Linux Audio

Check our new training course

Loading...
v6.13.7
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999)
  7 * Copyright (C) 1999 SuSE GmbH Nuernberg
  8 * Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org)
  9 *
 10 * Cache and TLB management
 11 *
 12 */
 13 
 14#include <linux/init.h>
 15#include <linux/kernel.h>
 16#include <linux/mm.h>
 17#include <linux/module.h>
 18#include <linux/seq_file.h>
 19#include <linux/pagemap.h>
 20#include <linux/sched.h>
 21#include <linux/sched/mm.h>
 22#include <linux/syscalls.h>
 23#include <linux/vmalloc.h>
 24#include <asm/pdc.h>
 25#include <asm/cache.h>
 26#include <asm/cacheflush.h>
 27#include <asm/tlbflush.h>
 28#include <asm/page.h>
 29#include <asm/processor.h>
 30#include <asm/sections.h>
 31#include <asm/shmparam.h>
 32#include <asm/mmu_context.h>
 33#include <asm/cachectl.h>
 34
 35#define PTR_PAGE_ALIGN_DOWN(addr) PTR_ALIGN_DOWN(addr, PAGE_SIZE)
 36
 37/*
 38 * When nonzero, use _PAGE_ACCESSED bit to try to reduce the number
 39 * of page flushes done flush_cache_page_if_present. There are some
 40 * pros and cons in using this option. It may increase the risk of
 41 * random segmentation faults.
 42 */
 43#define CONFIG_FLUSH_PAGE_ACCESSED	0
 44
 45int split_tlb __ro_after_init;
 46int dcache_stride __ro_after_init;
 47int icache_stride __ro_after_init;
 48EXPORT_SYMBOL(dcache_stride);
 49
 50/* Internal implementation in arch/parisc/kernel/pacache.S */
 51void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
 52EXPORT_SYMBOL(flush_dcache_page_asm);
 53void purge_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
 54void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr);
 
 
 55void flush_data_cache_local(void *);  /* flushes local data-cache only */
 56void flush_instruction_cache_local(void); /* flushes local code-cache only */
 57
 58static void flush_kernel_dcache_page_addr(const void *addr);
 59
 60/* On some machines (i.e., ones with the Merced bus), there can be
 61 * only a single PxTLB broadcast at a time; this must be guaranteed
 62 * by software. We need a spinlock around all TLB flushes to ensure
 63 * this.
 64 */
 65DEFINE_SPINLOCK(pa_tlb_flush_lock);
 66
 67#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
 68int pa_serialize_tlb_flushes __ro_after_init;
 69#endif
 70
 71struct pdc_cache_info cache_info __ro_after_init;
 72#ifndef CONFIG_PA20
 73struct pdc_btlb_info btlb_info;
 74#endif
 75
 76DEFINE_STATIC_KEY_TRUE(parisc_has_cache);
 77DEFINE_STATIC_KEY_TRUE(parisc_has_dcache);
 78DEFINE_STATIC_KEY_TRUE(parisc_has_icache);
 79
 80static void cache_flush_local_cpu(void *dummy)
 81{
 82	if (static_branch_likely(&parisc_has_icache))
 83		flush_instruction_cache_local();
 84	if (static_branch_likely(&parisc_has_dcache))
 85		flush_data_cache_local(NULL);
 86}
 87
 88void flush_cache_all_local(void)
 89{
 90	cache_flush_local_cpu(NULL);
 91}
 92
 93void flush_cache_all(void)
 94{
 95	if (static_branch_likely(&parisc_has_cache))
 96		on_each_cpu(cache_flush_local_cpu, NULL, 1);
 97}
 98
 99static inline void flush_data_cache(void)
100{
101	if (static_branch_likely(&parisc_has_dcache))
102		on_each_cpu(flush_data_cache_local, NULL, 1);
103}
104
105
106/* Kernel virtual address of pfn.  */
107#define pfn_va(pfn)	__va(PFN_PHYS(pfn))
108
109void __update_cache(pte_t pte)
110{
111	unsigned long pfn = pte_pfn(pte);
112	struct folio *folio;
113	unsigned int nr;
114
115	/* We don't have pte special.  As a result, we can be called with
116	   an invalid pfn and we don't need to flush the kernel dcache page.
117	   This occurs with FireGL card in C8000.  */
118	if (!pfn_valid(pfn))
119		return;
120
121	folio = page_folio(pfn_to_page(pfn));
122	pfn = folio_pfn(folio);
123	nr = folio_nr_pages(folio);
124	if (folio_flush_mapping(folio) &&
125	    test_bit(PG_dcache_dirty, &folio->flags)) {
126		while (nr--)
127			flush_kernel_dcache_page_addr(pfn_va(pfn + nr));
128		clear_bit(PG_dcache_dirty, &folio->flags);
129	} else if (parisc_requires_coherency())
130		while (nr--)
131			flush_kernel_dcache_page_addr(pfn_va(pfn + nr));
132}
133
134void
135show_cache_info(struct seq_file *m)
136{
137	char buf[32];
138
139	seq_printf(m, "I-cache\t\t: %ld KB\n", 
140		cache_info.ic_size/1024 );
141	if (cache_info.dc_loop != 1)
142		snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop);
143	seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s, alias=%d)\n",
144		cache_info.dc_size/1024,
145		(cache_info.dc_conf.cc_wt ? "WT":"WB"),
146		(cache_info.dc_conf.cc_sh ? ", shared I/D":""),
147		((cache_info.dc_loop == 1) ? "direct mapped" : buf),
148		cache_info.dc_conf.cc_alias
149	);
150	seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n",
151		cache_info.it_size,
152		cache_info.dt_size,
153		cache_info.dt_conf.tc_sh ? " - shared with ITLB":""
154	);
155		
156#ifndef CONFIG_PA20
157	/* BTLB - Block TLB */
158	if (btlb_info.max_size==0) {
159		seq_printf(m, "BTLB\t\t: not supported\n" );
160	} else {
161		seq_printf(m, 
162		"BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n"
163		"BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n"
164		"BTLB var-entr.\t: %d instruction, %d data (%d combined)\n",
165		btlb_info.max_size, (int)4096,
166		btlb_info.max_size>>8,
167		btlb_info.fixed_range_info.num_i,
168		btlb_info.fixed_range_info.num_d,
169		btlb_info.fixed_range_info.num_comb, 
170		btlb_info.variable_range_info.num_i,
171		btlb_info.variable_range_info.num_d,
172		btlb_info.variable_range_info.num_comb
173		);
174	}
175#endif
176}
177
178void __init 
179parisc_cache_init(void)
180{
181	if (pdc_cache_info(&cache_info) < 0)
182		panic("parisc_cache_init: pdc_cache_info failed");
183
184#if 0
185	printk("ic_size %lx dc_size %lx it_size %lx\n",
186		cache_info.ic_size,
187		cache_info.dc_size,
188		cache_info.it_size);
189
190	printk("DC  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
191		cache_info.dc_base,
192		cache_info.dc_stride,
193		cache_info.dc_count,
194		cache_info.dc_loop);
195
196	printk("dc_conf = 0x%lx  alias %d blk %d line %d shift %d\n",
197		*(unsigned long *) (&cache_info.dc_conf),
198		cache_info.dc_conf.cc_alias,
199		cache_info.dc_conf.cc_block,
200		cache_info.dc_conf.cc_line,
201		cache_info.dc_conf.cc_shift);
202	printk("	wt %d sh %d cst %d hv %d\n",
203		cache_info.dc_conf.cc_wt,
204		cache_info.dc_conf.cc_sh,
205		cache_info.dc_conf.cc_cst,
206		cache_info.dc_conf.cc_hv);
207
208	printk("IC  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
209		cache_info.ic_base,
210		cache_info.ic_stride,
211		cache_info.ic_count,
212		cache_info.ic_loop);
213
214	printk("IT  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
215		cache_info.it_sp_base,
216		cache_info.it_sp_stride,
217		cache_info.it_sp_count,
218		cache_info.it_loop,
219		cache_info.it_off_base,
220		cache_info.it_off_stride,
221		cache_info.it_off_count);
222
223	printk("DT  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
224		cache_info.dt_sp_base,
225		cache_info.dt_sp_stride,
226		cache_info.dt_sp_count,
227		cache_info.dt_loop,
228		cache_info.dt_off_base,
229		cache_info.dt_off_stride,
230		cache_info.dt_off_count);
231
232	printk("ic_conf = 0x%lx  alias %d blk %d line %d shift %d\n",
233		*(unsigned long *) (&cache_info.ic_conf),
234		cache_info.ic_conf.cc_alias,
235		cache_info.ic_conf.cc_block,
236		cache_info.ic_conf.cc_line,
237		cache_info.ic_conf.cc_shift);
238	printk("	wt %d sh %d cst %d hv %d\n",
239		cache_info.ic_conf.cc_wt,
240		cache_info.ic_conf.cc_sh,
241		cache_info.ic_conf.cc_cst,
242		cache_info.ic_conf.cc_hv);
243
244	printk("D-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
245		cache_info.dt_conf.tc_sh,
246		cache_info.dt_conf.tc_page,
247		cache_info.dt_conf.tc_cst,
248		cache_info.dt_conf.tc_aid,
249		cache_info.dt_conf.tc_sr);
250
251	printk("I-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
252		cache_info.it_conf.tc_sh,
253		cache_info.it_conf.tc_page,
254		cache_info.it_conf.tc_cst,
255		cache_info.it_conf.tc_aid,
256		cache_info.it_conf.tc_sr);
257#endif
258
259	split_tlb = 0;
260	if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) {
261		if (cache_info.dt_conf.tc_sh == 2)
262			printk(KERN_WARNING "Unexpected TLB configuration. "
263			"Will flush I/D separately (could be optimized).\n");
264
265		split_tlb = 1;
266	}
267
268	/* "New and Improved" version from Jim Hull 
269	 *	(1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift))
270	 * The following CAFL_STRIDE is an optimized version, see
271	 * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html
272	 * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html
273	 */
274#define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift))
275	dcache_stride = CAFL_STRIDE(cache_info.dc_conf);
276	icache_stride = CAFL_STRIDE(cache_info.ic_conf);
277#undef CAFL_STRIDE
278
279	/* stride needs to be non-zero, otherwise cache flushes will not work */
280	WARN_ON(cache_info.dc_size && dcache_stride == 0);
281	WARN_ON(cache_info.ic_size && icache_stride == 0);
282
283	if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) ==
284						PDC_MODEL_NVA_UNSUPPORTED) {
285		printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n");
286#if 0
287		panic("SMP kernel required to avoid non-equivalent aliasing");
288#endif
289	}
290}
291
292void disable_sr_hashing(void)
293{
294	int srhash_type, retval;
295	unsigned long space_bits;
296
297	switch (boot_cpu_data.cpu_type) {
298	case pcx: /* We shouldn't get this far.  setup.c should prevent it. */
299		BUG();
300		return;
301
302	case pcxs:
303	case pcxt:
304	case pcxt_:
305		srhash_type = SRHASH_PCXST;
306		break;
307
308	case pcxl:
309		srhash_type = SRHASH_PCXL;
310		break;
311
312	case pcxl2: /* pcxl2 doesn't support space register hashing */
313		return;
314
315	default: /* Currently all PA2.0 machines use the same ins. sequence */
316		srhash_type = SRHASH_PA20;
317		break;
318	}
319
320	disable_sr_hashing_asm(srhash_type);
321
322	retval = pdc_spaceid_bits(&space_bits);
323	/* If this procedure isn't implemented, don't panic. */
324	if (retval < 0 && retval != PDC_BAD_OPTION)
325		panic("pdc_spaceid_bits call failed.\n");
326	if (space_bits != 0)
327		panic("SpaceID hashing is still on!\n");
328}
329
330static inline void
331__flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr,
332		   unsigned long physaddr)
333{
334	if (!static_branch_likely(&parisc_has_cache))
335		return;
336
337	/*
338	 * The TLB is the engine of coherence on parisc.  The CPU is
339	 * entitled to speculate any page with a TLB mapping, so here
340	 * we kill the mapping then flush the page along a special flush
341	 * only alias mapping. This guarantees that the page is no-longer
342	 * in the cache for any process and nor may it be speculatively
343	 * read in (until the user or kernel specifically accesses it,
344	 * of course).
345	 */
346	flush_tlb_page(vma, vmaddr);
347
348	preempt_disable();
349	flush_dcache_page_asm(physaddr, vmaddr);
350	if (vma->vm_flags & VM_EXEC)
351		flush_icache_page_asm(physaddr, vmaddr);
352	preempt_enable();
353}
354
355static void flush_kernel_dcache_page_addr(const void *addr)
356{
357	unsigned long vaddr = (unsigned long)addr;
358	unsigned long flags;
 
