Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/ioremap.c
4 *
5 * Re-map IO memory to kernel address space so that we can access it.
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 *
9 * Hacked for ARM by Phil Blundell <philb@gnu.org>
10 * Hacked to allow all architectures to build, and various cleanups
11 * by Russell King
12 *
13 * This allows a driver to remap an arbitrary region of bus memory into
14 * virtual space. One should *only* use readl, writel, memcpy_toio and
15 * so on with such remapped areas.
16 *
17 * Because the ARM only has a 32-bit address space we can't address the
18 * whole of the (physical) PCI space at once. PCI huge-mode addressing
19 * allows us to circumvent this restriction by splitting PCI space into
20 * two 2GB chunks and mapping only one at a time into processor memory.
21 * We use MMU protection domains to trap any attempt to access the bank
22 * that is not currently mapped. (This isn't fully implemented yet.)
23 */
24#include <linux/module.h>
25#include <linux/errno.h>
26#include <linux/kasan.h>
27#include <linux/mm.h>
28#include <linux/vmalloc.h>
29#include <linux/io.h>
30#include <linux/sizes.h>
31#include <linux/memblock.h>
32
33#include <asm/cp15.h>
34#include <asm/cputype.h>
35#include <asm/cacheflush.h>
36#include <asm/early_ioremap.h>
37#include <asm/mmu_context.h>
38#include <asm/pgalloc.h>
39#include <asm/tlbflush.h>
40#include <asm/set_memory.h>
41#include <asm/system_info.h>
42
43#include <asm/mach/map.h>
44#include <asm/mach/pci.h>
45#include "mm.h"
46
47
48LIST_HEAD(static_vmlist);
49
50static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
51 size_t size, unsigned int mtype)
52{
53 struct static_vm *svm;
54 struct vm_struct *vm;
55
56 list_for_each_entry(svm, &static_vmlist, list) {
57 vm = &svm->vm;
58 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
59 continue;
60 if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
61 continue;
62
63 if (vm->phys_addr > paddr ||
64 paddr + size - 1 > vm->phys_addr + vm->size - 1)
65 continue;
66
67 return svm;
68 }
69
70 return NULL;
71}
72
73struct static_vm *find_static_vm_vaddr(void *vaddr)
74{
75 struct static_vm *svm;
76 struct vm_struct *vm;
77
78 list_for_each_entry(svm, &static_vmlist, list) {
79 vm = &svm->vm;
80
81 /* static_vmlist is ascending order */
82 if (vm->addr > vaddr)
83 break;
84
85 if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
86 return svm;
87 }
88
89 return NULL;
90}
91
92void __init add_static_vm_early(struct static_vm *svm)
93{
94 struct static_vm *curr_svm;
95 struct vm_struct *vm;
96 void *vaddr;
97
98 vm = &svm->vm;
99 vm_area_add_early(vm);
100 vaddr = vm->addr;
101
102 list_for_each_entry(curr_svm, &static_vmlist, list) {
103 vm = &curr_svm->vm;
104
105 if (vm->addr > vaddr)
106 break;
107 }
108 list_add_tail(&svm->list, &curr_svm->list);
109}
110
111int ioremap_page(unsigned long virt, unsigned long phys,
112 const struct mem_type *mtype)
113{
114 return vmap_page_range(virt, virt + PAGE_SIZE, phys,
115 __pgprot(mtype->prot_pte));
116}
117EXPORT_SYMBOL(ioremap_page);
118
119#ifdef CONFIG_KASAN
120static unsigned long arm_kasan_mem_to_shadow(unsigned long addr)
121{
122 return (unsigned long)kasan_mem_to_shadow((void *)addr);
123}
124#else
125static unsigned long arm_kasan_mem_to_shadow(unsigned long addr)
126{
127 return 0;
128}
129#endif
130
131static void memcpy_pgd(struct mm_struct *mm, unsigned long start,
132 unsigned long end)
133{
134 end = ALIGN(end, PGDIR_SIZE);
135 memcpy(pgd_offset(mm, start), pgd_offset_k(start),
136 sizeof(pgd_t) * (pgd_index(end) - pgd_index(start)));
137}
138
139void __check_vmalloc_seq(struct mm_struct *mm)
140{
141 int seq;
142
143 do {
144 seq = atomic_read_acquire(&init_mm.context.vmalloc_seq);
145 memcpy_pgd(mm, VMALLOC_START, VMALLOC_END);
146 if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) {
147 unsigned long start =
148 arm_kasan_mem_to_shadow(VMALLOC_START);
149 unsigned long end =
150 arm_kasan_mem_to_shadow(VMALLOC_END);
151 memcpy_pgd(mm, start, end);
152 }
153 /*
154 * Use a store-release so that other CPUs that observe the
155 * counter's new value are guaranteed to see the results of the
156 * memcpy as well.
