package block and profile ID */
1825	prof = ice_flow_find_prof_id(hw, ICE_BLK_FD, prof_id);
1826	if (!prof) {
1827		ice_debug(hw, ICE_DBG_PKG, "Cannot find flow profile id=%llu\n",
1828			  prof_id);
1829		return -ENOENT;
1830	}
1831
1832	/* Remove all remaining flow entries before removing the flow profile */
1833	if (!list_empty(&prof->entries)) {
1834		struct ice_flow_entry *e, *t;
1835
1836		mutex_lock(&prof->entries_lock);
1837		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1838			if (e->vsi_handle != vsi_handle)
1839				continue;
1840
1841			status = ice_flow_rem_entry_sync(hw, ICE_BLK_FD, e);
1842			if (status)
1843				break;
1844		}
1845		mutex_unlock(&prof->entries_lock);
1846	}
1847	if (status)
1848		return status;
1849
1850	/* disassociate the flow profile from sw VSI handle */
1851	status = ice_flow_disassoc_prof(hw, ICE_BLK_FD, prof, vsi_handle);
1852	if (status)
1853		ice_debug(hw, ICE_DBG_PKG, "ice_flow_disassoc_prof() failed with status=%d\n",
1854			  status);
1855	return status;
1856}
1857
1858#define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \
1859	(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
1860
1861#define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1862	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1863
1864#define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1865	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
1866
1867#define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1868	(ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \
1869	 ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
1870	 ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1871
1872/**
1873 * ice_flow_set_rss_seg_info - setup packet segments for RSS
1874 * @segs: pointer to the flow field segment(s)
1875 * @seg_cnt: segment count
1876 * @cfg: configure parameters
1877 *
1878 * Helper function to extract fields from hash bitmap and use flow
1879 * header value to set flow field segment for further use in flow
1880 * profile entry or removal.
1881 */
1882static int
1883ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u8 seg_cnt,
1884			  const struct ice_rss_hash_cfg *cfg)
1885{
1886	struct ice_flow_seg_info *seg;
1887	u64 val;
1888	u16 i;
1889
1890	/* set inner most segment */
1891	seg = &segs[seg_cnt - 1];
1892
1893	for_each_set_bit(i, (const unsigned long *)&cfg->hash_flds,
1894			 (u16)ICE_FLOW_FIELD_IDX_MAX)
1895		ice_flow_set_fld(seg, (enum ice_flow_field)i,
1896				 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
1897				 ICE_FLOW_FLD_OFF_INVAL, false);
1898
1899	ICE_FLOW_SET_HDRS(seg, cfg->addl_hdrs);
1900
1901	/* set outer most header */
1902	if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV4)
1903		segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV4 |
1904						    ICE_FLOW_SEG_HDR_IPV_OTHER;
1905	else if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV6)
1906		segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV6 |
1907						    ICE_FLOW_SEG_HDR_IPV_OTHER;
1908
1909	if (seg->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS &
1910	    ~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER)
1911		return -EINVAL;
1912
1913	val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
1914	if (val && !is_power_of_2(val))
1915		return -EIO;
1916
1917	val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
1918	if (val && !is_power_of_2(val))
1919		return -EIO;
1920
1921	return 0;
1922}
1923
1924/**
1925 * ice_rem_vsi_rss_list - remove VSI from RSS list
1926 * @hw: pointer to the hardware structure
1927 * @vsi_handle: software VSI handle
1928 *
1929 * Remove the VSI from all RSS configurations in the list.
1930 */
1931void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
1932{
1933	struct ice_rss_cfg *r, *tmp;
1934
1935	if (list_empty(&hw->rss_list_head))
1936		return;
1937
1938	mutex_lock(&hw->rss_locks);
1939	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1940		if (test_and_clear_bit(vsi_handle, r->vsis))
1941			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1942				list_del(&r->l_entry);
1943				devm_kfree(ice_hw_to_dev(hw), r);
1944			}
1945	mutex_unlock(&hw->rss_locks);
1946}
1947
1948/**
1949 * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
1950 * @hw: pointer to the hardware structure
1951 * @vsi_handle: software VSI handle
1952 *
1953 * This function will iterate through all flow profiles and disassociate
1954 * the VSI from that profile. If the flow profile has no VSIs it will
1955 * be removed.