 
359
360	/* Purge TLB entry to remove translation on all CPUs */
361	purge_tlb_start(flags);
362	pdtlb(SR_KERNEL, addr);
363	purge_tlb_end(flags);
364
365	/* Use tmpalias flush to prevent data cache move-in */
366	preempt_disable();
367	flush_dcache_page_asm(__pa(vaddr), vaddr);
368	preempt_enable();
369}
370
371static void flush_kernel_icache_page_addr(const void *addr)
372{
373	unsigned long vaddr = (unsigned long)addr;
374	unsigned long flags;
 
 
 
 
 
 
375
376	/* Purge TLB entry to remove translation on all CPUs */
377	purge_tlb_start(flags);
378	pdtlb(SR_KERNEL, addr);
379	purge_tlb_end(flags);
380
381	/* Use tmpalias flush to prevent instruction cache move-in */
382	preempt_disable();
383	flush_icache_page_asm(__pa(vaddr), vaddr);
384	preempt_enable();
385}
 
 
 
 
386
387void kunmap_flush_on_unmap(const void *addr)
388{
389	flush_kernel_dcache_page_addr(addr);
390}
391EXPORT_SYMBOL(kunmap_flush_on_unmap);
392
393void flush_icache_pages(struct vm_area_struct *vma, struct page *page,
394		unsigned int nr)
395{
396	void *kaddr = page_address(page);
397
398	for (;;) {
399		flush_kernel_dcache_page_addr(kaddr);
400		flush_kernel_icache_page_addr(kaddr);
401		if (--nr == 0)
402			break;
403		kaddr += PAGE_SIZE;
404	}
405}
406
407/*
408 * Walk page directory for MM to find PTEP pointer for address ADDR.
409 */
410static inline pte_t *get_ptep(struct mm_struct *mm, unsigned long addr)
411{
412	pte_t *ptep = NULL;
413	pgd_t *pgd = mm->pgd;
414	p4d_t *p4d;
415	pud_t *pud;
416	pmd_t *pmd;
417
418	if (!pgd_none(*pgd)) {
419		p4d = p4d_offset(pgd, addr);
420		if (!p4d_none(*p4d)) {
421			pud = pud_offset(p4d, addr);
422			if (!pud_none(*pud)) {
423				pmd = pmd_offset(pud, addr);
424				if (!pmd_none(*pmd))
425					ptep = pte_offset_map(pmd, addr);
426			}
427		}
428	}
429	return ptep;
430}
431
432static inline bool pte_needs_flush(pte_t pte)
433{
434	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE))
435		== (_PAGE_PRESENT | _PAGE_ACCESSED);
436}
437
438/*
439 * Return user physical address. Returns 0 if page is not present.
440 */
441static inline unsigned long get_upa(struct mm_struct *mm, unsigned long addr)
442{
443	unsigned long flags, space, pgd, prot, pa;
444#ifdef CONFIG_TLB_PTLOCK
445	unsigned long pgd_lock;
446#endif
447
448	/* Save context */
449	local_irq_save(flags);
450	prot = mfctl(8);
451	space = mfsp(SR_USER);
452	pgd = mfctl(25);
453#ifdef CONFIG_TLB_PTLOCK
454	pgd_lock = mfctl(28);
455#endif
456
457	/* Set context for lpa_user */
458	switch_mm_irqs_off(NULL, mm, NULL);
459	pa = lpa_user(addr);
460
461	/* Restore previous context */
462#ifdef CONFIG_TLB_PTLOCK
463	mtctl(pgd_lock, 28);
464#endif
465	mtctl(pgd, 25);
466	mtsp(space, SR_USER);
467	mtctl(prot, 8);
468	local_irq_restore(flags);
469
470	return pa;
471}
472
473void flush_dcache_folio(struct folio *folio)
474{
475	struct address_space *mapping = folio_flush_mapping(folio);
476	struct vm_area_struct *vma;
477	unsigned long addr, old_addr = 0;
478	void *kaddr;
479	unsigned long count = 0;
480	unsigned long i, nr, flags;
481	pgoff_t pgoff;
482
483	if (mapping && !mapping_mapped(mapping)) {
484		set_bit(PG_dcache_dirty, &folio->flags);
485		return;
486	}
487
488	nr = folio_nr_pages(folio);
489	kaddr = folio_address(folio);
490	for (i = 0; i < nr; i++)
491		flush_kernel_dcache_page_addr(kaddr + i * PAGE_SIZE);
492
493	if (!mapping)
494		return;
495
496	pgoff = folio->index;
497
498	/*
499	 * We have carefully arranged in arch_get_unmapped_area() that
500	 * *any* mappings of a file are always congruently mapped (whether
501	 * declared as MAP_PRIVATE or MAP_SHARED), so we only need
502	 * to flush one address here for them all to become coherent
503	 * on machines that support equivalent aliasing
504	 */
505	flush_dcache_mmap_lock_irqsave(mapping, flags);
506	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff + nr - 1) {
507		unsigned long offset = pgoff - vma->vm_pgoff;
508		unsigned long pfn = folio_pfn(folio);
509
510		addr = vma->vm_start;
511		nr = folio_nr_pages(folio);
512		if (offset > -nr) {
513			pfn -= offset;
514			nr += offset;
515		} else {
516			addr += offset * PAGE_SIZE;
517		}
518		if (addr + nr * PAGE_SIZE > vma->vm_end)
519			nr = (vma->vm_end - addr) / PAGE_SIZE;
520
521		if (old_addr == 0 || (old_addr & (SHM_COLOUR - 1))
522					!= (addr & (SHM_COLOUR - 1))) {
523			for (i = 0; i < nr; i++)
524				__flush_cache_page(vma,
525					addr + i * PAGE_SIZE,
526					(pfn + i) * PAGE_SIZE);
 
