Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Faraday FTGMAC100 Gigabit Ethernet
4 *
5 * (C) Copyright 2009-2011 Faraday Technology
6 * Po-Yu Chuang <ratbert@faraday-tech.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/clk.h>
12#include <linux/dma-mapping.h>
13#include <linux/etherdevice.h>
14#include <linux/ethtool.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/module.h>
18#include <linux/netdevice.h>
19#include <linux/of.h>
20#include <linux/of_mdio.h>
21#include <linux/phy.h>
22#include <linux/platform_device.h>
23#include <linux/property.h>
24#include <linux/crc32.h>
25#include <linux/if_vlan.h>
26#include <linux/of_net.h>
27#include <linux/phy_fixed.h>
28#include <net/ip.h>
29#include <net/ncsi.h>
30
31#include "ftgmac100.h"
32
33#define DRV_NAME "ftgmac100"
34
35/* Arbitrary values, I am not sure the HW has limits */
36#define MAX_RX_QUEUE_ENTRIES 1024
37#define MAX_TX_QUEUE_ENTRIES 1024
38#define MIN_RX_QUEUE_ENTRIES 32
39#define MIN_TX_QUEUE_ENTRIES 32
40
41/* Defaults */
42#define DEF_RX_QUEUE_ENTRIES 128
43#define DEF_TX_QUEUE_ENTRIES 128
44
45#define MAX_PKT_SIZE 1536
46#define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
47
48/* Min number of tx ring entries before stopping queue */
49#define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
50
51#define FTGMAC_100MHZ 100000000
52#define FTGMAC_25MHZ 25000000
53
54/* For NC-SI to register a fixed-link phy device */
55static struct fixed_phy_status ncsi_phy_status = {
56 .link = 1,
57 .speed = SPEED_100,
58 .duplex = DUPLEX_FULL,
59 .pause = 0,
60 .asym_pause = 0
61};
62
63struct ftgmac100 {
64 /* Registers */
65 struct resource *res;
66 void __iomem *base;
67
68 /* Rx ring */
69 unsigned int rx_q_entries;
70 struct ftgmac100_rxdes *rxdes;
71 dma_addr_t rxdes_dma;
72 struct sk_buff **rx_skbs;
73 unsigned int rx_pointer;
74 u32 rxdes0_edorr_mask;
75
76 /* Tx ring */
77 unsigned int tx_q_entries;
78 struct ftgmac100_txdes *txdes;
79 dma_addr_t txdes_dma;
80 struct sk_buff **tx_skbs;
81 unsigned int tx_clean_pointer;
82 unsigned int tx_pointer;
83 u32 txdes0_edotr_mask;
84
85 /* Used to signal the reset task of ring change request */
86 unsigned int new_rx_q_entries;
87 unsigned int new_tx_q_entries;
88
89 /* Scratch page to use when rx skb alloc fails */
90 void *rx_scratch;
91 dma_addr_t rx_scratch_dma;
92
93 /* Component structures */
94 struct net_device *netdev;
95 struct device *dev;
96 struct ncsi_dev *ndev;
97 struct napi_struct napi;
98 struct work_struct reset_task;
99 struct mii_bus *mii_bus;
100 struct clk *clk;
101
102 /* AST2500/AST2600 RMII ref clock gate */
103 struct clk *rclk;
104
105 /* Link management */
106 int cur_speed;
107 int cur_duplex;
108 bool use_ncsi;
109
110 /* Multicast filter settings */
111 u32 maht0;
112 u32 maht1;
113
114 /* Flow control settings */
115 bool tx_pause;
116 bool rx_pause;
117 bool aneg_pause;
118
119 /* Misc */
120 bool need_mac_restart;
121 bool is_aspeed;
122};
123
124static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
125{
126 struct net_device *netdev = priv->netdev;
127 int i;
128
129 /* NOTE: reset clears all registers */
130 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
131 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
132 priv->base + FTGMAC100_OFFSET_MACCR);
133 for (i = 0; i < 200; i++) {
134 unsigned int maccr;
135
136 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
137 if (!(maccr & FTGMAC100_MACCR_SW_RST))
138 return 0;
139
140 udelay(1);
141 }
142
143 netdev_err(netdev, "Hardware reset failed\n");
144 return -EIO;
145}
146
147static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
148{
149 u32 maccr = 0;
150
151 switch (priv->cur_speed) {
152 case SPEED_10:
153 case 0: /* no link */
154 break;
155
156 case SPEED_100:
157 maccr |= FTGMAC100_MACCR_FAST_MODE;
158 break;
159
160 case SPEED_1000:
161 maccr |= FTGMAC100_MACCR_GIGA_MODE;
162 break;
163 default:
164 netdev_err(priv->netdev, "Unknown speed %d !\n",
165 priv->cur_speed);
166 break;
167 }
168
169 /* (Re)initialize the queue pointers */
170 priv->rx_pointer = 0;
171 priv->tx_clean_pointer = 0;
172 priv->tx_pointer = 0;
173
174 /* The doc says reset twice with 10us interval */
175 if (ftgmac100_reset_mac(priv, maccr))
176 return -EIO;
177 usleep_range(10, 1000);
178 return ftgmac100_reset_mac(priv, maccr);
179}
180
181static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
182{
183 unsigned int maddr = mac[0] << 8 | mac[1];
184 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
185
186 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
187 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
188}
189
190static int ftgmac100_initial_mac(struct ftgmac100 *priv)
191{
192 u8 mac[ETH_ALEN];
193 unsigned int m;
194 unsigned int l;
195 int err;
196
197 err = of_get_ethdev_address(priv->dev->of_node, priv->netdev);
198 if (err == -EPROBE_DEFER)
199 return err;
200 if (!err) {
201 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
202 priv->netdev->dev_addr);
203 return 0;
204 }
205
206 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
207 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
208
209 mac[0] = (m >> 8) & 0xff;
210 mac[1] = m & 0xff;
211 mac[2] = (l >> 24) & 0xff;
212 mac[3] = (l >> 16) & 0xff;
213 mac[4] = (l >> 8) & 0xff;
214 mac[5] = l & 0xff;
215
216 if (is_valid_ether_addr(mac)) {
217 eth_hw_addr_set(priv->netdev, mac);
218 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
219 } else {
220 eth_hw_addr_random(priv->netdev);
221 dev_info(priv->dev, "Generated random MAC address %pM\n",
222 priv->netdev->dev_addr);
223 }
224
225 return 0;
226}
227
228static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
229{
230 int ret;
231
232 ret = eth_prepare_mac_addr_change(dev, p);
233 if (ret < 0)
234 return ret;
235
236 eth_commit_mac_addr_change(dev, p);
237 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
238
239 return 0;
240}
241
242static void ftgmac100_config_pause(struct ftgmac100 *priv)
243{
244 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
245
246 /* Throttle tx queue when receiving pause frames */
247 if (priv->rx_pause)
248 fcr |= FTGMAC100_FCR_FC_EN;
249
250 /* Enables sending pause frames when the RX queue is past a
251 * certain threshold.
252 */
253 if (priv->tx_pause)
254 fcr |= FTGMAC100_FCR_FCTHR_EN;
255
256 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
257}
258
259static void ftgmac100_init_hw(struct ftgmac100 *priv)
260{
261 u32 reg, rfifo_sz, tfifo_sz;
262
263 /* Clear stale interrupts */
264 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
265 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
266
267 /* Setup RX ring buffer base */
268 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
269
270 /* Setup TX ring buffer base */
271 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
272
273 /* Configure RX buffer size */
274 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
275 priv->base + FTGMAC100_OFFSET_RBSR);
276
277 /* Set RX descriptor autopoll */
278 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
279 priv->base + FTGMAC100_OFFSET_APTC);
280
281 /* Write MAC address */
282 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
283
284 /* Write multicast filter */
285 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
286 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
287
288 /* Configure descriptor sizes and increase burst sizes according
289 * to values in Aspeed SDK. The FIFO arbitration is enabled and
290 * the thresholds set based on the recommended values in the
291 * AST2400 specification.
292 */
293 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
294 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
295 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
296 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
297 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
298 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
299 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
300 priv->base + FTGMAC100_OFFSET_DBLAC);
301
302 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
303 * mitigation doesn't seem to provide any benefit with NAPI so leave
304 * it at that.
305 */
306 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
307 FTGMAC100_ITC_TXINT_THR(1),
308 priv->base + FTGMAC100_OFFSET_ITC);
309
310 /* Configure FIFO sizes in the TPAFCR register */
311 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
312 rfifo_sz = reg & 0x00000007;
313 tfifo_sz = (reg >> 3) & 0x00000007;
314 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
315 reg &= ~0x3f000000;
316 reg |= (tfifo_sz << 27);
317 reg |= (rfifo_sz << 24);
318 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
319}
320
321static void ftgmac100_start_hw(struct ftgmac100 *priv)
322{
323 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
324
325 /* Keep the original GMAC and FAST bits */
326 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
327
328 /* Add all the main enable bits */
329 maccr |= FTGMAC100_MACCR_TXDMA_EN |
330 FTGMAC100_MACCR_RXDMA_EN |
331 FTGMAC100_MACCR_TXMAC_EN |
332 FTGMAC100_MACCR_RXMAC_EN |
333 FTGMAC100_MACCR_CRC_APD |
334 FTGMAC100_MACCR_PHY_LINK_LEVEL |
335 FTGMAC100_MACCR_RX_RUNT |
336 FTGMAC100_MACCR_RX_BROADPKT;
337
338 /* Add other bits as needed */
339 if (priv->cur_duplex == DUPLEX_FULL)
340 maccr |= FTGMAC100_MACCR_FULLDUP;
341 if (priv->netdev->flags & IFF_PROMISC)
342 maccr |= FTGMAC100_MACCR_RX_ALL;
343 if (priv->netdev->flags & IFF_ALLMULTI)
344 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
345 else if (netdev_mc_count(priv->netdev))
346 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
347
348 /* Vlan filtering enabled */
349 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
350 maccr |= FTGMAC100_MACCR_RM_VLAN;
351
352 /* Hit the HW */
353 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
354}
355
356static void ftgmac100_stop_hw(struct ftgmac100 *priv)
357{
358 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
359}
360
361static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
362{
363 struct netdev_hw_addr *ha;
364
365 priv->maht1 = 0;
366 priv->maht0 = 0;
367 netdev_for_each_mc_addr(ha, priv->netdev) {
368 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
369
370 crc_val = (~(crc_val >> 2)) & 0x3f;
371 if (crc_val >= 32)
372 priv->maht1 |= 1ul << (crc_val - 32);
373 else
374 priv->maht0 |= 1ul << (crc_val);
375 }
376}
377
378static void ftgmac100_set_rx_mode(struct net_device *netdev)
379{
380 struct ftgmac100 *priv = netdev_priv(netdev);
381
382 /* Setup the hash filter */
383 ftgmac100_calc_mc_hash(priv);
384
385 /* Interface down ? that's all there is to do */
386 if (!netif_running(netdev))
387 return;
388
389 /* Update the HW */
390 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
391 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
392
393 /* Reconfigure MACCR */
394 ftgmac100_start_hw(priv);
395}
396
397static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
398 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
399{
400 struct net_device *netdev = priv->netdev;
401 struct sk_buff *skb;
402 dma_addr_t map;
403 int err = 0;
404
405 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
406 if (unlikely(!skb)) {
407 if (net_ratelimit())
408 netdev_warn(netdev, "failed to allocate rx skb\n");
409 err = -ENOMEM;
410 map = priv->rx_scratch_dma;
411 } else {
412 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
413 DMA_FROM_DEVICE);
414 if (unlikely(dma_mapping_error(priv->dev, map))) {
415 if (net_ratelimit())
416 netdev_err(netdev, "failed to map rx page\n");
417 dev_kfree_skb_any(skb);
418 map = priv->rx_scratch_dma;
419 skb = NULL;
420 err = -ENOMEM;
421 }
422 }
423
424 /* Store skb */
425 priv->rx_skbs[entry] = skb;
426
427 /* Store DMA address into RX desc */
428 rxdes->rxdes3 = cpu_to_le32(map);
429
430 /* Ensure the above is ordered vs clearing the OWN bit */
431 dma_wmb();
432
433 /* Clean status (which resets own bit) */
434 if (entry == (priv->rx_q_entries - 1))
435 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
436 else
437 rxdes->rxdes0 = 0;
438
439 return err;
440}
441
442static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
443 unsigned int pointer)
444{
445 return (pointer + 1) & (priv->rx_q_entries - 1);
446}
447
448static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
449{
450 struct net_device *netdev = priv->netdev;
451
452 if (status & FTGMAC100_RXDES0_RX_ERR)
453 netdev->stats.rx_errors++;
454
455 if (status & FTGMAC100_RXDES0_CRC_ERR)
456 netdev->stats.rx_crc_errors++;
457
458 if (status & (FTGMAC100_RXDES0_FTL |
459 FTGMAC100_RXDES0_RUNT |
460 FTGMAC100_RXDES0_RX_ODD_NB))
461 netdev->stats.rx_length_errors++;
462}
463
464static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
465{
466 struct net_device *netdev = priv->netdev;
467 struct ftgmac100_rxdes *rxdes;
468 struct sk_buff *skb;
469 unsigned int pointer, size;
470 u32 status, csum_vlan;
471 dma_addr_t map;
472
473 /* Grab next RX descriptor */
474 pointer = priv->rx_pointer;
475 rxdes = &priv->rxdes[pointer];
476
477 /* Grab descriptor status */
478 status = le32_to_cpu(rxdes->rxdes0);
479
480 /* Do we have a packet ? */
481 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
482 return false;
483
484 /* Order subsequent reads with the test for the ready bit */
485 dma_rmb();
486
487 /* We don't cope with fragmented RX packets */
488 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
489 !(status & FTGMAC100_RXDES0_LRS)))
490 goto drop;
491
492 /* Grab received size and csum vlan field in the descriptor */
493 size = status & FTGMAC100_RXDES0_VDBC;
494 csum_vlan = le32_to_cpu(rxdes->rxdes1);
495
496 /* Any error (other than csum offload) flagged ? */
497 if (unlikely(status & RXDES0_ANY_ERROR)) {
498 /* Correct for incorrect flagging of runt packets
499 * with vlan tags... Just accept a runt packet that
500 * has been flagged as vlan and whose size is at
501 * least 60 bytes.
502 */
503 if ((status & FTGMAC100_RXDES0_RUNT) &&
504 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
505 (size >= 60))
506 status &= ~FTGMAC100_RXDES0_RUNT;
507
508 /* Any error still in there ? */
509 if (status & RXDES0_ANY_ERROR) {
510 ftgmac100_rx_packet_error(priv, status);
511 goto drop;
512 }
513 }
514
515 /* If the packet had no skb (failed to allocate earlier)
516 * then try to allocate one and skip
517 */
518 skb = priv->rx_skbs[pointer];
519 if (!unlikely(skb)) {
520 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
521 goto drop;
522 }
523
524 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
525 netdev->stats.multicast++;
526
527 /* If the HW found checksum errors, bounce it to software.
528 *
529 * If we didn't, we need to see if the packet was recognized
530 * by HW as one of the supported checksummed protocols before
531 * we accept the HW test results.
