Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright © 2006-2014 Intel Corporation.
   4 *
   5 * Authors: David Woodhouse <dwmw2@infradead.org>,
   6 *          Ashok Raj <ashok.raj@intel.com>,
   7 *          Shaohua Li <shaohua.li@intel.com>,
   8 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
   9 *          Fenghua Yu <fenghua.yu@intel.com>
  10 *          Joerg Roedel <jroedel@suse.de>
  11 */
  12
  13#define pr_fmt(fmt)     "DMAR: " fmt
  14#define dev_fmt(fmt)    pr_fmt(fmt)
  15
  16#include <linux/crash_dump.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dmi.h>
  19#include <linux/memory.h>
  20#include <linux/pci.h>
  21#include <linux/pci-ats.h>
  22#include <linux/spinlock.h>
  23#include <linux/syscore_ops.h>
  24#include <linux/tboot.h>
  25#include <uapi/linux/iommufd.h>
  26
  27#include "iommu.h"
  28#include "../dma-iommu.h"
  29#include "../irq_remapping.h"
  30#include "../iommu-pages.h"
  31#include "pasid.h"
  32#include "cap_audit.h"
  33#include "perfmon.h"
  34
  35#define ROOT_SIZE		VTD_PAGE_SIZE
  36#define CONTEXT_SIZE		VTD_PAGE_SIZE
  37
  38#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
  39#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
  40#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
  41#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
  42
  43#define IOAPIC_RANGE_START	(0xfee00000)
  44#define IOAPIC_RANGE_END	(0xfeefffff)
  45#define IOVA_START_ADDR		(0x1000)
  46
  47#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
  48
  49#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1)
  50#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1)
  51
  52/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
  53   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
  54#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
  55				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
  56#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
  57
 
 
 
 
 
  58static void __init check_tylersburg_isoch(void);
  59static int rwbf_quirk;
  60
  61/*
  62 * set to 1 to panic kernel if can't successfully enable VT-d
  63 * (used when kernel is launched w/ TXT)
  64 */
  65static int force_on = 0;
  66static int intel_iommu_tboot_noforce;
  67static int no_platform_optin;
  68
  69#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
  70
  71/*
  72 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
  73 * if marked present.
  74 */
  75static phys_addr_t root_entry_lctp(struct root_entry *re)
  76{
  77	if (!(re->lo & 1))
  78		return 0;
  79
  80	return re->lo & VTD_PAGE_MASK;
  81}
  82
  83/*
  84 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
  85 * if marked present.
  86 */
  87static phys_addr_t root_entry_uctp(struct root_entry *re)
  88{
  89	if (!(re->hi & 1))
  90		return 0;
  91
  92	return re->hi & VTD_PAGE_MASK;
  93}
  94
  95static int device_rid_cmp_key(const void *key, const struct rb_node *node)
  96{
  97	struct device_domain_info *info =
  98		rb_entry(node, struct device_domain_info, node);
  99	const u16 *rid_lhs = key;
 100
 101	if (*rid_lhs < PCI_DEVID(info->bus, info->devfn))
 102		return -1;
 103
 104	if (*rid_lhs > PCI_DEVID(info->bus, info->devfn))
 105		return 1;
 106
 107	return 0;
 108}
 109
 110static int device_rid_cmp(struct rb_node *lhs, const struct rb_node *rhs)
 111{
 112	struct device_domain_info *info =
 113		rb_entry(lhs, struct device_domain_info, node);
 114	u16 key = PCI_DEVID(info->bus, info->devfn);
 115
 116	return device_rid_cmp_key(&key, rhs);
 117}
 118
 119/*
 120 * Looks up an IOMMU-probed device using its source ID.
 121 *
 122 * Returns the pointer to the device if there is a match. Otherwise,
 123 * returns NULL.
 124 *
 125 * Note that this helper doesn't guarantee that the device won't be
 126 * released by the iommu subsystem after being returned. The caller
 127 * should use its own synchronization mechanism to avoid the device
 128 * being released during its use if its possibly the case.
 129 */
 130struct device *device_rbtree_find(struct intel_iommu *iommu, u16 rid)
 131{
 132	struct device_domain_info *info = NULL;
 133	struct rb_node *node;
 134	unsigned long flags;
 135
 136	spin_lock_irqsave(&iommu->device_rbtree_lock, flags);
 137	node = rb_find(&rid, &iommu->device_rbtree, device_rid_cmp_key);
 138	if (node)
 139		info = rb_entry(node, struct device_domain_info, node);
 140	spin_unlock_irqrestore(&iommu->device_rbtree_lock, flags);
 141
 142	return info ? info->dev : NULL;
 143}
 144
 145static int device_rbtree_insert(struct intel_iommu *iommu,
 146				struct device_domain_info *info)
 147{
 148	struct rb_node *curr;
 149	unsigned long flags;
 150
 151	spin_lock_irqsave(&iommu->device_rbtree_lock, flags);
 152	curr = rb_find_add(&info->node, &iommu->device_rbtree, device_rid_cmp);
 153	spin_unlock_irqrestore(&iommu->device_rbtree_lock, flags);
 154	if (WARN_ON(curr))
 155		return -EEXIST;
 156
 157	return 0;
 158}
 159
 160static void device_rbtree_remove(struct device_domain_info *info)
 161{
 162	struct intel_iommu *iommu = info->iommu;
 163	unsigned long flags;
 164
 165	spin_lock_irqsave(&iommu->device_rbtree_lock, flags);
 166	rb_erase(&info->node, &iommu->device_rbtree);
 167	spin_unlock_irqrestore(&iommu->device_rbtree_lock, flags);
 168}
 169
 170struct dmar_rmrr_unit {
 171	struct list_head list;		/* list of rmrr units	*/
 172	struct acpi_dmar_header *hdr;	/* ACPI header		*/
 173	u64	base_address;		/* reserved base address*/
 174	u64	end_address;		/* reserved end address */
 175	struct dmar_dev_scope *devices;	/* target devices */
 176	int	devices_cnt;		/* target device count */
 177};
 178
 179struct dmar_atsr_unit {
 180	struct list_head list;		/* list of ATSR units */
 181	struct acpi_dmar_header *hdr;	/* ACPI header */
 182	struct dmar_dev_scope *devices;	/* target devices */
 183	int devices_cnt;		/* target device count */
 184	u8 include_all:1;		/* include all ports */
 185};
 186
 187struct dmar_satc_unit {
 188	struct list_head list;		/* list of SATC units */
 189	struct acpi_dmar_header *hdr;	/* ACPI header */
 190	struct dmar_dev_scope *devices;	/* target devices */
 191	struct intel_iommu *iommu;	/* the corresponding iommu */
 192	int devices_cnt;		/* target device count */
 193	u8 atc_required:1;		/* ATS is required */
 194};
 195
 196static LIST_HEAD(dmar_atsr_units);
 197static LIST_HEAD(dmar_rmrr_units);
 198static LIST_HEAD(dmar_satc_units);
 199
 200#define for_each_rmrr_units(rmrr) \
 201	list_for_each_entry(rmrr, &dmar_rmrr_units, list)
 202
 203static void intel_iommu_domain_free(struct iommu_domain *domain);
 204
 205int dmar_disabled = !IS_ENABLED(CONFIG_INTEL_IOMMU_DEFAULT_ON);
 206int intel_iommu_sm = IS_ENABLED(CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON);
 207
 208int intel_iommu_enabled = 0;
 209EXPORT_SYMBOL_GPL(intel_iommu_enabled);
 210
 
 211static int intel_iommu_superpage = 1;
 212static int iommu_identity_mapping;
 213static int iommu_skip_te_disable;
 214static int disable_igfx_iommu;
 215
 
 216#define IDENTMAP_AZALIA		4
 217
 218const struct iommu_ops intel_iommu_ops;
 219static const struct iommu_dirty_ops intel_dirty_ops;
 220
 221static bool translation_pre_enabled(struct intel_iommu *iommu)
 222{
 223	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
 224}
 225
 226static void clear_translation_pre_enabled(struct intel_iommu *iommu)
 227{
 228	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
 229}
 230
 231static void init_translation_status(struct intel_iommu *iommu)
 232{
 233	u32 gsts;
 234
 235	gsts = readl(iommu->reg + DMAR_GSTS_REG);
 236	if (gsts & DMA_GSTS_TES)
 237		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
 238}
 239
 240static int __init intel_iommu_setup(char *str)
 241{
 242	if (!str)
 243		return -EINVAL;
 244
 245	while (*str) {
 246		if (!strncmp(str, "on", 2)) {
 247			dmar_disabled = 0;
 248			pr_info("IOMMU enabled\n");
 249		} else if (!strncmp(str, "off", 3)) {
 250			dmar_disabled = 1;
 251			no_platform_optin = 1;
 252			pr_info("IOMMU disabled\n");
 253		} else if (!strncmp(str, "igfx_off", 8)) {
 254			disable_igfx_iommu = 1;
 255			pr_info("Disable GFX device mapping\n");
 256		} else if (!strncmp(str, "forcedac", 8)) {
 257			pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n");
 258			iommu_dma_forcedac = true;
 259		} else if (!strncmp(str, "strict", 6)) {
 260			pr_warn("intel_iommu=strict deprecated; use iommu.strict=1 instead\n");
 261			iommu_set_dma_strict();
 262		} else if (!strncmp(str, "sp_off", 6)) {
 263			pr_info("Disable supported super page\n");
 264			intel_iommu_superpage = 0;
 265		} else if (!strncmp(str, "sm_on", 5)) {
 266			pr_info("Enable scalable mode if hardware supports\n");
 267			intel_iommu_sm = 1;
 268		} else if (!strncmp(str, "sm_off", 6)) {
 269			pr_info("Scalable mode is disallowed\n");
 270			intel_iommu_sm = 0;
 271		} else if (!strncmp(str, "tboot_noforce", 13)) {
 272			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
 273			intel_iommu_tboot_noforce = 1;
 274		} else {
 275			pr_notice("Unknown option - '%s'\n", str);
 276		}
 277
 278		str += strcspn(str, ",");
 279		while (*str == ',')
 280			str++;
 281	}
 282
 283	return 1;
 284}
 285__setup("intel_iommu=", intel_iommu_setup);
 286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287static int domain_pfn_supported(struct dmar_domain *domain, unsigned long pfn)
 288{
 289	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
 290
 291	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
 292}
 293
 294/*
 295 * Calculate the Supported Adjusted Guest Address Widths of an IOMMU.
 296 * Refer to 11.4.2 of the VT-d spec for the encoding of each bit of
 297 * the returned SAGAW.
 298 */
 299static unsigned long __iommu_calculate_sagaw(struct intel_iommu *iommu)
 300{
 301	unsigned long fl_sagaw, sl_sagaw;
 302
 303	fl_sagaw = BIT(2) | (cap_fl5lp_support(iommu->cap) ? BIT(3) : 0);
 304	sl_sagaw = cap_sagaw(iommu->cap);
 305
 306	/* Second level only. */
 307	if (!sm_supported(iommu) || !ecap_flts(iommu->ecap))
 308		return sl_sagaw;
 309
 310	/* First level only. */
 311	if (!ecap_slts(iommu->ecap))
 312		return fl_sagaw;
 313
 314	return fl_sagaw & sl_sagaw;
 315}
 316
 317static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
 318{
 319	unsigned long sagaw;
 320	int agaw;
 321
 322	sagaw = __iommu_calculate_sagaw(iommu);
 323	for (agaw = width_to_agaw(max_gaw); agaw >= 0; agaw--) {
 324		if (test_bit(agaw, &sagaw))
 325			break;
 326	}
 327
 328	return agaw;
 329}
 330
 331/*
 332 * Calculate max SAGAW for each iommu.
 333 */
 334int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
 335{
 336	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
 337}
 338
 339/*
 340 * calculate agaw for each iommu.
 341 * "SAGAW" may be different across iommus, use a default agaw, and
 342 * get a supported less agaw for iommus that don't support the default agaw.
 343 */
 344int iommu_calculate_agaw(struct intel_iommu *iommu)
 345{
 346	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
 347}
 348
 349static bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
 350{
 351	return sm_supported(iommu) ?
 352			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
 353}
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355/* Return the super pagesize bitmap if supported. */
 356static unsigned long domain_super_pgsize_bitmap(struct dmar_domain *domain)
 357{
 358	unsigned long bitmap = 0;
 359
 360	/*
 361	 * 1-level super page supports page size of 2MiB, 2-level super page
 362	 * supports page size of both 2MiB and 1GiB.
 363	 */
 364	if (domain->iommu_superpage == 1)
 365		bitmap |= SZ_2M;
 366	else if (domain->iommu_superpage == 2)
 367		bitmap |= SZ_2M | SZ_1G;
 368
 369	return bitmap;
 370}
 371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
 373					 u8 devfn, int alloc)
 374{
 375	struct root_entry *root = &iommu->root_entry[bus];
 376	struct context_entry *context;
 377	u64 *entry;
 378
 379	/*
 380	 * Except that the caller requested to allocate a new entry,
 381	 * returning a copied context entry makes no sense.
 382	 */
 383	if (!alloc && context_copied(iommu, bus, devfn))
 384		return NULL;
 385
 386	entry = &root->lo;
 387	if (sm_supported(iommu)) {
 388		if (devfn >= 0x80) {
 389			devfn -= 0x80;
 390			entry = &root->hi;
 391		}
 392		devfn *= 2;
 393	}
 394	if (*entry & 1)
 395		context = phys_to_virt(*entry & VTD_PAGE_MASK);
 396	else {
 397		unsigned long phy_addr;
 398		if (!alloc)
 399			return NULL;
 400
 401		context = iommu_alloc_page_node(iommu->node, GFP_ATOMIC);
 402		if (!context)
 403			return NULL;
 404
 405		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
 406		phy_addr = virt_to_phys((void *)context);
 407		*entry = phy_addr | 1;
 408		__iommu_flush_cache(iommu, entry, sizeof(*entry));
 409	}
 410	return &context[devfn];
 411}
 412
 413/**
 414 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 415 *				 sub-hierarchy of a candidate PCI-PCI bridge
 416 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 417 * @bridge: the candidate PCI-PCI bridge
 418 *
 419 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 420 */
 421static bool
 422is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
 423{
 424	struct pci_dev *pdev, *pbridge;
 425
 426	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
 427		return false;
 428
 429	pdev = to_pci_dev(dev);
 430	pbridge = to_pci_dev(bridge);
 431
 432	if (pbridge->subordinate &&
 433	    pbridge->subordinate->number <= pdev->bus->number &&
 434	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
 435		return true;
 436
 437	return false;
 438}
 439
 440static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
 441{
 442	struct dmar_drhd_unit *drhd;
 443	u32 vtbar;
 444	int rc;
 445
 446	/* We know that this device on this chipset has its own IOMMU.
 447	 * If we find it under a different IOMMU, then the BIOS is lying
 448	 * to us. Hope that the IOMMU for this device is actually
 449	 * disabled, and it needs no translation...
 450	 */
 451	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
 452	if (rc) {
 453		/* "can't" happen */
 454		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
 455		return false;
 456	}
 457	vtbar &= 0xffff0000;
 458
 459	/* we know that the this iommu should be at offset 0xa000 from vtbar */
 460	drhd = dmar_find_matched_drhd_unit(pdev);
 461	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
 462		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
 463		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 464		return true;
 465	}
 466
 467	return false;
 468}
 469
 470static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev)
 471{
 472	if (!iommu || iommu->drhd->ignored)
 473		return true;
 474
 475	if (dev_is_pci(dev)) {
 476		struct pci_dev *pdev = to_pci_dev(dev);
 477
 478		if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
 479		    pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB &&
 480		    quirk_ioat_snb_local_iommu(pdev))
 481			return true;
 482	}
 483
 484	return false;
 485}
 486
 487static struct intel_iommu *device_lookup_iommu(struct device *dev, u8 *bus, u8 *devfn)
 488{
 489	struct dmar_drhd_unit *drhd = NULL;
 490	struct pci_dev *pdev = NULL;
 491	struct intel_iommu *iommu;
 492	struct device *tmp;
 493	u16 segment = 0;
 494	int i;
 495
 496	if (!dev)
 497		return NULL;
 498
 499	if (dev_is_pci(dev)) {
 500		struct pci_dev *pf_pdev;
 501
 502		pdev = pci_real_dma_dev(to_pci_dev(dev));
 503
 504		/* VFs aren't listed in scope tables; we need to look up
 505		 * the PF instead to find the IOMMU. */
 506		pf_pdev = pci_physfn(pdev);
 507		dev = &pf_pdev->dev;
 508		segment = pci_domain_nr(pdev->bus);
 509	} else if (has_acpi_companion(dev))
 510		dev = &ACPI_COMPANION(dev)->dev;
 511
 512	rcu_read_lock();
 513	for_each_iommu(iommu, drhd) {
 514		if (pdev && segment != drhd->segment)
 515			continue;
 516
 517		for_each_active_dev_scope(drhd->devices,
 518					  drhd->devices_cnt, i, tmp) {
 519			if (tmp == dev) {
 520				/* For a VF use its original BDF# not that of the PF
 521				 * which we used for the IOMMU lookup. Strictly speaking
 522				 * we could do this for all PCI devices; we only need to
 523				 * get the BDF# from the scope table for ACPI matches. */
 524				if (pdev && pdev->is_virtfn)
 525					goto got_pdev;
 526
 527				if (bus && devfn) {
 528					*bus = drhd->devices[i].bus;
 529					*devfn = drhd->devices[i].devfn;
 530				}
 531				goto out;
 532			}
 533
 534			if (is_downstream_to_pci_bridge(dev, tmp))
 535				goto got_pdev;
 536		}
 537
 538		if (pdev && drhd->include_all) {
 539got_pdev:
 540			if (bus && devfn) {
 541				*bus = pdev->bus->number;
 542				*devfn = pdev->devfn;
 543			}
 544			goto out;
 545		}
 546	}
 547	iommu = NULL;
 548out:
 549	if (iommu_is_dummy(iommu, dev))
 550		iommu = NULL;
 551
 552	rcu_read_unlock();
 553
 554	return iommu;
 555}
 556
 557static void domain_flush_cache(struct dmar_domain *domain,
 558			       void *addr, int size)
 559{
 560	if (!domain->iommu_coherency)
 561		clflush_cache_range(addr, size);
 562}
 563
 564static void free_context_table(struct intel_iommu *iommu)
 565{
 566	struct context_entry *context;
 567	int i;
 568
 569	if (!iommu->root_entry)
 570		return;
 571
 572	for (i = 0; i < ROOT_ENTRY_NR; i++) {
 573		context = iommu_context_addr(iommu, i, 0, 0);
 574		if (context)
 575			iommu_free_page(context);
 576
 577		if (!sm_supported(iommu))
 578			continue;
 579
 580		context = iommu_context_addr(iommu, i, 0x80, 0);
 581		if (context)
 582			iommu_free_page(context);
 583	}
 584
 585	iommu_free_page(iommu->root_entry);
 586	iommu->root_entry = NULL;
 587}
 588
 589#ifdef CONFIG_DMAR_DEBUG
 590static void pgtable_walk(struct intel_iommu *iommu, unsigned long pfn,
 591			 u8 bus, u8 devfn, struct dma_pte *parent, int level)
 592{
 593	struct dma_pte *pte;
 594	int offset;
 595
 596	while (1) {
 597		offset = pfn_level_offset(pfn, level);
 598		pte = &parent[offset];
 599
 600		pr_info("pte level: %d, pte value: 0x%016llx\n", level, pte->val);
 601
 602		if (!dma_pte_present(pte)) {
 603			pr_info("page table not present at level %d\n", level - 1);
 604			break;
 605		}
 606
 607		if (level == 1 || dma_pte_superpage(pte))
 
 
 608			break;
 609
 610		parent = phys_to_virt(dma_pte_addr(pte));
 611		level--;
 612	}
 613}
 614
 615void dmar_fault_dump_ptes(struct intel_iommu *iommu, u16 source_id,
 616			  unsigned long long addr, u32 pasid)
 617{
 618	struct pasid_dir_entry *dir, *pde;
 619	struct pasid_entry *entries, *pte;
 620	struct context_entry *ctx_entry;
 621	struct root_entry *rt_entry;
 622	int i, dir_index, index, level;
 623	u8 devfn = source_id & 0xff;
 624	u8 bus = source_id >> 8;
 625	struct dma_pte *pgtable;
 626
 627	pr_info("Dump %s table entries for IOVA 0x%llx\n", iommu->name, addr);
 628
 629	/* root entry dump */
 630	if (!iommu->root_entry) {
 631		pr_info("root table is not present\n");
 
 632		return;
 633	}
 634	rt_entry = &iommu->root_entry[bus];
 635
 636	if (sm_supported(iommu))
 637		pr_info("scalable mode root entry: hi 0x%016llx, low 0x%016llx\n",
 638			rt_entry->hi, rt_entry->lo);
 639	else
 640		pr_info("root entry: 0x%016llx", rt_entry->lo);
 641
 642	/* context entry dump */
 643	ctx_entry = iommu_context_addr(iommu, bus, devfn, 0);
 644	if (!ctx_entry) {
 645		pr_info("context table is not present\n");
 646		return;
 647	}
 648
 649	pr_info("context entry: hi 0x%016llx, low 0x%016llx\n",
 650		ctx_entry->hi, ctx_entry->lo);
 651
 652	/* legacy mode does not require PASID entries */
 653	if (!sm_supported(iommu)) {
 654		if (!context_present(ctx_entry)) {
 655			pr_info("legacy mode page table is not present\n");
 656			return;
 657		}
 658		level = agaw_to_level(ctx_entry->hi & 7);
 659		pgtable = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK);
 660		goto pgtable_walk;
 661	}
 662
 663	if (!context_present(ctx_entry)) {
 664		pr_info("pasid directory table is not present\n");
 665		return;
 666	}
 667
 668	/* get the pointer to pasid directory entry */
 669	dir = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK);
 670
 
 
 
 671	/* For request-without-pasid, get the pasid from context entry */
 672	if (intel_iommu_sm && pasid == IOMMU_PASID_INVALID)
 673		pasid = IOMMU_NO_PASID;
 674
 675	dir_index = pasid >> PASID_PDE_SHIFT;
 676	pde = &dir[dir_index];
 677	pr_info("pasid dir entry: 0x%016llx\n", pde->val);
 678
 679	/* get the pointer to the pasid table entry */
 680	entries = get_pasid_table_from_pde(pde);
 681	if (!entries) {
 682		pr_info("pasid table is not present\n");
 683		return;
 684	}
 685	index = pasid & PASID_PTE_MASK;
 686	pte = &entries[index];
 687	for (i = 0; i < ARRAY_SIZE(pte->val); i++)
 688		pr_info("pasid table entry[%d]: 0x%016llx\n", i, pte->val[i]);
 689
 690	if (!pasid_pte_is_present(pte)) {
 691		pr_info("scalable mode page table is not present\n");
 692		return;
 693	}
 694
 695	if (pasid_pte_get_pgtt(pte) == PASID_ENTRY_PGTT_FL_ONLY) {
 696		level = pte->val[2] & BIT_ULL(2) ? 5 : 4;
 697		pgtable = phys_to_virt(pte->val[2] & VTD_PAGE_MASK);
 698	} else {
 699		level = agaw_to_level((pte->val[0] >> 2) & 0x7);
 700		pgtable = phys_to_virt(pte->val[0] & VTD_PAGE_MASK);
 701	}
 702
 703pgtable_walk:
 704	pgtable_walk(iommu, addr >> VTD_PAGE_SHIFT, bus, devfn, pgtable, level);
 705}
 706#endif
 707
 708static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
 709				      unsigned long pfn, int *target_level,
 710				      gfp_t gfp)
 711{
 712	struct dma_pte *parent, *pte;
 713	int level = agaw_to_level(domain->agaw);
 714	int offset;
 715
 716	if (!domain_pfn_supported(domain, pfn))
 717		/* Address beyond IOMMU's addressing capabilities. */
 718		return NULL;
 719
 720	parent = domain->pgd;
 721
 722	while (1) {
 723		void *tmp_page;
 724
 725		offset = pfn_level_offset(pfn, level);
 726		pte = &parent[offset];
 727		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
 728			break;
 729		if (level == *target_level)
 730			break;
 731
 732		if (!dma_pte_present(pte)) {
 733			uint64_t pteval, tmp;
 734
 735			tmp_page = iommu_alloc_page_node(domain->nid, gfp);
 736
 737			if (!tmp_page)
 738				return NULL;
 739
 740			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
 741			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
 742			if (domain->use_first_level)
 743				pteval |= DMA_FL_PTE_US | DMA_FL_PTE_ACCESS;
 744
 745			tmp = 0ULL;
 746			if (!try_cmpxchg64(&pte->val, &tmp, pteval))
 747				/* Someone else set it while we were thinking; use theirs. */
 748				iommu_free_page(tmp_page);
 749			else
 750				domain_flush_cache(domain, pte, sizeof(*pte));
 751		}
 752		if (level == 1)
 753			break;
 754
 755		parent = phys_to_virt(dma_pte_addr(pte));
 756		level--;
 757	}
 758
 759	if (!*target_level)
 760		*target_level = level;
 761
 762	return pte;
 763}
 764
 765/* return address's pte at specific level */
 766static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
 767					 unsigned long pfn,
 768					 int level, int *large_page)
 769{
 770	struct dma_pte *parent, *pte;
 771	int total = agaw_to_level(domain->agaw);
 772	int offset;
 773
 774	parent = domain->pgd;
 775	while (level <= total) {
 776		offset = pfn_level_offset(pfn, total);
 777		pte = &parent[offset];
 778		if (level == total)
 779			return pte;
 780
 781		if (!dma_pte_present(pte)) {
 782			*large_page = total;
 783			break;
 784		}
 785
 786		if (dma_pte_superpage(pte)) {
 787			*large_page = total;
 788			return pte;
 789		}
 790
 791		parent = phys_to_virt(dma_pte_addr(pte));
 792		total--;
 793	}
 794	return NULL;
 795}
 796
 797/* clear last level pte, a tlb flush should be followed */
 798static void dma_pte_clear_range(struct dmar_domain *domain,
 799				unsigned long start_pfn,
 800				unsigned long last_pfn)
 801{
 802	unsigned int large_page;
 803	struct dma_pte *first_pte, *pte;
 804
 805	if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) ||
 806	    WARN_ON(start_pfn > last_pfn))
 807		return;
 808
 809	/* we don't need lock here; nobody else touches the iova range */
 810	do {
 811		large_page = 1;
 812		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
 813		if (!pte) {
 814			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
 815			continue;
 816		}
 817		do {
 818			dma_clear_pte(pte);
 819			start_pfn += lvl_to_nr_pages(large_page);
 820			pte++;
 821		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));
 822
 823		domain_flush_cache(domain, first_pte,
 824				   (void *)pte - (void *)first_pte);
 825
 826	} while (start_pfn && start_pfn <= last_pfn);
 827}
 828
 829static void dma_pte_free_level(struct dmar_domain *domain, int level,
 830			       int retain_level, struct dma_pte *pte,
 831			       unsigned long pfn, unsigned long start_pfn,
 832			       unsigned long last_pfn)
 833{
 834	pfn = max(start_pfn, pfn);
 835	pte = &pte[pfn_level_offset(pfn, level)];
 836
 837	do {
 838		unsigned long level_pfn;
 839		struct dma_pte *level_pte;
 840
 841		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
 842			goto next;
 843
 844		level_pfn = pfn & level_mask(level);
 845		level_pte = phys_to_virt(dma_pte_addr(pte));
 846
 847		if (level > 2) {
 848			dma_pte_free_level(domain, level - 1, retain_level,
 849					   level_pte, level_pfn, start_pfn,
 850					   last_pfn);
 851		}
 852
 853		/*
 854		 * Free the page table if we're below the level we want to
 855		 * retain and the range covers the entire table.
 856		 */
 857		if (level < retain_level && !(start_pfn > level_pfn ||
 858		      last_pfn < level_pfn + level_size(level) - 1)) {
 859			dma_clear_pte(pte);
 860			domain_flush_cache(domain, pte, sizeof(*pte));
 861			iommu_free_page(level_pte);
 862		}
 863next:
 864		pfn += level_size(level);
 865	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
 866}
 867
 868/*
 869 * clear last level (leaf) ptes and free page table pages below the
 870 * level we wish to keep intact.
 871 */
 872static void dma_pte_free_pagetable(struct dmar_domain *domain,
 873				   unsigned long start_pfn,
 874				   unsigned long last_pfn,
 875				   int retain_level)
 876{
 877	dma_pte_clear_range(domain, start_pfn, last_pfn);
 878
 879	/* We don't need lock here; nobody else touches the iova range */
 880	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
 881			   domain->pgd, 0, start_pfn, last_pfn);
 882
 883	/* free pgd */
 884	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
 885		iommu_free_page(domain->pgd);
 886		domain->pgd = NULL;
 887	}
 888}
 889
 890/* When a page at a given level is being unlinked from its parent, we don't
 891   need to *modify* it at all. All we need to do is make a list of all the
 892   pages which can be freed just as soon as we've flushed the IOTLB and we
 893   know the hardware page-walk will no longer touch them.
 894   The 'pte' argument is the *parent* PTE, pointing to the page that is to
 895   be freed. */
 896static void dma_pte_list_pagetables(struct dmar_domain *domain,
 897				    int level, struct dma_pte *pte,
 898				    struct list_head *freelist)
 899{
 900	struct page *pg;
 901
 902	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
 903	list_add_tail(&pg->lru, freelist);
 904
 905	if (level == 1)
 906		return;
 907
 908	pte = page_address(pg);
 909	do {
 910		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
 911			dma_pte_list_pagetables(domain, level - 1, pte, freelist);
 912		pte++;
 913	} while (!first_pte_in_page(pte));
 914}
 915
 916static void dma_pte_clear_level(struct dmar_domain *domain, int level,
 917				struct dma_pte *pte, unsigned long pfn,
 918				unsigned long start_pfn, unsigned long last_pfn,
 919				struct list_head *freelist)
 920{
 921	struct dma_pte *first_pte = NULL, *last_pte = NULL;
 922
 923	pfn = max(start_pfn, pfn);
 924	pte = &pte[pfn_level_offset(pfn, level)];
 925
 926	do {
 927		unsigned long level_pfn = pfn & level_mask(level);
 928
 929		if (!dma_pte_present(pte))
 930			goto next;
 931
 932		/* If range covers entire pagetable, free it */
 933		if (start_pfn <= level_pfn &&
 934		    last_pfn >= level_pfn + level_size(level) - 1) {
 935			/* These suborbinate page tables are going away entirely. Don't
 936			   bother to clear them; we're just going to *free* them. */
 937			if (level > 1 && !dma_pte_superpage(pte))
 938				dma_pte_list_pagetables(domain, level - 1, pte, freelist);
 939
 940			dma_clear_pte(pte);
 941			if (!first_pte)
 942				first_pte = pte;
 943			last_pte = pte;
 944		} else if (level > 1) {
 945			/* Recurse down into a level that isn't *entirely* obsolete */
 946			dma_pte_clear_level(domain, level - 1,
 947					    phys_to_virt(dma_pte_addr(pte)),
 948					    level_pfn, start_pfn, last_pfn,
 949					    freelist);
 950		}
 951next:
 952		pfn = level_pfn + level_size(level);
 953	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
 954
 955	if (first_pte)
 956		domain_flush_cache(domain, first_pte,
 957				   (void *)++last_pte - (void *)first_pte);
 958}
 959
 960/* We can't just free the pages because the IOMMU may still be walking
 961   the page tables, and may have cached the intermediate levels. The
 962   pages can only be freed after the IOTLB flush has been done. */
 963static void domain_unmap(struct dmar_domain *domain, unsigned long start_pfn,
 964			 unsigned long last_pfn, struct list_head *freelist)
 965{
 966	if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) ||
 967	    WARN_ON(start_pfn > last_pfn))
 968		return;
 969
 970	/* we don't need lock here; nobody else touches the iova range */
 971	dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
 972			    domain->pgd, 0, start_pfn, last_pfn, freelist);
 973
 974	/* free pgd */
 975	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
 976		struct page *pgd_page = virt_to_page(domain->pgd);
 977		list_add_tail(&pgd_page->lru, freelist);
 978		domain->pgd = NULL;
 979	}
 980}
 981
 982/* iommu handling */
 983static int iommu_alloc_root_entry(struct intel_iommu *iommu)
 984{
 985	struct root_entry *root;
 986
 987	root = iommu_alloc_page_node(iommu->node, GFP_ATOMIC);
 988	if (!root) {
 989		pr_err("Allocating root entry for %s failed\n",
 990			iommu->name);
 991		return -ENOMEM;
 992	}
 993
 994	__iommu_flush_cache(iommu, root, ROOT_SIZE);
 995	iommu->root_entry = root;
 996
 997	return 0;
 998}
 999
1000static void iommu_set_root_entry(struct intel_iommu *iommu)
1001{
1002	u64 addr;
1003	u32 sts;
1004	unsigned long flag;
1005
1006	addr = virt_to_phys(iommu->root_entry);
1007	if (sm_supported(iommu))
1008		addr |= DMA_RTADDR_SMT;
1009
1010	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1011	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1012
1013	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1014
1015	/* Make sure hardware complete it */
1016	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1017		      readl, (sts & DMA_GSTS_RTPS), sts);
1018
1019	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1020
1021	/*
1022	 * Hardware invalidates all DMA remapping hardware translation
1023	 * caches as part of SRTP flow.
1024	 */
1025	if (cap_esrtps(iommu->cap))
1026		return;
1027
1028	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
1029	if (sm_supported(iommu))
1030		qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0);
1031	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1032}
1033
1034void iommu_flush_write_buffer(struct intel_iommu *iommu)
1035{
1036	u32 val;
1037	unsigned long flag;
1038
1039	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1040		return;
1041
1042	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1043	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1044
1045	/* Make sure hardware complete it */
1046	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1047		      readl, (!(val & DMA_GSTS_WBFS)), val);
1048
1049	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1050}
1051
1052/* return value determine if we need a write buffer flush */
1053static void __iommu_flush_context(struct intel_iommu *iommu,
1054				  u16 did, u16 source_id, u8 function_mask,
1055				  u64 type)
1056{
1057	u64 val = 0;
1058	unsigned long flag;
1059
1060	switch (type) {
1061	case DMA_CCMD_GLOBAL_INVL:
1062		val = DMA_CCMD_GLOBAL_INVL;
1063		break;
1064	case DMA_CCMD_DOMAIN_INVL:
1065		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1066		break;
1067	case DMA_CCMD_DEVICE_INVL:
1068		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1069			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1070		break;
1071	default:
1072		pr_warn("%s: Unexpected context-cache invalidation type 0x%llx\n",
1073			iommu->name, type);
1074		return;
1075	}
1076	val |= DMA_CCMD_ICC;
1077
1078	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1079	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1080
1081	/* Make sure hardware complete it */
1082	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1083		dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1084
1085	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1086}
1087
1088void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1089			 unsigned int size_order, u64 type)
 
1090{
1091	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1092	u64 val = 0, val_iva = 0;
1093	unsigned long flag;
1094
1095	switch (type) {
1096	case DMA_TLB_GLOBAL_FLUSH:
1097		/* global flush doesn't need set IVA_REG */
1098		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1099		break;
1100	case DMA_TLB_DSI_FLUSH:
1101		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1102		break;
1103	case DMA_TLB_PSI_FLUSH:
1104		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1105		/* IH bit is passed in as part of address */
1106		val_iva = size_order | addr;
1107		break;
1108	default:
1109		pr_warn("%s: Unexpected iotlb invalidation type 0x%llx\n",
1110			iommu->name, type);
1111		return;
1112	}
1113
1114	if (cap_write_drain(iommu->cap))
1115		val |= DMA_TLB_WRITE_DRAIN;
1116
1117	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1118	/* Note: Only uses first TLB reg currently */
1119	if (val_iva)
1120		dmar_writeq(iommu->reg + tlb_offset, val_iva);
1121	dmar_writeq(iommu->reg + tlb_offset + 8, val);
1122
1123	/* Make sure hardware complete it */
1124	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1125		dmar_readq, (!(val & DMA_TLB_IVT)), val);
1126
1127	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1128
1129	/* check IOTLB invalidation granularity */
1130	if (DMA_TLB_IAIG(val) == 0)
1131		pr_err("Flush IOTLB failed\n");
1132	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1133		pr_debug("TLB flush request %Lx, actual %Lx\n",
1134			(unsigned long long)DMA_TLB_IIRG(type),
1135			(unsigned long long)DMA_TLB_IAIG(val));
1136}
1137
1138static struct device_domain_info *
1139domain_lookup_dev_info(struct dmar_domain *domain,
1140		       struct intel_iommu *iommu, u8 bus, u8 devfn)
1141{
1142	struct device_domain_info *info;
1143	unsigned long flags;
1144
1145	spin_lock_irqsave(&domain->lock, flags);
1146	list_for_each_entry(info, &domain->devices, link) {
1147		if (info->iommu == iommu && info->bus == bus &&
1148		    info->devfn == devfn) {
1149			spin_unlock_irqrestore(&domain->lock, flags);
1150			return info;
1151		}
1152	}
1153	spin_unlock_irqrestore(&domain->lock, flags);
1154
1155	return NULL;
1156}
1157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158/*
1159 * The extra devTLB flush quirk impacts those QAT devices with PCI device
1160 * IDs ranging from 0x4940 to 0x4943. It is exempted from risky_device()
1161 * check because it applies only to the built-in QAT devices and it doesn't
1162 * grant additional privileges.
1163 */
1164#define BUGGY_QAT_DEVID_MASK 0x4940
1165static bool dev_needs_extra_dtlb_flush(struct pci_dev *pdev)
1166{
1167	if (pdev->vendor != PCI_VENDOR_ID_INTEL)
1168		return false;
1169
1170	if ((pdev->device & 0xfffc) != BUGGY_QAT_DEVID_MASK)
1171		return false;
1172
1173	return true;
1174}
1175
1176static void iommu_enable_pci_caps(struct device_domain_info *info)
1177{
1178	struct pci_dev *pdev;
1179
1180	if (!dev_is_pci(info->dev))
1181		return;
1182
1183	pdev = to_pci_dev(info->dev);
 
 
 
 
 
 
 
 
 
1184	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1185	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT))
1186		info->ats_enabled = 1;
 
 
1187}
1188
1189static void iommu_disable_pci_caps(struct device_domain_info *info)
1190{
1191	struct pci_dev *pdev;
1192
1193	if (!dev_is_pci(info->dev))
1194		return;
1195
1196	pdev = to_pci_dev(info->dev);
1197
1198	if (info->ats_enabled) {
1199		pci_disable_ats(pdev);
1200		info->ats_enabled = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1201	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202}
1203
1204static void intel_flush_iotlb_all(struct iommu_domain *domain)
1205{
1206	cache_tag_flush_all(to_dmar_domain(domain));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1207}
1208
1209static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1210{
1211	u32 pmen;
1212	unsigned long flags;
1213
1214	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1215		return;
1216
1217	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1218	pmen = readl(iommu->reg + DMAR_PMEN_REG);
1219	pmen &= ~DMA_PMEN_EPM;
1220	writel(pmen, iommu->reg + DMAR_PMEN_REG);
1221
1222	/* wait for the protected region status bit to clear */
1223	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1224		readl, !(pmen & DMA_PMEN_PRS), pmen);
1225
1226	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1227}
1228
1229static void iommu_enable_translation(struct intel_iommu *iommu)
1230{
1231	u32 sts;
1232	unsigned long flags;
1233
1234	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1235	iommu->gcmd |= DMA_GCMD_TE;
1236	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1237
1238	/* Make sure hardware complete it */
1239	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1240		      readl, (sts & DMA_GSTS_TES), sts);
1241
1242	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1243}
1244
1245static void iommu_disable_translation(struct intel_iommu *iommu)
1246{
1247	u32 sts;
1248	unsigned long flag;
1249
1250	if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
1251	    (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
1252		return;
1253
1254	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1255	iommu->gcmd &= ~DMA_GCMD_TE;
1256	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1257
1258	/* Make sure hardware complete it */
1259	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1260		      readl, (!(sts & DMA_GSTS_TES)), sts);
1261
1262	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1263}
1264
1265static int iommu_init_domains(struct intel_iommu *iommu)
1266{
1267	u32 ndomains;
1268
1269	ndomains = cap_ndoms(iommu->cap);
1270	pr_debug("%s: Number of Domains supported <%d>\n",
1271		 iommu->name, ndomains);
1272
1273	spin_lock_init(&iommu->lock);
1274
1275	iommu->domain_ids = bitmap_zalloc(ndomains, GFP_KERNEL);
1276	if (!iommu->domain_ids)
1277		return -ENOMEM;
1278
1279	/*
1280	 * If Caching mode is set, then invalid translations are tagged
1281	 * with domain-id 0, hence we need to pre-allocate it. We also
1282	 * use domain-id 0 as a marker for non-allocated domain-id, so
1283	 * make sure it is not used for a real domain.
1284	 */
1285	set_bit(0, iommu->domain_ids);
1286
1287	/*
1288	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1289	 * entry for first-level or pass-through translation modes should
1290	 * be programmed with a domain id different from those used for
1291	 * second-level or nested translation. We reserve a domain id for
1292	 * this purpose. This domain id is also used for identity domain
1293	 * in legacy mode.
1294	 */
1295	set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
 