 
 
 
 
 
 
527			/*
528			 * Software is allowed to have any number
529			 * of private mappings to a page.
 
 
 
 
 
 
 
530			 */
531			if (!(vma->vm_flags & VM_SHARED))
532				continue;
533			if (old_addr)
534				pr_err("INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %pD\n",
535					old_addr, addr, vma->vm_file);
536			if (nr == folio_nr_pages(folio))
537				old_addr = addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
538		}
539		WARN_ON(++count == 4096);
540	}
541	flush_dcache_mmap_unlock_irqrestore(mapping, flags);
542}
543EXPORT_SYMBOL(flush_dcache_folio);
544
545/* Defined in arch/parisc/kernel/pacache.S */
546EXPORT_SYMBOL(flush_kernel_dcache_range_asm);
547EXPORT_SYMBOL(flush_kernel_icache_range_asm);
548
549#define FLUSH_THRESHOLD 0x80000 /* 0.5MB */
550static unsigned long parisc_cache_flush_threshold __ro_after_init = FLUSH_THRESHOLD;
551
552#define FLUSH_TLB_THRESHOLD (16*1024) /* 16 KiB minimum TLB threshold */
553static unsigned long parisc_tlb_flush_threshold __ro_after_init = ~0UL;
554
555void __init parisc_setup_cache_timing(void)
556{
557	unsigned long rangetime, alltime;
558	unsigned long size;
559	unsigned long threshold, threshold2;
560
561	alltime = mfctl(16);
562	flush_data_cache();
563	alltime = mfctl(16) - alltime;
564
565	size = (unsigned long)(_end - _text);
566	rangetime = mfctl(16);
567	flush_kernel_dcache_range((unsigned long)_text, size);
568	rangetime = mfctl(16) - rangetime;
569
570	printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n",
571		alltime, size, rangetime);
572
573	threshold = L1_CACHE_ALIGN((unsigned long)((uint64_t)size * alltime / rangetime));
574	pr_info("Calculated flush threshold is %lu KiB\n",
575		threshold/1024);
576
577	/*
578	 * The threshold computed above isn't very reliable. The following
579	 * heuristic works reasonably well on c8000/rp3440.
580	 */
581	threshold2 = cache_info.dc_size * num_online_cpus();
582	parisc_cache_flush_threshold = threshold2;
583	printk(KERN_INFO "Cache flush threshold set to %lu KiB\n",
584		parisc_cache_flush_threshold/1024);
585
586	/* calculate TLB flush threshold */
587
588	/* On SMP machines, skip the TLB measure of kernel text which
589	 * has been mapped as huge pages. */
590	if (num_online_cpus() > 1 && !parisc_requires_coherency()) {
591		threshold = max(cache_info.it_size, cache_info.dt_size);
592		threshold *= PAGE_SIZE;
593		threshold /= num_online_cpus();
594		goto set_tlb_threshold;
595	}
596
597	size = (unsigned long)_end - (unsigned long)_text;
598	rangetime = mfctl(16);
599	flush_tlb_kernel_range((unsigned long)_text, (unsigned long)_end);
600	rangetime = mfctl(16) - rangetime;
601
602	alltime = mfctl(16);
603	flush_tlb_all();
604	alltime = mfctl(16) - alltime;
605
606	printk(KERN_INFO "Whole TLB flush %lu cycles, Range flush %lu bytes %lu cycles\n",
607		alltime, size, rangetime);
608
609	threshold = PAGE_ALIGN((num_online_cpus() * size * alltime) / rangetime);
610	printk(KERN_INFO "Calculated TLB flush threshold %lu KiB\n",
611		threshold/1024);
612
613set_tlb_threshold:
614	parisc_tlb_flush_threshold = max(threshold, FLUSH_TLB_THRESHOLD);
 
 
 
 
615	printk(KERN_INFO "TLB flush threshold set to %lu KiB\n",
616		parisc_tlb_flush_threshold/1024);
617}
618
619extern void purge_kernel_dcache_page_asm(unsigned long);
620extern void clear_user_page_asm(void *, unsigned long);
621extern void copy_user_page_asm(void *, void *, unsigned long);
622
 
 
 
 
 
 
 
 
 
 
 
623static void flush_cache_page_if_present(struct vm_area_struct *vma,
624	unsigned long vmaddr)
625{
626#if CONFIG_FLUSH_PAGE_ACCESSED
627	bool needs_flush = false;
628	pte_t *ptep, pte;
629
 
 
 
 
 
630	ptep = get_ptep(vma->vm_mm, vmaddr);
631	if (ptep) {
632		pte = ptep_get(ptep);
633		needs_flush = pte_needs_flush(pte);
634		pte_unmap(ptep);
635	}
636	if (needs_flush)
637		__flush_cache_page(vma, vmaddr, PFN_PHYS(pte_pfn(pte)));
638#else
639	struct mm_struct *mm = vma->vm_mm;
640	unsigned long physaddr = get_upa(mm, vmaddr);
641
642	if (physaddr)
643		__flush_cache_page(vma, vmaddr, PAGE_ALIGN_DOWN(physaddr));
644#endif
645}
646
647void copy_user_highpage(struct page *to, struct page *from,
648	unsigned long vaddr, struct vm_area_struct *vma)
649{
650	void *kto, *kfrom;
651
652	kfrom = kmap_local_page(from);
653	kto = kmap_local_page(to);
654	__flush_cache_page(vma, vaddr, PFN_PHYS(page_to_pfn(from)));
655	copy_page_asm(kto, kfrom);
656	kunmap_local(kto);
657	kunmap_local(kfrom);
658}
659
660void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
661		unsigned long user_vaddr, void *dst, void *src, int len)
662{
663	__flush_cache_page(vma, user_vaddr, PFN_PHYS(page_to_pfn(page)));
664	memcpy(dst, src, len);
665	flush_kernel_dcache_page_addr(PTR_PAGE_ALIGN_DOWN(dst));
666}
667
668void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
669		unsigned long user_vaddr, void *dst, void *src, int len)
670{
671	__flush_cache_page(vma, user_vaddr, PFN_PHYS(page_to_pfn(page)));
672	memcpy(dst, src, len);
673	flush_kernel_dcache_page_addr(PTR_PAGE_ALIGN_DOWN(src));
674}
675
676/* __flush_tlb_range()
677 *
678 * returns 1 if all TLBs were flushed.
679 */
680int __flush_tlb_range(unsigned long sid, unsigned long start,
681		      unsigned long end)
682{
683	unsigned long flags;
684
685	if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
686	    end - start >= parisc_tlb_flush_threshold) {
687		flush_tlb_all();
688		return 1;
689	}
690
691	/* Purge TLB entries for small ranges using the pdtlb and
692	   pitlb instructions.  These instructions execute locally
693	   but cause a purge request to be broadcast to other TLBs.  */
694	while (start < end) {
695		purge_tlb_start(flags);
696		mtsp(sid, SR_TEMP1);
697		pdtlb(SR_TEMP1, start);
698		pitlb(SR_TEMP1, start);
699		purge_tlb_end(flags);
700		start += PAGE_SIZE;
701	}
702	return 0;
703}
704
705static void flush_cache_pages(struct vm_area_struct *vma, unsigned long start, unsigned long end)
706{
707	unsigned long addr;
 