1956 */
1957int ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1958{
1959	const enum ice_block blk = ICE_BLK_RSS;
1960	struct ice_flow_prof *p, *t;
1961	int status = 0;
1962
1963	if (!ice_is_vsi_valid(hw, vsi_handle))
1964		return -EINVAL;
1965
1966	if (list_empty(&hw->fl_profs[blk]))
1967		return 0;
1968
1969	mutex_lock(&hw->rss_locks);
1970	list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
1971		if (test_bit(vsi_handle, p->vsis)) {
1972			status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
1973			if (status)
1974				break;
1975
1976			if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
1977				status = ice_flow_rem_prof(hw, blk, p->id);
1978				if (status)
1979					break;
1980			}
1981		}
1982	mutex_unlock(&hw->rss_locks);
1983
1984	return status;
1985}
1986
1987/**
1988 * ice_get_rss_hdr_type - get a RSS profile's header type
1989 * @prof: RSS flow profile
1990 */
1991static enum ice_rss_cfg_hdr_type
1992ice_get_rss_hdr_type(struct ice_flow_prof *prof)
1993{
1994	if (prof->segs_cnt == ICE_FLOW_SEG_SINGLE) {
1995		return ICE_RSS_OUTER_HEADERS;
1996	} else if (prof->segs_cnt == ICE_FLOW_SEG_MAX) {
1997		const struct ice_flow_seg_info *s;
1998
1999		s = &prof->segs[ICE_RSS_OUTER_HEADERS];
2000		if (s->hdrs == ICE_FLOW_SEG_HDR_NONE)
2001			return ICE_RSS_INNER_HEADERS;
2002		if (s->hdrs & ICE_FLOW_SEG_HDR_IPV4)
2003			return ICE_RSS_INNER_HEADERS_W_OUTER_IPV4;
2004		if (s->hdrs & ICE_FLOW_SEG_HDR_IPV6)
2005			return ICE_RSS_INNER_HEADERS_W_OUTER_IPV6;
2006	}
2007
2008	return ICE_RSS_ANY_HEADERS;
2009}
2010
2011static bool
2012ice_rss_match_prof(struct ice_rss_cfg *r, struct ice_flow_prof *prof,
2013		   enum ice_rss_cfg_hdr_type hdr_type)
2014{
2015	return (r->hash.hdr_type == hdr_type &&
2016		r->hash.hash_flds == prof->segs[prof->segs_cnt - 1].match &&
2017		r->hash.addl_hdrs == prof->segs[prof->segs_cnt - 1].hdrs);
2018}
2019
2020/**
2021 * ice_rem_rss_list - remove RSS configuration from list
2022 * @hw: pointer to the hardware structure
2023 * @vsi_handle: software VSI handle
2024 * @prof: pointer to flow profile
2025 *
2026 * Assumption: lock has already been acquired for RSS list
2027 */
2028static void
2029ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
2030{
2031	enum ice_rss_cfg_hdr_type hdr_type;
2032	struct ice_rss_cfg *r, *tmp;
2033
2034	/* Search for RSS hash fields associated to the VSI that match the
2035	 * hash configurations associated to the flow profile. If found
2036	 * remove from the RSS entry list of the VSI context and delete entry.
