Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf-sys.h"
   4
   5#include "util/cpumap.h"
   6#include "util/evlist.h"
   7#include "util/evsel.h"
   8#include "util/evsel_fprintf.h"
   9#include "util/mutex.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29#include "util/util.h"
  30
  31#include <linux/kernel.h>
  32#include <linux/log2.h>
  33#include <linux/zalloc.h>
  34#include <sys/prctl.h>
  35#include <sys/resource.h>
  36#include <inttypes.h>
  37
  38#include <errno.h>
  39#include <semaphore.h>
  40#include <pthread.h>
  41#include <math.h>
  42#include <api/fs/fs.h>
  43#include <perf/cpumap.h>
  44#include <linux/time64.h>
  45#include <linux/err.h>
  46
  47#include <linux/ctype.h>
  48
  49#define PR_SET_NAME		15               /* Set process name */
  50#define MAX_CPUS		4096
  51#define COMM_LEN		20
  52#define SYM_LEN			129
  53#define MAX_PID			1024000
  54#define MAX_PRIO		140
  55
  56static const char *cpu_list;
  57static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  58
  59struct sched_atom;
  60
  61struct task_desc {
  62	unsigned long		nr;
  63	unsigned long		pid;
  64	char			comm[COMM_LEN];
  65
  66	unsigned long		nr_events;
  67	unsigned long		curr_event;
  68	struct sched_atom	**atoms;
  69
  70	pthread_t		thread;
 
  71
  72	sem_t			ready_for_work;
  73	sem_t			work_done_sem;
  74
  75	u64			cpu_usage;
  76};
  77
  78enum sched_event_type {
  79	SCHED_EVENT_RUN,
  80	SCHED_EVENT_SLEEP,
  81	SCHED_EVENT_WAKEUP,
 
  82};
  83
  84struct sched_atom {
  85	enum sched_event_type	type;
 
