Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core IEEE1394 transaction logic
   4 *
   5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   6 */
   7
   8#include <linux/bug.h>
   9#include <linux/completion.h>
  10#include <linux/device.h>
  11#include <linux/errno.h>
  12#include <linux/firewire.h>
  13#include <linux/firewire-constants.h>
  14#include <linux/fs.h>
  15#include <linux/init.h>
 
  16#include <linux/jiffies.h>
  17#include <linux/kernel.h>
  18#include <linux/list.h>
  19#include <linux/module.h>
  20#include <linux/rculist.h>
  21#include <linux/slab.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/timer.h>
  25#include <linux/types.h>
  26#include <linux/workqueue.h>
  27
  28#include <asm/byteorder.h>
  29
  30#include "core.h"
  31#include "packet-header-definitions.h"
  32#include "phy-packet-definitions.h"
  33#include <trace/events/firewire.h>
  34
  35#define HEADER_DESTINATION_IS_BROADCAST(header) \
  36	((async_header_get_destination(header) & 0x3f) == 0x3f)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37
  38/* returns 0 if the split timeout handler is already running */
  39static int try_cancel_split_timeout(struct fw_transaction *t)
  40{
  41	if (t->is_split_transaction)
  42		return del_timer(&t->split_timeout_timer);
  43	else
  44		return 1;
  45}
  46
  47static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
  48			     u32 response_tstamp)
  49{
  50	struct fw_transaction *t = NULL, *iter;
 
  51
  52	scoped_guard(spinlock_irqsave, &card->lock) {
  53		list_for_each_entry(iter, &card->transaction_list, link) {
  54			if (iter == transaction) {
  55				if (try_cancel_split_timeout(iter)) {
  56					list_del_init(&iter->link);
  57					card->tlabel_mask &= ~(1ULL << iter->tlabel);
  58					t = iter;
  59				}
  60				break;
  61			}
 
 
 
 
  62		}
  63	}
 
  64
  65	if (!t)
  66		return -ENOENT;
  67
  68	if (!t->with_tstamp) {
  69		t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
  70	} else {
  71		t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
  72					t->callback_data);
  73	}
  74
  75	return 0;
 
  76}
  77
  78/*
  79 * Only valid for transactions that are potentially pending (ie have
  80 * been sent).
  81 */
  82int fw_cancel_transaction(struct fw_card *card,
  83			  struct fw_transaction *transaction)
  84{
  85	u32 tstamp;
  86
  87	/*
  88	 * Cancel the packet transmission if it's still queued.  That
  89	 * will call the packet transmission callback which cancels
  90	 * the transaction.
  91	 */
  92
  93	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
  94		return 0;
  95
  96	/*
  97	 * If the request packet has already been sent, we need to see
  98	 * if the transaction is still pending and remove it in that case.
  99	 */
 100
 101	if (transaction->packet.ack == 0) {
 102		// The timestamp is reused since it was just read now.
 103		tstamp = transaction->packet.timestamp;
 104	} else {
 105		u32 curr_cycle_time = 0;
 106
 107		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
 108		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
 109	}
 110
 111	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
 112}
 113EXPORT_SYMBOL(fw_cancel_transaction);
 114
 115static void split_transaction_timeout_callback(struct timer_list *timer)
 116{
 117	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
 118	struct fw_card *card = t->card;
 
 119
 120	scoped_guard(spinlock_irqsave, &card->lock) {
 121		if (list_empty(&t->link))
 122			return;
 123		list_del(&t->link);
 124		card->tlabel_mask &= ~(1ULL << t->tlabel);
 125	}
 
 
 
 126
 127	if (!t->with_tstamp) {
 128		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 129	} else {
 130		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
 131					t->split_timeout_cycle, NULL, 0, t->callback_data);
 132	}
 133}
 134
 135static void start_split_transaction_timeout(struct fw_transaction *t,
 136					    struct fw_card *card)
 137{
 138	guard(spinlock_irqsave)(&card->lock);
 139
 140	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
 
 
 
 141		return;
 
 142
 143	t->is_split_transaction = true;
 144	mod_timer(&t->split_timeout_timer,
 145		  jiffies + card->split_timeout_jiffies);
 
 
 146}
 147
 148static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
 149
 150static void transmit_complete_callback(struct fw_packet *packet,
 151				       struct fw_card *card, int status)
 152{
 153	struct fw_transaction *t =
 154	    container_of(packet, struct fw_transaction, packet);
 155
 156	trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
 157					      packet->speed, status, packet->timestamp);
 158
 159	switch (status) {
 160	case ACK_COMPLETE:
 161		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
 162		break;
 163	case ACK_PENDING:
 164	{
 165		t->split_timeout_cycle =
 166			compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
 167		start_split_transaction_timeout(t, card);
 168		break;
 169	}
 170	case ACK_BUSY_X:
 171	case ACK_BUSY_A:
 172	case ACK_BUSY_B:
 173		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
 174		break;
 175	case ACK_DATA_ERROR:
 176		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
 177		break;
 178	case ACK_TYPE_ERROR:
 179		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
 180		break;
 181	default:
 182		/*
 183		 * In this case the ack is really a juju specific
 184		 * rcode, so just forward that to the callback.
 185		 */
 186		close_transaction(t, card, status, packet->timestamp);
 187		break;
 188	}
 189}
 190
 191static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 192		int destination_id, int source_id, int generation, int speed,
 193		unsigned long long offset, void *payload, size_t length)
 194{
 195	int ext_tcode;
 196
 197	if (tcode == TCODE_STREAM_DATA) {
 198		// The value of destination_id argument should include tag, channel, and sy fields
 199		// as isochronous packet header has.
 200		packet->header[0] = destination_id;
 201		isoc_header_set_data_length(packet->header, length);
 202		isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
 203		packet->header_length = 4;
 204		packet->payload = payload;
 205		packet->payload_length = length;
 206
 207		goto common;
 208	}
 209
 210	if (tcode > 0x10) {
 211		ext_tcode = tcode & ~0x10;
 212		tcode = TCODE_LOCK_REQUEST;
 213	} else
 214		ext_tcode = 0;
 215
 216	async_header_set_retry(packet->header, RETRY_X);
 217	async_header_set_tlabel(packet->header, tlabel);
 218	async_header_set_tcode(packet->header, tcode);
 219	async_header_set_destination(packet->header, destination_id);
 220	async_header_set_source(packet->header, source_id);
 221	async_header_set_offset(packet->header, offset);
 
 
 
 222
 223	switch (tcode) {
 224	case TCODE_WRITE_QUADLET_REQUEST:
 225		async_header_set_quadlet_data(packet->header, *(u32 *)payload);
 226		packet->header_length = 16;
 227		packet->payload_length = 0;
 228		break;
 229
 230	case TCODE_LOCK_REQUEST:
 231	case TCODE_WRITE_BLOCK_REQUEST:
 232		async_header_set_data_length(packet->header, length);
 233		async_header_set_extended_tcode(packet->header, ext_tcode);
 
 234		packet->header_length = 16;
 235		packet->payload = payload;
 236		packet->payload_length = length;
 237		break;
 238
 239	case TCODE_READ_QUADLET_REQUEST:
 240		packet->header_length = 12;
 241		packet->payload_length = 0;
 242		break;
 243
 244	case TCODE_READ_BLOCK_REQUEST:
 245		async_header_set_data_length(packet->header, length);
 246		async_header_set_extended_tcode(packet->header, ext_tcode);
 
 247		packet->header_length = 16;
 248		packet->payload_length = 0;
 249		break;
 250
 251	default:
 252		WARN(1, "wrong tcode %d\n", tcode);
 253	}
 254 common:
 255	packet->speed = speed;
 256	packet->generation = generation;
 257	packet->ack = 0;
 258	packet->payload_mapped = false;
 259}
 260
 261static int allocate_tlabel(struct fw_card *card)
 262{
 263	int tlabel;
 264
 265	tlabel = card->current_tlabel;
 266	while (card->tlabel_mask & (1ULL << tlabel)) {
 267		tlabel = (tlabel + 1) & 0x3f;
 268		if (tlabel == card->current_tlabel)
 269			return -EBUSY;
 270	}
 271
 272	card->current_tlabel = (tlabel + 1) & 0x3f;
 273	card->tlabel_mask |= 1ULL << tlabel;
 274
 275	return tlabel;
 276}
 277
 278/**
 279 * __fw_send_request() - submit a request packet for transmission to generate callback for response
 280 *			 subaction with or without time stamp.
 281 * @card:		interface to send the request at
 282 * @t:			transaction instance to which the request belongs
 283 * @tcode:		transaction code
 284 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 285 * @generation:		bus generation in which request and response are valid
 286 * @speed:		transmission speed
 287 * @offset:		48bit wide offset into destination's address space
 288 * @payload:		data payload for the request subaction
 289 * @length:		length of the payload, in bytes
 290 * @callback:		union of two functions whether to receive time stamp or not for response
 291 *			subaction.
 292 * @with_tstamp:	Whether to receive time stamp or not for response subaction.
 293 * @callback_data:	data to be passed to the transaction completion callback
 294 *
 295 * Submit a request packet into the asynchronous request transmission queue.
 296 * Can be called from atomic context.  If you prefer a blocking API, use
 297 * fw_run_transaction() in a context that can sleep.
 298 *
 299 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 300 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 301 *
 302 * Make sure that the value in @destination_id is not older than the one in
 303 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 304 *
 305 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 306 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 307 * It will contain tag, channel, and sy data instead of a node ID then.
 308 *
 309 * The payload buffer at @data is going to be DMA-mapped except in case of
 310 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 311 * buffer complies with the restrictions of the streaming DMA mapping API.
 312 * @payload must not be freed before the @callback is called.
 313 *
 314 * In case of request types without payload, @data is NULL and @length is 0.
 315 *
 316 * After the transaction is completed successfully or unsuccessfully, the
 317 * @callback will be called.  Among its parameters is the response code which
 318 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 319 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 320 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 321 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 322 * generation, or missing ACK respectively.
 323 *
 324 * Note some timing corner cases:  fw_send_request() may complete much earlier
 325 * than when the request packet actually hits the wire.  On the other hand,
 326 * transaction completion and hence execution of @callback may happen even
 327 * before fw_send_request() returns.
 328 */
 329void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 330		int destination_id, int generation, int speed, unsigned long long offset,
 331		void *payload, size_t length, union fw_transaction_callback callback,
 332		bool with_tstamp, void *callback_data)
 333{
 334	unsigned long flags;
 335	int tlabel;
 336
 337	/*
 338	 * Allocate tlabel from the bitmap and put the transaction on
 339	 * the list while holding the card spinlock.
 340	 */
 341
 342	spin_lock_irqsave(&card->lock, flags);
 343
 344	tlabel = allocate_tlabel(card);
 345	if (tlabel < 0) {
 346		spin_unlock_irqrestore(&card->lock, flags);
 347		if (!with_tstamp) {
 348			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 349		} else {
 350			// Timestamping on behalf of hardware.
 351			u32 curr_cycle_time = 0;
 352			u32 tstamp;
 353
 354			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
 355			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
 356
 357			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
 358					     callback_data);
 359		}
 360		return;
 361	}
 362
 363	t->node_id = destination_id;
 364	t->tlabel = tlabel;
 365	t->card = card;
 366	t->is_split_transaction = false;
 367	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
 368	t->callback = callback;
 369	t->with_tstamp = with_tstamp;
 370	t->callback_data = callback_data;
 371
 372	fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
 373			speed, offset, payload, length);
 374	t->packet.callback = transmit_complete_callback;
 375
 376	list_add_tail(&t->link, &card->transaction_list);
 377
 378	spin_unlock_irqrestore(&card->lock, flags);
 379
 380	trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
 381					      t->packet.header, payload,
 382					      tcode_is_read_request(tcode) ? 0 : length / 4);
 383
 384	card->driver->send_request(card, &t->packet);
 385}
 386EXPORT_SYMBOL_GPL(__fw_send_request);
 387
 388struct transaction_callback_data {
 389	struct completion done;
 390	void *payload;
 391	int rcode;
 392};
 393
 394static void transaction_callback(struct fw_card *card, int rcode,
 395				 void *payload, size_t length, void *data)
 396{
 397	struct transaction_callback_data *d = data;
 398
 399	if (rcode == RCODE_COMPLETE)
 400		memcpy(d->payload, payload, length);
 401	d->rcode = rcode;
 402	complete(&d->done);
 403}
 404
 405/**
 406 * fw_run_transaction() - send request and sleep until transaction is completed
 407 * @card:		card interface for this request
 408 * @tcode:		transaction code
 409 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 410 * @generation:		bus generation in which request and response are valid
 411 * @speed:		transmission speed
 412 * @offset:		48bit wide offset into destination's address space
 413 * @payload:		data payload for the request subaction
 414 * @length:		length of the payload, in bytes
 415 *
 416 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 417 * Unlike fw_send_request(), @data points to the payload of the request or/and
 418 * to the payload of the response.  DMA mapping restrictions apply to outbound
 419 * request payloads of >= 8 bytes but not to inbound response payloads.
 420 */
 421int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 422		       int generation, int speed, unsigned long long offset,
 423		       void *payload, size_t length)
 424{
 425	struct transaction_callback_data d;
 426	struct fw_transaction t;
 427
 428	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
 429	init_completion(&d.done);
 430	d.payload = payload;
 431	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 432			offset, payload, length, transaction_callback, &d);
 433	wait_for_completion(&d.done);
 434	destroy_timer_on_stack(&t.split_timeout_timer);
 435
 436	return d.rcode;
 437}
 438EXPORT_SYMBOL(fw_run_transaction);
 439
 440static DEFINE_MUTEX(phy_config_mutex);
 441static DECLARE_COMPLETION(phy_config_done);
 442
 443static void transmit_phy_packet_callback(struct fw_packet *packet,
 444					 struct fw_card *card, int status)
 445{
 446	trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
 447					  packet->timestamp);
 448	complete(&phy_config_done);
 449}
 450
 451static struct fw_packet phy_config_packet = {
 452	.header_length	= 12,
 