1296
1297	return 0;
1298}
1299
1300static void disable_dmar_iommu(struct intel_iommu *iommu)
1301{
1302	if (!iommu->domain_ids)
1303		return;
1304
1305	/*
1306	 * All iommu domains must have been detached from the devices,
1307	 * hence there should be no domain IDs in use.
1308	 */
1309	if (WARN_ON(bitmap_weight(iommu->domain_ids, cap_ndoms(iommu->cap))
1310		    > NUM_RESERVED_DID))
1311		return;
1312
1313	if (iommu->gcmd & DMA_GCMD_TE)
1314		iommu_disable_translation(iommu);
1315}
1316
1317static void free_dmar_iommu(struct intel_iommu *iommu)
1318{
1319	if (iommu->domain_ids) {
1320		bitmap_free(iommu->domain_ids);
1321		iommu->domain_ids = NULL;
1322	}
1323
1324	if (iommu->copied_tables) {
1325		bitmap_free(iommu->copied_tables);
1326		iommu->copied_tables = NULL;
1327	}
1328
1329	/* free context mapping */
1330	free_context_table(iommu);
1331
1332	if (ecap_prs(iommu->ecap))
1333		intel_iommu_finish_prq(iommu);
 
 
 
 
1334}
1335
1336/*
1337 * Check and return whether first level is used by default for
1338 * DMA translation.
1339 */
1340static bool first_level_by_default(struct intel_iommu *iommu)
1341{
1342	/* Only SL is available in legacy mode */
1343	if (!sm_supported(iommu))
1344		return false;
1345
1346	/* Only level (either FL or SL) is available, just use it */
1347	if (ecap_flts(iommu->ecap) ^ ecap_slts(iommu->ecap))
1348		return ecap_flts(iommu->ecap);
1349
1350	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351}
1352
1353int domain_attach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu)
1354{
1355	struct iommu_domain_info *info, *curr;
1356	unsigned long ndomains;
1357	int num, ret = -ENOSPC;
1358
1359	if (domain->domain.type == IOMMU_DOMAIN_SVA)
1360		return 0;
1361
1362	info = kzalloc(sizeof(*info), GFP_KERNEL);
1363	if (!info)
1364		return -ENOMEM;
1365
1366	spin_lock(&iommu->lock);
1367	curr = xa_load(&domain->iommu_array, iommu->seq_id);
1368	if (curr) {
1369		curr->refcnt++;
1370		spin_unlock(&iommu->lock);
1371		kfree(info);
1372		return 0;
1373	}
1374
1375	ndomains = cap_ndoms(iommu->cap);
1376	num = find_first_zero_bit(iommu->domain_ids, ndomains);
1377	if (num >= ndomains) {
1378		pr_err("%s: No free domain ids\n", iommu->name);
1379		goto err_unlock;
1380	}
1381
1382	set_bit(num, iommu->domain_ids);
1383	info->refcnt	= 1;
1384	info->did	= num;
1385	info->iommu	= iommu;
1386	curr = xa_cmpxchg(&domain->iommu_array, iommu->seq_id,
1387			  NULL, info, GFP_ATOMIC);
1388	if (curr) {
1389		ret = xa_err(curr) ? : -EBUSY;
1390		goto err_clear;
1391	}
 
1392
1393	spin_unlock(&iommu->lock);
1394	return 0;
1395
1396err_clear:
1397	clear_bit(info->did, iommu->domain_ids);
1398err_unlock:
1399	spin_unlock(&iommu->lock);
1400	kfree(info);
1401	return ret;
1402}
1403
1404void domain_detach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu)
1405{
1406	struct iommu_domain_info *info;
1407
1408	if (domain->domain.type == IOMMU_DOMAIN_SVA)
1409		return;
1410
1411	spin_lock(&iommu->lock);
1412	info = xa_load(&domain->iommu_array, iommu->seq_id);
1413	if (--info->refcnt == 0) {
1414		clear_bit(info->did, iommu->domain_ids);
1415		xa_erase(&domain->iommu_array, iommu->seq_id);
1416		domain->nid = NUMA_NO_NODE;
 
1417		kfree(info);
1418	}
1419	spin_unlock(&iommu->lock);
1420}
1421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422static void domain_exit(struct dmar_domain *domain)
1423{
1424	if (domain->pgd) {
1425		LIST_HEAD(freelist);
1426
1427		domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw), &freelist);
1428		iommu_put_pages_list(&freelist);
1429	}
1430
1431	if (WARN_ON(!list_empty(&domain->devices)))
1432		return;
1433
1434	kfree(domain->qi_batch);
1435	kfree(domain);
1436}
1437
1438/*
1439 * For kdump cases, old valid entries may be cached due to the
1440 * in-flight DMA and copied pgtable, but there is no unmapping
1441 * behaviour for them, thus we need an explicit cache flush for
1442 * the newly-mapped device. For kdump, at this point, the device
1443 * is supposed to finish reset at its driver probe stage, so no
1444 * in-flight DMA will exist, and we don't need to worry anymore
1445 * hereafter.
1446 */
1447static void copied_context_tear_down(struct intel_iommu *iommu,
1448				     struct context_entry *context,
1449				     u8 bus, u8 devfn)
1450{
1451	u16 did_old;
1452
1453	if (!context_copied(iommu, bus, devfn))
1454		return;
1455
1456	assert_spin_locked(&iommu->lock);
1457
1458	did_old = context_domain_id(context);
1459	context_clear_entry(context);
1460
1461	if (did_old < cap_ndoms(iommu->cap)) {
1462		iommu->flush.flush_context(iommu, did_old,
1463					   PCI_DEVID(bus, devfn),
1464					   DMA_CCMD_MASK_NOBIT,
1465					   DMA_CCMD_DEVICE_INVL);
1466		iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
1467					 DMA_TLB_DSI_FLUSH);
1468	}
1469
1470	clear_context_copied(iommu, bus, devfn);
1471}
1472
1473/*
1474 * It's a non-present to present mapping. If hardware doesn't cache
1475 * non-present entry we only need to flush the write-buffer. If the
1476 * _does_ cache non-present entries, then it does so in the special
1477 * domain #0, which we have to flush:
1478 */
1479static void context_present_cache_flush(struct intel_iommu *iommu, u16 did,
1480					u8 bus, u8 devfn)
1481{
1482	if (cap_caching_mode(iommu->cap)) {
1483		iommu->flush.flush_context(iommu, 0,
1484					   PCI_DEVID(bus, devfn),
1485					   DMA_CCMD_MASK_NOBIT,
1486					   DMA_CCMD_DEVICE_INVL);
1487		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1488	} else {
1489		iommu_flush_write_buffer(iommu);
1490	}
1491}
1492
1493static int domain_context_mapping_one(struct dmar_domain *domain,
1494				      struct intel_iommu *iommu,
 
1495				      u8 bus, u8 devfn)
1496{
1497	struct device_domain_info *info =
1498			domain_lookup_dev_info(domain, iommu, bus, devfn);
1499	u16 did = domain_id_iommu(domain, iommu);
1500	int translation = CONTEXT_TT_MULTI_LEVEL;
1501	struct dma_pte *pgd = domain->pgd;
1502	struct context_entry *context;
1503	int ret;
1504
 
 
 
1505	pr_debug("Set context mapping for %02x:%02x.%d\n",
1506		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1507
1508	spin_lock(&iommu->lock);
1509	ret = -ENOMEM;
1510	context = iommu_context_addr(iommu, bus, devfn, 1);
1511	if (!context)
1512		goto out_unlock;
1513
1514	ret = 0;
1515	if (context_present(context) && !context_copied(iommu, bus, devfn))
1516		goto out_unlock;
1517
1518	copied_context_tear_down(iommu, context, bus, devfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519	context_clear_entry(context);
1520	context_set_domain_id(context, did);
1521
1522	if (info && info->ats_supported)
1523		translation = CONTEXT_TT_DEV_IOTLB;
1524	else
1525		translation = CONTEXT_TT_MULTI_LEVEL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526
1527	context_set_address_root(context, virt_to_phys(pgd));
1528	context_set_address_width(context, domain->agaw);
1529	context_set_translation_type(context, translation);
1530	context_set_fault_enable(context);
1531	context_set_present(context);
1532	if (!ecap_coherent(iommu->ecap))
1533		clflush_cache_range(context, sizeof(*context));
1534	context_present_cache_flush(iommu, did, bus, devfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535	ret = 0;
1536
1537out_unlock:
1538	spin_unlock(&iommu->lock);
1539
1540	return ret;
1541}
1542
 
 
 
 
 
 
1543static int domain_context_mapping_cb(struct pci_dev *pdev,
1544				     u16 alias, void *opaque)
1545{
1546	struct device_domain_info *info = dev_iommu_priv_get(&pdev->dev);
1547	struct intel_iommu *iommu = info->iommu;
1548	struct dmar_domain *domain = opaque;
1549
1550	return domain_context_mapping_one(domain, iommu,
1551					  PCI_BUS_NUM(alias), alias & 0xff);
 
1552}
1553
1554static int
1555domain_context_mapping(struct dmar_domain *domain, struct device *dev)
1556{
1557	struct device_domain_info *info = dev_iommu_priv_get(dev);
 
1558	struct intel_iommu *iommu = info->iommu;
1559	u8 bus = info->bus, devfn = info->devfn;
 
 
 
1560
1561	if (!dev_is_pci(dev))
1562		return domain_context_mapping_one(domain, iommu, bus, devfn);
 
 
 
 
 
1563
1564	return pci_for_each_dma_alias(to_pci_dev(dev),
1565				      domain_context_mapping_cb, domain);
 
 
 
 
 
 
 
1566}
1567
1568/* Return largest possible superpage level for a given mapping */
1569static int hardware_largepage_caps(struct dmar_domain *domain, unsigned long iov_pfn,
1570				   unsigned long phy_pfn, unsigned long pages)
1571{
1572	int support, level = 1;
1573	unsigned long pfnmerge;
1574
1575	support = domain->iommu_superpage;
1576
1577	/* To use a large page, the virtual *and* physical addresses
1578	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1579	   of them will mean we have to use smaller pages. So just
1580	   merge them and check both at once. */
1581	pfnmerge = iov_pfn | phy_pfn;
1582
1583	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1584		pages >>= VTD_STRIDE_SHIFT;
1585		if (!pages)
1586			break;
1587		pfnmerge >>= VTD_STRIDE_SHIFT;
1588		level++;
1589		support--;
1590	}
1591	return level;
1592}
1593
1594/*
1595 * Ensure that old small page tables are removed to make room for superpage(s).
1596 * We're going to add new large pages, so make sure we don't remove their parent
1597 * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared.
1598 */
1599static void switch_to_super_page(struct dmar_domain *domain,
1600				 unsigned long start_pfn,
1601				 unsigned long end_pfn, int level)
1602{
1603	unsigned long lvl_pages = lvl_to_nr_pages(level);
 
1604	struct dma_pte *pte = NULL;
 
1605
1606	while (start_pfn <= end_pfn) {
1607		if (!pte)
1608			pte = pfn_to_dma_pte(domain, start_pfn, &level,
1609					     GFP_ATOMIC);
1610
1611		if (dma_pte_present(pte)) {
1612			dma_pte_free_pagetable(domain, start_pfn,
1613					       start_pfn + lvl_pages - 1,
1614					       level + 1);
1615
1616			cache_tag_flush_range(domain, start_pfn << VTD_PAGE_SHIFT,
1617					      end_pfn << VTD_PAGE_SHIFT, 0);
 
 
 
 
 
1618		}
1619
1620		pte++;
1621		start_pfn += lvl_pages;
1622		if (first_pte_in_page(pte))
1623			pte = NULL;
1624	}
1625}
1626
1627static int
1628__domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1629		 unsigned long phys_pfn, unsigned long nr_pages, int prot,
1630		 gfp_t gfp)
1631{
1632	struct dma_pte *first_pte = NULL, *pte = NULL;
1633	unsigned int largepage_lvl = 0;
1634	unsigned long lvl_pages = 0;
1635	phys_addr_t pteval;
1636	u64 attr;
1637
1638	if (unlikely(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)))
1639		return -EINVAL;
1640
1641	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1642		return -EINVAL;
1643
1644	if (!(prot & DMA_PTE_WRITE) && domain->nested_parent) {
1645		pr_err_ratelimited("Read-only mapping is disallowed on the domain which serves as the parent in a nested configuration, due to HW errata (ERRATA_772415_SPR17)\n");
1646		return -EINVAL;
1647	}
1648
1649	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
1650	attr |= DMA_FL_PTE_PRESENT;
1651	if (domain->use_first_level) {
1652		attr |= DMA_FL_PTE_US | DMA_FL_PTE_ACCESS;
1653		if (prot & DMA_PTE_WRITE)
1654			attr |= DMA_FL_PTE_DIRTY;
1655	}
1656
1657	domain->has_mappings = true;
1658
1659	pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
1660
1661	while (nr_pages > 0) {
1662		uint64_t tmp;
1663
1664		if (!pte) {
1665			largepage_lvl = hardware_largepage_caps(domain, iov_pfn,
1666					phys_pfn, nr_pages);
1667
1668			pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl,
1669					     gfp);
1670			if (!pte)
1671				return -ENOMEM;
1672			first_pte = pte;
1673
1674			lvl_pages = lvl_to_nr_pages(largepage_lvl);
1675
1676			/* It is large page*/
1677			if (largepage_lvl > 1) {
1678				unsigned long end_pfn;
1679				unsigned long pages_to_remove;
1680
1681				pteval |= DMA_PTE_LARGE_PAGE;
1682				pages_to_remove = min_t(unsigned long, nr_pages,
1683							nr_pte_to_next_page(pte) * lvl_pages);
1684				end_pfn = iov_pfn + pages_to_remove - 1;
1685				switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl);
1686			} else {
1687				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1688			}
1689
1690		}
1691		/* We don't need lock here, nobody else
1692		 * touches the iova range
1693		 */
1694		tmp = 0ULL;
1695		if (!try_cmpxchg64_local(&pte->val, &tmp, pteval)) {
1696			static int dumps = 5;
1697			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1698				iov_pfn, tmp, (unsigned long long)pteval);
1699			if (dumps) {
1700				dumps--;
1701				debug_dma_dump_mappings(NULL);
1702			}
1703			WARN_ON(1);
1704		}
1705
1706		nr_pages -= lvl_pages;
1707		iov_pfn += lvl_pages;
1708		phys_pfn += lvl_pages;
1709		pteval += lvl_pages * VTD_PAGE_SIZE;
1710
1711		/* If the next PTE would be the first in a new page, then we
1712		 * need to flush the cache on the entries we've just written.
1713		 * And then we'll need to recalculate 'pte', so clear it and
1714		 * let it get set again in the if (!pte) block above.
1715		 *
1716		 * If we're done (!nr_pages) we need to flush the cache too.
1717		 *
1718		 * Also if we've been setting superpages, we may need to
1719		 * recalculate 'pte' and switch back to smaller pages for the
1720		 * end of the mapping, if the trailing size is not enough to
1721		 * use another superpage (i.e. nr_pages < lvl_pages).
1722		 */
1723		pte++;
1724		if (!nr_pages || first_pte_in_page(pte) ||
1725		    (largepage_lvl > 1 && nr_pages < lvl_pages)) {
1726			domain_flush_cache(domain, first_pte,
1727					   (void *)pte - (void *)first_pte);
1728			pte = NULL;
1729		}
1730	}
1731
1732	return 0;
1733}
1734
1735static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn)
1736{
1737	struct intel_iommu *iommu = info->iommu;
1738	struct context_entry *context;
1739	u16 did;
 
 
 
1740
1741	spin_lock(&iommu->lock);
1742	context = iommu_context_addr(iommu, bus, devfn, 0);
1743	if (!context) {
1744		spin_unlock(&iommu->lock);
1745		return;
1746	}
1747
1748	did = context_domain_id(context);
 
 
 
 
 
 
 
 
1749	context_clear_entry(context);
1750	__iommu_flush_cache(iommu, context, sizeof(*context));
1751	spin_unlock(&iommu->lock);
1752	intel_context_flush_present(info, context, did, true);
1753}
 
 
 
 
 
 
 
 
 
 
 
 
1754
1755int __domain_setup_first_level(struct intel_iommu *iommu,
1756			       struct device *dev, ioasid_t pasid,
1757			       u16 did, pgd_t *pgd, int flags,
1758			       struct iommu_domain *old)
1759{
1760	if (!old)
1761		return intel_pasid_setup_first_level(iommu, dev, pgd,
1762						     pasid, did, flags);
1763	return intel_pasid_replace_first_level(iommu, dev, pgd, pasid, did,
1764					       iommu_domain_did(old, iommu),
1765					       flags);
1766}
1767
1768static int domain_setup_second_level(struct intel_iommu *iommu,
1769				     struct dmar_domain *domain,
1770				     struct device *dev, ioasid_t pasid,
1771				     struct iommu_domain *old)
1772{
1773	if (!old)
1774		return intel_pasid_setup_second_level(iommu, domain,
1775						      dev, pasid);
1776	return intel_pasid_replace_second_level(iommu, domain, dev,
1777						iommu_domain_did(old, iommu),
1778						pasid);
1779}
1780
1781static int domain_setup_passthrough(struct intel_iommu *iommu,
1782				    struct device *dev, ioasid_t pasid,
1783				    struct iommu_domain *old)
1784{
1785	if (!old)
1786		return intel_pasid_setup_pass_through(iommu, dev, pasid);
1787	return intel_pasid_replace_pass_through(iommu, dev,
1788						iommu_domain_did(old, iommu),
1789						pasid);
1790}
1791
1792static int domain_setup_first_level(struct intel_iommu *iommu,
1793				    struct dmar_domain *domain,
1794				    struct device *dev,
1795				    u32 pasid, struct iommu_domain *old)
1796{
1797	struct dma_pte *pgd = domain->pgd;
1798	int level, flags = 0;
 
1799
1800	level = agaw_to_level(domain->agaw);
 
 
 
 
 
 
 
 
 
 
1801	if (level != 4 && level != 5)
1802		return -EINVAL;
1803
1804	if (level == 5)
1805		flags |= PASID_FLAG_FL5LP;
1806
1807	if (domain->force_snooping)
1808		flags |= PASID_FLAG_PAGE_SNOOP;
1809
1810	return __domain_setup_first_level(iommu, dev, pasid,
1811					  domain_id_iommu(domain, iommu),
1812					  (pgd_t *)pgd, flags, old);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813}
1814
1815static int dmar_domain_attach_device(struct dmar_domain *domain,
1816				     struct device *dev)
1817{
1818	struct device_domain_info *info = dev_iommu_priv_get(dev);
1819	struct intel_iommu *iommu = info->iommu;
1820	unsigned long flags;
1821	int ret;
1822
1823	ret = domain_attach_iommu(domain, iommu);
1824	if (ret)
1825		return ret;
1826
1827	info->domain = domain;
1828	spin_lock_irqsave(&domain->lock, flags);
1829	list_add(&info->link, &domain->devices);
1830	spin_unlock_irqrestore(&domain->lock, flags);
1831
1832	if (dev_is_real_dma_subdevice(dev))
1833		return 0;
1834
1835	if (!sm_supported(iommu))
1836		ret = domain_context_mapping(domain, dev);
1837	else if (domain->use_first_level)
1838		ret = domain_setup_first_level(iommu, domain, dev,
1839					       IOMMU_NO_PASID, NULL);
1840	else
1841		ret = domain_setup_second_level(iommu, domain, dev,
1842						IOMMU_NO_PASID, NULL);
1843
1844	if (ret)
1845		goto out_block_translation;
 
 
 
 
1846
1847	iommu_enable_pci_caps(info);
 
 
 
 
 
1848
1849	ret = cache_tag_assign_domain(domain, dev, IOMMU_NO_PASID);
1850	if (ret)
1851		goto out_block_translation;
1852
1853	return 0;
1854
1855out_block_translation:
1856	device_block_translation(dev);
1857	return ret;
1858}
1859
1860/**
1861 * device_rmrr_is_relaxable - Test whether the RMRR of this device
1862 * is relaxable (ie. is allowed to be not enforced under some conditions)
1863 * @dev: device handle
1864 *
1865 * We assume that PCI USB devices with RMRRs have them largely
1866 * for historical reasons and that the RMRR space is not actively used post
1867 * boot.  This exclusion may change if vendors begin to abuse it.
1868 *
1869 * The same exception is made for graphics devices, with the requirement that
1870 * any use of the RMRR regions will be torn down before assigning the device
1871 * to a guest.
1872 *
1873 * Return: true if the RMRR is relaxable, false otherwise
1874 */
1875static bool device_rmrr_is_relaxable(struct device *dev)
1876{
1877	struct pci_dev *pdev;
1878
1879	if (!dev_is_pci(dev))
1880		return false;
1881
1882	pdev = to_pci_dev(dev);
1883	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
1884		return true;
1885	else
1886		return false;
1887}
1888
 
 
 
 
 
 
 
 
 
 
 
1889static int device_def_domain_type(struct device *dev)
1890{
1891	struct device_domain_info *info = dev_iommu_priv_get(dev);
1892	struct intel_iommu *iommu = info->iommu;
1893
1894	/*
1895	 * Hardware does not support the passthrough translation mode.
1896	 * Always use a dynamaic mapping domain.
1897	 */
1898	if (!ecap_pass_through(iommu->ecap))
1899		return IOMMU_DOMAIN_DMA;
1900
1901	if (dev_is_pci(dev)) {
1902		struct pci_dev *pdev = to_pci_dev(dev);
1903
1904		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
1905			return IOMMU_DOMAIN_IDENTITY;
 
 
 
1906	}
1907
1908	return 0;
1909}
1910
1911static void intel_iommu_init_qi(struct intel_iommu *iommu)
1912{
1913	/*
1914	 * Start from the sane iommu hardware state.
1915	 * If the queued invalidation is already initialized by us
1916	 * (for example, while enabling interrupt-remapping) then
1917	 * we got the things already rolling from a sane state.
1918	 */
1919	if (!iommu->qi) {
1920		/*
1921		 * Clear any previous faults.
1922		 */
1923		dmar_fault(-1, iommu);
1924		/*
1925		 * Disable queued invalidation if supported and already enabled
1926		 * before OS handover.
1927		 */
1928		dmar_disable_qi(iommu);
1929	}
1930
1931	if (dmar_enable_qi(iommu)) {
1932		/*
1933		 * Queued Invalidate not enabled, use Register Based Invalidate
1934		 */
1935		iommu->flush.flush_context = __iommu_flush_context;
1936		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
1937		pr_info("%s: Using Register based invalidation\n",
1938			iommu->name);
1939	} else {
1940		iommu->flush.flush_context = qi_flush_context;
1941		iommu->flush.flush_iotlb = qi_flush_iotlb;
1942		pr_info("%s: Using Queued invalidation\n", iommu->name);
1943	}
1944}
1945
1946static int copy_context_table(struct intel_iommu *iommu,
1947			      struct root_entry *old_re,
1948			      struct context_entry **tbl,
1949			      int bus, bool ext)
1950{
1951	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
1952	struct context_entry *new_ce = NULL, ce;
1953	struct context_entry *old_ce = NULL;
1954	struct root_entry re;
1955	phys_addr_t old_ce_phys;
1956
1957	tbl_idx = ext ? bus * 2 : bus;
1958	memcpy(&re, old_re, sizeof(re));
1959
1960	for (devfn = 0; devfn < 256; devfn++) {
1961		/* First calculate the correct index */
1962		idx = (ext ? devfn * 2 : devfn) % 256;
1963
1964		if (idx == 0) {
1965			/* First save what we may have and clean up */
1966			if (new_ce) {
1967				tbl[tbl_idx] = new_ce;
1968				__iommu_flush_cache(iommu, new_ce,
1969						    VTD_PAGE_SIZE);
1970				pos = 1;
1971			}
1972
1973			if (old_ce)
1974				memunmap(old_ce);
1975
1976			ret = 0;
1977			if (devfn < 0x80)
1978				old_ce_phys = root_entry_lctp(&re);
1979			else
1980				old_ce_phys = root_entry_uctp(&re);
1981
1982			if (!old_ce_phys) {
1983				if (ext && devfn == 0) {
1984					/* No LCTP, try UCTP */
1985					devfn = 0x7f;
1986					continue;
1987				} else {
1988					goto out;
1989				}
1990			}
1991
1992			ret = -ENOMEM;
1993			old_ce = memremap(old_ce_phys, PAGE_SIZE,
1994					MEMREMAP_WB);
1995			if (!old_ce)
1996				goto out;
1997
1998			new_ce = iommu_alloc_page_node(iommu->node, GFP_KERNEL);
1999			if (!new_ce)
2000				goto out_unmap;
2001
2002			ret = 0;
2003		}
2004
2005		/* Now copy the context entry */
2006		memcpy(&ce, old_ce + idx, sizeof(ce));
2007
2008		if (!context_present(&ce))
2009			continue;
2010
2011		did = context_domain_id(&ce);
2012		if (did >= 0 && did < cap_ndoms(iommu->cap))
2013			set_bit(did, iommu->domain_ids);
2014
2015		set_context_copied(iommu, bus, devfn);
2016		new_ce[idx] = ce;
2017	}
2018
2019	tbl[tbl_idx + pos] = new_ce;
2020
2021	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2022
2023out_unmap:
2024	memunmap(old_ce);
2025
2026out:
2027	return ret;
2028}
2029
2030static int copy_translation_tables(struct intel_iommu *iommu)
2031{
2032	struct context_entry **ctxt_tbls;
2033	struct root_entry *old_rt;
2034	phys_addr_t old_rt_phys;
2035	int ctxt_table_entries;
2036	u64 rtaddr_reg;
2037	int bus, ret;
2038	bool new_ext, ext;
2039
2040	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2041	ext        = !!(rtaddr_reg & DMA_RTADDR_SMT);
2042	new_ext    = !!sm_supported(iommu);
2043
2044	/*
2045	 * The RTT bit can only be changed when translation is disabled,
2046	 * but disabling translation means to open a window for data
2047	 * corruption. So bail out and don't copy anything if we would
2048	 * have to change the bit.
2049	 */
2050	if (new_ext != ext)
2051		return -EINVAL;
2052
2053	iommu->copied_tables = bitmap_zalloc(BIT_ULL(16), GFP_KERNEL);
2054	if (!iommu->copied_tables)
2055		return -ENOMEM;
2056
2057	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2058	if (!old_rt_phys)
2059		return -EINVAL;
2060
2061	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
2062	if (!old_rt)
2063		return -ENOMEM;
2064
2065	/* This is too big for the stack - allocate it from slab */
2066	ctxt_table_entries = ext ? 512 : 256;
2067	ret = -ENOMEM;
2068	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
2069	if (!ctxt_tbls)
2070		goto out_unmap;
2071
2072	for (bus = 0; bus < 256; bus++) {
2073		ret = copy_context_table(iommu, &old_rt[bus],
2074					 ctxt_tbls, bus, ext);
2075		if (ret) {
2076			pr_err("%s: Failed to copy context table for bus %d\n",
2077				iommu->name, bus);
2078			continue;
2079		}
2080	}
2081
2082	spin_lock(&iommu->lock);
2083
2084	/* Context tables are copied, now write them to the root_entry table */
2085	for (bus = 0; bus < 256; bus++) {
2086		int idx = ext ? bus * 2 : bus;
2087		u64 val;
2088
2089		if (ctxt_tbls[idx]) {
2090			val = virt_to_phys(ctxt_tbls[idx]) | 1;
2091			iommu->root_entry[bus].lo = val;
2092		}
2093
2094		if (!ext || !ctxt_tbls[idx + 1])
2095			continue;
2096
2097		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2098		iommu->root_entry[bus].hi = val;
2099	}
2100
2101	spin_unlock(&iommu->lock);
2102
2103	kfree(ctxt_tbls);
2104
2105	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
2106
2107	ret = 0;
2108
2109out_unmap:
2110	memunmap(old_rt);
2111
2112	return ret;
2113}
2114
2115static int __init init_dmars(void)
2116{
2117	struct dmar_drhd_unit *drhd;
2118	struct intel_iommu *iommu;
2119	int ret;
2120
2121	ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL);
2122	if (ret)
2123		goto free_iommu;
2124
2125	for_each_iommu(iommu, drhd) {
2126		if (drhd->ignored) {
2127			iommu_disable_translation(iommu);
2128			continue;
2129		}
2130
2131		/*
2132		 * Find the max pasid size of all IOMMU's in the system.
2133		 * We need to ensure the system pasid table is no bigger
2134		 * than the smallest supported.
2135		 */
2136		if (pasid_supported(iommu)) {
2137			u32 temp = 2 << ecap_pss(iommu->ecap);
2138
2139			intel_pasid_max_id = min_t(u32, temp,
2140						   intel_pasid_max_id);
2141		}
2142
2143		intel_iommu_init_qi(iommu);
2144
2145		ret = iommu_init_domains(iommu);
2146		if (ret)
2147			goto free_iommu;
2148
2149		init_translation_status(iommu);
2150
2151		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
2152			iommu_disable_translation(iommu);
2153			clear_translation_pre_enabled(iommu);
2154			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
2155				iommu->name);
2156		}
2157
2158		/*
2159		 * TBD:
2160		 * we could share the same root & context tables
2161		 * among all IOMMU's. Need to Split it later.
2162		 */
2163		ret = iommu_alloc_root_entry(iommu);
2164		if (ret)
2165			goto free_iommu;
2166
2167		if (translation_pre_enabled(iommu)) {
2168			pr_info("Translation already enabled - trying to copy translation structures\n");
2169
2170			ret = copy_translation_tables(iommu);
2171			if (ret) {
2172				/*
2173				 * We found the IOMMU with translation
2174				 * enabled - but failed to copy over the
2175				 * old root-entry table. Try to proceed
2176				 * by disabling translation now and
2177				 * allocating a clean root-entry table.
2178				 * This might cause DMAR faults, but
2179				 * probably the dump will still succeed.
2180				 */
2181				pr_err("Failed to copy translation tables from previous kernel for %s\n",
2182				       iommu->name);
2183				iommu_disable_translation(iommu);
2184				clear_translation_pre_enabled(iommu);
2185			} else {
2186				pr_info("Copied translation tables from previous kernel for %s\n",
2187					iommu->name);
2188			}
2189		}
2190
 
 
2191		intel_svm_check(iommu);
2192	}
2193
2194	/*
2195	 * Now that qi is enabled on all iommus, set the root entry and flush
2196	 * caches. This is required on some Intel X58 chipsets, otherwise the
2197	 * flush_context function will loop forever and the boot hangs.
2198	 */
2199	for_each_active_iommu(iommu, drhd) {
2200		iommu_flush_write_buffer(iommu);
2201		iommu_set_root_entry(iommu);
2202	}
2203
 
 
 
 
 
 
 
2204	check_tylersburg_isoch();
2205
 
 
 
 
2206	/*
2207	 * for each drhd
2208	 *   enable fault log
2209	 *   global invalidate context cache
2210	 *   global invalidate iotlb
2211	 *   enable translation
2212	 */
2213	for_each_iommu(iommu, drhd) {
2214		if (drhd->ignored) {
2215			/*
2216			 * we always have to disable PMRs or DMA may fail on
2217			 * this device
2218			 */
2219			if (force_on)
2220				iommu_disable_protect_mem_regions(iommu);
2221			continue;
2222		}
2223
2224		iommu_flush_write_buffer(iommu);
2225
2226		if (ecap_prs(iommu->ecap)) {
 
2227			/*
2228			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
2229			 * could cause possible lock race condition.
2230			 */
2231			up_write(&dmar_global_lock);
2232			ret = intel_iommu_enable_prq(iommu);
2233			down_write(&dmar_global_lock);
2234			if (ret)
2235				goto free_iommu;
2236		}
2237
2238		ret = dmar_set_interrupt(iommu);
2239		if (ret)
2240			goto free_iommu;
2241	}
2242
2243	return 0;
2244
2245free_iommu:
2246	for_each_active_iommu(iommu, drhd) {
2247		disable_dmar_iommu(iommu);
2248		free_dmar_iommu(iommu);
2249	}
 
 
 
 
2250
2251	return ret;
2252}
2253
2254static void __init init_no_remapping_devices(void)
2255{
2256	struct dmar_drhd_unit *drhd;
2257	struct device *dev;
2258	int i;
2259
2260	for_each_drhd_unit(drhd) {
2261		if (!drhd->include_all) {
2262			for_each_active_dev_scope(drhd->devices,
2263						  drhd->devices_cnt, i, dev)
2264				break;
2265			/* ignore DMAR unit if no devices exist */
2266			if (i == drhd->devices_cnt)
2267				drhd->ignored = 1;
2268		}
2269	}
2270
2271	for_each_active_drhd_unit(drhd) {
2272		if (drhd->include_all)
2273			continue;
2274
2275		for_each_active_dev_scope(drhd->devices,
2276					  drhd->devices_cnt, i, dev)
2277			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
2278				break;
2279		if (i < drhd->devices_cnt)
2280			continue;
2281
2282		/* This IOMMU has *only* gfx devices. Either bypass it or
2283		   set the gfx_mapped flag, as appropriate */
2284		drhd->gfx_dedicated = 1;
2285		if (disable_igfx_iommu)
2286			drhd->ignored = 1;
2287	}
2288}
2289
2290#ifdef CONFIG_SUSPEND
2291static int init_iommu_hw(void)
2292{
2293	struct dmar_drhd_unit *drhd;
2294	struct intel_iommu *iommu = NULL;
2295	int ret;
2296
2297	for_each_active_iommu(iommu, drhd) {
2298		if (iommu->qi) {
2299			ret = dmar_reenable_qi(iommu);
2300			if (ret)
2301				return ret;
2302		}
2303	}
2304
2305	for_each_iommu(iommu, drhd) {
2306		if (drhd->ignored) {
2307			/*
2308			 * we always have to disable PMRs or DMA may fail on
2309			 * this device
2310			 */
2311			if (force_on)
2312				iommu_disable_protect_mem_regions(iommu);
2313			continue;
2314		}
2315
2316		iommu_flush_write_buffer(iommu);
2317		iommu_set_root_entry(iommu);
2318		iommu_enable_translation(iommu);
2319		iommu_disable_protect_mem_regions(iommu);
2320	}
2321
2322	return 0;
2323}
2324
2325static void iommu_flush_all(void)
2326{
2327	struct dmar_drhd_unit *drhd;
2328	struct intel_iommu *iommu;
2329
2330	for_each_active_iommu(iommu, drhd) {
2331		iommu->flush.flush_context(iommu, 0, 0, 0,
2332					   DMA_CCMD_GLOBAL_INVL);
2333		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2334					 DMA_TLB_GLOBAL_FLUSH);
2335	}
2336}
2337
2338static int iommu_suspend(void)
2339{
2340	struct dmar_drhd_unit *drhd;
2341	struct intel_iommu *iommu = NULL;
2342	unsigned long flag;
2343
2344	iommu_flush_all();
2345
2346	for_each_active_iommu(iommu, drhd) {
2347		iommu_disable_translation(iommu);
2348
2349		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2350
2351		iommu->iommu_state[SR_DMAR_FECTL_REG] =
2352			readl(iommu->reg + DMAR_FECTL_REG);
2353		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
2354			readl(iommu->reg + DMAR_FEDATA_REG);
2355		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
2356			readl(iommu->reg + DMAR_FEADDR_REG);
2357		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
2358			readl(iommu->reg + DMAR_FEUADDR_REG);
2359
2360		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2361	}
2362	return 0;
2363}
2364
2365static void iommu_resume(void)
2366{
2367	struct dmar_drhd_unit *drhd;
2368	struct intel_iommu *iommu = NULL;
2369	unsigned long flag;
2370
2371	if (init_iommu_hw()) {
2372		if (force_on)
2373			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
2374		else
2375			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
2376		return;
2377	}
2378
2379	for_each_active_iommu(iommu, drhd) {
2380
2381		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2382
2383		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
2384			iommu->reg + DMAR_FECTL_REG);
2385		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
2386			iommu->reg + DMAR_FEDATA_REG);
2387		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
2388			iommu->reg + DMAR_FEADDR_REG);
2389		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
2390			iommu->reg + DMAR_FEUADDR_REG);
2391
2392		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2393	}
2394}
2395
2396static struct syscore_ops iommu_syscore_ops = {
2397	.resume		= iommu_resume,
2398	.suspend	= iommu_suspend,
2399};
2400
2401static void __init init_iommu_pm_ops(void)
2402{
2403	register_syscore_ops(&iommu_syscore_ops);
2404}
2405
2406#else
2407static inline void init_iommu_pm_ops(void) {}
2408#endif	/* CONFIG_PM */
2409
2410static int __init rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
2411{
2412	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
2413	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
2414	    rmrr->end_address <= rmrr->base_address ||
2415	    arch_rmrr_sanity_check(rmrr))
2416		return -EINVAL;
2417
2418	return 0;
2419}
2420
2421int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
2422{
2423	struct acpi_dmar_reserved_memory *rmrr;
2424	struct dmar_rmrr_unit *rmrru;
2425
2426	rmrr = (struct acpi_dmar_reserved_memory *)header;
2427	if (rmrr_sanity_check(rmrr)) {
2428		pr_warn(FW_BUG
2429			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
2430			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2431			   rmrr->base_address, rmrr->end_address,
2432			   dmi_get_system_info(DMI_BIOS_VENDOR),
2433			   dmi_get_system_info(DMI_BIOS_VERSION),
2434			   dmi_get_system_info(DMI_PRODUCT_VERSION));
2435		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
2436	}
2437
2438	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
2439	if (!rmrru)
2440		goto out;
2441
2442	rmrru->hdr = header;
2443
2444	rmrru->base_address = rmrr->base_address;
2445	rmrru->end_address = rmrr->end_address;
2446
2447	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
2448				((void *)rmrr) + rmrr->header.length,
2449				&rmrru->devices_cnt);
2450	if (rmrru->devices_cnt && rmrru->devices == NULL)
2451		goto free_rmrru;
2452
2453	list_add(&rmrru->list, &dmar_rmrr_units);
2454
2455	return 0;
2456free_rmrru:
2457	kfree(rmrru);
2458out:
2459	return -ENOMEM;
2460}
2461
2462static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
2463{
2464	struct dmar_atsr_unit *atsru;
2465	struct acpi_dmar_atsr *tmp;
2466
2467	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
2468				dmar_rcu_check()) {
2469		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
2470		if (atsr->segment != tmp->segment)
2471			continue;
2472		if (atsr->header.length != tmp->header.length)
2473			continue;
2474		if (memcmp(atsr, tmp, atsr->header.length) == 0)
2475			return atsru;
2476	}
2477
2478	return NULL;
2479}
2480
2481int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
2482{
2483	struct acpi_dmar_atsr *atsr;
2484	struct dmar_atsr_unit *atsru;
2485
2486	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
2487		return 0;
2488
2489	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
2490	atsru = dmar_find_atsr(atsr);
2491	if (atsru)
2492		return 0;
2493
2494	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
2495	if (!atsru)
2496		return -ENOMEM;
2497
2498	/*
2499	 * If memory is allocated from slab by ACPI _DSM method, we need to
2500	 * copy the memory content because the memory buffer will be freed
2501	 * on return.
2502	 */
2503	atsru->hdr = (void *)(atsru + 1);
2504	memcpy(atsru->hdr, hdr, hdr->length);
2505	atsru->include_all = atsr->flags & 0x1;
2506	if (!atsru->include_all) {
2507		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
2508				(void *)atsr + atsr->header.length,
2509				&atsru->devices_cnt);
2510		if (atsru->devices_cnt && atsru->devices == NULL) {
2511			kfree(atsru);
2512			return -ENOMEM;
2513		}
2514	}
2515
2516	list_add_rcu(&atsru->list, &dmar_atsr_units);
2517
2518	return 0;
2519}
2520
2521static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
2522{
2523	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
2524	kfree(atsru);
2525}
2526
2527int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
2528{
2529	struct acpi_dmar_atsr *atsr;
2530	struct dmar_atsr_unit *atsru;
2531
2532	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
2533	atsru = dmar_find_atsr(atsr);
2534	if (atsru) {
2535		list_del_rcu(&atsru->list);
2536		synchronize_rcu();
2537		intel_iommu_free_atsr(atsru);
2538	}
2539
2540	return 0;
2541}
2542
2543int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
2544{
2545	int i;
2546	struct device *dev;
2547	struct acpi_dmar_atsr *atsr;
2548	struct dmar_atsr_unit *atsru;
2549
2550	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
2551	atsru = dmar_find_atsr(atsr);
2552	if (!atsru)
2553		return 0;
2554
2555	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
2556		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
2557					  i, dev)
2558			return -EBUSY;
2559	}
2560
2561	return 0;
2562}
2563
2564static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc)
2565{
2566	struct dmar_satc_unit *satcu;
2567	struct acpi_dmar_satc *tmp;
2568
2569	list_for_each_entry_rcu(satcu, &dmar_satc_units, list,
2570				dmar_rcu_check()) {
2571		tmp = (struct acpi_dmar_satc *)satcu->hdr;
2572		if (satc->segment != tmp->segment)
2573			continue;
2574		if (satc->header.length != tmp->header.length)
2575			continue;
2576		if (memcmp(satc, tmp, satc->header.length) == 0)
2577			return satcu;
2578	}
2579
2580	return NULL;
2581}
2582
2583int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg)
2584{
2585	struct acpi_dmar_satc *satc;
2586	struct dmar_satc_unit *satcu;
2587
2588	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
2589		return 0;
2590
2591	satc = container_of(hdr, struct acpi_dmar_satc, header);
2592	satcu = dmar_find_satc(satc);
2593	if (satcu)
2594		return 0;
2595
2596	satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL);
2597	if (!satcu)
2598		return -ENOMEM;
2599
2600	satcu->hdr = (void *)(satcu + 1);
2601	memcpy(satcu->hdr, hdr, hdr->length);
2602	satcu->atc_required = satc->flags & 0x1;
2603	satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1),
2604					      (void *)satc + satc->header.length,
2605					      &satcu->devices_cnt);
2606	if (satcu->devices_cnt && !satcu->devices) {
2607		kfree(satcu);
2608		return -ENOMEM;
2609	}
2610	list_add_rcu(&satcu->list, &dmar_satc_units);
2611
2612	return 0;
2613}
2614
2615static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
2616{
 