157 */
158 atomic_set_release(&mm->context.vmalloc_seq, seq);
159 } while (seq != atomic_read(&init_mm.context.vmalloc_seq));
160}
161
162#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
163/*
164 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
165 * the other CPUs will not see this change until their next context switch.
166 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
167 * which requires the new ioremap'd region to be referenced, the CPU will
168 * reference the _old_ region.
169 *
170 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
171 * mask the size back to 1MB aligned or we will overflow in the loop below.
172 */
173static void unmap_area_sections(unsigned long virt, unsigned long size)
174{
175 unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
176 pmd_t *pmdp = pmd_off_k(addr);
177
178 do {
179 pmd_t pmd = *pmdp;
180
181 if (!pmd_none(pmd)) {
182 /*
183 * Clear the PMD from the page table, and
184 * increment the vmalloc sequence so others
185 * notice this change.
186 *
187 * Note: this is still racy on SMP machines.
188 */
189 pmd_clear(pmdp);
190 atomic_inc_return_release(&init_mm.context.vmalloc_seq);
191
192 /*
193 * Free the page table, if there was one.
194 */
195 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
196 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
197 }
198
199 addr += PMD_SIZE;
200 pmdp += 2;
201 } while (addr < end);
202
203 /*
204 * Ensure that the active_mm is up to date - we want to
205 * catch any use-after-iounmap cases.
206 */
207 check_vmalloc_seq(current->active_mm);
208
209 flush_tlb_kernel_range(virt, end);
210}
211
212static int
213remap_area_sections(unsigned long virt, unsigned long pfn,
214 size_t size, const struct mem_type *type)
215{
216 unsigned long addr = virt, end = virt + size;
217 pmd_t *pmd = pmd_off_k(addr);
218
219 /*
220 * Remove and free any PTE-based mapping, and
221 * sync the current kernel mapping.
222 */
223 unmap_area_sections(virt, size);
224
225 do {
226 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
227 pfn += SZ_1M >> PAGE_SHIFT;
228 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
229 pfn += SZ_1M >> PAGE_SHIFT;
230 flush_pmd_entry(pmd);
231
232 addr += PMD_SIZE;
233 pmd += 2;
234 } while (addr < end);
235
236 return 0;
237}
238
239static int
240remap_area_supersections(unsigned long virt, unsigned long pfn,
241 size_t size, const struct mem_type *type)
242{
243 unsigned long addr = virt, end = virt + size;
244 pmd_t *pmd = pmd_off_k(addr);
245
246 /*
247 * Remove and free any PTE-based mapping, and
248 * sync the current kernel mapping.
249 */
250 unmap_area_sections(virt, size);
251 do {
252 unsigned long super_pmd_val, i;
253
254 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
255 PMD_SECT_SUPER;
256 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
257
258 for (i = 0; i < 8; i++) {
259 pmd[0] = __pmd(super_pmd_val);
260 pmd[1] = __pmd(super_pmd_val);
261 flush_pmd_entry(pmd);
262
263 addr += PMD_SIZE;
264 pmd += 2;
265 }
266
267 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
268 } while (addr < end);
269
270 return 0;
271}
272#endif
273
274static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
275 unsigned long offset, size_t size, unsigned int mtype, void *caller)
276{
277 const struct mem_type *type;
278 int err;
279 unsigned long addr;
280 struct vm_struct *area;
281 phys_addr_t paddr = __pfn_to_phys(pfn);
282
283#ifndef CONFIG_ARM_LPAE
284 /*
285 * High mappings must be supersection aligned
286 */
287 if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
288 return NULL;
289#endif
290
291 type = get_mem_type(mtype);
292 if (!type)
293 return NULL;
294
295 /*
296 * Page align the mapping size, taking account of any offset.