 453	.payload_length	= 0,
 454	.speed		= SCODE_100,
 455	.callback	= transmit_phy_packet_callback,
 456};
 457
 458void fw_send_phy_config(struct fw_card *card,
 459			int node_id, int generation, int gap_count)
 460{
 461	long timeout = DIV_ROUND_UP(HZ, 10);
 462	u32 data = 0;
 463
 464	phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
 465
 466	if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
 467		phy_packet_phy_config_set_root_id(&data, node_id);
 468		phy_packet_phy_config_set_force_root_node(&data, true);
 469	}
 470
 471	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 472		gap_count = card->driver->read_phy_reg(card, 1);
 473		if (gap_count < 0)
 474			return;
 475
 476		gap_count &= 63;
 477		if (gap_count == 63)
 478			return;
 479	}
 480	phy_packet_phy_config_set_gap_count(&data, gap_count);
 481	phy_packet_phy_config_set_gap_count_optimization(&data, true);
 482
 483	guard(mutex)(&phy_config_mutex);
 484
 485	async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
 486	phy_config_packet.header[1] = data;
 487	phy_config_packet.header[2] = ~data;
 488	phy_config_packet.generation = generation;
 489	reinit_completion(&phy_config_done);
 490
 491	trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
 492					  phy_config_packet.generation, phy_config_packet.header[1],
 493					  phy_config_packet.header[2]);
 494
 495	card->driver->send_request(card, &phy_config_packet);
 496	wait_for_completion_timeout(&phy_config_done, timeout);
 
 
 497}
 498
 499static struct fw_address_handler *lookup_overlapping_address_handler(
 500	struct list_head *list, unsigned long long offset, size_t length)
 501{
 502	struct fw_address_handler *handler;
 503
 504	list_for_each_entry_rcu(handler, list, link) {
 505		if (handler->offset < offset + length &&
 506		    offset < handler->offset + handler->length)
 507			return handler;
 508	}
 509
 510	return NULL;
 511}
 512
 513static bool is_enclosing_handler(struct fw_address_handler *handler,
 514				 unsigned long long offset, size_t length)
 515{
 516	return handler->offset <= offset &&
 517		offset + length <= handler->offset + handler->length;
 518}
 519
 520static struct fw_address_handler *lookup_enclosing_address_handler(
 521	struct list_head *list, unsigned long long offset, size_t length)
 522{
 523	struct fw_address_handler *handler;
 524
 525	list_for_each_entry_rcu(handler, list, link) {
 526		if (is_enclosing_handler(handler, offset, length))
 527			return handler;
 528	}
 529
 530	return NULL;
 531}
 532
 533static DEFINE_SPINLOCK(address_handler_list_lock);
 534static LIST_HEAD(address_handler_list);
 535
 536const struct fw_address_region fw_high_memory_region =
 537	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 538EXPORT_SYMBOL(fw_high_memory_region);
 539
 540static const struct fw_address_region low_memory_region =
 541	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 542
 543#if 0
 544const struct fw_address_region fw_private_region =
 545	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 546const struct fw_address_region fw_csr_region =
 547	{ .start = CSR_REGISTER_BASE,
 548	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 549const struct fw_address_region fw_unit_space_region =
 550	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 551#endif  /*  0  */
 552
 553/**
 554 * fw_core_add_address_handler() - register for incoming requests
 555 * @handler:	callback
 556 * @region:	region in the IEEE 1212 node space address range
 557 *
 558 * region->start, ->end, and handler->length have to be quadlet-aligned.
 559 *
 560 * When a request is received that falls within the specified address range,
 561 * the specified callback is invoked.  The parameters passed to the callback
 562 * give the details of the particular request.
 563 *
 564 * To be called in process context.
 565 * Return value:  0 on success, non-zero otherwise.
 566 *
 567 * The start offset of the handler's address region is determined by
 568 * fw_core_add_address_handler() and is returned in handler->offset.
 569 *
 570 * Address allocations are exclusive, except for the FCP registers.
 571 */
 572int fw_core_add_address_handler(struct fw_address_handler *handler,
 573				const struct fw_address_region *region)
 574{
 575	struct fw_address_handler *other;
 576	int ret = -EBUSY;
 577
 578	if (region->start & 0xffff000000000003ULL ||
 579	    region->start >= region->end ||
 580	    region->end   > 0x0001000000000000ULL ||
 581	    handler->length & 3 ||
 582	    handler->length == 0)
 583		return -EINVAL;
 584
 585	guard(spinlock)(&address_handler_list_lock);
 586
 587	handler->offset = region->start;
 588	while (handler->offset + handler->length <= region->end) {
 589		if (is_in_fcp_region(handler->offset, handler->length))
 590			other = NULL;
 591		else
 592			other = lookup_overlapping_address_handler
 593					(&address_handler_list,
 594					 handler->offset, handler->length);
 595		if (other != NULL) {
 596			handler->offset += other->length;
 597		} else {
 598			list_add_tail_rcu(&handler->link, &address_handler_list);
 599			ret = 0;
 600			break;
 601		}
 602	}
 603
 
 
 604	return ret;
 605}
 606EXPORT_SYMBOL(fw_core_add_address_handler);
 607
 608/**
 609 * fw_core_remove_address_handler() - unregister an address handler
 610 * @handler: callback
 611 *
 612 * To be called in process context.
 613 *
 614 * When fw_core_remove_address_handler() returns, @handler->callback() is
 615 * guaranteed to not run on any CPU anymore.
 616 */
 617void fw_core_remove_address_handler(struct fw_address_handler *handler)
 618{
 619	scoped_guard(spinlock, &address_handler_list_lock)
 620		list_del_rcu(&handler->link);
 621
 622	synchronize_rcu();
 623}
 624EXPORT_SYMBOL(fw_core_remove_address_handler);
 625
 626struct fw_request {
 627	struct kref kref;
 628	struct fw_packet response;
 629	u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
 630	int ack;
 631	u32 timestamp;
 632	u32 length;
 633	u32 data[];
 634};
 635
 636void fw_request_get(struct fw_request *request)
 637{
 638	kref_get(&request->kref);
 639}
 640
 641static void release_request(struct kref *kref)
 642{
 643	struct fw_request *request = container_of(kref, struct fw_request, kref);
 644
 645	kfree(request);
 646}
 647
 648void fw_request_put(struct fw_request *request)
 649{
 650	kref_put(&request->kref, release_request);
 651}
 652
 653static void free_response_callback(struct fw_packet *packet,
 654				   struct fw_card *card, int status)
 655{
 656	struct fw_request *request = container_of(packet, struct fw_request, response);
 657
 658	trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
 659					       packet->speed, status, packet->timestamp);
 660
 661	// Decrease the reference count since not at in-flight.
 662	fw_request_put(request);
 663
 664	// Decrease the reference count to release the object.
 665	fw_request_put(request);
 666}
 667
 668int fw_get_response_length(struct fw_request *r)
 669{
 670	int tcode, ext_tcode, data_length;
 671
 672	tcode = async_header_get_tcode(r->request_header);
 673
 674	switch (tcode) {
 675	case TCODE_WRITE_QUADLET_REQUEST:
 676	case TCODE_WRITE_BLOCK_REQUEST:
 677		return 0;
 678
 679	case TCODE_READ_QUADLET_REQUEST:
 680		return 4;
 681
 682	case TCODE_READ_BLOCK_REQUEST:
 683		data_length = async_header_get_data_length(r->request_header);
 684		return data_length;
 685
 686	case TCODE_LOCK_REQUEST:
 687		ext_tcode = async_header_get_extended_tcode(r->request_header);
 688		data_length = async_header_get_data_length(r->request_header);
 689		switch (ext_tcode) {
 690		case EXTCODE_FETCH_ADD:
 691		case EXTCODE_LITTLE_ADD:
 692			return data_length;
 693		default:
 694			return data_length / 2;
 695		}
 696
 697	default:
 698		WARN(1, "wrong tcode %d\n", tcode);
 699		return 0;
 700	}
 701}
 702
 703void fw_fill_response(struct fw_packet *response, u32 *request_header,
 704		      int rcode, void *payload, size_t length)
 705{
 706	int tcode, tlabel, extended_tcode, source, destination;
 707
 708	tcode = async_header_get_tcode(request_header);
 709	tlabel = async_header_get_tlabel(request_header);
 710	source = async_header_get_destination(request_header); // Exchange.
 711	destination = async_header_get_source(request_header); // Exchange.
 712	extended_tcode = async_header_get_extended_tcode(request_header);
 713
 714	async_header_set_retry(response->header, RETRY_1);
 715	async_header_set_tlabel(response->header, tlabel);
 716	async_header_set_destination(response->header, destination);
 717	async_header_set_source(response->header, source);
 718	async_header_set_rcode(response->header, rcode);
 719	response->header[2] = 0;	// The field is reserved.
 