532 */
533 if (netdev->features & NETIF_F_RXCSUM) {
534 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
535 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
536 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
537 if ((csum_vlan & err_bits) ||
538 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
539 skb->ip_summed = CHECKSUM_NONE;
540 else
541 skb->ip_summed = CHECKSUM_UNNECESSARY;
542 }
543
544 /* Transfer received size to skb */
545 skb_put(skb, size);
546
547 /* Extract vlan tag */
548 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
549 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
550 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
551 csum_vlan & 0xffff);
552
553 /* Tear down DMA mapping, do necessary cache management */
554 map = le32_to_cpu(rxdes->rxdes3);
555
556#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
557 /* When we don't have an iommu, we can save cycles by not
558 * invalidating the cache for the part of the packet that
559 * wasn't received.
560 */
561 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
562#else
563 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
564#endif
565
566
567 /* Resplenish rx ring */
568 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
569 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
570
571 skb->protocol = eth_type_trans(skb, netdev);
572
573 netdev->stats.rx_packets++;
574 netdev->stats.rx_bytes += size;
575
576 /* push packet to protocol stack */
577 if (skb->ip_summed == CHECKSUM_NONE)
578 netif_receive_skb(skb);
579 else
580 napi_gro_receive(&priv->napi, skb);
581
582 (*processed)++;
583 return true;
584
585drop:
586 /* Clean rxdes0 (which resets own bit) */
587 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
588 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
589 netdev->stats.rx_dropped++;
590 return true;
591}
592
593static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
594 unsigned int index)
595{
596 if (index == (priv->tx_q_entries - 1))
597 return priv->txdes0_edotr_mask;
598 else
599 return 0;
600}
601
602static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
603 unsigned int pointer)
604{
605 return (pointer + 1) & (priv->tx_q_entries - 1);
606}
607
608static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
609{
610 /* Returns the number of available slots in the TX queue
611 *
612 * This always leaves one free slot so we don't have to
613 * worry about empty vs. full, and this simplifies the
614 * test for ftgmac100_tx_buf_cleanable() below
615 */
616 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
617 (priv->tx_q_entries - 1);
618}
619
620static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
621{
622 return priv->tx_pointer != priv->tx_clean_pointer;
623}
624
625static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
626 unsigned int pointer,
627 struct sk_buff *skb,
628 struct ftgmac100_txdes *txdes,
629 u32 ctl_stat)
630{
631 dma_addr_t map = le32_to_cpu(txdes->txdes3);
632 size_t len;
633
634 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
635 len = skb_headlen(skb);
636 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
637 } else {
638 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
639 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
640 }
641
642 /* Free SKB on last segment */
643 if (ctl_stat & FTGMAC100_TXDES0_LTS)
644 dev_kfree_skb(skb);
645 priv->tx_skbs[pointer] = NULL;
646}
647
648static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
649{
650 struct net_device *netdev = priv->netdev;
651 struct ftgmac100_txdes *txdes;
652 struct sk_buff *skb;
653 unsigned int pointer;
654 u32 ctl_stat;
655
656 pointer = priv->tx_clean_pointer;
657 txdes = &priv->txdes[pointer];
658
659 ctl_stat = le32_to_cpu(txdes->txdes0);
660 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
661 return false;
662
663 skb = priv->tx_skbs[pointer];
664 netdev->stats.tx_packets++;
665 netdev->stats.tx_bytes += skb->len;
666 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
667 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
668
669 /* Ensure the descriptor config is visible before setting the tx
670 * pointer.
671 */
672 smp_wmb();
673
674 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
675
676 return true;
677}
678
679static void ftgmac100_tx_complete(struct ftgmac100 *priv)
680{
681 struct net_device *netdev = priv->netdev;
682
683 /* Process all completed packets */
684 while (ftgmac100_tx_buf_cleanable(priv) &&
685 ftgmac100_tx_complete_packet(priv))
686 ;
687
688 /* Restart queue if needed */
689 smp_mb();
690 if (unlikely(netif_queue_stopped(netdev) &&
691 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
692 struct netdev_queue *txq;
693
694 txq = netdev_get_tx_queue(netdev, 0);
695 __netif_tx_lock(txq, smp_processor_id());
696 if (netif_queue_stopped(netdev) &&
697 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
698 netif_wake_queue(netdev);
699 __netif_tx_unlock(txq);
700 }
701}
702
703static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
704{
705 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
706 u8 ip_proto = ip_hdr(skb)->protocol;
707
708 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
709 switch(ip_proto) {
710 case IPPROTO_TCP:
711 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
712 return true;
713 case IPPROTO_UDP:
714 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
715 return true;
716 case IPPROTO_IP:
717 return true;
718 }
719 }
720 return skb_checksum_help(skb) == 0;
721}
722
723static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
724 struct net_device *netdev)
725{
726 struct ftgmac100 *priv = netdev_priv(netdev);
727 struct ftgmac100_txdes *txdes, *first;
728 unsigned int pointer, nfrags, len, i, j;
729 u32 f_ctl_stat, ctl_stat, csum_vlan;
730 dma_addr_t map;
731
732 /* The HW doesn't pad small frames */
733 if (eth_skb_pad(skb)) {
734 netdev->stats.tx_dropped++;
735 return NETDEV_TX_OK;
736 }
737
738 /* Reject oversize packets */
739 if (unlikely(skb->len > MAX_PKT_SIZE)) {
740 if (net_ratelimit())
741 netdev_dbg(netdev, "tx packet too big\n");
742 goto drop;
743 }
744
745 /* Do we have a limit on #fragments ? I yet have to get a reply
746 * from Aspeed. If there's one I haven't hit it.
747 */
748 nfrags = skb_shinfo(skb)->nr_frags;
749
750 /* Setup HW checksumming */
751 csum_vlan = 0;
752 if (skb->ip_summed == CHECKSUM_PARTIAL &&
753 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
754 goto drop;
755
756 /* Add VLAN tag */
757 if (skb_vlan_tag_present(skb)) {
758 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
759 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
760 }
761
762 /* Get header len */
763 len = skb_headlen(skb);
764
765 /* Map the packet head */
766 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
767 if (dma_mapping_error(priv->dev, map)) {
768 if (net_ratelimit())
769 netdev_err(netdev, "map tx packet head failed\n");
770 goto drop;
771 }
772
773 /* Grab the next free tx descriptor */
774 pointer = priv->tx_pointer;
775 txdes = first = &priv->txdes[pointer];
776
777 /* Setup it up with the packet head. Don't write the head to the
778 * ring just yet
779 */
780 priv->tx_skbs[pointer] = skb;
781 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
782 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
783 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
784 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
785 if (nfrags == 0)
786 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
787 txdes->txdes3 = cpu_to_le32(map);
788 txdes->txdes1 = cpu_to_le32(csum_vlan);
789
790 /* Next descriptor */
791 pointer = ftgmac100_next_tx_pointer(priv, pointer);
792
793 /* Add the fragments */
794 for (i = 0; i < nfrags; i++) {
795 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
796
797 len = skb_frag_size(frag);
798
799 /* Map it */
800 map = skb_frag_dma_map(priv->dev, frag, 0, len,
801 DMA_TO_DEVICE);
802 if (dma_mapping_error(priv->dev, map))
803 goto dma_err;
804
805 /* Setup descriptor */
806 priv->tx_skbs[pointer] = skb;
807 txdes = &priv->txdes[pointer];
808 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
809 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
810 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
811 if (i == (nfrags - 1))
812 ctl_stat |= FTGMAC100_TXDES0_LTS;
813 txdes->txdes0 = cpu_to_le32(ctl_stat);
814 txdes->txdes1 = 0;
815 txdes->txdes3 = cpu_to_le32(map);
816
817 /* Next one */
818 pointer = ftgmac100_next_tx_pointer(priv, pointer);
819 }
820
821 /* Order the previous packet and descriptor udpates
822 * before setting the OWN bit on the first descriptor.
823 */
824 dma_wmb();
825 first->txdes0 = cpu_to_le32(f_ctl_stat);
826
827 /* Ensure the descriptor config is visible before setting the tx
828 * pointer.
829 */
830 smp_wmb();
831
832 /* Update next TX pointer */
833 priv->tx_pointer = pointer;
834
835 /* If there isn't enough room for all the fragments of a new packet
836 * in the TX ring, stop the queue. The sequence below is race free
837 * vs. a concurrent restart in ftgmac100_poll()
838 */
839 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
840 netif_stop_queue(netdev);
841 /* Order the queue stop with the test below */
842 smp_mb();
843 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
844 netif_wake_queue(netdev);
845 }
846
847 /* Poke transmitter to read the updated TX descriptors */
848 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
849
850 return NETDEV_TX_OK;
851
852dma_err:
853 if (net_ratelimit())
854 netdev_err(netdev, "map tx fragment failed\n");
855
856 /* Free head */
857 pointer = priv->tx_pointer;
858 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
859 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
860
861 /* Then all fragments */
862 for (j = 0; j < i; j++) {
863 pointer = ftgmac100_next_tx_pointer(priv, pointer);
864 txdes = &priv->txdes[pointer];
865 ctl_stat = le32_to_cpu(txdes->txdes0);
866 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
867 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
868 }
869
870 /* This cannot be reached if we successfully mapped the
871 * last fragment, so we know ftgmac100_free_tx_packet()
872 * hasn't freed the skb yet.
873 */
874drop:
875 /* Drop the packet */
876 dev_kfree_skb_any(skb);
877 netdev->stats.tx_dropped++;
878
879 return NETDEV_TX_OK;
880}
881
882static void ftgmac100_free_buffers(struct ftgmac100 *priv)
883{
884 int i;
885
886 /* Free all RX buffers */
887 for (i = 0; i < priv->rx_q_entries; i++) {
888 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
889 struct sk_buff *skb = priv->rx_skbs[i];
890 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
891
892 if (!skb)
893 continue;
894
895 priv->rx_skbs[i] = NULL;
896 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
897 dev_kfree_skb_any(skb);
898 }
899
900 /* Free all TX buffers */
901 for (i = 0; i < priv->tx_q_entries; i++) {
902 struct ftgmac100_txdes *txdes = &priv->txdes[i];
903 struct sk_buff *skb = priv->tx_skbs[i];
904
905 if (!skb)
906 continue;
907 ftgmac100_free_tx_packet(priv, i, skb, txdes,
908 le32_to_cpu(txdes->txdes0));
909 }
910}
911
912static void ftgmac100_free_rings(struct ftgmac100 *priv)
913{
914 /* Free skb arrays */
915 kfree(priv->rx_skbs);
916 kfree(priv->tx_skbs);
917
918 /* Free descriptors */
919 if (priv->rxdes)
920 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
921 sizeof(struct ftgmac100_rxdes),
922 priv->rxdes, priv->rxdes_dma);
923 priv->rxdes = NULL;
924
925 if (priv->txdes)
926 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
927 sizeof(struct ftgmac100_txdes),
928 priv->txdes, priv->txdes_dma);
929 priv->txdes = NULL;
930
931 /* Free scratch packet buffer */
932 if (priv->rx_scratch)
933 dma_free_coherent(priv->dev, RX_BUF_SIZE,
934 priv->rx_scratch, priv->rx_scratch_dma);
935}
936
937static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
938{
939 /* Allocate skb arrays */
940 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
941 GFP_KERNEL);
942 if (!priv->rx_skbs)
943 return -ENOMEM;
944 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
945 GFP_KERNEL);
946 if (!priv->tx_skbs)
947 return -ENOMEM;
948
949 /* Allocate descriptors */
950 priv->rxdes = dma_alloc_coherent(priv->dev,
951 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
952 &priv->rxdes_dma, GFP_KERNEL);
953 if (!priv->rxdes)
954 return -ENOMEM;
955 priv->txdes = dma_alloc_coherent(priv->dev,
956 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
957 &priv->txdes_dma, GFP_KERNEL);
958 if (!priv->txdes)
959 return -ENOMEM;
960
961 /* Allocate scratch packet buffer */
962 priv->rx_scratch = dma_alloc_coherent(priv->dev,
963 RX_BUF_SIZE,
964 &priv->rx_scratch_dma,
965 GFP_KERNEL);
966 if (!priv->rx_scratch)
967 return -ENOMEM;
968
969 return 0;
970}
971
972static void ftgmac100_init_rings(struct ftgmac100 *priv)
973{
974 struct ftgmac100_rxdes *rxdes = NULL;
975 struct ftgmac100_txdes *txdes = NULL;
976 int i;
977
978 /* Update entries counts */
979 priv->rx_q_entries = priv->new_rx_q_entries;
980 priv->tx_q_entries = priv->new_tx_q_entries;
981
982 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
983 return;
984
985 /* Initialize RX ring */
986 for (i = 0; i < priv->rx_q_entries; i++) {
987 rxdes = &priv->rxdes[i];
988 rxdes->rxdes0 = 0;
989 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
990 }
991 /* Mark the end of the ring */
992 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
993
994 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
995 return;
996
997 /* Initialize TX ring */
998 for (i = 0; i < priv->tx_q_entries; i++) {
999 txdes = &priv->txdes[i];
1000 txdes->txdes0 = 0;
1001 }
1002 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
1003}
1004
1005static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
1006{
1007 int i;
1008
1009 for (i = 0; i < priv->rx_q_entries; i++) {
1010 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
1011
1012 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
1013 return -ENOMEM;
1014 }
1015 return 0;
1016}
1017
1018static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1019{
1020 struct net_device *netdev = bus->priv;
1021 struct ftgmac100 *priv = netdev_priv(netdev);
1022 unsigned int phycr;
1023 int i;
1024
1025 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1026
1027 /* preserve MDC cycle threshold */
1028 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1029
1030 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1031 FTGMAC100_PHYCR_REGAD(regnum) |
1032 FTGMAC100_PHYCR_MIIRD;
1033
1034 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1035
1036 for (i = 0; i < 10; i++) {
1037 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1038
1039 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1040 int data;
1041
1042 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1043 return FTGMAC100_PHYDATA_MIIRDATA(data);
1044 }
1045
1046 udelay(100);
1047 }
1048
1049 netdev_err(netdev, "mdio read timed out\n");
1050 return -EIO;
1051}
1052
1053static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1054 int regnum, u16 value)
1055{
1056 struct net_device *netdev = bus->priv;
1057 struct ftgmac100 *priv = netdev_priv(netdev);
1058 unsigned int phycr;
1059 int data;
1060 int i;
1061
1062 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1063
1064 /* preserve MDC cycle threshold */
1065 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1066
1067 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1068 FTGMAC100_PHYCR_REGAD(regnum) |