297 */
298 size = PAGE_ALIGN(offset + size);
299
300 /*
301 * Try to reuse one of the static mapping whenever possible.
302 */
303 if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
304 struct static_vm *svm;
305
306 svm = find_static_vm_paddr(paddr, size, mtype);
307 if (svm) {
308 addr = (unsigned long)svm->vm.addr;
309 addr += paddr - svm->vm.phys_addr;
310 return (void __iomem *) (offset + addr);
311 }
312 }
313
314 /*
315 * Don't allow RAM to be mapped with mismatched attributes - this
316 * causes problems with ARMv6+
317 */
318 if (WARN_ON(memblock_is_map_memory(PFN_PHYS(pfn)) &&
319 mtype != MT_MEMORY_RW))
320 return NULL;
321
322 area = get_vm_area_caller(size, VM_IOREMAP, caller);
323 if (!area)
324 return NULL;
325 addr = (unsigned long)area->addr;
326 area->phys_addr = paddr;
327
328#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
329 if (DOMAIN_IO == 0 &&
330 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
331 cpu_is_xsc3()) && pfn >= 0x100000 &&
332 !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
333 area->flags |= VM_ARM_SECTION_MAPPING;
334 err = remap_area_supersections(addr, pfn, size, type);
335 } else if (!((paddr | size | addr) & ~PMD_MASK)) {
336 area->flags |= VM_ARM_SECTION_MAPPING;
337 err = remap_area_sections(addr, pfn, size, type);
338 } else
339#endif
340 err = ioremap_page_range(addr, addr + size, paddr,
341 __pgprot(type->prot_pte));
342
343 if (err) {
344 vunmap((void *)addr);
345 return NULL;
346 }
347
348 flush_cache_vmap(addr, addr + size);
349 return (void __iomem *) (offset + addr);
350}
351
352void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
353 unsigned int mtype, void *caller)
354{
355 phys_addr_t last_addr;
356 unsigned long offset = phys_addr & ~PAGE_MASK;
357 unsigned long pfn = __phys_to_pfn(phys_addr);
358
359 /*
360 * Don't allow wraparound or zero size
361 */
362 last_addr = phys_addr + size - 1;
363 if (!size || last_addr < phys_addr)
364 return NULL;
365
366 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
367 caller);
368}
369
370/*
371 * Remap an arbitrary physical address space into the kernel virtual
372 * address space. Needed when the kernel wants to access high addresses
373 * directly.
374 *
375 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
376 * have to convert them into an offset in a page-aligned mapping, but the
377 * caller shouldn't need to know that small detail.