2037	 */
2038	hdr_type = ice_get_rss_hdr_type(prof);
2039	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
2040		if (ice_rss_match_prof(r, prof, hdr_type)) {
2041			clear_bit(vsi_handle, r->vsis);
2042			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
2043				list_del(&r->l_entry);
2044				devm_kfree(ice_hw_to_dev(hw), r);
2045			}
2046			return;
2047		}
2048}
2049
2050/**
2051 * ice_add_rss_list - add RSS configuration to list
2052 * @hw: pointer to the hardware structure
2053 * @vsi_handle: software VSI handle
2054 * @prof: pointer to flow profile
2055 *
2056 * Assumption: lock has already been acquired for RSS list
2057 */
2058static int
2059ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
2060{
2061	enum ice_rss_cfg_hdr_type hdr_type;
2062	struct ice_rss_cfg *r, *rss_cfg;
2063
2064	hdr_type = ice_get_rss_hdr_type(prof);
2065	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2066		if (ice_rss_match_prof(r, prof, hdr_type)) {
2067			set_bit(vsi_handle, r->vsis);
2068			return 0;
2069		}
2070
2071	rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
2072			       GFP_KERNEL);
2073	if (!rss_cfg)
2074		return -ENOMEM;
2075
2076	rss_cfg->hash.hash_flds = prof->segs[prof->segs_cnt - 1].match;
2077	rss_cfg->hash.addl_hdrs = prof->segs[prof->segs_cnt - 1].hdrs;
2078	rss_cfg->hash.hdr_type = hdr_type;
2079	rss_cfg->hash.symm = prof->symm;
2080	set_bit(vsi_handle, rss_cfg->vsis);
2081
2082	list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
2083
2084	return 0;
2085}
2086
2087/**
2088 * ice_rss_config_xor_word - set the HSYMM registers for one input set word
2089 * @hw: pointer to the hardware structure
2090 * @prof_id: RSS hardware profile id
2091 * @src: the FV index used by the protocol's source field
2092 * @dst: the FV index used by the protocol's destination field
2093 *
2094 * Write to the HSYMM register with the index of @src FV the value of the @dst
2095 * FV index. This will tell the hardware to XOR HSYMM[src] with INSET[dst]
2096 * while calculating the RSS input set.
2097 */
2098static void
2099ice_rss_config_xor_word(struct ice_hw *hw, u8 prof_id, u8 src, u8 dst)
2100{
2101	u32 val, reg, bits_shift;
2102	u8 reg_idx;
2103
2104	reg_idx = src / GLQF_HSYMM_REG_SIZE;
2105	bits_shift = ((src % GLQF_HSYMM_REG_SIZE) << 3);
2106	val = dst | GLQF_HSYMM_ENABLE_BIT;
2107
2108	reg = rd32(hw, GLQF_HSYMM(prof_id, reg_idx));
2109	reg = (reg & ~(0xff << bits_shift)) | (val << bits_shift);
2110	wr32(hw, GLQF_HSYMM(prof_id, reg_idx), reg);
2111}
2112
2113/**
2114 * ice_rss_config_xor - set the symmetric registers for a profile's protocol
2115 * @hw: pointer to the hardware structure
2116 * @prof_id: RSS hardware profile id
2117 * @src: the FV index used by the protocol's source field
2118 * @dst: the FV index used by the protocol's destination field
2119 * @len: length of the source/destination fields in words
2120 */
2121static void
2122ice_rss_config_xor(struct ice_hw *hw, u8 prof_id, u8 src, u8 dst, u8 len)
2123{
2124	int fv_last_word =
2125		ICE_FLOW_SW_FIELD_VECTOR_MAX / ICE_FLOW_FV_EXTRACT_SZ - 1;
2126	int i;
2127
2128	for (i = 0; i < len; i++) {
2129		ice_rss_config_xor_word(hw, prof_id,
2130					/* Yes, field vector in GLQF_HSYMM and
2131					 * GLQF_HINSET is inversed!
2132					 */
2133					fv_last_word - (src + i),
2134					fv_last_word - (dst + i));
2135		ice_rss_config_xor_word(hw, prof_id,
2136					fv_last_word - (dst + i),
2137					fv_last_word - (src + i));
2138	}
2139}
2140
2141/**
2142 * ice_rss_set_symm - set the symmetric settings for an RSS profile
2143 * @hw: pointer to the hardware structure
2144 * @prof: pointer to flow profile
2145 *
2146 * The symmetric hash will result from XORing the protocol's fields with
2147 * indexes in GLQF_HSYMM and GLQF_HINSET. This function configures the profile's
2148 * GLQF_HSYMM registers.