708
709	for (addr = start; addr < end; addr += PAGE_SIZE)
710		flush_cache_page_if_present(vma, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711}
712
713static inline unsigned long mm_total_size(struct mm_struct *mm)
714{
715	struct vm_area_struct *vma;
716	unsigned long usize = 0;
717	VMA_ITERATOR(vmi, mm, 0);
718
719	for_each_vma(vmi, vma) {
720		if (usize >= parisc_cache_flush_threshold)
721			break;
722		usize += vma->vm_end - vma->vm_start;
723	}
724	return usize;
725}
726
727void flush_cache_mm(struct mm_struct *mm)
728{
729	struct vm_area_struct *vma;
730	VMA_ITERATOR(vmi, mm, 0);
731
732	/*
733	 * Flushing the whole cache on each cpu takes forever on
734	 * rp3440, etc. So, avoid it if the mm isn't too big.
735	 *
736	 * Note that we must flush the entire cache on machines
737	 * with aliasing caches to prevent random segmentation
738	 * faults.
739	 */
740	if (!parisc_requires_coherency()
741	    ||  mm_total_size(mm) >= parisc_cache_flush_threshold) {
742		if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
743			return;
744		flush_tlb_all();
745		flush_cache_all();
746		return;
747	}
748
749	/* Flush mm */
750	for_each_vma(vmi, vma)
751		flush_cache_pages(vma, vma->vm_start, vma->vm_end);
752}
753
754void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
755{
756	if (!parisc_requires_coherency()
757	    || end - start >= parisc_cache_flush_threshold) {
758		if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
759			return;
760		flush_tlb_range(vma, start, end);
761		if (vma->vm_flags & VM_EXEC)
762			flush_cache_all();
763		else
764			flush_data_cache();
765		return;
766	}
767
768	flush_cache_pages(vma, start & PAGE_MASK, end);
769}
770
771void flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn)
772{
773	__flush_cache_page(vma, vmaddr, PFN_PHYS(pfn));
 
 
 
 
 
774}
775
776void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
777{
778	if (!PageAnon(page))
779		return;
780
781	__flush_cache_page(vma, vmaddr, PFN_PHYS(page_to_pfn(page)));
782}
783
784int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long addr,
785			   pte_t *ptep)
786{
787	pte_t pte = ptep_get(ptep);
788
789	if (!pte_young(pte))
790		return 0;
791	set_pte(ptep, pte_mkold(pte));
792#if CONFIG_FLUSH_PAGE_ACCESSED
793	__flush_cache_page(vma, addr, PFN_PHYS(pte_pfn(pte)));
794#endif
795	return 1;
796}
797
798/*
799 * After a PTE is cleared, we have no way to flush the cache for
800 * the physical page. On PA8800 and PA8900 processors, these lines
801 * can cause random cache corruption. Thus, we must flush the cache
802 * as well as the TLB when clearing a PTE that's valid.
803 */
804pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long addr,
805		       pte_t *ptep)
806{
807	struct mm_struct *mm = (vma)->vm_mm;
808	pte_t pte = ptep_get_and_clear(mm, addr, ptep);
809	unsigned long pfn = pte_pfn(pte);
810
811	if (pfn_valid(pfn))
812		__flush_cache_page(vma, addr, PFN_PHYS(pfn));
813	else if (pte_accessible(mm, pte))
814		flush_tlb_page(vma, addr);
815
816	return pte;
817}
818
819/*
820 * The physical address for pages in the ioremap case can be obtained
821 * from the vm_struct struct. I wasn't able to successfully handle the
822 * vmalloc and vmap cases. We have an array of struct page pointers in
823 * the uninitialized vmalloc case but the flush failed using page_to_pfn.
824 */
825void flush_cache_vmap(unsigned long start, unsigned long end)
826{
827	unsigned long addr, physaddr;
828	struct vm_struct *vm;
829
830	/* Prevent cache move-in */
831	flush_tlb_kernel_range(start, end);
832
833	if (end - start >= parisc_cache_flush_threshold) {
834		flush_cache_all();
835		return;
836	}
837
838	if (WARN_ON_ONCE(!is_vmalloc_addr((void *)start))) {
839		flush_cache_all();
840		return;
841	}
842
843	vm = find_vm_area((void *)start);
844	if (WARN_ON_ONCE(!vm)) {
845		flush_cache_all();
846		return;
847	}
848
849	/* The physical addresses of IOREMAP regions are contiguous */
850	if (vm->flags & VM_IOREMAP) {
851		physaddr = vm->phys_addr;
852		for (addr = start; addr < end; addr += PAGE_SIZE) {
853			preempt_disable();
854			flush_dcache_page_asm(physaddr, start);
855			flush_icache_page_asm(physaddr, start);
856			preempt_enable();
857			physaddr += PAGE_SIZE;
858		}
859		return;
860	}
861
862	flush_cache_all();
863}
864EXPORT_SYMBOL(flush_cache_vmap);
865
866/*
867 * The vm_struct has been retired and the page table is set up. The
868 * last page in the range is a guard page. Its physical address can't
869 * be determined using lpa, so there is no way to flush the range
870 * using flush_dcache_page_asm.
871 */
872void flush_cache_vunmap(unsigned long start, unsigned long end)
873{
874	/* Prevent cache move-in */
875	flush_tlb_kernel_range(start, end);
876	flush_data_cache();
877}
878EXPORT_SYMBOL(flush_cache_vunmap);
879
880/*
881 * On systems with PA8800/PA8900 processors, there is no way to flush
882 * a vmap range other than using the architected loop to flush the
883 * entire cache. The page directory is not set up, so we can't use
884 * fdc, etc. FDCE/FICE don't work to flush a portion of the cache.
885 * L2 is physically indexed but FDCE/FICE instructions in virtual
886 * mode output their virtual address on the core bus, not their
887 * real address. As a result, the L2 cache index formed from the
888 * virtual address will most likely not be the same as the L2 index
889 * formed from the real address.
890 */
891void flush_kernel_vmap_range(void *vaddr, int size)
892{
893	unsigned long start = (unsigned long)vaddr;
894	unsigned long end = start + size;
895
896	flush_tlb_kernel_range(start, end);
897
898	if (!static_branch_likely(&parisc_has_dcache))
899		return;
900
901	/* If interrupts are disabled, we can only do local flush */
902	if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) {
903		flush_data_cache_local(NULL);
904		return;
905	}
906
907	flush_data_cache();
 
908}
909EXPORT_SYMBOL(flush_kernel_vmap_range);
910
911void invalidate_kernel_vmap_range(void *vaddr, int size)
912{
913	unsigned long start = (unsigned long)vaddr;
914	unsigned long end = start + size;
915
916	/* Ensure DMA is complete */
917	asm_syncdma();
918
919	flush_tlb_kernel_range(start, end);
920
921	if (!static_branch_likely(&parisc_has_dcache))
922		return;
923
924	/* If interrupts are disabled, we can only do local flush */
925	if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) {
926		flush_data_cache_local(NULL);
927		return;
928	}
929
930	flush_data_cache();
 