 
 720
 721	switch (tcode) {
 722	case TCODE_WRITE_QUADLET_REQUEST:
 723	case TCODE_WRITE_BLOCK_REQUEST:
 724		async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
 725		response->header_length = 12;
 726		response->payload_length = 0;
 727		break;
 728
 729	case TCODE_READ_QUADLET_REQUEST:
 730		async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
 
 731		if (payload != NULL)
 732			async_header_set_quadlet_data(response->header, *(u32 *)payload);
 733		else
 734			async_header_set_quadlet_data(response->header, 0);
 735		response->header_length = 16;
 736		response->payload_length = 0;
 737		break;
 738
 739	case TCODE_READ_BLOCK_REQUEST:
 740	case TCODE_LOCK_REQUEST:
 741		async_header_set_tcode(response->header, tcode + 2);
 742		async_header_set_data_length(response->header, length);
 743		async_header_set_extended_tcode(response->header, extended_tcode);
 
 744		response->header_length = 16;
 745		response->payload = payload;
 746		response->payload_length = length;
 747		break;
 748
 749	default:
 750		WARN(1, "wrong tcode %d\n", tcode);
 751	}
 752
 753	response->payload_mapped = false;
 754}
 755EXPORT_SYMBOL(fw_fill_response);
 756
 757static u32 compute_split_timeout_timestamp(struct fw_card *card,
 758					   u32 request_timestamp)
 759{
 760	unsigned int cycles;
 761	u32 timestamp;
 762
 763	cycles = card->split_timeout_cycles;
 764	cycles += request_timestamp & 0x1fff;
 765
 766	timestamp = request_timestamp & ~0x1fff;
 767	timestamp += (cycles / 8000) << 13;
 768	timestamp |= cycles % 8000;
 769
 770	return timestamp;
 771}
 772
 773static struct fw_request *allocate_request(struct fw_card *card,
 774					   struct fw_packet *p)
 775{
 776	struct fw_request *request;
 777	u32 *data, length;
 778	int request_tcode;
 779
 780	request_tcode = async_header_get_tcode(p->header);
 781	switch (request_tcode) {
 782	case TCODE_WRITE_QUADLET_REQUEST:
 783		data = &p->header[3];
 784		length = 4;
 785		break;
 786
 787	case TCODE_WRITE_BLOCK_REQUEST:
 788	case TCODE_LOCK_REQUEST:
 789		data = p->payload;
 790		length = async_header_get_data_length(p->header);
 791		break;
 792
 793	case TCODE_READ_QUADLET_REQUEST:
 794		data = NULL;
 795		length = 4;
 796		break;
 797
 798	case TCODE_READ_BLOCK_REQUEST:
 799		data = NULL;
 800		length = async_header_get_data_length(p->header);
 801		break;
 802
 803	default:
 804		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 805			 p->header[0], p->header[1], p->header[2]);
 806		return NULL;
 807	}
 808
 809	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 810	if (request == NULL)
 811		return NULL;
 812	kref_init(&request->kref);
 813
 814	request->response.speed = p->speed;
 815	request->response.timestamp =
 816			compute_split_timeout_timestamp(card, p->timestamp);
 817	request->response.generation = p->generation;
 818	request->response.ack = 0;
 819	request->response.callback = free_response_callback;
 820	request->ack = p->ack;
 821	request->timestamp = p->timestamp;
 822	request->length = length;
 823	if (data)
 824		memcpy(request->data, data, length);
 825
 826	memcpy(request->request_header, p->header, sizeof(p->header));
 827
 828	return request;
 829}
 830
 831/**
 832 * fw_send_response: - send response packet for asynchronous transaction.
 833 * @card:	interface to send the response at.
 834 * @request:	firewire request data for the transaction.
 835 * @rcode:	response code to send.
 836 *
 837 * Submit a response packet into the asynchronous response transmission queue. The @request
 838 * is going to be released when the transmission successfully finishes later.
 839 */
 840void fw_send_response(struct fw_card *card,
 841		      struct fw_request *request, int rcode)
 842{
 843	u32 *data = NULL;
 844	unsigned int data_length = 0;
 845
 846	/* unified transaction or broadcast transaction: don't respond */
 847	if (request->ack != ACK_PENDING ||
 848	    HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
 849		fw_request_put(request);
 850		return;
 851	}
 852
 853	if (rcode == RCODE_COMPLETE) {
 854		data = request->data;
 855		data_length = fw_get_response_length(request);
 856	}
 857
 858	fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
 
 859
 860	// Increase the reference count so that the object is kept during in-flight.
 861	fw_request_get(request);
 862
 863	trace_async_response_outbound_initiate((uintptr_t)request, card->index,
 864					       request->response.generation, request->response.speed,
 865					       request->response.header, data,
 866					       data ? data_length / 4 : 0);
 867
 868	card->driver->send_response(card, &request->response);
 869}
 870EXPORT_SYMBOL(fw_send_response);
 871
 872/**
 873 * fw_get_request_speed() - returns speed at which the @request was received
 874 * @request: firewire request data
 875 */
 876int fw_get_request_speed(struct fw_request *request)
 877{
 878	return request->response.speed;
 879}
 880EXPORT_SYMBOL(fw_get_request_speed);
 881
 882/**
 883 * fw_request_get_timestamp: Get timestamp of the request.
 884 * @request: The opaque pointer to request structure.
 885 *
 886 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
 887 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
 888 * field of isochronous cycle time register.
 889 *
 890 * Returns: timestamp of the request.
 891 */
 892u32 fw_request_get_timestamp(const struct fw_request *request)
 893{
 894	return request->timestamp;
 895}
 896EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
 897
 898static void handle_exclusive_region_request(struct fw_card *card,
 899					    struct fw_packet *p,
 900					    struct fw_request *request,
 901					    unsigned long long offset)
 902{
 903	struct fw_address_handler *handler;
 904	int tcode, destination, source;
 905
 906	destination = async_header_get_destination(p->header);
 907	source = async_header_get_source(p->header);
 908	tcode = async_header_get_tcode(p->header);
 909	if (tcode == TCODE_LOCK_REQUEST)
 910		tcode = 0x10 + async_header_get_extended_tcode(p->header);
 911
 912	scoped_guard(rcu) {
 913		handler = lookup_enclosing_address_handler(&address_handler_list, offset,
 914							   request->length);
 915		if (handler)
 916			handler->address_callback(card, request, tcode, destination, source,
 917						  p->generation, offset, request->data,
 918						  request->length, handler->callback_data);
 919	}
 
 
 920
 921	if (!handler)
 922		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 923}
 924
 925static void handle_fcp_region_request(struct fw_card *card,
 926				      struct fw_packet *p,
 927				      struct fw_request *request,
 928				      unsigned long long offset)
 929{
 930	struct fw_address_handler *handler;
 931	int tcode, destination, source;
 932
 933	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 934	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 935	    request->length > 0x200) {
 936		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 937
 938		return;
 939	}
 940
 941	tcode = async_header_get_tcode(p->header);
 942	destination = async_header_get_destination(p->header);
 943	source = async_header_get_source(p->header);
 944
 945	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 946	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 947		fw_send_response(card, request, RCODE_TYPE_ERROR);
 948
 949		return;
 950	}
 951
 952	scoped_guard(rcu) {
 953		list_for_each_entry_rcu(handler, &address_handler_list, link) {
 954			if (is_enclosing_handler(handler, offset, request->length))
 955				handler->address_callback(card, request, tcode, destination, source,
 956							  p->generation, offset, request->data,
 957							  request->length, handler->callback_data);
 958		}
 
 
 959	}
 
 960
 961	fw_send_response(card, request, RCODE_COMPLETE);
 962}
 963
 964void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 965{
 966	struct fw_request *request;
 967	unsigned long long offset;
 968	unsigned int tcode;
 969
 970	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 971		return;
 972
 973	tcode = async_header_get_tcode(p->header);
 974	if (tcode_is_link_internal(tcode)) {
 975		trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
 976					 p->header[1], p->header[2]);
 977		fw_cdev_handle_phy_packet(card, p);
 978		return;
 979	}
 980
 981	request = allocate_request(card, p);
 982	if (request == NULL) {
 983		/* FIXME: send statically allocated busy packet. */
 984		return;
 985	}
 986
 987	trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
 988				    p->ack, p->timestamp, p->header, request->data,
 989				    tcode_is_read_request(tcode) ? 0 : request->length / 4);
 990
 991	offset = async_header_get_offset(p->header);
 992
 993	if (!is_in_fcp_region(offset, request->length))
 994		handle_exclusive_region_request(card, p, request, offset);
 995	else
 996		handle_fcp_region_request(card, p, request, offset);
 997
 998}
 999EXPORT_SYMBOL(fw_core_handle_request);
1000
1001void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1002{
1003	struct fw_transaction *t = NULL, *iter;
 