2149 */
2150static void ice_rss_set_symm(struct ice_hw *hw, struct ice_flow_prof *prof)
2151{
2152	struct ice_prof_map *map;
2153	u8 prof_id, m;
2154
2155	mutex_lock(&hw->blk[ICE_BLK_RSS].es.prof_map_lock);
2156	map = ice_search_prof_id(hw, ICE_BLK_RSS, prof->id);
2157	if (map)
2158		prof_id = map->prof_id;
2159	mutex_unlock(&hw->blk[ICE_BLK_RSS].es.prof_map_lock);
2160
2161	if (!map)
2162		return;
2163
2164	/* clear to default */
2165	for (m = 0; m < GLQF_HSYMM_REG_PER_PROF; m++)
2166		wr32(hw, GLQF_HSYMM(prof_id, m), 0);
2167
2168	if (prof->symm) {
2169		struct ice_flow_seg_xtrct *ipv4_src, *ipv4_dst;
2170		struct ice_flow_seg_xtrct *ipv6_src, *ipv6_dst;
2171		struct ice_flow_seg_xtrct *sctp_src, *sctp_dst;
2172		struct ice_flow_seg_xtrct *tcp_src, *tcp_dst;
2173		struct ice_flow_seg_xtrct *udp_src, *udp_dst;
2174		struct ice_flow_seg_info *seg;
2175
2176		seg = &prof->segs[prof->segs_cnt - 1];
2177
2178		ipv4_src = &seg->fields[ICE_FLOW_FIELD_IDX_IPV4_SA].xtrct;
2179		ipv4_dst = &seg->fields[ICE_FLOW_FIELD_IDX_IPV4_DA].xtrct;
2180
2181		ipv6_src = &seg->fields[ICE_FLOW_FIELD_IDX_IPV6_SA].xtrct;
2182		ipv6_dst = &seg->fields[ICE_FLOW_FIELD_IDX_IPV6_DA].xtrct;
2183
2184		tcp_src = &seg->fields[ICE_FLOW_FIELD_IDX_TCP_SRC_PORT].xtrct;
2185		tcp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_TCP_DST_PORT].xtrct;
2186
2187		udp_src = &seg->fields[ICE_FLOW_FIELD_IDX_UDP_SRC_PORT].xtrct;
2188		udp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_UDP_DST_PORT].xtrct;
2189
2190		sctp_src = &seg->fields[ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT].xtrct;
2191		sctp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_SCTP_DST_PORT].xtrct;
2192
2193		/* xor IPv4 */
2194		if (ipv4_src->prot_id != 0 && ipv4_dst->prot_id != 0)
2195			ice_rss_config_xor(hw, prof_id,
2196					   ipv4_src->idx, ipv4_dst->idx, 2);
2197
2198		/* xor IPv6 */
2199		if (ipv6_src->prot_id != 0 && ipv6_dst->prot_id != 0)
2200			ice_rss_config_xor(hw, prof_id,
2201					   ipv6_src->idx, ipv6_dst->idx, 8);
2202
2203		/* xor TCP */
2204		if (tcp_src->prot_id != 0 && tcp_dst->prot_id != 0)
2205			ice_rss_config_xor(hw, prof_id,
2206					   tcp_src->idx, tcp_dst->idx, 1);
2207
2208		/* xor UDP */
2209		if (udp_src->prot_id != 0 && udp_dst->prot_id != 0)
2210			ice_rss_config_xor(hw, prof_id,
2211					   udp_src->idx, udp_dst->idx, 1);
2212
2213		/* xor SCTP */
2214		if (sctp_src->prot_id != 0 && sctp_dst->prot_id != 0)
2215			ice_rss_config_xor(hw, prof_id,
2216					   sctp_src->idx, sctp_dst->idx, 1);
2217	}
2218}
2219
2220/**
2221 * ice_add_rss_cfg_sync - add an RSS configuration
2222 * @hw: pointer to the hardware structure
2223 * @vsi_handle: software VSI handle
2224 * @cfg: configure parameters
2225 *
2226 * Assumption: lock has already been acquired for RSS list
2227 */
2228static int
2229ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle,
2230		     const struct ice_rss_hash_cfg *cfg)
2231{
2232	const enum ice_block blk = ICE_BLK_RSS;
2233	struct ice_flow_prof *prof = NULL;
2234	struct ice_flow_seg_info *segs;
2235	u8 segs_cnt;
2236	int status;
2237
2238	segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ?