2617	struct intel_iommu *iommu = dmaru->iommu;
2618	int ret;
2619
2620	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu);
2621	if (ret)
2622		goto out;
2623
 
 
 
 
 
 
 
 
 
 
 
 
 
2624	/*
2625	 * Disable translation if already enabled prior to OS handover.
2626	 */
2627	if (iommu->gcmd & DMA_GCMD_TE)
2628		iommu_disable_translation(iommu);
2629
2630	ret = iommu_init_domains(iommu);
2631	if (ret == 0)
2632		ret = iommu_alloc_root_entry(iommu);
2633	if (ret)
2634		goto out;
2635
2636	intel_svm_check(iommu);
2637
2638	if (dmaru->ignored) {
2639		/*
2640		 * we always have to disable PMRs or DMA may fail on this device
2641		 */
2642		if (force_on)
2643			iommu_disable_protect_mem_regions(iommu);
2644		return 0;
2645	}
2646
2647	intel_iommu_init_qi(iommu);
2648	iommu_flush_write_buffer(iommu);
2649
2650	if (ecap_prs(iommu->ecap)) {
2651		ret = intel_iommu_enable_prq(iommu);
 
2652		if (ret)
2653			goto disable_iommu;
2654	}
2655
2656	ret = dmar_set_interrupt(iommu);
2657	if (ret)
2658		goto disable_iommu;
2659
2660	iommu_set_root_entry(iommu);
2661	iommu_enable_translation(iommu);
2662
2663	iommu_disable_protect_mem_regions(iommu);
2664	return 0;
2665
2666disable_iommu:
2667	disable_dmar_iommu(iommu);
2668out:
2669	free_dmar_iommu(iommu);
2670	return ret;
2671}
2672
2673int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
2674{
2675	int ret = 0;
2676	struct intel_iommu *iommu = dmaru->iommu;
2677
2678	if (!intel_iommu_enabled)
2679		return 0;
2680	if (iommu == NULL)
2681		return -EINVAL;
2682
2683	if (insert) {
2684		ret = intel_iommu_add(dmaru);
2685	} else {
2686		disable_dmar_iommu(iommu);
2687		free_dmar_iommu(iommu);
2688	}
2689
2690	return ret;
2691}
2692
2693static void intel_iommu_free_dmars(void)
2694{
2695	struct dmar_rmrr_unit *rmrru, *rmrr_n;
2696	struct dmar_atsr_unit *atsru, *atsr_n;
2697	struct dmar_satc_unit *satcu, *satc_n;
2698
2699	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
2700		list_del(&rmrru->list);
2701		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
2702		kfree(rmrru);
2703	}
2704
2705	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
2706		list_del(&atsru->list);
2707		intel_iommu_free_atsr(atsru);
2708	}
2709	list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) {
2710		list_del(&satcu->list);
2711		dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt);
2712		kfree(satcu);
2713	}
2714}
2715
2716static struct dmar_satc_unit *dmar_find_matched_satc_unit(struct pci_dev *dev)
2717{
2718	struct dmar_satc_unit *satcu;
2719	struct acpi_dmar_satc *satc;
2720	struct device *tmp;
2721	int i;
2722
2723	dev = pci_physfn(dev);
2724	rcu_read_lock();
2725
2726	list_for_each_entry_rcu(satcu, &dmar_satc_units, list) {
2727		satc = container_of(satcu->hdr, struct acpi_dmar_satc, header);
2728		if (satc->segment != pci_domain_nr(dev->bus))
2729			continue;
2730		for_each_dev_scope(satcu->devices, satcu->devices_cnt, i, tmp)
2731			if (to_pci_dev(tmp) == dev)
2732				goto out;
2733	}
2734	satcu = NULL;
2735out:
2736	rcu_read_unlock();
2737	return satcu;
2738}
2739
2740static int dmar_ats_supported(struct pci_dev *dev, struct intel_iommu *iommu)
2741{
2742	int i, ret = 1;
2743	struct pci_bus *bus;
2744	struct pci_dev *bridge = NULL;
2745	struct device *tmp;
2746	struct acpi_dmar_atsr *atsr;
2747	struct dmar_atsr_unit *atsru;
2748	struct dmar_satc_unit *satcu;
2749
2750	dev = pci_physfn(dev);
2751	satcu = dmar_find_matched_satc_unit(dev);
2752	if (satcu)
2753		/*
2754		 * This device supports ATS as it is in SATC table.
2755		 * When IOMMU is in legacy mode, enabling ATS is done
2756		 * automatically by HW for the device that requires
2757		 * ATS, hence OS should not enable this device ATS
2758		 * to avoid duplicated TLB invalidation.
2759		 */
2760		return !(satcu->atc_required && !sm_supported(iommu));
2761
2762	for (bus = dev->bus; bus; bus = bus->parent) {
2763		bridge = bus->self;
2764		/* If it's an integrated device, allow ATS */
2765		if (!bridge)
2766			return 1;
2767		/* Connected via non-PCIe: no ATS */
2768		if (!pci_is_pcie(bridge) ||
2769		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
2770			return 0;
2771		/* If we found the root port, look it up in the ATSR */
2772		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
2773			break;
2774	}
2775
2776	rcu_read_lock();
2777	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
2778		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
2779		if (atsr->segment != pci_domain_nr(dev->bus))
2780			continue;
2781
2782		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
2783			if (tmp == &bridge->dev)
2784				goto out;
2785
2786		if (atsru->include_all)
2787			goto out;
2788	}
2789	ret = 0;
2790out:
2791	rcu_read_unlock();
2792
2793	return ret;
2794}
2795
2796int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
2797{
2798	int ret;
2799	struct dmar_rmrr_unit *rmrru;
2800	struct dmar_atsr_unit *atsru;
2801	struct dmar_satc_unit *satcu;
2802	struct acpi_dmar_atsr *atsr;
2803	struct acpi_dmar_reserved_memory *rmrr;
2804	struct acpi_dmar_satc *satc;
2805
2806	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
2807		return 0;
2808
2809	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
2810		rmrr = container_of(rmrru->hdr,
2811				    struct acpi_dmar_reserved_memory, header);
2812		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
2813			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
2814				((void *)rmrr) + rmrr->header.length,
2815				rmrr->segment, rmrru->devices,
2816				rmrru->devices_cnt);
2817			if (ret < 0)
2818				return ret;
2819		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
2820			dmar_remove_dev_scope(info, rmrr->segment,
2821				rmrru->devices, rmrru->devices_cnt);
2822		}
2823	}
2824
2825	list_for_each_entry(atsru, &dmar_atsr_units, list) {
2826		if (atsru->include_all)
2827			continue;
2828
2829		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
2830		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
2831			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
2832					(void *)atsr + atsr->header.length,
2833					atsr->segment, atsru->devices,
2834					atsru->devices_cnt);
2835			if (ret > 0)
2836				break;
2837			else if (ret < 0)
2838				return ret;
2839		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
2840			if (dmar_remove_dev_scope(info, atsr->segment,
2841					atsru->devices, atsru->devices_cnt))
2842				break;
2843		}
2844	}
2845	list_for_each_entry(satcu, &dmar_satc_units, list) {
2846		satc = container_of(satcu->hdr, struct acpi_dmar_satc, header);
2847		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
2848			ret = dmar_insert_dev_scope(info, (void *)(satc + 1),
2849					(void *)satc + satc->header.length,
2850					satc->segment, satcu->devices,
2851					satcu->devices_cnt);
2852			if (ret > 0)
2853				break;
2854			else if (ret < 0)
2855				return ret;
2856		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
2857			if (dmar_remove_dev_scope(info, satc->segment,
2858					satcu->devices, satcu->devices_cnt))
2859				break;
2860		}
2861	}
2862
2863	return 0;
2864}
2865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2866static void intel_disable_iommus(void)
2867{
2868	struct intel_iommu *iommu = NULL;
2869	struct dmar_drhd_unit *drhd;
2870
2871	for_each_iommu(iommu, drhd)
2872		iommu_disable_translation(iommu);
2873}
2874
2875void intel_iommu_shutdown(void)
2876{
2877	struct dmar_drhd_unit *drhd;
2878	struct intel_iommu *iommu = NULL;
2879
2880	if (no_iommu || dmar_disabled)
2881		return;
2882
2883	down_write(&dmar_global_lock);
2884
2885	/* Disable PMRs explicitly here. */
2886	for_each_iommu(iommu, drhd)
2887		iommu_disable_protect_mem_regions(iommu);
2888
2889	/* Make sure the IOMMUs are switched off */
2890	intel_disable_iommus();
2891
2892	up_write(&dmar_global_lock);
2893}
2894
2895static struct intel_iommu *dev_to_intel_iommu(struct device *dev)
2896{
2897	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
2898
2899	return container_of(iommu_dev, struct intel_iommu, iommu);
2900}
2901
2902static ssize_t version_show(struct device *dev,
2903			    struct device_attribute *attr, char *buf)
2904{
2905	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
2906	u32 ver = readl(iommu->reg + DMAR_VER_REG);
2907	return sysfs_emit(buf, "%d:%d\n",
2908			  DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
2909}
2910static DEVICE_ATTR_RO(version);
2911
2912static ssize_t address_show(struct device *dev,
2913			    struct device_attribute *attr, char *buf)
2914{
2915	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
2916	return sysfs_emit(buf, "%llx\n", iommu->reg_phys);
2917}
2918static DEVICE_ATTR_RO(address);
2919
2920static ssize_t cap_show(struct device *dev,
2921			struct device_attribute *attr, char *buf)
2922{
2923	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
2924	return sysfs_emit(buf, "%llx\n", iommu->cap);
2925}
2926static DEVICE_ATTR_RO(cap);
2927
2928static ssize_t ecap_show(struct device *dev,
2929			 struct device_attribute *attr, char *buf)
2930{
2931	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
2932	return sysfs_emit(buf, "%llx\n", iommu->ecap);
2933}
2934static DEVICE_ATTR_RO(ecap);
2935
2936static ssize_t domains_supported_show(struct device *dev,
2937				      struct device_attribute *attr, char *buf)
2938{
2939	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
2940	return sysfs_emit(buf, "%ld\n", cap_ndoms(iommu->cap));
2941}
2942static DEVICE_ATTR_RO(domains_supported);
2943
2944static ssize_t domains_used_show(struct device *dev,
2945				 struct device_attribute *attr, char *buf)
2946{
2947	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
2948	return sysfs_emit(buf, "%d\n",
2949			  bitmap_weight(iommu->domain_ids,
2950					cap_ndoms(iommu->cap)));
2951}
2952static DEVICE_ATTR_RO(domains_used);
2953
2954static struct attribute *intel_iommu_attrs[] = {
2955	&dev_attr_version.attr,
2956	&dev_attr_address.attr,
2957	&dev_attr_cap.attr,
2958	&dev_attr_ecap.attr,
2959	&dev_attr_domains_supported.attr,
2960	&dev_attr_domains_used.attr,
2961	NULL,
2962};
2963
2964static struct attribute_group intel_iommu_group = {
2965	.name = "intel-iommu",
2966	.attrs = intel_iommu_attrs,
2967};
2968
2969const struct attribute_group *intel_iommu_groups[] = {
2970	&intel_iommu_group,
2971	NULL,
2972};
2973
2974static bool has_external_pci(void)
2975{
2976	struct pci_dev *pdev = NULL;
2977
2978	for_each_pci_dev(pdev)
2979		if (pdev->external_facing) {
2980			pci_dev_put(pdev);
2981			return true;
2982		}
2983
2984	return false;
2985}
2986
2987static int __init platform_optin_force_iommu(void)
2988{
2989	if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
2990		return 0;
2991
2992	if (no_iommu || dmar_disabled)
2993		pr_info("Intel-IOMMU force enabled due to platform opt in\n");
2994
2995	/*
2996	 * If Intel-IOMMU is disabled by default, we will apply identity
2997	 * map for all devices except those marked as being untrusted.
2998	 */
2999	if (dmar_disabled)
3000		iommu_set_default_passthrough(false);
3001
3002	dmar_disabled = 0;
3003	no_iommu = 0;
3004
3005	return 1;
3006}
3007
3008static int __init probe_acpi_namespace_devices(void)
3009{
3010	struct dmar_drhd_unit *drhd;
3011	/* To avoid a -Wunused-but-set-variable warning. */
3012	struct intel_iommu *iommu __maybe_unused;
3013	struct device *dev;
3014	int i, ret = 0;
3015
3016	for_each_active_iommu(iommu, drhd) {
3017		for_each_active_dev_scope(drhd->devices,
3018					  drhd->devices_cnt, i, dev) {
3019			struct acpi_device_physical_node *pn;
3020			struct acpi_device *adev;
3021
3022			if (dev->bus != &acpi_bus_type)
3023				continue;
3024
3025			adev = to_acpi_device(dev);
3026			mutex_lock(&adev->physical_node_lock);
3027			list_for_each_entry(pn,
3028					    &adev->physical_node_list, node) {
3029				ret = iommu_probe_device(pn->dev);
3030				if (ret)
3031					break;
3032			}
3033			mutex_unlock(&adev->physical_node_lock);
3034
3035			if (ret)
3036				return ret;
3037		}
3038	}
3039
3040	return 0;
3041}
3042
3043static __init int tboot_force_iommu(void)
3044{
3045	if (!tboot_enabled())
3046		return 0;
3047
3048	if (no_iommu || dmar_disabled)
3049		pr_warn("Forcing Intel-IOMMU to enabled\n");
3050
3051	dmar_disabled = 0;
3052	no_iommu = 0;
3053
3054	return 1;
3055}
3056
3057int __init intel_iommu_init(void)
3058{
3059	int ret = -ENODEV;
3060	struct dmar_drhd_unit *drhd;
3061	struct intel_iommu *iommu;
3062
3063	/*
3064	 * Intel IOMMU is required for a TXT/tboot launch or platform
3065	 * opt in, so enforce that.
3066	 */
3067	force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) ||
3068		    platform_optin_force_iommu();
3069
3070	down_write(&dmar_global_lock);
3071	if (dmar_table_init()) {
3072		if (force_on)
3073			panic("tboot: Failed to initialize DMAR table\n");
3074		goto out_free_dmar;
3075	}
3076
3077	if (dmar_dev_scope_init() < 0) {
3078		if (force_on)
3079			panic("tboot: Failed to initialize DMAR device scope\n");
3080		goto out_free_dmar;
3081	}
3082
3083	up_write(&dmar_global_lock);
3084
3085	/*
3086	 * The bus notifier takes the dmar_global_lock, so lockdep will
3087	 * complain later when we register it under the lock.
3088	 */
3089	dmar_register_bus_notifier();
3090
3091	down_write(&dmar_global_lock);
3092
3093	if (!no_iommu)
3094		intel_iommu_debugfs_init();
3095
3096	if (no_iommu || dmar_disabled) {
3097		/*
3098		 * We exit the function here to ensure IOMMU's remapping and
3099		 * mempool aren't setup, which means that the IOMMU's PMRs
3100		 * won't be disabled via the call to init_dmars(). So disable
3101		 * it explicitly here. The PMRs were setup by tboot prior to
3102		 * calling SENTER, but the kernel is expected to reset/tear
3103		 * down the PMRs.
3104		 */
3105		if (intel_iommu_tboot_noforce) {
3106			for_each_iommu(iommu, drhd)
3107				iommu_disable_protect_mem_regions(iommu);
3108		}
3109
3110		/*
3111		 * Make sure the IOMMUs are switched off, even when we
3112		 * boot into a kexec kernel and the previous kernel left
3113		 * them enabled
3114		 */
3115		intel_disable_iommus();
3116		goto out_free_dmar;
3117	}
3118
3119	if (list_empty(&dmar_rmrr_units))
3120		pr_info("No RMRR found\n");
3121
3122	if (list_empty(&dmar_atsr_units))
3123		pr_info("No ATSR found\n");
3124
3125	if (list_empty(&dmar_satc_units))
3126		pr_info("No SATC found\n");
3127
3128	init_no_remapping_devices();
3129
3130	ret = init_dmars();
3131	if (ret) {
3132		if (force_on)
3133			panic("tboot: Failed to initialize DMARs\n");
3134		pr_err("Initialization failed\n");
3135		goto out_free_dmar;
3136	}
3137	up_write(&dmar_global_lock);
3138
3139	init_iommu_pm_ops();
3140
3141	down_read(&dmar_global_lock);
3142	for_each_active_iommu(iommu, drhd) {
3143		/*
3144		 * The flush queue implementation does not perform
3145		 * page-selective invalidations that are required for efficient
3146		 * TLB flushes in virtual environments.  The benefit of batching
3147		 * is likely to be much lower than the overhead of synchronizing
3148		 * the virtual and physical IOMMU page-tables.
3149		 */
3150		if (cap_caching_mode(iommu->cap) &&
3151		    !first_level_by_default(iommu)) {
3152			pr_info_once("IOMMU batching disallowed due to virtualization\n");
3153			iommu_set_dma_strict();
3154		}
3155		iommu_device_sysfs_add(&iommu->iommu, NULL,
3156				       intel_iommu_groups,
3157				       "%s", iommu->name);
3158		/*
3159		 * The iommu device probe is protected by the iommu_probe_device_lock.
3160		 * Release the dmar_global_lock before entering the device probe path
3161		 * to avoid unnecessary lock order splat.
3162		 */
3163		up_read(&dmar_global_lock);
3164		iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
3165		down_read(&dmar_global_lock);
3166
3167		iommu_pmu_register(iommu);
3168	}
 
3169
 
 
 
 
3170	if (probe_acpi_namespace_devices())
3171		pr_warn("ACPI name space devices didn't probe correctly\n");
3172
3173	/* Finally, we enable the DMA remapping hardware. */
3174	for_each_iommu(iommu, drhd) {
3175		if (!drhd->ignored && !translation_pre_enabled(iommu))
3176			iommu_enable_translation(iommu);
3177
3178		iommu_disable_protect_mem_regions(iommu);
3179	}
3180	up_read(&dmar_global_lock);
3181
3182	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
3183
3184	intel_iommu_enabled = 1;
3185
3186	return 0;
3187
3188out_free_dmar:
3189	intel_iommu_free_dmars();
3190	up_write(&dmar_global_lock);
3191	return ret;
3192}
3193
3194static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
3195{
3196	struct device_domain_info *info = opaque;
3197
3198	domain_context_clear_one(info, PCI_BUS_NUM(alias), alias & 0xff);
3199	return 0;
3200}
3201
3202/*
3203 * NB - intel-iommu lacks any sort of reference counting for the users of
3204 * dependent devices.  If multiple endpoints have intersecting dependent
3205 * devices, unbinding the driver from any one of them will possibly leave
3206 * the others unable to operate.
3207 */
3208static void domain_context_clear(struct device_domain_info *info)
3209{
3210	if (!dev_is_pci(info->dev)) {
3211		domain_context_clear_one(info, info->bus, info->devfn);
3212		return;
3213	}
3214
3215	pci_for_each_dma_alias(to_pci_dev(info->dev),
3216			       &domain_context_clear_one_cb, info);
3217}
3218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3219/*
3220 * Clear the page table pointer in context or pasid table entries so that
3221 * all DMA requests without PASID from the device are blocked. If the page
3222 * table has been set, clean up the data structures.
3223 */
3224void device_block_translation(struct device *dev)
3225{
3226	struct device_domain_info *info = dev_iommu_priv_get(dev);
3227	struct intel_iommu *iommu = info->iommu;
3228	unsigned long flags;
3229
3230	if (info->domain)
3231		cache_tag_unassign_domain(info->domain, dev, IOMMU_NO_PASID);
3232
3233	iommu_disable_pci_caps(info);
3234	if (!dev_is_real_dma_subdevice(dev)) {
3235		if (sm_supported(iommu))
3236			intel_pasid_tear_down_entry(iommu, dev,
3237						    IOMMU_NO_PASID, false);
3238		else
3239			domain_context_clear(info);
3240	}
3241
3242	if (!info->domain)
3243		return;
3244
3245	spin_lock_irqsave(&info->domain->lock, flags);
3246	list_del(&info->link);
3247	spin_unlock_irqrestore(&info->domain->lock, flags);
3248
3249	domain_detach_iommu(info->domain, iommu);
3250	info->domain = NULL;
3251}
3252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3253static int blocking_domain_attach_dev(struct iommu_domain *domain,
3254				      struct device *dev)
3255{
3256	device_block_translation(dev);
3257	return 0;
3258}
3259
3260static struct iommu_domain blocking_domain = {
3261	.type = IOMMU_DOMAIN_BLOCKED,
3262	.ops = &(const struct iommu_domain_ops) {
3263		.attach_dev	= blocking_domain_attach_dev,
3264	}
3265};
3266
3267static int iommu_superpage_capability(struct intel_iommu *iommu, bool first_stage)
3268{
3269	if (!intel_iommu_superpage)
3270		return 0;
3271
3272	if (first_stage)
3273		return cap_fl1gp_support(iommu->cap) ? 2 : 1;
3274
3275	return fls(cap_super_page_val(iommu->cap));
3276}
3277
3278static struct dmar_domain *paging_domain_alloc(struct device *dev, bool first_stage)
3279{
3280	struct device_domain_info *info = dev_iommu_priv_get(dev);
3281	struct intel_iommu *iommu = info->iommu;
3282	struct dmar_domain *domain;
3283	int addr_width;
3284
3285	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3286	if (!domain)
3287		return ERR_PTR(-ENOMEM);
3288
3289	INIT_LIST_HEAD(&domain->devices);
3290	INIT_LIST_HEAD(&domain->dev_pasids);
3291	INIT_LIST_HEAD(&domain->cache_tags);
3292	spin_lock_init(&domain->lock);
3293	spin_lock_init(&domain->cache_lock);
3294	xa_init(&domain->iommu_array);
3295
3296	domain->nid = dev_to_node(dev);
3297	domain->use_first_level = first_stage;
3298
3299	/* calculate the address width */
3300	addr_width = agaw_to_width(iommu->agaw);
3301	if (addr_width > cap_mgaw(iommu->cap))
3302		addr_width = cap_mgaw(iommu->cap);
3303	domain->gaw = addr_width;
3304	domain->agaw = iommu->agaw;
3305	domain->max_addr = __DOMAIN_MAX_ADDR(addr_width);
3306
3307	/* iommu memory access coherency */
3308	domain->iommu_coherency = iommu_paging_structure_coherency(iommu);
3309
3310	/* pagesize bitmap */
3311	domain->domain.pgsize_bitmap = SZ_4K;
3312	domain->iommu_superpage = iommu_superpage_capability(iommu, first_stage);
3313	domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain);
3314
3315	/*
3316	 * IOVA aperture: First-level translation restricts the input-address
3317	 * to a canonical address (i.e., address bits 63:N have the same value
3318	 * as address bit [N-1], where N is 48-bits with 4-level paging and
3319	 * 57-bits with 5-level paging). Hence, skip bit [N-1].
3320	 */
3321	domain->domain.geometry.force_aperture = true;
3322	domain->domain.geometry.aperture_start = 0;
3323	if (first_stage)
3324		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1);
3325	else
3326		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw);
 
3327
3328	/* always allocate the top pgd */
3329	domain->pgd = iommu_alloc_page_node(domain->nid, GFP_KERNEL);
3330	if (!domain->pgd) {
3331		kfree(domain);
3332		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
3333	}
3334	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3335
3336	return domain;
3337}
3338
3339static struct iommu_domain *
3340intel_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags,
3341				      const struct iommu_user_data *user_data)
 
3342{
3343	struct device_domain_info *info = dev_iommu_priv_get(dev);
3344	bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
3345	bool nested_parent = flags & IOMMU_HWPT_ALLOC_NEST_PARENT;
3346	struct intel_iommu *iommu = info->iommu;
3347	struct dmar_domain *dmar_domain;
3348	struct iommu_domain *domain;
3349	bool first_stage;
 
 
 
 
 
 
3350
3351	if (flags &
3352	    (~(IOMMU_HWPT_ALLOC_NEST_PARENT | IOMMU_HWPT_ALLOC_DIRTY_TRACKING
3353	       | IOMMU_HWPT_FAULT_ID_VALID)))
3354		return ERR_PTR(-EOPNOTSUPP);
3355	if (nested_parent && !nested_supported(iommu))
3356		return ERR_PTR(-EOPNOTSUPP);
3357	if (user_data || (dirty_tracking && !ssads_supported(iommu)))
3358		return ERR_PTR(-EOPNOTSUPP);
3359
3360	/*
3361	 * Always allocate the guest compatible page table unless
3362	 * IOMMU_HWPT_ALLOC_NEST_PARENT or IOMMU_HWPT_ALLOC_DIRTY_TRACKING
3363	 * is specified.
3364	 */
3365	if (nested_parent || dirty_tracking) {
3366		if (!sm_supported(iommu) || !ecap_slts(iommu->ecap))
3367			return ERR_PTR(-EOPNOTSUPP);
3368		first_stage = false;
3369	} else {
3370		first_stage = first_level_by_default(iommu);
3371	}
3372
3373	dmar_domain = paging_domain_alloc(dev, first_stage);
3374	if (IS_ERR(dmar_domain))
3375		return ERR_CAST(dmar_domain);
3376	domain = &dmar_domain->domain;
3377	domain->type = IOMMU_DOMAIN_UNMANAGED;
3378	domain->owner = &intel_iommu_ops;
3379	domain->ops = intel_iommu_ops.default_domain_ops;
3380
3381	if (nested_parent) {
3382		dmar_domain->nested_parent = true;
3383		INIT_LIST_HEAD(&dmar_domain->s1_domains);
3384		spin_lock_init(&dmar_domain->s1_lock);
3385	}
3386
3387	if (dirty_tracking) {
3388		if (dmar_domain->use_first_level) {
3389			iommu_domain_free(domain);
3390			return ERR_PTR(-EOPNOTSUPP);
3391		}
3392		domain->dirty_ops = &intel_dirty_ops;
3393	}
3394
3395	return domain;
3396}
3397
3398static void intel_iommu_domain_free(struct iommu_domain *domain)
3399{
3400	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
3401
3402	WARN_ON(dmar_domain->nested_parent &&
3403		!list_empty(&dmar_domain->s1_domains));
3404	domain_exit(dmar_domain);
 
3405}
3406
3407int paging_domain_compatible(struct iommu_domain *domain, struct device *dev)
 
3408{
3409	struct device_domain_info *info = dev_iommu_priv_get(dev);
3410	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
3411	struct intel_iommu *iommu = info->iommu;
3412	int addr_width;
3413
3414	if (WARN_ON_ONCE(!(domain->type & __IOMMU_DOMAIN_PAGING)))
3415		return -EPERM;
3416
3417	if (dmar_domain->force_snooping && !ecap_sc_support(iommu->ecap))
3418		return -EINVAL;
3419
3420	if (domain->dirty_ops && !ssads_supported(iommu))
3421		return -EINVAL;
3422
3423	if (dmar_domain->iommu_coherency !=
3424			iommu_paging_structure_coherency(iommu))
3425		return -EINVAL;
3426
3427	if (dmar_domain->iommu_superpage !=
3428			iommu_superpage_capability(iommu, dmar_domain->use_first_level))
3429		return -EINVAL;
3430
3431	if (dmar_domain->use_first_level &&
3432	    (!sm_supported(iommu) || !ecap_flts(iommu->ecap)))
3433		return -EINVAL;
3434
3435	/* check if this iommu agaw is sufficient for max mapped address */
3436	addr_width = agaw_to_width(iommu->agaw);
3437	if (addr_width > cap_mgaw(iommu->cap))
3438		addr_width = cap_mgaw(iommu->cap);
3439
3440	if (dmar_domain->gaw > addr_width || dmar_domain->agaw > iommu->agaw)
3441		return -EINVAL;
 
 
 
 
 
 
 
3442
3443	if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev) &&
3444	    context_copied(iommu, info->bus, info->devfn))
3445		return intel_pasid_setup_sm_context(dev);
 
 
 
 
3446
3447	return 0;
3448}
3449
3450static int intel_iommu_attach_device(struct iommu_domain *domain,
3451				     struct device *dev)
3452{
 
3453	int ret;
3454
3455	device_block_translation(dev);
 
3456
3457	ret = paging_domain_compatible(domain, dev);
3458	if (ret)
3459		return ret;
3460
3461	return dmar_domain_attach_device(to_dmar_domain(domain), dev);
3462}
3463
3464static int intel_iommu_map(struct iommu_domain *domain,
3465			   unsigned long iova, phys_addr_t hpa,
3466			   size_t size, int iommu_prot, gfp_t gfp)
3467{
3468	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
3469	u64 max_addr;
3470	int prot = 0;
3471
3472	if (iommu_prot & IOMMU_READ)
3473		prot |= DMA_PTE_READ;
3474	if (iommu_prot & IOMMU_WRITE)
3475		prot |= DMA_PTE_WRITE;
3476	if (dmar_domain->set_pte_snp)
3477		prot |= DMA_PTE_SNP;
3478
3479	max_addr = iova + size;
3480	if (dmar_domain->max_addr < max_addr) {
3481		u64 end;
3482
3483		/* check if minimum agaw is sufficient for mapped address */
3484		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
3485		if (end < max_addr) {
3486			pr_err("%s: iommu width (%d) is not "
3487			       "sufficient for the mapped address (%llx)\n",
3488			       __func__, dmar_domain->gaw, max_addr);
3489			return -EFAULT;
3490		}
3491		dmar_domain->max_addr = max_addr;
3492	}
3493	/* Round up size to next multiple of PAGE_SIZE, if it and
3494	   the low bits of hpa would take us onto the next page */
3495	size = aligned_nrpages(hpa, size);
3496	return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3497				hpa >> VTD_PAGE_SHIFT, size, prot, gfp);
3498}
3499
3500static int intel_iommu_map_pages(struct iommu_domain *domain,
3501				 unsigned long iova, phys_addr_t paddr,
3502				 size_t pgsize, size_t pgcount,
3503				 int prot, gfp_t gfp, size_t *mapped)
3504{
3505	unsigned long pgshift = __ffs(pgsize);
3506	size_t size = pgcount << pgshift;
3507	int ret;
3508
3509	if (pgsize != SZ_4K && pgsize != SZ_2M && pgsize != SZ_1G)
3510		return -EINVAL;
3511
3512	if (!IS_ALIGNED(iova | paddr, pgsize))
3513		return -EINVAL;
3514
3515	ret = intel_iommu_map(domain, iova, paddr, size, prot, gfp);
3516	if (!ret && mapped)
3517		*mapped = size;
3518
3519	return ret;
3520}
3521
3522static size_t intel_iommu_unmap(struct iommu_domain *domain,
3523				unsigned long iova, size_t size,
3524				struct iommu_iotlb_gather *gather)
3525{
3526	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
3527	unsigned long start_pfn, last_pfn;
3528	int level = 0;
3529
3530	/* Cope with horrid API which requires us to unmap more than the
3531	   size argument if it happens to be a large-page mapping. */
3532	if (unlikely(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT,
3533				     &level, GFP_ATOMIC)))
3534		return 0;
3535
3536	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
3537		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
3538
3539	start_pfn = iova >> VTD_PAGE_SHIFT;
3540	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
3541
3542	domain_unmap(dmar_domain, start_pfn, last_pfn, &gather->freelist);
3543
3544	if (dmar_domain->max_addr == iova + size)
3545		dmar_domain->max_addr = iova;
3546
3547	/*
3548	 * We do not use page-selective IOTLB invalidation in flush queue,
3549	 * so there is no need to track page and sync iotlb.
3550	 */
3551	if (!iommu_iotlb_gather_queued(gather))
3552		iommu_iotlb_gather_add_page(domain, gather, iova, size);
3553
3554	return size;
3555}
3556
3557static size_t intel_iommu_unmap_pages(struct iommu_domain *domain,
3558				      unsigned long iova,
3559				      size_t pgsize, size_t pgcount,
3560				      struct iommu_iotlb_gather *gather)
3561{
3562	unsigned long pgshift = __ffs(pgsize);
3563	size_t size = pgcount << pgshift;
3564
3565	return intel_iommu_unmap(domain, iova, size, gather);
3566}
3567
3568static void intel_iommu_tlb_sync(struct iommu_domain *domain,
3569				 struct iommu_iotlb_gather *gather)
3570{
3571	cache_tag_flush_range(to_dmar_domain(domain), gather->start,
3572			      gather->end, list_empty(&gather->freelist));
3573	iommu_put_pages_list(&gather->freelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3574}
3575
3576static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3577					    dma_addr_t iova)
3578{
3579	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
3580	struct dma_pte *pte;
3581	int level = 0;
3582	u64 phys = 0;
3583
3584	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level,
3585			     GFP_ATOMIC);
3586	if (pte && dma_pte_present(pte))
3587		phys = dma_pte_addr(pte) +
3588			(iova & (BIT_MASK(level_to_offset_bits(level) +
3589						VTD_PAGE_SHIFT) - 1));
3590
3591	return phys;
3592}
3593
3594static bool domain_support_force_snooping(struct dmar_domain *domain)
3595{
3596	struct device_domain_info *info;
3597	bool support = true;
3598
3599	assert_spin_locked(&domain->lock);
3600	list_for_each_entry(info, &domain->devices, link) {
3601		if (!ecap_sc_support(info->iommu->ecap)) {
3602			support = false;
3603			break;
3604		}
3605	}
3606
3607	return support;
3608}
3609
3610static void domain_set_force_snooping(struct dmar_domain *domain)
3611{
3612	struct device_domain_info *info;
3613
3614	assert_spin_locked(&domain->lock);
3615	/*
3616	 * Second level page table supports per-PTE snoop control. The
3617	 * iommu_map() interface will handle this by setting SNP bit.
3618	 */
3619	if (!domain->use_first_level) {
3620		domain->set_pte_snp = true;
3621		return;
3622	}
3623
3624	list_for_each_entry(info, &domain->devices, link)
3625		intel_pasid_setup_page_snoop_control(info->iommu, info->dev,
3626						     IOMMU_NO_PASID);
3627}
3628
3629static bool intel_iommu_enforce_cache_coherency(struct iommu_domain *domain)
3630{
3631	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
3632	unsigned long flags;
3633
3634	if (dmar_domain->force_snooping)
3635		return true;
3636
3637	spin_lock_irqsave(&dmar_domain->lock, flags);
3638	if (!domain_support_force_snooping(dmar_domain) ||
3639	    (!dmar_domain->use_first_level && dmar_domain->has_mappings)) {
3640		spin_unlock_irqrestore(&dmar_domain->lock, flags);
3641		return false;
3642	}
3643
3644	domain_set_force_snooping(dmar_domain);
3645	dmar_domain->force_snooping = true;
3646	spin_unlock_irqrestore(&dmar_domain->lock, flags);
3647
3648	return true;
3649}
3650
3651static bool intel_iommu_capable(struct device *dev, enum iommu_cap cap)
3652{
3653	struct device_domain_info *info = dev_iommu_priv_get(dev);
3654
3655	switch (cap) {
3656	case IOMMU_CAP_CACHE_COHERENCY:
3657	case IOMMU_CAP_DEFERRED_FLUSH:
3658		return true;
3659	case IOMMU_CAP_PRE_BOOT_PROTECTION:
3660		return dmar_platform_optin();
3661	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
3662		return ecap_sc_support(info->iommu->ecap);
3663	case IOMMU_CAP_DIRTY_TRACKING:
3664		return ssads_supported(info->iommu);
3665	default:
3666		return false;
3667	}
3668}
3669
3670static struct iommu_device *intel_iommu_probe_device(struct device *dev)
3671{
3672	struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL;
3673	struct device_domain_info *info;
3674	struct intel_iommu *iommu;
3675	u8 bus, devfn;
3676	int ret;
3677
3678	iommu = device_lookup_iommu(dev, &bus, &devfn);
3679	if (!iommu || !iommu->iommu.ops)
3680		return ERR_PTR(-ENODEV);
3681
3682	info = kzalloc(sizeof(*info), GFP_KERNEL);
3683	if (!info)
3684		return ERR_PTR(-ENOMEM);
3685
3686	if (dev_is_real_dma_subdevice(dev)) {
3687		info->bus = pdev->bus->number;
3688		info->devfn = pdev->devfn;
3689		info->segment = pci_domain_nr(pdev->bus);
3690	} else {
3691		info->bus = bus;
3692		info->devfn = devfn;
3693		info->segment = iommu->segment;
3694	}
3695
3696	info->dev = dev;
3697	info->iommu = iommu;
3698	if (dev_is_pci(dev)) {
3699		if (ecap_dev_iotlb_support(iommu->ecap) &&
3700		    pci_ats_supported(pdev) &&
3701		    dmar_ats_supported(pdev, iommu)) {
3702			info->ats_supported = 1;
3703			info->dtlb_extra_inval = dev_needs_extra_dtlb_flush(pdev);
3704
3705			/*
3706			 * For IOMMU that supports device IOTLB throttling
3707			 * (DIT), we assign PFSID to the invalidation desc
3708			 * of a VF such that IOMMU HW can gauge queue depth
3709			 * at PF level. If DIT is not set, PFSID will be
3710			 * treated as reserved, which should be set to 0.
3711			 */
3712			if (ecap_dit(iommu->ecap))
3713				info->pfsid = pci_dev_id(pci_physfn(pdev));
3714			info->ats_qdep = pci_ats_queue_depth(pdev);
3715		}
3716		if (sm_supported(iommu)) {
3717			if (pasid_supported(iommu)) {
3718				int features = pci_pasid_features(pdev);
3719
3720				if (features >= 0)
3721					info->pasid_supported = features | 1;
3722			}
3723
3724			if (info->ats_supported && ecap_prs(iommu->ecap) &&
3725			    pci_pri_supported(pdev))
3726				info->pri_supported = 1;
3727		}
3728	}
3729
3730	dev_iommu_priv_set(dev, info);
3731	if (pdev && pci_ats_supported(pdev)) {
3732		pci_prepare_ats(pdev, VTD_PAGE_SHIFT);
3733		ret = device_rbtree_insert(iommu, info);
3734		if (ret)
3735			goto free;
3736	}
3737
3738	if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) {
3739		ret = intel_pasid_alloc_table(dev);
3740		if (ret) {
3741			dev_err(dev, "PASID table allocation failed\n");
3742			goto clear_rbtree;
3743		}
3744
3745		if (!context_copied(iommu, info->bus, info->devfn)) {
3746			ret = intel_pasid_setup_sm_context(dev);
3747			if (ret)
3748				goto free_table;
3749		}
3750	}
3751
3752	intel_iommu_debugfs_create_dev(info);
3753
3754	/*
3755	 * The PCIe spec, in its wisdom, declares that the behaviour of the
3756	 * device is undefined if you enable PASID support after ATS support.
3757	 * So always enable PASID support on devices which have it, even if
3758	 * we can't yet know if we're ever going to use it.
3759	 */
3760	if (info->pasid_supported &&
3761	    !pci_enable_pasid(pdev, info->pasid_supported & ~1))
3762		info->pasid_enabled = 1;
3763
3764	return &iommu->iommu;
3765free_table:
3766	intel_pasid_free_table(dev);
3767clear_rbtree:
3768	device_rbtree_remove(info);
3769free:
3770	kfree(info);
3771
3772	return ERR_PTR(ret);
3773}
3774
3775static void intel_iommu_release_device(struct device *dev)
3776{
3777	struct device_domain_info *info = dev_iommu_priv_get(dev);
3778	struct intel_iommu *iommu = info->iommu;
3779
3780	if (info->pasid_enabled) {
3781		pci_disable_pasid(to_pci_dev(dev));
3782		info->pasid_enabled = 0;
3783	}
3784
3785	mutex_lock(&iommu->iopf_lock);
3786	if (dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev)))
3787		device_rbtree_remove(info);
3788	mutex_unlock(&iommu->iopf_lock);
3789
3790	if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev) &&
3791	    !context_copied(iommu, info->bus, info->devfn))
3792		intel_pasid_teardown_sm_context(dev);
3793
 