931}
932EXPORT_SYMBOL(invalidate_kernel_vmap_range);
933
934
935SYSCALL_DEFINE3(cacheflush, unsigned long, addr, unsigned long, bytes,
936	unsigned int, cache)
937{
938	unsigned long start, end;
939	ASM_EXCEPTIONTABLE_VAR(error);
940
941	if (bytes == 0)
942		return 0;
943	if (!access_ok((void __user *) addr, bytes))
944		return -EFAULT;
945
946	end = addr + bytes;
947
948	if (cache & DCACHE) {
949		start = addr;
950		__asm__ __volatile__ (
951#ifdef CONFIG_64BIT
952			"1: cmpb,*<<,n	%0,%2,1b\n"
953#else
954			"1: cmpb,<<,n	%0,%2,1b\n"
955#endif
956			"   fic,m	%3(%4,%0)\n"
957			"2: sync\n"
958			ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1")
959			: "+r" (start), "+r" (error)
960			: "r" (end), "r" (dcache_stride), "i" (SR_USER));
961	}
962
963	if (cache & ICACHE && error == 0) {
964		start = addr;
965		__asm__ __volatile__ (
966#ifdef CONFIG_64BIT
967			"1: cmpb,*<<,n	%0,%2,1b\n"
968#else
969			"1: cmpb,<<,n	%0,%2,1b\n"
970#endif
971			"   fdc,m	%3(%4,%0)\n"
972			"2: sync\n"
973			ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1")
974			: "+r" (start), "+r" (error)
975			: "r" (end), "r" (icache_stride), "i" (SR_USER));
976	}
977
978	return error;
979}
v6.8
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999)
  7 * Copyright (C) 1999 SuSE GmbH Nuernberg
  8 * Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org)
  9 *
 10 * Cache and TLB management
 11 *
 12 */
 13 
 14#include <linux/init.h>
 15#include <linux/kernel.h>
 16#include <linux/mm.h>
 17#include <linux/module.h>
 18#include <linux/seq_file.h>
 19#include <linux/pagemap.h>
 20#include <linux/sched.h>
 21#include <linux/sched/mm.h>
 22#include <linux/syscalls.h>
 
 23#include <asm/pdc.h>
 24#include <asm/cache.h>
 25#include <asm/cacheflush.h>
 26#include <asm/tlbflush.h>
 27#include <asm/page.h>
 28#include <asm/processor.h>
 29#include <asm/sections.h>
 30#include <asm/shmparam.h>
 31#include <asm/mmu_context.h>
 32#include <asm/cachectl.h>
 33
 
 
 
 
 
 
 
 
 
 
 34int split_tlb __ro_after_init;
 35int dcache_stride __ro_after_init;
 36int icache_stride __ro_after_init;
 37EXPORT_SYMBOL(dcache_stride);
 38
 
 39void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
 40EXPORT_SYMBOL(flush_dcache_page_asm);
 41void purge_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
 42void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr);
 43
 44/* Internal implementation in arch/parisc/kernel/pacache.S */
 45void flush_data_cache_local(void *);  /* flushes local data-cache only */
 46void flush_instruction_cache_local(void); /* flushes local code-cache only */
 47
 