2239			ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX;
2240
2241	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2242	if (!segs)
2243		return -ENOMEM;
2244
2245	/* Construct the packet segment info from the hashed fields */
2246	status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg);
2247	if (status)
2248		goto exit;
2249
2250	/* Search for a flow profile that has matching headers, hash fields,
2251	 * symm and has the input VSI associated to it. If found, no further
2252	 * operations required and exit.
2253	 */
2254	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2255					cfg->symm, vsi_handle,
2256					ICE_FLOW_FIND_PROF_CHK_FLDS |
2257					ICE_FLOW_FIND_PROF_CHK_SYMM |
2258					ICE_FLOW_FIND_PROF_CHK_VSI);
2259	if (prof)
2260		goto exit;
2261
2262	/* Check if a flow profile exists with the same protocol headers and
2263	 * associated with the input VSI. If so disassociate the VSI from
2264	 * this profile. The VSI will be added to a new profile created with
2265	 * the protocol header and new hash field configuration.
2266	 */
2267	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2268					cfg->symm, vsi_handle,
2269					ICE_FLOW_FIND_PROF_CHK_VSI);
2270	if (prof) {
2271		status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2272		if (!status)
2273			ice_rem_rss_list(hw, vsi_handle, prof);
2274		else
2275			goto exit;
2276
2277		/* Remove profile if it has no VSIs associated */
2278		if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
2279			status = ice_flow_rem_prof(hw, blk, prof->id);
2280			if (status)
2281				goto exit;
2282		}
2283	}
2284
2285	/* Search for a profile that has the same match fields and symmetric
2286	 * setting. If this exists then associate the VSI to this profile.
2287	 */
2288	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2289					cfg->symm, vsi_handle,
2290					ICE_FLOW_FIND_PROF_CHK_SYMM |
2291					ICE_FLOW_FIND_PROF_CHK_FLDS);
2292	if (prof) {
2293		status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2294		if (!status)
2295			status = ice_add_rss_list(hw, vsi_handle, prof);
2296		goto exit;
2297	}
2298
2299	/* Create a new flow profile with packet segment information. */
2300	status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
2301				   segs, segs_cnt, cfg->symm, &prof);
2302	if (status)
2303		goto exit;
2304
2305	prof->symm = cfg->symm;
2306	ice_rss_set_symm(hw, prof);
2307	status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2308	/* If association to a new flow profile failed then this profile can
2309	 * be removed.
2310	 */
2311	if (status) {
2312		ice_flow_rem_prof(hw, blk, prof->id);
2313		goto exit;
2314	}
2315
2316	status = ice_add_rss_list(hw, vsi_handle, prof);
2317
2318exit:
2319	kfree(segs);
2320	return status;
2321}
2322
2323/**
2324 * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
2325 * @hw: pointer to the hardware structure
2326 * @vsi: VSI to add the RSS configuration to
2327 * @cfg: configure parameters
2328 *
2329 * This function will generate a flow profile based on fields associated with
2330 * the input fields to hash on, the flow type and use the VSI number to add
2331 * a flow entry to the profile.