3794	intel_pasid_free_table(dev);
3795	intel_iommu_debugfs_remove_dev(info);
3796	kfree(info);
3797	set_dma_ops(dev, NULL);
3798}
3799
 
 
 
 
 
 
3800static void intel_iommu_get_resv_regions(struct device *device,
3801					 struct list_head *head)
3802{
3803	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
3804	struct iommu_resv_region *reg;
3805	struct dmar_rmrr_unit *rmrr;
3806	struct device *i_dev;
3807	int i;
3808
3809	rcu_read_lock();
3810	for_each_rmrr_units(rmrr) {
3811		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3812					  i, i_dev) {
3813			struct iommu_resv_region *resv;
3814			enum iommu_resv_type type;
3815			size_t length;
3816
3817			if (i_dev != device &&
3818			    !is_downstream_to_pci_bridge(device, i_dev))
3819				continue;
3820
3821			length = rmrr->end_address - rmrr->base_address + 1;
3822
3823			type = device_rmrr_is_relaxable(device) ?
3824				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
3825
3826			resv = iommu_alloc_resv_region(rmrr->base_address,
3827						       length, prot, type,
3828						       GFP_ATOMIC);
3829			if (!resv)
3830				break;
3831
3832			list_add_tail(&resv->list, head);
3833		}
3834	}
3835	rcu_read_unlock();
3836
3837#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
3838	if (dev_is_pci(device)) {
3839		struct pci_dev *pdev = to_pci_dev(device);
3840
3841		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
3842			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
3843					IOMMU_RESV_DIRECT_RELAXABLE,
3844					GFP_KERNEL);
3845			if (reg)
3846				list_add_tail(&reg->list, head);
3847		}
3848	}
3849#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
3850
3851	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
3852				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
3853				      0, IOMMU_RESV_MSI, GFP_KERNEL);
3854	if (!reg)
3855		return;
3856	list_add_tail(&reg->list, head);
3857}
3858
3859static struct iommu_group *intel_iommu_device_group(struct device *dev)
3860{
3861	if (dev_is_pci(dev))
3862		return pci_device_group(dev);
3863	return generic_device_group(dev);
3864}
3865
3866static int intel_iommu_enable_sva(struct device *dev)
3867{
3868	struct device_domain_info *info = dev_iommu_priv_get(dev);
3869	struct intel_iommu *iommu;
3870
3871	if (!info || dmar_disabled)
3872		return -EINVAL;
3873
3874	iommu = info->iommu;
3875	if (!iommu)
3876		return -EINVAL;
3877
3878	if (!(iommu->flags & VTD_FLAG_SVM_CAPABLE))
3879		return -ENODEV;
3880
3881	if (!info->pasid_enabled || !info->ats_enabled)
3882		return -EINVAL;
3883
3884	/*
3885	 * Devices having device-specific I/O fault handling should not
3886	 * support PCI/PRI. The IOMMU side has no means to check the
3887	 * capability of device-specific IOPF.  Therefore, IOMMU can only
3888	 * default that if the device driver enables SVA on a non-PRI
3889	 * device, it will handle IOPF in its own way.
3890	 */
3891	if (!info->pri_supported)
3892		return 0;
3893
3894	/* Devices supporting PRI should have it enabled. */
3895	if (!info->pri_enabled)
3896		return -EINVAL;
3897
3898	return 0;
3899}
3900
3901static int context_flip_pri(struct device_domain_info *info, bool enable)
3902{
3903	struct intel_iommu *iommu = info->iommu;
3904	u8 bus = info->bus, devfn = info->devfn;
3905	struct context_entry *context;
3906	u16 did;
3907
3908	spin_lock(&iommu->lock);
3909	if (context_copied(iommu, bus, devfn)) {
3910		spin_unlock(&iommu->lock);
3911		return -EINVAL;
3912	}
3913
3914	context = iommu_context_addr(iommu, bus, devfn, false);
3915	if (!context || !context_present(context)) {
3916		spin_unlock(&iommu->lock);
3917		return -ENODEV;
3918	}
3919	did = context_domain_id(context);
3920
3921	if (enable)
3922		context_set_sm_pre(context);
3923	else
3924		context_clear_sm_pre(context);
3925
3926	if (!ecap_coherent(iommu->ecap))
3927		clflush_cache_range(context, sizeof(*context));
3928	intel_context_flush_present(info, context, did, true);
3929	spin_unlock(&iommu->lock);
3930
3931	return 0;
3932}
3933
3934static int intel_iommu_enable_iopf(struct device *dev)
3935{
3936	struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL;
3937	struct device_domain_info *info = dev_iommu_priv_get(dev);
3938	struct intel_iommu *iommu;
3939	int ret;
3940
3941	if (!pdev || !info || !info->ats_enabled || !info->pri_supported)
3942		return -ENODEV;
3943
3944	if (info->pri_enabled)
3945		return -EBUSY;
3946
3947	iommu = info->iommu;
3948	if (!iommu)
3949		return -EINVAL;
3950
3951	/* PASID is required in PRG Response Message. */
3952	if (info->pasid_enabled && !pci_prg_resp_pasid_required(pdev))
3953		return -EINVAL;
3954
3955	ret = pci_reset_pri(pdev);
3956	if (ret)
3957		return ret;
3958
3959	ret = iopf_queue_add_device(iommu->iopf_queue, dev);
3960	if (ret)
3961		return ret;
3962
3963	ret = context_flip_pri(info, true);
3964	if (ret)
3965		goto err_remove_device;
3966
3967	ret = pci_enable_pri(pdev, PRQ_DEPTH);
3968	if (ret)
3969		goto err_clear_pri;
3970
3971	info->pri_enabled = 1;
3972
3973	return 0;
3974err_clear_pri:
3975	context_flip_pri(info, false);
3976err_remove_device:
 
3977	iopf_queue_remove_device(iommu->iopf_queue, dev);
3978
3979	return ret;
3980}
3981
3982static int intel_iommu_disable_iopf(struct device *dev)
3983{
3984	struct device_domain_info *info = dev_iommu_priv_get(dev);
3985	struct intel_iommu *iommu = info->iommu;
3986
3987	if (!info->pri_enabled)
3988		return -EINVAL;
3989
3990	/* Disable new PRI reception: */
3991	context_flip_pri(info, false);
3992
3993	/*
3994	 * Remove device from fault queue and acknowledge all outstanding
3995	 * PRQs to the device:
3996	 */
3997	iopf_queue_remove_device(iommu->iopf_queue, dev);
3998
3999	/*
4000	 * PCIe spec states that by clearing PRI enable bit, the Page
4001	 * Request Interface will not issue new page requests, but has
4002	 * outstanding page requests that have been transmitted or are
4003	 * queued for transmission. This is supposed to be called after
4004	 * the device driver has stopped DMA, all PASIDs have been
4005	 * unbound and the outstanding PRQs have been drained.
4006	 */
4007	pci_disable_pri(to_pci_dev(dev));
4008	info->pri_enabled = 0;
4009
 
 
 
 
 
 
 
 
4010	return 0;
4011}
4012
4013static int
4014intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
4015{
4016	switch (feat) {
4017	case IOMMU_DEV_FEAT_IOPF:
4018		return intel_iommu_enable_iopf(dev);
4019
4020	case IOMMU_DEV_FEAT_SVA:
4021		return intel_iommu_enable_sva(dev);
4022
4023	default:
4024		return -ENODEV;
4025	}
4026}
4027
4028static int
4029intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
4030{
4031	switch (feat) {
4032	case IOMMU_DEV_FEAT_IOPF:
4033		return intel_iommu_disable_iopf(dev);
4034
4035	case IOMMU_DEV_FEAT_SVA:
4036		return 0;
4037
4038	default:
4039		return -ENODEV;
4040	}
4041}
4042
4043static bool intel_iommu_is_attach_deferred(struct device *dev)
4044{
4045	struct device_domain_info *info = dev_iommu_priv_get(dev);
4046
4047	return translation_pre_enabled(info->iommu) && !info->domain;
4048}
4049
4050/*
4051 * Check that the device does not live on an external facing PCI port that is
4052 * marked as untrusted. Such devices should not be able to apply quirks and
4053 * thus not be able to bypass the IOMMU restrictions.
4054 */
4055static bool risky_device(struct pci_dev *pdev)
4056{
4057	if (pdev->untrusted) {
4058		pci_info(pdev,
4059			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
4060			 pdev->vendor, pdev->device);
4061		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
4062		return true;
4063	}
4064	return false;
4065}
4066
4067static int intel_iommu_iotlb_sync_map(struct iommu_domain *domain,
4068				      unsigned long iova, size_t size)
4069{
4070	cache_tag_flush_range_np(to_dmar_domain(domain), iova, iova + size - 1);
 
 
 
 
4071
 
 
4072	return 0;
4073}
4074
4075void domain_remove_dev_pasid(struct iommu_domain *domain,
4076			     struct device *dev, ioasid_t pasid)
4077{
4078	struct device_domain_info *info = dev_iommu_priv_get(dev);
4079	struct dev_pasid_info *curr, *dev_pasid = NULL;
4080	struct intel_iommu *iommu = info->iommu;
4081	struct dmar_domain *dmar_domain;
 
4082	unsigned long flags;
4083
4084	if (!domain)
4085		return;
 
4086
4087	/* Identity domain has no meta data for pasid. */
4088	if (domain->type == IOMMU_DOMAIN_IDENTITY)
4089		return;
 
 
 
 
 
 
4090
4091	dmar_domain = to_dmar_domain(domain);
4092	spin_lock_irqsave(&dmar_domain->lock, flags);
4093	list_for_each_entry(curr, &dmar_domain->dev_pasids, link_domain) {
4094		if (curr->dev == dev && curr->pasid == pasid) {
4095			list_del(&curr->link_domain);
4096			dev_pasid = curr;
4097			break;
4098		}
4099	}
 
4100	spin_unlock_irqrestore(&dmar_domain->lock, flags);
4101
4102	cache_tag_unassign_domain(dmar_domain, dev, pasid);
4103	domain_detach_iommu(dmar_domain, iommu);
4104	if (!WARN_ON_ONCE(!dev_pasid)) {
4105		intel_iommu_debugfs_remove_dev_pasid(dev_pasid);
4106		kfree(dev_pasid);
4107	}
4108}
4109
4110static void intel_iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid,
4111					 struct iommu_domain *domain)
4112{
4113	struct device_domain_info *info = dev_iommu_priv_get(dev);
4114
4115	intel_pasid_tear_down_entry(info->iommu, dev, pasid, false);
4116	domain_remove_dev_pasid(domain, dev, pasid);
4117}
4118
4119struct dev_pasid_info *
4120domain_add_dev_pasid(struct iommu_domain *domain,
4121		     struct device *dev, ioasid_t pasid)
4122{
4123	struct device_domain_info *info = dev_iommu_priv_get(dev);
4124	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4125	struct intel_iommu *iommu = info->iommu;
4126	struct dev_pasid_info *dev_pasid;
4127	unsigned long flags;
4128	int ret;
4129
4130	dev_pasid = kzalloc(sizeof(*dev_pasid), GFP_KERNEL);
4131	if (!dev_pasid)
4132		return ERR_PTR(-ENOMEM);
4133
4134	ret = domain_attach_iommu(dmar_domain, iommu);
4135	if (ret)
4136		goto out_free;
4137
4138	ret = cache_tag_assign_domain(dmar_domain, dev, pasid);
4139	if (ret)
4140		goto out_detach_iommu;
4141
4142	dev_pasid->dev = dev;
4143	dev_pasid->pasid = pasid;
4144	spin_lock_irqsave(&dmar_domain->lock, flags);
4145	list_add(&dev_pasid->link_domain, &dmar_domain->dev_pasids);
4146	spin_unlock_irqrestore(&dmar_domain->lock, flags);
4147
4148	return dev_pasid;
4149out_detach_iommu:
4150	domain_detach_iommu(dmar_domain, iommu);
4151out_free:
4152	kfree(dev_pasid);
4153	return ERR_PTR(ret);
 
 
4154}
4155
4156static int intel_iommu_set_dev_pasid(struct iommu_domain *domain,
4157				     struct device *dev, ioasid_t pasid,
4158				     struct iommu_domain *old)
4159{
4160	struct device_domain_info *info = dev_iommu_priv_get(dev);
4161	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4162	struct intel_iommu *iommu = info->iommu;
4163	struct dev_pasid_info *dev_pasid;
 
4164	int ret;
4165
4166	if (WARN_ON_ONCE(!(domain->type & __IOMMU_DOMAIN_PAGING)))
4167		return -EINVAL;
4168
4169	if (!pasid_supported(iommu) || dev_is_real_dma_subdevice(dev))
4170		return -EOPNOTSUPP;
4171
4172	if (domain->dirty_ops)
4173		return -EINVAL;
4174
4175	if (context_copied(iommu, info->bus, info->devfn))
4176		return -EBUSY;
4177
4178	ret = paging_domain_compatible(domain, dev);
4179	if (ret)
4180		return ret;
4181
4182	dev_pasid = domain_add_dev_pasid(domain, dev, pasid);
4183	if (IS_ERR(dev_pasid))
4184		return PTR_ERR(dev_pasid);
 
 
 
 
4185
4186	if (dmar_domain->use_first_level)
 
 
4187		ret = domain_setup_first_level(iommu, dmar_domain,
4188					       dev, pasid, old);
4189	else
4190		ret = domain_setup_second_level(iommu, dmar_domain,
4191						dev, pasid, old);
4192	if (ret)
4193		goto out_remove_dev_pasid;
4194
4195	domain_remove_dev_pasid(old, dev, pasid);
 
 
 
 
4196
4197	intel_iommu_debugfs_create_dev_pasid(dev_pasid);
 
4198
4199	return 0;
4200
4201out_remove_dev_pasid:
4202	domain_remove_dev_pasid(domain, dev, pasid);
 
4203	return ret;
4204}
4205
4206static void *intel_iommu_hw_info(struct device *dev, u32 *length, u32 *type)
4207{
4208	struct device_domain_info *info = dev_iommu_priv_get(dev);
4209	struct intel_iommu *iommu = info->iommu;
4210	struct iommu_hw_info_vtd *vtd;
4211
4212	vtd = kzalloc(sizeof(*vtd), GFP_KERNEL);
4213	if (!vtd)
4214		return ERR_PTR(-ENOMEM);
4215
4216	vtd->flags = IOMMU_HW_INFO_VTD_ERRATA_772415_SPR17;
4217	vtd->cap_reg = iommu->cap;
4218	vtd->ecap_reg = iommu->ecap;
4219	*length = sizeof(*vtd);
4220	*type = IOMMU_HW_INFO_TYPE_INTEL_VTD;
4221	return vtd;
4222}
4223
4224/*
4225 * Set dirty tracking for the device list of a domain. The caller must
4226 * hold the domain->lock when calling it.
4227 */
4228static int device_set_dirty_tracking(struct list_head *devices, bool enable)
4229{
4230	struct device_domain_info *info;
4231	int ret = 0;
4232
4233	list_for_each_entry(info, devices, link) {
4234		ret = intel_pasid_setup_dirty_tracking(info->iommu, info->dev,
4235						       IOMMU_NO_PASID, enable);
4236		if (ret)
4237			break;
4238	}
4239
4240	return ret;
4241}
4242
4243static int parent_domain_set_dirty_tracking(struct dmar_domain *domain,
4244					    bool enable)
4245{
4246	struct dmar_domain *s1_domain;
4247	unsigned long flags;
4248	int ret;
4249
4250	spin_lock(&domain->s1_lock);
4251	list_for_each_entry(s1_domain, &domain->s1_domains, s2_link) {
4252		spin_lock_irqsave(&s1_domain->lock, flags);
4253		ret = device_set_dirty_tracking(&s1_domain->devices, enable);
4254		spin_unlock_irqrestore(&s1_domain->lock, flags);
4255		if (ret)
4256			goto err_unwind;
4257	}
4258	spin_unlock(&domain->s1_lock);
4259	return 0;
4260
4261err_unwind:
4262	list_for_each_entry(s1_domain, &domain->s1_domains, s2_link) {
4263		spin_lock_irqsave(&s1_domain->lock, flags);
4264		device_set_dirty_tracking(&s1_domain->devices,
4265					  domain->dirty_tracking);
4266		spin_unlock_irqrestore(&s1_domain->lock, flags);
4267	}
4268	spin_unlock(&domain->s1_lock);
4269	return ret;
4270}
4271
4272static int intel_iommu_set_dirty_tracking(struct iommu_domain *domain,
4273					  bool enable)
4274{
4275	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4276	int ret;
4277
4278	spin_lock(&dmar_domain->lock);
4279	if (dmar_domain->dirty_tracking == enable)
4280		goto out_unlock;
4281
4282	ret = device_set_dirty_tracking(&dmar_domain->devices, enable);
4283	if (ret)
4284		goto err_unwind;
4285
4286	if (dmar_domain->nested_parent) {
4287		ret = parent_domain_set_dirty_tracking(dmar_domain, enable);
4288		if (ret)
4289			goto err_unwind;
4290	}
4291
4292	dmar_domain->dirty_tracking = enable;
4293out_unlock:
4294	spin_unlock(&dmar_domain->lock);
4295
4296	return 0;
4297
4298err_unwind:
4299	device_set_dirty_tracking(&dmar_domain->devices,
4300				  dmar_domain->dirty_tracking);
4301	spin_unlock(&dmar_domain->lock);
4302	return ret;
4303}
4304
4305static int intel_iommu_read_and_clear_dirty(struct iommu_domain *domain,
4306					    unsigned long iova, size_t size,
4307					    unsigned long flags,
4308					    struct iommu_dirty_bitmap *dirty)
4309{
4310	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4311	unsigned long end = iova + size - 1;
4312	unsigned long pgsize;
4313
4314	/*
4315	 * IOMMUFD core calls into a dirty tracking disabled domain without an
4316	 * IOVA bitmap set in order to clean dirty bits in all PTEs that might
4317	 * have occurred when we stopped dirty tracking. This ensures that we
4318	 * never inherit dirtied bits from a previous cycle.
4319	 */
4320	if (!dmar_domain->dirty_tracking && dirty->bitmap)
4321		return -EINVAL;
4322
4323	do {
4324		struct dma_pte *pte;
4325		int lvl = 0;
4326
4327		pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &lvl,
4328				     GFP_ATOMIC);
4329		pgsize = level_size(lvl) << VTD_PAGE_SHIFT;
4330		if (!pte || !dma_pte_present(pte)) {
4331			iova += pgsize;
4332			continue;
4333		}
4334
4335		if (dma_sl_pte_test_and_clear_dirty(pte, flags))
4336			iommu_dirty_bitmap_record(dirty, iova, pgsize);
4337		iova += pgsize;
4338	} while (iova < end);
4339
4340	return 0;
4341}
4342
4343static const struct iommu_dirty_ops intel_dirty_ops = {
4344	.set_dirty_tracking = intel_iommu_set_dirty_tracking,
4345	.read_and_clear_dirty = intel_iommu_read_and_clear_dirty,
4346};
4347
4348static int context_setup_pass_through(struct device *dev, u8 bus, u8 devfn)
4349{
4350	struct device_domain_info *info = dev_iommu_priv_get(dev);
4351	struct intel_iommu *iommu = info->iommu;
4352	struct context_entry *context;
4353
4354	spin_lock(&iommu->lock);
4355	context = iommu_context_addr(iommu, bus, devfn, 1);
4356	if (!context) {
4357		spin_unlock(&iommu->lock);
4358		return -ENOMEM;
4359	}
4360
4361	if (context_present(context) && !context_copied(iommu, bus, devfn)) {
4362		spin_unlock(&iommu->lock);
4363		return 0;
4364	}
4365
4366	copied_context_tear_down(iommu, context, bus, devfn);
4367	context_clear_entry(context);
4368	context_set_domain_id(context, FLPT_DEFAULT_DID);
4369
4370	/*
4371	 * In pass through mode, AW must be programmed to indicate the largest
4372	 * AGAW value supported by hardware. And ASR is ignored by hardware.
4373	 */
4374	context_set_address_width(context, iommu->msagaw);
4375	context_set_translation_type(context, CONTEXT_TT_PASS_THROUGH);
4376	context_set_fault_enable(context);
4377	context_set_present(context);
4378	if (!ecap_coherent(iommu->ecap))
4379		clflush_cache_range(context, sizeof(*context));
4380	context_present_cache_flush(iommu, FLPT_DEFAULT_DID, bus, devfn);
4381	spin_unlock(&iommu->lock);
4382
4383	return 0;
4384}
4385
4386static int context_setup_pass_through_cb(struct pci_dev *pdev, u16 alias, void *data)
4387{
4388	struct device *dev = data;
4389
4390	return context_setup_pass_through(dev, PCI_BUS_NUM(alias), alias & 0xff);
4391}
4392
4393static int device_setup_pass_through(struct device *dev)
4394{
4395	struct device_domain_info *info = dev_iommu_priv_get(dev);
4396
4397	if (!dev_is_pci(dev))
4398		return context_setup_pass_through(dev, info->bus, info->devfn);
4399
4400	return pci_for_each_dma_alias(to_pci_dev(dev),
4401				      context_setup_pass_through_cb, dev);
4402}
4403
4404static int identity_domain_attach_dev(struct iommu_domain *domain, struct device *dev)
4405{
4406	struct device_domain_info *info = dev_iommu_priv_get(dev);
4407	struct intel_iommu *iommu = info->iommu;
4408	int ret;
4409
4410	device_block_translation(dev);
4411
4412	if (dev_is_real_dma_subdevice(dev))
4413		return 0;
4414
4415	if (sm_supported(iommu)) {
4416		ret = intel_pasid_setup_pass_through(iommu, dev, IOMMU_NO_PASID);
4417		if (!ret)
4418			iommu_enable_pci_caps(info);
4419	} else {
4420		ret = device_setup_pass_through(dev);
4421	}
4422
4423	return ret;
4424}
4425
4426static int identity_domain_set_dev_pasid(struct iommu_domain *domain,
4427					 struct device *dev, ioasid_t pasid,
4428					 struct iommu_domain *old)
4429{
4430	struct device_domain_info *info = dev_iommu_priv_get(dev);
4431	struct intel_iommu *iommu = info->iommu;
4432	int ret;
4433
4434	if (!pasid_supported(iommu) || dev_is_real_dma_subdevice(dev))
4435		return -EOPNOTSUPP;
4436
4437	ret = domain_setup_passthrough(iommu, dev, pasid, old);
4438	if (ret)
4439		return ret;
4440
4441	domain_remove_dev_pasid(old, dev, pasid);
4442	return 0;
4443}
4444
4445static struct iommu_domain identity_domain = {
4446	.type = IOMMU_DOMAIN_IDENTITY,
4447	.ops = &(const struct iommu_domain_ops) {
4448		.attach_dev	= identity_domain_attach_dev,
4449		.set_dev_pasid	= identity_domain_set_dev_pasid,
4450	},
4451};
4452
4453static struct iommu_domain *intel_iommu_domain_alloc_paging(struct device *dev)
4454{
4455	struct device_domain_info *info = dev_iommu_priv_get(dev);
4456	struct intel_iommu *iommu = info->iommu;
4457	struct dmar_domain *dmar_domain;
4458	bool first_stage;
4459
4460	first_stage = first_level_by_default(iommu);
4461	dmar_domain = paging_domain_alloc(dev, first_stage);
4462	if (IS_ERR(dmar_domain))
4463		return ERR_CAST(dmar_domain);
4464
4465	return &dmar_domain->domain;
4466}
4467
4468const struct iommu_ops intel_iommu_ops = {
4469	.blocked_domain		= &blocking_domain,
4470	.release_domain		= &blocking_domain,
4471	.identity_domain	= &identity_domain,
4472	.capable		= intel_iommu_capable,
4473	.hw_info		= intel_iommu_hw_info,
4474	.domain_alloc_paging_flags = intel_iommu_domain_alloc_paging_flags,
4475	.domain_alloc_sva	= intel_svm_domain_alloc,
4476	.domain_alloc_paging	= intel_iommu_domain_alloc_paging,
4477	.domain_alloc_nested	= intel_iommu_domain_alloc_nested,
4478	.probe_device		= intel_iommu_probe_device,
 
4479	.release_device		= intel_iommu_release_device,
4480	.get_resv_regions	= intel_iommu_get_resv_regions,
4481	.device_group		= intel_iommu_device_group,
4482	.dev_enable_feat	= intel_iommu_dev_enable_feat,
4483	.dev_disable_feat	= intel_iommu_dev_disable_feat,
4484	.is_attach_deferred	= intel_iommu_is_attach_deferred,
4485	.def_domain_type	= device_def_domain_type,
4486	.remove_dev_pasid	= intel_iommu_remove_dev_pasid,
4487	.pgsize_bitmap		= SZ_4K,
4488	.page_response		= intel_iommu_page_response,
 
 
4489	.default_domain_ops = &(const struct iommu_domain_ops) {
4490		.attach_dev		= intel_iommu_attach_device,
4491		.set_dev_pasid		= intel_iommu_set_dev_pasid,
4492		.map_pages		= intel_iommu_map_pages,
4493		.unmap_pages		= intel_iommu_unmap_pages,
4494		.iotlb_sync_map		= intel_iommu_iotlb_sync_map,
4495		.flush_iotlb_all        = intel_flush_iotlb_all,
4496		.iotlb_sync		= intel_iommu_tlb_sync,
4497		.iova_to_phys		= intel_iommu_iova_to_phys,
4498		.free			= intel_iommu_domain_free,
4499		.enforce_cache_coherency = intel_iommu_enforce_cache_coherency,
4500	}
4501};
4502
4503static void quirk_iommu_igfx(struct pci_dev *dev)
4504{
4505	if (risky_device(dev))
4506		return;
4507
4508	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
4509	disable_igfx_iommu = 1;
4510}
4511
4512/* G4x/GM45 integrated gfx dmar support is totally busted. */
4513DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
4514DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
4515DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
4516DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
4517DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
4518DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
4519DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);
4520
4521/* Broadwell igfx malfunctions with dmar */
4522DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
4523DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
4524DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
4525DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
4526DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
4527DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
4528DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
4529DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
4530DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
4531DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
4532DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
4533DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
4534DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
4535DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
4536DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
4537DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
4538DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
4539DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
4540DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
4541DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
4542DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
4543DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
4544DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
4545DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
4546
4547static void quirk_iommu_rwbf(struct pci_dev *dev)
4548{
4549	if (risky_device(dev))
4550		return;
4551
4552	/*
4553	 * Mobile 4 Series Chipset neglects to set RWBF capability,
4554	 * but needs it. Same seems to hold for the desktop versions.
4555	 */
4556	pci_info(dev, "Forcing write-buffer flush capability\n");
4557	rwbf_quirk = 1;
4558}
4559
4560DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4561DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4562DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4563DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4564DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4565DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4566DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4567
4568#define GGC 0x52
4569#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
4570#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
4571#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
4572#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
4573#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
4574#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
4575#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
4576#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)
4577
4578static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4579{
4580	unsigned short ggc;
4581
4582	if (risky_device(dev))
4583		return;
4584
4585	if (pci_read_config_word(dev, GGC, &ggc))
4586		return;
4587
4588	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4589		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4590		disable_igfx_iommu = 1;
4591	} else if (!disable_igfx_iommu) {
4592		/* we have to ensure the gfx device is idle before we flush */
4593		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
4594		iommu_set_dma_strict();
4595	}
4596}
4597DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4598DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4599DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4600DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4601
4602static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
4603{
4604	unsigned short ver;
4605
4606	if (!IS_GFX_DEVICE(dev))
4607		return;
4608
4609	ver = (dev->device >> 8) & 0xff;
4610	if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
4611	    ver != 0x4e && ver != 0x8a && ver != 0x98 &&
4612	    ver != 0x9a && ver != 0xa7 && ver != 0x7d)
4613		return;
4614
4615	if (risky_device(dev))
4616		return;
4617
4618	pci_info(dev, "Skip IOMMU disabling for graphics\n");
4619	iommu_skip_te_disable = 1;
4620}
4621DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);
4622
4623/* On Tylersburg chipsets, some BIOSes have been known to enable the
4624   ISOCH DMAR unit for the Azalia sound device, but not give it any
4625   TLB entries, which causes it to deadlock. Check for that.  We do
4626   this in a function called from init_dmars(), instead of in a PCI
4627   quirk, because we don't want to print the obnoxious "BIOS broken"
4628   message if VT-d is actually disabled.
4629*/
4630static void __init check_tylersburg_isoch(void)
4631{
4632	struct pci_dev *pdev;
4633	uint32_t vtisochctrl;
4634
4635	/* If there's no Azalia in the system anyway, forget it. */
4636	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4637	if (!pdev)
4638		return;
4639
4640	if (risky_device(pdev)) {
4641		pci_dev_put(pdev);
4642		return;
4643	}
4644
4645	pci_dev_put(pdev);
4646
4647	/* System Management Registers. Might be hidden, in which case
4648	   we can't do the sanity check. But that's OK, because the
4649	   known-broken BIOSes _don't_ actually hide it, so far. */
4650	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4651	if (!pdev)
4652		return;
4653
4654	if (risky_device(pdev)) {
4655		pci_dev_put(pdev);
4656		return;
4657	}
4658
4659	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4660		pci_dev_put(pdev);
4661		return;
4662	}
4663
4664	pci_dev_put(pdev);
4665
4666	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4667	if (vtisochctrl & 1)
4668		return;
4669
4670	/* Drop all bits other than the number of TLB entries */
4671	vtisochctrl &= 0x1c;
4672
4673	/* If we have the recommended number of TLB entries (16), fine. */
4674	if (vtisochctrl == 0x10)
4675		return;
4676
4677	/* Zero TLB entries? You get to ride the short bus to school. */
4678	if (!vtisochctrl) {
4679		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4680		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4681		     dmi_get_system_info(DMI_BIOS_VENDOR),
4682		     dmi_get_system_info(DMI_BIOS_VERSION),
4683		     dmi_get_system_info(DMI_PRODUCT_VERSION));
4684		iommu_identity_mapping |= IDENTMAP_AZALIA;
4685		return;
4686	}
4687
4688	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4689	       vtisochctrl);
4690}
4691
4692/*
4693 * Here we deal with a device TLB defect where device may inadvertently issue ATS
4694 * invalidation completion before posted writes initiated with translated address
4695 * that utilized translations matching the invalidation address range, violating
4696 * the invalidation completion ordering.
4697 * Therefore, any use cases that cannot guarantee DMA is stopped before unmap is
4698 * vulnerable to this defect. In other words, any dTLB invalidation initiated not
4699 * under the control of the trusted/privileged host device driver must use this
4700 * quirk.
4701 * Device TLBs are invalidated under the following six conditions:
4702 * 1. Device driver does DMA API unmap IOVA
4703 * 2. Device driver unbind a PASID from a process, sva_unbind_device()
4704 * 3. PASID is torn down, after PASID cache is flushed. e.g. process
4705 *    exit_mmap() due to crash
4706 * 4. Under SVA usage, called by mmu_notifier.invalidate_range() where
4707 *    VM has to free pages that were unmapped
4708 * 5. Userspace driver unmaps a DMA buffer
4709 * 6. Cache invalidation in vSVA usage (upcoming)
4710 *
4711 * For #1 and #2, device drivers are responsible for stopping DMA traffic
4712 * before unmap/unbind. For #3, iommu driver gets mmu_notifier to
4713 * invalidate TLB the same way as normal user unmap which will use this quirk.
4714 * The dTLB invalidation after PASID cache flush does not need this quirk.
4715 *
4716 * As a reminder, #6 will *NEED* this quirk as we enable nested translation.
4717 */
4718void quirk_extra_dev_tlb_flush(struct device_domain_info *info,
4719			       unsigned long address, unsigned long mask,
4720			       u32 pasid, u16 qdep)
4721{
4722	u16 sid;
4723
4724	if (likely(!info->dtlb_extra_inval))
4725		return;
4726
4727	sid = PCI_DEVID(info->bus, info->devfn);
4728	if (pasid == IOMMU_NO_PASID) {
4729		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
4730				   qdep, address, mask);
4731	} else {
4732		qi_flush_dev_iotlb_pasid(info->iommu, sid, info->pfsid,
4733					 pasid, qdep, address, mask);
4734	}
4735}
4736
4737#define ecmd_get_status_code(res)	(((res) & 0xff) >> 1)
4738
4739/*
4740 * Function to submit a command to the enhanced command interface. The
4741 * valid enhanced command descriptions are defined in Table 47 of the
4742 * VT-d spec. The VT-d hardware implementation may support some but not
4743 * all commands, which can be determined by checking the Enhanced
4744 * Command Capability Register.
4745 *
4746 * Return values:
4747 *  - 0: Command successful without any error;
4748 *  - Negative: software error value;
4749 *  - Nonzero positive: failure status code defined in Table 48.
4750 */
4751int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob)
4752{
4753	unsigned long flags;
4754	u64 res;
4755	int ret;
4756
4757	if (!cap_ecmds(iommu->cap))
4758		return -ENODEV;
4759
4760	raw_spin_lock_irqsave(&iommu->register_lock, flags);
4761
4762	res = dmar_readq(iommu->reg + DMAR_ECRSP_REG);
4763	if (res & DMA_ECMD_ECRSP_IP) {
4764		ret = -EBUSY;
4765		goto err;
4766	}
4767
4768	/*
4769	 * Unconditionally write the operand B, because
4770	 * - There is no side effect if an ecmd doesn't require an
4771	 *   operand B, but we set the register to some value.
4772	 * - It's not invoked in any critical path. The extra MMIO
4773	 *   write doesn't bring any performance concerns.
4774	 */
4775	dmar_writeq(iommu->reg + DMAR_ECEO_REG, ob);
4776	dmar_writeq(iommu->reg + DMAR_ECMD_REG, ecmd | (oa << DMA_ECMD_OA_SHIFT));
4777
4778	IOMMU_WAIT_OP(iommu, DMAR_ECRSP_REG, dmar_readq,
4779		      !(res & DMA_ECMD_ECRSP_IP), res);
4780
4781	if (res & DMA_ECMD_ECRSP_IP) {
4782		ret = -ETIMEDOUT;
4783		goto err;
4784	}
4785
4786	ret = ecmd_get_status_code(res);
4787err:
4788	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
4789
4790	return ret;
4791}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright © 2006-2014 Intel Corporation.
   4 *
   5 * Authors: David Woodhouse <dwmw2@infradead.org>,
   6 *          Ashok Raj <ashok.raj@intel.com>,
   7 *          Shaohua Li <shaohua.li@intel.com>,
   8 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
   9 *          Fenghua Yu <fenghua.yu@intel.com>
  10 *          Joerg Roedel <jroedel@suse.de>
  11 */
  12
  13#define pr_fmt(fmt)     "DMAR: " fmt
  14#define dev_fmt(fmt)    pr_fmt(fmt)
  15
  16#include <linux/crash_dump.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dmi.h>
  19#include <linux/memory.h>
  20#include <linux/pci.h>
  21#include <linux/pci-ats.h>
  22#include <linux/spinlock.h>
  23#include <linux/syscore_ops.h>
  24#include <linux/tboot.h>
  25#include <uapi/linux/iommufd.h>
  26
  27#include "iommu.h"
  28#include "../dma-iommu.h"
  29#include "../irq_remapping.h"
  30#include "../iommu-sva.h"
  31#include "pasid.h"
  32#include "cap_audit.h"
  33#include "perfmon.h"
  34
  35#define ROOT_SIZE		VTD_PAGE_SIZE
  36#define CONTEXT_SIZE		VTD_PAGE_SIZE
  37
  38#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
  39#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
  40#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
  41#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
  42
  43#define IOAPIC_RANGE_START	(0xfee00000)
  44#define IOAPIC_RANGE_END	(0xfeefffff)
  45#define IOVA_START_ADDR		(0x1000)
  46
  47#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
  48
  49#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1)
  50#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1)
  51
  52/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
  53   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
  54#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
  55				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
  56#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
  57
  58/* IO virtual address start page frame number */
  59#define IOVA_START_PFN		(1)
  60
  61#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
  62
  63static void __init check_tylersburg_isoch(void);
  64static int rwbf_quirk;
  65
  66/*
  67 * set to 1 to panic kernel if can't successfully enable VT-d
  68 * (used when kernel is launched w/ TXT)
  69 */
  70static int force_on = 0;
  71static int intel_iommu_tboot_noforce;
  72static int no_platform_optin;
  73
  74#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
  75
  76/*
  77 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
  78 * if marked present.
  79 */
  80static phys_addr_t root_entry_lctp(struct root_entry *re)
  81{
  82	if (!(re->lo & 1))
  83		return 0;
  84
  85	return re->lo & VTD_PAGE_MASK;
  86}
  87
  88/*
  89 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
  90 * if marked present.
  91 */
  92static phys_addr_t root_entry_uctp(struct root_entry *re)
  93{
  94	if (!(re->hi & 1))
  95		return 0;
  96
  97	return re->hi & VTD_PAGE_MASK;
  98}
  99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100/*
 101 * This domain is a statically identity mapping domain.
 102 *	1. This domain creats a static 1:1 mapping to all usable memory.
 103 * 	2. It maps to each iommu if successful.
 104 *	3. Each iommu mapps to this domain if successful.
 