1004	u32 *data;
1005	size_t data_length;
1006	int tcode, tlabel, source, rcode;
1007
1008	tcode = async_header_get_tcode(p->header);
1009	tlabel = async_header_get_tlabel(p->header);
1010	source = async_header_get_source(p->header);
1011	rcode = async_header_get_rcode(p->header);
1012
1013	// FIXME: sanity check packet, is length correct, does tcodes
1014	// and addresses match to the transaction request queried later.
1015	//
1016	// For the tracepoints event, let us decode the header here against the concern.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017
1018	switch (tcode) {
1019	case TCODE_READ_QUADLET_RESPONSE:
1020		data = (u32 *) &p->header[3];
1021		data_length = 4;
1022		break;
1023
1024	case TCODE_WRITE_RESPONSE:
1025		data = NULL;
1026		data_length = 0;
1027		break;
1028
1029	case TCODE_READ_BLOCK_RESPONSE:
1030	case TCODE_LOCK_RESPONSE:
1031		data = p->payload;
1032		data_length = async_header_get_data_length(p->header);
1033		break;
1034
1035	default:
1036		/* Should never happen, this is just to shut up gcc. */
1037		data = NULL;
1038		data_length = 0;
1039		break;
1040	}
1041
1042	scoped_guard(spinlock_irqsave, &card->lock) {
1043		list_for_each_entry(iter, &card->transaction_list, link) {
1044			if (iter->node_id == source && iter->tlabel == tlabel) {
1045				if (try_cancel_split_timeout(iter)) {
1046					list_del_init(&iter->link);
1047					card->tlabel_mask &= ~(1ULL << iter->tlabel);
1048					t = iter;
1049				}
1050				break;
1051			}
1052		}
1053	}
1054
1055	trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1056				     p->timestamp, p->header, data, data_length / 4);
1057
1058	if (!t) {
1059		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1060			  source, tlabel);
1061		return;
1062	}
1063
1064	/*
1065	 * The response handler may be executed while the request handler
1066	 * is still pending.  Cancel the request handler.
1067	 */
1068	card->driver->cancel_packet(card, &t->packet);
1069
1070	if (!t->with_tstamp) {
1071		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1072	} else {
1073		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1074					data_length, t->callback_data);
1075	}
1076}
1077EXPORT_SYMBOL(fw_core_handle_response);
1078
1079/**
1080 * fw_rcode_string - convert a firewire result code to an error description
1081 * @rcode: the result code
1082 */
1083const char *fw_rcode_string(int rcode)
1084{
1085	static const char *const names[] = {
1086		[RCODE_COMPLETE]       = "no error",
1087		[RCODE_CONFLICT_ERROR] = "conflict error",
1088		[RCODE_DATA_ERROR]     = "data error",
1089		[RCODE_TYPE_ERROR]     = "type error",
1090		[RCODE_ADDRESS_ERROR]  = "address error",
1091		[RCODE_SEND_ERROR]     = "send error",
1092		[RCODE_CANCELLED]      = "timeout",
1093		[RCODE_BUSY]           = "busy",
1094		[RCODE_GENERATION]     = "bus reset",
1095		[RCODE_NO_ACK]         = "no ack",
1096	};
1097
1098	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1099		return names[rcode];
1100	else
1101		return "unknown";
1102}
1103EXPORT_SYMBOL(fw_rcode_string);
1104
1105static const struct fw_address_region topology_map_region =
1106	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1107	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1108
1109static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1110		int tcode, int destination, int source, int generation,
1111		unsigned long long offset, void *payload, size_t length,
1112		void *callback_data)
1113{
1114	int start;
1115
1116	if (!tcode_is_read_request(tcode)) {
1117		fw_send_response(card, request, RCODE_TYPE_ERROR);
1118		return;
1119	}
1120
1121	if ((offset & 3) > 0 || (length & 3) > 0) {
1122		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1123		return;
1124	}
1125
1126	start = (offset - topology_map_region.start) / 4;
1127	memcpy(payload, &card->topology_map[start], length);
1128
1129	fw_send_response(card, request, RCODE_COMPLETE);
1130}
1131
1132static struct fw_address_handler topology_map = {
1133	.length			= 0x400,
1134	.address_callback	= handle_topology_map,
1135};
1136
1137static const struct fw_address_region registers_region =
1138	{ .start = CSR_REGISTER_BASE,
1139	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1140
1141static void update_split_timeout(struct fw_card *card)
1142{
1143	unsigned int cycles;
1144
1145	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1146
1147	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1148	cycles = clamp(cycles, 800u, 3u * 8000u);
1149
1150	card->split_timeout_cycles = cycles;
1151	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1152}
1153
1154static void handle_registers(struct fw_card *card, struct fw_request *request,
1155		int tcode, int destination, int source, int generation,
1156		unsigned long long offset, void *payload, size_t length,
1157		void *callback_data)
1158{
1159	int reg = offset & ~CSR_REGISTER_BASE;
1160	__be32 *data = payload;
1161	int rcode = RCODE_COMPLETE;
 
1162
1163	switch (reg) {
1164	case CSR_PRIORITY_BUDGET:
1165		if (!card->priority_budget_implemented) {
1166			rcode = RCODE_ADDRESS_ERROR;
1167			break;
1168		}
1169		fallthrough;
1170
1171	case CSR_NODE_IDS:
1172		/*
1173		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1174		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1175		 */
1176		fallthrough;
1177
1178	case CSR_STATE_CLEAR:
1179	case CSR_STATE_SET:
1180	case CSR_CYCLE_TIME:
1181	case CSR_BUS_TIME:
1182	case CSR_BUSY_TIMEOUT:
1183		if (tcode == TCODE_READ_QUADLET_REQUEST)
1184			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1185		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1186			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1187		else
1188			rcode = RCODE_TYPE_ERROR;
1189		break;
1190
1191	case CSR_RESET_START:
1192		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1193			card->driver->write_csr(card, CSR_STATE_CLEAR,
1194						CSR_STATE_BIT_ABDICATE);
1195		else
1196			rcode = RCODE_TYPE_ERROR;
1197		break;
1198
1199	case CSR_SPLIT_TIMEOUT_HI:
1200		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1201			*data = cpu_to_be32(card->split_timeout_hi);
1202		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1203			guard(spinlock_irqsave)(&card->lock);
1204
1205			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1206			update_split_timeout(card);
 
1207		} else {
1208			rcode = RCODE_TYPE_ERROR;
1209		}
1210		break;
1211
1212	case CSR_SPLIT_TIMEOUT_LO:
1213		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1214			*data = cpu_to_be32(card->split_timeout_lo);
1215		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1216			guard(spinlock_irqsave)(&card->lock);
1217
1218			card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000;
1219			update_split_timeout(card);
 
1220		} else {
1221			rcode = RCODE_TYPE_ERROR;
1222		}
1223		break;
1224
1225	case CSR_MAINT_UTILITY:
1226		if (tcode == TCODE_READ_QUADLET_REQUEST)
1227			*data = card->maint_utility_register;
1228		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1229			card->maint_utility_register = *data;
1230		else
1231			rcode = RCODE_TYPE_ERROR;
1232		break;
1233
1234	case CSR_BROADCAST_CHANNEL:
1235		if (tcode == TCODE_READ_QUADLET_REQUEST)
1236			*data = cpu_to_be32(card->broadcast_channel);
1237		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1238			card->broadcast_channel =
1239			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1240			    BROADCAST_CHANNEL_INITIAL;
1241		else
1242			rcode = RCODE_TYPE_ERROR;
1243		break;
1244
1245	case CSR_BUS_MANAGER_ID:
1246	case CSR_BANDWIDTH_AVAILABLE:
1247	case CSR_CHANNELS_AVAILABLE_HI:
1248	case CSR_CHANNELS_AVAILABLE_LO:
1249		/*
1250		 * FIXME: these are handled by the OHCI hardware and
1251		 * the stack never sees these request. If we add
1252		 * support for a new type of controller that doesn't
1253		 * handle this in hardware we need to deal with these
1254		 * transactions.
1255		 */
1256		BUG();
1257		break;
1258
1259	default:
1260		rcode = RCODE_ADDRESS_ERROR;
1261		break;
1262	}
1263
1264	fw_send_response(card, request, rcode);
1265}
1266
1267static struct fw_address_handler registers = {
1268	.length			= 0x400,
1269	.address_callback	= handle_registers,
1270};
1271
1272static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1273		int tcode, int destination, int source, int generation,
1274		unsigned long long offset, void *payload, size_t length,
1275		void *callback_data)
1276{
1277	/*
1278	 * This catches requests not handled by the physical DMA unit,
1279	 * i.e., wrong transaction types or unauthorized source nodes.
1280	 */
1281	fw_send_response(card, request, RCODE_TYPE_ERROR);
1282}
1283
1284static struct fw_address_handler low_memory = {
1285	.length			= FW_MAX_PHYSICAL_RANGE,
1286	.address_callback	= handle_low_memory,
1287};
1288
1289MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1290MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1291MODULE_LICENSE("GPL");
1292
1293static const u32 vendor_textual_descriptor[] = {
1294	/* textual descriptor leaf () */
1295	0x00060000,
1296	0x00000000,
1297	0x00000000,
1298	0x4c696e75,		/* L i n u */
1299	0x78204669,		/* x   F i */
1300	0x72657769,		/* r e w i */
1301	0x72650000,		/* r e     */
1302};
1303
1304static const u32 model_textual_descriptor[] = {
1305	/* model descriptor leaf () */
1306	0x00030000,
1307	0x00000000,
1308	0x00000000,
1309	0x4a756a75,		/* J u j u */
1310};
1311
1312static struct fw_descriptor vendor_id_descriptor = {
1313	.length = ARRAY_SIZE(vendor_textual_descriptor),
1314	.immediate = 0x03001f11,
1315	.key = 0x81000000,
1316	.data = vendor_textual_descriptor,
1317};
1318
1319static struct fw_descriptor model_id_descriptor = {
1320	.length = ARRAY_SIZE(model_textual_descriptor),
1321	.immediate = 0x17023901,
1322	.key = 0x81000000,
1323	.data = model_textual_descriptor,
1324};
1325
1326static int __init fw_core_init(void)
1327{
1328	int ret;
1329
1330	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1331	if (!fw_workqueue)
1332		return -ENOMEM;
1333
1334	ret = bus_register(&fw_bus_type);
1335	if (ret < 0) {
1336		destroy_workqueue(fw_workqueue);
1337		return ret;
1338	}
1339
1340	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1341	if (fw_cdev_major < 0) {
1342		bus_unregister(&fw_bus_type);
1343		destroy_workqueue(fw_workqueue);
1344		return fw_cdev_major;
1345	}
1346
1347	fw_core_add_address_handler(&topology_map, &topology_map_region);
1348	fw_core_add_address_handler(&registers, &registers_region);
1349	fw_core_add_address_handler(&low_memory, &low_memory_region);
1350	fw_core_add_descriptor(&vendor_id_descriptor);
1351	fw_core_add_descriptor(&model_id_descriptor);
1352
1353	return 0;
1354}
1355
1356static void __exit fw_core_cleanup(void)
1357{
1358	unregister_chrdev(fw_cdev_major, "firewire");
1359	bus_unregister(&fw_bus_type);
1360	destroy_workqueue(fw_workqueue);
1361	xa_destroy(&fw_device_xa);
1362}
1363
1364module_init(fw_core_init);
1365module_exit(fw_core_cleanup);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core IEEE1394 transaction logic
   4 *
   5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   6 */
   7
   8#include <linux/bug.h>
   9#include <linux/completion.h>
  10#include <linux/device.h>
  11#include <linux/errno.h>
  12#include <linux/firewire.h>
  13#include <linux/firewire-constants.h>
  14#include <linux/fs.h>
  15#include <linux/init.h>
  16#include <linux/idr.h>
  17#include <linux/jiffies.h>
  18#include <linux/kernel.h>
  19#include <linux/list.h>
  20#include <linux/module.h>
  21#include <linux/rculist.h>
  22#include <linux/slab.h>
  23#include <linux/spinlock.h>
  24#include <linux/string.h>
  25#include <linux/timer.h>
  26#include <linux/types.h>
  27#include <linux/workqueue.h>
  28
  29#include <asm/byteorder.h>
  30
  31#include "core.h"
 