378 */
379void __iomem *
380__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
381 unsigned int mtype)
382{
383 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
384 __builtin_return_address(0));
385}
386EXPORT_SYMBOL(__arm_ioremap_pfn);
387
388void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
389 unsigned int, void *) =
390 __arm_ioremap_caller;
391
392void __iomem *ioremap(resource_size_t res_cookie, size_t size)
393{
394 return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
395 __builtin_return_address(0));
396}
397EXPORT_SYMBOL(ioremap);
398
399void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
400{
401 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
402 __builtin_return_address(0));
403}
404EXPORT_SYMBOL(ioremap_cache);
405
406void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
407{
408 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
409 __builtin_return_address(0));
410}
411EXPORT_SYMBOL(ioremap_wc);
412
413/*
414 * Remap an arbitrary physical address space into the kernel virtual
415 * address space as memory. Needed when the kernel wants to execute
416 * code in external memory. This is needed for reprogramming source
417 * clocks that would affect normal memory for example. Please see
418 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
419 */
420void __iomem *
421__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
422{
423 unsigned int mtype;
424
425 if (cached)
426 mtype = MT_MEMORY_RWX;
427 else
428 mtype = MT_MEMORY_RWX_NONCACHED;
429
430 return __arm_ioremap_caller(phys_addr, size, mtype,
431 __builtin_return_address(0));
432}
433
434void __arm_iomem_set_ro(void __iomem *ptr, size_t size)
435{
436 set_memory_ro((unsigned long)ptr, PAGE_ALIGN(size) / PAGE_SIZE);
437}
438
439void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
440{
441 return (__force void *)arch_ioremap_caller(phys_addr, size,
442 MT_MEMORY_RW,
443 __builtin_return_address(0));
444}
445
446void iounmap(volatile void __iomem *io_addr)
447{
448 void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
449 struct static_vm *svm;
450
451 /* If this is a static mapping, we must leave it alone */
452 svm = find_static_vm_vaddr(addr);
453 if (svm)
454 return;
455
456#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
457 {
458 struct vm_struct *vm;
459
460 vm = find_vm_area(addr);
461
462 /*
463 * If this is a section based mapping we need to handle it
464 * specially as the VM subsystem does not know how to handle
465 * such a beast.
466 */
467 if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
468 unmap_area_sections((unsigned long)vm->addr, vm->size);
469 }
470#endif
471
472 vunmap(addr);
473}
474EXPORT_SYMBOL(iounmap);
475
476#if defined(CONFIG_PCI) || IS_ENABLED(CONFIG_PCMCIA)
477static int pci_ioremap_mem_type = MT_DEVICE;
478
479void pci_ioremap_set_mem_type(int mem_type)
480{
481 pci_ioremap_mem_type = mem_type;
482}
483
484int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
485{
486 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
487
488 if (!(res->flags & IORESOURCE_IO))
489 return -EINVAL;
490
491 if (res->end > IO_SPACE_LIMIT)
492 return -EINVAL;
493
494 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
495 __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
496}
497EXPORT_SYMBOL(pci_remap_iospace);
498
499void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
500{
501 return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
502 __builtin_return_address(0));
503}
504EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
505#endif
506
507/*
508 * Must be called after early_fixmap_init
509 */
510void __init early_ioremap_init(void)
511{
512 early_ioremap_setup();
513}
514
515bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
516 unsigned long flags)
517{
518 unsigned long pfn = PHYS_PFN(offset);
519
520 return memblock_is_map_memory(pfn);
521}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/ioremap.c
4 *
5 * Re-map IO memory to kernel address space so that we can access it.
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 *
9 * Hacked for ARM by Phil Blundell <philb@gnu.org>
10 * Hacked to allow all architectures to build, and various cleanups
11 * by Russell King
12 *
13 * This allows a driver to remap an arbitrary region of bus memory into
14 * virtual space. One should *only* use readl, writel, memcpy_toio and
15 * so on with such remapped areas.
16 *
17 * Because the ARM only has a 32-bit address space we can't address the
18 * whole of the (physical) PCI space at once. PCI huge-mode addressing
19 * allows us to circumvent this restriction by splitting PCI space into
20 * two 2GB chunks and mapping only one at a time into processor memory.
21 * We use MMU protection domains to trap any attempt to access the bank
22 * that is not currently mapped. (This isn't fully implemented yet.)