 
 48/* On some machines (i.e., ones with the Merced bus), there can be
 49 * only a single PxTLB broadcast at a time; this must be guaranteed
 50 * by software. We need a spinlock around all TLB flushes to ensure
 51 * this.
 52 */
 53DEFINE_SPINLOCK(pa_tlb_flush_lock);
 54
 55#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
 56int pa_serialize_tlb_flushes __ro_after_init;
 57#endif
 58
 59struct pdc_cache_info cache_info __ro_after_init;
 60#ifndef CONFIG_PA20
 61struct pdc_btlb_info btlb_info;
 62#endif
 63
 64DEFINE_STATIC_KEY_TRUE(parisc_has_cache);
 65DEFINE_STATIC_KEY_TRUE(parisc_has_dcache);
 66DEFINE_STATIC_KEY_TRUE(parisc_has_icache);
 67
 68static void cache_flush_local_cpu(void *dummy)
 69{
 70	if (static_branch_likely(&parisc_has_icache))
 71		flush_instruction_cache_local();
 72	if (static_branch_likely(&parisc_has_dcache))
 73		flush_data_cache_local(NULL);
 74}
 75
 76void flush_cache_all_local(void)
 77{
 78	cache_flush_local_cpu(NULL);
 79}
 80
 81void flush_cache_all(void)
 82{
 83	if (static_branch_likely(&parisc_has_cache))
 84		on_each_cpu(cache_flush_local_cpu, NULL, 1);
 85}
 86
 87static inline void flush_data_cache(void)
 88{
 89	if (static_branch_likely(&parisc_has_dcache))
 90		on_each_cpu(flush_data_cache_local, NULL, 1);
 91}
 92
 93
 94/* Kernel virtual address of pfn.  */
 95#define pfn_va(pfn)	__va(PFN_PHYS(pfn))
 96
 97void __update_cache(pte_t pte)
 98{
 99	unsigned long pfn = pte_pfn(pte);
100	struct folio *folio;
101	unsigned int nr;
102
103	/* We don't have pte special.  As a result, we can be called with
104	   an invalid pfn and we don't need to flush the kernel dcache page.
105	   This occurs with FireGL card in C8000.  */
106	if (!pfn_valid(pfn))
107		return;
108
109	folio = page_folio(pfn_to_page(pfn));
110	pfn = folio_pfn(folio);
111	nr = folio_nr_pages(folio);
112	if (folio_flush_mapping(folio) &&
113	    test_bit(PG_dcache_dirty, &folio->flags)) {
114		while (nr--)
115			flush_kernel_dcache_page_addr(pfn_va(pfn + nr));
116		clear_bit(PG_dcache_dirty, &folio->flags);
117	} else if (parisc_requires_coherency())
118		while (nr--)
119			flush_kernel_dcache_page_addr(pfn_va(pfn + nr));
120}
121
122void
123show_cache_info(struct seq_file *m)
124{
125	char buf[32];
126
127	seq_printf(m, "I-cache\t\t: %ld KB\n", 
128		cache_info.ic_size/1024 );
129	if (cache_info.dc_loop != 1)
130		snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop);
131	seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s, alias=%d)\n",
132		cache_info.dc_size/1024,
133		(cache_info.dc_conf.cc_wt ? "WT":"WB"),
134		(cache_info.dc_conf.cc_sh ? ", shared I/D":""),
135		((cache_info.dc_loop == 1) ? "direct mapped" : buf),
136		cache_info.dc_conf.cc_alias
137	);
138	seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n",
139		cache_info.it_size,
140		cache_info.dt_size,
141		cache_info.dt_conf.tc_sh ? " - shared with ITLB":""
142	);
143		
144#ifndef CONFIG_PA20
145	/* BTLB - Block TLB */
146	if (btlb_info.max_size==0) {
147		seq_printf(m, "BTLB\t\t: not supported\n" );
148	} else {
149		seq_printf(m, 
150		"BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n"
151		"BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n"
152		"BTLB var-entr.\t: %d instruction, %d data (%d combined)\n",
153		btlb_info.max_size, (int)4096,
154		btlb_info.max_size>>8,
155		btlb_info.fixed_range_info.num_i,
156		btlb_info.fixed_range_info.num_d,
157		btlb_info.fixed_range_info.num_comb, 
158		btlb_info.variable_range_info.num_i,
159		btlb_info.variable_range_info.num_d,
160		btlb_info.variable_range_info.num_comb
161		);
162	}
163#endif
164}
165
166void __init 
167parisc_cache_init(void)
168{
169	if (pdc_cache_info(&cache_info) < 0)
170		panic("parisc_cache_init: pdc_cache_info failed");
171
172#if 0
173	printk("ic_size %lx dc_size %lx it_size %lx\n",
174		cache_info.ic_size,
175		cache_info.dc_size,
176		cache_info.it_size);
177
178	printk("DC  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
179		cache_info.dc_base,
180		cache_info.dc_stride,
181		cache_info.dc_count,
182		cache_info.dc_loop);
183
184	printk("dc_conf = 0x%lx  alias %d blk %d line %d shift %d\n",
185		*(unsigned long *) (&cache_info.dc_conf),
186		cache_info.dc_conf.cc_alias,
187		cache_info.dc_conf.cc_block,
188		cache_info.dc_conf.cc_line,
189		cache_info.dc_conf.cc_shift);
190	printk("	wt %d sh %d cst %d hv %d\n",
191		cache_info.dc_conf.cc_wt,
192		cache_info.dc_conf.cc_sh,
193		cache_info.dc_conf.cc_cst,
194		cache_info.dc_conf.cc_hv);
195
196	printk("IC  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
197		cache_info.ic_base,
198		cache_info.ic_stride,
199		cache_info.ic_count,
200		cache_info.ic_loop);
201
202	printk("IT  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
203		cache_info.it_sp_base,
204		cache_info.it_sp_stride,
205		cache_info.it_sp_count,
206		cache_info.it_loop,
207		cache_info.it_off_base,
208		cache_info.it_off_stride,
209		cache_info.it_off_count);
210
211	printk("DT  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
212		cache_info.dt_sp_base,
213		cache_info.dt_sp_stride,
214		cache_info.dt_sp_count,
215		cache_info.dt_loop,
216		cache_info.dt_off_base,
217		cache_info.dt_off_stride,
218		cache_info.dt_off_count);
219
220	printk("ic_conf = 0x%lx  alias %d blk %d line %d shift %d\n",
221		*(unsigned long *) (&cache_info.ic_conf),
222		cache_info.ic_conf.cc_alias,
223		cache_info.ic_conf.cc_block,
224		cache_info.ic_conf.cc_line,
225		cache_info.ic_conf.cc_shift);
226	printk("	wt %d sh %d cst %d hv %d\n",
227		cache_info.ic_conf.cc_wt,
228		cache_info.ic_conf.cc_sh,
229		cache_info.ic_conf.cc_cst,
230		cache_info.ic_conf.cc_hv);
231
232	printk("D-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
233		cache_info.dt_conf.tc_sh,
234		cache_info.dt_conf.tc_page,
235		cache_info.dt_conf.tc_cst,
236		cache_info.dt_conf.tc_aid,
237		cache_info.dt_conf.tc_sr);
238
239	printk("I-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
240		cache_info.it_conf.tc_sh,
241		cache_info.it_conf.tc_page,
242		cache_info.it_conf.tc_cst,
243		cache_info.it_conf.tc_aid,
244		cache_info.it_conf.tc_sr);
245#endif
246
247	split_tlb = 0;
248	if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) {
249		if (cache_info.dt_conf.tc_sh == 2)
250			printk(KERN_WARNING "Unexpected TLB configuration. "
251			"Will flush I/D separately (could be optimized).\n");
252
253		split_tlb = 1;
254	}
255
256	/* "New and Improved" version from Jim Hull 
257	 *	(1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift))
258	 * The following CAFL_STRIDE is an optimized version, see
259	 * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html
260	 * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html
261	 */
262#define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift))
263	dcache_stride = CAFL_STRIDE(cache_info.dc_conf);
264	icache_stride = CAFL_STRIDE(cache_info.ic_conf);
265#undef CAFL_STRIDE
266
267	/* stride needs to be non-zero, otherwise cache flushes will not work */
268	WARN_ON(cache_info.dc_size && dcache_stride == 0);
269	WARN_ON(cache_info.ic_size && icache_stride == 0);
270
271	if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) ==
272						PDC_MODEL_NVA_UNSUPPORTED) {
273		printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n");
274#if 0
275		panic("SMP kernel required to avoid non-equivalent aliasing");
276#endif
277	}
278}
279
280void disable_sr_hashing(void)
281{
282	int srhash_type, retval;
283	unsigned long space_bits;
284
285	switch (boot_cpu_data.cpu_type) {
286	case pcx: /* We shouldn't get this far.  setup.c should prevent it. */
287		BUG();
288		return;
289
290	case pcxs:
291	case pcxt:
292	case pcxt_:
293		srhash_type = SRHASH_PCXST;
294		break;
295
296	case pcxl:
297		srhash_type = SRHASH_PCXL;
298		break;
299
300	case pcxl2: /* pcxl2 doesn't support space register hashing */
301		return;
302
303	default: /* Currently all PA2.0 machines use the same ins. sequence */
304		srhash_type = SRHASH_PA20;
305		break;
306	}
307
308	disable_sr_hashing_asm(srhash_type);
309
310	retval = pdc_spaceid_bits(&space_bits);
311	/* If this procedure isn't implemented, don't panic. */
312	if (retval < 0 && retval != PDC_BAD_OPTION)
313		panic("pdc_spaceid_bits call failed.\n");
314	if (space_bits != 0)
315		panic("SpaceID hashing is still on!\n");
316}
317
318static inline void
319__flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr,
320		   unsigned long physaddr)
321{
322	if (!static_branch_likely(&parisc_has_cache))
323		return;
 
 
 
 
 
 
 
 
 
 
 
 
324	preempt_disable();
325	flush_dcache_page_asm(physaddr, vmaddr);
326	if (vma->vm_flags & VM_EXEC)
327		flush_icache_page_asm(physaddr, vmaddr);
328	preempt_enable();
329}
330
331static void flush_user_cache_page(struct vm_area_struct *vma, unsigned long vmaddr)
332{
333	unsigned long flags, space, pgd, prot;
334#ifdef CONFIG_TLB_PTLOCK
335	unsigned long pgd_lock;
336#endif
337
338	vmaddr &= PAGE_MASK;
 
 
 
339
 
340	preempt_disable();
 
 
 
341
342	/* Set context for flush */
343	local_irq_save(flags);
344	prot = mfctl(8);
345	space = mfsp(SR_USER);
346	pgd = mfctl(25);
347#ifdef CONFIG_TLB_PTLOCK
348	pgd_lock = mfctl(28);
349#endif
350	switch_mm_irqs_off(NULL, vma->vm_mm, NULL);
351	local_irq_restore(flags);
352
353	flush_user_dcache_range_asm(vmaddr, vmaddr + PAGE_SIZE);
354	if (vma->vm_flags & VM_EXEC)
355		flush_user_icache_range_asm(vmaddr, vmaddr + PAGE_SIZE);
356	flush_tlb_page(vma, vmaddr);
357
358	/* Restore previous context */
359	local_irq_save(flags);
360#ifdef CONFIG_TLB_PTLOCK
361	mtctl(pgd_lock, 28);
362#endif
363	mtctl(pgd, 25);
364	mtsp(space, SR_USER);
365	mtctl(prot, 8);
366	local_irq_restore(flags);
367
368	preempt_enable();
 
 
369}
 
370
371void flush_icache_pages(struct vm_area_struct *vma, struct page *page,
372		unsigned int nr)
373{
374	void *kaddr = page_address(page);
375
376	for (;;) {
377		flush_kernel_dcache_page_addr(kaddr);
378		flush_kernel_icache_page(kaddr);
379		if (--nr == 0)
380			break;
381		kaddr += PAGE_SIZE;
382	}
383}
384
 
 
 