1069 FTGMAC100_PHYCR_MIIWR;
1070
1071 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1072
1073 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1074 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1075
1076 for (i = 0; i < 10; i++) {
1077 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1078
1079 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1080 return 0;
1081
1082 udelay(100);
1083 }
1084
1085 netdev_err(netdev, "mdio write timed out\n");
1086 return -EIO;
1087}
1088
1089static void ftgmac100_get_drvinfo(struct net_device *netdev,
1090 struct ethtool_drvinfo *info)
1091{
1092 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1093 strscpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1094}
1095
1096static void
1097ftgmac100_get_ringparam(struct net_device *netdev,
1098 struct ethtool_ringparam *ering,
1099 struct kernel_ethtool_ringparam *kernel_ering,
1100 struct netlink_ext_ack *extack)
1101{
1102 struct ftgmac100 *priv = netdev_priv(netdev);
1103
1104 memset(ering, 0, sizeof(*ering));
1105 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1106 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1107 ering->rx_pending = priv->rx_q_entries;
1108 ering->tx_pending = priv->tx_q_entries;
1109}
1110
1111static int
1112ftgmac100_set_ringparam(struct net_device *netdev,
1113 struct ethtool_ringparam *ering,
1114 struct kernel_ethtool_ringparam *kernel_ering,
1115 struct netlink_ext_ack *extack)
1116{
1117 struct ftgmac100 *priv = netdev_priv(netdev);
1118
1119 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1120 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1121 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1122 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1123 !is_power_of_2(ering->rx_pending) ||
1124 !is_power_of_2(ering->tx_pending))
1125 return -EINVAL;
1126
1127 priv->new_rx_q_entries = ering->rx_pending;
1128 priv->new_tx_q_entries = ering->tx_pending;
1129 if (netif_running(netdev))
1130 schedule_work(&priv->reset_task);
1131
1132 return 0;
1133}
1134
1135static void ftgmac100_get_pauseparam(struct net_device *netdev,
1136 struct ethtool_pauseparam *pause)
1137{
1138 struct ftgmac100 *priv = netdev_priv(netdev);
1139
1140 pause->autoneg = priv->aneg_pause;
1141 pause->tx_pause = priv->tx_pause;
1142 pause->rx_pause = priv->rx_pause;
1143}
1144
1145static int ftgmac100_set_pauseparam(struct net_device *netdev,
1146 struct ethtool_pauseparam *pause)
1147{
1148 struct ftgmac100 *priv = netdev_priv(netdev);
1149 struct phy_device *phydev = netdev->phydev;
1150
1151 priv->aneg_pause = pause->autoneg;
1152 priv->tx_pause = pause->tx_pause;
1153 priv->rx_pause = pause->rx_pause;
1154
1155 if (phydev)
1156 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1157
1158 if (netif_running(netdev)) {
1159 if (!(phydev && priv->aneg_pause))
1160 ftgmac100_config_pause(priv);
1161 }
1162
1163 return 0;
1164}
1165
1166static const struct ethtool_ops ftgmac100_ethtool_ops = {
1167 .get_drvinfo = ftgmac100_get_drvinfo,
1168 .get_link = ethtool_op_get_link,
1169 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1170 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1171 .nway_reset = phy_ethtool_nway_reset,
1172 .get_ringparam = ftgmac100_get_ringparam,
1173 .set_ringparam = ftgmac100_set_ringparam,
1174 .get_pauseparam = ftgmac100_get_pauseparam,
1175 .set_pauseparam = ftgmac100_set_pauseparam,
1176};
1177
1178static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1179{
1180 struct net_device *netdev = dev_id;
1181 struct ftgmac100 *priv = netdev_priv(netdev);
1182 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1183
1184 /* Fetch and clear interrupt bits, process abnormal ones */
1185 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1186 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1187 if (unlikely(status & FTGMAC100_INT_BAD)) {
1188
1189 /* RX buffer unavailable */
1190 if (status & FTGMAC100_INT_NO_RXBUF)
1191 netdev->stats.rx_over_errors++;
1192
1193 /* received packet lost due to RX FIFO full */
1194 if (status & FTGMAC100_INT_RPKT_LOST)
1195 netdev->stats.rx_fifo_errors++;
1196
1197 /* sent packet lost due to excessive TX collision */
1198 if (status & FTGMAC100_INT_XPKT_LOST)
1199 netdev->stats.tx_fifo_errors++;
1200
1201 /* AHB error -> Reset the chip */
1202 if (status & FTGMAC100_INT_AHB_ERR) {
1203 if (net_ratelimit())
1204 netdev_warn(netdev,
1205 "AHB bus error ! Resetting chip.\n");
1206 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1207 schedule_work(&priv->reset_task);
1208 return IRQ_HANDLED;
1209 }
1210
1211 /* We may need to restart the MAC after such errors, delay
1212 * this until after we have freed some Rx buffers though
1213 */
1214 priv->need_mac_restart = true;
1215
1216 /* Disable those errors until we restart */
1217 new_mask &= ~status;
1218 }
1219
1220 /* Only enable "bad" interrupts while NAPI is on */
1221 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1222
1223 /* Schedule NAPI bh */
1224 napi_schedule_irqoff(&priv->napi);
1225
1226 return IRQ_HANDLED;
1227}
1228
1229static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1230{
1231 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1232
1233 /* Do we have a packet ? */
1234 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1235}
1236
1237static int ftgmac100_poll(struct napi_struct *napi, int budget)
1238{
1239 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1240 int work_done = 0;
1241 bool more;
1242
1243 /* Handle TX completions */
1244 if (ftgmac100_tx_buf_cleanable(priv))
1245 ftgmac100_tx_complete(priv);
1246
1247 /* Handle RX packets */
1248 do {
1249 more = ftgmac100_rx_packet(priv, &work_done);
1250 } while (more && work_done < budget);
1251
1252
1253 /* The interrupt is telling us to kick the MAC back to life
1254 * after an RX overflow
1255 */
1256 if (unlikely(priv->need_mac_restart)) {
1257 ftgmac100_start_hw(priv);
1258 priv->need_mac_restart = false;
1259
1260 /* Re-enable "bad" interrupts */
1261 iowrite32(FTGMAC100_INT_BAD,
1262 priv->base + FTGMAC100_OFFSET_IER);
1263 }
1264
1265 /* As long as we are waiting for transmit packets to be
1266 * completed we keep NAPI going
1267 */
1268 if (ftgmac100_tx_buf_cleanable(priv))
1269 work_done = budget;
1270
1271 if (work_done < budget) {
1272 /* We are about to re-enable all interrupts. However
1273 * the HW has been latching RX/TX packet interrupts while
1274 * they were masked. So we clear them first, then we need
1275 * to re-check if there's something to process
1276 */
1277 iowrite32(FTGMAC100_INT_RXTX,
1278 priv->base + FTGMAC100_OFFSET_ISR);
1279
1280 /* Push the above (and provides a barrier vs. subsequent
1281 * reads of the descriptor).
1282 */
1283 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1284
1285 /* Check RX and TX descriptors for more work to do */
1286 if (ftgmac100_check_rx(priv) ||
1287 ftgmac100_tx_buf_cleanable(priv))
1288 return budget;
1289
1290 /* deschedule NAPI */
1291 napi_complete(napi);
1292
1293 /* enable all interrupts */
1294 iowrite32(FTGMAC100_INT_ALL,
1295 priv->base + FTGMAC100_OFFSET_IER);
1296 }
1297
1298 return work_done;
1299}
1300
1301static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1302{
1303 int err = 0;
1304
1305 /* Re-init descriptors (adjust queue sizes) */
1306 ftgmac100_init_rings(priv);
1307
1308 /* Realloc rx descriptors */
1309 err = ftgmac100_alloc_rx_buffers(priv);
1310 if (err && !ignore_alloc_err)
1311 return err;
1312
1313 /* Reinit and restart HW */
1314 ftgmac100_init_hw(priv);
1315 ftgmac100_config_pause(priv);
1316 ftgmac100_start_hw(priv);
1317
1318 /* Re-enable the device */
1319 napi_enable(&priv->napi);
1320 netif_start_queue(priv->netdev);
1321
1322 /* Enable all interrupts */
1323 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1324
1325 return err;
1326}
1327
1328static void ftgmac100_reset(struct ftgmac100 *priv)
1329{
1330 struct net_device *netdev = priv->netdev;
1331 int err;
1332
1333 netdev_dbg(netdev, "Resetting NIC...\n");
1334
1335 /* Lock the world */
1336 rtnl_lock();
1337 if (netdev->phydev)
1338 mutex_lock(&netdev->phydev->lock);
1339 if (priv->mii_bus)
1340 mutex_lock(&priv->mii_bus->mdio_lock);
1341
1342
1343 /* Check if the interface is still up */
1344 if (!netif_running(netdev))
1345 goto bail;
1346
1347 /* Stop the network stack */
1348 netif_trans_update(netdev);
1349 napi_disable(&priv->napi);
1350 netif_tx_disable(netdev);
1351
1352 /* Stop and reset the MAC */
1353 ftgmac100_stop_hw(priv);
1354 err = ftgmac100_reset_and_config_mac(priv);
1355 if (err) {
1356 /* Not much we can do ... it might come back... */
1357 netdev_err(netdev, "attempting to continue...\n");
1358 }
1359
1360 /* Free all rx and tx buffers */
1361 ftgmac100_free_buffers(priv);
1362
1363 /* Setup everything again and restart chip */
1364 ftgmac100_init_all(priv, true);
1365
1366 netdev_dbg(netdev, "Reset done !\n");
1367bail:
1368 if (priv->mii_bus)
1369 mutex_unlock(&priv->mii_bus->mdio_lock);
1370 if (netdev->phydev)
1371 mutex_unlock(&netdev->phydev->lock);
1372 rtnl_unlock();
1373}
1374
1375static void ftgmac100_reset_task(struct work_struct *work)
1376{
1377 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1378 reset_task);
1379
1380 ftgmac100_reset(priv);
1381}
1382
1383static void ftgmac100_adjust_link(struct net_device *netdev)
1384{
1385 struct ftgmac100 *priv = netdev_priv(netdev);
1386 struct phy_device *phydev = netdev->phydev;
1387 bool tx_pause, rx_pause;
1388 int new_speed;
1389
1390 /* We store "no link" as speed 0 */
1391 if (!phydev->link)
1392 new_speed = 0;
1393 else
1394 new_speed = phydev->speed;
1395
1396 /* Grab pause settings from PHY if configured to do so */
1397 if (priv->aneg_pause) {
1398 rx_pause = tx_pause = phydev->pause;
1399 if (phydev->asym_pause)
1400 tx_pause = !rx_pause;
1401 } else {
1402 rx_pause = priv->rx_pause;
1403 tx_pause = priv->tx_pause;
1404 }
1405
1406 /* Link hasn't changed, do nothing */
1407 if (phydev->speed == priv->cur_speed &&
1408 phydev->duplex == priv->cur_duplex &&
1409 rx_pause == priv->rx_pause &&
1410 tx_pause == priv->tx_pause)
1411 return;
1412
1413 /* Print status if we have a link or we had one and just lost it,
1414 * don't print otherwise.
1415 */
1416 if (new_speed || priv->cur_speed)
1417 phy_print_status(phydev);
1418
1419 priv->cur_speed = new_speed;
1420 priv->cur_duplex = phydev->duplex;
1421 priv->rx_pause = rx_pause;
1422 priv->tx_pause = tx_pause;
1423
1424 /* Link is down, do nothing else */
1425 if (!new_speed)
1426 return;
1427
1428 /* Disable all interrupts */
1429 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1430
1431 /* Release phy lock to allow ftgmac100_reset to aquire it, keeping lock
1432 * order consistent to prevent dead lock.
1433 */
1434 if (netdev->phydev)
1435 mutex_unlock(&netdev->phydev->lock);
1436
1437 ftgmac100_reset(priv);
1438
1439 if (netdev->phydev)
1440 mutex_lock(&netdev->phydev->lock);
1441
1442}
1443
1444static int ftgmac100_mii_probe(struct net_device *netdev)
1445{
1446 struct ftgmac100 *priv = netdev_priv(netdev);
1447 struct platform_device *pdev = to_platform_device(priv->dev);
1448 struct device_node *np = pdev->dev.of_node;
1449 struct phy_device *phydev;
1450 phy_interface_t phy_intf;
1451 int err;
1452
1453 /* Default to RGMII. It's a gigabit part after all */
1454 err = of_get_phy_mode(np, &phy_intf);
1455 if (err)
1456 phy_intf = PHY_INTERFACE_MODE_RGMII;
1457
1458 /* Aspeed only supports these. I don't know about other IP
1459 * block vendors so I'm going to just let them through for
1460 * now. Note that this is only a warning if for some obscure
1461 * reason the DT really means to lie about it or it's a newer
1462 * part we don't know about.
1463 *
1464 * On the Aspeed SoC there are additionally straps and SCU
1465 * control bits that could tell us what the interface is
1466 * (or allow us to configure it while the IP block is held
1467 * in reset). For now I chose to keep this driver away from
1468 * those SoC specific bits and assume the device-tree is
1469 * right and the SCU has been configured properly by pinmux
1470 * or the firmware.
1471 */
1472 if (priv->is_aspeed && !(phy_interface_mode_is_rgmii(phy_intf))) {
1473 netdev_warn(netdev,
1474 "Unsupported PHY mode %s !\n",
1475 phy_modes(phy_intf));
1476 }
1477
1478 phydev = phy_find_first(priv->mii_bus);
1479 if (!phydev) {
1480 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1481 return -ENODEV;
1482 }
1483
1484 phydev = phy_connect(netdev, phydev_name(phydev),
1485 &ftgmac100_adjust_link, phy_intf);
1486
1487 if (IS_ERR(phydev)) {
1488 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1489 return PTR_ERR(phydev);
1490 }
1491
1492 /* Indicate that we support PAUSE frames (see comment in
1493 * Documentation/networking/phy.rst)
1494 */
1495 phy_support_asym_pause(phydev);
1496
1497 /* Display what we found */
1498 phy_attached_info(phydev);
1499
1500 return 0;
1501}
1502
1503static int ftgmac100_open(struct net_device *netdev)
1504{
1505 struct ftgmac100 *priv = netdev_priv(netdev);
1506 int err;
1507
1508 /* Allocate ring buffers */
1509 err = ftgmac100_alloc_rings(priv);
1510 if (err) {
1511 netdev_err(netdev, "Failed to allocate descriptors\n");
1512 return err;
1513 }
1514
1515 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1516 *
1517 * Otherwise we leave it set to 0 (no link), the link
1518 * message from the PHY layer will handle setting it up to
1519 * something else if needed.
1520 */
1521 if (priv->use_ncsi) {
1522 priv->cur_duplex = DUPLEX_FULL;
1523 priv->cur_speed = SPEED_100;
1524 } else {
1525 priv->cur_duplex = 0;
1526 priv->cur_speed = 0;
1527 }
1528
1529 /* Reset the hardware */
1530 err = ftgmac100_reset_and_config_mac(priv);
1531 if (err)
1532 goto err_hw;
1533
1534 /* Initialize NAPI */
1535 netif_napi_add(netdev, &priv->napi, ftgmac100_poll);
1536
1537 /* Grab our interrupt */
1538 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1539 if (err) {
1540 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1541 goto err_irq;
1542 }
1543
1544 /* Start things up */
1545 err = ftgmac100_init_all(priv, false);
1546 if (err) {
1547 netdev_err(netdev, "Failed to allocate packet buffers\n");
1548 goto err_alloc;
1549 }
1550
1551 if (netdev->phydev) {
1552 /* If we have a PHY, start polling */
1553 phy_start(netdev->phydev);
1554 }
1555 if (priv->use_ncsi) {
1556 /* If using NC-SI, set our carrier on and start the stack */
1557 netif_carrier_on(netdev);
1558
1559 /* Start the NCSI device */
1560 err = ncsi_start_dev(priv->ndev);
1561 if (err)
1562 goto err_ncsi;
1563 }
1564
1565 return 0;
1566
1567err_ncsi:
1568 phy_stop(netdev->phydev);
1569 napi_disable(&priv->napi);
1570 netif_stop_queue(netdev);
1571err_alloc:
1572 ftgmac100_free_buffers(priv);
1573 free_irq(netdev->irq, netdev);
1574err_irq:
1575 netif_napi_del(&priv->napi);
1576err_hw:
1577 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1578 ftgmac100_free_rings(priv);
1579 return err;
1580}
1581
1582static int ftgmac100_stop(struct net_device *netdev)
1583{
1584 struct ftgmac100 *priv = netdev_priv(netdev);
1585
1586 /* Note about the reset task: We are called with the rtnl lock
1587 * held, so we are synchronized against the core of the reset
1588 * task. We must not try to synchronously cancel it otherwise
1589 * we can deadlock. But since it will test for netif_running()
1590 * which has already been cleared by the net core, we don't
1591 * anything special to do.