23 */
24#include <linux/module.h>
25#include <linux/errno.h>
26#include <linux/mm.h>
27#include <linux/vmalloc.h>
28#include <linux/io.h>
29#include <linux/sizes.h>
30#include <linux/memblock.h>
31
32#include <asm/cp15.h>
33#include <asm/cputype.h>
34#include <asm/cacheflush.h>
35#include <asm/early_ioremap.h>
36#include <asm/mmu_context.h>
37#include <asm/pgalloc.h>
38#include <asm/tlbflush.h>
39#include <asm/set_memory.h>
40#include <asm/system_info.h>
41
42#include <asm/mach/map.h>
43#include <asm/mach/pci.h>
44#include "mm.h"
45
46
47LIST_HEAD(static_vmlist);
48
49static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
50 size_t size, unsigned int mtype)
51{
52 struct static_vm *svm;
53 struct vm_struct *vm;
54
55 list_for_each_entry(svm, &static_vmlist, list) {
56 vm = &svm->vm;
57 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
58 continue;
59 if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
60 continue;
61
62 if (vm->phys_addr > paddr ||
63 paddr + size - 1 > vm->phys_addr + vm->size - 1)
64 continue;
65
66 return svm;
67 }
68
69 return NULL;
70}
71
72struct static_vm *find_static_vm_vaddr(void *vaddr)
73{
74 struct static_vm *svm;
75 struct vm_struct *vm;
76
77 list_for_each_entry(svm, &static_vmlist, list) {
78 vm = &svm->vm;
79
80 /* static_vmlist is ascending order */
81 if (vm->addr > vaddr)
82 break;
83
84 if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
85 return svm;
86 }
87
88 return NULL;
89}
90
91void __init add_static_vm_early(struct static_vm *svm)
92{
93 struct static_vm *curr_svm;
94 struct vm_struct *vm;
95 void *vaddr;
96
97 vm = &svm->vm;
98 vm_area_add_early(vm);
99 vaddr = vm->addr;
100
101 list_for_each_entry(curr_svm, &static_vmlist, list) {
102 vm = &curr_svm->vm;
103
104 if (vm->addr > vaddr)
105 break;
106 }
107 list_add_tail(&svm->list, &curr_svm->list);
108}
109
110int ioremap_page(unsigned long virt, unsigned long phys,
111 const struct mem_type *mtype)
112{
113 return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
114 __pgprot(mtype->prot_pte));
115}
116EXPORT_SYMBOL(ioremap_page);
117
118void __check_vmalloc_seq(struct mm_struct *mm)
119{
120 int seq;
121
122 do {
123 seq = atomic_read(&init_mm.context.vmalloc_seq);
124 memcpy(pgd_offset(mm, VMALLOC_START),
125 pgd_offset_k(VMALLOC_START),
126 sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
127 pgd_index(VMALLOC_START)));
128 /*
129 * Use a store-release so that other CPUs that observe the
130 * counter's new value are guaranteed to see the results of the
131 * memcpy as well.
132 */
133 atomic_set_release(&mm->context.vmalloc_seq, seq);
134 } while (seq != atomic_read(&init_mm.context.vmalloc_seq));
135}
136
137#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
138/*
139 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
140 * the other CPUs will not see this change until their next context switch.
141 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
142 * which requires the new ioremap'd region to be referenced, the CPU will
143 * reference the _old_ region.
144 *
145 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
146 * mask the size back to 1MB aligned or we will overflow in the loop below.
147 */
148static void unmap_area_sections(unsigned long virt, unsigned long size)
149{
150 unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
151 pmd_t *pmdp = pmd_off_k(addr);
152
153 do {
154 pmd_t pmd = *pmdp;
155
156 if (!pmd_none(pmd)) {
157 /*
158 * Clear the PMD from the page table, and
159 * increment the vmalloc sequence so others
160 * notice this change.
161 *
162 * Note: this is still racy on SMP machines.
163 */
164 pmd_clear(pmdp);
165 atomic_inc_return_release(&init_mm.context.vmalloc_seq);
166
167 /*
168 * Free the page table, if there was one.
169 */
170 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
171 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
172 }
173
174 addr += PMD_SIZE;
175 pmdp += 2;
176 } while (addr < end);
177
178 /*
179 * Ensure that the active_mm is up to date - we want to
180 * catch any use-after-iounmap cases.
181 */
182 check_vmalloc_seq(current->active_mm);
183
184 flush_tlb_kernel_range(virt, end);
185}
186
187static int
188remap_area_sections(unsigned long virt, unsigned long pfn,
189 size_t size, const struct mem_type *type)
190{
191 unsigned long addr = virt, end = virt + size;
192 pmd_t *pmd = pmd_off_k(addr);
193
194 /*
195 * Remove and free any PTE-based mapping, and
196 * sync the current kernel mapping.