2332 */
2333int
2334ice_add_rss_cfg(struct ice_hw *hw, struct ice_vsi *vsi,
2335		const struct ice_rss_hash_cfg *cfg)
2336{
2337	struct ice_rss_hash_cfg local_cfg;
2338	u16 vsi_handle;
2339	int status;
2340
2341	if (!vsi)
2342		return -EINVAL;
2343
2344	vsi_handle = vsi->idx;
2345	if (!ice_is_vsi_valid(hw, vsi_handle) ||
2346	    !cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS ||
2347	    cfg->hash_flds == ICE_HASH_INVALID)
2348		return -EINVAL;
2349
2350	mutex_lock(&hw->rss_locks);
2351	local_cfg = *cfg;
2352	if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) {
2353		status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2354	} else {
2355		local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS;
2356		status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2357		if (!status) {
2358			local_cfg.hdr_type = ICE_RSS_INNER_HEADERS;
2359			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2360						      &local_cfg);
2361		}
2362	}
2363	mutex_unlock(&hw->rss_locks);
2364
2365	return status;
2366}
2367
2368/**
2369 * ice_rem_rss_cfg_sync - remove an existing RSS configuration
2370 * @hw: pointer to the hardware structure
2371 * @vsi_handle: software VSI handle
2372 * @cfg: configure parameters
2373 *
2374 * Assumption: lock has already been acquired for RSS list
2375 */
2376static int
2377ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle,
2378		     const struct ice_rss_hash_cfg *cfg)
2379{
2380	const enum ice_block blk = ICE_BLK_RSS;
2381	struct ice_flow_seg_info *segs;
2382	struct ice_flow_prof *prof;
2383	u8 segs_cnt;
2384	int status;
2385
2386	segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ?
2387			ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX;
2388	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2389	if (!segs)
2390		return -ENOMEM;
2391
2392	/* Construct the packet segment info from the hashed fields */
2393	status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg);
2394	if (status)
2395		goto out;
2396
2397	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2398					cfg->symm, vsi_handle,
2399					ICE_FLOW_FIND_PROF_CHK_FLDS);
2400	if (!prof) {
2401		status = -ENOENT;
2402		goto out;
2403	}
2404
2405	status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2406	if (status)
2407		goto out;
2408
2409	/* Remove RSS configuration from VSI context before deleting
2410	 * the flow profile.
2411	 */
2412	ice_rem_rss_list(hw, vsi_handle, prof);
2413
2414	if (bitmap_empty(prof->vsis, ICE_MAX_VSI))
2415		status = ice_flow_rem_prof(hw, blk, prof->id);
2416
2417out:
2418	kfree(segs);
2419	return status;
2420}
2421
2422/**
2423 * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
2424 * @hw: pointer to the hardware structure
2425 * @vsi_handle: software VSI handle
2426 * @cfg: configure parameters
2427 *
2428 * This function will lookup the flow profile based on the input
2429 * hash field bitmap, iterate through the profile entry list of
2430 * that profile and find entry associated with input VSI to be
2431 * removed. Calls are made to underlying flow apis which will in
2432 * turn build or update buffers for RSS XLT1 section.
2433 */
2434int
2435ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle,
2436		const struct ice_rss_hash_cfg *cfg)
2437{
2438	struct ice_rss_hash_cfg local_cfg;
2439	int status;
2440
2441	if (!ice_is_vsi_valid(hw, vsi_handle) ||
2442	    !cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS ||
2443	    cfg->hash_flds == ICE_HASH_INVALID)
2444		return -EINVAL;
2445
2446	mutex_lock(&hw->rss_locks);
2447	local_cfg = *cfg;
2448	if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) {
2449		status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2450	} else {
2451		local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS;
2452		status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2453		if (!status) {
2454			local_cfg.hdr_type = ICE_RSS_INNER_HEADERS;
2455			status = ice_rem_rss_cfg_sync(hw, vsi_handle,
2456						      &local_cfg);
2457		}
2458	}
2459	mutex_unlock(&hw->rss_locks);
2460
2461	return status;
2462}
2463
2464/* Mapping of AVF hash bit fields to an L3-L4 hash combination.
2465 * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
2466 * convert its values to their appropriate flow L3, L4 values.