1592 */
1593
1594 /* disable all interrupts */
1595 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1596
1597 netif_stop_queue(netdev);
1598 napi_disable(&priv->napi);
1599 netif_napi_del(&priv->napi);
1600 if (netdev->phydev)
1601 phy_stop(netdev->phydev);
1602 if (priv->use_ncsi)
1603 ncsi_stop_dev(priv->ndev);
1604
1605 ftgmac100_stop_hw(priv);
1606 free_irq(netdev->irq, netdev);
1607 ftgmac100_free_buffers(priv);
1608 ftgmac100_free_rings(priv);
1609
1610 return 0;
1611}
1612
1613static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1614{
1615 struct ftgmac100 *priv = netdev_priv(netdev);
1616
1617 /* Disable all interrupts */
1618 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1619
1620 /* Do the reset outside of interrupt context */
1621 schedule_work(&priv->reset_task);
1622}
1623
1624static int ftgmac100_set_features(struct net_device *netdev,
1625 netdev_features_t features)
1626{
1627 struct ftgmac100 *priv = netdev_priv(netdev);
1628 netdev_features_t changed = netdev->features ^ features;
1629
1630 if (!netif_running(netdev))
1631 return 0;
1632
1633 /* Update the vlan filtering bit */
1634 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1635 u32 maccr;
1636
1637 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1638 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1639 maccr |= FTGMAC100_MACCR_RM_VLAN;
1640 else
1641 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1642 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1643 }
1644
1645 return 0;
1646}
1647
1648#ifdef CONFIG_NET_POLL_CONTROLLER
1649static void ftgmac100_poll_controller(struct net_device *netdev)
1650{
1651 unsigned long flags;
1652
1653 local_irq_save(flags);
1654 ftgmac100_interrupt(netdev->irq, netdev);
1655 local_irq_restore(flags);
1656}
1657#endif
1658
1659static const struct net_device_ops ftgmac100_netdev_ops = {
1660 .ndo_open = ftgmac100_open,
1661 .ndo_stop = ftgmac100_stop,
1662 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1663 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1664 .ndo_validate_addr = eth_validate_addr,
1665 .ndo_eth_ioctl = phy_do_ioctl,
1666 .ndo_tx_timeout = ftgmac100_tx_timeout,
1667 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1668 .ndo_set_features = ftgmac100_set_features,
1669#ifdef CONFIG_NET_POLL_CONTROLLER
1670 .ndo_poll_controller = ftgmac100_poll_controller,
1671#endif
1672 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1673 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1674};
1675
1676static int ftgmac100_setup_mdio(struct net_device *netdev)
1677{
1678 struct ftgmac100 *priv = netdev_priv(netdev);
1679 struct platform_device *pdev = to_platform_device(priv->dev);
1680 struct device_node *np = pdev->dev.of_node;
1681 struct device_node *mdio_np;
1682 int i, err = 0;
1683 u32 reg;
1684
1685 /* initialize mdio bus */
1686 priv->mii_bus = mdiobus_alloc();
1687 if (!priv->mii_bus)
1688 return -EIO;
1689
1690 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1691 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1692 /* The AST2600 has a separate MDIO controller */
1693
1694 /* For the AST2400 and AST2500 this driver only supports the
1695 * old MDIO interface
1696 */
1697 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1698 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1699 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1700 }
1701
1702 priv->mii_bus->name = "ftgmac100_mdio";
1703 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1704 pdev->name, pdev->id);
1705 priv->mii_bus->parent = priv->dev;
1706 priv->mii_bus->priv = priv->netdev;
1707 priv->mii_bus->read = ftgmac100_mdiobus_read;
1708 priv->mii_bus->write = ftgmac100_mdiobus_write;
1709
1710 for (i = 0; i < PHY_MAX_ADDR; i++)
1711 priv->mii_bus->irq[i] = PHY_POLL;
1712
1713 mdio_np = of_get_child_by_name(np, "mdio");
1714
1715 err = of_mdiobus_register(priv->mii_bus, mdio_np);
1716 if (err) {
1717 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1718 goto err_register_mdiobus;
1719 }
1720
1721 of_node_put(mdio_np);
1722
1723 return 0;
1724
1725err_register_mdiobus:
1726 mdiobus_free(priv->mii_bus);
1727 return err;
1728}
1729
1730static void ftgmac100_phy_disconnect(struct net_device *netdev)
1731{
1732 struct ftgmac100 *priv = netdev_priv(netdev);
1733
1734 if (!netdev->phydev)
1735 return;
1736
1737 phy_disconnect(netdev->phydev);
1738 if (of_phy_is_fixed_link(priv->dev->of_node))
1739 of_phy_deregister_fixed_link(priv->dev->of_node);
1740
1741 if (priv->use_ncsi)
1742 fixed_phy_unregister(netdev->phydev);
1743}
1744
1745static void ftgmac100_destroy_mdio(struct net_device *netdev)
1746{
1747 struct ftgmac100 *priv = netdev_priv(netdev);
1748
1749 if (!priv->mii_bus)
1750 return;
1751
1752 mdiobus_unregister(priv->mii_bus);
1753 mdiobus_free(priv->mii_bus);
1754}
1755
1756static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1757{
1758 if (unlikely(nd->state != ncsi_dev_state_functional))
1759 return;
1760
1761 netdev_dbg(nd->dev, "NCSI interface %s\n",
1762 nd->link_up ? "up" : "down");
1763}
1764
1765static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1766{
1767 struct clk *clk;
1768 int rc;
1769
1770 clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1771 if (IS_ERR(clk))
1772 return PTR_ERR(clk);
1773 priv->clk = clk;
1774 rc = clk_prepare_enable(priv->clk);
1775 if (rc)
1776 return rc;
1777
1778 /* Aspeed specifies a 100MHz clock is required for up to
1779 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1780 * is sufficient
1781 */
1782 rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1783 FTGMAC_100MHZ);
1784 if (rc)
1785 goto cleanup_clk;
1786
1787 /* RCLK is for RMII, typically used for NCSI. Optional because it's not
1788 * necessary if it's the AST2400 MAC, or the MAC is configured for
1789 * RGMII, or the controller is not an ASPEED-based controller.
1790 */
1791 priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1792 rc = clk_prepare_enable(priv->rclk);
1793 if (!rc)
1794 return 0;
1795
1796cleanup_clk:
1797 clk_disable_unprepare(priv->clk);
1798
1799 return rc;
1800}
1801
1802static bool ftgmac100_has_child_node(struct device_node *np, const char *name)
1803{
1804 struct device_node *child_np = of_get_child_by_name(np, name);
1805 bool ret = false;
1806
1807 if (child_np) {
1808 ret = true;
1809 of_node_put(child_np);
1810 }
1811
1812 return ret;
1813}
1814
1815static int ftgmac100_probe(struct platform_device *pdev)
1816{
1817 struct resource *res;
1818 int irq;
1819 struct net_device *netdev;
1820 struct phy_device *phydev;
1821 struct ftgmac100 *priv;
1822 struct device_node *np;
1823 int err = 0;
1824
1825 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1826 if (!res)
1827 return -ENXIO;
1828
1829 irq = platform_get_irq(pdev, 0);
1830 if (irq < 0)
1831 return irq;
1832
1833 /* setup net_device */
1834 netdev = alloc_etherdev(sizeof(*priv));
1835 if (!netdev) {
1836 err = -ENOMEM;
1837 goto err_alloc_etherdev;
1838 }
1839
1840 SET_NETDEV_DEV(netdev, &pdev->dev);
1841
1842 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1843 netdev->netdev_ops = &ftgmac100_netdev_ops;
1844 netdev->watchdog_timeo = 5 * HZ;
1845
1846 platform_set_drvdata(pdev, netdev);
1847
1848 /* setup private data */
1849 priv = netdev_priv(netdev);
1850 priv->netdev = netdev;
1851 priv->dev = &pdev->dev;
1852 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1853
1854 /* map io memory */
1855 priv->res = request_mem_region(res->start, resource_size(res),
1856 dev_name(&pdev->dev));
1857 if (!priv->res) {
1858 dev_err(&pdev->dev, "Could not reserve memory region\n");
1859 err = -ENOMEM;
1860 goto err_req_mem;
1861 }
1862
1863 priv->base = ioremap(res->start, resource_size(res));
1864 if (!priv->base) {
1865 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1866 err = -EIO;
1867 goto err_ioremap;
1868 }
1869
1870 netdev->irq = irq;
1871
1872 /* Enable pause */
1873 priv->tx_pause = true;
1874 priv->rx_pause = true;
1875 priv->aneg_pause = true;
1876
1877 /* MAC address from chip or random one */
1878 err = ftgmac100_initial_mac(priv);
1879 if (err)
1880 goto err_phy_connect;
1881
1882 np = pdev->dev.of_node;
1883 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1884 of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1885 of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1886 priv->rxdes0_edorr_mask = BIT(30);
1887 priv->txdes0_edotr_mask = BIT(30);
1888 priv->is_aspeed = true;
1889 } else {
1890 priv->rxdes0_edorr_mask = BIT(15);
1891 priv->txdes0_edotr_mask = BIT(15);
1892 }
1893
1894 if (np && of_get_property(np, "use-ncsi", NULL)) {
1895 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1896 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1897 err = -EINVAL;
1898 goto err_phy_connect;
1899 }
1900
1901 dev_info(&pdev->dev, "Using NCSI interface\n");
1902 priv->use_ncsi = true;
1903 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1904 if (!priv->ndev) {
1905 err = -EINVAL;
1906 goto err_phy_connect;
1907 }
1908
1909 phydev = fixed_phy_register(PHY_POLL, &ncsi_phy_status, np);
1910 if (IS_ERR(phydev)) {
1911 dev_err(&pdev->dev, "failed to register fixed PHY device\n");
1912 err = PTR_ERR(phydev);
1913 goto err_phy_connect;
1914 }
1915 err = phy_connect_direct(netdev, phydev, ftgmac100_adjust_link,
1916 PHY_INTERFACE_MODE_RMII);
1917 if (err) {
1918 dev_err(&pdev->dev, "Connecting PHY failed\n");
1919 goto err_phy_connect;
1920 }
1921 } else if (np && (of_phy_is_fixed_link(np) ||
1922 of_get_property(np, "phy-handle", NULL))) {
1923 struct phy_device *phy;
1924
1925 /* Support "mdio"/"phy" child nodes for ast2400/2500 with
1926 * an embedded MDIO controller. Automatically scan the DTS for
1927 * available PHYs and register them.
1928 */
1929 if (of_get_property(np, "phy-handle", NULL) &&
1930 (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1931 of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1932 err = ftgmac100_setup_mdio(netdev);
1933 if (err)
1934 goto err_setup_mdio;
1935 }
1936
1937 phy = of_phy_get_and_connect(priv->netdev, np,
1938 &ftgmac100_adjust_link);
1939 if (!phy) {
1940 dev_err(&pdev->dev, "Failed to connect to phy\n");
1941 err = -EINVAL;
1942 goto err_phy_connect;
1943 }
1944
1945 /* Indicate that we support PAUSE frames (see comment in
1946 * Documentation/networking/phy.rst)
1947 */
1948 phy_support_asym_pause(phy);
1949
1950 /* Display what we found */
1951 phy_attached_info(phy);
1952 } else if (np && !ftgmac100_has_child_node(np, "mdio")) {
1953 /* Support legacy ASPEED devicetree descriptions that decribe a
1954 * MAC with an embedded MDIO controller but have no "mdio"
1955 * child node. Automatically scan the MDIO bus for available
1956 * PHYs.
1957 */
1958 priv->use_ncsi = false;
1959 err = ftgmac100_setup_mdio(netdev);
1960 if (err)
1961 goto err_setup_mdio;
1962
1963 err = ftgmac100_mii_probe(netdev);
1964 if (err) {
1965 dev_err(priv->dev, "MII probe failed!\n");
1966 goto err_ncsi_dev;
1967 }
1968
1969 }
1970
1971 if (priv->is_aspeed) {
1972 err = ftgmac100_setup_clk(priv);
1973 if (err)
1974 goto err_phy_connect;
1975
1976 /* Disable ast2600 problematic HW arbitration */
1977 if (of_device_is_compatible(np, "aspeed,ast2600-mac"))
1978 iowrite32(FTGMAC100_TM_DEFAULT,
1979 priv->base + FTGMAC100_OFFSET_TM);
1980 }
1981
1982 /* Default ring sizes */
1983 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1984 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1985
1986 /* Base feature set */
1987 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1988 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1989 NETIF_F_HW_VLAN_CTAG_TX;
1990
1991 if (priv->use_ncsi)
1992 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1993
1994 /* AST2400 doesn't have working HW checksum generation */
1995 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1996 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1997
1998 /* AST2600 tx checksum with NCSI is broken */
1999 if (priv->use_ncsi && of_device_is_compatible(np, "aspeed,ast2600-mac"))
2000 netdev->hw_features &= ~NETIF_F_HW_CSUM;
2001
2002 if (np && of_get_property(np, "no-hw-checksum", NULL))
2003 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
2004 netdev->features |= netdev->hw_features;
2005
2006 /* register network device */
2007 err = register_netdev(netdev);
2008 if (err) {
2009 dev_err(&pdev->dev, "Failed to register netdev\n");
2010 goto err_register_netdev;
2011 }
2012
2013 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
2014
2015 return 0;
2016
2017err_register_netdev:
2018 clk_disable_unprepare(priv->rclk);
2019 clk_disable_unprepare(priv->clk);
2020err_phy_connect:
2021 ftgmac100_phy_disconnect(netdev);
2022err_ncsi_dev:
2023 if (priv->ndev)
2024 ncsi_unregister_dev(priv->ndev);
2025 ftgmac100_destroy_mdio(netdev);
2026err_setup_mdio:
2027 iounmap(priv->base);
2028err_ioremap:
2029 release_resource(priv->res);
2030err_req_mem:
2031 free_netdev(netdev);
2032err_alloc_etherdev:
2033 return err;
2034}
2035
2036static void ftgmac100_remove(struct platform_device *pdev)
2037{
2038 struct net_device *netdev;
2039 struct ftgmac100 *priv;
2040
2041 netdev = platform_get_drvdata(pdev);
2042 priv = netdev_priv(netdev);
2043
2044 if (priv->ndev)
2045 ncsi_unregister_dev(priv->ndev);
2046 unregister_netdev(netdev);
2047
2048 clk_disable_unprepare(priv->rclk);
2049 clk_disable_unprepare(priv->clk);
2050
2051 /* There's a small chance the reset task will have been re-queued,
2052 * during stop, make sure it's gone before we free the structure.