197 */
198 unmap_area_sections(virt, size);
199
200 do {
201 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
202 pfn += SZ_1M >> PAGE_SHIFT;
203 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
204 pfn += SZ_1M >> PAGE_SHIFT;
205 flush_pmd_entry(pmd);
206
207 addr += PMD_SIZE;
208 pmd += 2;
209 } while (addr < end);
210
211 return 0;
212}
213
214static int
215remap_area_supersections(unsigned long virt, unsigned long pfn,
216 size_t size, const struct mem_type *type)
217{
218 unsigned long addr = virt, end = virt + size;
219 pmd_t *pmd = pmd_off_k(addr);
220
221 /*
222 * Remove and free any PTE-based mapping, and
223 * sync the current kernel mapping.
224 */
225 unmap_area_sections(virt, size);
226 do {
227 unsigned long super_pmd_val, i;
228
229 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
230 PMD_SECT_SUPER;
231 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
232
233 for (i = 0; i < 8; i++) {
234 pmd[0] = __pmd(super_pmd_val);
235 pmd[1] = __pmd(super_pmd_val);
236 flush_pmd_entry(pmd);
237
238 addr += PMD_SIZE;
239 pmd += 2;
240 }
241
242 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
243 } while (addr < end);
244
245 return 0;
246}
247#endif
248
249static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
250 unsigned long offset, size_t size, unsigned int mtype, void *caller)
251{
252 const struct mem_type *type;
253 int err;
254 unsigned long addr;
255 struct vm_struct *area;
256 phys_addr_t paddr = __pfn_to_phys(pfn);
257
258#ifndef CONFIG_ARM_LPAE
259 /*
260 * High mappings must be supersection aligned
261 */
262 if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
263 return NULL;
264#endif
265
266 type = get_mem_type(mtype);
267 if (!type)
268 return NULL;
269
270 /*
271 * Page align the mapping size, taking account of any offset.
272 */
273 size = PAGE_ALIGN(offset + size);
274
275 /*
276 * Try to reuse one of the static mapping whenever possible.
277 */
278 if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
279 struct static_vm *svm;
280
281 svm = find_static_vm_paddr(paddr, size, mtype);
282 if (svm) {
283 addr = (unsigned long)svm->vm.addr;
284 addr += paddr - svm->vm.phys_addr;
285 return (void __iomem *) (offset + addr);
286 }
287 }
288
289 /*
290 * Don't allow RAM to be mapped with mismatched attributes - this
291 * causes problems with ARMv6+
292 */
293 if (WARN_ON(memblock_is_map_memory(PFN_PHYS(pfn)) &&
294 mtype != MT_MEMORY_RW))
295 return NULL;
296
297 area = get_vm_area_caller(size, VM_IOREMAP, caller);
298 if (!area)
299 return NULL;
300 addr = (unsigned long)area->addr;
301 area->phys_addr = paddr;
302
303#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
304 if (DOMAIN_IO == 0 &&
305 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
306 cpu_is_xsc3()) && pfn >= 0x100000 &&
307 !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
308 area->flags |= VM_ARM_SECTION_MAPPING;
309 err = remap_area_supersections(addr, pfn, size, type);
310 } else if (!((paddr | size | addr) & ~PMD_MASK)) {
311 area->flags |= VM_ARM_SECTION_MAPPING;
312 err = remap_area_sections(addr, pfn, size, type);
313 } else
314#endif
315 err = ioremap_page_range(addr, addr + size, paddr,
316 __pgprot(type->prot_pte));
317
318 if (err) {
319 vunmap((void *)addr);
320 return NULL;
321 }
322
323 flush_cache_vmap(addr, addr + size);
324 return (void __iomem *) (offset + addr);
325}
326
327void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
328 unsigned int mtype, void *caller)
329{
330 phys_addr_t last_addr;
331 unsigned long offset = phys_addr & ~PAGE_MASK;
332 unsigned long pfn = __phys_to_pfn(phys_addr);
333
334 /*
335 * Don't allow wraparound or zero size
336 */
337 last_addr = phys_addr + size - 1;
338 if (!size || last_addr < phys_addr)
339 return NULL;
340
341 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
342 caller);
343}
344
345/*
346 * Remap an arbitrary physical address space into the kernel virtual
347 * address space. Needed when the kernel wants to access high addresses
348 * directly.