2467 */
2468#define ICE_FLOW_AVF_RSS_IPV4_MASKS \
2469	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
2470	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
2471#define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
2472	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
2473	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
2474#define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
2475	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
2476	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
2477	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
2478#define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
2479	(ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
2480	 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
2481
2482#define ICE_FLOW_AVF_RSS_IPV6_MASKS \
2483	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
2484	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
2485#define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
2486	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
2487	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
2488	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
2489#define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
2490	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
2491	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
2492#define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
2493	(ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
2494	 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
2495
2496/**
2497 * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
2498 * @hw: pointer to the hardware structure
2499 * @vsi: VF's VSI
2500 * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
2501 *
2502 * This function will take the hash bitmap provided by the AVF driver via a
2503 * message, convert it to ICE-compatible values, and configure RSS flow
2504 * profiles.
2505 */
2506int ice_add_avf_rss_cfg(struct ice_hw *hw, struct ice_vsi *vsi, u64 avf_hash)
2507{
2508	struct ice_rss_hash_cfg hcfg;
2509	u16 vsi_handle;
2510	int status = 0;
2511	u64 hash_flds;
2512
2513	if (!vsi)
2514		return -EINVAL;
2515
2516	vsi_handle = vsi->idx;
2517	if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
2518	    !ice_is_vsi_valid(hw, vsi_handle))
2519		return -EINVAL;
2520
2521	/* Make sure no unsupported bits are specified */
2522	if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
2523			 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
2524		return -EIO;
2525
2526	hash_flds = avf_hash;
2527
2528	/* Always create an L3 RSS configuration for any L4 RSS configuration */
2529	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
2530		hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
2531
2532	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
2533		hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
2534
2535	/* Create the corresponding RSS configuration for each valid hash bit */
2536	while (hash_flds) {
2537		u64 rss_hash = ICE_HASH_INVALID;
2538
2539		if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
2540			if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
2541				rss_hash = ICE_FLOW_HASH_IPV4;
2542				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
2543			} else if (hash_flds &
2544				   ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
2545				rss_hash = ICE_FLOW_HASH_IPV4 |
2546					ICE_FLOW_HASH_TCP_PORT;
2547				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
2548			} else if (hash_flds &
2549				   ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
2550				rss_hash = ICE_FLOW_HASH_IPV4 |
2551					ICE_FLOW_HASH_UDP_PORT;
2552				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
2553			} else if (hash_flds &
2554				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
2555				rss_hash = ICE_FLOW_HASH_IPV4 |
2556					ICE_FLOW_HASH_SCTP_PORT;
2557				hash_flds &=
2558					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
2559			}
2560		} else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
2561			if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
2562				rss_hash = ICE_FLOW_HASH_IPV6;
2563				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
2564			} else if (hash_flds &
2565				   ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