2053 */
2054 cancel_work_sync(&priv->reset_task);
2055
2056 ftgmac100_phy_disconnect(netdev);
2057 ftgmac100_destroy_mdio(netdev);
2058
2059 iounmap(priv->base);
2060 release_resource(priv->res);
2061
2062 netif_napi_del(&priv->napi);
2063 free_netdev(netdev);
2064}
2065
2066static const struct of_device_id ftgmac100_of_match[] = {
2067 { .compatible = "faraday,ftgmac100" },
2068 { }
2069};
2070MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
2071
2072static struct platform_driver ftgmac100_driver = {
2073 .probe = ftgmac100_probe,
2074 .remove = ftgmac100_remove,
2075 .driver = {
2076 .name = DRV_NAME,
2077 .of_match_table = ftgmac100_of_match,
2078 },
2079};
2080module_platform_driver(ftgmac100_driver);
2081
2082MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
2083MODULE_DESCRIPTION("FTGMAC100 driver");
2084MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Faraday FTGMAC100 Gigabit Ethernet
4 *
5 * (C) Copyright 2009-2011 Faraday Technology
6 * Po-Yu Chuang <ratbert@faraday-tech.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/clk.h>
12#include <linux/dma-mapping.h>
13#include <linux/etherdevice.h>
14#include <linux/ethtool.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/module.h>
18#include <linux/netdevice.h>
19#include <linux/of.h>
20#include <linux/of_mdio.h>
21#include <linux/phy.h>
22#include <linux/platform_device.h>
23#include <linux/property.h>
24#include <linux/crc32.h>
25#include <linux/if_vlan.h>
26#include <linux/of_net.h>
27#include <net/ip.h>
28#include <net/ncsi.h>
29
30#include "ftgmac100.h"
31
32#define DRV_NAME "ftgmac100"
33
34/* Arbitrary values, I am not sure the HW has limits */
35#define MAX_RX_QUEUE_ENTRIES 1024
36#define MAX_TX_QUEUE_ENTRIES 1024
37#define MIN_RX_QUEUE_ENTRIES 32
38#define MIN_TX_QUEUE_ENTRIES 32
39
40/* Defaults */
41#define DEF_RX_QUEUE_ENTRIES 128
42#define DEF_TX_QUEUE_ENTRIES 128
43
44#define MAX_PKT_SIZE 1536
45#define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
46
47/* Min number of tx ring entries before stopping queue */
48#define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
49
50#define FTGMAC_100MHZ 100000000
51#define FTGMAC_25MHZ 25000000
52
53struct ftgmac100 {
54 /* Registers */
55 struct resource *res;
56 void __iomem *base;
57
58 /* Rx ring */
59 unsigned int rx_q_entries;
60 struct ftgmac100_rxdes *rxdes;
61 dma_addr_t rxdes_dma;
62 struct sk_buff **rx_skbs;
63 unsigned int rx_pointer;
64 u32 rxdes0_edorr_mask;
65
66 /* Tx ring */
67 unsigned int tx_q_entries;
68 struct ftgmac100_txdes *txdes;
69 dma_addr_t txdes_dma;
70 struct sk_buff **tx_skbs;
71 unsigned int tx_clean_pointer;
72 unsigned int tx_pointer;
73 u32 txdes0_edotr_mask;
74
75 /* Used to signal the reset task of ring change request */
76 unsigned int new_rx_q_entries;
77 unsigned int new_tx_q_entries;
78
79 /* Scratch page to use when rx skb alloc fails */
80 void *rx_scratch;
81 dma_addr_t rx_scratch_dma;
82
83 /* Component structures */
84 struct net_device *netdev;
85 struct device *dev;
86 struct ncsi_dev *ndev;
87 struct napi_struct napi;
88 struct work_struct reset_task;
89 struct mii_bus *mii_bus;
90 struct clk *clk;
91
92 /* AST2500/AST2600 RMII ref clock gate */
93 struct clk *rclk;
94
95 /* Link management */
96 int cur_speed;
97 int cur_duplex;
98 bool use_ncsi;
99
100 /* Multicast filter settings */
101 u32 maht0;
102 u32 maht1;
103
104 /* Flow control settings */
105 bool tx_pause;
106 bool rx_pause;
107 bool aneg_pause;
108
109 /* Misc */
110 bool need_mac_restart;
111 bool is_aspeed;
112};
113
114static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
115{
116 struct net_device *netdev = priv->netdev;
117 int i;
118
119 /* NOTE: reset clears all registers */
120 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
121 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
122 priv->base + FTGMAC100_OFFSET_MACCR);
123 for (i = 0; i < 200; i++) {
124 unsigned int maccr;
125
126 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
127 if (!(maccr & FTGMAC100_MACCR_SW_RST))
128 return 0;
129
130 udelay(1);
131 }
132
133 netdev_err(netdev, "Hardware reset failed\n");
134 return -EIO;
135}
136
137static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
138{
139 u32 maccr = 0;
140
141 switch (priv->cur_speed) {
142 case SPEED_10:
143 case 0: /* no link */
144 break;
145
146 case SPEED_100:
147 maccr |= FTGMAC100_MACCR_FAST_MODE;
148 break;
149
150 case SPEED_1000:
151 maccr |= FTGMAC100_MACCR_GIGA_MODE;
152 break;
153 default:
154 netdev_err(priv->netdev, "Unknown speed %d !\n",
155 priv->cur_speed);
156 break;
157 }
158
159 /* (Re)initialize the queue pointers */
160 priv->rx_pointer = 0;
161 priv->tx_clean_pointer = 0;
162 priv->tx_pointer = 0;
163
164 /* The doc says reset twice with 10us interval */
165 if (ftgmac100_reset_mac(priv, maccr))
166 return -EIO;
167 usleep_range(10, 1000);
168 return ftgmac100_reset_mac(priv, maccr);
169}
170
171static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
172{
173 unsigned int maddr = mac[0] << 8 | mac[1];
174 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
175
176 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
177 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
178}
179
180static int ftgmac100_initial_mac(struct ftgmac100 *priv)
181{
182 u8 mac[ETH_ALEN];
183 unsigned int m;
184 unsigned int l;
185 int err;
186
187 err = of_get_ethdev_address(priv->dev->of_node, priv->netdev);
188 if (err == -EPROBE_DEFER)
189 return err;
190 if (!err) {
191 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
192 priv->netdev->dev_addr);
193 return 0;
194 }
195
196 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
197 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
198
199 mac[0] = (m >> 8) & 0xff;
200 mac[1] = m & 0xff;
201 mac[2] = (l >> 24) & 0xff;
202 mac[3] = (l >> 16) & 0xff;
203 mac[4] = (l >> 8) & 0xff;
204 mac[5] = l & 0xff;
205
206 if (is_valid_ether_addr(mac)) {
207 eth_hw_addr_set(priv->netdev, mac);
208 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
209 } else {
210 eth_hw_addr_random(priv->netdev);
211 dev_info(priv->dev, "Generated random MAC address %pM\n",
212 priv->netdev->dev_addr);
213 }
214
215 return 0;
216}
217
218static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
219{
220 int ret;
221
222 ret = eth_prepare_mac_addr_change(dev, p);
223 if (ret < 0)
224 return ret;
225
226 eth_commit_mac_addr_change(dev, p);
227 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
228
229 return 0;
230}
231
232static void ftgmac100_config_pause(struct ftgmac100 *priv)
233{
234 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
235
236 /* Throttle tx queue when receiving pause frames */
237 if (priv->rx_pause)
238 fcr |= FTGMAC100_FCR_FC_EN;
239
240 /* Enables sending pause frames when the RX queue is past a
241 * certain threshold.
242 */
243 if (priv->tx_pause)
244 fcr |= FTGMAC100_FCR_FCTHR_EN;
245
246 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
247}
248
249static void ftgmac100_init_hw(struct ftgmac100 *priv)
250{
251 u32 reg, rfifo_sz, tfifo_sz;
252
253 /* Clear stale interrupts */
254 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
255 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
256
257 /* Setup RX ring buffer base */
258 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
259
260 /* Setup TX ring buffer base */
261 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
262
263 /* Configure RX buffer size */
264 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
265 priv->base + FTGMAC100_OFFSET_RBSR);
266
267 /* Set RX descriptor autopoll */
268 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
269 priv->base + FTGMAC100_OFFSET_APTC);
270
271 /* Write MAC address */
272 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
273
274 /* Write multicast filter */
275 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
276 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
277
278 /* Configure descriptor sizes and increase burst sizes according
279 * to values in Aspeed SDK. The FIFO arbitration is enabled and
280 * the thresholds set based on the recommended values in the
281 * AST2400 specification.
282 */
283 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
284 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
285 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
286 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
287 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
288 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
289 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
290 priv->base + FTGMAC100_OFFSET_DBLAC);
291
292 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
293 * mitigation doesn't seem to provide any benefit with NAPI so leave
294 * it at that.
295 */
296 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
297 FTGMAC100_ITC_TXINT_THR(1),
298 priv->base + FTGMAC100_OFFSET_ITC);
299
300 /* Configure FIFO sizes in the TPAFCR register */
301 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
302 rfifo_sz = reg & 0x00000007;
303 tfifo_sz = (reg >> 3) & 0x00000007;
304 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
305 reg &= ~0x3f000000;
306 reg |= (tfifo_sz << 27);
307 reg |= (rfifo_sz << 24);
308 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
309}
310
311static void ftgmac100_start_hw(struct ftgmac100 *priv)
312{
313 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
314
315 /* Keep the original GMAC and FAST bits */
316 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
317
318 /* Add all the main enable bits */
319 maccr |= FTGMAC100_MACCR_TXDMA_EN |
320 FTGMAC100_MACCR_RXDMA_EN |
321 FTGMAC100_MACCR_TXMAC_EN |
322 FTGMAC100_MACCR_RXMAC_EN |
323 FTGMAC100_MACCR_CRC_APD |
324 FTGMAC100_MACCR_PHY_LINK_LEVEL |
325 FTGMAC100_MACCR_RX_RUNT |
326 FTGMAC100_MACCR_RX_BROADPKT;
327
328 /* Add other bits as needed */
329 if (priv->cur_duplex == DUPLEX_FULL)
330 maccr |= FTGMAC100_MACCR_FULLDUP;
331 if (priv->netdev->flags & IFF_PROMISC)
332 maccr |= FTGMAC100_MACCR_RX_ALL;
333 if (priv->netdev->flags & IFF_ALLMULTI)
334 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
335 else if (netdev_mc_count(priv->netdev))
336 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
337
338 /* Vlan filtering enabled */
339 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
340 maccr |= FTGMAC100_MACCR_RM_VLAN;
341
342 /* Hit the HW */
343 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
344}
345
346static void ftgmac100_stop_hw(struct ftgmac100 *priv)
347{
348 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
349}
350
351static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
352{
353 struct netdev_hw_addr *ha;
354
355 priv->maht1 = 0;
356 priv->maht0 = 0;
357 netdev_for_each_mc_addr(ha, priv->netdev) {
358 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
359
360 crc_val = (~(crc_val >> 2)) & 0x3f;
361 if (crc_val >= 32)
362 priv->maht1 |= 1ul << (crc_val - 32);
363 else
364 priv->maht0 |= 1ul << (crc_val);
365 }
366}
367
368static void ftgmac100_set_rx_mode(struct net_device *netdev)
369{
370 struct ftgmac100 *priv = netdev_priv(netdev);
371
372 /* Setup the hash filter */
373 ftgmac100_calc_mc_hash(priv);
374
375 /* Interface down ? that's all there is to do */
376 if (!netif_running(netdev))
377 return;
378
379 /* Update the HW */
380 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
381 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
382
383 /* Reconfigure MACCR */
384 ftgmac100_start_hw(priv);
385}
386
387static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
388 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
389{
390 struct net_device *netdev = priv->netdev;
391 struct sk_buff *skb;
392 dma_addr_t map;
393 int err = 0;
394
395 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
396 if (unlikely(!skb)) {
397 if (net_ratelimit())
398 netdev_warn(netdev, "failed to allocate rx skb\n");
399 err = -ENOMEM;
400 map = priv->rx_scratch_dma;
401 } else {
402 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
403 DMA_FROM_DEVICE);
404 if (unlikely(dma_mapping_error(priv->dev, map))) {
405 if (net_ratelimit())
406 netdev_err(netdev, "failed to map rx page\n");
407 dev_kfree_skb_any(skb);
408 map = priv->rx_scratch_dma;
409 skb = NULL;
410 err = -ENOMEM;
411 }
412 }
413
414 /* Store skb */
415 priv->rx_skbs[entry] = skb;
416
417 /* Store DMA address into RX desc */
418 rxdes->rxdes3 = cpu_to_le32(map);
419
420 /* Ensure the above is ordered vs clearing the OWN bit */
421 dma_wmb();
422
423 /* Clean status (which resets own bit) */
424 if (entry == (priv->rx_q_entries - 1))
425 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
426 else
427 rxdes->rxdes0 = 0;
428
429 return err;
430}
431
432static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
433 unsigned int pointer)
434{
435 return (pointer + 1) & (priv->rx_q_entries - 1);
436}
437
438static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
439{
440 struct net_device *netdev = priv->netdev;
441
442 if (status & FTGMAC100_RXDES0_RX_ERR)
443 netdev->stats.rx_errors++;
444
445 if (status & FTGMAC100_RXDES0_CRC_ERR)
446 netdev->stats.rx_crc_errors++;
447
448 if (status & (FTGMAC100_RXDES0_FTL |
449 FTGMAC100_RXDES0_RUNT |
450 FTGMAC100_RXDES0_RX_ODD_NB))
451 netdev->stats.rx_length_errors++;
452}
453
454static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
455{
456 struct net_device *netdev = priv->netdev;
457 struct ftgmac100_rxdes *rxdes;
458 struct sk_buff *skb;
459 unsigned int pointer, size;
460 u32 status, csum_vlan;
461 dma_addr_t map;
462
463 /* Grab next RX descriptor */
464 pointer = priv->rx_pointer;
465 rxdes = &priv->rxdes[pointer];
466
467 /* Grab descriptor status */
468 status = le32_to_cpu(rxdes->rxdes0);
469
470 /* Do we have a packet ? */
471 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
472 return false;
473
474 /* Order subsequent reads with the test for the ready bit */
475 dma_rmb();
476
477 /* We don't cope with fragmented RX packets */
478 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
479 !(status & FTGMAC100_RXDES0_LRS)))
480 goto drop;
481
482 /* Grab received size and csum vlan field in the descriptor */
483 size = status & FTGMAC100_RXDES0_VDBC;
484 csum_vlan = le32_to_cpu(rxdes->rxdes1);
485
486 /* Any error (other than csum offload) flagged ? */
487 if (unlikely(status & RXDES0_ANY_ERROR)) {
488 /* Correct for incorrect flagging of runt packets
489 * with vlan tags... Just accept a runt packet that
490 * has been flagged as vlan and whose size is at
491 * least 60 bytes.
492 */
493 if ((status & FTGMAC100_RXDES0_RUNT) &&
494 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
495 (size >= 60))
496 status &= ~FTGMAC100_RXDES0_RUNT;
497
498 /* Any error still in there ? */
499 if (status & RXDES0_ANY_ERROR) {
500 ftgmac100_rx_packet_error(priv, status);
501 goto drop;
502 }
503 }
504
505 /* If the packet had no skb (failed to allocate earlier)
506 * then try to allocate one and skip
507 */
508 skb = priv->rx_skbs[pointer];
509 if (!unlikely(skb)) {
510 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
511 goto drop;
512 }
513
514 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
515 netdev->stats.multicast++;
516
517 /* If the HW found checksum errors, bounce it to software.
518 *
519 * If we didn't, we need to see if the packet was recognized
520 * by HW as one of the supported checksummed protocols before
521 * we accept the HW test results.