349 *
350 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
351 * have to convert them into an offset in a page-aligned mapping, but the
352 * caller shouldn't need to know that small detail.
353 */
354void __iomem *
355__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
356 unsigned int mtype)
357{
358 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
359 __builtin_return_address(0));
360}
361EXPORT_SYMBOL(__arm_ioremap_pfn);
362
363void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
364 unsigned int, void *) =
365 __arm_ioremap_caller;
366
367void __iomem *ioremap(resource_size_t res_cookie, size_t size)
368{
369 return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
370 __builtin_return_address(0));
371}
372EXPORT_SYMBOL(ioremap);
373
374void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
375{
376 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
377 __builtin_return_address(0));
378}
379EXPORT_SYMBOL(ioremap_cache);
380
381void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
382{
383 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
384 __builtin_return_address(0));
385}
386EXPORT_SYMBOL(ioremap_wc);
387
388/*
389 * Remap an arbitrary physical address space into the kernel virtual
390 * address space as memory. Needed when the kernel wants to execute
391 * code in external memory. This is needed for reprogramming source
392 * clocks that would affect normal memory for example. Please see
393 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
394 */
395void __iomem *
396__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
397{
398 unsigned int mtype;
399
400 if (cached)
401 mtype = MT_MEMORY_RWX;
402 else
403 mtype = MT_MEMORY_RWX_NONCACHED;
404
405 return __arm_ioremap_caller(phys_addr, size, mtype,
406 __builtin_return_address(0));
407}
408
409void __arm_iomem_set_ro(void __iomem *ptr, size_t size)
410{
411 set_memory_ro((unsigned long)ptr, PAGE_ALIGN(size) / PAGE_SIZE);
412}
413
414void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
415{
416 return (__force void *)arch_ioremap_caller(phys_addr, size,
417 MT_MEMORY_RW,
418 __builtin_return_address(0));
419}
420
421void iounmap(volatile void __iomem *io_addr)
422{
423 void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
424 struct static_vm *svm;
425
426 /* If this is a static mapping, we must leave it alone */
427 svm = find_static_vm_vaddr(addr);
428 if (svm)
429 return;
430
431#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
432 {
433 struct vm_struct *vm;
434
435 vm = find_vm_area(addr);
436
437 /*
438 * If this is a section based mapping we need to handle it
439 * specially as the VM subsystem does not know how to handle
440 * such a beast.
441 */
442 if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
443 unmap_area_sections((unsigned long)vm->addr, vm->size);
444 }
445#endif
446
447 vunmap(addr);
448}
449EXPORT_SYMBOL(iounmap);
450
451#if defined(CONFIG_PCI) || IS_ENABLED(CONFIG_PCMCIA)
452static int pci_ioremap_mem_type = MT_DEVICE;
453
454void pci_ioremap_set_mem_type(int mem_type)
455{
456 pci_ioremap_mem_type = mem_type;
457}
458
459int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
460{
461 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
462
463 if (!(res->flags & IORESOURCE_IO))
464 return -EINVAL;
465
466 if (res->end > IO_SPACE_LIMIT)
467 return -EINVAL;
468
469 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
470 __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
471}
472EXPORT_SYMBOL(pci_remap_iospace);
473
474void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
475{
476 return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
477 __builtin_return_address(0));
478}
479EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
480#endif
481
482/*
483 * Must be called after early_fixmap_init
484 */
485void __init early_ioremap_init(void)
486{
487 early_ioremap_setup();
488}
489
490bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
491 unsigned long flags)
492{
493 unsigned long pfn = PHYS_PFN(offset);
494
495 return memblock_is_map_memory(pfn);
496}