 
 
 
 
 105 */
 106static struct dmar_domain *si_domain;
 107static int hw_pass_through = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108
 109struct dmar_rmrr_unit {
 110	struct list_head list;		/* list of rmrr units	*/
 111	struct acpi_dmar_header *hdr;	/* ACPI header		*/
 112	u64	base_address;		/* reserved base address*/
 113	u64	end_address;		/* reserved end address */
 114	struct dmar_dev_scope *devices;	/* target devices */
 115	int	devices_cnt;		/* target device count */
 116};
 117
 118struct dmar_atsr_unit {
 119	struct list_head list;		/* list of ATSR units */
 120	struct acpi_dmar_header *hdr;	/* ACPI header */
 121	struct dmar_dev_scope *devices;	/* target devices */
 122	int devices_cnt;		/* target device count */
 123	u8 include_all:1;		/* include all ports */
 124};
 125
 126struct dmar_satc_unit {
 127	struct list_head list;		/* list of SATC units */
 128	struct acpi_dmar_header *hdr;	/* ACPI header */
 129	struct dmar_dev_scope *devices;	/* target devices */
 130	struct intel_iommu *iommu;	/* the corresponding iommu */
 131	int devices_cnt;		/* target device count */
 132	u8 atc_required:1;		/* ATS is required */
 133};
 134
 135static LIST_HEAD(dmar_atsr_units);
 136static LIST_HEAD(dmar_rmrr_units);
 137static LIST_HEAD(dmar_satc_units);
 138
 139#define for_each_rmrr_units(rmrr) \
 140	list_for_each_entry(rmrr, &dmar_rmrr_units, list)
 141
 142static void intel_iommu_domain_free(struct iommu_domain *domain);
 143
 144int dmar_disabled = !IS_ENABLED(CONFIG_INTEL_IOMMU_DEFAULT_ON);
 145int intel_iommu_sm = IS_ENABLED(CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON);
 146
 147int intel_iommu_enabled = 0;
 148EXPORT_SYMBOL_GPL(intel_iommu_enabled);
 149
 150static int dmar_map_gfx = 1;
 151static int intel_iommu_superpage = 1;
 152static int iommu_identity_mapping;
 153static int iommu_skip_te_disable;
 
 154
 155#define IDENTMAP_GFX		2
 156#define IDENTMAP_AZALIA		4
 157
 158const struct iommu_ops intel_iommu_ops;
 159static const struct iommu_dirty_ops intel_dirty_ops;
 160
 161static bool translation_pre_enabled(struct intel_iommu *iommu)
 162{
 163	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
 164}
 165
 166static void clear_translation_pre_enabled(struct intel_iommu *iommu)
 167{
 168	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
 169}
 170
 171static void init_translation_status(struct intel_iommu *iommu)
 172{
 173	u32 gsts;
 174
 175	gsts = readl(iommu->reg + DMAR_GSTS_REG);
 176	if (gsts & DMA_GSTS_TES)
 177		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
 178}
 179
 180static int __init intel_iommu_setup(char *str)
 181{
 182	if (!str)
 183		return -EINVAL;
 184
 185	while (*str) {
 186		if (!strncmp(str, "on", 2)) {
 187			dmar_disabled = 0;
 188			pr_info("IOMMU enabled\n");
 189		} else if (!strncmp(str, "off", 3)) {
 190			dmar_disabled = 1;
 191			no_platform_optin = 1;
 192			pr_info("IOMMU disabled\n");
 193		} else if (!strncmp(str, "igfx_off", 8)) {
 194			dmar_map_gfx = 0;
 195			pr_info("Disable GFX device mapping\n");
 196		} else if (!strncmp(str, "forcedac", 8)) {
 197			pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n");
 198			iommu_dma_forcedac = true;
 199		} else if (!strncmp(str, "strict", 6)) {
 200			pr_warn("intel_iommu=strict deprecated; use iommu.strict=1 instead\n");
 201			iommu_set_dma_strict();
 202		} else if (!strncmp(str, "sp_off", 6)) {
 203			pr_info("Disable supported super page\n");
 204			intel_iommu_superpage = 0;
 205		} else if (!strncmp(str, "sm_on", 5)) {
 206			pr_info("Enable scalable mode if hardware supports\n");
 207			intel_iommu_sm = 1;
 208		} else if (!strncmp(str, "sm_off", 6)) {
 209			pr_info("Scalable mode is disallowed\n");
 210			intel_iommu_sm = 0;
 211		} else if (!strncmp(str, "tboot_noforce", 13)) {
 212			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
 213			intel_iommu_tboot_noforce = 1;
 214		} else {
 215			pr_notice("Unknown option - '%s'\n", str);
 216		}
 217
 218		str += strcspn(str, ",");
 219		while (*str == ',')
 220			str++;
 221	}
 222
 223	return 1;
 224}
 225__setup("intel_iommu=", intel_iommu_setup);
 226
 227void *alloc_pgtable_page(int node, gfp_t gfp)
 228{
 229	struct page *page;
 230	void *vaddr = NULL;
 231
 232	page = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
 233	if (page)
 234		vaddr = page_address(page);
 235	return vaddr;
 236}
 237
 238void free_pgtable_page(void *vaddr)
 239{
 240	free_page((unsigned long)vaddr);
 241}
 242
 243static int domain_type_is_si(struct dmar_domain *domain)
 244{
 245	return domain->domain.type == IOMMU_DOMAIN_IDENTITY;
 246}
 247
 248static int domain_pfn_supported(struct dmar_domain *domain, unsigned long pfn)
 249{
 250	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
 251
 252	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
 253}
 254
 255/*
 256 * Calculate the Supported Adjusted Guest Address Widths of an IOMMU.
 257 * Refer to 11.4.2 of the VT-d spec for the encoding of each bit of
 258 * the returned SAGAW.
 259 */
 260static unsigned long __iommu_calculate_sagaw(struct intel_iommu *iommu)
 261{
 262	unsigned long fl_sagaw, sl_sagaw;
 263
 264	fl_sagaw = BIT(2) | (cap_fl5lp_support(iommu->cap) ? BIT(3) : 0);
 265	sl_sagaw = cap_sagaw(iommu->cap);
 266
 267	/* Second level only. */
 268	if (!sm_supported(iommu) || !ecap_flts(iommu->ecap))
 269		return sl_sagaw;
 270
 271	/* First level only. */
 272	if (!ecap_slts(iommu->ecap))
 273		return fl_sagaw;
 274
 275	return fl_sagaw & sl_sagaw;
 276}
 277
 278static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
 279{
 280	unsigned long sagaw;
 281	int agaw;
 282
 283	sagaw = __iommu_calculate_sagaw(iommu);
 284	for (agaw = width_to_agaw(max_gaw); agaw >= 0; agaw--) {
 285		if (test_bit(agaw, &sagaw))
 286			break;
 287	}
 288
 289	return agaw;
 290}
 291
 292/*
 293 * Calculate max SAGAW for each iommu.
 294 */
 295int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
 296{
 297	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
 298}
 299
 300/*
 301 * calculate agaw for each iommu.
 302 * "SAGAW" may be different across iommus, use a default agaw, and
 303 * get a supported less agaw for iommus that don't support the default agaw.
 304 */
 305int iommu_calculate_agaw(struct intel_iommu *iommu)
 306{
 307	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
 308}
 309
 310static bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
 311{
 312	return sm_supported(iommu) ?
 313			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
 314}
 315
 316static void domain_update_iommu_coherency(struct dmar_domain *domain)
 317{
 318	struct iommu_domain_info *info;
 319	struct dmar_drhd_unit *drhd;
 320	struct intel_iommu *iommu;
 321	bool found = false;
 322	unsigned long i;
 323
 324	domain->iommu_coherency = true;
 325	xa_for_each(&domain->iommu_array, i, info) {
 326		found = true;
 327		if (!iommu_paging_structure_coherency(info->iommu)) {
 328			domain->iommu_coherency = false;
 329			break;
 330		}
 331	}
 332	if (found)
 333		return;
 334
 335	/* No hardware attached; use lowest common denominator */
 336	rcu_read_lock();
 337	for_each_active_iommu(iommu, drhd) {
 338		if (!iommu_paging_structure_coherency(iommu)) {
 339			domain->iommu_coherency = false;
 340			break;
 341		}
 342	}
 343	rcu_read_unlock();
 344}
 345
 346static int domain_update_iommu_superpage(struct dmar_domain *domain,
 347					 struct intel_iommu *skip)
 348{
 349	struct dmar_drhd_unit *drhd;
 350	struct intel_iommu *iommu;
 351	int mask = 0x3;
 352
 353	if (!intel_iommu_superpage)
 354		return 0;
 355
 356	/* set iommu_superpage to the smallest common denominator */
 357	rcu_read_lock();
 358	for_each_active_iommu(iommu, drhd) {
 359		if (iommu != skip) {
 360			if (domain && domain->use_first_level) {
 361				if (!cap_fl1gp_support(iommu->cap))
 362					mask = 0x1;
 363			} else {
 364				mask &= cap_super_page_val(iommu->cap);
 365			}
 366
 367			if (!mask)
 368				break;
 369		}
 370	}
 371	rcu_read_unlock();
 372
 373	return fls(mask);
 374}
 375
 376static int domain_update_device_node(struct dmar_domain *domain)
 377{
 378	struct device_domain_info *info;
 379	int nid = NUMA_NO_NODE;
 380	unsigned long flags;
 381
 382	spin_lock_irqsave(&domain->lock, flags);
 383	list_for_each_entry(info, &domain->devices, link) {
 384		/*
 385		 * There could possibly be multiple device numa nodes as devices
 386		 * within the same domain may sit behind different IOMMUs. There
 387		 * isn't perfect answer in such situation, so we select first
 388		 * come first served policy.
 389		 */
 390		nid = dev_to_node(info->dev);
 391		if (nid != NUMA_NO_NODE)
 392			break;
 393	}
 394	spin_unlock_irqrestore(&domain->lock, flags);
 395
 396	return nid;
 397}
 398
 399/* Return the super pagesize bitmap if supported. */
 400static unsigned long domain_super_pgsize_bitmap(struct dmar_domain *domain)
 401{
 402	unsigned long bitmap = 0;
 403
 404	/*
 405	 * 1-level super page supports page size of 2MiB, 2-level super page
 406	 * supports page size of both 2MiB and 1GiB.
 407	 */
 408	if (domain->iommu_superpage == 1)
 409		bitmap |= SZ_2M;
 410	else if (domain->iommu_superpage == 2)
 411		bitmap |= SZ_2M | SZ_1G;
 412
 413	return bitmap;
 414}
 415
 416/* Some capabilities may be different across iommus */
 417void domain_update_iommu_cap(struct dmar_domain *domain)
 418{
 419	domain_update_iommu_coherency(domain);
 420	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
 421
 422	/*
 423	 * If RHSA is missing, we should default to the device numa domain
 424	 * as fall back.
 425	 */
 426	if (domain->nid == NUMA_NO_NODE)
 427		domain->nid = domain_update_device_node(domain);
 428
 429	/*
 430	 * First-level translation restricts the input-address to a
 431	 * canonical address (i.e., address bits 63:N have the same
 432	 * value as address bit [N-1], where N is 48-bits with 4-level
 433	 * paging and 57-bits with 5-level paging). Hence, skip bit
 434	 * [N-1].
 435	 */
 436	if (domain->use_first_level)
 437		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1);
 438	else
 439		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw);
 440
 441	domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain);
 442	domain_update_iotlb(domain);
 443}
 444
 445struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
 446					 u8 devfn, int alloc)
 447{
 448	struct root_entry *root = &iommu->root_entry[bus];
 449	struct context_entry *context;
 450	u64 *entry;
 451
 452	/*
 453	 * Except that the caller requested to allocate a new entry,
 454	 * returning a copied context entry makes no sense.
 455	 */
 456	if (!alloc && context_copied(iommu, bus, devfn))
 457		return NULL;
 458
 459	entry = &root->lo;
 460	if (sm_supported(iommu)) {
 461		if (devfn >= 0x80) {
 462			devfn -= 0x80;
 463			entry = &root->hi;
 464		}
 465		devfn *= 2;
 466	}
 467	if (*entry & 1)
 468		context = phys_to_virt(*entry & VTD_PAGE_MASK);
 469	else {
 470		unsigned long phy_addr;
 471		if (!alloc)
 472			return NULL;
 473
 474		context = alloc_pgtable_page(iommu->node, GFP_ATOMIC);
 475		if (!context)
 476			return NULL;
 477
 478		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
 479		phy_addr = virt_to_phys((void *)context);
 480		*entry = phy_addr | 1;
 481		__iommu_flush_cache(iommu, entry, sizeof(*entry));
 482	}
 483	return &context[devfn];
 484}
 485
 486/**
 487 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 488 *				 sub-hierarchy of a candidate PCI-PCI bridge
 489 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 490 * @bridge: the candidate PCI-PCI bridge
 491 *
 492 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 493 */
 494static bool
 495is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
 496{
 497	struct pci_dev *pdev, *pbridge;
 498
 499	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
 500		return false;
 501
 502	pdev = to_pci_dev(dev);
 503	pbridge = to_pci_dev(bridge);
 504
 505	if (pbridge->subordinate &&
 506	    pbridge->subordinate->number <= pdev->bus->number &&
 507	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
 508		return true;
 509
 510	return false;
 511}
 512
 513static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
 514{
 515	struct dmar_drhd_unit *drhd;
 516	u32 vtbar;
 517	int rc;
 518
 519	/* We know that this device on this chipset has its own IOMMU.
 520	 * If we find it under a different IOMMU, then the BIOS is lying
 521	 * to us. Hope that the IOMMU for this device is actually
 522	 * disabled, and it needs no translation...
 523	 */
 524	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
 525	if (rc) {
 526		/* "can't" happen */
 527		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
 528		return false;
 529	}
 530	vtbar &= 0xffff0000;
 531
 532	/* we know that the this iommu should be at offset 0xa000 from vtbar */
 533	drhd = dmar_find_matched_drhd_unit(pdev);
 534	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
 535		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
 536		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 537		return true;
 538	}
 539
 540	return false;
 541}
 542
 543static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev)
 544{
 545	if (!iommu || iommu->drhd->ignored)
 546		return true;
 547
 548	if (dev_is_pci(dev)) {
 549		struct pci_dev *pdev = to_pci_dev(dev);
 550
 551		if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
 552		    pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB &&
 553		    quirk_ioat_snb_local_iommu(pdev))
 554			return true;
 555	}
 556
 557	return false;
 558}
 559
 560static struct intel_iommu *device_lookup_iommu(struct device *dev, u8 *bus, u8 *devfn)
 561{
 562	struct dmar_drhd_unit *drhd = NULL;
 563	struct pci_dev *pdev = NULL;
 564	struct intel_iommu *iommu;
 565	struct device *tmp;
 566	u16 segment = 0;
 567	int i;
 568
 569	if (!dev)
 570		return NULL;
 571
 572	if (dev_is_pci(dev)) {
 573		struct pci_dev *pf_pdev;
 574
 575		pdev = pci_real_dma_dev(to_pci_dev(dev));
 576
 577		/* VFs aren't listed in scope tables; we need to look up
 578		 * the PF instead to find the IOMMU. */
 579		pf_pdev = pci_physfn(pdev);
 580		dev = &pf_pdev->dev;
 581		segment = pci_domain_nr(pdev->bus);
 582	} else if (has_acpi_companion(dev))
 583		dev = &ACPI_COMPANION(dev)->dev;
 584
 585	rcu_read_lock();
 586	for_each_iommu(iommu, drhd) {
 587		if (pdev && segment != drhd->segment)
 588			continue;
 589
 590		for_each_active_dev_scope(drhd->devices,
 591					  drhd->devices_cnt, i, tmp) {
 592			if (tmp == dev) {
 593				/* For a VF use its original BDF# not that of the PF
 594				 * which we used for the IOMMU lookup. Strictly speaking
 595				 * we could do this for all PCI devices; we only need to
 596				 * get the BDF# from the scope table for ACPI matches. */
 597				if (pdev && pdev->is_virtfn)
 598					goto got_pdev;
 599
 600				if (bus && devfn) {
 601					*bus = drhd->devices[i].bus;
 602					*devfn = drhd->devices[i].devfn;
 603				}
 604				goto out;
 605			}
 606
 607			if (is_downstream_to_pci_bridge(dev, tmp))
 608				goto got_pdev;
 609		}
 610
 611		if (pdev && drhd->include_all) {
 612got_pdev:
 613			if (bus && devfn) {
 614				*bus = pdev->bus->number;
 615				*devfn = pdev->devfn;
 616			}
 617			goto out;
 618		}
 619	}
 620	iommu = NULL;
 621out:
 622	if (iommu_is_dummy(iommu, dev))
 623		iommu = NULL;
 624
 625	rcu_read_unlock();
 626
 627	return iommu;
 628}
 629
 630static void domain_flush_cache(struct dmar_domain *domain,
 631			       void *addr, int size)
 632{
 633	if (!domain->iommu_coherency)
 634		clflush_cache_range(addr, size);
 635}
 636
 637static void free_context_table(struct intel_iommu *iommu)
 638{
 639	struct context_entry *context;
 640	int i;
 641
 642	if (!iommu->root_entry)
 643		return;
 644
 645	for (i = 0; i < ROOT_ENTRY_NR; i++) {
 646		context = iommu_context_addr(iommu, i, 0, 0);
 647		if (context)
 648			free_pgtable_page(context);
 649
 650		if (!sm_supported(iommu))
 651			continue;
 652
 653		context = iommu_context_addr(iommu, i, 0x80, 0);
 654		if (context)
 655			free_pgtable_page(context);
 656	}
 657
 658	free_pgtable_page(iommu->root_entry);
 659	iommu->root_entry = NULL;
 660}
 661
 662#ifdef CONFIG_DMAR_DEBUG
 663static void pgtable_walk(struct intel_iommu *iommu, unsigned long pfn,
 664			 u8 bus, u8 devfn, struct dma_pte *parent, int level)
 665{
 666	struct dma_pte *pte;
 667	int offset;
 668
 669	while (1) {
 670		offset = pfn_level_offset(pfn, level);
 671		pte = &parent[offset];
 672		if (!pte || (dma_pte_superpage(pte) || !dma_pte_present(pte))) {
 673			pr_info("PTE not present at level %d\n", level);
 
 
 
 674			break;
 675		}
 676
 677		pr_info("pte level: %d, pte value: 0x%016llx\n", level, pte->val);
 678
 679		if (level == 1)
 680			break;
 681
 682		parent = phys_to_virt(dma_pte_addr(pte));
 683		level--;
 684	}
 685}
 686
 687void dmar_fault_dump_ptes(struct intel_iommu *iommu, u16 source_id,
 688			  unsigned long long addr, u32 pasid)
 689{
 690	struct pasid_dir_entry *dir, *pde;
 691	struct pasid_entry *entries, *pte;
 692	struct context_entry *ctx_entry;
 693	struct root_entry *rt_entry;
 694	int i, dir_index, index, level;
 695	u8 devfn = source_id & 0xff;
 696	u8 bus = source_id >> 8;
 697	struct dma_pte *pgtable;
 698
 699	pr_info("Dump %s table entries for IOVA 0x%llx\n", iommu->name, addr);
 700
 701	/* root entry dump */
 702	rt_entry = &iommu->root_entry[bus];
 703	if (!rt_entry) {
 704		pr_info("root table entry is not present\n");
 705		return;
 706	}
 
 707
 708	if (sm_supported(iommu))
 709		pr_info("scalable mode root entry: hi 0x%016llx, low 0x%016llx\n",
 710			rt_entry->hi, rt_entry->lo);
 711	else
 712		pr_info("root entry: 0x%016llx", rt_entry->lo);
 713
 714	/* context entry dump */
 715	ctx_entry = iommu_context_addr(iommu, bus, devfn, 0);
 716	if (!ctx_entry) {
 717		pr_info("context table entry is not present\n");
 718		return;
 719	}
 720
 721	pr_info("context entry: hi 0x%016llx, low 0x%016llx\n",
 722		ctx_entry->hi, ctx_entry->lo);
 723
 724	/* legacy mode does not require PASID entries */
 725	if (!sm_supported(iommu)) {
 
 
 
 
 726		level = agaw_to_level(ctx_entry->hi & 7);
 727		pgtable = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK);
 728		goto pgtable_walk;
 729	}
 730
 
 
 
 
 
 731	/* get the pointer to pasid directory entry */
 732	dir = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK);
 733	if (!dir) {
 734		pr_info("pasid directory entry is not present\n");
 735		return;
 736	}
 737	/* For request-without-pasid, get the pasid from context entry */
 738	if (intel_iommu_sm && pasid == IOMMU_PASID_INVALID)
 739		pasid = IOMMU_NO_PASID;
 740
 741	dir_index = pasid >> PASID_PDE_SHIFT;
 742	pde = &dir[dir_index];
 743	pr_info("pasid dir entry: 0x%016llx\n", pde->val);
 744
 745	/* get the pointer to the pasid table entry */
 746	entries = get_pasid_table_from_pde(pde);
 747	if (!entries) {
 748		pr_info("pasid table entry is not present\n");
 749		return;
 750	}
 751	index = pasid & PASID_PTE_MASK;
 752	pte = &entries[index];
 753	for (i = 0; i < ARRAY_SIZE(pte->val); i++)
 754		pr_info("pasid table entry[%d]: 0x%016llx\n", i, pte->val[i]);
 755
 
 
 
 
 
 756	if (pasid_pte_get_pgtt(pte) == PASID_ENTRY_PGTT_FL_ONLY) {
 757		level = pte->val[2] & BIT_ULL(2) ? 5 : 4;
 758		pgtable = phys_to_virt(pte->val[2] & VTD_PAGE_MASK);
 759	} else {
 760		level = agaw_to_level((pte->val[0] >> 2) & 0x7);
 761		pgtable = phys_to_virt(pte->val[0] & VTD_PAGE_MASK);
 762	}
 763
 764pgtable_walk:
 765	pgtable_walk(iommu, addr >> VTD_PAGE_SHIFT, bus, devfn, pgtable, level);
 766}
 767#endif
 768
 769static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
 770				      unsigned long pfn, int *target_level,
 771				      gfp_t gfp)
 772{
 773	struct dma_pte *parent, *pte;
 774	int level = agaw_to_level(domain->agaw);
 775	int offset;
 776
 777	if (!domain_pfn_supported(domain, pfn))
 778		/* Address beyond IOMMU's addressing capabilities. */
 779		return NULL;
 780
 781	parent = domain->pgd;
 782
 783	while (1) {
 784		void *tmp_page;
 785
 786		offset = pfn_level_offset(pfn, level);
 787		pte = &parent[offset];
 788		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
 789			break;
 790		if (level == *target_level)
 791			break;
 792
 793		if (!dma_pte_present(pte)) {
 794			uint64_t pteval;
 795
 796			tmp_page = alloc_pgtable_page(domain->nid, gfp);
 797
 798			if (!tmp_page)
 799				return NULL;
 800
 801			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
 802			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
 803			if (domain->use_first_level)
 804				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US | DMA_FL_PTE_ACCESS;
 805
 806			if (cmpxchg64(&pte->val, 0ULL, pteval))
 
 807				/* Someone else set it while we were thinking; use theirs. */
 808				free_pgtable_page(tmp_page);
 809			else
 810				domain_flush_cache(domain, pte, sizeof(*pte));
 811		}
 812		if (level == 1)
 813			break;
 814
 815		parent = phys_to_virt(dma_pte_addr(pte));
 816		level--;
 817	}
 818
 819	if (!*target_level)
 820		*target_level = level;
 821
 822	return pte;
 823}
 824
 825/* return address's pte at specific level */
 826static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
 827					 unsigned long pfn,
 828					 int level, int *large_page)
 829{
 830	struct dma_pte *parent, *pte;
 831	int total = agaw_to_level(domain->agaw);
 832	int offset;
 833
 834	parent = domain->pgd;
 835	while (level <= total) {
 836		offset = pfn_level_offset(pfn, total);
 837		pte = &parent[offset];
 838		if (level == total)
 839			return pte;
 840
 841		if (!dma_pte_present(pte)) {
 842			*large_page = total;
 843			break;
 844		}
 845
 846		if (dma_pte_superpage(pte)) {
 847			*large_page = total;
 848			return pte;
 849		}
 850
 851		parent = phys_to_virt(dma_pte_addr(pte));
 852		total--;
 853	}
 854	return NULL;
 855}
 856
 857/* clear last level pte, a tlb flush should be followed */
 858static void dma_pte_clear_range(struct dmar_domain *domain,
 859				unsigned long start_pfn,
 860				unsigned long last_pfn)
 861{
 862	unsigned int large_page;
 863	struct dma_pte *first_pte, *pte;
 864
 865	if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) ||
 866	    WARN_ON(start_pfn > last_pfn))
 867		return;
 868
 869	/* we don't need lock here; nobody else touches the iova range */
 870	do {
 871		large_page = 1;
 872		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
 873		if (!pte) {
 874			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
 875			continue;
 876		}
 877		do {
 878			dma_clear_pte(pte);
 879			start_pfn += lvl_to_nr_pages(large_page);
 880			pte++;
 881		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));
 882
 883		domain_flush_cache(domain, first_pte,
 884				   (void *)pte - (void *)first_pte);
 885
 886	} while (start_pfn && start_pfn <= last_pfn);
 887}
 888
 889static void dma_pte_free_level(struct dmar_domain *domain, int level,
 890			       int retain_level, struct dma_pte *pte,
 891			       unsigned long pfn, unsigned long start_pfn,
 892			       unsigned long last_pfn)
 893{
 894	pfn = max(start_pfn, pfn);
 895	pte = &pte[pfn_level_offset(pfn, level)];
 896
 897	do {
 898		unsigned long level_pfn;
 899		struct dma_pte *level_pte;
 900
 901		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
 902			goto next;
 903
 904		level_pfn = pfn & level_mask(level);
 905		level_pte = phys_to_virt(dma_pte_addr(pte));
 906
 907		if (level > 2) {
 908			dma_pte_free_level(domain, level - 1, retain_level,
 909					   level_pte, level_pfn, start_pfn,
 910					   last_pfn);
 911		}
 912
 913		/*
 914		 * Free the page table if we're below the level we want to
 915		 * retain and the range covers the entire table.
 916		 */
 917		if (level < retain_level && !(start_pfn > level_pfn ||
 918		      last_pfn < level_pfn + level_size(level) - 1)) {
 919			dma_clear_pte(pte);
 920			domain_flush_cache(domain, pte, sizeof(*pte));
 921			free_pgtable_page(level_pte);
 922		}
 923next:
 924		pfn += level_size(level);
 925	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
 926}
 927
 928/*
 929 * clear last level (leaf) ptes and free page table pages below the
 930 * level we wish to keep intact.
 931 */
 932static void dma_pte_free_pagetable(struct dmar_domain *domain,
 933				   unsigned long start_pfn,
 934				   unsigned long last_pfn,
 935				   int retain_level)
 936{
 937	dma_pte_clear_range(domain, start_pfn, last_pfn);
 938
 939	/* We don't need lock here; nobody else touches the iova range */
 940	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
 941			   domain->pgd, 0, start_pfn, last_pfn);
 942
 943	/* free pgd */
 944	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
 945		free_pgtable_page(domain->pgd);
 946		domain->pgd = NULL;
 947	}
 948}
 949
 950/* When a page at a given level is being unlinked from its parent, we don't
 951   need to *modify* it at all. All we need to do is make a list of all the
 952   pages which can be freed just as soon as we've flushed the IOTLB and we
 953   know the hardware page-walk will no longer touch them.
 954   The 'pte' argument is the *parent* PTE, pointing to the page that is to
 955   be freed. */
 956static void dma_pte_list_pagetables(struct dmar_domain *domain,
 957				    int level, struct dma_pte *pte,
 958				    struct list_head *freelist)
 959{
 960	struct page *pg;
 961
 962	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
 963	list_add_tail(&pg->lru, freelist);
 964
 965	if (level == 1)
 966		return;
 967
 968	pte = page_address(pg);
 969	do {
 970		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
 971			dma_pte_list_pagetables(domain, level - 1, pte, freelist);
 972		pte++;
 973	} while (!first_pte_in_page(pte));
 974}
 975
 976static void dma_pte_clear_level(struct dmar_domain *domain, int level,
 977				struct dma_pte *pte, unsigned long pfn,
 978				unsigned long start_pfn, unsigned long last_pfn,
 979				struct list_head *freelist)
 980{
 981	struct dma_pte *first_pte = NULL, *last_pte = NULL;
 982
 983	pfn = max(start_pfn, pfn);
 984	pte = &pte[pfn_level_offset(pfn, level)];
 985
 986	do {
 987		unsigned long level_pfn = pfn & level_mask(level);
 988
 989		if (!dma_pte_present(pte))
 990			goto next;
 991
 992		/* If range covers entire pagetable, free it */
 993		if (start_pfn <= level_pfn &&
 994		    last_pfn >= level_pfn + level_size(level) - 1) {
 995			/* These suborbinate page tables are going away entirely. Don't
 996			   bother to clear them; we're just going to *free* them. */
 997			if (level > 1 && !dma_pte_superpage(pte))
 998				dma_pte_list_pagetables(domain, level - 1, pte, freelist);
 999
1000			dma_clear_pte(pte);
1001			if (!first_pte)
1002				first_pte = pte;
1003			last_pte = pte;
1004		} else if (level > 1) {
1005			/* Recurse down into a level that isn't *entirely* obsolete */
1006			dma_pte_clear_level(domain, level - 1,
1007					    phys_to_virt(dma_pte_addr(pte)),
1008					    level_pfn, start_pfn, last_pfn,
1009					    freelist);
1010		}
1011next:
1012		pfn = level_pfn + level_size(level);
1013	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1014
1015	if (first_pte)
1016		domain_flush_cache(domain, first_pte,
1017				   (void *)++last_pte - (void *)first_pte);
1018}
1019
1020/* We can't just free the pages because the IOMMU may still be walking
1021   the page tables, and may have cached the intermediate levels. The
1022   pages can only be freed after the IOTLB flush has been done. */
1023static void domain_unmap(struct dmar_domain *domain, unsigned long start_pfn,
1024			 unsigned long last_pfn, struct list_head *freelist)
1025{
1026	if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) ||
1027	    WARN_ON(start_pfn > last_pfn))
1028		return;
1029
1030	/* we don't need lock here; nobody else touches the iova range */
1031	dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1032			    domain->pgd, 0, start_pfn, last_pfn, freelist);
1033
1034	/* free pgd */
1035	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1036		struct page *pgd_page = virt_to_page(domain->pgd);
1037		list_add_tail(&pgd_page->lru, freelist);
1038		domain->pgd = NULL;
1039	}
1040}
1041
1042/* iommu handling */
1043static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1044{
1045	struct root_entry *root;
1046
1047	root = alloc_pgtable_page(iommu->node, GFP_ATOMIC);
1048	if (!root) {
1049		pr_err("Allocating root entry for %s failed\n",
1050			iommu->name);
1051		return -ENOMEM;
1052	}
1053
1054	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1055	iommu->root_entry = root;
1056
1057	return 0;
1058}
1059
1060static void iommu_set_root_entry(struct intel_iommu *iommu)
1061{
1062	u64 addr;
1063	u32 sts;
1064	unsigned long flag;
1065
1066	addr = virt_to_phys(iommu->root_entry);
1067	if (sm_supported(iommu))
1068		addr |= DMA_RTADDR_SMT;
1069
1070	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1071	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1072
1073	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1074
1075	/* Make sure hardware complete it */
1076	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1077		      readl, (sts & DMA_GSTS_RTPS), sts);
1078
1079	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1080
1081	/*
1082	 * Hardware invalidates all DMA remapping hardware translation
1083	 * caches as part of SRTP flow.
1084	 */
1085	if (cap_esrtps(iommu->cap))
1086		return;
1087
1088	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
1089	if (sm_supported(iommu))
1090		qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0);
1091	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1092}
1093
1094void iommu_flush_write_buffer(struct intel_iommu *iommu)
1095{
1096	u32 val;
1097	unsigned long flag;
1098
1099	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1100		return;
1101
1102	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1103	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1104
1105	/* Make sure hardware complete it */
1106	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1107		      readl, (!(val & DMA_GSTS_WBFS)), val);
1108
1109	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1110}
1111
1112/* return value determine if we need a write buffer flush */
1113static void __iommu_flush_context(struct intel_iommu *iommu,
1114				  u16 did, u16 source_id, u8 function_mask,
1115				  u64 type)
1116{
1117	u64 val = 0;
1118	unsigned long flag;
1119
1120	switch (type) {
1121	case DMA_CCMD_GLOBAL_INVL:
1122		val = DMA_CCMD_GLOBAL_INVL;
1123		break;
1124	case DMA_CCMD_DOMAIN_INVL:
1125		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1126		break;
1127	case DMA_CCMD_DEVICE_INVL:
1128		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1129			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1130		break;
1131	default:
1132		pr_warn("%s: Unexpected context-cache invalidation type 0x%llx\n",
1133			iommu->name, type);
1134		return;
1135	}
1136	val |= DMA_CCMD_ICC;
1137
1138	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1139	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1140
1141	/* Make sure hardware complete it */
1142	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1143		dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1144
1145	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1146}
1147
1148/* return value determine if we need a write buffer flush */
1149static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1150				u64 addr, unsigned int size_order, u64 type)
1151{
1152	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1153	u64 val = 0, val_iva = 0;
1154	unsigned long flag;
1155
1156	switch (type) {
1157	case DMA_TLB_GLOBAL_FLUSH:
1158		/* global flush doesn't need set IVA_REG */
1159		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1160		break;
1161	case DMA_TLB_DSI_FLUSH:
1162		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1163		break;
1164	case DMA_TLB_PSI_FLUSH:
1165		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1166		/* IH bit is passed in as part of address */
1167		val_iva = size_order | addr;
1168		break;
1169	default:
1170		pr_warn("%s: Unexpected iotlb invalidation type 0x%llx\n",
1171			iommu->name, type);
1172		return;
1173	}
1174
1175	if (cap_write_drain(iommu->cap))
1176		val |= DMA_TLB_WRITE_DRAIN;
1177
1178	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1179	/* Note: Only uses first TLB reg currently */
1180	if (val_iva)
1181		dmar_writeq(iommu->reg + tlb_offset, val_iva);
1182	dmar_writeq(iommu->reg + tlb_offset + 8, val);
1183
1184	/* Make sure hardware complete it */
1185	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1186		dmar_readq, (!(val & DMA_TLB_IVT)), val);
1187
1188	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1189
1190	/* check IOTLB invalidation granularity */
1191	if (DMA_TLB_IAIG(val) == 0)
1192		pr_err("Flush IOTLB failed\n");
1193	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1194		pr_debug("TLB flush request %Lx, actual %Lx\n",
1195			(unsigned long long)DMA_TLB_IIRG(type),
1196			(unsigned long long)DMA_TLB_IAIG(val));
1197}
1198
1199static struct device_domain_info *
1200domain_lookup_dev_info(struct dmar_domain *domain,
1201		       struct intel_iommu *iommu, u8 bus, u8 devfn)
1202{
1203	struct device_domain_info *info;
1204	unsigned long flags;
1205
1206	spin_lock_irqsave(&domain->lock, flags);
1207	list_for_each_entry(info, &domain->devices, link) {
1208		if (info->iommu == iommu && info->bus == bus &&
1209		    info->devfn == devfn) {
1210			spin_unlock_irqrestore(&domain->lock, flags);
1211			return info;
1212		}
1213	}
1214	spin_unlock_irqrestore(&domain->lock, flags);
1215
1216	return NULL;
1217}
1218
1219void domain_update_iotlb(struct dmar_domain *domain)
1220{
1221	struct dev_pasid_info *dev_pasid;
1222	struct device_domain_info *info;
1223	bool has_iotlb_device = false;
1224	unsigned long flags;
1225
1226	spin_lock_irqsave(&domain->lock, flags);
1227	list_for_each_entry(info, &domain->devices, link) {
1228		if (info->ats_enabled) {
1229			has_iotlb_device = true;
1230			break;
1231		}
1232	}
1233
1234	list_for_each_entry(dev_pasid, &domain->dev_pasids, link_domain) {
1235		info = dev_iommu_priv_get(dev_pasid->dev);
1236		if (info->ats_enabled) {
1237			has_iotlb_device = true;
1238			break;
1239		}
1240	}
1241	domain->has_iotlb_device = has_iotlb_device;
1242	spin_unlock_irqrestore(&domain->lock, flags);
1243}
1244
1245/*
1246 * The extra devTLB flush quirk impacts those QAT devices with PCI device
1247 * IDs ranging from 0x4940 to 0x4943. It is exempted from risky_device()
1248 * check because it applies only to the built-in QAT devices and it doesn't
1249 * grant additional privileges.
1250 */
1251#define BUGGY_QAT_DEVID_MASK 0x4940
1252static bool dev_needs_extra_dtlb_flush(struct pci_dev *pdev)
1253{
1254	if (pdev->vendor != PCI_VENDOR_ID_INTEL)
1255		return false;
1256
1257	if ((pdev->device & 0xfffc) != BUGGY_QAT_DEVID_MASK)
1258		return false;
1259
1260	return true;
1261}
1262
1263static void iommu_enable_pci_caps(struct device_domain_info *info)
1264{
1265	struct pci_dev *pdev;
1266
1267	if (!dev_is_pci(info->dev))
1268		return;
1269
1270	pdev = to_pci_dev(info->dev);
1271
1272	/* The PCIe spec, in its wisdom, declares that the behaviour of
1273	   the device if you enable PASID support after ATS support is
1274	   undefined. So always enable PASID support on devices which
1275	   have it, even if we can't yet know if we're ever going to
1276	   use it. */
1277	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1278		info->pasid_enabled = 1;
1279
1280	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1281	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1282		info->ats_enabled = 1;
1283		domain_update_iotlb(info->domain);
1284	}
1285}
1286
1287static void iommu_disable_pci_caps(struct device_domain_info *info)
1288{
1289	struct pci_dev *pdev;
1290
1291	if (!dev_is_pci(info->dev))
1292		return;
1293
1294	pdev = to_pci_dev(info->dev);
1295
1296	if (info->ats_enabled) {
1297		pci_disable_ats(pdev);
1298		info->ats_enabled = 0;
1299		domain_update_iotlb(info->domain);
1300	}
1301
1302	if (info->pasid_enabled) {
1303		pci_disable_pasid(pdev);
1304		info->pasid_enabled = 0;
1305	}
1306}
1307
1308static void __iommu_flush_dev_iotlb(struct device_domain_info *info,
1309				    u64 addr, unsigned int mask)
1310{
1311	u16 sid, qdep;
1312
1313	if (!info || !info->ats_enabled)
1314		return;
1315
1316	sid = info->bus << 8 | info->devfn;
1317	qdep = info->ats_qdep;
1318	qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1319			   qdep, addr, mask);
1320	quirk_extra_dev_tlb_flush(info, addr, mask, IOMMU_NO_PASID, qdep);
1321}
1322
1323static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1324				  u64 addr, unsigned mask)
1325{
1326	struct dev_pasid_info *dev_pasid;
1327	struct device_domain_info *info;
1328	unsigned long flags;
1329
1330	if (!domain->has_iotlb_device)
1331		return;
1332
1333	spin_lock_irqsave(&domain->lock, flags);
1334	list_for_each_entry(info, &domain->devices, link)
1335		__iommu_flush_dev_iotlb(info, addr, mask);
1336
1337	list_for_each_entry(dev_pasid, &domain->dev_pasids, link_domain) {
1338		info = dev_iommu_priv_get(dev_pasid->dev);
1339
1340		if (!info->ats_enabled)
1341			continue;
1342
1343		qi_flush_dev_iotlb_pasid(info->iommu,
1344					 PCI_DEVID(info->bus, info->devfn),
1345					 info->pfsid, dev_pasid->pasid,
1346					 info->ats_qdep, addr,
1347					 mask);
1348	}
1349	spin_unlock_irqrestore(&domain->lock, flags);
1350}
1351
1352static void domain_flush_pasid_iotlb(struct intel_iommu *iommu,
1353				     struct dmar_domain *domain, u64 addr,
1354				     unsigned long npages, bool ih)
1355{
1356	u16 did = domain_id_iommu(domain, iommu);
1357	struct dev_pasid_info *dev_pasid;
1358	unsigned long flags;
1359
1360	spin_lock_irqsave(&domain->lock, flags);
1361	list_for_each_entry(dev_pasid, &domain->dev_pasids, link_domain)
1362		qi_flush_piotlb(iommu, did, dev_pasid->pasid, addr, npages, ih);
1363
1364	if (!list_empty(&domain->devices))
1365		qi_flush_piotlb(iommu, did, IOMMU_NO_PASID, addr, npages, ih);
1366	spin_unlock_irqrestore(&domain->lock, flags);
1367}
1368
1369static void __iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1370				    unsigned long pfn, unsigned int pages,
1371				    int ih)
1372{
1373	unsigned int aligned_pages = __roundup_pow_of_two(pages);
1374	unsigned long bitmask = aligned_pages - 1;
1375	unsigned int mask = ilog2(aligned_pages);
1376	u64 addr = (u64)pfn << VTD_PAGE_SHIFT;
1377
1378	/*
1379	 * PSI masks the low order bits of the base address. If the
1380	 * address isn't aligned to the mask, then compute a mask value
1381	 * needed to ensure the target range is flushed.
1382	 */
1383	if (unlikely(bitmask & pfn)) {
1384		unsigned long end_pfn = pfn + pages - 1, shared_bits;
1385
1386		/*
1387		 * Since end_pfn <= pfn + bitmask, the only way bits
1388		 * higher than bitmask can differ in pfn and end_pfn is
1389		 * by carrying. This means after masking out bitmask,
1390		 * high bits starting with the first set bit in
1391		 * shared_bits are all equal in both pfn and end_pfn.
1392		 */
1393		shared_bits = ~(pfn ^ end_pfn) & ~bitmask;
1394		mask = shared_bits ? __ffs(shared_bits) : BITS_PER_LONG;
1395	}
1396
1397	/*
1398	 * Fallback to domain selective flush if no PSI support or
1399	 * the size is too big.
1400	 */
1401	if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1402		iommu->flush.flush_iotlb(iommu, did, 0, 0,
1403					 DMA_TLB_DSI_FLUSH);
1404	else
1405		iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1406					 DMA_TLB_PSI_FLUSH);
1407}
1408
1409static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1410				  struct dmar_domain *domain,
1411				  unsigned long pfn, unsigned int pages,
1412				  int ih, int map)
1413{
1414	unsigned int aligned_pages = __roundup_pow_of_two(pages);
1415	unsigned int mask = ilog2(aligned_pages);
1416	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1417	u16 did = domain_id_iommu(domain, iommu);
1418
1419	if (WARN_ON(!pages))
1420		return;
1421
1422	if (ih)
1423		ih = 1 << 6;
1424
1425	if (domain->use_first_level)
1426		domain_flush_pasid_iotlb(iommu, domain, addr, pages, ih);
1427	else
1428		__iommu_flush_iotlb_psi(iommu, did, pfn, pages, ih);
1429
1430	/*
1431	 * In caching mode, changes of pages from non-present to present require
1432	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1433	 */
1434	if (!cap_caching_mode(iommu->cap) || !map)
1435		iommu_flush_dev_iotlb(domain, addr, mask);
1436}
1437
1438/* Notification for newly created mappings */
1439static void __mapping_notify_one(struct intel_iommu *iommu, struct dmar_domain *domain,
1440				 unsigned long pfn, unsigned int pages)
1441{
1442	/*
1443	 * It's a non-present to present mapping. Only flush if caching mode
1444	 * and second level.
1445	 */
1446	if (cap_caching_mode(iommu->cap) && !domain->use_first_level)
1447		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1448	else
1449		iommu_flush_write_buffer(iommu);
1450}
1451
1452/*
1453 * Flush the relevant caches in nested translation if the domain
1454 * also serves as a parent
1455 */
1456static void parent_domain_flush(struct dmar_domain *domain,
1457				unsigned long pfn,
1458				unsigned long pages, int ih)
1459{
1460	struct dmar_domain *s1_domain;
1461
1462	spin_lock(&domain->s1_lock);
1463	list_for_each_entry(s1_domain, &domain->s1_domains, s2_link) {
1464		struct device_domain_info *device_info;
1465		struct iommu_domain_info *info;
1466		unsigned long flags;
1467		unsigned long i;
1468
1469		xa_for_each(&s1_domain->iommu_array, i, info)
1470			__iommu_flush_iotlb_psi(info->iommu, info->did,
1471						pfn, pages, ih);
1472
1473		if (!s1_domain->has_iotlb_device)
1474			continue;
1475
1476		spin_lock_irqsave(&s1_domain->lock, flags);
1477		list_for_each_entry(device_info, &s1_domain->devices, link)
1478			/*
1479			 * Address translation cache in device side caches the
1480			 * result of nested translation. There is no easy way
1481			 * to identify the exact set of nested translations
1482			 * affected by a change in S2. So just flush the entire
1483			 * device cache.
1484			 */
1485			__iommu_flush_dev_iotlb(device_info, 0,
1486						MAX_AGAW_PFN_WIDTH);
1487		spin_unlock_irqrestore(&s1_domain->lock, flags);
1488	}
1489	spin_unlock(&domain->s1_lock);
1490}
1491
1492static void intel_flush_iotlb_all(struct iommu_domain *domain)
1493{
1494	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
1495	struct iommu_domain_info *info;
1496	unsigned long idx;
1497
1498	xa_for_each(&dmar_domain->iommu_array, idx, info) {
1499		struct intel_iommu *iommu = info->iommu;
1500		u16 did = domain_id_iommu(dmar_domain, iommu);
1501
1502		if (dmar_domain->use_first_level)
1503			domain_flush_pasid_iotlb(iommu, dmar_domain, 0, -1, 0);
1504		else
1505			iommu->flush.flush_iotlb(iommu, did, 0, 0,
1506						 DMA_TLB_DSI_FLUSH);
1507
1508		if (!cap_caching_mode(iommu->cap))
1509			iommu_flush_dev_iotlb(dmar_domain, 0, MAX_AGAW_PFN_WIDTH);
1510	}
1511
1512	if (dmar_domain->nested_parent)
1513		parent_domain_flush(dmar_domain, 0, -1, 0);
1514}
1515
1516static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1517{
1518	u32 pmen;
1519	unsigned long flags;
1520
1521	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1522		return;
1523
1524	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1525	pmen = readl(iommu->reg + DMAR_PMEN_REG);
1526	pmen &= ~DMA_PMEN_EPM;
1527	writel(pmen, iommu->reg + DMAR_PMEN_REG);
1528
1529	/* wait for the protected region status bit to clear */
1530	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1531		readl, !(pmen & DMA_PMEN_PRS), pmen);
1532
1533	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1534}
1535
1536static void iommu_enable_translation(struct intel_iommu *iommu)
1537{
1538	u32 sts;
1539	unsigned long flags;
1540
1541	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1542	iommu->gcmd |= DMA_GCMD_TE;
1543	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1544
1545	/* Make sure hardware complete it */
1546	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1547		      readl, (sts & DMA_GSTS_TES), sts);
1548
1549	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1550}
1551
1552static void iommu_disable_translation(struct intel_iommu *iommu)
1553{
1554	u32 sts;
1555	unsigned long flag;
1556
1557	if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
1558	    (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
1559		return;
1560
1561	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1562	iommu->gcmd &= ~DMA_GCMD_TE;
1563	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1564
1565	/* Make sure hardware complete it */
1566	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1567		      readl, (!(sts & DMA_GSTS_TES)), sts);
1568
1569	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1570}
1571
1572static int iommu_init_domains(struct intel_iommu *iommu)
1573{
1574	u32 ndomains;
1575
1576	ndomains = cap_ndoms(iommu->cap);
1577	pr_debug("%s: Number of Domains supported <%d>\n",
1578		 iommu->name, ndomains);
1579
1580	spin_lock_init(&iommu->lock);
1581
1582	iommu->domain_ids = bitmap_zalloc(ndomains, GFP_KERNEL);
1583	if (!iommu->domain_ids)
1584		return -ENOMEM;
1585
1586	/*
1587	 * If Caching mode is set, then invalid translations are tagged
1588	 * with domain-id 0, hence we need to pre-allocate it. We also
1589	 * use domain-id 0 as a marker for non-allocated domain-id, so
1590	 * make sure it is not used for a real domain.
1591	 */
1592	set_bit(0, iommu->domain_ids);
1593
1594	/*
1595	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1596	 * entry for first-level or pass-through translation modes should
1597	 * be programmed with a domain id different from those used for
1598	 * second-level or nested translation. We reserve a domain id for
1599	 * this purpose.
 