522 */
523 if (netdev->features & NETIF_F_RXCSUM) {
524 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
525 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
526 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
527 if ((csum_vlan & err_bits) ||
528 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
529 skb->ip_summed = CHECKSUM_NONE;
530 else
531 skb->ip_summed = CHECKSUM_UNNECESSARY;
532 }
533
534 /* Transfer received size to skb */
535 skb_put(skb, size);
536
537 /* Extract vlan tag */
538 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
539 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
540 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
541 csum_vlan & 0xffff);
542
543 /* Tear down DMA mapping, do necessary cache management */
544 map = le32_to_cpu(rxdes->rxdes3);
545
546#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
547 /* When we don't have an iommu, we can save cycles by not
548 * invalidating the cache for the part of the packet that
549 * wasn't received.
550 */
551 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
552#else
553 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
554#endif
555
556
557 /* Resplenish rx ring */
558 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
559 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
560
561 skb->protocol = eth_type_trans(skb, netdev);
562
563 netdev->stats.rx_packets++;
564 netdev->stats.rx_bytes += size;
565
566 /* push packet to protocol stack */
567 if (skb->ip_summed == CHECKSUM_NONE)
568 netif_receive_skb(skb);
569 else
570 napi_gro_receive(&priv->napi, skb);
571
572 (*processed)++;
573 return true;
574
575 drop:
576 /* Clean rxdes0 (which resets own bit) */
577 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
578 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
579 netdev->stats.rx_dropped++;
580 return true;
581}
582
583static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
584 unsigned int index)
585{
586 if (index == (priv->tx_q_entries - 1))
587 return priv->txdes0_edotr_mask;
588 else
589 return 0;
590}
591
592static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
593 unsigned int pointer)
594{
595 return (pointer + 1) & (priv->tx_q_entries - 1);
596}
597
598static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
599{
600 /* Returns the number of available slots in the TX queue
601 *
602 * This always leaves one free slot so we don't have to
603 * worry about empty vs. full, and this simplifies the
604 * test for ftgmac100_tx_buf_cleanable() below
605 */
606 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
607 (priv->tx_q_entries - 1);
608}
609
610static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
611{
612 return priv->tx_pointer != priv->tx_clean_pointer;
613}
614
615static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
616 unsigned int pointer,
617 struct sk_buff *skb,
618 struct ftgmac100_txdes *txdes,
619 u32 ctl_stat)
620{
621 dma_addr_t map = le32_to_cpu(txdes->txdes3);
622 size_t len;
623
624 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
625 len = skb_headlen(skb);
626 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
627 } else {
628 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
629 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
630 }
631
632 /* Free SKB on last segment */
633 if (ctl_stat & FTGMAC100_TXDES0_LTS)
634 dev_kfree_skb(skb);
635 priv->tx_skbs[pointer] = NULL;
636}
637
638static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
639{
640 struct net_device *netdev = priv->netdev;
641 struct ftgmac100_txdes *txdes;
642 struct sk_buff *skb;
643 unsigned int pointer;
644 u32 ctl_stat;
645
646 pointer = priv->tx_clean_pointer;
647 txdes = &priv->txdes[pointer];
648
649 ctl_stat = le32_to_cpu(txdes->txdes0);
650 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
651 return false;
652
653 skb = priv->tx_skbs[pointer];
654 netdev->stats.tx_packets++;
655 netdev->stats.tx_bytes += skb->len;
656 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
657 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
658
659 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
660
661 return true;
662}
663
664static void ftgmac100_tx_complete(struct ftgmac100 *priv)
665{
666 struct net_device *netdev = priv->netdev;
667
668 /* Process all completed packets */
669 while (ftgmac100_tx_buf_cleanable(priv) &&
670 ftgmac100_tx_complete_packet(priv))
671 ;
672
673 /* Restart queue if needed */
674 smp_mb();
675 if (unlikely(netif_queue_stopped(netdev) &&
676 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
677 struct netdev_queue *txq;
678
679 txq = netdev_get_tx_queue(netdev, 0);
680 __netif_tx_lock(txq, smp_processor_id());
681 if (netif_queue_stopped(netdev) &&
682 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
683 netif_wake_queue(netdev);
684 __netif_tx_unlock(txq);
685 }
686}
687
688static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
689{
690 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
691 u8 ip_proto = ip_hdr(skb)->protocol;
692
693 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
694 switch(ip_proto) {
695 case IPPROTO_TCP:
696 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
697 return true;
698 case IPPROTO_UDP:
699 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
700 return true;
701 case IPPROTO_IP:
702 return true;
703 }
704 }
705 return skb_checksum_help(skb) == 0;
706}
707
708static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
709 struct net_device *netdev)
710{
711 struct ftgmac100 *priv = netdev_priv(netdev);
712 struct ftgmac100_txdes *txdes, *first;
713 unsigned int pointer, nfrags, len, i, j;
714 u32 f_ctl_stat, ctl_stat, csum_vlan;
715 dma_addr_t map;
716
717 /* The HW doesn't pad small frames */
718 if (eth_skb_pad(skb)) {
719 netdev->stats.tx_dropped++;
720 return NETDEV_TX_OK;
721 }
722
723 /* Reject oversize packets */
724 if (unlikely(skb->len > MAX_PKT_SIZE)) {
725 if (net_ratelimit())
726 netdev_dbg(netdev, "tx packet too big\n");
727 goto drop;
728 }
729
730 /* Do we have a limit on #fragments ? I yet have to get a reply
731 * from Aspeed. If there's one I haven't hit it.
732 */
733 nfrags = skb_shinfo(skb)->nr_frags;
734
735 /* Setup HW checksumming */
736 csum_vlan = 0;
737 if (skb->ip_summed == CHECKSUM_PARTIAL &&
738 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
739 goto drop;
740
741 /* Add VLAN tag */
742 if (skb_vlan_tag_present(skb)) {
743 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
744 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
745 }
746
747 /* Get header len */
748 len = skb_headlen(skb);
749
750 /* Map the packet head */
751 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
752 if (dma_mapping_error(priv->dev, map)) {
753 if (net_ratelimit())
754 netdev_err(netdev, "map tx packet head failed\n");
755 goto drop;
756 }
757
758 /* Grab the next free tx descriptor */
759 pointer = priv->tx_pointer;
760 txdes = first = &priv->txdes[pointer];
761
762 /* Setup it up with the packet head. Don't write the head to the
763 * ring just yet
764 */
765 priv->tx_skbs[pointer] = skb;
766 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
767 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
768 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
769 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
770 if (nfrags == 0)
771 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
772 txdes->txdes3 = cpu_to_le32(map);
773 txdes->txdes1 = cpu_to_le32(csum_vlan);
774
775 /* Next descriptor */
776 pointer = ftgmac100_next_tx_pointer(priv, pointer);
777
778 /* Add the fragments */
779 for (i = 0; i < nfrags; i++) {
780 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
781
782 len = skb_frag_size(frag);
783
784 /* Map it */
785 map = skb_frag_dma_map(priv->dev, frag, 0, len,
786 DMA_TO_DEVICE);
787 if (dma_mapping_error(priv->dev, map))
788 goto dma_err;
789
790 /* Setup descriptor */
791 priv->tx_skbs[pointer] = skb;
792 txdes = &priv->txdes[pointer];
793 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
794 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
795 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
796 if (i == (nfrags - 1))
797 ctl_stat |= FTGMAC100_TXDES0_LTS;
798 txdes->txdes0 = cpu_to_le32(ctl_stat);
799 txdes->txdes1 = 0;
800 txdes->txdes3 = cpu_to_le32(map);
801
802 /* Next one */
803 pointer = ftgmac100_next_tx_pointer(priv, pointer);
804 }
805
806 /* Order the previous packet and descriptor udpates
807 * before setting the OWN bit on the first descriptor.
808 */
809 dma_wmb();
810 first->txdes0 = cpu_to_le32(f_ctl_stat);
811
812 /* Update next TX pointer */
813 priv->tx_pointer = pointer;
814
815 /* If there isn't enough room for all the fragments of a new packet
816 * in the TX ring, stop the queue. The sequence below is race free
817 * vs. a concurrent restart in ftgmac100_poll()
818 */
819 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
820 netif_stop_queue(netdev);
821 /* Order the queue stop with the test below */
822 smp_mb();
823 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
824 netif_wake_queue(netdev);
825 }
826
827 /* Poke transmitter to read the updated TX descriptors */
828 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
829
830 return NETDEV_TX_OK;
831
832 dma_err:
833 if (net_ratelimit())
834 netdev_err(netdev, "map tx fragment failed\n");
835
836 /* Free head */
837 pointer = priv->tx_pointer;
838 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
839 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
840
841 /* Then all fragments */
842 for (j = 0; j < i; j++) {
843 pointer = ftgmac100_next_tx_pointer(priv, pointer);
844 txdes = &priv->txdes[pointer];
845 ctl_stat = le32_to_cpu(txdes->txdes0);
846 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
847 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
848 }
849
850 /* This cannot be reached if we successfully mapped the
851 * last fragment, so we know ftgmac100_free_tx_packet()
852 * hasn't freed the skb yet.
853 */
854 drop:
855 /* Drop the packet */
856 dev_kfree_skb_any(skb);
857 netdev->stats.tx_dropped++;
858
859 return NETDEV_TX_OK;
860}
861
862static void ftgmac100_free_buffers(struct ftgmac100 *priv)
863{
864 int i;
865
866 /* Free all RX buffers */
867 for (i = 0; i < priv->rx_q_entries; i++) {
868 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
869 struct sk_buff *skb = priv->rx_skbs[i];
870 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
871
872 if (!skb)
873 continue;
874
875 priv->rx_skbs[i] = NULL;
876 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
877 dev_kfree_skb_any(skb);
878 }
879
880 /* Free all TX buffers */
881 for (i = 0; i < priv->tx_q_entries; i++) {
882 struct ftgmac100_txdes *txdes = &priv->txdes[i];
883 struct sk_buff *skb = priv->tx_skbs[i];
884
885 if (!skb)
886 continue;
887 ftgmac100_free_tx_packet(priv, i, skb, txdes,
888 le32_to_cpu(txdes->txdes0));
889 }
890}
891
892static void ftgmac100_free_rings(struct ftgmac100 *priv)
893{
894 /* Free skb arrays */
895 kfree(priv->rx_skbs);
896 kfree(priv->tx_skbs);
897
898 /* Free descriptors */
899 if (priv->rxdes)
900 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
901 sizeof(struct ftgmac100_rxdes),
902 priv->rxdes, priv->rxdes_dma);
903 priv->rxdes = NULL;
904
905 if (priv->txdes)
906 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
907 sizeof(struct ftgmac100_txdes),
908 priv->txdes, priv->txdes_dma);
909 priv->txdes = NULL;
910
911 /* Free scratch packet buffer */
912 if (priv->rx_scratch)
913 dma_free_coherent(priv->dev, RX_BUF_SIZE,
914 priv->rx_scratch, priv->rx_scratch_dma);
915}
916
917static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
918{
919 /* Allocate skb arrays */
920 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
921 GFP_KERNEL);
922 if (!priv->rx_skbs)
923 return -ENOMEM;
924 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
925 GFP_KERNEL);
926 if (!priv->tx_skbs)
927 return -ENOMEM;
928
929 /* Allocate descriptors */
930 priv->rxdes = dma_alloc_coherent(priv->dev,
931 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
932 &priv->rxdes_dma, GFP_KERNEL);
933 if (!priv->rxdes)
934 return -ENOMEM;
935 priv->txdes = dma_alloc_coherent(priv->dev,
936 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
937 &priv->txdes_dma, GFP_KERNEL);
938 if (!priv->txdes)
939 return -ENOMEM;
940
941 /* Allocate scratch packet buffer */
942 priv->rx_scratch = dma_alloc_coherent(priv->dev,
943 RX_BUF_SIZE,
944 &priv->rx_scratch_dma,
945 GFP_KERNEL);
946 if (!priv->rx_scratch)
947 return -ENOMEM;
948
949 return 0;
950}
951
952static void ftgmac100_init_rings(struct ftgmac100 *priv)
953{
954 struct ftgmac100_rxdes *rxdes = NULL;
955 struct ftgmac100_txdes *txdes = NULL;
956 int i;
957
958 /* Update entries counts */
959 priv->rx_q_entries = priv->new_rx_q_entries;
960 priv->tx_q_entries = priv->new_tx_q_entries;
961
962 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
963 return;
964
965 /* Initialize RX ring */
966 for (i = 0; i < priv->rx_q_entries; i++) {
967 rxdes = &priv->rxdes[i];
968 rxdes->rxdes0 = 0;
969 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
970 }
971 /* Mark the end of the ring */
972 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
973
974 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
975 return;
976
977 /* Initialize TX ring */
978 for (i = 0; i < priv->tx_q_entries; i++) {
979 txdes = &priv->txdes[i];
980 txdes->txdes0 = 0;
981 }
982 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
983}
984
985static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
986{
987 int i;
988
989 for (i = 0; i < priv->rx_q_entries; i++) {
990 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
991
992 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
993 return -ENOMEM;
994 }
995 return 0;
996}
997
998static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
999{
1000 struct net_device *netdev = bus->priv;
1001 struct ftgmac100 *priv = netdev_priv(netdev);
1002 unsigned int phycr;
1003 int i;
1004
1005 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1006
1007 /* preserve MDC cycle threshold */
1008 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1009
1010 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1011 FTGMAC100_PHYCR_REGAD(regnum) |
1012 FTGMAC100_PHYCR_MIIRD;
1013
1014 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1015
1016 for (i = 0; i < 10; i++) {
1017 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1018
1019 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1020 int data;
1021
1022 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1023 return FTGMAC100_PHYDATA_MIIRDATA(data);
1024 }
1025
1026 udelay(100);
1027 }
1028
1029 netdev_err(netdev, "mdio read timed out\n");
1030 return -EIO;
1031}
1032
1033static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1034 int regnum, u16 value)
1035{
1036 struct net_device *netdev = bus->priv;
1037 struct ftgmac100 *priv = netdev_priv(netdev);
1038 unsigned int phycr;
1039 int data;
1040 int i;
1041
1042 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1043
1044 /* preserve MDC cycle threshold */
1045 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1046
1047 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1048 FTGMAC100_PHYCR_REGAD(regnum) |
1049 FTGMAC100_PHYCR_MIIWR;
1050