 
 
  32
  33#define HEADER_PRI(pri)			((pri) << 0)
  34#define HEADER_TCODE(tcode)		((tcode) << 4)
  35#define HEADER_RETRY(retry)		((retry) << 8)
  36#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
  37#define HEADER_DESTINATION(destination)	((destination) << 16)
  38#define HEADER_SOURCE(source)		((source) << 16)
  39#define HEADER_RCODE(rcode)		((rcode) << 12)
  40#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
  41#define HEADER_DATA_LENGTH(length)	((length) << 16)
  42#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
  43
  44#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
  45#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
  46#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
  47#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
  48#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
  49#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
  50#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
  51#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
  52
  53#define HEADER_DESTINATION_IS_BROADCAST(q) \
  54	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  55
  56#define PHY_PACKET_CONFIG	0x0
  57#define PHY_PACKET_LINK_ON	0x1
  58#define PHY_PACKET_SELF_ID	0x2
  59
  60#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
  61#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
  62#define PHY_IDENTIFIER(id)		((id) << 30)
  63
  64/* returns 0 if the split timeout handler is already running */
  65static int try_cancel_split_timeout(struct fw_transaction *t)
  66{
  67	if (t->is_split_transaction)
  68		return del_timer(&t->split_timeout_timer);
  69	else
  70		return 1;
  71}
  72
  73static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
  74			     u32 response_tstamp)
  75{
  76	struct fw_transaction *t = NULL, *iter;
  77	unsigned long flags;
  78
  79	spin_lock_irqsave(&card->lock, flags);
  80	list_for_each_entry(iter, &card->transaction_list, link) {
  81		if (iter == transaction) {
  82			if (!try_cancel_split_timeout(iter)) {
  83				spin_unlock_irqrestore(&card->lock, flags);
  84				goto timed_out;
 
 
 
  85			}
  86			list_del_init(&iter->link);
  87			card->tlabel_mask &= ~(1ULL << iter->tlabel);
  88			t = iter;
  89			break;
  90		}
  91	}
  92	spin_unlock_irqrestore(&card->lock, flags);
  93
  94	if (t) {
  95		if (!t->with_tstamp) {
  96			t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
  97		} else {
  98			t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp,
  99						NULL, 0, t->callback_data);
 100		}
 101		return 0;
 102	}
 103
 104 timed_out:
 105	return -ENOENT;
 106}
 107
 108/*
 109 * Only valid for transactions that are potentially pending (ie have
 110 * been sent).
 111 */
 112int fw_cancel_transaction(struct fw_card *card,
 113			  struct fw_transaction *transaction)
 114{
 115	u32 tstamp;
 116
 117	/*
 118	 * Cancel the packet transmission if it's still queued.  That
 119	 * will call the packet transmission callback which cancels
 120	 * the transaction.
 121	 */
 122
 123	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 124		return 0;
 125
 126	/*
 127	 * If the request packet has already been sent, we need to see
 128	 * if the transaction is still pending and remove it in that case.
 129	 */
 130
 131	if (transaction->packet.ack == 0) {
 132		// The timestamp is reused since it was just read now.
 133		tstamp = transaction->packet.timestamp;
 134	} else {
 135		u32 curr_cycle_time = 0;
 136
 137		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
 138		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
 139	}
 140
 141	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
 142}
 143EXPORT_SYMBOL(fw_cancel_transaction);
 144
 145static void split_transaction_timeout_callback(struct timer_list *timer)
 146{
 147	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
 148	struct fw_card *card = t->card;
 149	unsigned long flags;
 150
 151	spin_lock_irqsave(&card->lock, flags);
 152	if (list_empty(&t->link)) {
 153		spin_unlock_irqrestore(&card->lock, flags);
 154		return;
 
 155	}
 156	list_del(&t->link);
 157	card->tlabel_mask &= ~(1ULL << t->tlabel);
 158	spin_unlock_irqrestore(&card->lock, flags);
 159
 160	if (!t->with_tstamp) {
 161		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 162	} else {
 163		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
 164					t->split_timeout_cycle, NULL, 0, t->callback_data);
 165	}
 166}
 167
 168static void start_split_transaction_timeout(struct fw_transaction *t,
 169					    struct fw_card *card)
 170{
 171	unsigned long flags;
 172
 173	spin_lock_irqsave(&card->lock, flags);
 174
 175	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 176		spin_unlock_irqrestore(&card->lock, flags);
 177		return;
 178	}
 179
 180	t->is_split_transaction = true;
 181	mod_timer(&t->split_timeout_timer,
 182		  jiffies + card->split_timeout_jiffies);
 183
 184	spin_unlock_irqrestore(&card->lock, flags);
 185}
 186
 187static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
 188
 189static void transmit_complete_callback(struct fw_packet *packet,
 190				       struct fw_card *card, int status)
 191{
 192	struct fw_transaction *t =
 193	    container_of(packet, struct fw_transaction, packet);
 194
 
 
 
 195	switch (status) {
 196	case ACK_COMPLETE:
 197		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
 198		break;
 199	case ACK_PENDING:
 200	{
 201		t->split_timeout_cycle =
 202			compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
 203		start_split_transaction_timeout(t, card);
 204		break;
 205	}
 206	case ACK_BUSY_X:
 207	case ACK_BUSY_A:
 208	case ACK_BUSY_B:
 209		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
 210		break;
 211	case ACK_DATA_ERROR:
 212		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
 213		break;
 214	case ACK_TYPE_ERROR:
 215		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
 216		break;
 217	default:
 218		/*
 219		 * In this case the ack is really a juju specific
 220		 * rcode, so just forward that to the callback.
 221		 */
 222		close_transaction(t, card, status, packet->timestamp);
 223		break;
 224	}
 225}
 226
 227static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 228		int destination_id, int source_id, int generation, int speed,
 229		unsigned long long offset, void *payload, size_t length)
 230{
 231	int ext_tcode;
 232
 233	if (tcode == TCODE_STREAM_DATA) {
 234		packet->header[0] =
 235			HEADER_DATA_LENGTH(length) |
 236			destination_id |
 237			HEADER_TCODE(TCODE_STREAM_DATA);
 
 238		packet->header_length = 4;
 239		packet->payload = payload;
 240		packet->payload_length = length;
 241
 242		goto common;
 243	}
 244
 245	if (tcode > 0x10) {
 246		ext_tcode = tcode & ~0x10;
 247		tcode = TCODE_LOCK_REQUEST;
 248	} else
 249		ext_tcode = 0;
 250
 251	packet->header[0] =
 252		HEADER_RETRY(RETRY_X) |
 253		HEADER_TLABEL(tlabel) |
 254		HEADER_TCODE(tcode) |
 255		HEADER_DESTINATION(destination_id);
 256	packet->header[1] =
 257		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 258	packet->header[2] =
 259		offset;
 260
 261	switch (tcode) {
 262	case TCODE_WRITE_QUADLET_REQUEST:
 263		packet->header[3] = *(u32 *)payload;
 264		packet->header_length = 16;
 265		packet->payload_length = 0;
 266		break;
 267
 268	case TCODE_LOCK_REQUEST:
 269	case TCODE_WRITE_BLOCK_REQUEST:
 270		packet->header[3] =
 271			HEADER_DATA_LENGTH(length) |
 272			HEADER_EXTENDED_TCODE(ext_tcode);
 273		packet->header_length = 16;
 274		packet->payload = payload;
 275		packet->payload_length = length;
 276		break;
 277
 278	case TCODE_READ_QUADLET_REQUEST:
 279		packet->header_length = 12;
 280		packet->payload_length = 0;
 281		break;
 282
 283	case TCODE_READ_BLOCK_REQUEST:
 284		packet->header[3] =
 285			HEADER_DATA_LENGTH(length) |
 286			HEADER_EXTENDED_TCODE(ext_tcode);
 287		packet->header_length = 16;
 288		packet->payload_length = 0;
 289		break;
 290
 291	default:
 292		WARN(1, "wrong tcode %d\n", tcode);
 293	}
 294 common:
 295	packet->speed = speed;
 296	packet->generation = generation;
 297	packet->ack = 0;
 298	packet->payload_mapped = false;
 299}
 300
 301static int allocate_tlabel(struct fw_card *card)
 302{
 303	int tlabel;
 304
 305	tlabel = card->current_tlabel;
 306	while (card->tlabel_mask & (1ULL << tlabel)) {
 307		tlabel = (tlabel + 1) & 0x3f;
 308		if (tlabel == card->current_tlabel)
 309			return -EBUSY;
 310	}
 311
 312	card->current_tlabel = (tlabel + 1) & 0x3f;
 313	card->tlabel_mask |= 1ULL << tlabel;
 314
 315	return tlabel;
 316}
 317
 318/**
 319 * __fw_send_request() - submit a request packet for transmission to generate callback for response
 320 *			 subaction with or without time stamp.
 321 * @card:		interface to send the request at
 322 * @t:			transaction instance to which the request belongs
 323 * @tcode:		transaction code
 324 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 325 * @generation:		bus generation in which request and response are valid
 326 * @speed:		transmission speed
 327 * @offset:		48bit wide offset into destination's address space
 328 * @payload:		data payload for the request subaction
 329 * @length:		length of the payload, in bytes
 330 * @callback:		union of two functions whether to receive time stamp or not for response
 331 *			subaction.
 332 * @with_tstamp:	Whether to receive time stamp or not for response subaction.
 333 * @callback_data:	data to be passed to the transaction completion callback
 334 *
 335 * Submit a request packet into the asynchronous request transmission queue.
 336 * Can be called from atomic context.  If you prefer a blocking API, use
 337 * fw_run_transaction() in a context that can sleep.
 338 *
 339 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 340 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 341 *
 342 * Make sure that the value in @destination_id is not older than the one in
 343 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 344 *
 345 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 346 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 347 * It will contain tag, channel, and sy data instead of a node ID then.
 348 *
 349 * The payload buffer at @data is going to be DMA-mapped except in case of
 350 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 351 * buffer complies with the restrictions of the streaming DMA mapping API.
 352 * @payload must not be freed before the @callback is called.
 353 *
 354 * In case of request types without payload, @data is NULL and @length is 0.
 355 *
 356 * After the transaction is completed successfully or unsuccessfully, the
 357 * @callback will be called.  Among its parameters is the response code which
 358 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 359 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 360 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 361 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 362 * generation, or missing ACK respectively.
 363 *
 364 * Note some timing corner cases:  fw_send_request() may complete much earlier
 365 * than when the request packet actually hits the wire.  On the other hand,
 366 * transaction completion and hence execution of @callback may happen even
 367 * before fw_send_request() returns.
 368 */
 369void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 370		int destination_id, int generation, int speed, unsigned long long offset,
 371		void *payload, size_t length, union fw_transaction_callback callback,
 372		bool with_tstamp, void *callback_data)
 373{
 374	unsigned long flags;
 375	int tlabel;
 376
 377	/*
 378	 * Allocate tlabel from the bitmap and put the transaction on
 379	 * the list while holding the card spinlock.
 380	 */
 381
 382	spin_lock_irqsave(&card->lock, flags);
 383
 384	tlabel = allocate_tlabel(card);
 385	if (tlabel < 0) {
 386		spin_unlock_irqrestore(&card->lock, flags);
 387		if (!with_tstamp) {
 388			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 389		} else {
 390			// Timestamping on behalf of hardware.
 391			u32 curr_cycle_time = 0;
 392			u32 tstamp;
 393
 394			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
 395			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
 396
 397			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
 398					     callback_data);
 399		}
 400		return;
 401	}
 402
 403	t->node_id = destination_id;
 404	t->tlabel = tlabel;
 405	t->card = card;
 406	t->is_split_transaction = false;
 407	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
 408	t->callback = callback;
 409	t->with_tstamp = with_tstamp;
 410	t->callback_data = callback_data;
 411
 412	fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
 413			speed, offset, payload, length);
 414	t->packet.callback = transmit_complete_callback;
 415
 416	list_add_tail(&t->link, &card->transaction_list);
 417
 418	spin_unlock_irqrestore(&card->lock, flags);
 419
 