385static inline pte_t *get_ptep(struct mm_struct *mm, unsigned long addr)
386{
387	pte_t *ptep = NULL;
388	pgd_t *pgd = mm->pgd;
389	p4d_t *p4d;
390	pud_t *pud;
391	pmd_t *pmd;
392
393	if (!pgd_none(*pgd)) {
394		p4d = p4d_offset(pgd, addr);
395		if (!p4d_none(*p4d)) {
396			pud = pud_offset(p4d, addr);
397			if (!pud_none(*pud)) {
398				pmd = pmd_offset(pud, addr);
399				if (!pmd_none(*pmd))
400					ptep = pte_offset_map(pmd, addr);
401			}
402		}
403	}
404	return ptep;
405}
406
407static inline bool pte_needs_flush(pte_t pte)
408{
409	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE))
410		== (_PAGE_PRESENT | _PAGE_ACCESSED);
411}
412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413void flush_dcache_folio(struct folio *folio)
414{
415	struct address_space *mapping = folio_flush_mapping(folio);
416	struct vm_area_struct *vma;
417	unsigned long addr, old_addr = 0;
418	void *kaddr;
419	unsigned long count = 0;
420	unsigned long i, nr, flags;
421	pgoff_t pgoff;
422
423	if (mapping && !mapping_mapped(mapping)) {
424		set_bit(PG_dcache_dirty, &folio->flags);
425		return;
426	}
427
428	nr = folio_nr_pages(folio);
429	kaddr = folio_address(folio);
430	for (i = 0; i < nr; i++)
431		flush_kernel_dcache_page_addr(kaddr + i * PAGE_SIZE);
432
433	if (!mapping)
434		return;
435
436	pgoff = folio->index;
437
438	/*
439	 * We have carefully arranged in arch_get_unmapped_area() that
440	 * *any* mappings of a file are always congruently mapped (whether
441	 * declared as MAP_PRIVATE or MAP_SHARED), so we only need
442	 * to flush one address here for them all to become coherent
443	 * on machines that support equivalent aliasing
444	 */
445	flush_dcache_mmap_lock_irqsave(mapping, flags);
446	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff + nr - 1) {
447		unsigned long offset = pgoff - vma->vm_pgoff;
448		unsigned long pfn = folio_pfn(folio);
449
450		addr = vma->vm_start;
451		nr = folio_nr_pages(folio);
452		if (offset > -nr) {
453			pfn -= offset;
454			nr += offset;
455		} else {
456			addr += offset * PAGE_SIZE;
457		}
458		if (addr + nr * PAGE_SIZE > vma->vm_end)
459			nr = (vma->vm_end - addr) / PAGE_SIZE;
460
461		if (parisc_requires_coherency()) {
462			for (i = 0; i < nr; i++) {
463				pte_t *ptep = get_ptep(vma->vm_mm,
464							addr + i * PAGE_SIZE);
465				if (!ptep)
466					continue;
467				if (pte_needs_flush(*ptep))
468					flush_user_cache_page(vma,
469							addr + i * PAGE_SIZE);
470				/* Optimise accesses to the same table? */
471				pte_unmap(ptep);
472			}
473		} else {
474			/*
475			 * The TLB is the engine of coherence on parisc:
476			 * The CPU is entitled to speculate any page
477			 * with a TLB mapping, so here we kill the
478			 * mapping then flush the page along a special
479			 * flush only alias mapping. This guarantees that
480			 * the page is no-longer in the cache for any
481			 * process and nor may it be speculatively read
482			 * in (until the user or kernel specifically
483			 * accesses it, of course)
484			 */
485			for (i = 0; i < nr; i++)
486				flush_tlb_page(vma, addr + i * PAGE_SIZE);
487			if (old_addr == 0 || (old_addr & (SHM_COLOUR - 1))
488					!= (addr & (SHM_COLOUR - 1))) {
489				for (i = 0; i < nr; i++)
490					__flush_cache_page(vma,
491						addr + i * PAGE_SIZE,
492						(pfn + i) * PAGE_SIZE);
493				/*
494				 * Software is allowed to have any number
495				 * of private mappings to a page.
496				 */
497				if (!(vma->vm_flags & VM_SHARED))
498					continue;
499				if (old_addr)
500					pr_err("INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %pD\n",
501						old_addr, addr, vma->vm_file);
502				if (nr == folio_nr_pages(folio))
503					old_addr = addr;
504			}
505		}
506		WARN_ON(++count == 4096);
507	}
508	flush_dcache_mmap_unlock_irqrestore(mapping, flags);
509}
510EXPORT_SYMBOL(flush_dcache_folio);
511
512/* Defined in arch/parisc/kernel/pacache.S */
513EXPORT_SYMBOL(flush_kernel_dcache_range_asm);
514EXPORT_SYMBOL(flush_kernel_icache_range_asm);
515
516#define FLUSH_THRESHOLD 0x80000 /* 0.5MB */
517static unsigned long parisc_cache_flush_threshold __ro_after_init = FLUSH_THRESHOLD;
518
519#define FLUSH_TLB_THRESHOLD (16*1024) /* 16 KiB minimum TLB threshold */
520static unsigned long parisc_tlb_flush_threshold __ro_after_init = ~0UL;
521
522void __init parisc_setup_cache_timing(void)
523{
524	unsigned long rangetime, alltime;
525	unsigned long size;
526	unsigned long threshold, threshold2;
527
528	alltime = mfctl(16);
529	flush_data_cache();
530	alltime = mfctl(16) - alltime;
531
532	size = (unsigned long)(_end - _text);
533	rangetime = mfctl(16);
534	flush_kernel_dcache_range((unsigned long)_text, size);
535	rangetime = mfctl(16) - rangetime;
536
537	printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n",
538		alltime, size, rangetime);
539
540	threshold = L1_CACHE_ALIGN((unsigned long)((uint64_t)size * alltime / rangetime));
541	pr_info("Calculated flush threshold is %lu KiB\n",
542		threshold/1024);
543
544	/*
545	 * The threshold computed above isn't very reliable. The following
546	 * heuristic works reasonably well on c8000/rp3440.
547	 */
548	threshold2 = cache_info.dc_size * num_online_cpus();
549	parisc_cache_flush_threshold = threshold2;
550	printk(KERN_INFO "Cache flush threshold set to %lu KiB\n",
551		parisc_cache_flush_threshold/1024);
552
553	/* calculate TLB flush threshold */
554
555	/* On SMP machines, skip the TLB measure of kernel text which
556	 * has been mapped as huge pages. */
557	if (num_online_cpus() > 1 && !parisc_requires_coherency()) {
558		threshold = max(cache_info.it_size, cache_info.dt_size);
559		threshold *= PAGE_SIZE;
560		threshold /= num_online_cpus();
561		goto set_tlb_threshold;
562	}
563
564	size = (unsigned long)_end - (unsigned long)_text;
565	rangetime = mfctl(16);
566	flush_tlb_kernel_range((unsigned long)_text, (unsigned long)_end);
567	rangetime = mfctl(16) - rangetime;
568
569	alltime = mfctl(16);
570	flush_tlb_all();
571	alltime = mfctl(16) - alltime;
572
573	printk(KERN_INFO "Whole TLB flush %lu cycles, Range flush %lu bytes %lu cycles\n",
574		alltime, size, rangetime);
575
576	threshold = PAGE_ALIGN((num_online_cpus() * size * alltime) / rangetime);
577	printk(KERN_INFO "Calculated TLB flush threshold %lu KiB\n",
578		threshold/1024);
579
580set_tlb_threshold:
581	if (threshold > FLUSH_TLB_THRESHOLD)
582		parisc_tlb_flush_threshold = threshold;
583	else
584		parisc_tlb_flush_threshold = FLUSH_TLB_THRESHOLD;
585
586	printk(KERN_INFO "TLB flush threshold set to %lu KiB\n",
587		parisc_tlb_flush_threshold/1024);
588}
589
590extern void purge_kernel_dcache_page_asm(unsigned long);
591extern void clear_user_page_asm(void *, unsigned long);
592extern void copy_user_page_asm(void *, void *, unsigned long);
593
594void flush_kernel_dcache_page_addr(const void *addr)
595{
596	unsigned long flags;
597
598	flush_kernel_dcache_page_asm(addr);
599	purge_tlb_start(flags);
600	pdtlb(SR_KERNEL, addr);
601	purge_tlb_end(flags);
602}
603EXPORT_SYMBOL(flush_kernel_dcache_page_addr);
604
605static void flush_cache_page_if_present(struct vm_area_struct *vma,
606	unsigned long vmaddr, unsigned long pfn)
607{
 
608	bool needs_flush = false;
609	pte_t *ptep;
610
611	/*
612	 * The pte check is racy and sometimes the flush will trigger
613	 * a non-access TLB miss. Hopefully, the page has already been
614	 * flushed.
615	 */
616	ptep = get_ptep(vma->vm_mm, vmaddr);
617	if (ptep) {
618		needs_flush = pte_needs_flush(*ptep);
 