1051 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1052
1053 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1054 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1055
1056 for (i = 0; i < 10; i++) {
1057 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1058
1059 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1060 return 0;
1061
1062 udelay(100);
1063 }
1064
1065 netdev_err(netdev, "mdio write timed out\n");
1066 return -EIO;
1067}
1068
1069static void ftgmac100_get_drvinfo(struct net_device *netdev,
1070 struct ethtool_drvinfo *info)
1071{
1072 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1073 strscpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1074}
1075
1076static void
1077ftgmac100_get_ringparam(struct net_device *netdev,
1078 struct ethtool_ringparam *ering,
1079 struct kernel_ethtool_ringparam *kernel_ering,
1080 struct netlink_ext_ack *extack)
1081{
1082 struct ftgmac100 *priv = netdev_priv(netdev);
1083
1084 memset(ering, 0, sizeof(*ering));
1085 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1086 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1087 ering->rx_pending = priv->rx_q_entries;
1088 ering->tx_pending = priv->tx_q_entries;
1089}
1090
1091static int
1092ftgmac100_set_ringparam(struct net_device *netdev,
1093 struct ethtool_ringparam *ering,
1094 struct kernel_ethtool_ringparam *kernel_ering,
1095 struct netlink_ext_ack *extack)
1096{
1097 struct ftgmac100 *priv = netdev_priv(netdev);
1098
1099 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1100 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1101 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1102 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1103 !is_power_of_2(ering->rx_pending) ||
1104 !is_power_of_2(ering->tx_pending))
1105 return -EINVAL;
1106
1107 priv->new_rx_q_entries = ering->rx_pending;
1108 priv->new_tx_q_entries = ering->tx_pending;
1109 if (netif_running(netdev))
1110 schedule_work(&priv->reset_task);
1111
1112 return 0;
1113}
1114
1115static void ftgmac100_get_pauseparam(struct net_device *netdev,
1116 struct ethtool_pauseparam *pause)
1117{
1118 struct ftgmac100 *priv = netdev_priv(netdev);
1119
1120 pause->autoneg = priv->aneg_pause;
1121 pause->tx_pause = priv->tx_pause;
1122 pause->rx_pause = priv->rx_pause;
1123}
1124
1125static int ftgmac100_set_pauseparam(struct net_device *netdev,
1126 struct ethtool_pauseparam *pause)
1127{
1128 struct ftgmac100 *priv = netdev_priv(netdev);
1129 struct phy_device *phydev = netdev->phydev;
1130
1131 priv->aneg_pause = pause->autoneg;
1132 priv->tx_pause = pause->tx_pause;
1133 priv->rx_pause = pause->rx_pause;
1134
1135 if (phydev)
1136 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1137
1138 if (netif_running(netdev)) {
1139 if (!(phydev && priv->aneg_pause))
1140 ftgmac100_config_pause(priv);
1141 }
1142
1143 return 0;
1144}
1145
1146static const struct ethtool_ops ftgmac100_ethtool_ops = {
1147 .get_drvinfo = ftgmac100_get_drvinfo,
1148 .get_link = ethtool_op_get_link,
1149 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1150 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1151 .nway_reset = phy_ethtool_nway_reset,
1152 .get_ringparam = ftgmac100_get_ringparam,
1153 .set_ringparam = ftgmac100_set_ringparam,
1154 .get_pauseparam = ftgmac100_get_pauseparam,
1155 .set_pauseparam = ftgmac100_set_pauseparam,
1156};
1157
1158static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1159{
1160 struct net_device *netdev = dev_id;
1161 struct ftgmac100 *priv = netdev_priv(netdev);
1162 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1163
1164 /* Fetch and clear interrupt bits, process abnormal ones */
1165 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1166 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1167 if (unlikely(status & FTGMAC100_INT_BAD)) {
1168
1169 /* RX buffer unavailable */
1170 if (status & FTGMAC100_INT_NO_RXBUF)
1171 netdev->stats.rx_over_errors++;
1172
1173 /* received packet lost due to RX FIFO full */
1174 if (status & FTGMAC100_INT_RPKT_LOST)
1175 netdev->stats.rx_fifo_errors++;
1176
1177 /* sent packet lost due to excessive TX collision */
1178 if (status & FTGMAC100_INT_XPKT_LOST)
1179 netdev->stats.tx_fifo_errors++;
1180
1181 /* AHB error -> Reset the chip */
1182 if (status & FTGMAC100_INT_AHB_ERR) {
1183 if (net_ratelimit())
1184 netdev_warn(netdev,
1185 "AHB bus error ! Resetting chip.\n");
1186 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1187 schedule_work(&priv->reset_task);
1188 return IRQ_HANDLED;
1189 }
1190
1191 /* We may need to restart the MAC after such errors, delay
1192 * this until after we have freed some Rx buffers though
1193 */
1194 priv->need_mac_restart = true;
1195
1196 /* Disable those errors until we restart */
1197 new_mask &= ~status;
1198 }
1199
1200 /* Only enable "bad" interrupts while NAPI is on */
1201 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1202
1203 /* Schedule NAPI bh */
1204 napi_schedule_irqoff(&priv->napi);
1205
1206 return IRQ_HANDLED;
1207}
1208
1209static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1210{
1211 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1212
1213 /* Do we have a packet ? */
1214 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1215}
1216
1217static int ftgmac100_poll(struct napi_struct *napi, int budget)
1218{
1219 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1220 int work_done = 0;
1221 bool more;
1222
1223 /* Handle TX completions */
1224 if (ftgmac100_tx_buf_cleanable(priv))
1225 ftgmac100_tx_complete(priv);
1226
1227 /* Handle RX packets */
1228 do {
1229 more = ftgmac100_rx_packet(priv, &work_done);
1230 } while (more && work_done < budget);
1231
1232
1233 /* The interrupt is telling us to kick the MAC back to life
1234 * after an RX overflow
1235 */
1236 if (unlikely(priv->need_mac_restart)) {
1237 ftgmac100_start_hw(priv);
1238 priv->need_mac_restart = false;
1239
1240 /* Re-enable "bad" interrupts */
1241 iowrite32(FTGMAC100_INT_BAD,
1242 priv->base + FTGMAC100_OFFSET_IER);
1243 }
1244
1245 /* As long as we are waiting for transmit packets to be
1246 * completed we keep NAPI going
1247 */
1248 if (ftgmac100_tx_buf_cleanable(priv))
1249 work_done = budget;
1250
1251 if (work_done < budget) {
1252 /* We are about to re-enable all interrupts. However
1253 * the HW has been latching RX/TX packet interrupts while
1254 * they were masked. So we clear them first, then we need
1255 * to re-check if there's something to process
1256 */
1257 iowrite32(FTGMAC100_INT_RXTX,
1258 priv->base + FTGMAC100_OFFSET_ISR);
1259
1260 /* Push the above (and provides a barrier vs. subsequent
1261 * reads of the descriptor).
1262 */
1263 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1264
1265 /* Check RX and TX descriptors for more work to do */
1266 if (ftgmac100_check_rx(priv) ||
1267 ftgmac100_tx_buf_cleanable(priv))
1268 return budget;
1269
1270 /* deschedule NAPI */
1271 napi_complete(napi);
1272
1273 /* enable all interrupts */
1274 iowrite32(FTGMAC100_INT_ALL,
1275 priv->base + FTGMAC100_OFFSET_IER);
1276 }
1277
1278 return work_done;
1279}
1280
1281static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1282{
1283 int err = 0;
1284
1285 /* Re-init descriptors (adjust queue sizes) */
1286 ftgmac100_init_rings(priv);
1287
1288 /* Realloc rx descriptors */
1289 err = ftgmac100_alloc_rx_buffers(priv);
1290 if (err && !ignore_alloc_err)
1291 return err;
1292
1293 /* Reinit and restart HW */
1294 ftgmac100_init_hw(priv);
1295 ftgmac100_config_pause(priv);
1296 ftgmac100_start_hw(priv);
1297
1298 /* Re-enable the device */
1299 napi_enable(&priv->napi);
1300 netif_start_queue(priv->netdev);
1301
1302 /* Enable all interrupts */
1303 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1304
1305 return err;
1306}
1307
1308static void ftgmac100_reset(struct ftgmac100 *priv)
1309{
1310 struct net_device *netdev = priv->netdev;
1311 int err;
1312
1313 netdev_dbg(netdev, "Resetting NIC...\n");
1314
1315 /* Lock the world */
1316 rtnl_lock();
1317 if (netdev->phydev)
1318 mutex_lock(&netdev->phydev->lock);
1319 if (priv->mii_bus)
1320 mutex_lock(&priv->mii_bus->mdio_lock);
1321
1322
1323 /* Check if the interface is still up */
1324 if (!netif_running(netdev))
1325 goto bail;
1326
1327 /* Stop the network stack */
1328 netif_trans_update(netdev);
1329 napi_disable(&priv->napi);
1330 netif_tx_disable(netdev);
1331
1332 /* Stop and reset the MAC */
1333 ftgmac100_stop_hw(priv);
1334 err = ftgmac100_reset_and_config_mac(priv);
1335 if (err) {
1336 /* Not much we can do ... it might come back... */
1337 netdev_err(netdev, "attempting to continue...\n");
1338 }
1339
1340 /* Free all rx and tx buffers */
1341 ftgmac100_free_buffers(priv);
1342
1343 /* Setup everything again and restart chip */
1344 ftgmac100_init_all(priv, true);
1345
1346 netdev_dbg(netdev, "Reset done !\n");
1347 bail:
1348 if (priv->mii_bus)
1349 mutex_unlock(&priv->mii_bus->mdio_lock);
1350 if (netdev->phydev)
1351 mutex_unlock(&netdev->phydev->lock);
1352 rtnl_unlock();
1353}
1354
1355static void ftgmac100_reset_task(struct work_struct *work)
1356{
1357 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1358 reset_task);
1359
1360 ftgmac100_reset(priv);
1361}
1362
1363static void ftgmac100_adjust_link(struct net_device *netdev)
1364{
1365 struct ftgmac100 *priv = netdev_priv(netdev);
1366 struct phy_device *phydev = netdev->phydev;
1367 bool tx_pause, rx_pause;
1368 int new_speed;
1369
1370 /* We store "no link" as speed 0 */
1371 if (!phydev->link)
1372 new_speed = 0;
1373 else
1374 new_speed = phydev->speed;
1375
1376 /* Grab pause settings from PHY if configured to do so */
1377 if (priv->aneg_pause) {
1378 rx_pause = tx_pause = phydev->pause;
1379 if (phydev->asym_pause)
1380 tx_pause = !rx_pause;
1381 } else {
1382 rx_pause = priv->rx_pause;
1383 tx_pause = priv->tx_pause;
1384 }
1385
1386 /* Link hasn't changed, do nothing */
1387 if (phydev->speed == priv->cur_speed &&
1388 phydev->duplex == priv->cur_duplex &&
1389 rx_pause == priv->rx_pause &&
1390 tx_pause == priv->tx_pause)
1391 return;
1392
1393 /* Print status if we have a link or we had one and just lost it,
1394 * don't print otherwise.
1395 */
1396 if (new_speed || priv->cur_speed)
1397 phy_print_status(phydev);
1398
1399 priv->cur_speed = new_speed;
1400 priv->cur_duplex = phydev->duplex;
1401 priv->rx_pause = rx_pause;
1402 priv->tx_pause = tx_pause;
1403
1404 /* Link is down, do nothing else */
1405 if (!new_speed)
1406 return;
1407
1408 /* Disable all interrupts */
1409 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1410
1411 /* Release phy lock to allow ftgmac100_reset to aquire it, keeping lock
1412 * order consistent to prevent dead lock.
1413 */
1414 if (netdev->phydev)
1415 mutex_unlock(&netdev->phydev->lock);
1416
1417 ftgmac100_reset(priv);
1418
1419 if (netdev->phydev)
1420 mutex_lock(&netdev->phydev->lock);
1421
1422}
1423
1424static int ftgmac100_mii_probe(struct net_device *netdev)
1425{
1426 struct ftgmac100 *priv = netdev_priv(netdev);
1427 struct platform_device *pdev = to_platform_device(priv->dev);
1428 struct device_node *np = pdev->dev.of_node;
1429 struct phy_device *phydev;
1430 phy_interface_t phy_intf;
1431 int err;
1432
1433 /* Default to RGMII. It's a gigabit part after all */
1434 err = of_get_phy_mode(np, &phy_intf);
1435 if (err)
1436 phy_intf = PHY_INTERFACE_MODE_RGMII;
1437
1438 /* Aspeed only supports these. I don't know about other IP
1439 * block vendors so I'm going to just let them through for
1440 * now. Note that this is only a warning if for some obscure
1441 * reason the DT really means to lie about it or it's a newer
1442 * part we don't know about.
1443 *
1444 * On the Aspeed SoC there are additionally straps and SCU
1445 * control bits that could tell us what the interface is
1446 * (or allow us to configure it while the IP block is held
1447 * in reset). For now I chose to keep this driver away from
1448 * those SoC specific bits and assume the device-tree is
1449 * right and the SCU has been configured properly by pinmux
1450 * or the firmware.
1451 */
1452 if (priv->is_aspeed && !(phy_interface_mode_is_rgmii(phy_intf))) {
1453 netdev_warn(netdev,
1454 "Unsupported PHY mode %s !\n",
1455 phy_modes(phy_intf));
1456 }
1457
1458 phydev = phy_find_first(priv->mii_bus);
1459 if (!phydev) {
1460 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1461 return -ENODEV;
1462 }
1463
1464 phydev = phy_connect(netdev, phydev_name(phydev),
1465 &ftgmac100_adjust_link, phy_intf);
1466
1467 if (IS_ERR(phydev)) {
1468 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1469 return PTR_ERR(phydev);
1470 }
1471
1472 /* Indicate that we support PAUSE frames (see comment in
1473 * Documentation/networking/phy.rst)
1474 */
1475 phy_support_asym_pause(phydev);
1476
1477 /* Display what we found */
1478 phy_attached_info(phydev);
1479
1480 return 0;
1481}
1482
1483static int ftgmac100_open(struct net_device *netdev)
1484{
1485 struct ftgmac100 *priv = netdev_priv(netdev);
1486 int err;
1487
1488 /* Allocate ring buffers */
1489 err = ftgmac100_alloc_rings(priv);
1490 if (err) {
1491 netdev_err(netdev, "Failed to allocate descriptors\n");
1492 return err;
1493 }
1494
1495 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1496 *
1497 * Otherwise we leave it set to 0 (no link), the link
1498 * message from the PHY layer will handle setting it up to
1499 * something else if needed.
1500 */
1501 if (priv->use_ncsi) {
1502 priv->cur_duplex = DUPLEX_FULL;
1503 priv->cur_speed = SPEED_100;
1504 } else {
1505 priv->cur_duplex = 0;
1506 priv->cur_speed = 0;
1507 }
1508
1509 /* Reset the hardware */
1510 err = ftgmac100_reset_and_config_mac(priv);
1511 if (err)
1512 goto err_hw;
1513
1514 /* Initialize NAPI */
1515 netif_napi_add(netdev, &priv->napi, ftgmac100_poll);
1516
1517 /* Grab our interrupt */
1518 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1519 if (err) {
1520 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1521 goto err_irq;
1522 }
1523
1524 /* Start things up */
1525 err = ftgmac100_init_all(priv, false);
1526 if (err) {
1527 netdev_err(netdev, "Failed to allocate packet buffers\n");
1528 goto err_alloc;
1529 }
1530
1531 if (netdev->phydev) {
1532 /* If we have a PHY, start polling */
1533 phy_start(netdev->phydev);
1534 } else if (priv->use_ncsi) {
1535 /* If using NC-SI, set our carrier on and start the stack */
1536 netif_carrier_on(netdev);
1537
1538 /* Start the NCSI device */
1539 err = ncsi_start_dev(priv->ndev);
1540 if (err)
1541 goto err_ncsi;
1542 }
1543
1544 return 0;
1545
1546 err_ncsi:
1547 napi_disable(&priv->napi);
1548 netif_stop_queue(netdev);
1549 err_alloc:
1550 ftgmac100_free_buffers(priv);
1551 free_irq(netdev->irq, netdev);
1552 err_irq:
1553 netif_napi_del(&priv->napi);
1554 err_hw:
1555 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1556 ftgmac100_free_rings(priv);
1557 return err;
1558}
1559
1560static int ftgmac100_stop(struct net_device *netdev)
1561{
1562 struct ftgmac100 *priv = netdev_priv(netdev);
1563
1564 /* Note about the reset task: We are called with the rtnl lock
1565 * held, so we are synchronized against the core of the reset
1566 * task. We must not try to synchronously cancel it otherwise
1567 * we can deadlock. But since it will test for netif_running()
1568 * which has already been cleared by the net core, we don't
1569 * anything special to do.