 
 
 
 420	card->driver->send_request(card, &t->packet);
 421}
 422EXPORT_SYMBOL_GPL(__fw_send_request);
 423
 424struct transaction_callback_data {
 425	struct completion done;
 426	void *payload;
 427	int rcode;
 428};
 429
 430static void transaction_callback(struct fw_card *card, int rcode,
 431				 void *payload, size_t length, void *data)
 432{
 433	struct transaction_callback_data *d = data;
 434
 435	if (rcode == RCODE_COMPLETE)
 436		memcpy(d->payload, payload, length);
 437	d->rcode = rcode;
 438	complete(&d->done);
 439}
 440
 441/**
 442 * fw_run_transaction() - send request and sleep until transaction is completed
 443 * @card:		card interface for this request
 444 * @tcode:		transaction code
 445 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 446 * @generation:		bus generation in which request and response are valid
 447 * @speed:		transmission speed
 448 * @offset:		48bit wide offset into destination's address space
 449 * @payload:		data payload for the request subaction
 450 * @length:		length of the payload, in bytes
 451 *
 452 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 453 * Unlike fw_send_request(), @data points to the payload of the request or/and
 454 * to the payload of the response.  DMA mapping restrictions apply to outbound
 455 * request payloads of >= 8 bytes but not to inbound response payloads.
 456 */
 457int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 458		       int generation, int speed, unsigned long long offset,
 459		       void *payload, size_t length)
 460{
 461	struct transaction_callback_data d;
 462	struct fw_transaction t;
 463
 464	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
 465	init_completion(&d.done);
 466	d.payload = payload;
 467	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 468			offset, payload, length, transaction_callback, &d);
 469	wait_for_completion(&d.done);
 470	destroy_timer_on_stack(&t.split_timeout_timer);
 471
 472	return d.rcode;
 473}
 474EXPORT_SYMBOL(fw_run_transaction);
 475
 476static DEFINE_MUTEX(phy_config_mutex);
 477static DECLARE_COMPLETION(phy_config_done);
 478
 479static void transmit_phy_packet_callback(struct fw_packet *packet,
 480					 struct fw_card *card, int status)
 481{
 
 
 482	complete(&phy_config_done);
 483}
 484
 485static struct fw_packet phy_config_packet = {
 486	.header_length	= 12,
 487	.header[0]	= TCODE_LINK_INTERNAL << 4,
 488	.payload_length	= 0,
 489	.speed		= SCODE_100,
 490	.callback	= transmit_phy_packet_callback,
 491};
 492
 493void fw_send_phy_config(struct fw_card *card,
 494			int node_id, int generation, int gap_count)
 495{
 496	long timeout = DIV_ROUND_UP(HZ, 10);
 497	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 498
 499	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 500		data |= PHY_CONFIG_ROOT_ID(node_id);
 
 
 
 
 501
 502	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 503		gap_count = card->driver->read_phy_reg(card, 1);
 504		if (gap_count < 0)
 505			return;
 506
 507		gap_count &= 63;
 508		if (gap_count == 63)
 509			return;
 510	}
 511	data |= PHY_CONFIG_GAP_COUNT(gap_count);
 
 512
 513	mutex_lock(&phy_config_mutex);
 514
 
 515	phy_config_packet.header[1] = data;
 516	phy_config_packet.header[2] = ~data;
 517	phy_config_packet.generation = generation;
 518	reinit_completion(&phy_config_done);
 519
 
 
 
 
 520	card->driver->send_request(card, &phy_config_packet);
 521	wait_for_completion_timeout(&phy_config_done, timeout);
 522
 523	mutex_unlock(&phy_config_mutex);
 524}
 525
 526static struct fw_address_handler *lookup_overlapping_address_handler(
 527	struct list_head *list, unsigned long long offset, size_t length)
 528{
 529	struct fw_address_handler *handler;
 530
 531	list_for_each_entry_rcu(handler, list, link) {
 532		if (handler->offset < offset + length &&
 533		    offset < handler->offset + handler->length)
 534			return handler;
 535	}
 536
 537	return NULL;
 538}
 539
 540static bool is_enclosing_handler(struct fw_address_handler *handler,
 541				 unsigned long long offset, size_t length)
 542{
 543	return handler->offset <= offset &&
 544		offset + length <= handler->offset + handler->length;
 545}
 546
 547static struct fw_address_handler *lookup_enclosing_address_handler(
 548	struct list_head *list, unsigned long long offset, size_t length)
 549{
 550	struct fw_address_handler *handler;
 551
 552	list_for_each_entry_rcu(handler, list, link) {
 553		if (is_enclosing_handler(handler, offset, length))
 554			return handler;
 555	}
 556
 557	return NULL;
 558}
 559
 560static DEFINE_SPINLOCK(address_handler_list_lock);
 561static LIST_HEAD(address_handler_list);
 562
 563const struct fw_address_region fw_high_memory_region =
 564	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 565EXPORT_SYMBOL(fw_high_memory_region);
 566
 567static const struct fw_address_region low_memory_region =
 568	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 569
 570#if 0
 571const struct fw_address_region fw_private_region =
 572	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 573const struct fw_address_region fw_csr_region =
 574	{ .start = CSR_REGISTER_BASE,
 575	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 576const struct fw_address_region fw_unit_space_region =
 577	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 578#endif  /*  0  */
 579
 580/**
 581 * fw_core_add_address_handler() - register for incoming requests
 582 * @handler:	callback
 583 * @region:	region in the IEEE 1212 node space address range
 584 *
 585 * region->start, ->end, and handler->length have to be quadlet-aligned.
 586 *
 587 * When a request is received that falls within the specified address range,
 588 * the specified callback is invoked.  The parameters passed to the callback
 589 * give the details of the particular request.
 590 *
 591 * To be called in process context.
 592 * Return value:  0 on success, non-zero otherwise.
 593 *
 594 * The start offset of the handler's address region is determined by
 595 * fw_core_add_address_handler() and is returned in handler->offset.
 596 *
 597 * Address allocations are exclusive, except for the FCP registers.
 598 */
 599int fw_core_add_address_handler(struct fw_address_handler *handler,
 600				const struct fw_address_region *region)
 601{
 602	struct fw_address_handler *other;
 603	int ret = -EBUSY;
 604
 605	if (region->start & 0xffff000000000003ULL ||
 606	    region->start >= region->end ||
 607	    region->end   > 0x0001000000000000ULL ||
 608	    handler->length & 3 ||
 609	    handler->length == 0)
 610		return -EINVAL;
 611
 612	spin_lock(&address_handler_list_lock);
 613
 614	handler->offset = region->start;
 615	while (handler->offset + handler->length <= region->end) {
 616		if (is_in_fcp_region(handler->offset, handler->length))
 617			other = NULL;
 618		else
 619			other = lookup_overlapping_address_handler
 620					(&address_handler_list,
 621					 handler->offset, handler->length);
 622		if (other != NULL) {
 623			handler->offset += other->length;
 624		} else {
 625			list_add_tail_rcu(&handler->link, &address_handler_list);
 626			ret = 0;
 627			break;
 628		}
 629	}
 630
 631	spin_unlock(&address_handler_list_lock);
 632
 633	return ret;
 634}
 635EXPORT_SYMBOL(fw_core_add_address_handler);
 636
 637/**
 638 * fw_core_remove_address_handler() - unregister an address handler
 639 * @handler: callback
 640 *
 641 * To be called in process context.
 642 *
 643 * When fw_core_remove_address_handler() returns, @handler->callback() is
 644 * guaranteed to not run on any CPU anymore.
 645 */
 646void fw_core_remove_address_handler(struct fw_address_handler *handler)
 647{
 648	spin_lock(&address_handler_list_lock);
 649	list_del_rcu(&handler->link);
 650	spin_unlock(&address_handler_list_lock);
 651	synchronize_rcu();
 652}
 653EXPORT_SYMBOL(fw_core_remove_address_handler);
 654
 655struct fw_request {
 656	struct kref kref;
 657	struct fw_packet response;
 658	u32 request_header[4];
 659	int ack;
 660	u32 timestamp;
 661	u32 length;
 662	u32 data[];
 663};
 664
 665void fw_request_get(struct fw_request *request)
 666{
 667	kref_get(&request->kref);
 668}
 669
 670static void release_request(struct kref *kref)
 671{
 672	struct fw_request *request = container_of(kref, struct fw_request, kref);
 673
 674	kfree(request);
 675}
 676
 677void fw_request_put(struct fw_request *request)
 678{
 679	kref_put(&request->kref, release_request);
 680}
 681
 682static void free_response_callback(struct fw_packet *packet,
 683				   struct fw_card *card, int status)
 684{
 685	struct fw_request *request = container_of(packet, struct fw_request, response);
 686
 
 
 