1600	 */
1601	if (sm_supported(iommu))
1602		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1603
1604	return 0;
1605}
1606
1607static void disable_dmar_iommu(struct intel_iommu *iommu)
1608{
1609	if (!iommu->domain_ids)
1610		return;
1611
1612	/*
1613	 * All iommu domains must have been detached from the devices,
1614	 * hence there should be no domain IDs in use.
1615	 */
1616	if (WARN_ON(bitmap_weight(iommu->domain_ids, cap_ndoms(iommu->cap))
1617		    > NUM_RESERVED_DID))
1618		return;
1619
1620	if (iommu->gcmd & DMA_GCMD_TE)
1621		iommu_disable_translation(iommu);
1622}
1623
1624static void free_dmar_iommu(struct intel_iommu *iommu)
1625{
1626	if (iommu->domain_ids) {
1627		bitmap_free(iommu->domain_ids);
1628		iommu->domain_ids = NULL;
1629	}
1630
1631	if (iommu->copied_tables) {
1632		bitmap_free(iommu->copied_tables);
1633		iommu->copied_tables = NULL;
1634	}
1635
1636	/* free context mapping */
1637	free_context_table(iommu);
1638
1639#ifdef CONFIG_INTEL_IOMMU_SVM
1640	if (pasid_supported(iommu)) {
1641		if (ecap_prs(iommu->ecap))
1642			intel_svm_finish_prq(iommu);
1643	}
1644#endif
1645}
1646
1647/*
1648 * Check and return whether first level is used by default for
1649 * DMA translation.
1650 */
1651static bool first_level_by_default(unsigned int type)
1652{
1653	/* Only SL is available in legacy mode */
1654	if (!scalable_mode_support())
1655		return false;
1656
1657	/* Only level (either FL or SL) is available, just use it */
1658	if (intel_cap_flts_sanity() ^ intel_cap_slts_sanity())
1659		return intel_cap_flts_sanity();
1660
1661	/* Both levels are available, decide it based on domain type */
1662	return type != IOMMU_DOMAIN_UNMANAGED;
1663}
1664
1665static struct dmar_domain *alloc_domain(unsigned int type)
1666{
1667	struct dmar_domain *domain;
1668
1669	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1670	if (!domain)
1671		return NULL;
1672
1673	domain->nid = NUMA_NO_NODE;
1674	if (first_level_by_default(type))
1675		domain->use_first_level = true;
1676	domain->has_iotlb_device = false;
1677	INIT_LIST_HEAD(&domain->devices);
1678	INIT_LIST_HEAD(&domain->dev_pasids);
1679	spin_lock_init(&domain->lock);
1680	xa_init(&domain->iommu_array);
1681
1682	return domain;
1683}
1684
1685int domain_attach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu)
1686{
1687	struct iommu_domain_info *info, *curr;
1688	unsigned long ndomains;
1689	int num, ret = -ENOSPC;
1690
 
 
 
1691	info = kzalloc(sizeof(*info), GFP_KERNEL);
1692	if (!info)
1693		return -ENOMEM;
1694
1695	spin_lock(&iommu->lock);
1696	curr = xa_load(&domain->iommu_array, iommu->seq_id);
1697	if (curr) {
1698		curr->refcnt++;
1699		spin_unlock(&iommu->lock);
1700		kfree(info);
1701		return 0;
1702	}
1703
1704	ndomains = cap_ndoms(iommu->cap);
1705	num = find_first_zero_bit(iommu->domain_ids, ndomains);
1706	if (num >= ndomains) {
1707		pr_err("%s: No free domain ids\n", iommu->name);
1708		goto err_unlock;
1709	}
1710
1711	set_bit(num, iommu->domain_ids);
1712	info->refcnt	= 1;
1713	info->did	= num;
1714	info->iommu	= iommu;
1715	curr = xa_cmpxchg(&domain->iommu_array, iommu->seq_id,
1716			  NULL, info, GFP_ATOMIC);
1717	if (curr) {
1718		ret = xa_err(curr) ? : -EBUSY;
1719		goto err_clear;
1720	}
1721	domain_update_iommu_cap(domain);
1722
1723	spin_unlock(&iommu->lock);
1724	return 0;
1725
1726err_clear:
1727	clear_bit(info->did, iommu->domain_ids);
1728err_unlock:
1729	spin_unlock(&iommu->lock);
1730	kfree(info);
1731	return ret;
1732}
1733
1734void domain_detach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu)
1735{
1736	struct iommu_domain_info *info;
1737
 
 
 
1738	spin_lock(&iommu->lock);
1739	info = xa_load(&domain->iommu_array, iommu->seq_id);
1740	if (--info->refcnt == 0) {
1741		clear_bit(info->did, iommu->domain_ids);
1742		xa_erase(&domain->iommu_array, iommu->seq_id);
1743		domain->nid = NUMA_NO_NODE;
1744		domain_update_iommu_cap(domain);
1745		kfree(info);
1746	}
1747	spin_unlock(&iommu->lock);
1748}
1749
1750static int guestwidth_to_adjustwidth(int gaw)
1751{
1752	int agaw;
1753	int r = (gaw - 12) % 9;
1754
1755	if (r == 0)
1756		agaw = gaw;
1757	else
1758		agaw = gaw + 9 - r;
1759	if (agaw > 64)
1760		agaw = 64;
1761	return agaw;
1762}
1763
1764static void domain_exit(struct dmar_domain *domain)
1765{
1766	if (domain->pgd) {
1767		LIST_HEAD(freelist);
1768
1769		domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw), &freelist);
1770		put_pages_list(&freelist);
1771	}
1772
1773	if (WARN_ON(!list_empty(&domain->devices)))
1774		return;
1775
 
1776	kfree(domain);
1777}
1778
1779/*
1780 * Get the PASID directory size for scalable mode context entry.
1781 * Value of X in the PDTS field of a scalable mode context entry
1782 * indicates PASID directory with 2^(X + 7) entries.
 
 
 
 
1783 */
1784static unsigned long context_get_sm_pds(struct pasid_table *table)
 
 
1785{
1786	unsigned long pds, max_pde;
 
 
 
 
 
 
 
 
1787
1788	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1789	pds = find_first_bit(&max_pde, MAX_NR_PASID_BITS);
1790	if (pds < 7)
1791		return 0;
 
 
 
 
 
 
 
1792
1793	return pds - 7;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1794}
1795
1796static int domain_context_mapping_one(struct dmar_domain *domain,
1797				      struct intel_iommu *iommu,
1798				      struct pasid_table *table,
1799				      u8 bus, u8 devfn)
1800{
1801	struct device_domain_info *info =
1802			domain_lookup_dev_info(domain, iommu, bus, devfn);
1803	u16 did = domain_id_iommu(domain, iommu);
1804	int translation = CONTEXT_TT_MULTI_LEVEL;
 
1805	struct context_entry *context;
1806	int ret;
1807
1808	if (hw_pass_through && domain_type_is_si(domain))
1809		translation = CONTEXT_TT_PASS_THROUGH;
1810
1811	pr_debug("Set context mapping for %02x:%02x.%d\n",
1812		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1813
1814	spin_lock(&iommu->lock);
1815	ret = -ENOMEM;
1816	context = iommu_context_addr(iommu, bus, devfn, 1);
1817	if (!context)
1818		goto out_unlock;
1819
1820	ret = 0;
1821	if (context_present(context) && !context_copied(iommu, bus, devfn))
1822		goto out_unlock;
1823
1824	/*
1825	 * For kdump cases, old valid entries may be cached due to the
1826	 * in-flight DMA and copied pgtable, but there is no unmapping
1827	 * behaviour for them, thus we need an explicit cache flush for
1828	 * the newly-mapped device. For kdump, at this point, the device
1829	 * is supposed to finish reset at its driver probe stage, so no
1830	 * in-flight DMA will exist, and we don't need to worry anymore
1831	 * hereafter.
1832	 */
1833	if (context_copied(iommu, bus, devfn)) {
1834		u16 did_old = context_domain_id(context);
1835
1836		if (did_old < cap_ndoms(iommu->cap)) {
1837			iommu->flush.flush_context(iommu, did_old,
1838						   (((u16)bus) << 8) | devfn,
1839						   DMA_CCMD_MASK_NOBIT,
1840						   DMA_CCMD_DEVICE_INVL);
1841			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
1842						 DMA_TLB_DSI_FLUSH);
1843		}
1844
1845		clear_context_copied(iommu, bus, devfn);
1846	}
1847
1848	context_clear_entry(context);
 
1849
1850	if (sm_supported(iommu)) {
1851		unsigned long pds;
1852
1853		/* Setup the PASID DIR pointer: */
1854		pds = context_get_sm_pds(table);
1855		context->lo = (u64)virt_to_phys(table->table) |
1856				context_pdts(pds);
1857
1858		/* Setup the RID_PASID field: */
1859		context_set_sm_rid2pasid(context, IOMMU_NO_PASID);
1860
1861		/*
1862		 * Setup the Device-TLB enable bit and Page request
1863		 * Enable bit:
1864		 */
1865		if (info && info->ats_supported)
1866			context_set_sm_dte(context);
1867		if (info && info->pri_supported)
1868			context_set_sm_pre(context);
1869		if (info && info->pasid_supported)
1870			context_set_pasid(context);
1871	} else {
1872		struct dma_pte *pgd = domain->pgd;
1873		int agaw;
1874
1875		context_set_domain_id(context, did);
1876
1877		if (translation != CONTEXT_TT_PASS_THROUGH) {
1878			/*
1879			 * Skip top levels of page tables for iommu which has
1880			 * less agaw than default. Unnecessary for PT mode.
1881			 */
1882			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
1883				ret = -ENOMEM;
1884				pgd = phys_to_virt(dma_pte_addr(pgd));
1885				if (!dma_pte_present(pgd))
1886					goto out_unlock;
1887			}
1888
1889			if (info && info->ats_supported)
1890				translation = CONTEXT_TT_DEV_IOTLB;
1891			else
1892				translation = CONTEXT_TT_MULTI_LEVEL;
1893
1894			context_set_address_root(context, virt_to_phys(pgd));
1895			context_set_address_width(context, agaw);
1896		} else {
1897			/*
1898			 * In pass through mode, AW must be programmed to
1899			 * indicate the largest AGAW value supported by
1900			 * hardware. And ASR is ignored by hardware.
1901			 */
1902			context_set_address_width(context, iommu->msagaw);
1903		}
1904
1905		context_set_translation_type(context, translation);
1906	}
1907
 
 
 
1908	context_set_fault_enable(context);
1909	context_set_present(context);
1910	if (!ecap_coherent(iommu->ecap))
1911		clflush_cache_range(context, sizeof(*context));
1912
1913	/*
1914	 * It's a non-present to present mapping. If hardware doesn't cache
1915	 * non-present entry we only need to flush the write-buffer. If the
1916	 * _does_ cache non-present entries, then it does so in the special
1917	 * domain #0, which we have to flush:
1918	 */
1919	if (cap_caching_mode(iommu->cap)) {
1920		iommu->flush.flush_context(iommu, 0,
1921					   (((u16)bus) << 8) | devfn,
1922					   DMA_CCMD_MASK_NOBIT,
1923					   DMA_CCMD_DEVICE_INVL);
1924		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1925	} else {
1926		iommu_flush_write_buffer(iommu);
1927	}
1928
1929	ret = 0;
1930
1931out_unlock:
1932	spin_unlock(&iommu->lock);
1933
1934	return ret;
1935}
1936
1937struct domain_context_mapping_data {
1938	struct dmar_domain *domain;
1939	struct intel_iommu *iommu;
1940	struct pasid_table *table;
1941};
1942
1943static int domain_context_mapping_cb(struct pci_dev *pdev,
1944				     u16 alias, void *opaque)
1945{
1946	struct domain_context_mapping_data *data = opaque;
 
 
1947
1948	return domain_context_mapping_one(data->domain, data->iommu,
1949					  data->table, PCI_BUS_NUM(alias),
1950					  alias & 0xff);
1951}
1952
1953static int
1954domain_context_mapping(struct dmar_domain *domain, struct device *dev)
1955{
1956	struct device_domain_info *info = dev_iommu_priv_get(dev);
1957	struct domain_context_mapping_data data;
1958	struct intel_iommu *iommu = info->iommu;
1959	u8 bus = info->bus, devfn = info->devfn;
1960	struct pasid_table *table;
1961
1962	table = intel_pasid_get_table(dev);
1963
1964	if (!dev_is_pci(dev))
1965		return domain_context_mapping_one(domain, iommu, table,
1966						  bus, devfn);
1967
1968	data.domain = domain;
1969	data.iommu = iommu;
1970	data.table = table;
1971
1972	return pci_for_each_dma_alias(to_pci_dev(dev),
1973				      &domain_context_mapping_cb, &data);
1974}
1975
1976/* Returns a number of VTD pages, but aligned to MM page size */
1977static unsigned long aligned_nrpages(unsigned long host_addr, size_t size)
1978{
1979	host_addr &= ~PAGE_MASK;
1980	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1981}
1982
1983/* Return largest possible superpage level for a given mapping */
1984static int hardware_largepage_caps(struct dmar_domain *domain, unsigned long iov_pfn,
1985				   unsigned long phy_pfn, unsigned long pages)
1986{
1987	int support, level = 1;
1988	unsigned long pfnmerge;
1989
1990	support = domain->iommu_superpage;
1991
1992	/* To use a large page, the virtual *and* physical addresses
1993	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1994	   of them will mean we have to use smaller pages. So just
1995	   merge them and check both at once. */
1996	pfnmerge = iov_pfn | phy_pfn;
1997
1998	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1999		pages >>= VTD_STRIDE_SHIFT;
2000		if (!pages)
2001			break;
2002		pfnmerge >>= VTD_STRIDE_SHIFT;
2003		level++;
2004		support--;
2005	}
2006	return level;
2007}
2008
2009/*
2010 * Ensure that old small page tables are removed to make room for superpage(s).
2011 * We're going to add new large pages, so make sure we don't remove their parent
2012 * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared.
2013 */
2014static void switch_to_super_page(struct dmar_domain *domain,
2015				 unsigned long start_pfn,
2016				 unsigned long end_pfn, int level)
2017{
2018	unsigned long lvl_pages = lvl_to_nr_pages(level);
2019	struct iommu_domain_info *info;
2020	struct dma_pte *pte = NULL;
2021	unsigned long i;
2022
2023	while (start_pfn <= end_pfn) {
2024		if (!pte)
2025			pte = pfn_to_dma_pte(domain, start_pfn, &level,
2026					     GFP_ATOMIC);
2027
2028		if (dma_pte_present(pte)) {
2029			dma_pte_free_pagetable(domain, start_pfn,
2030					       start_pfn + lvl_pages - 1,
2031					       level + 1);
2032
2033			xa_for_each(&domain->iommu_array, i, info)
2034				iommu_flush_iotlb_psi(info->iommu, domain,
2035						      start_pfn, lvl_pages,
2036						      0, 0);
2037			if (domain->nested_parent)
2038				parent_domain_flush(domain, start_pfn,
2039						    lvl_pages, 0);
2040		}
2041
2042		pte++;
2043		start_pfn += lvl_pages;
2044		if (first_pte_in_page(pte))
2045			pte = NULL;
2046	}
2047}
2048
2049static int
2050__domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2051		 unsigned long phys_pfn, unsigned long nr_pages, int prot,
2052		 gfp_t gfp)
2053{
2054	struct dma_pte *first_pte = NULL, *pte = NULL;
2055	unsigned int largepage_lvl = 0;
2056	unsigned long lvl_pages = 0;
2057	phys_addr_t pteval;
2058	u64 attr;
2059
2060	if (unlikely(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)))
2061		return -EINVAL;
2062
2063	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2064		return -EINVAL;
2065
2066	if (!(prot & DMA_PTE_WRITE) && domain->nested_parent) {
2067		pr_err_ratelimited("Read-only mapping is disallowed on the domain which serves as the parent in a nested configuration, due to HW errata (ERRATA_772415_SPR17)\n");
2068		return -EINVAL;
2069	}
2070
2071	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
2072	attr |= DMA_FL_PTE_PRESENT;
2073	if (domain->use_first_level) {
2074		attr |= DMA_FL_PTE_XD | DMA_FL_PTE_US | DMA_FL_PTE_ACCESS;
2075		if (prot & DMA_PTE_WRITE)
2076			attr |= DMA_FL_PTE_DIRTY;
2077	}
2078
2079	domain->has_mappings = true;
2080
2081	pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2082
2083	while (nr_pages > 0) {
2084		uint64_t tmp;
2085
2086		if (!pte) {
2087			largepage_lvl = hardware_largepage_caps(domain, iov_pfn,
2088					phys_pfn, nr_pages);
2089
2090			pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl,
2091					     gfp);
2092			if (!pte)
2093				return -ENOMEM;
2094			first_pte = pte;
2095
2096			lvl_pages = lvl_to_nr_pages(largepage_lvl);
2097
2098			/* It is large page*/
2099			if (largepage_lvl > 1) {
2100				unsigned long end_pfn;
2101				unsigned long pages_to_remove;
2102
2103				pteval |= DMA_PTE_LARGE_PAGE;
2104				pages_to_remove = min_t(unsigned long, nr_pages,
2105							nr_pte_to_next_page(pte) * lvl_pages);
2106				end_pfn = iov_pfn + pages_to_remove - 1;
2107				switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl);
2108			} else {
2109				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2110			}
2111
2112		}
2113		/* We don't need lock here, nobody else
2114		 * touches the iova range
2115		 */
2116		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2117		if (tmp) {
2118			static int dumps = 5;
2119			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2120				iov_pfn, tmp, (unsigned long long)pteval);
2121			if (dumps) {
2122				dumps--;
2123				debug_dma_dump_mappings(NULL);
2124			}
2125			WARN_ON(1);
2126		}
2127
2128		nr_pages -= lvl_pages;
2129		iov_pfn += lvl_pages;
2130		phys_pfn += lvl_pages;
2131		pteval += lvl_pages * VTD_PAGE_SIZE;
2132
2133		/* If the next PTE would be the first in a new page, then we
2134		 * need to flush the cache on the entries we've just written.
2135		 * And then we'll need to recalculate 'pte', so clear it and
2136		 * let it get set again in the if (!pte) block above.
2137		 *
2138		 * If we're done (!nr_pages) we need to flush the cache too.
2139		 *
2140		 * Also if we've been setting superpages, we may need to
2141		 * recalculate 'pte' and switch back to smaller pages for the
2142		 * end of the mapping, if the trailing size is not enough to
2143		 * use another superpage (i.e. nr_pages < lvl_pages).
2144		 */
2145		pte++;
2146		if (!nr_pages || first_pte_in_page(pte) ||
2147		    (largepage_lvl > 1 && nr_pages < lvl_pages)) {
2148			domain_flush_cache(domain, first_pte,
2149					   (void *)pte - (void *)first_pte);
2150			pte = NULL;
2151		}
2152	}
2153
2154	return 0;
2155}
2156
2157static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn)
2158{
2159	struct intel_iommu *iommu = info->iommu;
2160	struct context_entry *context;
2161	u16 did_old;
2162
2163	if (!iommu)
2164		return;
2165
2166	spin_lock(&iommu->lock);
2167	context = iommu_context_addr(iommu, bus, devfn, 0);
2168	if (!context) {
2169		spin_unlock(&iommu->lock);
2170		return;
2171	}
2172
2173	if (sm_supported(iommu)) {
2174		if (hw_pass_through && domain_type_is_si(info->domain))
2175			did_old = FLPT_DEFAULT_DID;
2176		else
2177			did_old = domain_id_iommu(info->domain, iommu);
2178	} else {
2179		did_old = context_domain_id(context);
2180	}
2181
2182	context_clear_entry(context);
2183	__iommu_flush_cache(iommu, context, sizeof(*context));
2184	spin_unlock(&iommu->lock);
2185	iommu->flush.flush_context(iommu,
2186				   did_old,
2187				   (((u16)bus) << 8) | devfn,
2188				   DMA_CCMD_MASK_NOBIT,
2189				   DMA_CCMD_DEVICE_INVL);
2190
2191	if (sm_supported(iommu))
2192		qi_flush_pasid_cache(iommu, did_old, QI_PC_ALL_PASIDS, 0);
2193
2194	iommu->flush.flush_iotlb(iommu,
2195				 did_old,
2196				 0,
2197				 0,
2198				 DMA_TLB_DSI_FLUSH);
2199
2200	__iommu_flush_dev_iotlb(info, 0, MAX_AGAW_PFN_WIDTH);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2201}
2202
2203static int domain_setup_first_level(struct intel_iommu *iommu,
2204				    struct dmar_domain *domain,
2205				    struct device *dev,
2206				    u32 pasid)
2207{
2208	struct dma_pte *pgd = domain->pgd;
2209	int agaw, level;
2210	int flags = 0;
2211
2212	/*
2213	 * Skip top levels of page tables for iommu which has
2214	 * less agaw than default. Unnecessary for PT mode.
2215	 */
2216	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2217		pgd = phys_to_virt(dma_pte_addr(pgd));
2218		if (!dma_pte_present(pgd))
2219			return -ENOMEM;
2220	}
2221
2222	level = agaw_to_level(agaw);
2223	if (level != 4 && level != 5)
2224		return -EINVAL;
2225
2226	if (level == 5)
2227		flags |= PASID_FLAG_FL5LP;
2228
2229	if (domain->force_snooping)
2230		flags |= PASID_FLAG_PAGE_SNOOP;
2231
2232	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
2233					     domain_id_iommu(domain, iommu),
2234					     flags);
2235}
2236
2237static bool dev_is_real_dma_subdevice(struct device *dev)
2238{
2239	return dev && dev_is_pci(dev) &&
2240	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
2241}
2242
2243static int iommu_domain_identity_map(struct dmar_domain *domain,
2244				     unsigned long first_vpfn,
2245				     unsigned long last_vpfn)
2246{
2247	/*
2248	 * RMRR range might have overlap with physical memory range,
2249	 * clear it first
2250	 */
2251	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2252
2253	return __domain_mapping(domain, first_vpfn,
2254				first_vpfn, last_vpfn - first_vpfn + 1,
2255				DMA_PTE_READ|DMA_PTE_WRITE, GFP_KERNEL);
2256}
2257
2258static int md_domain_init(struct dmar_domain *domain, int guest_width);
2259
2260static int __init si_domain_init(int hw)
2261{
2262	struct dmar_rmrr_unit *rmrr;
2263	struct device *dev;
2264	int i, nid, ret;
2265
2266	si_domain = alloc_domain(IOMMU_DOMAIN_IDENTITY);
2267	if (!si_domain)
2268		return -EFAULT;
2269
2270	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2271		domain_exit(si_domain);
2272		si_domain = NULL;
2273		return -EFAULT;
2274	}
2275
2276	if (hw)
2277		return 0;
2278
2279	for_each_online_node(nid) {
2280		unsigned long start_pfn, end_pfn;
2281		int i;
2282
2283		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2284			ret = iommu_domain_identity_map(si_domain,
2285					mm_to_dma_pfn_start(start_pfn),
2286					mm_to_dma_pfn_end(end_pfn));
2287			if (ret)
2288				return ret;
2289		}
2290	}
2291
2292	/*
2293	 * Identity map the RMRRs so that devices with RMRRs could also use
2294	 * the si_domain.
2295	 */
2296	for_each_rmrr_units(rmrr) {
2297		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2298					  i, dev) {
2299			unsigned long long start = rmrr->base_address;
2300			unsigned long long end = rmrr->end_address;
2301
2302			if (WARN_ON(end < start ||
2303				    end >> agaw_to_width(si_domain->agaw)))
2304				continue;
2305
2306			ret = iommu_domain_identity_map(si_domain,
2307					mm_to_dma_pfn_start(start >> PAGE_SHIFT),
2308					mm_to_dma_pfn_end(end >> PAGE_SHIFT));
2309			if (ret)
2310				return ret;
2311		}
2312	}
2313
2314	return 0;
2315}
2316
2317static int dmar_domain_attach_device(struct dmar_domain *domain,
2318				     struct device *dev)
2319{
2320	struct device_domain_info *info = dev_iommu_priv_get(dev);
2321	struct intel_iommu *iommu = info->iommu;
2322	unsigned long flags;
2323	int ret;
2324
2325	ret = domain_attach_iommu(domain, iommu);
2326	if (ret)
2327		return ret;
 
2328	info->domain = domain;
2329	spin_lock_irqsave(&domain->lock, flags);
2330	list_add(&info->link, &domain->devices);
2331	spin_unlock_irqrestore(&domain->lock, flags);
2332
2333	/* PASID table is mandatory for a PCI device in scalable mode. */
2334	if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) {
2335		/* Setup the PASID entry for requests without PASID: */
2336		if (hw_pass_through && domain_type_is_si(domain))
2337			ret = intel_pasid_setup_pass_through(iommu,
2338					dev, IOMMU_NO_PASID);
2339		else if (domain->use_first_level)
2340			ret = domain_setup_first_level(iommu, domain, dev,
2341					IOMMU_NO_PASID);
2342		else
2343			ret = intel_pasid_setup_second_level(iommu, domain,
2344					dev, IOMMU_NO_PASID);
2345		if (ret) {
2346			dev_err(dev, "Setup RID2PASID failed\n");
2347			device_block_translation(dev);
2348			return ret;
2349		}
2350	}
2351
2352	ret = domain_context_mapping(domain, dev);
2353	if (ret) {
2354		dev_err(dev, "Domain context map failed\n");
2355		device_block_translation(dev);
2356		return ret;
2357	}
2358
2359	if (sm_supported(info->iommu) || !domain_type_is_si(info->domain))
2360		iommu_enable_pci_caps(info);
 
2361
2362	return 0;
 
 
 
 
2363}
2364
2365/**
2366 * device_rmrr_is_relaxable - Test whether the RMRR of this device
2367 * is relaxable (ie. is allowed to be not enforced under some conditions)
2368 * @dev: device handle
2369 *
2370 * We assume that PCI USB devices with RMRRs have them largely
2371 * for historical reasons and that the RMRR space is not actively used post
2372 * boot.  This exclusion may change if vendors begin to abuse it.
2373 *
2374 * The same exception is made for graphics devices, with the requirement that
2375 * any use of the RMRR regions will be torn down before assigning the device
2376 * to a guest.
2377 *
2378 * Return: true if the RMRR is relaxable, false otherwise
2379 */
2380static bool device_rmrr_is_relaxable(struct device *dev)
2381{
2382	struct pci_dev *pdev;
2383
2384	if (!dev_is_pci(dev))
2385		return false;
2386
2387	pdev = to_pci_dev(dev);
2388	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2389		return true;
2390	else
2391		return false;
2392}
2393
2394/*
2395 * Return the required default domain type for a specific device.
2396 *
2397 * @dev: the device in query
2398 * @startup: true if this is during early boot
2399 *
2400 * Returns:
2401 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2402 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2403 *  - 0: both identity and dynamic domains work for this device
2404 */
2405static int device_def_domain_type(struct device *dev)
2406{
 
 
 
 
 
 
 
 
 