1570 */
1571
1572 /* disable all interrupts */
1573 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1574
1575 netif_stop_queue(netdev);
1576 napi_disable(&priv->napi);
1577 netif_napi_del(&priv->napi);
1578 if (netdev->phydev)
1579 phy_stop(netdev->phydev);
1580 else if (priv->use_ncsi)
1581 ncsi_stop_dev(priv->ndev);
1582
1583 ftgmac100_stop_hw(priv);
1584 free_irq(netdev->irq, netdev);
1585 ftgmac100_free_buffers(priv);
1586 ftgmac100_free_rings(priv);
1587
1588 return 0;
1589}
1590
1591static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1592{
1593 struct ftgmac100 *priv = netdev_priv(netdev);
1594
1595 /* Disable all interrupts */
1596 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1597
1598 /* Do the reset outside of interrupt context */
1599 schedule_work(&priv->reset_task);
1600}
1601
1602static int ftgmac100_set_features(struct net_device *netdev,
1603 netdev_features_t features)
1604{
1605 struct ftgmac100 *priv = netdev_priv(netdev);
1606 netdev_features_t changed = netdev->features ^ features;
1607
1608 if (!netif_running(netdev))
1609 return 0;
1610
1611 /* Update the vlan filtering bit */
1612 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1613 u32 maccr;
1614
1615 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1616 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1617 maccr |= FTGMAC100_MACCR_RM_VLAN;
1618 else
1619 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1620 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1621 }
1622
1623 return 0;
1624}
1625
1626#ifdef CONFIG_NET_POLL_CONTROLLER
1627static void ftgmac100_poll_controller(struct net_device *netdev)
1628{
1629 unsigned long flags;
1630
1631 local_irq_save(flags);
1632 ftgmac100_interrupt(netdev->irq, netdev);
1633 local_irq_restore(flags);
1634}
1635#endif
1636
1637static const struct net_device_ops ftgmac100_netdev_ops = {
1638 .ndo_open = ftgmac100_open,
1639 .ndo_stop = ftgmac100_stop,
1640 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1641 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1642 .ndo_validate_addr = eth_validate_addr,
1643 .ndo_eth_ioctl = phy_do_ioctl,
1644 .ndo_tx_timeout = ftgmac100_tx_timeout,
1645 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1646 .ndo_set_features = ftgmac100_set_features,
1647#ifdef CONFIG_NET_POLL_CONTROLLER
1648 .ndo_poll_controller = ftgmac100_poll_controller,
1649#endif
1650 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1651 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1652};
1653
1654static int ftgmac100_setup_mdio(struct net_device *netdev)
1655{
1656 struct ftgmac100 *priv = netdev_priv(netdev);
1657 struct platform_device *pdev = to_platform_device(priv->dev);
1658 struct device_node *np = pdev->dev.of_node;
1659 struct device_node *mdio_np;
1660 int i, err = 0;
1661 u32 reg;
1662
1663 /* initialize mdio bus */
1664 priv->mii_bus = mdiobus_alloc();
1665 if (!priv->mii_bus)
1666 return -EIO;
1667
1668 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1669 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1670 /* The AST2600 has a separate MDIO controller */
1671
1672 /* For the AST2400 and AST2500 this driver only supports the
1673 * old MDIO interface
1674 */
1675 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1676 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1677 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1678 }
1679
1680 priv->mii_bus->name = "ftgmac100_mdio";
1681 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1682 pdev->name, pdev->id);
1683 priv->mii_bus->parent = priv->dev;
1684 priv->mii_bus->priv = priv->netdev;
1685 priv->mii_bus->read = ftgmac100_mdiobus_read;
1686 priv->mii_bus->write = ftgmac100_mdiobus_write;
1687
1688 for (i = 0; i < PHY_MAX_ADDR; i++)
1689 priv->mii_bus->irq[i] = PHY_POLL;
1690
1691 mdio_np = of_get_child_by_name(np, "mdio");
1692
1693 err = of_mdiobus_register(priv->mii_bus, mdio_np);
1694 if (err) {
1695 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1696 goto err_register_mdiobus;
1697 }
1698
1699 of_node_put(mdio_np);
1700
1701 return 0;
1702
1703err_register_mdiobus:
1704 mdiobus_free(priv->mii_bus);
1705 return err;
1706}
1707
1708static void ftgmac100_phy_disconnect(struct net_device *netdev)
1709{
1710 struct ftgmac100 *priv = netdev_priv(netdev);
1711
1712 if (!netdev->phydev)
1713 return;
1714
1715 phy_disconnect(netdev->phydev);
1716 if (of_phy_is_fixed_link(priv->dev->of_node))
1717 of_phy_deregister_fixed_link(priv->dev->of_node);
1718}
1719
1720static void ftgmac100_destroy_mdio(struct net_device *netdev)
1721{
1722 struct ftgmac100 *priv = netdev_priv(netdev);
1723
1724 if (!priv->mii_bus)
1725 return;
1726
1727 mdiobus_unregister(priv->mii_bus);
1728 mdiobus_free(priv->mii_bus);
1729}
1730
1731static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1732{
1733 if (unlikely(nd->state != ncsi_dev_state_functional))
1734 return;
1735
1736 netdev_dbg(nd->dev, "NCSI interface %s\n",
1737 nd->link_up ? "up" : "down");
1738}
1739
1740static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1741{
1742 struct clk *clk;
1743 int rc;
1744
1745 clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1746 if (IS_ERR(clk))
1747 return PTR_ERR(clk);
1748 priv->clk = clk;
1749 rc = clk_prepare_enable(priv->clk);
1750 if (rc)
1751 return rc;
1752
1753 /* Aspeed specifies a 100MHz clock is required for up to
1754 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1755 * is sufficient
1756 */
1757 rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1758 FTGMAC_100MHZ);
1759 if (rc)
1760 goto cleanup_clk;
1761
1762 /* RCLK is for RMII, typically used for NCSI. Optional because it's not
1763 * necessary if it's the AST2400 MAC, or the MAC is configured for
1764 * RGMII, or the controller is not an ASPEED-based controller.
1765 */
1766 priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1767 rc = clk_prepare_enable(priv->rclk);
1768 if (!rc)
1769 return 0;
1770
1771cleanup_clk:
1772 clk_disable_unprepare(priv->clk);
1773
1774 return rc;
1775}
1776
1777static bool ftgmac100_has_child_node(struct device_node *np, const char *name)
1778{
1779 struct device_node *child_np = of_get_child_by_name(np, name);
1780 bool ret = false;
1781
1782 if (child_np) {
1783 ret = true;
1784 of_node_put(child_np);
1785 }
1786
1787 return ret;
1788}
1789
1790static int ftgmac100_probe(struct platform_device *pdev)
1791{
1792 struct resource *res;
1793 int irq;
1794 struct net_device *netdev;
1795 struct ftgmac100 *priv;
1796 struct device_node *np;
1797 int err = 0;
1798
1799 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1800 if (!res)
1801 return -ENXIO;
1802
1803 irq = platform_get_irq(pdev, 0);
1804 if (irq < 0)
1805 return irq;
1806
1807 /* setup net_device */
1808 netdev = alloc_etherdev(sizeof(*priv));
1809 if (!netdev) {
1810 err = -ENOMEM;
1811 goto err_alloc_etherdev;
1812 }
1813
1814 SET_NETDEV_DEV(netdev, &pdev->dev);
1815
1816 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1817 netdev->netdev_ops = &ftgmac100_netdev_ops;
1818 netdev->watchdog_timeo = 5 * HZ;
1819
1820 platform_set_drvdata(pdev, netdev);
1821
1822 /* setup private data */
1823 priv = netdev_priv(netdev);
1824 priv->netdev = netdev;
1825 priv->dev = &pdev->dev;
1826 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1827
1828 /* map io memory */
1829 priv->res = request_mem_region(res->start, resource_size(res),
1830 dev_name(&pdev->dev));
1831 if (!priv->res) {
1832 dev_err(&pdev->dev, "Could not reserve memory region\n");
1833 err = -ENOMEM;
1834 goto err_req_mem;
1835 }
1836
1837 priv->base = ioremap(res->start, resource_size(res));
1838 if (!priv->base) {
1839 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1840 err = -EIO;
1841 goto err_ioremap;
1842 }
1843
1844 netdev->irq = irq;
1845
1846 /* Enable pause */
1847 priv->tx_pause = true;
1848 priv->rx_pause = true;
1849 priv->aneg_pause = true;
1850
1851 /* MAC address from chip or random one */
1852 err = ftgmac100_initial_mac(priv);
1853 if (err)
1854 goto err_phy_connect;
1855
1856 np = pdev->dev.of_node;
1857 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1858 of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1859 of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1860 priv->rxdes0_edorr_mask = BIT(30);
1861 priv->txdes0_edotr_mask = BIT(30);
1862 priv->is_aspeed = true;
1863 } else {
1864 priv->rxdes0_edorr_mask = BIT(15);
1865 priv->txdes0_edotr_mask = BIT(15);
1866 }
1867
1868 if (np && of_get_property(np, "use-ncsi", NULL)) {
1869 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1870 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1871 err = -EINVAL;
1872 goto err_phy_connect;
1873 }
1874
1875 dev_info(&pdev->dev, "Using NCSI interface\n");
1876 priv->use_ncsi = true;
1877 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1878 if (!priv->ndev) {
1879 err = -EINVAL;
1880 goto err_phy_connect;
1881 }
1882 } else if (np && of_phy_is_fixed_link(np)) {
1883 struct phy_device *phy;
1884
1885 err = of_phy_register_fixed_link(np);
1886 if (err) {
1887 dev_err(&pdev->dev, "Failed to register fixed PHY\n");
1888 goto err_phy_connect;
1889 }
1890
1891 phy = of_phy_get_and_connect(priv->netdev, np,
1892 &ftgmac100_adjust_link);
1893 if (!phy) {
1894 dev_err(&pdev->dev, "Failed to connect to fixed PHY\n");
1895 of_phy_deregister_fixed_link(np);
1896 err = -EINVAL;
1897 goto err_phy_connect;
1898 }
1899
1900 /* Display what we found */
1901 phy_attached_info(phy);
1902 } else if (np && of_get_property(np, "phy-handle", NULL)) {
1903 struct phy_device *phy;
1904
1905 /* Support "mdio"/"phy" child nodes for ast2400/2500 with
1906 * an embedded MDIO controller. Automatically scan the DTS for
1907 * available PHYs and register them.
1908 */
1909 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1910 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1911 err = ftgmac100_setup_mdio(netdev);
1912 if (err)
1913 goto err_setup_mdio;
1914 }
1915
1916 phy = of_phy_get_and_connect(priv->netdev, np,
1917 &ftgmac100_adjust_link);
1918 if (!phy) {
1919 dev_err(&pdev->dev, "Failed to connect to phy\n");
1920 err = -EINVAL;
1921 goto err_phy_connect;
1922 }
1923
1924 /* Indicate that we support PAUSE frames (see comment in
1925 * Documentation/networking/phy.rst)
1926 */
1927 phy_support_asym_pause(phy);
1928
1929 /* Display what we found */
1930 phy_attached_info(phy);
1931 } else if (np && !ftgmac100_has_child_node(np, "mdio")) {
1932 /* Support legacy ASPEED devicetree descriptions that decribe a
1933 * MAC with an embedded MDIO controller but have no "mdio"
1934 * child node. Automatically scan the MDIO bus for available
1935 * PHYs.
1936 */
1937 priv->use_ncsi = false;
1938 err = ftgmac100_setup_mdio(netdev);
1939 if (err)
1940 goto err_setup_mdio;
1941
1942 err = ftgmac100_mii_probe(netdev);
1943 if (err) {
1944 dev_err(priv->dev, "MII probe failed!\n");
1945 goto err_ncsi_dev;
1946 }
1947
1948 }
1949
1950 if (priv->is_aspeed) {
1951 err = ftgmac100_setup_clk(priv);
1952 if (err)
1953 goto err_phy_connect;
1954
1955 /* Disable ast2600 problematic HW arbitration */
1956 if (of_device_is_compatible(np, "aspeed,ast2600-mac"))
1957 iowrite32(FTGMAC100_TM_DEFAULT,
1958 priv->base + FTGMAC100_OFFSET_TM);
1959 }
1960
1961 /* Default ring sizes */
1962 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1963 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1964
1965 /* Base feature set */
1966 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1967 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1968 NETIF_F_HW_VLAN_CTAG_TX;
1969
1970 if (priv->use_ncsi)
1971 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1972
1973 /* AST2400 doesn't have working HW checksum generation */
1974 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1975 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1976
1977 /* AST2600 tx checksum with NCSI is broken */
1978 if (priv->use_ncsi && of_device_is_compatible(np, "aspeed,ast2600-mac"))
1979 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1980
1981 if (np && of_get_property(np, "no-hw-checksum", NULL))
1982 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1983 netdev->features |= netdev->hw_features;
1984
1985 /* register network device */
1986 err = register_netdev(netdev);
1987 if (err) {
1988 dev_err(&pdev->dev, "Failed to register netdev\n");
1989 goto err_register_netdev;
1990 }
1991
1992 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1993
1994 return 0;
1995
1996err_register_netdev:
1997 clk_disable_unprepare(priv->rclk);
1998 clk_disable_unprepare(priv->clk);
1999err_phy_connect:
2000 ftgmac100_phy_disconnect(netdev);
2001err_ncsi_dev:
2002 if (priv->ndev)
2003 ncsi_unregister_dev(priv->ndev);
2004 ftgmac100_destroy_mdio(netdev);
2005err_setup_mdio:
2006 iounmap(priv->base);
2007err_ioremap:
2008 release_resource(priv->res);
2009err_req_mem:
2010 free_netdev(netdev);
2011err_alloc_etherdev:
2012 return err;
2013}
2014
2015static void ftgmac100_remove(struct platform_device *pdev)
2016{
2017 struct net_device *netdev;
2018 struct ftgmac100 *priv;
2019
2020 netdev = platform_get_drvdata(pdev);
2021 priv = netdev_priv(netdev);
2022
2023 if (priv->ndev)
2024 ncsi_unregister_dev(priv->ndev);
2025 unregister_netdev(netdev);
2026
2027 clk_disable_unprepare(priv->rclk);
2028 clk_disable_unprepare(priv->clk);
2029
2030 /* There's a small chance the reset task will have been re-queued,
2031 * during stop, make sure it's gone before we free the structure.
2032 */
2033 cancel_work_sync(&priv->reset_task);
2034
2035 ftgmac100_phy_disconnect(netdev);
2036 ftgmac100_destroy_mdio(netdev);
2037
2038 iounmap(priv->base);
2039 release_resource(priv->res);
2040
2041 netif_napi_del(&priv->napi);
2042 free_netdev(netdev);
2043}
2044
2045static const struct of_device_id ftgmac100_of_match[] = {
2046 { .compatible = "faraday,ftgmac100" },
2047 { }
2048};
2049MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
2050
2051static struct platform_driver ftgmac100_driver = {
2052 .probe = ftgmac100_probe,
2053 .remove_new = ftgmac100_remove,
2054 .driver = {
2055 .name = DRV_NAME,
2056 .of_match_table = ftgmac100_of_match,
2057 },
2058};
2059module_platform_driver(ftgmac100_driver);
2060
2061MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
2062MODULE_DESCRIPTION("FTGMAC100 driver");
2063MODULE_LICENSE("GPL");