 687	// Decrease the reference count since not at in-flight.
 688	fw_request_put(request);
 689
 690	// Decrease the reference count to release the object.
 691	fw_request_put(request);
 692}
 693
 694int fw_get_response_length(struct fw_request *r)
 695{
 696	int tcode, ext_tcode, data_length;
 697
 698	tcode = HEADER_GET_TCODE(r->request_header[0]);
 699
 700	switch (tcode) {
 701	case TCODE_WRITE_QUADLET_REQUEST:
 702	case TCODE_WRITE_BLOCK_REQUEST:
 703		return 0;
 704
 705	case TCODE_READ_QUADLET_REQUEST:
 706		return 4;
 707
 708	case TCODE_READ_BLOCK_REQUEST:
 709		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 710		return data_length;
 711
 712	case TCODE_LOCK_REQUEST:
 713		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 714		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 715		switch (ext_tcode) {
 716		case EXTCODE_FETCH_ADD:
 717		case EXTCODE_LITTLE_ADD:
 718			return data_length;
 719		default:
 720			return data_length / 2;
 721		}
 722
 723	default:
 724		WARN(1, "wrong tcode %d\n", tcode);
 725		return 0;
 726	}
 727}
 728
 729void fw_fill_response(struct fw_packet *response, u32 *request_header,
 730		      int rcode, void *payload, size_t length)
 731{
 732	int tcode, tlabel, extended_tcode, source, destination;
 733
 734	tcode          = HEADER_GET_TCODE(request_header[0]);
 735	tlabel         = HEADER_GET_TLABEL(request_header[0]);
 736	source         = HEADER_GET_DESTINATION(request_header[0]);
 737	destination    = HEADER_GET_SOURCE(request_header[1]);
 738	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 739
 740	response->header[0] =
 741		HEADER_RETRY(RETRY_1) |
 742		HEADER_TLABEL(tlabel) |
 743		HEADER_DESTINATION(destination);
 744	response->header[1] =
 745		HEADER_SOURCE(source) |
 746		HEADER_RCODE(rcode);
 747	response->header[2] = 0;
 748
 749	switch (tcode) {
 750	case TCODE_WRITE_QUADLET_REQUEST:
 751	case TCODE_WRITE_BLOCK_REQUEST:
 752		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 753		response->header_length = 12;
 754		response->payload_length = 0;
 755		break;
 756
 757	case TCODE_READ_QUADLET_REQUEST:
 758		response->header[0] |=
 759			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 760		if (payload != NULL)
 761			response->header[3] = *(u32 *)payload;
 762		else
 763			response->header[3] = 0;
 764		response->header_length = 16;
 765		response->payload_length = 0;
 766		break;
 767
 768	case TCODE_READ_BLOCK_REQUEST:
 769	case TCODE_LOCK_REQUEST:
 770		response->header[0] |= HEADER_TCODE(tcode + 2);
 771		response->header[3] =
 772			HEADER_DATA_LENGTH(length) |
 773			HEADER_EXTENDED_TCODE(extended_tcode);
 774		response->header_length = 16;
 775		response->payload = payload;
 776		response->payload_length = length;
 777		break;
 778
 779	default:
 780		WARN(1, "wrong tcode %d\n", tcode);
 781	}
 782
 783	response->payload_mapped = false;
 784}
 785EXPORT_SYMBOL(fw_fill_response);
 786
 787static u32 compute_split_timeout_timestamp(struct fw_card *card,
 788					   u32 request_timestamp)
 789{
 790	unsigned int cycles;
 791	u32 timestamp;
 792
 793	cycles = card->split_timeout_cycles;
 794	cycles += request_timestamp & 0x1fff;
 795
 796	timestamp = request_timestamp & ~0x1fff;
 797	timestamp += (cycles / 8000) << 13;
 798	timestamp |= cycles % 8000;
 799
 800	return timestamp;
 801}
 802
 803static struct fw_request *allocate_request(struct fw_card *card,
 804					   struct fw_packet *p)
 805{
 806	struct fw_request *request;
 807	u32 *data, length;
 808	int request_tcode;
 809
 810	request_tcode = HEADER_GET_TCODE(p->header[0]);
 811	switch (request_tcode) {
 812	case TCODE_WRITE_QUADLET_REQUEST:
 813		data = &p->header[3];
 814		length = 4;
 815		break;
 816
 817	case TCODE_WRITE_BLOCK_REQUEST:
 818	case TCODE_LOCK_REQUEST:
 819		data = p->payload;
 820		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 821		break;
 822
 823	case TCODE_READ_QUADLET_REQUEST:
 824		data = NULL;
 825		length = 4;
 826		break;
 827
 828	case TCODE_READ_BLOCK_REQUEST:
 829		data = NULL;
 830		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 831		break;
 832
 833	default:
 834		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 835			 p->header[0], p->header[1], p->header[2]);
 836		return NULL;
 837	}
 838
 839	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 840	if (request == NULL)
 841		return NULL;
 842	kref_init(&request->kref);
 843
 844	request->response.speed = p->speed;
 845	request->response.timestamp =
 846			compute_split_timeout_timestamp(card, p->timestamp);
 847	request->response.generation = p->generation;
 848	request->response.ack = 0;
 849	request->response.callback = free_response_callback;
 850	request->ack = p->ack;
 851	request->timestamp = p->timestamp;
 852	request->length = length;
 853	if (data)
 854		memcpy(request->data, data, length);
 855
 856	memcpy(request->request_header, p->header, sizeof(p->header));
 857
 858	return request;
 859}
 860
 861/**
 862 * fw_send_response: - send response packet for asynchronous transaction.
 863 * @card:	interface to send the response at.
 864 * @request:	firewire request data for the transaction.
 865 * @rcode:	response code to send.
 866 *
 867 * Submit a response packet into the asynchronous response transmission queue. The @request
 868 * is going to be released when the transmission successfully finishes later.
 869 */
 870void fw_send_response(struct fw_card *card,
 871		      struct fw_request *request, int rcode)
 872{
 
 
 
 873	/* unified transaction or broadcast transaction: don't respond */
 874	if (request->ack != ACK_PENDING ||
 875	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 876		fw_request_put(request);
 877		return;
 878	}
 879
 880	if (rcode == RCODE_COMPLETE)
 881		fw_fill_response(&request->response, request->request_header,
 882				 rcode, request->data,
 883				 fw_get_response_length(request));
 884	else
 885		fw_fill_response(&request->response, request->request_header,
 886				 rcode, NULL, 0);
 887
 888	// Increase the reference count so that the object is kept during in-flight.
 889	fw_request_get(request);
 890
 
 
 
 
 
 891	card->driver->send_response(card, &request->response);
 892}
 893EXPORT_SYMBOL(fw_send_response);
 894
 895/**
 896 * fw_get_request_speed() - returns speed at which the @request was received
 897 * @request: firewire request data
 898 */
 899int fw_get_request_speed(struct fw_request *request)
 900{
 901	return request->response.speed;
 902}
 903EXPORT_SYMBOL(fw_get_request_speed);
 904
 905/**
 906 * fw_request_get_timestamp: Get timestamp of the request.
 907 * @request: The opaque pointer to request structure.
 908 *
 909 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
 910 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
 911 * field of isochronous cycle time register.
 912 *
 913 * Returns: timestamp of the request.
 914 */
 915u32 fw_request_get_timestamp(const struct fw_request *request)
 916{
 917	return request->timestamp;
 918}
 919EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
 920
 921static void handle_exclusive_region_request(struct fw_card *card,
 922					    struct fw_packet *p,
 923					    struct fw_request *request,
 924					    unsigned long long offset)
 925{
 926	struct fw_address_handler *handler;
 927	int tcode, destination, source;
 928
 929	destination = HEADER_GET_DESTINATION(p->header[0]);
 930	source      = HEADER_GET_SOURCE(p->header[1]);
 931	tcode       = HEADER_GET_TCODE(p->header[0]);
 932	if (tcode == TCODE_LOCK_REQUEST)
 933		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 934
 935	rcu_read_lock();
 936	handler = lookup_enclosing_address_handler(&address_handler_list,
 937						   offset, request->length);
 938	if (handler)
 939		handler->address_callback(card, request,
 940					  tcode, destination, source,
 941					  p->generation, offset,
 942					  request->data, request->length,
 943					  handler->callback_data);
 944	rcu_read_unlock();
 945
 946	if (!handler)
 947		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 948}
 949
 950static void handle_fcp_region_request(struct fw_card *card,
 951				      struct fw_packet *p,
 952				      struct fw_request *request,
 953				      unsigned long long offset)
 954{
 955	struct fw_address_handler *handler;
 956	int tcode, destination, source;
 957
 958	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 959	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 960	    request->length > 0x200) {
 961		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 962
 963		return;
 964	}
 965
 966	tcode       = HEADER_GET_TCODE(p->header[0]);
 967	destination = HEADER_GET_DESTINATION(p->header[0]);
 968	source      = HEADER_GET_SOURCE(p->header[1]);
 969
 970	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 971	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 972		fw_send_response(card, request, RCODE_TYPE_ERROR);
 973
 974		return;
 975	}
 976
 977	rcu_read_lock();
 978	list_for_each_entry_rcu(handler, &address_handler_list, link) {
 979		if (is_enclosing_handler(handler, offset, request->length))
 980			handler->address_callback(card, request, tcode,
 981						  destination, source,
 982						  p->generation, offset,
 983						  request->data,
 984						  request->length,
 985						  handler->callback_data);
 986	}
 987	rcu_read_unlock();
 988
 989	fw_send_response(card, request, RCODE_COMPLETE);
 990}
 991
 992void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 993{
 994	struct fw_request *request;
 995	unsigned long long offset;
 
 996
 997	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 998		return;
 999
1000	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
 
 
 
1001		fw_cdev_handle_phy_packet(card, p);
1002		return;
1003	}
1004
1005	request = allocate_request(card, p);
1006	if (request == NULL) {
1007		/* FIXME: send statically allocated busy packet. */
1008		return;
1009	}
1010
1011	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
1012		p->header[2];
 
 
 