2566				rss_hash = ICE_FLOW_HASH_IPV6 |
2567					ICE_FLOW_HASH_TCP_PORT;
2568				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
2569			} else if (hash_flds &
2570				   ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
2571				rss_hash = ICE_FLOW_HASH_IPV6 |
2572					ICE_FLOW_HASH_UDP_PORT;
2573				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
2574			} else if (hash_flds &
2575				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
2576				rss_hash = ICE_FLOW_HASH_IPV6 |
2577					ICE_FLOW_HASH_SCTP_PORT;
2578				hash_flds &=
2579					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
2580			}
2581		}
2582
2583		if (rss_hash == ICE_HASH_INVALID)
2584			return -EIO;
2585
2586		hcfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
2587		hcfg.hash_flds = rss_hash;
2588		hcfg.hdr_type = ICE_RSS_ANY_HEADERS;
2589		hcfg.symm = false;
2590		status = ice_add_rss_cfg(hw, vsi, &hcfg);
2591		if (status)
2592			break;
2593	}
2594
2595	return status;
2596}
2597
2598static bool rss_cfg_symm_valid(u64 hfld)
2599{
2600	return !((!!(hfld & ICE_FLOW_HASH_FLD_IPV4_SA) ^
2601		  !!(hfld & ICE_FLOW_HASH_FLD_IPV4_DA)) ||
2602		 (!!(hfld & ICE_FLOW_HASH_FLD_IPV6_SA) ^
2603		  !!(hfld & ICE_FLOW_HASH_FLD_IPV6_DA)) ||
2604		 (!!(hfld & ICE_FLOW_HASH_FLD_TCP_SRC_PORT) ^
2605		  !!(hfld & ICE_FLOW_HASH_FLD_TCP_DST_PORT)) ||
2606		 (!!(hfld & ICE_FLOW_HASH_FLD_UDP_SRC_PORT) ^
2607		  !!(hfld & ICE_FLOW_HASH_FLD_UDP_DST_PORT)) ||
2608		 (!!(hfld & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT) ^
2609		  !!(hfld & ICE_FLOW_HASH_FLD_SCTP_DST_PORT)));
2610}
2611
2612/**
2613 * ice_set_rss_cfg_symm - set symmtery for all VSI's RSS configurations
2614 * @hw: pointer to the hardware structure
2615 * @vsi: VSI to set/unset Symmetric RSS
2616 * @symm: TRUE to set Symmetric RSS hashing
2617 */
2618int ice_set_rss_cfg_symm(struct ice_hw *hw, struct ice_vsi *vsi, bool symm)
2619{
2620	struct ice_rss_hash_cfg	local;
2621	struct ice_rss_cfg *r, *tmp;
2622	u16 vsi_handle = vsi->idx;
2623	int status = 0;
2624
2625	if (!ice_is_vsi_valid(hw, vsi_handle))
2626		return -EINVAL;
2627
2628	mutex_lock(&hw->rss_locks);
2629	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry) {
2630		if (test_bit(vsi_handle, r->vsis) && r->hash.symm != symm) {
2631			local = r->hash;
2632			local.symm = symm;
2633			if (symm && !rss_cfg_symm_valid(r->hash.hash_flds))
2634				continue;
2635
2636			status = ice_add_rss_cfg_sync(hw, vsi_handle, &local);
2637			if (status)
2638				break;
2639		}
2640	}
2641	mutex_unlock(&hw->rss_locks);
2642
2643	return status;
2644}
2645
2646/**
2647 * ice_replay_rss_cfg - replay RSS configurations associated with VSI
2648 * @hw: pointer to the hardware structure
2649 * @vsi_handle: software VSI handle
2650 */
2651int ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
2652{
2653	struct ice_rss_cfg *r;
2654	int status = 0;
2655
2656	if (!ice_is_vsi_valid(hw, vsi_handle))
2657		return -EINVAL;
2658
2659	mutex_lock(&hw->rss_locks);
2660	list_for_each_entry(r, &hw->rss_list_head, l_entry) {
2661		if (test_bit(vsi_handle, r->vsis)) {
2662			status = ice_add_rss_cfg_sync(hw, vsi_handle, &r->hash);
2663			if (status)
2664				break;
2665		}
2666	}
2667	mutex_unlock(&hw->rss_locks);
2668
2669	return status;
2670}
2671
2672/**
2673 * ice_get_rss_cfg - returns hashed fields for the given header types
2674 * @hw: pointer to the hardware structure
2675 * @vsi_handle: software VSI handle
2676 * @hdrs: protocol header type
2677 * @symm: whether the RSS is symmetric (bool, output)
2678 *
2679 * This function will return the match fields of the first instance of flow
2680 * profile having the given header types and containing input VSI
2681 */
2682u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs, bool *symm)
2683{
2684	u64 rss_hash = ICE_HASH_INVALID;
2685	struct ice_rss_cfg *r;
2686
2687	/* verify if the protocol header is non zero and VSI is valid */
2688	if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
2689		return ICE_HASH_INVALID;
2690
2691	mutex_lock(&hw->rss_locks);
2692	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2693		if (test_bit(vsi_handle, r->vsis) &&
2694		    r->hash.addl_hdrs == hdrs) {
2695			rss_hash = r->hash.hash_flds;
2696			*symm = r->hash.symm;
2697			break;
2698		}
2699	mutex_unlock(&hw->rss_locks);
2700
2701	return rss_hash;
2702}