 
2407	if (dev_is_pci(dev)) {
2408		struct pci_dev *pdev = to_pci_dev(dev);
2409
2410		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2411			return IOMMU_DOMAIN_IDENTITY;
2412
2413		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2414			return IOMMU_DOMAIN_IDENTITY;
2415	}
2416
2417	return 0;
2418}
2419
2420static void intel_iommu_init_qi(struct intel_iommu *iommu)
2421{
2422	/*
2423	 * Start from the sane iommu hardware state.
2424	 * If the queued invalidation is already initialized by us
2425	 * (for example, while enabling interrupt-remapping) then
2426	 * we got the things already rolling from a sane state.
2427	 */
2428	if (!iommu->qi) {
2429		/*
2430		 * Clear any previous faults.
2431		 */
2432		dmar_fault(-1, iommu);
2433		/*
2434		 * Disable queued invalidation if supported and already enabled
2435		 * before OS handover.
2436		 */
2437		dmar_disable_qi(iommu);
2438	}
2439
2440	if (dmar_enable_qi(iommu)) {
2441		/*
2442		 * Queued Invalidate not enabled, use Register Based Invalidate
2443		 */
2444		iommu->flush.flush_context = __iommu_flush_context;
2445		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2446		pr_info("%s: Using Register based invalidation\n",
2447			iommu->name);
2448	} else {
2449		iommu->flush.flush_context = qi_flush_context;
2450		iommu->flush.flush_iotlb = qi_flush_iotlb;
2451		pr_info("%s: Using Queued invalidation\n", iommu->name);
2452	}
2453}
2454
2455static int copy_context_table(struct intel_iommu *iommu,
2456			      struct root_entry *old_re,
2457			      struct context_entry **tbl,
2458			      int bus, bool ext)
2459{
2460	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2461	struct context_entry *new_ce = NULL, ce;
2462	struct context_entry *old_ce = NULL;
2463	struct root_entry re;
2464	phys_addr_t old_ce_phys;
2465
2466	tbl_idx = ext ? bus * 2 : bus;
2467	memcpy(&re, old_re, sizeof(re));
2468
2469	for (devfn = 0; devfn < 256; devfn++) {
2470		/* First calculate the correct index */
2471		idx = (ext ? devfn * 2 : devfn) % 256;
2472
2473		if (idx == 0) {
2474			/* First save what we may have and clean up */
2475			if (new_ce) {
2476				tbl[tbl_idx] = new_ce;
2477				__iommu_flush_cache(iommu, new_ce,
2478						    VTD_PAGE_SIZE);
2479				pos = 1;
2480			}
2481
2482			if (old_ce)
2483				memunmap(old_ce);
2484
2485			ret = 0;
2486			if (devfn < 0x80)
2487				old_ce_phys = root_entry_lctp(&re);
2488			else
2489				old_ce_phys = root_entry_uctp(&re);
2490
2491			if (!old_ce_phys) {
2492				if (ext && devfn == 0) {
2493					/* No LCTP, try UCTP */
2494					devfn = 0x7f;
2495					continue;
2496				} else {
2497					goto out;
2498				}
2499			}
2500
2501			ret = -ENOMEM;
2502			old_ce = memremap(old_ce_phys, PAGE_SIZE,
2503					MEMREMAP_WB);
2504			if (!old_ce)
2505				goto out;
2506
2507			new_ce = alloc_pgtable_page(iommu->node, GFP_KERNEL);
2508			if (!new_ce)
2509				goto out_unmap;
2510
2511			ret = 0;
2512		}
2513
2514		/* Now copy the context entry */
2515		memcpy(&ce, old_ce + idx, sizeof(ce));
2516
2517		if (!context_present(&ce))
2518			continue;
2519
2520		did = context_domain_id(&ce);
2521		if (did >= 0 && did < cap_ndoms(iommu->cap))
2522			set_bit(did, iommu->domain_ids);
2523
2524		set_context_copied(iommu, bus, devfn);
2525		new_ce[idx] = ce;
2526	}
2527
2528	tbl[tbl_idx + pos] = new_ce;
2529
2530	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2531
2532out_unmap:
2533	memunmap(old_ce);
2534
2535out:
2536	return ret;
2537}
2538
2539static int copy_translation_tables(struct intel_iommu *iommu)
2540{
2541	struct context_entry **ctxt_tbls;
2542	struct root_entry *old_rt;
2543	phys_addr_t old_rt_phys;
2544	int ctxt_table_entries;
2545	u64 rtaddr_reg;
2546	int bus, ret;
2547	bool new_ext, ext;
2548
2549	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2550	ext        = !!(rtaddr_reg & DMA_RTADDR_SMT);
2551	new_ext    = !!sm_supported(iommu);
2552
2553	/*
2554	 * The RTT bit can only be changed when translation is disabled,
2555	 * but disabling translation means to open a window for data
2556	 * corruption. So bail out and don't copy anything if we would
2557	 * have to change the bit.
2558	 */
2559	if (new_ext != ext)
2560		return -EINVAL;
2561
2562	iommu->copied_tables = bitmap_zalloc(BIT_ULL(16), GFP_KERNEL);
2563	if (!iommu->copied_tables)
2564		return -ENOMEM;
2565
2566	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2567	if (!old_rt_phys)
2568		return -EINVAL;
2569
2570	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
2571	if (!old_rt)
2572		return -ENOMEM;
2573
2574	/* This is too big for the stack - allocate it from slab */
2575	ctxt_table_entries = ext ? 512 : 256;
2576	ret = -ENOMEM;
2577	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
2578	if (!ctxt_tbls)
2579		goto out_unmap;
2580
2581	for (bus = 0; bus < 256; bus++) {
2582		ret = copy_context_table(iommu, &old_rt[bus],
2583					 ctxt_tbls, bus, ext);
2584		if (ret) {
2585			pr_err("%s: Failed to copy context table for bus %d\n",
2586				iommu->name, bus);
2587			continue;
2588		}
2589	}
2590
2591	spin_lock(&iommu->lock);
2592
2593	/* Context tables are copied, now write them to the root_entry table */
2594	for (bus = 0; bus < 256; bus++) {
2595		int idx = ext ? bus * 2 : bus;
2596		u64 val;
2597
2598		if (ctxt_tbls[idx]) {
2599			val = virt_to_phys(ctxt_tbls[idx]) | 1;
2600			iommu->root_entry[bus].lo = val;
2601		}
2602
2603		if (!ext || !ctxt_tbls[idx + 1])
2604			continue;
2605
2606		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2607		iommu->root_entry[bus].hi = val;
2608	}
2609
2610	spin_unlock(&iommu->lock);
2611
2612	kfree(ctxt_tbls);
2613
2614	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
2615
2616	ret = 0;
2617
2618out_unmap:
2619	memunmap(old_rt);
2620
2621	return ret;
2622}
2623
2624static int __init init_dmars(void)
2625{
2626	struct dmar_drhd_unit *drhd;
2627	struct intel_iommu *iommu;
2628	int ret;
2629
2630	ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL);
2631	if (ret)
2632		goto free_iommu;
2633
2634	for_each_iommu(iommu, drhd) {
2635		if (drhd->ignored) {
2636			iommu_disable_translation(iommu);
2637			continue;
2638		}
2639
2640		/*
2641		 * Find the max pasid size of all IOMMU's in the system.
2642		 * We need to ensure the system pasid table is no bigger
2643		 * than the smallest supported.
2644		 */
2645		if (pasid_supported(iommu)) {
2646			u32 temp = 2 << ecap_pss(iommu->ecap);
2647
2648			intel_pasid_max_id = min_t(u32, temp,
2649						   intel_pasid_max_id);
2650		}
2651
2652		intel_iommu_init_qi(iommu);
2653
2654		ret = iommu_init_domains(iommu);
2655		if (ret)
2656			goto free_iommu;
2657
2658		init_translation_status(iommu);
2659
2660		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
2661			iommu_disable_translation(iommu);
2662			clear_translation_pre_enabled(iommu);
2663			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
2664				iommu->name);
2665		}
2666
2667		/*
2668		 * TBD:
2669		 * we could share the same root & context tables
2670		 * among all IOMMU's. Need to Split it later.
2671		 */
2672		ret = iommu_alloc_root_entry(iommu);
2673		if (ret)
2674			goto free_iommu;
2675
2676		if (translation_pre_enabled(iommu)) {
2677			pr_info("Translation already enabled - trying to copy translation structures\n");
2678
2679			ret = copy_translation_tables(iommu);
2680			if (ret) {
2681				/*
2682				 * We found the IOMMU with translation
2683				 * enabled - but failed to copy over the
2684				 * old root-entry table. Try to proceed
2685				 * by disabling translation now and
2686				 * allocating a clean root-entry table.
2687				 * This might cause DMAR faults, but
2688				 * probably the dump will still succeed.
2689				 */
2690				pr_err("Failed to copy translation tables from previous kernel for %s\n",
2691				       iommu->name);
2692				iommu_disable_translation(iommu);
2693				clear_translation_pre_enabled(iommu);
2694			} else {
2695				pr_info("Copied translation tables from previous kernel for %s\n",
2696					iommu->name);
2697			}
2698		}
2699
2700		if (!ecap_pass_through(iommu->ecap))
2701			hw_pass_through = 0;
2702		intel_svm_check(iommu);
2703	}
2704
2705	/*
2706	 * Now that qi is enabled on all iommus, set the root entry and flush
2707	 * caches. This is required on some Intel X58 chipsets, otherwise the
2708	 * flush_context function will loop forever and the boot hangs.
2709	 */
2710	for_each_active_iommu(iommu, drhd) {
2711		iommu_flush_write_buffer(iommu);
2712		iommu_set_root_entry(iommu);
2713	}
2714
2715#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2716	dmar_map_gfx = 0;
2717#endif
2718
2719	if (!dmar_map_gfx)
2720		iommu_identity_mapping |= IDENTMAP_GFX;
2721
2722	check_tylersburg_isoch();
2723
2724	ret = si_domain_init(hw_pass_through);
2725	if (ret)
2726		goto free_iommu;
2727
2728	/*
2729	 * for each drhd
2730	 *   enable fault log
2731	 *   global invalidate context cache
2732	 *   global invalidate iotlb
2733	 *   enable translation
2734	 */
2735	for_each_iommu(iommu, drhd) {
2736		if (drhd->ignored) {
2737			/*
2738			 * we always have to disable PMRs or DMA may fail on
2739			 * this device
2740			 */
2741			if (force_on)
2742				iommu_disable_protect_mem_regions(iommu);
2743			continue;
2744		}
2745
2746		iommu_flush_write_buffer(iommu);
2747
2748#ifdef CONFIG_INTEL_IOMMU_SVM
2749		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
2750			/*
2751			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
2752			 * could cause possible lock race condition.
2753			 */
2754			up_write(&dmar_global_lock);
2755			ret = intel_svm_enable_prq(iommu);
2756			down_write(&dmar_global_lock);
2757			if (ret)
2758				goto free_iommu;
2759		}
2760#endif
2761		ret = dmar_set_interrupt(iommu);
2762		if (ret)
2763			goto free_iommu;
2764	}
2765
2766	return 0;
2767
2768free_iommu:
2769	for_each_active_iommu(iommu, drhd) {
2770		disable_dmar_iommu(iommu);
2771		free_dmar_iommu(iommu);
2772	}
2773	if (si_domain) {
2774		domain_exit(si_domain);
2775		si_domain = NULL;
2776	}
2777
2778	return ret;
2779}
2780
2781static void __init init_no_remapping_devices(void)
2782{
2783	struct dmar_drhd_unit *drhd;
2784	struct device *dev;
2785	int i;
2786
2787	for_each_drhd_unit(drhd) {
2788		if (!drhd->include_all) {
2789			for_each_active_dev_scope(drhd->devices,
2790						  drhd->devices_cnt, i, dev)
2791				break;
2792			/* ignore DMAR unit if no devices exist */
2793			if (i == drhd->devices_cnt)
2794				drhd->ignored = 1;
2795		}
2796	}
2797
2798	for_each_active_drhd_unit(drhd) {
2799		if (drhd->include_all)
2800			continue;
2801
2802		for_each_active_dev_scope(drhd->devices,
2803					  drhd->devices_cnt, i, dev)
2804			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
2805				break;
2806		if (i < drhd->devices_cnt)
2807			continue;
2808
2809		/* This IOMMU has *only* gfx devices. Either bypass it or
2810		   set the gfx_mapped flag, as appropriate */
2811		drhd->gfx_dedicated = 1;
2812		if (!dmar_map_gfx)
2813			drhd->ignored = 1;
2814	}
2815}
2816
2817#ifdef CONFIG_SUSPEND
2818static int init_iommu_hw(void)
2819{
2820	struct dmar_drhd_unit *drhd;
2821	struct intel_iommu *iommu = NULL;
2822	int ret;
2823
2824	for_each_active_iommu(iommu, drhd) {
2825		if (iommu->qi) {
2826			ret = dmar_reenable_qi(iommu);
2827			if (ret)
2828				return ret;
2829		}
2830	}
2831
2832	for_each_iommu(iommu, drhd) {
2833		if (drhd->ignored) {
2834			/*
2835			 * we always have to disable PMRs or DMA may fail on
2836			 * this device
2837			 */
2838			if (force_on)
2839				iommu_disable_protect_mem_regions(iommu);
2840			continue;
2841		}
2842
2843		iommu_flush_write_buffer(iommu);
2844		iommu_set_root_entry(iommu);
2845		iommu_enable_translation(iommu);
2846		iommu_disable_protect_mem_regions(iommu);
2847	}
2848
2849	return 0;
2850}
2851
2852static void iommu_flush_all(void)
2853{
2854	struct dmar_drhd_unit *drhd;
2855	struct intel_iommu *iommu;
2856
2857	for_each_active_iommu(iommu, drhd) {
2858		iommu->flush.flush_context(iommu, 0, 0, 0,
2859					   DMA_CCMD_GLOBAL_INVL);
2860		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2861					 DMA_TLB_GLOBAL_FLUSH);
2862	}
2863}
2864
2865static int iommu_suspend(void)
2866{
2867	struct dmar_drhd_unit *drhd;
2868	struct intel_iommu *iommu = NULL;
2869	unsigned long flag;
2870
2871	iommu_flush_all();
2872
2873	for_each_active_iommu(iommu, drhd) {
2874		iommu_disable_translation(iommu);
2875
2876		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2877
2878		iommu->iommu_state[SR_DMAR_FECTL_REG] =
2879			readl(iommu->reg + DMAR_FECTL_REG);
2880		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
2881			readl(iommu->reg + DMAR_FEDATA_REG);
2882		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
2883			readl(iommu->reg + DMAR_FEADDR_REG);
2884		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
2885			readl(iommu->reg + DMAR_FEUADDR_REG);
2886
2887		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2888	}
2889	return 0;
2890}
2891
2892static void iommu_resume(void)
2893{
2894	struct dmar_drhd_unit *drhd;
2895	struct intel_iommu *iommu = NULL;
2896	unsigned long flag;
2897
2898	if (init_iommu_hw()) {
2899		if (force_on)
2900			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
2901		else
2902			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
2903		return;
2904	}
2905
2906	for_each_active_iommu(iommu, drhd) {
2907
2908		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2909
2910		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
2911			iommu->reg + DMAR_FECTL_REG);
2912		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
2913			iommu->reg + DMAR_FEDATA_REG);
2914		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
2915			iommu->reg + DMAR_FEADDR_REG);
2916		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
2917			iommu->reg + DMAR_FEUADDR_REG);
2918
2919		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2920	}
2921}
2922
2923static struct syscore_ops iommu_syscore_ops = {
2924	.resume		= iommu_resume,
2925	.suspend	= iommu_suspend,
2926};
2927
2928static void __init init_iommu_pm_ops(void)
2929{
2930	register_syscore_ops(&iommu_syscore_ops);
2931}
2932
2933#else
2934static inline void init_iommu_pm_ops(void) {}
2935#endif	/* CONFIG_PM */
2936
2937static int __init rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
2938{
2939	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
2940	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
2941	    rmrr->end_address <= rmrr->base_address ||
2942	    arch_rmrr_sanity_check(rmrr))
2943		return -EINVAL;
2944
2945	return 0;
2946}
2947
2948int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
2949{
2950	struct acpi_dmar_reserved_memory *rmrr;
2951	struct dmar_rmrr_unit *rmrru;
2952
2953	rmrr = (struct acpi_dmar_reserved_memory *)header;
2954	if (rmrr_sanity_check(rmrr)) {
2955		pr_warn(FW_BUG
2956			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
2957			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2958			   rmrr->base_address, rmrr->end_address,
2959			   dmi_get_system_info(DMI_BIOS_VENDOR),
2960			   dmi_get_system_info(DMI_BIOS_VERSION),
2961			   dmi_get_system_info(DMI_PRODUCT_VERSION));
2962		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
2963	}
2964
2965	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
2966	if (!rmrru)
2967		goto out;
2968
2969	rmrru->hdr = header;
2970
2971	rmrru->base_address = rmrr->base_address;
2972	rmrru->end_address = rmrr->end_address;
2973
2974	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
2975				((void *)rmrr) + rmrr->header.length,
2976				&rmrru->devices_cnt);
2977	if (rmrru->devices_cnt && rmrru->devices == NULL)
2978		goto free_rmrru;
2979
2980	list_add(&rmrru->list, &dmar_rmrr_units);
2981
2982	return 0;
2983free_rmrru:
2984	kfree(rmrru);
2985out:
2986	return -ENOMEM;
2987}
2988
2989static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
2990{
2991	struct dmar_atsr_unit *atsru;
2992	struct acpi_dmar_atsr *tmp;
2993
2994	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
2995				dmar_rcu_check()) {
2996		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
2997		if (atsr->segment != tmp->segment)
2998			continue;
2999		if (atsr->header.length != tmp->header.length)
3000			continue;
3001		if (memcmp(atsr, tmp, atsr->header.length) == 0)
3002			return atsru;
3003	}
3004
3005	return NULL;
3006}
3007
3008int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3009{
3010	struct acpi_dmar_atsr *atsr;
3011	struct dmar_atsr_unit *atsru;
3012
3013	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
3014		return 0;
3015
3016	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3017	atsru = dmar_find_atsr(atsr);
3018	if (atsru)
3019		return 0;
3020
3021	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
3022	if (!atsru)
3023		return -ENOMEM;
3024
3025	/*
3026	 * If memory is allocated from slab by ACPI _DSM method, we need to
3027	 * copy the memory content because the memory buffer will be freed
3028	 * on return.
3029	 */
3030	atsru->hdr = (void *)(atsru + 1);
3031	memcpy(atsru->hdr, hdr, hdr->length);
3032	atsru->include_all = atsr->flags & 0x1;
3033	if (!atsru->include_all) {
3034		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3035				(void *)atsr + atsr->header.length,
3036				&atsru->devices_cnt);
3037		if (atsru->devices_cnt && atsru->devices == NULL) {
3038			kfree(atsru);
3039			return -ENOMEM;
3040		}
3041	}
3042
3043	list_add_rcu(&atsru->list, &dmar_atsr_units);
3044
3045	return 0;
3046}
3047
3048static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3049{
3050	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3051	kfree(atsru);
3052}
3053
3054int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3055{
3056	struct acpi_dmar_atsr *atsr;
3057	struct dmar_atsr_unit *atsru;
3058
3059	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3060	atsru = dmar_find_atsr(atsr);
3061	if (atsru) {
3062		list_del_rcu(&atsru->list);
3063		synchronize_rcu();
3064		intel_iommu_free_atsr(atsru);
3065	}
3066
3067	return 0;
3068}
3069
3070int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3071{
3072	int i;
3073	struct device *dev;
3074	struct acpi_dmar_atsr *atsr;
3075	struct dmar_atsr_unit *atsru;
3076
3077	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3078	atsru = dmar_find_atsr(atsr);
3079	if (!atsru)
3080		return 0;
3081
3082	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
3083		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
3084					  i, dev)
3085			return -EBUSY;
3086	}
3087
3088	return 0;
3089}
3090
3091static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc)
3092{
3093	struct dmar_satc_unit *satcu;
3094	struct acpi_dmar_satc *tmp;
3095
3096	list_for_each_entry_rcu(satcu, &dmar_satc_units, list,
3097				dmar_rcu_check()) {
3098		tmp = (struct acpi_dmar_satc *)satcu->hdr;
3099		if (satc->segment != tmp->segment)
3100			continue;
3101		if (satc->header.length != tmp->header.length)
3102			continue;
3103		if (memcmp(satc, tmp, satc->header.length) == 0)
3104			return satcu;
3105	}
3106
3107	return NULL;
3108}
3109
3110int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg)
3111{
3112	struct acpi_dmar_satc *satc;
3113	struct dmar_satc_unit *satcu;
3114
3115	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
3116		return 0;
3117
3118	satc = container_of(hdr, struct acpi_dmar_satc, header);
3119	satcu = dmar_find_satc(satc);
3120	if (satcu)
3121		return 0;
3122
3123	satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL);
3124	if (!satcu)
3125		return -ENOMEM;
3126
3127	satcu->hdr = (void *)(satcu + 1);
3128	memcpy(satcu->hdr, hdr, hdr->length);
3129	satcu->atc_required = satc->flags & 0x1;
3130	satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1),
3131					      (void *)satc + satc->header.length,
3132					      &satcu->devices_cnt);
3133	if (satcu->devices_cnt && !satcu->devices) {
3134		kfree(satcu);
3135		return -ENOMEM;
3136	}
3137	list_add_rcu(&satcu->list, &dmar_satc_units);
3138
3139	return 0;
3140}
3141
3142static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
3143{
3144	int sp, ret;
3145	struct intel_iommu *iommu = dmaru->iommu;
 
3146
3147	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu);
3148	if (ret)
3149		goto out;
3150
3151	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
3152		pr_warn("%s: Doesn't support hardware pass through.\n",
3153			iommu->name);
3154		return -ENXIO;
3155	}
3156
3157	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
3158	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
3159		pr_warn("%s: Doesn't support large page.\n",
3160			iommu->name);
3161		return -ENXIO;
3162	}
3163
3164	/*
3165	 * Disable translation if already enabled prior to OS handover.
3166	 */
3167	if (iommu->gcmd & DMA_GCMD_TE)
3168		iommu_disable_translation(iommu);
3169
3170	ret = iommu_init_domains(iommu);
3171	if (ret == 0)
3172		ret = iommu_alloc_root_entry(iommu);
3173	if (ret)
3174		goto out;
3175
3176	intel_svm_check(iommu);
3177
3178	if (dmaru->ignored) {
3179		/*
3180		 * we always have to disable PMRs or DMA may fail on this device
3181		 */
3182		if (force_on)
3183			iommu_disable_protect_mem_regions(iommu);
3184		return 0;
3185	}
3186
3187	intel_iommu_init_qi(iommu);
3188	iommu_flush_write_buffer(iommu);
3189
3190#ifdef CONFIG_INTEL_IOMMU_SVM
3191	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3192		ret = intel_svm_enable_prq(iommu);
3193		if (ret)
3194			goto disable_iommu;
3195	}
3196#endif
3197	ret = dmar_set_interrupt(iommu);
3198	if (ret)
3199		goto disable_iommu;
3200
3201	iommu_set_root_entry(iommu);
3202	iommu_enable_translation(iommu);
3203
3204	iommu_disable_protect_mem_regions(iommu);
3205	return 0;
3206
3207disable_iommu:
3208	disable_dmar_iommu(iommu);
3209out:
3210	free_dmar_iommu(iommu);
3211	return ret;
3212}
3213
3214int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
3215{
3216	int ret = 0;
3217	struct intel_iommu *iommu = dmaru->iommu;
3218
3219	if (!intel_iommu_enabled)
3220		return 0;
3221	if (iommu == NULL)
3222		return -EINVAL;
3223
3224	if (insert) {
3225		ret = intel_iommu_add(dmaru);
3226	} else {
3227		disable_dmar_iommu(iommu);
3228		free_dmar_iommu(iommu);
3229	}
3230
3231	return ret;
3232}
3233
3234static void intel_iommu_free_dmars(void)
3235{
3236	struct dmar_rmrr_unit *rmrru, *rmrr_n;
3237	struct dmar_atsr_unit *atsru, *atsr_n;
3238	struct dmar_satc_unit *satcu, *satc_n;
3239
3240	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3241		list_del(&rmrru->list);
3242		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3243		kfree(rmrru);
3244	}
3245
3246	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3247		list_del(&atsru->list);
3248		intel_iommu_free_atsr(atsru);
3249	}
3250	list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) {
3251		list_del(&satcu->list);
3252		dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt);
3253		kfree(satcu);
3254	}
3255}
3256
3257static struct dmar_satc_unit *dmar_find_matched_satc_unit(struct pci_dev *dev)
3258{
3259	struct dmar_satc_unit *satcu;
3260	struct acpi_dmar_satc *satc;
3261	struct device *tmp;
3262	int i;
3263
3264	dev = pci_physfn(dev);
3265	rcu_read_lock();
3266
3267	list_for_each_entry_rcu(satcu, &dmar_satc_units, list) {
3268		satc = container_of(satcu->hdr, struct acpi_dmar_satc, header);
3269		if (satc->segment != pci_domain_nr(dev->bus))
3270			continue;
3271		for_each_dev_scope(satcu->devices, satcu->devices_cnt, i, tmp)
3272			if (to_pci_dev(tmp) == dev)
3273				goto out;
3274	}
3275	satcu = NULL;
3276out:
3277	rcu_read_unlock();
3278	return satcu;
3279}
3280
3281static int dmar_ats_supported(struct pci_dev *dev, struct intel_iommu *iommu)
3282{
3283	int i, ret = 1;
3284	struct pci_bus *bus;
3285	struct pci_dev *bridge = NULL;
3286	struct device *tmp;
3287	struct acpi_dmar_atsr *atsr;
3288	struct dmar_atsr_unit *atsru;
3289	struct dmar_satc_unit *satcu;
3290
3291	dev = pci_physfn(dev);
3292	satcu = dmar_find_matched_satc_unit(dev);
3293	if (satcu)
3294		/*
3295		 * This device supports ATS as it is in SATC table.
3296		 * When IOMMU is in legacy mode, enabling ATS is done
3297		 * automatically by HW for the device that requires
3298		 * ATS, hence OS should not enable this device ATS
3299		 * to avoid duplicated TLB invalidation.
3300		 */
3301		return !(satcu->atc_required && !sm_supported(iommu));
3302
3303	for (bus = dev->bus; bus; bus = bus->parent) {
3304		bridge = bus->self;
3305		/* If it's an integrated device, allow ATS */
3306		if (!bridge)
3307			return 1;
3308		/* Connected via non-PCIe: no ATS */
3309		if (!pci_is_pcie(bridge) ||
3310		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3311			return 0;
3312		/* If we found the root port, look it up in the ATSR */
3313		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3314			break;
3315	}
3316
3317	rcu_read_lock();
3318	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3319		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3320		if (atsr->segment != pci_domain_nr(dev->bus))
3321			continue;
3322
3323		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3324			if (tmp == &bridge->dev)
3325				goto out;
3326
3327		if (atsru->include_all)
3328			goto out;
3329	}
3330	ret = 0;
3331out:
3332	rcu_read_unlock();
3333
3334	return ret;
3335}
3336
3337int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3338{
3339	int ret;
3340	struct dmar_rmrr_unit *rmrru;
3341	struct dmar_atsr_unit *atsru;
3342	struct dmar_satc_unit *satcu;
3343	struct acpi_dmar_atsr *atsr;
3344	struct acpi_dmar_reserved_memory *rmrr;
3345	struct acpi_dmar_satc *satc;
3346
3347	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
3348		return 0;
3349
3350	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3351		rmrr = container_of(rmrru->hdr,
3352				    struct acpi_dmar_reserved_memory, header);
3353		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3354			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3355				((void *)rmrr) + rmrr->header.length,
3356				rmrr->segment, rmrru->devices,
3357				rmrru->devices_cnt);
3358			if (ret < 0)
3359				return ret;
3360		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3361			dmar_remove_dev_scope(info, rmrr->segment,
3362				rmrru->devices, rmrru->devices_cnt);
3363		}
3364	}
3365
3366	list_for_each_entry(atsru, &dmar_atsr_units, list) {
3367		if (atsru->include_all)
3368			continue;
3369
3370		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3371		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3372			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3373					(void *)atsr + atsr->header.length,
3374					atsr->segment, atsru->devices,
3375					atsru->devices_cnt);
3376			if (ret > 0)
3377				break;
3378			else if (ret < 0)
3379				return ret;
3380		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3381			if (dmar_remove_dev_scope(info, atsr->segment,
3382					atsru->devices, atsru->devices_cnt))
3383				break;
3384		}
3385	}
3386	list_for_each_entry(satcu, &dmar_satc_units, list) {
3387		satc = container_of(satcu->hdr, struct acpi_dmar_satc, header);
3388		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3389			ret = dmar_insert_dev_scope(info, (void *)(satc + 1),
3390					(void *)satc + satc->header.length,
3391					satc->segment, satcu->devices,
3392					satcu->devices_cnt);
3393			if (ret > 0)
3394				break;
3395			else if (ret < 0)
3396				return ret;
3397		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3398			if (dmar_remove_dev_scope(info, satc->segment,
3399					satcu->devices, satcu->devices_cnt))
3400				break;
3401		}
3402	}
3403
3404	return 0;
3405}
3406
3407static int intel_iommu_memory_notifier(struct notifier_block *nb,
3408				       unsigned long val, void *v)
3409{
3410	struct memory_notify *mhp = v;
3411	unsigned long start_vpfn = mm_to_dma_pfn_start(mhp->start_pfn);
3412	unsigned long last_vpfn = mm_to_dma_pfn_end(mhp->start_pfn +
3413			mhp->nr_pages - 1);
3414
3415	switch (val) {
3416	case MEM_GOING_ONLINE:
3417		if (iommu_domain_identity_map(si_domain,
3418					      start_vpfn, last_vpfn)) {
3419			pr_warn("Failed to build identity map for [%lx-%lx]\n",
3420				start_vpfn, last_vpfn);
3421			return NOTIFY_BAD;
3422		}
3423		break;
3424
3425	case MEM_OFFLINE:
3426	case MEM_CANCEL_ONLINE:
3427		{
3428			struct dmar_drhd_unit *drhd;
3429			struct intel_iommu *iommu;
3430			LIST_HEAD(freelist);
3431
3432			domain_unmap(si_domain, start_vpfn, last_vpfn, &freelist);
3433
3434			rcu_read_lock();
3435			for_each_active_iommu(iommu, drhd)
3436				iommu_flush_iotlb_psi(iommu, si_domain,
3437					start_vpfn, mhp->nr_pages,
3438					list_empty(&freelist), 0);
3439			rcu_read_unlock();
3440			put_pages_list(&freelist);
3441		}
3442		break;
3443	}
3444
3445	return NOTIFY_OK;
3446}
3447
3448static struct notifier_block intel_iommu_memory_nb = {
3449	.notifier_call = intel_iommu_memory_notifier,
3450	.priority = 0
3451};
3452
3453static void intel_disable_iommus(void)
3454{
3455	struct intel_iommu *iommu = NULL;
3456	struct dmar_drhd_unit *drhd;
3457
3458	for_each_iommu(iommu, drhd)
3459		iommu_disable_translation(iommu);
3460}
3461
3462void intel_iommu_shutdown(void)
3463{
3464	struct dmar_drhd_unit *drhd;
3465	struct intel_iommu *iommu = NULL;
3466
3467	if (no_iommu || dmar_disabled)
3468		return;
3469
3470	down_write(&dmar_global_lock);
3471
3472	/* Disable PMRs explicitly here. */
3473	for_each_iommu(iommu, drhd)
3474		iommu_disable_protect_mem_regions(iommu);
3475
3476	/* Make sure the IOMMUs are switched off */
3477	intel_disable_iommus();
3478
3479	up_write(&dmar_global_lock);
3480}
3481
3482static struct intel_iommu *dev_to_intel_iommu(struct device *dev)
3483{
3484	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
3485
3486	return container_of(iommu_dev, struct intel_iommu, iommu);
3487}
3488
3489static ssize_t version_show(struct device *dev,
3490			    struct device_attribute *attr, char *buf)
3491{
3492	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3493	u32 ver = readl(iommu->reg + DMAR_VER_REG);
3494	return sysfs_emit(buf, "%d:%d\n",
3495			  DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
3496}
3497static DEVICE_ATTR_RO(version);
3498
3499static ssize_t address_show(struct device *dev,
3500			    struct device_attribute *attr, char *buf)
3501{
3502	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3503	return sysfs_emit(buf, "%llx\n", iommu->reg_phys);
3504}
3505static DEVICE_ATTR_RO(address);
3506
3507static ssize_t cap_show(struct device *dev,
3508			struct device_attribute *attr, char *buf)
3509{
3510	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3511	return sysfs_emit(buf, "%llx\n", iommu->cap);
3512}
3513static DEVICE_ATTR_RO(cap);
3514
3515static ssize_t ecap_show(struct device *dev,
3516			 struct device_attribute *attr, char *buf)
3517{
3518	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3519	return sysfs_emit(buf, "%llx\n", iommu->ecap);
3520}
3521static DEVICE_ATTR_RO(ecap);
3522
3523static ssize_t domains_supported_show(struct device *dev,
3524				      struct device_attribute *attr, char *buf)
3525{
3526	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3527	return sysfs_emit(buf, "%ld\n", cap_ndoms(iommu->cap));
3528}
3529static DEVICE_ATTR_RO(domains_supported);
3530
3531static ssize_t domains_used_show(struct device *dev,
3532				 struct device_attribute *attr, char *buf)
3533{
3534	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3535	return sysfs_emit(buf, "%d\n",
3536			  bitmap_weight(iommu->domain_ids,
3537					cap_ndoms(iommu->cap)));
3538}
3539static DEVICE_ATTR_RO(domains_used);
3540
3541static struct attribute *intel_iommu_attrs[] = {
3542	&dev_attr_version.attr,
3543	&dev_attr_address.attr,
3544	&dev_attr_cap.attr,
3545	&dev_attr_ecap.attr,
3546	&dev_attr_domains_supported.attr,
3547	&dev_attr_domains_used.attr,
3548	NULL,
3549};
3550
3551static struct attribute_group intel_iommu_group = {
3552	.name = "intel-iommu",
3553	.attrs = intel_iommu_attrs,
3554};
3555
3556const struct attribute_group *intel_iommu_groups[] = {
3557	&intel_iommu_group,
3558	NULL,
3559};
3560
3561static bool has_external_pci(void)
3562{
3563	struct pci_dev *pdev = NULL;
3564
3565	for_each_pci_dev(pdev)
3566		if (pdev->external_facing) {
3567			pci_dev_put(pdev);
3568			return true;
3569		}
3570
3571	return false;
3572}
3573
3574static int __init platform_optin_force_iommu(void)
3575{
3576	if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
3577		return 0;
3578
3579	if (no_iommu || dmar_disabled)
3580		pr_info("Intel-IOMMU force enabled due to platform opt in\n");
3581
3582	/*
3583	 * If Intel-IOMMU is disabled by default, we will apply identity
3584	 * map for all devices except those marked as being untrusted.
3585	 */
3586	if (dmar_disabled)
3587		iommu_set_default_passthrough(false);
3588
3589	dmar_disabled = 0;
3590	no_iommu = 0;
3591
3592	return 1;
3593}
3594
3595static int __init probe_acpi_namespace_devices(void)
3596{
3597	struct dmar_drhd_unit *drhd;
3598	/* To avoid a -Wunused-but-set-variable warning. */
3599	struct intel_iommu *iommu __maybe_unused;
3600	struct device *dev;
3601	int i, ret = 0;
3602
3603	for_each_active_iommu(iommu, drhd) {
3604		for_each_active_dev_scope(drhd->devices,
3605					  drhd->devices_cnt, i, dev) {
3606			struct acpi_device_physical_node *pn;
3607			struct acpi_device *adev;
3608
3609			if (dev->bus != &acpi_bus_type)
3610				continue;
3611
3612			adev = to_acpi_device(dev);
3613			mutex_lock(&adev->physical_node_lock);
3614			list_for_each_entry(pn,
3615					    &adev->physical_node_list, node) {
3616				ret = iommu_probe_device(pn->dev);
3617				if (ret)
3618					break;
3619			}
3620			mutex_unlock(&adev->physical_node_lock);
3621
3622			if (ret)
3623				return ret;
3624		}
3625	}
3626
3627	return 0;
3628}
3629
3630static __init int tboot_force_iommu(void)
3631{
3632	if (!tboot_enabled())
3633		return 0;
3634
3635	if (no_iommu || dmar_disabled)
3636		pr_warn("Forcing Intel-IOMMU to enabled\n");
3637
3638	dmar_disabled = 0;
3639	no_iommu = 0;
3640
3641	return 1;
3642}
3643
3644int __init intel_iommu_init(void)
3645{
3646	int ret = -ENODEV;
3647	struct dmar_drhd_unit *drhd;
3648	struct intel_iommu *iommu;
3649
3650	/*
3651	 * Intel IOMMU is required for a TXT/tboot launch or platform
3652	 * opt in, so enforce that.
3653	 */
3654	force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) ||
3655		    platform_optin_force_iommu();
3656
3657	down_write(&dmar_global_lock);
3658	if (dmar_table_init()) {
3659		if (force_on)
3660			panic("tboot: Failed to initialize DMAR table\n");
3661		goto out_free_dmar;
3662	}
3663
3664	if (dmar_dev_scope_init() < 0) {
3665		if (force_on)
3666			panic("tboot: Failed to initialize DMAR device scope\n");
3667		goto out_free_dmar;
3668	}
3669
3670	up_write(&dmar_global_lock);
3671
3672	/*
3673	 * The bus notifier takes the dmar_global_lock, so lockdep will
3674	 * complain later when we register it under the lock.
3675	 */
3676	dmar_register_bus_notifier();
3677
3678	down_write(&dmar_global_lock);
3679
3680	if (!no_iommu)
3681		intel_iommu_debugfs_init();
3682
3683	if (no_iommu || dmar_disabled) {
3684		/*
3685		 * We exit the function here to ensure IOMMU's remapping and
3686		 * mempool aren't setup, which means that the IOMMU's PMRs
3687		 * won't be disabled via the call to init_dmars(). So disable
3688		 * it explicitly here. The PMRs were setup by tboot prior to
3689		 * calling SENTER, but the kernel is expected to reset/tear
3690		 * down the PMRs.
3691		 */
3692		if (intel_iommu_tboot_noforce) {
3693			for_each_iommu(iommu, drhd)
3694				iommu_disable_protect_mem_regions(iommu);
3695		}
3696
3697		/*
3698		 * Make sure the IOMMUs are switched off, even when we
3699		 * boot into a kexec kernel and the previous kernel left
3700		 * them enabled
3701		 */
3702		intel_disable_iommus();
3703		goto out_free_dmar;
3704	}
3705
3706	if (list_empty(&dmar_rmrr_units))
3707		pr_info("No RMRR found\n");
3708
3709	if (list_empty(&dmar_atsr_units))
3710		pr_info("No ATSR found\n");
3711
3712	if (list_empty(&dmar_satc_units))
3713		pr_info("No SATC found\n");
3714
3715	init_no_remapping_devices();
3716
3717	ret = init_dmars();
3718	if (ret) {
3719		if (force_on)
3720			panic("tboot: Failed to initialize DMARs\n");
3721		pr_err("Initialization failed\n");
3722		goto out_free_dmar;
3723	}
3724	up_write(&dmar_global_lock);
3725
3726	init_iommu_pm_ops();
3727
3728	down_read(&dmar_global_lock);
3729	for_each_active_iommu(iommu, drhd) {
3730		/*
3731		 * The flush queue implementation does not perform
3732		 * page-selective invalidations that are required for efficient
3733		 * TLB flushes in virtual environments.  The benefit of batching
3734		 * is likely to be much lower than the overhead of synchronizing
3735		 * the virtual and physical IOMMU page-tables.
3736		 */
3737		if (cap_caching_mode(iommu->cap) &&
3738		    !first_level_by_default(IOMMU_DOMAIN_DMA)) {
3739			pr_info_once("IOMMU batching disallowed due to virtualization\n");
3740			iommu_set_dma_strict();
3741		}
3742		iommu_device_sysfs_add(&iommu->iommu, NULL,
3743				       intel_iommu_groups,
3744				       "%s", iommu->name);
 
 
 
 
 
 
3745		iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
 
3746
3747		iommu_pmu_register(iommu);
3748	}
3749	up_read(&dmar_global_lock);
3750
3751	if (si_domain && !hw_pass_through)
3752		register_memory_notifier(&intel_iommu_memory_nb);
3753
3754	down_read(&dmar_global_lock);
3755	if (probe_acpi_namespace_devices())
3756		pr_warn("ACPI name space devices didn't probe correctly\n");
3757
3758	/* Finally, we enable the DMA remapping hardware. */
3759	for_each_iommu(iommu, drhd) {
3760		if (!drhd->ignored && !translation_pre_enabled(iommu))
3761			iommu_enable_translation(iommu);
3762
3763		iommu_disable_protect_mem_regions(iommu);
3764	}
3765	up_read(&dmar_global_lock);
3766
3767	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
3768
3769	intel_iommu_enabled = 1;
3770
3771	return 0;
3772
3773out_free_dmar:
3774	intel_iommu_free_dmars();
3775	up_write(&dmar_global_lock);
3776	return ret;
3777}
3778
3779static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
3780{
3781	struct device_domain_info *info = opaque;
3782
3783	domain_context_clear_one(info, PCI_BUS_NUM(alias), alias & 0xff);
3784	return 0;
3785}
3786
3787/*
3788 * NB - intel-iommu lacks any sort of reference counting for the users of
3789 * dependent devices.  If multiple endpoints have intersecting dependent
3790 * devices, unbinding the driver from any one of them will possibly leave
3791 * the others unable to operate.
3792 */
3793static void domain_context_clear(struct device_domain_info *info)
3794{
3795	if (!dev_is_pci(info->dev))
3796		domain_context_clear_one(info, info->bus, info->devfn);
 
 
3797
3798	pci_for_each_dma_alias(to_pci_dev(info->dev),
3799			       &domain_context_clear_one_cb, info);
3800}
3801
3802static void dmar_remove_one_dev_info(struct device *dev)
3803{
3804	struct device_domain_info *info = dev_iommu_priv_get(dev);
3805	struct dmar_domain *domain = info->domain;
3806	struct intel_iommu *iommu = info->iommu;
3807	unsigned long flags;
3808
3809	if (!dev_is_real_dma_subdevice(info->dev)) {
3810		if (dev_is_pci(info->dev) && sm_supported(iommu))
3811			intel_pasid_tear_down_entry(iommu, info->dev,
3812					IOMMU_NO_PASID, false);
3813
3814		iommu_disable_pci_caps(info);
3815		domain_context_clear(info);
3816	}
3817
3818	spin_lock_irqsave(&domain->lock, flags);
3819	list_del(&info->link);
3820	spin_unlock_irqrestore(&domain->lock, flags);
3821
3822	domain_detach_iommu(domain, iommu);
3823	info->domain = NULL;
3824}
3825
3826/*
3827 * Clear the page table pointer in context or pasid table entries so that
3828 * all DMA requests without PASID from the device are blocked. If the page
3829 * table has been set, clean up the data structures.
3830 */
3831void device_block_translation(struct device *dev)
3832{
3833	struct device_domain_info *info = dev_iommu_priv_get(dev);
3834	struct intel_iommu *iommu = info->iommu;
3835	unsigned long flags;
3836
 
 
 
3837	iommu_disable_pci_caps(info);
3838	if (!dev_is_real_dma_subdevice(dev)) {
3839		if (sm_supported(iommu))
3840			intel_pasid_tear_down_entry(iommu, dev,
3841						    IOMMU_NO_PASID, false);
3842		else
3843			domain_context_clear(info);
3844	}
3845
3846	if (!info->domain)
3847		return;
3848
3849	spin_lock_irqsave(&info->domain->lock, flags);
3850	list_del(&info->link);
3851	spin_unlock_irqrestore(&info->domain->lock, flags);
3852
3853	domain_detach_iommu(info->domain, iommu);
3854	info->domain = NULL;
3855}
3856
3857static int md_domain_init(struct dmar_domain *domain, int guest_width)
3858{
3859	int adjust_width;
3860
3861	/* calculate AGAW */
3862	domain->gaw = guest_width;
3863	adjust_width = guestwidth_to_adjustwidth(guest_width);
3864	domain->agaw = width_to_agaw(adjust_width);
3865
3866	domain->iommu_coherency = false;
3867	domain->iommu_superpage = 0;
3868	domain->max_addr = 0;
3869
3870	/* always allocate the top pgd */
3871	domain->pgd = alloc_pgtable_page(domain->nid, GFP_ATOMIC);
3872	if (!domain->pgd)
3873		return -ENOMEM;
3874	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3875	return 0;
3876}
3877
3878static int blocking_domain_attach_dev(struct iommu_domain *domain,
3879				      struct device *dev)
3880{
3881	device_block_translation(dev);
3882	return 0;
3883}
3884
3885static struct iommu_domain blocking_domain = {
3886	.type = IOMMU_DOMAIN_BLOCKED,
3887	.ops = &(const struct iommu_domain_ops) {
3888		.attach_dev	= blocking_domain_attach_dev,
3889	}
3890};
3891
3892static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
 
 
 
 
 
 
 
 
 
 
 
3893{
3894	struct dmar_domain *dmar_domain;
3895	struct iommu_domain *domain;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3896
3897	switch (type) {
3898	case IOMMU_DOMAIN_DMA:
3899	case IOMMU_DOMAIN_UNMANAGED:
3900		dmar_domain = alloc_domain(type);
3901		if (!dmar_domain) {
3902			pr_err("Can't allocate dmar_domain\n");
3903			return NULL;
3904		}
3905		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3906			pr_err("Domain initialization failed\n");
3907			domain_exit(dmar_domain);
3908			return NULL;
3909		}
3910
3911		domain = &dmar_domain->domain;
3912		domain->geometry.aperture_start = 0;
3913		domain->geometry.aperture_end   =
3914				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
3915		domain->geometry.force_aperture = true;
3916
3917		return domain;
3918	case IOMMU_DOMAIN_IDENTITY:
3919		return &si_domain->domain;
3920	case IOMMU_DOMAIN_SVA:
3921		return intel_svm_domain_alloc();
3922	default:
3923		return NULL;
3924	}
 
3925
3926	return NULL;
3927}
3928
3929static struct iommu_domain *
3930intel_iommu_domain_alloc_user(struct device *dev, u32 flags,
3931			      struct iommu_domain *parent,
3932			      const struct iommu_user_data *user_data)
3933{
3934	struct device_domain_info *info = dev_iommu_priv_get(dev);
3935	bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
3936	bool nested_parent = flags & IOMMU_HWPT_ALLOC_NEST_PARENT;
3937	struct intel_iommu *iommu = info->iommu;
3938	struct dmar_domain *dmar_domain;
3939	struct iommu_domain *domain;
3940
3941	/* Must be NESTING domain */
3942	if (parent) {
3943		if (!nested_supported(iommu) || flags)
3944			return ERR_PTR(-EOPNOTSUPP);
3945		return intel_nested_domain_alloc(parent, user_data);
3946	}
3947
3948	if (flags &
3949	    (~(IOMMU_HWPT_ALLOC_NEST_PARENT | IOMMU_HWPT_ALLOC_DIRTY_TRACKING)))
 
3950		return ERR_PTR(-EOPNOTSUPP);
3951	if (nested_parent && !nested_supported(iommu))
3952		return ERR_PTR(-EOPNOTSUPP);
3953	if (user_data || (dirty_tracking && !ssads_supported(iommu)))
3954		return ERR_PTR(-EOPNOTSUPP);
3955
3956	/*
3957	 * domain_alloc_user op needs to fully initialize a domain before
3958	 * return, so uses iommu_domain_alloc() here for simple.
 