1013
1014	if (!is_in_fcp_region(offset, request->length))
1015		handle_exclusive_region_request(card, p, request, offset);
1016	else
1017		handle_fcp_region_request(card, p, request, offset);
1018
1019}
1020EXPORT_SYMBOL(fw_core_handle_request);
1021
1022void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1023{
1024	struct fw_transaction *t = NULL, *iter;
1025	unsigned long flags;
1026	u32 *data;
1027	size_t data_length;
1028	int tcode, tlabel, source, rcode;
1029
1030	tcode	= HEADER_GET_TCODE(p->header[0]);
1031	tlabel	= HEADER_GET_TLABEL(p->header[0]);
1032	source	= HEADER_GET_SOURCE(p->header[1]);
1033	rcode	= HEADER_GET_RCODE(p->header[1]);
1034
1035	spin_lock_irqsave(&card->lock, flags);
1036	list_for_each_entry(iter, &card->transaction_list, link) {
1037		if (iter->node_id == source && iter->tlabel == tlabel) {
1038			if (!try_cancel_split_timeout(iter)) {
1039				spin_unlock_irqrestore(&card->lock, flags);
1040				goto timed_out;
1041			}
1042			list_del_init(&iter->link);
1043			card->tlabel_mask &= ~(1ULL << iter->tlabel);
1044			t = iter;
1045			break;
1046		}
1047	}
1048	spin_unlock_irqrestore(&card->lock, flags);
1049
1050	if (!t) {
1051 timed_out:
1052		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1053			  source, tlabel);
1054		return;
1055	}
1056
1057	/*
1058	 * FIXME: sanity check packet, is length correct, does tcodes
1059	 * and addresses match.
1060	 */
1061
1062	switch (tcode) {
1063	case TCODE_READ_QUADLET_RESPONSE:
1064		data = (u32 *) &p->header[3];
1065		data_length = 4;
1066		break;
1067
1068	case TCODE_WRITE_RESPONSE:
1069		data = NULL;
1070		data_length = 0;
1071		break;
1072
1073	case TCODE_READ_BLOCK_RESPONSE:
1074	case TCODE_LOCK_RESPONSE:
1075		data = p->payload;
1076		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1077		break;
1078
1079	default:
1080		/* Should never happen, this is just to shut up gcc. */
1081		data = NULL;
1082		data_length = 0;
1083		break;
1084	}
1085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086	/*
1087	 * The response handler may be executed while the request handler
1088	 * is still pending.  Cancel the request handler.
1089	 */
1090	card->driver->cancel_packet(card, &t->packet);
1091
1092	if (!t->with_tstamp) {
1093		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1094	} else {
1095		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1096					data_length, t->callback_data);
1097	}
1098}
1099EXPORT_SYMBOL(fw_core_handle_response);
1100
1101/**
1102 * fw_rcode_string - convert a firewire result code to an error description
1103 * @rcode: the result code
1104 */
1105const char *fw_rcode_string(int rcode)
1106{
1107	static const char *const names[] = {
1108		[RCODE_COMPLETE]       = "no error",
1109		[RCODE_CONFLICT_ERROR] = "conflict error",
1110		[RCODE_DATA_ERROR]     = "data error",
1111		[RCODE_TYPE_ERROR]     = "type error",
1112		[RCODE_ADDRESS_ERROR]  = "address error",
1113		[RCODE_SEND_ERROR]     = "send error",
1114		[RCODE_CANCELLED]      = "timeout",
1115		[RCODE_BUSY]           = "busy",
1116		[RCODE_GENERATION]     = "bus reset",
1117		[RCODE_NO_ACK]         = "no ack",
1118	};
1119
1120	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1121		return names[rcode];
1122	else
1123		return "unknown";
1124}
1125EXPORT_SYMBOL(fw_rcode_string);
1126
1127static const struct fw_address_region topology_map_region =
1128	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1129	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1130
1131static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1132		int tcode, int destination, int source, int generation,
1133		unsigned long long offset, void *payload, size_t length,
1134		void *callback_data)
1135{
1136	int start;
1137
1138	if (!TCODE_IS_READ_REQUEST(tcode)) {
1139		fw_send_response(card, request, RCODE_TYPE_ERROR);
1140		return;
1141	}
1142
1143	if ((offset & 3) > 0 || (length & 3) > 0) {
1144		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1145		return;
1146	}
1147
1148	start = (offset - topology_map_region.start) / 4;
1149	memcpy(payload, &card->topology_map[start], length);
1150
1151	fw_send_response(card, request, RCODE_COMPLETE);
1152}
1153
1154static struct fw_address_handler topology_map = {
1155	.length			= 0x400,
1156	.address_callback	= handle_topology_map,
1157};
1158
1159static const struct fw_address_region registers_region =
1160	{ .start = CSR_REGISTER_BASE,
1161	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1162
1163static void update_split_timeout(struct fw_card *card)
1164{
1165	unsigned int cycles;
1166
1167	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1168
1169	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1170	cycles = clamp(cycles, 800u, 3u * 8000u);
1171
1172	card->split_timeout_cycles = cycles;
1173	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1174}
1175
1176static void handle_registers(struct fw_card *card, struct fw_request *request,
1177		int tcode, int destination, int source, int generation,
1178		unsigned long long offset, void *payload, size_t length,
1179		void *callback_data)
1180{
1181	int reg = offset & ~CSR_REGISTER_BASE;
1182	__be32 *data = payload;
1183	int rcode = RCODE_COMPLETE;
1184	unsigned long flags;
1185
1186	switch (reg) {
1187	case CSR_PRIORITY_BUDGET:
1188		if (!card->priority_budget_implemented) {
1189			rcode = RCODE_ADDRESS_ERROR;
1190			break;
1191		}
1192		fallthrough;
1193
1194	case CSR_NODE_IDS:
1195		/*
1196		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1197		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1198		 */
1199		fallthrough;
1200
1201	case CSR_STATE_CLEAR:
1202	case CSR_STATE_SET:
1203	case CSR_CYCLE_TIME:
1204	case CSR_BUS_TIME:
1205	case CSR_BUSY_TIMEOUT:
1206		if (tcode == TCODE_READ_QUADLET_REQUEST)
1207			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1208		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1209			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1210		else
1211			rcode = RCODE_TYPE_ERROR;
1212		break;
1213
1214	case CSR_RESET_START:
1215		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1216			card->driver->write_csr(card, CSR_STATE_CLEAR,
1217						CSR_STATE_BIT_ABDICATE);
1218		else
1219			rcode = RCODE_TYPE_ERROR;
1220		break;
1221
1222	case CSR_SPLIT_TIMEOUT_HI:
1223		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1224			*data = cpu_to_be32(card->split_timeout_hi);
1225		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1226			spin_lock_irqsave(&card->lock, flags);
 
1227			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1228			update_split_timeout(card);
1229			spin_unlock_irqrestore(&card->lock, flags);
1230		} else {
1231			rcode = RCODE_TYPE_ERROR;
1232		}
1233		break;
1234
1235	case CSR_SPLIT_TIMEOUT_LO:
1236		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1237			*data = cpu_to_be32(card->split_timeout_lo);
1238		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1239			spin_lock_irqsave(&card->lock, flags);
1240			card->split_timeout_lo =
1241					be32_to_cpu(*data) & 0xfff80000;
1242			update_split_timeout(card);
1243			spin_unlock_irqrestore(&card->lock, flags);
1244		} else {
1245			rcode = RCODE_TYPE_ERROR;
1246		}
1247		break;
1248
1249	case CSR_MAINT_UTILITY:
1250		if (tcode == TCODE_READ_QUADLET_REQUEST)
1251			*data = card->maint_utility_register;
1252		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1253			card->maint_utility_register = *data;
1254		else
1255			rcode = RCODE_TYPE_ERROR;
1256		break;
1257
1258	case CSR_BROADCAST_CHANNEL:
1259		if (tcode == TCODE_READ_QUADLET_REQUEST)
1260			*data = cpu_to_be32(card->broadcast_channel);
1261		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1262			card->broadcast_channel =
1263			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1264			    BROADCAST_CHANNEL_INITIAL;
1265		else
1266			rcode = RCODE_TYPE_ERROR;
1267		break;
1268
1269	case CSR_BUS_MANAGER_ID:
1270	case CSR_BANDWIDTH_AVAILABLE:
1271	case CSR_CHANNELS_AVAILABLE_HI:
1272	case CSR_CHANNELS_AVAILABLE_LO:
1273		/*
1274		 * FIXME: these are handled by the OHCI hardware and
1275		 * the stack never sees these request. If we add
1276		 * support for a new type of controller that doesn't
1277		 * handle this in hardware we need to deal with these
1278		 * transactions.
1279		 */
1280		BUG();
1281		break;
1282
1283	default:
1284		rcode = RCODE_ADDRESS_ERROR;
1285		break;
1286	}
1287
1288	fw_send_response(card, request, rcode);
1289}
1290
1291static struct fw_address_handler registers = {
1292	.length			= 0x400,
1293	.address_callback	= handle_registers,
1294};
1295
1296static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1297		int tcode, int destination, int source, int generation,
1298		unsigned long long offset, void *payload, size_t length,
1299		void *callback_data)
1300{
1301	/*
1302	 * This catches requests not handled by the physical DMA unit,
1303	 * i.e., wrong transaction types or unauthorized source nodes.
1304	 */
1305	fw_send_response(card, request, RCODE_TYPE_ERROR);
1306}
1307
1308static struct fw_address_handler low_memory = {
1309	.length			= FW_MAX_PHYSICAL_RANGE,
1310	.address_callback	= handle_low_memory,
1311};
1312
1313MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1314MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1315MODULE_LICENSE("GPL");
1316
1317static const u32 vendor_textual_descriptor[] = {
1318	/* textual descriptor leaf () */
1319	0x00060000,
1320	0x00000000,
1321	0x00000000,
1322	0x4c696e75,		/* L i n u */
1323	0x78204669,		/* x   F i */
1324	0x72657769,		/* r e w i */
1325	0x72650000,		/* r e     */
1326};
1327
1328static const u32 model_textual_descriptor[] = {
1329	/* model descriptor leaf () */
1330	0x00030000,
1331	0x00000000,
1332	0x00000000,
1333	0x4a756a75,		/* J u j u */
1334};
1335
1336static struct fw_descriptor vendor_id_descriptor = {
1337	.length = ARRAY_SIZE(vendor_textual_descriptor),
1338	.immediate = 0x03001f11,
1339	.key = 0x81000000,
1340	.data = vendor_textual_descriptor,
1341};
1342
1343static struct fw_descriptor model_id_descriptor = {
1344	.length = ARRAY_SIZE(model_textual_descriptor),
1345	.immediate = 0x17023901,
1346	.key = 0x81000000,
1347	.data = model_textual_descriptor,
1348};
1349
1350static int __init fw_core_init(void)
1351{
1352	int ret;
1353
1354	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1355	if (!fw_workqueue)
1356		return -ENOMEM;
1357
1358	ret = bus_register(&fw_bus_type);
1359	if (ret < 0) {
1360		destroy_workqueue(fw_workqueue);
1361		return ret;
1362	}
1363
1364	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1365	if (fw_cdev_major < 0) {
1366		bus_unregister(&fw_bus_type);
1367		destroy_workqueue(fw_workqueue);
1368		return fw_cdev_major;
1369	}
1370
1371	fw_core_add_address_handler(&topology_map, &topology_map_region);
1372	fw_core_add_address_handler(&registers, &registers_region);
1373	fw_core_add_address_handler(&low_memory, &low_memory_region);
1374	fw_core_add_descriptor(&vendor_id_descriptor);
1375	fw_core_add_descriptor(&model_id_descriptor);
1376
1377	return 0;
1378}
1379
1380static void __exit fw_core_cleanup(void)
1381{
1382	unregister_chrdev(fw_cdev_major, "firewire");
1383	bus_unregister(&fw_bus_type);
1384	destroy_workqueue(fw_workqueue);
1385	idr_destroy(&fw_device_idr);
1386}
1387
1388module_init(fw_core_init);
1389module_exit(fw_core_cleanup);