619		pte_unmap(ptep);
620	}
621	if (needs_flush)
622		flush_cache_page(vma, vmaddr, pfn);
 
 
 
 
 
 
 
623}
624
625void copy_user_highpage(struct page *to, struct page *from,
626	unsigned long vaddr, struct vm_area_struct *vma)
627{
628	void *kto, *kfrom;
629
630	kfrom = kmap_local_page(from);
631	kto = kmap_local_page(to);
632	flush_cache_page_if_present(vma, vaddr, page_to_pfn(from));
633	copy_page_asm(kto, kfrom);
634	kunmap_local(kto);
635	kunmap_local(kfrom);
636}
637
638void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
639		unsigned long user_vaddr, void *dst, void *src, int len)
640{
641	flush_cache_page_if_present(vma, user_vaddr, page_to_pfn(page));
642	memcpy(dst, src, len);
643	flush_kernel_dcache_range_asm((unsigned long)dst, (unsigned long)dst + len);
644}
645
646void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
647		unsigned long user_vaddr, void *dst, void *src, int len)
648{
649	flush_cache_page_if_present(vma, user_vaddr, page_to_pfn(page));
650	memcpy(dst, src, len);
 
651}
652
653/* __flush_tlb_range()
654 *
655 * returns 1 if all TLBs were flushed.
656 */
657int __flush_tlb_range(unsigned long sid, unsigned long start,
658		      unsigned long end)
659{
660	unsigned long flags;
661
662	if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
663	    end - start >= parisc_tlb_flush_threshold) {
664		flush_tlb_all();
665		return 1;
666	}
667
668	/* Purge TLB entries for small ranges using the pdtlb and
669	   pitlb instructions.  These instructions execute locally
670	   but cause a purge request to be broadcast to other TLBs.  */
671	while (start < end) {
672		purge_tlb_start(flags);
673		mtsp(sid, SR_TEMP1);
674		pdtlb(SR_TEMP1, start);
675		pitlb(SR_TEMP1, start);
676		purge_tlb_end(flags);
677		start += PAGE_SIZE;
678	}
679	return 0;
680}
681
682static void flush_cache_pages(struct vm_area_struct *vma, unsigned long start, unsigned long end)
683{
684	unsigned long addr, pfn;
685	pte_t *ptep;
686
687	for (addr = start; addr < end; addr += PAGE_SIZE) {
688		bool needs_flush = false;
689		/*
690		 * The vma can contain pages that aren't present. Although
691		 * the pte search is expensive, we need the pte to find the
692		 * page pfn and to check whether the page should be flushed.
693		 */
694		ptep = get_ptep(vma->vm_mm, addr);
695		if (ptep) {
696			needs_flush = pte_needs_flush(*ptep);
697			pfn = pte_pfn(*ptep);
698			pte_unmap(ptep);
699		}
700		if (needs_flush) {
701			if (parisc_requires_coherency()) {
702				flush_user_cache_page(vma, addr);
703			} else {
704				if (WARN_ON(!pfn_valid(pfn)))
705					return;
706				__flush_cache_page(vma, addr, PFN_PHYS(pfn));
707			}
708		}
709	}
710}
711
712static inline unsigned long mm_total_size(struct mm_struct *mm)
713{
714	struct vm_area_struct *vma;
715	unsigned long usize = 0;
716	VMA_ITERATOR(vmi, mm, 0);
717
718	for_each_vma(vmi, vma) {
719		if (usize >= parisc_cache_flush_threshold)
720			break;
721		usize += vma->vm_end - vma->vm_start;
722	}
723	return usize;
724}
725
726void flush_cache_mm(struct mm_struct *mm)
727{
728	struct vm_area_struct *vma;
729	VMA_ITERATOR(vmi, mm, 0);
730
731	/*
732	 * Flushing the whole cache on each cpu takes forever on
733	 * rp3440, etc. So, avoid it if the mm isn't too big.
734	 *
735	 * Note that we must flush the entire cache on machines
736	 * with aliasing caches to prevent random segmentation
737	 * faults.
738	 */
739	if (!parisc_requires_coherency()
740	    ||  mm_total_size(mm) >= parisc_cache_flush_threshold) {
741		if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
742			return;
743		flush_tlb_all();
744		flush_cache_all();
745		return;
746	}
747
748	/* Flush mm */
749	for_each_vma(vmi, vma)
750		flush_cache_pages(vma, vma->vm_start, vma->vm_end);
751}
752
753void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
754{
755	if (!parisc_requires_coherency()
756	    || end - start >= parisc_cache_flush_threshold) {
757		if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
758			return;
759		flush_tlb_range(vma, start, end);
760		flush_cache_all();
 
 
 
761		return;
762	}
763
764	flush_cache_pages(vma, start, end);
765}
766
767void flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn)
768{
769	if (WARN_ON(!pfn_valid(pfn)))
770		return;
771	if (parisc_requires_coherency())
772		flush_user_cache_page(vma, vmaddr);
773	else
774		__flush_cache_page(vma, vmaddr, PFN_PHYS(pfn));
775}
776
777void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
778{
779	if (!PageAnon(page))
780		return;
781
782	if (parisc_requires_coherency()) {
783		if (vma->vm_flags & VM_SHARED)
784			flush_data_cache();
785		else
786			flush_user_cache_page(vma, vmaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
787		return;
788	}
789
790	flush_tlb_page(vma, vmaddr);
791	preempt_disable();
792	flush_dcache_page_asm(page_to_phys(page), vmaddr);
793	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
794}
 
795
 
 
 
 
 
 
 
 
 
 
 
796void flush_kernel_vmap_range(void *vaddr, int size)
797{
798	unsigned long start = (unsigned long)vaddr;
799	unsigned long end = start + size;
800
801	if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
802	    (unsigned long)size >= parisc_cache_flush_threshold) {
803		flush_tlb_kernel_range(start, end);
804		flush_data_cache();
 
 
 
 
805		return;
806	}
807
808	flush_kernel_dcache_range_asm(start, end);
809	flush_tlb_kernel_range(start, end);
810}
811EXPORT_SYMBOL(flush_kernel_vmap_range);
812
813void invalidate_kernel_vmap_range(void *vaddr, int size)
814{
815	unsigned long start = (unsigned long)vaddr;
816	unsigned long end = start + size;
817
818	/* Ensure DMA is complete */
819	asm_syncdma();
820
821	if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
822	    (unsigned long)size >= parisc_cache_flush_threshold) {
823		flush_tlb_kernel_range(start, end);
824		flush_data_cache();
 
 
 
 
825		return;
826	}
827
828	purge_kernel_dcache_range_asm(start, end);
829	flush_tlb_kernel_range(start, end);
830}
831EXPORT_SYMBOL(invalidate_kernel_vmap_range);
832
833
834SYSCALL_DEFINE3(cacheflush, unsigned long, addr, unsigned long, bytes,
835	unsigned int, cache)
836{
837	unsigned long start, end;
838	ASM_EXCEPTIONTABLE_VAR(error);
839
840	if (bytes == 0)
841		return 0;
842	if (!access_ok((void __user *) addr, bytes))
843		return -EFAULT;
844
845	end = addr + bytes;
846
847	if (cache & DCACHE) {
848		start = addr;
849		__asm__ __volatile__ (
850#ifdef CONFIG_64BIT
851			"1: cmpb,*<<,n	%0,%2,1b\n"
852#else
853			"1: cmpb,<<,n	%0,%2,1b\n"
854#endif
855			"   fic,m	%3(%4,%0)\n"
856			"2: sync\n"
857			ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1")
858			: "+r" (start), "+r" (error)
859			: "r" (end), "r" (dcache_stride), "i" (SR_USER));
860	}
861
862	if (cache & ICACHE && error == 0) {
863		start = addr;
864		__asm__ __volatile__ (
865#ifdef CONFIG_64BIT
866			"1: cmpb,*<<,n	%0,%2,1b\n"
867#else
868			"1: cmpb,<<,n	%0,%2,1b\n"
869#endif
870			"   fdc,m	%3(%4,%0)\n"
871			"2: sync\n"
872			ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1")
873			: "+r" (start), "+r" (error)
874			: "r" (end), "r" (icache_stride), "i" (SR_USER));
875	}
876
877	return error;
878}