3959	 */
3960	domain = iommu_domain_alloc(dev->bus);
3961	if (!domain)
3962		return ERR_PTR(-ENOMEM);
 
 
 
 
3963
3964	dmar_domain = to_dmar_domain(domain);
 
 
 
 
 
 
3965
3966	if (nested_parent) {
3967		dmar_domain->nested_parent = true;
3968		INIT_LIST_HEAD(&dmar_domain->s1_domains);
3969		spin_lock_init(&dmar_domain->s1_lock);
3970	}
3971
3972	if (dirty_tracking) {
3973		if (dmar_domain->use_first_level) {
3974			iommu_domain_free(domain);
3975			return ERR_PTR(-EOPNOTSUPP);
3976		}
3977		domain->dirty_ops = &intel_dirty_ops;
3978	}
3979
3980	return domain;
3981}
3982
3983static void intel_iommu_domain_free(struct iommu_domain *domain)
3984{
3985	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
3986
3987	WARN_ON(dmar_domain->nested_parent &&
3988		!list_empty(&dmar_domain->s1_domains));
3989	if (domain != &si_domain->domain)
3990		domain_exit(dmar_domain);
3991}
3992
3993int prepare_domain_attach_device(struct iommu_domain *domain,
3994				 struct device *dev)
3995{
3996	struct device_domain_info *info = dev_iommu_priv_get(dev);
3997	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
3998	struct intel_iommu *iommu = info->iommu;
3999	int addr_width;
4000
 
 
 
4001	if (dmar_domain->force_snooping && !ecap_sc_support(iommu->ecap))
4002		return -EINVAL;
4003
4004	if (domain->dirty_ops && !ssads_supported(iommu))
4005		return -EINVAL;
4006
 
 
 
 
 
 
 
 
 
 
 
 
4007	/* check if this iommu agaw is sufficient for max mapped address */
4008	addr_width = agaw_to_width(iommu->agaw);
4009	if (addr_width > cap_mgaw(iommu->cap))
4010		addr_width = cap_mgaw(iommu->cap);
4011
4012	if (dmar_domain->max_addr > (1LL << addr_width))
4013		return -EINVAL;
4014	dmar_domain->gaw = addr_width;
4015
4016	/*
4017	 * Knock out extra levels of page tables if necessary
4018	 */
4019	while (iommu->agaw < dmar_domain->agaw) {
4020		struct dma_pte *pte;
4021
4022		pte = dmar_domain->pgd;
4023		if (dma_pte_present(pte)) {
4024			dmar_domain->pgd = phys_to_virt(dma_pte_addr(pte));
4025			free_pgtable_page(pte);
4026		}
4027		dmar_domain->agaw--;
4028	}
4029
4030	return 0;
4031}
4032
4033static int intel_iommu_attach_device(struct iommu_domain *domain,
4034				     struct device *dev)
4035{
4036	struct device_domain_info *info = dev_iommu_priv_get(dev);
4037	int ret;
4038
4039	if (info->domain)
4040		device_block_translation(dev);
4041
4042	ret = prepare_domain_attach_device(domain, dev);
4043	if (ret)
4044		return ret;
4045
4046	return dmar_domain_attach_device(to_dmar_domain(domain), dev);
4047}
4048
4049static int intel_iommu_map(struct iommu_domain *domain,
4050			   unsigned long iova, phys_addr_t hpa,
4051			   size_t size, int iommu_prot, gfp_t gfp)
4052{
4053	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4054	u64 max_addr;
4055	int prot = 0;
4056
4057	if (iommu_prot & IOMMU_READ)
4058		prot |= DMA_PTE_READ;
4059	if (iommu_prot & IOMMU_WRITE)
4060		prot |= DMA_PTE_WRITE;
4061	if (dmar_domain->set_pte_snp)
4062		prot |= DMA_PTE_SNP;
4063
4064	max_addr = iova + size;
4065	if (dmar_domain->max_addr < max_addr) {
4066		u64 end;
4067
4068		/* check if minimum agaw is sufficient for mapped address */
4069		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4070		if (end < max_addr) {
4071			pr_err("%s: iommu width (%d) is not "
4072			       "sufficient for the mapped address (%llx)\n",
4073			       __func__, dmar_domain->gaw, max_addr);
4074			return -EFAULT;
4075		}
4076		dmar_domain->max_addr = max_addr;
4077	}
4078	/* Round up size to next multiple of PAGE_SIZE, if it and
4079	   the low bits of hpa would take us onto the next page */
4080	size = aligned_nrpages(hpa, size);
4081	return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4082				hpa >> VTD_PAGE_SHIFT, size, prot, gfp);
4083}
4084
4085static int intel_iommu_map_pages(struct iommu_domain *domain,
4086				 unsigned long iova, phys_addr_t paddr,
4087				 size_t pgsize, size_t pgcount,
4088				 int prot, gfp_t gfp, size_t *mapped)
4089{
4090	unsigned long pgshift = __ffs(pgsize);
4091	size_t size = pgcount << pgshift;
4092	int ret;
4093
4094	if (pgsize != SZ_4K && pgsize != SZ_2M && pgsize != SZ_1G)
4095		return -EINVAL;
4096
4097	if (!IS_ALIGNED(iova | paddr, pgsize))
4098		return -EINVAL;
4099
4100	ret = intel_iommu_map(domain, iova, paddr, size, prot, gfp);
4101	if (!ret && mapped)
4102		*mapped = size;
4103
4104	return ret;
4105}
4106
4107static size_t intel_iommu_unmap(struct iommu_domain *domain,
4108				unsigned long iova, size_t size,
4109				struct iommu_iotlb_gather *gather)
4110{
4111	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4112	unsigned long start_pfn, last_pfn;
4113	int level = 0;
4114
4115	/* Cope with horrid API which requires us to unmap more than the
4116	   size argument if it happens to be a large-page mapping. */
4117	if (unlikely(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT,
4118				     &level, GFP_ATOMIC)))
4119		return 0;
4120
4121	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4122		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4123
4124	start_pfn = iova >> VTD_PAGE_SHIFT;
4125	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4126
4127	domain_unmap(dmar_domain, start_pfn, last_pfn, &gather->freelist);
4128
4129	if (dmar_domain->max_addr == iova + size)
4130		dmar_domain->max_addr = iova;
4131
4132	/*
4133	 * We do not use page-selective IOTLB invalidation in flush queue,
4134	 * so there is no need to track page and sync iotlb.
4135	 */
4136	if (!iommu_iotlb_gather_queued(gather))
4137		iommu_iotlb_gather_add_page(domain, gather, iova, size);
4138
4139	return size;
4140}
4141
4142static size_t intel_iommu_unmap_pages(struct iommu_domain *domain,
4143				      unsigned long iova,
4144				      size_t pgsize, size_t pgcount,
4145				      struct iommu_iotlb_gather *gather)
4146{
4147	unsigned long pgshift = __ffs(pgsize);
4148	size_t size = pgcount << pgshift;
4149
4150	return intel_iommu_unmap(domain, iova, size, gather);
4151}
4152
4153static void intel_iommu_tlb_sync(struct iommu_domain *domain,
4154				 struct iommu_iotlb_gather *gather)
4155{
4156	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4157	unsigned long iova_pfn = IOVA_PFN(gather->start);
4158	size_t size = gather->end - gather->start;
4159	struct iommu_domain_info *info;
4160	unsigned long start_pfn;
4161	unsigned long nrpages;
4162	unsigned long i;
4163
4164	nrpages = aligned_nrpages(gather->start, size);
4165	start_pfn = mm_to_dma_pfn_start(iova_pfn);
4166
4167	xa_for_each(&dmar_domain->iommu_array, i, info)
4168		iommu_flush_iotlb_psi(info->iommu, dmar_domain,
4169				      start_pfn, nrpages,
4170				      list_empty(&gather->freelist), 0);
4171
4172	if (dmar_domain->nested_parent)
4173		parent_domain_flush(dmar_domain, start_pfn, nrpages,
4174				    list_empty(&gather->freelist));
4175	put_pages_list(&gather->freelist);
4176}
4177
4178static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4179					    dma_addr_t iova)
4180{
4181	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4182	struct dma_pte *pte;
4183	int level = 0;
4184	u64 phys = 0;
4185
4186	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level,
4187			     GFP_ATOMIC);
4188	if (pte && dma_pte_present(pte))
4189		phys = dma_pte_addr(pte) +
4190			(iova & (BIT_MASK(level_to_offset_bits(level) +
4191						VTD_PAGE_SHIFT) - 1));
4192
4193	return phys;
4194}
4195
4196static bool domain_support_force_snooping(struct dmar_domain *domain)
4197{
4198	struct device_domain_info *info;
4199	bool support = true;
4200
4201	assert_spin_locked(&domain->lock);
4202	list_for_each_entry(info, &domain->devices, link) {
4203		if (!ecap_sc_support(info->iommu->ecap)) {
4204			support = false;
4205			break;
4206		}
4207	}
4208
4209	return support;
4210}
4211
4212static void domain_set_force_snooping(struct dmar_domain *domain)
4213{
4214	struct device_domain_info *info;
4215
4216	assert_spin_locked(&domain->lock);
4217	/*
4218	 * Second level page table supports per-PTE snoop control. The
4219	 * iommu_map() interface will handle this by setting SNP bit.
4220	 */
4221	if (!domain->use_first_level) {
4222		domain->set_pte_snp = true;
4223		return;
4224	}
4225
4226	list_for_each_entry(info, &domain->devices, link)
4227		intel_pasid_setup_page_snoop_control(info->iommu, info->dev,
4228						     IOMMU_NO_PASID);
4229}
4230
4231static bool intel_iommu_enforce_cache_coherency(struct iommu_domain *domain)
4232{
4233	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4234	unsigned long flags;
4235
4236	if (dmar_domain->force_snooping)
4237		return true;
4238
4239	spin_lock_irqsave(&dmar_domain->lock, flags);
4240	if (!domain_support_force_snooping(dmar_domain) ||
4241	    (!dmar_domain->use_first_level && dmar_domain->has_mappings)) {
4242		spin_unlock_irqrestore(&dmar_domain->lock, flags);
4243		return false;
4244	}
4245
4246	domain_set_force_snooping(dmar_domain);
4247	dmar_domain->force_snooping = true;
4248	spin_unlock_irqrestore(&dmar_domain->lock, flags);
4249
4250	return true;
4251}
4252
4253static bool intel_iommu_capable(struct device *dev, enum iommu_cap cap)
4254{
4255	struct device_domain_info *info = dev_iommu_priv_get(dev);
4256
4257	switch (cap) {
4258	case IOMMU_CAP_CACHE_COHERENCY:
4259	case IOMMU_CAP_DEFERRED_FLUSH:
4260		return true;
4261	case IOMMU_CAP_PRE_BOOT_PROTECTION:
4262		return dmar_platform_optin();
4263	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
4264		return ecap_sc_support(info->iommu->ecap);
4265	case IOMMU_CAP_DIRTY_TRACKING:
4266		return ssads_supported(info->iommu);
4267	default:
4268		return false;
4269	}
4270}
4271
4272static struct iommu_device *intel_iommu_probe_device(struct device *dev)
4273{
4274	struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL;
4275	struct device_domain_info *info;
4276	struct intel_iommu *iommu;
4277	u8 bus, devfn;
4278	int ret;
4279
4280	iommu = device_lookup_iommu(dev, &bus, &devfn);
4281	if (!iommu || !iommu->iommu.ops)
4282		return ERR_PTR(-ENODEV);
4283
4284	info = kzalloc(sizeof(*info), GFP_KERNEL);
4285	if (!info)
4286		return ERR_PTR(-ENOMEM);
4287
4288	if (dev_is_real_dma_subdevice(dev)) {
4289		info->bus = pdev->bus->number;
4290		info->devfn = pdev->devfn;
4291		info->segment = pci_domain_nr(pdev->bus);
4292	} else {
4293		info->bus = bus;
4294		info->devfn = devfn;
4295		info->segment = iommu->segment;
4296	}
4297
4298	info->dev = dev;
4299	info->iommu = iommu;
4300	if (dev_is_pci(dev)) {
4301		if (ecap_dev_iotlb_support(iommu->ecap) &&
4302		    pci_ats_supported(pdev) &&
4303		    dmar_ats_supported(pdev, iommu)) {
4304			info->ats_supported = 1;
4305			info->dtlb_extra_inval = dev_needs_extra_dtlb_flush(pdev);
4306
4307			/*
4308			 * For IOMMU that supports device IOTLB throttling
4309			 * (DIT), we assign PFSID to the invalidation desc
4310			 * of a VF such that IOMMU HW can gauge queue depth
4311			 * at PF level. If DIT is not set, PFSID will be
4312			 * treated as reserved, which should be set to 0.
4313			 */
4314			if (ecap_dit(iommu->ecap))
4315				info->pfsid = pci_dev_id(pci_physfn(pdev));
4316			info->ats_qdep = pci_ats_queue_depth(pdev);
4317		}
4318		if (sm_supported(iommu)) {
4319			if (pasid_supported(iommu)) {
4320				int features = pci_pasid_features(pdev);
4321
4322				if (features >= 0)
4323					info->pasid_supported = features | 1;
4324			}
4325
4326			if (info->ats_supported && ecap_prs(iommu->ecap) &&
4327			    pci_pri_supported(pdev))
4328				info->pri_supported = 1;
4329		}
4330	}
4331
4332	dev_iommu_priv_set(dev, info);
 
 
 
 
 
 
4333
4334	if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) {
4335		ret = intel_pasid_alloc_table(dev);
4336		if (ret) {
4337			dev_err(dev, "PASID table allocation failed\n");
4338			kfree(info);
4339			return ERR_PTR(ret);
 
 
 
 
 
4340		}
4341	}
4342
4343	intel_iommu_debugfs_create_dev(info);
4344
 
 
 
 
 
 
 
 
 
 
4345	return &iommu->iommu;
 
 
 
 
 
 
 
 
4346}
4347
4348static void intel_iommu_release_device(struct device *dev)
4349{
4350	struct device_domain_info *info = dev_iommu_priv_get(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4351
4352	dmar_remove_one_dev_info(dev);
4353	intel_pasid_free_table(dev);
4354	intel_iommu_debugfs_remove_dev(info);
4355	kfree(info);
4356	set_dma_ops(dev, NULL);
4357}
4358
4359static void intel_iommu_probe_finalize(struct device *dev)
4360{
4361	set_dma_ops(dev, NULL);
4362	iommu_setup_dma_ops(dev, 0, U64_MAX);
4363}
4364
4365static void intel_iommu_get_resv_regions(struct device *device,
4366					 struct list_head *head)
4367{
4368	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
4369	struct iommu_resv_region *reg;
4370	struct dmar_rmrr_unit *rmrr;
4371	struct device *i_dev;
4372	int i;
4373
4374	rcu_read_lock();
4375	for_each_rmrr_units(rmrr) {
4376		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
4377					  i, i_dev) {
4378			struct iommu_resv_region *resv;
4379			enum iommu_resv_type type;
4380			size_t length;
4381
4382			if (i_dev != device &&
4383			    !is_downstream_to_pci_bridge(device, i_dev))
4384				continue;
4385
4386			length = rmrr->end_address - rmrr->base_address + 1;
4387
4388			type = device_rmrr_is_relaxable(device) ?
4389				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
4390
4391			resv = iommu_alloc_resv_region(rmrr->base_address,
4392						       length, prot, type,
4393						       GFP_ATOMIC);
4394			if (!resv)
4395				break;
4396
4397			list_add_tail(&resv->list, head);
4398		}
4399	}
4400	rcu_read_unlock();
4401
4402#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
4403	if (dev_is_pci(device)) {
4404		struct pci_dev *pdev = to_pci_dev(device);
4405
4406		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
4407			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
4408					IOMMU_RESV_DIRECT_RELAXABLE,
4409					GFP_KERNEL);
4410			if (reg)
4411				list_add_tail(&reg->list, head);
4412		}
4413	}
4414#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
4415
4416	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
4417				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
4418				      0, IOMMU_RESV_MSI, GFP_KERNEL);
4419	if (!reg)
4420		return;
4421	list_add_tail(&reg->list, head);
4422}
4423
4424static struct iommu_group *intel_iommu_device_group(struct device *dev)
4425{
4426	if (dev_is_pci(dev))
4427		return pci_device_group(dev);
4428	return generic_device_group(dev);
4429}
4430
4431static int intel_iommu_enable_sva(struct device *dev)
4432{
4433	struct device_domain_info *info = dev_iommu_priv_get(dev);
4434	struct intel_iommu *iommu;
4435
4436	if (!info || dmar_disabled)
4437		return -EINVAL;
4438
4439	iommu = info->iommu;
4440	if (!iommu)
4441		return -EINVAL;
4442
4443	if (!(iommu->flags & VTD_FLAG_SVM_CAPABLE))
4444		return -ENODEV;
4445
4446	if (!info->pasid_enabled || !info->ats_enabled)
4447		return -EINVAL;
4448
4449	/*
4450	 * Devices having device-specific I/O fault handling should not
4451	 * support PCI/PRI. The IOMMU side has no means to check the
4452	 * capability of device-specific IOPF.  Therefore, IOMMU can only
4453	 * default that if the device driver enables SVA on a non-PRI
4454	 * device, it will handle IOPF in its own way.
4455	 */
4456	if (!info->pri_supported)
4457		return 0;
4458
4459	/* Devices supporting PRI should have it enabled. */
4460	if (!info->pri_enabled)
4461		return -EINVAL;
4462
4463	return 0;
4464}
4465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4466static int intel_iommu_enable_iopf(struct device *dev)
4467{
4468	struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL;
4469	struct device_domain_info *info = dev_iommu_priv_get(dev);
4470	struct intel_iommu *iommu;
4471	int ret;
4472
4473	if (!pdev || !info || !info->ats_enabled || !info->pri_supported)
4474		return -ENODEV;
4475
4476	if (info->pri_enabled)
4477		return -EBUSY;
4478
4479	iommu = info->iommu;
4480	if (!iommu)
4481		return -EINVAL;
4482
4483	/* PASID is required in PRG Response Message. */
4484	if (info->pasid_enabled && !pci_prg_resp_pasid_required(pdev))
4485		return -EINVAL;
4486
4487	ret = pci_reset_pri(pdev);
4488	if (ret)
4489		return ret;
4490
4491	ret = iopf_queue_add_device(iommu->iopf_queue, dev);
4492	if (ret)
4493		return ret;
4494
4495	ret = iommu_register_device_fault_handler(dev, iommu_queue_iopf, dev);
4496	if (ret)
4497		goto iopf_remove_device;
4498
4499	ret = pci_enable_pri(pdev, PRQ_DEPTH);
4500	if (ret)
4501		goto iopf_unregister_handler;
 
4502	info->pri_enabled = 1;
4503
4504	return 0;
4505
4506iopf_unregister_handler:
4507	iommu_unregister_device_fault_handler(dev);
4508iopf_remove_device:
4509	iopf_queue_remove_device(iommu->iopf_queue, dev);
4510
4511	return ret;
4512}
4513
4514static int intel_iommu_disable_iopf(struct device *dev)
4515{
4516	struct device_domain_info *info = dev_iommu_priv_get(dev);
4517	struct intel_iommu *iommu = info->iommu;
4518
4519	if (!info->pri_enabled)
4520		return -EINVAL;
4521
 
 
 
 
 
 
 
 
 
4522	/*
4523	 * PCIe spec states that by clearing PRI enable bit, the Page
4524	 * Request Interface will not issue new page requests, but has
4525	 * outstanding page requests that have been transmitted or are
4526	 * queued for transmission. This is supposed to be called after
4527	 * the device driver has stopped DMA, all PASIDs have been
4528	 * unbound and the outstanding PRQs have been drained.
4529	 */
4530	pci_disable_pri(to_pci_dev(dev));
4531	info->pri_enabled = 0;
4532
4533	/*
4534	 * With PRI disabled and outstanding PRQs drained, unregistering
4535	 * fault handler and removing device from iopf queue should never
4536	 * fail.
4537	 */
4538	WARN_ON(iommu_unregister_device_fault_handler(dev));
4539	WARN_ON(iopf_queue_remove_device(iommu->iopf_queue, dev));
4540
4541	return 0;
4542}
4543
4544static int
4545intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
4546{
4547	switch (feat) {
4548	case IOMMU_DEV_FEAT_IOPF:
4549		return intel_iommu_enable_iopf(dev);
4550
4551	case IOMMU_DEV_FEAT_SVA:
4552		return intel_iommu_enable_sva(dev);
4553
4554	default:
4555		return -ENODEV;
4556	}
4557}
4558
4559static int
4560intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
4561{
4562	switch (feat) {
4563	case IOMMU_DEV_FEAT_IOPF:
4564		return intel_iommu_disable_iopf(dev);
4565
4566	case IOMMU_DEV_FEAT_SVA:
4567		return 0;
4568
4569	default:
4570		return -ENODEV;
4571	}
4572}
4573
4574static bool intel_iommu_is_attach_deferred(struct device *dev)
4575{
4576	struct device_domain_info *info = dev_iommu_priv_get(dev);
4577
4578	return translation_pre_enabled(info->iommu) && !info->domain;
4579}
4580
4581/*
4582 * Check that the device does not live on an external facing PCI port that is
4583 * marked as untrusted. Such devices should not be able to apply quirks and
4584 * thus not be able to bypass the IOMMU restrictions.
4585 */
4586static bool risky_device(struct pci_dev *pdev)
4587{
4588	if (pdev->untrusted) {
4589		pci_info(pdev,
4590			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
4591			 pdev->vendor, pdev->device);
4592		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
4593		return true;
4594	}
4595	return false;
4596}
4597
4598static int intel_iommu_iotlb_sync_map(struct iommu_domain *domain,
4599				      unsigned long iova, size_t size)
4600{
4601	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4602	unsigned long pages = aligned_nrpages(iova, size);
4603	unsigned long pfn = iova >> VTD_PAGE_SHIFT;
4604	struct iommu_domain_info *info;
4605	unsigned long i;
4606
4607	xa_for_each(&dmar_domain->iommu_array, i, info)
4608		__mapping_notify_one(info->iommu, dmar_domain, pfn, pages);
4609	return 0;
4610}
4611
4612static void intel_iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid)
 
4613{
4614	struct device_domain_info *info = dev_iommu_priv_get(dev);
4615	struct dev_pasid_info *curr, *dev_pasid = NULL;
4616	struct intel_iommu *iommu = info->iommu;
4617	struct dmar_domain *dmar_domain;
4618	struct iommu_domain *domain;
4619	unsigned long flags;
4620
4621	domain = iommu_get_domain_for_dev_pasid(dev, pasid, 0);
4622	if (WARN_ON_ONCE(!domain))
4623		goto out_tear_down;
4624
4625	/*
4626	 * The SVA implementation needs to handle its own stuffs like the mm
4627	 * notification. Before consolidating that code into iommu core, let
4628	 * the intel sva code handle it.
4629	 */
4630	if (domain->type == IOMMU_DOMAIN_SVA) {
4631		intel_svm_remove_dev_pasid(dev, pasid);
4632		goto out_tear_down;
4633	}
4634
4635	dmar_domain = to_dmar_domain(domain);
4636	spin_lock_irqsave(&dmar_domain->lock, flags);
4637	list_for_each_entry(curr, &dmar_domain->dev_pasids, link_domain) {
4638		if (curr->dev == dev && curr->pasid == pasid) {
4639			list_del(&curr->link_domain);
4640			dev_pasid = curr;
4641			break;
4642		}
4643	}
4644	WARN_ON_ONCE(!dev_pasid);
4645	spin_unlock_irqrestore(&dmar_domain->lock, flags);
4646
 
4647	domain_detach_iommu(dmar_domain, iommu);
4648	intel_iommu_debugfs_remove_dev_pasid(dev_pasid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4649	kfree(dev_pasid);
4650out_tear_down:
4651	intel_pasid_tear_down_entry(iommu, dev, pasid, false);
4652	intel_drain_pasid_prq(dev, pasid);
4653}
4654
4655static int intel_iommu_set_dev_pasid(struct iommu_domain *domain,
4656				     struct device *dev, ioasid_t pasid)
 
4657{
4658	struct device_domain_info *info = dev_iommu_priv_get(dev);
4659	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4660	struct intel_iommu *iommu = info->iommu;
4661	struct dev_pasid_info *dev_pasid;
4662	unsigned long flags;
4663	int ret;
4664
 
 
 
4665	if (!pasid_supported(iommu) || dev_is_real_dma_subdevice(dev))
4666		return -EOPNOTSUPP;
4667
4668	if (domain->dirty_ops)
4669		return -EINVAL;
4670
4671	if (context_copied(iommu, info->bus, info->devfn))
4672		return -EBUSY;
4673
4674	ret = prepare_domain_attach_device(domain, dev);
4675	if (ret)
4676		return ret;
4677
4678	dev_pasid = kzalloc(sizeof(*dev_pasid), GFP_KERNEL);
4679	if (!dev_pasid)
4680		return -ENOMEM;
4681
4682	ret = domain_attach_iommu(dmar_domain, iommu);
4683	if (ret)
4684		goto out_free;
4685
4686	if (domain_type_is_si(dmar_domain))
4687		ret = intel_pasid_setup_pass_through(iommu, dev, pasid);
4688	else if (dmar_domain->use_first_level)
4689		ret = domain_setup_first_level(iommu, dmar_domain,
4690					       dev, pasid);
4691	else
4692		ret = intel_pasid_setup_second_level(iommu, dmar_domain,
4693						     dev, pasid);
4694	if (ret)
4695		goto out_detach_iommu;
4696
4697	dev_pasid->dev = dev;
4698	dev_pasid->pasid = pasid;
4699	spin_lock_irqsave(&dmar_domain->lock, flags);
4700	list_add(&dev_pasid->link_domain, &dmar_domain->dev_pasids);
4701	spin_unlock_irqrestore(&dmar_domain->lock, flags);
4702
4703	if (domain->type & __IOMMU_DOMAIN_PAGING)
4704		intel_iommu_debugfs_create_dev_pasid(dev_pasid);
4705
4706	return 0;
4707out_detach_iommu:
4708	domain_detach_iommu(dmar_domain, iommu);
4709out_free:
4710	kfree(dev_pasid);
4711	return ret;
4712}
4713
4714static void *intel_iommu_hw_info(struct device *dev, u32 *length, u32 *type)
4715{
4716	struct device_domain_info *info = dev_iommu_priv_get(dev);
4717	struct intel_iommu *iommu = info->iommu;
4718	struct iommu_hw_info_vtd *vtd;
4719
4720	vtd = kzalloc(sizeof(*vtd), GFP_KERNEL);
4721	if (!vtd)
4722		return ERR_PTR(-ENOMEM);
4723
4724	vtd->flags = IOMMU_HW_INFO_VTD_ERRATA_772415_SPR17;
4725	vtd->cap_reg = iommu->cap;
4726	vtd->ecap_reg = iommu->ecap;
4727	*length = sizeof(*vtd);
4728	*type = IOMMU_HW_INFO_TYPE_INTEL_VTD;
4729	return vtd;
4730}
4731
4732/*
4733 * Set dirty tracking for the device list of a domain. The caller must
4734 * hold the domain->lock when calling it.
4735 */
4736static int device_set_dirty_tracking(struct list_head *devices, bool enable)
4737{
4738	struct device_domain_info *info;
4739	int ret = 0;
4740
4741	list_for_each_entry(info, devices, link) {
4742		ret = intel_pasid_setup_dirty_tracking(info->iommu, info->dev,
4743						       IOMMU_NO_PASID, enable);
4744		if (ret)
4745			break;
4746	}
4747
4748	return ret;
4749}
4750
4751static int parent_domain_set_dirty_tracking(struct dmar_domain *domain,
4752					    bool enable)
4753{
4754	struct dmar_domain *s1_domain;
4755	unsigned long flags;
4756	int ret;
4757
4758	spin_lock(&domain->s1_lock);
4759	list_for_each_entry(s1_domain, &domain->s1_domains, s2_link) {
4760		spin_lock_irqsave(&s1_domain->lock, flags);
4761		ret = device_set_dirty_tracking(&s1_domain->devices, enable);
4762		spin_unlock_irqrestore(&s1_domain->lock, flags);
4763		if (ret)
4764			goto err_unwind;
4765	}
4766	spin_unlock(&domain->s1_lock);
4767	return 0;
4768
4769err_unwind:
4770	list_for_each_entry(s1_domain, &domain->s1_domains, s2_link) {
4771		spin_lock_irqsave(&s1_domain->lock, flags);
4772		device_set_dirty_tracking(&s1_domain->devices,
4773					  domain->dirty_tracking);
4774		spin_unlock_irqrestore(&s1_domain->lock, flags);
4775	}
4776	spin_unlock(&domain->s1_lock);
4777	return ret;
4778}
4779
4780static int intel_iommu_set_dirty_tracking(struct iommu_domain *domain,
4781					  bool enable)
4782{
4783	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4784	int ret;
4785
4786	spin_lock(&dmar_domain->lock);
4787	if (dmar_domain->dirty_tracking == enable)
4788		goto out_unlock;
4789
4790	ret = device_set_dirty_tracking(&dmar_domain->devices, enable);
4791	if (ret)
4792		goto err_unwind;
4793
4794	if (dmar_domain->nested_parent) {
4795		ret = parent_domain_set_dirty_tracking(dmar_domain, enable);
4796		if (ret)
4797			goto err_unwind;
4798	}
4799
4800	dmar_domain->dirty_tracking = enable;
4801out_unlock:
4802	spin_unlock(&dmar_domain->lock);
4803
4804	return 0;
4805
4806err_unwind:
4807	device_set_dirty_tracking(&dmar_domain->devices,
4808				  dmar_domain->dirty_tracking);
4809	spin_unlock(&dmar_domain->lock);
4810	return ret;
4811}
4812
4813static int intel_iommu_read_and_clear_dirty(struct iommu_domain *domain,
4814					    unsigned long iova, size_t size,
4815					    unsigned long flags,
4816					    struct iommu_dirty_bitmap *dirty)
4817{
4818	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4819	unsigned long end = iova + size - 1;
4820	unsigned long pgsize;
4821
4822	/*
4823	 * IOMMUFD core calls into a dirty tracking disabled domain without an
4824	 * IOVA bitmap set in order to clean dirty bits in all PTEs that might
4825	 * have occurred when we stopped dirty tracking. This ensures that we
4826	 * never inherit dirtied bits from a previous cycle.
4827	 */
4828	if (!dmar_domain->dirty_tracking && dirty->bitmap)
4829		return -EINVAL;
4830
4831	do {
4832		struct dma_pte *pte;
4833		int lvl = 0;
4834
4835		pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &lvl,
4836				     GFP_ATOMIC);
4837		pgsize = level_size(lvl) << VTD_PAGE_SHIFT;
4838		if (!pte || !dma_pte_present(pte)) {
4839			iova += pgsize;
4840			continue;
4841		}
4842
4843		if (dma_sl_pte_test_and_clear_dirty(pte, flags))
4844			iommu_dirty_bitmap_record(dirty, iova, pgsize);
4845		iova += pgsize;
4846	} while (iova < end);
4847
4848	return 0;
4849}
4850
4851static const struct iommu_dirty_ops intel_dirty_ops = {
4852	.set_dirty_tracking = intel_iommu_set_dirty_tracking,
4853	.read_and_clear_dirty = intel_iommu_read_and_clear_dirty,
4854};
4855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4856const struct iommu_ops intel_iommu_ops = {
4857	.blocked_domain		= &blocking_domain,
 
 
4858	.capable		= intel_iommu_capable,
4859	.hw_info		= intel_iommu_hw_info,
4860	.domain_alloc		= intel_iommu_domain_alloc,
4861	.domain_alloc_user	= intel_iommu_domain_alloc_user,
 
 
4862	.probe_device		= intel_iommu_probe_device,
4863	.probe_finalize		= intel_iommu_probe_finalize,
4864	.release_device		= intel_iommu_release_device,
4865	.get_resv_regions	= intel_iommu_get_resv_regions,
4866	.device_group		= intel_iommu_device_group,
4867	.dev_enable_feat	= intel_iommu_dev_enable_feat,
4868	.dev_disable_feat	= intel_iommu_dev_disable_feat,
4869	.is_attach_deferred	= intel_iommu_is_attach_deferred,
4870	.def_domain_type	= device_def_domain_type,
4871	.remove_dev_pasid	= intel_iommu_remove_dev_pasid,
4872	.pgsize_bitmap		= SZ_4K,
4873#ifdef CONFIG_INTEL_IOMMU_SVM
4874	.page_response		= intel_svm_page_response,
4875#endif
4876	.default_domain_ops = &(const struct iommu_domain_ops) {
4877		.attach_dev		= intel_iommu_attach_device,
4878		.set_dev_pasid		= intel_iommu_set_dev_pasid,
4879		.map_pages		= intel_iommu_map_pages,
4880		.unmap_pages		= intel_iommu_unmap_pages,
4881		.iotlb_sync_map		= intel_iommu_iotlb_sync_map,
4882		.flush_iotlb_all        = intel_flush_iotlb_all,
4883		.iotlb_sync		= intel_iommu_tlb_sync,
4884		.iova_to_phys		= intel_iommu_iova_to_phys,
4885		.free			= intel_iommu_domain_free,
4886		.enforce_cache_coherency = intel_iommu_enforce_cache_coherency,
4887	}
4888};
4889
4890static void quirk_iommu_igfx(struct pci_dev *dev)
4891{
4892	if (risky_device(dev))
4893		return;
4894
4895	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
4896	dmar_map_gfx = 0;
4897}
4898
4899/* G4x/GM45 integrated gfx dmar support is totally busted. */
4900DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
4901DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
4902DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
4903DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
4904DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
4905DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
4906DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);
4907
4908/* Broadwell igfx malfunctions with dmar */
4909DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
4910DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
4911DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
4912DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
4913DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
4914DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
4915DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
4916DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
4917DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
4918DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
4919DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
4920DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
4921DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
4922DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
4923DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
4924DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
4925DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
4926DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
4927DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
4928DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
4929DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
4930DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
4931DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
4932DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
4933
4934static void quirk_iommu_rwbf(struct pci_dev *dev)
4935{
4936	if (risky_device(dev))
4937		return;
4938
4939	/*
4940	 * Mobile 4 Series Chipset neglects to set RWBF capability,
4941	 * but needs it. Same seems to hold for the desktop versions.
4942	 */
4943	pci_info(dev, "Forcing write-buffer flush capability\n");
4944	rwbf_quirk = 1;
4945}
4946
4947DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4948DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4949DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4950DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4951DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4952DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4953DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4954
4955#define GGC 0x52
4956#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
4957#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
4958#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
4959#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
4960#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
4961#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
4962#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
4963#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)
4964
4965static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4966{
4967	unsigned short ggc;
4968
4969	if (risky_device(dev))
4970		return;
4971
4972	if (pci_read_config_word(dev, GGC, &ggc))
4973		return;
4974
4975	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4976		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4977		dmar_map_gfx = 0;
4978	} else if (dmar_map_gfx) {
4979		/* we have to ensure the gfx device is idle before we flush */
4980		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
4981		iommu_set_dma_strict();
4982	}
4983}
4984DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4985DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4986DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4987DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4988
4989static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
4990{
4991	unsigned short ver;
4992
4993	if (!IS_GFX_DEVICE(dev))
4994		return;
4995
4996	ver = (dev->device >> 8) & 0xff;
4997	if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
4998	    ver != 0x4e && ver != 0x8a && ver != 0x98 &&
4999	    ver != 0x9a && ver != 0xa7 && ver != 0x7d)
5000		return;
5001
5002	if (risky_device(dev))
5003		return;
5004
5005	pci_info(dev, "Skip IOMMU disabling for graphics\n");
5006	iommu_skip_te_disable = 1;
5007}
5008DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);
5009
5010/* On Tylersburg chipsets, some BIOSes have been known to enable the
5011   ISOCH DMAR unit for the Azalia sound device, but not give it any
5012   TLB entries, which causes it to deadlock. Check for that.  We do
5013   this in a function called from init_dmars(), instead of in a PCI
5014   quirk, because we don't want to print the obnoxious "BIOS broken"
5015   message if VT-d is actually disabled.
5016*/
5017static void __init check_tylersburg_isoch(void)
5018{
5019	struct pci_dev *pdev;
5020	uint32_t vtisochctrl;
5021
5022	/* If there's no Azalia in the system anyway, forget it. */
5023	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5024	if (!pdev)
5025		return;
5026
5027	if (risky_device(pdev)) {
5028		pci_dev_put(pdev);
5029		return;
5030	}
5031
5032	pci_dev_put(pdev);
5033
5034	/* System Management Registers. Might be hidden, in which case
5035	   we can't do the sanity check. But that's OK, because the
5036	   known-broken BIOSes _don't_ actually hide it, so far. */
5037	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5038	if (!pdev)
5039		return;
5040
5041	if (risky_device(pdev)) {
5042		pci_dev_put(pdev);
5043		return;
5044	}
5045
5046	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5047		pci_dev_put(pdev);
5048		return;
5049	}
5050
5051	pci_dev_put(pdev);
5052
5053	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5054	if (vtisochctrl & 1)
5055		return;
5056
5057	/* Drop all bits other than the number of TLB entries */
5058	vtisochctrl &= 0x1c;
5059
5060	/* If we have the recommended number of TLB entries (16), fine. */
5061	if (vtisochctrl == 0x10)
5062		return;
5063
5064	/* Zero TLB entries? You get to ride the short bus to school. */
5065	if (!vtisochctrl) {
5066		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5067		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5068		     dmi_get_system_info(DMI_BIOS_VENDOR),
5069		     dmi_get_system_info(DMI_BIOS_VERSION),
5070		     dmi_get_system_info(DMI_PRODUCT_VERSION));
5071		iommu_identity_mapping |= IDENTMAP_AZALIA;
5072		return;
5073	}
5074
5075	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5076	       vtisochctrl);
5077}
5078
5079/*
5080 * Here we deal with a device TLB defect where device may inadvertently issue ATS
5081 * invalidation completion before posted writes initiated with translated address
5082 * that utilized translations matching the invalidation address range, violating
5083 * the invalidation completion ordering.
5084 * Therefore, any use cases that cannot guarantee DMA is stopped before unmap is
5085 * vulnerable to this defect. In other words, any dTLB invalidation initiated not
5086 * under the control of the trusted/privileged host device driver must use this
5087 * quirk.
5088 * Device TLBs are invalidated under the following six conditions:
5089 * 1. Device driver does DMA API unmap IOVA
5090 * 2. Device driver unbind a PASID from a process, sva_unbind_device()
5091 * 3. PASID is torn down, after PASID cache is flushed. e.g. process
5092 *    exit_mmap() due to crash
5093 * 4. Under SVA usage, called by mmu_notifier.invalidate_range() where
5094 *    VM has to free pages that were unmapped
5095 * 5. Userspace driver unmaps a DMA buffer
5096 * 6. Cache invalidation in vSVA usage (upcoming)
5097 *
5098 * For #1 and #2, device drivers are responsible for stopping DMA traffic
5099 * before unmap/unbind. For #3, iommu driver gets mmu_notifier to
5100 * invalidate TLB the same way as normal user unmap which will use this quirk.
5101 * The dTLB invalidation after PASID cache flush does not need this quirk.
5102 *
5103 * As a reminder, #6 will *NEED* this quirk as we enable nested translation.
5104 */
5105void quirk_extra_dev_tlb_flush(struct device_domain_info *info,
5106			       unsigned long address, unsigned long mask,
5107			       u32 pasid, u16 qdep)
5108{
5109	u16 sid;
5110
5111	if (likely(!info->dtlb_extra_inval))
5112		return;
5113
5114	sid = PCI_DEVID(info->bus, info->devfn);
5115	if (pasid == IOMMU_NO_PASID) {
5116		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
5117				   qdep, address, mask);
5118	} else {
5119		qi_flush_dev_iotlb_pasid(info->iommu, sid, info->pfsid,
5120					 pasid, qdep, address, mask);
5121	}
5122}
5123
5124#define ecmd_get_status_code(res)	(((res) & 0xff) >> 1)
5125
5126/*
5127 * Function to submit a command to the enhanced command interface. The
5128 * valid enhanced command descriptions are defined in Table 47 of the
5129 * VT-d spec. The VT-d hardware implementation may support some but not
5130 * all commands, which can be determined by checking the Enhanced
5131 * Command Capability Register.
5132 *
5133 * Return values:
5134 *  - 0: Command successful without any error;
5135 *  - Negative: software error value;
5136 *  - Nonzero positive: failure status code defined in Table 48.
5137 */
5138int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob)
5139{
5140	unsigned long flags;
5141	u64 res;
5142	int ret;
5143
5144	if (!cap_ecmds(iommu->cap))
5145		return -ENODEV;
5146
5147	raw_spin_lock_irqsave(&iommu->register_lock, flags);
5148
5149	res = dmar_readq(iommu->reg + DMAR_ECRSP_REG);
5150	if (res & DMA_ECMD_ECRSP_IP) {
5151		ret = -EBUSY;
5152		goto err;
5153	}
5154
5155	/*
5156	 * Unconditionally write the operand B, because
5157	 * - There is no side effect if an ecmd doesn't require an
5158	 *   operand B, but we set the register to some value.
5159	 * - It's not invoked in any critical path. The extra MMIO
5160	 *   write doesn't bring any performance concerns.
5161	 */
5162	dmar_writeq(iommu->reg + DMAR_ECEO_REG, ob);
5163	dmar_writeq(iommu->reg + DMAR_ECMD_REG, ecmd | (oa << DMA_ECMD_OA_SHIFT));
5164
5165	IOMMU_WAIT_OP(iommu, DMAR_ECRSP_REG, dmar_readq,
5166		      !(res & DMA_ECMD_ECRSP_IP), res);
5167
5168	if (res & DMA_ECMD_ECRSP_IP) {
5169		ret = -ETIMEDOUT;
5170		goto err;
5171	}
5172
5173	ret = ecmd_get_status_code(res);
5174err:
5175	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
5176
5177	return ret;
5178}