  86	u64			timestamp;
  87	u64			duration;
  88	unsigned long		nr;
  89	sem_t			*wait_sem;
  90	struct task_desc	*wakee;
  91};
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93enum thread_state {
  94	THREAD_SLEEPING = 0,
  95	THREAD_WAIT_CPU,
  96	THREAD_SCHED_IN,
  97	THREAD_IGNORE
  98};
  99
 100struct work_atom {
 101	struct list_head	list;
 102	enum thread_state	state;
 103	u64			sched_out_time;
 104	u64			wake_up_time;
 105	u64			sched_in_time;
 106	u64			runtime;
 107};
 108
 109struct work_atoms {
 110	struct list_head	work_list;
 111	struct thread		*thread;
 112	struct rb_node		node;
 113	u64			max_lat;
 114	u64			max_lat_start;
 115	u64			max_lat_end;
 116	u64			total_lat;
 117	u64			nb_atoms;
 118	u64			total_runtime;
 119	int			num_merged;
 120};
 121
 122typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 123
 124struct perf_sched;
 125
 126struct trace_sched_handler {
 127	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 128			    struct perf_sample *sample, struct machine *machine);
 129
 130	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 131			     struct perf_sample *sample, struct machine *machine);
 132
 133	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 134			    struct perf_sample *sample, struct machine *machine);
 135
 136	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 137	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 138			  struct machine *machine);
 139
 140	int (*migrate_task_event)(struct perf_sched *sched,
 141				  struct evsel *evsel,
 142				  struct perf_sample *sample,
 143				  struct machine *machine);
 144};
 145
 146#define COLOR_PIDS PERF_COLOR_BLUE
 147#define COLOR_CPUS PERF_COLOR_BG_RED
 148
 149struct perf_sched_map {
 150	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 151	struct perf_cpu		*comp_cpus;
 152	bool			 comp;
 153	struct perf_thread_map *color_pids;
 154	const char		*color_pids_str;
 155	struct perf_cpu_map	*color_cpus;
 156	const char		*color_cpus_str;
 157	const char		*task_name;
 158	struct strlist		*task_names;
 159	bool			fuzzy;
 160	struct perf_cpu_map	*cpus;
 161	const char		*cpus_str;
 162};
 163
 164struct perf_sched {
 165	struct perf_tool tool;
 166	const char	 *sort_order;
 167	unsigned long	 nr_tasks;
 168	struct task_desc **pid_to_task;
 169	struct task_desc **tasks;
 170	const struct trace_sched_handler *tp_handler;
 171	struct mutex	 start_work_mutex;
 172	struct mutex	 work_done_wait_mutex;
 173	int		 profile_cpu;
 174/*
 175 * Track the current task - that way we can know whether there's any
 176 * weird events, such as a task being switched away that is not current.
 177 */
 178	struct perf_cpu	 max_cpu;
 179	u32		 *curr_pid;
 180	struct thread	 **curr_thread;
 181	struct thread	 **curr_out_thread;
 182	char		 next_shortname1;
 183	char		 next_shortname2;
 184	unsigned int	 replay_repeat;
 185	unsigned long	 nr_run_events;
 186	unsigned long	 nr_sleep_events;
 187	unsigned long	 nr_wakeup_events;
 188	unsigned long	 nr_sleep_corrections;
 189	unsigned long	 nr_run_events_optimized;
 190	unsigned long	 targetless_wakeups;
 191	unsigned long	 multitarget_wakeups;
 192	unsigned long	 nr_runs;
 193	unsigned long	 nr_timestamps;
 194	unsigned long	 nr_unordered_timestamps;
 195	unsigned long	 nr_context_switch_bugs;
 196	unsigned long	 nr_events;
 197	unsigned long	 nr_lost_chunks;
 198	unsigned long	 nr_lost_events;
 199	u64		 run_measurement_overhead;
 200	u64		 sleep_measurement_overhead;
 201	u64		 start_time;
 202	u64		 cpu_usage;
 203	u64		 runavg_cpu_usage;
 204	u64		 parent_cpu_usage;
 205	u64		 runavg_parent_cpu_usage;
 206	u64		 sum_runtime;
 207	u64		 sum_fluct;
 208	u64		 run_avg;
 209	u64		 all_runtime;
 210	u64		 all_count;
 211	u64		 *cpu_last_switched;
 212	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 213	struct list_head sort_list, cmp_pid;
 214	bool force;
 215	bool skip_merge;
 216	struct perf_sched_map map;
 217
 218	/* options for timehist command */
 219	bool		summary;
 220	bool		summary_only;
 221	bool		idle_hist;
 222	bool		show_callchain;
 223	unsigned int	max_stack;
 224	bool		show_cpu_visual;
 225	bool		show_wakeups;
 226	bool		show_next;
 227	bool		show_migrations;
 228	bool		pre_migrations;
 229	bool		show_state;
 230	bool		show_prio;
 231	u64		skipped_samples;
 232	const char	*time_str;
 233	struct perf_time_interval ptime;
 234	struct perf_time_interval hist_time;
 235	volatile bool   thread_funcs_exit;
 236	const char	*prio_str;
 237	DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
 238};
 239
 240/* per thread run time data */
 241struct thread_runtime {
 242	u64 last_time;      /* time of previous sched in/out event */
 243	u64 dt_run;         /* run time */
 244	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 245	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 246	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 247	u64 dt_delay;       /* time between wakeup and sched-in */
 248	u64 dt_pre_mig;     /* time between migration and wakeup */
 249	u64 ready_to_run;   /* time of wakeup */
 250	u64 migrated;	    /* time when a thread is migrated */
 251
 252	struct stats run_stats;
 253	u64 total_run_time;
 254	u64 total_sleep_time;
 255	u64 total_iowait_time;
 256	u64 total_preempt_time;
 257	u64 total_delay_time;
 258	u64 total_pre_mig_time;
 259
 260	char last_state;
 261
 262	char shortname[3];
 263	bool comm_changed;
 264
 265	u64 migrations;
 266
 267	int prio;
 268};
 269
 270/* per event run time data */
 271struct evsel_runtime {
 272	u64 *last_time; /* time this event was last seen per cpu */
 273	u32 ncpu;       /* highest cpu slot allocated */
 274};
 275
 276/* per cpu idle time data */
 277struct idle_thread_runtime {
 278	struct thread_runtime	tr;
 279	struct thread		*last_thread;
 280	struct rb_root_cached	sorted_root;
 281	struct callchain_root	callchain;
 282	struct callchain_cursor	cursor;
 283};
 284
 285/* track idle times per cpu */
 286static struct thread **idle_threads;
 287static int idle_max_cpu;
 288static char idle_comm[] = "<idle>";
 289
 290static u64 get_nsecs(void)
 291{
 292	struct timespec ts;
 293
 294	clock_gettime(CLOCK_MONOTONIC, &ts);
 295
 296	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 297}
 298
 299static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 300{
 301	u64 T0 = get_nsecs(), T1;
 302
 303	do {
 304		T1 = get_nsecs();
 305	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 306}
 307
 308static void sleep_nsecs(u64 nsecs)
 309{
 310	struct timespec ts;
 311
 312	ts.tv_nsec = nsecs % 999999999;
 313	ts.tv_sec = nsecs / 999999999;
 314
 315	nanosleep(&ts, NULL);
 316}
 317
 318static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 319{
 320	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 321	int i;
 322
 323	for (i = 0; i < 10; i++) {
 324		T0 = get_nsecs();
 325		burn_nsecs(sched, 0);
 326		T1 = get_nsecs();
 327		delta = T1-T0;
 328		min_delta = min(min_delta, delta);
 329	}
 330	sched->run_measurement_overhead = min_delta;
 331
 332	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 333}
 334
 335static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 336{
 337	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 338	int i;
 339
 340	for (i = 0; i < 10; i++) {
 341		T0 = get_nsecs();
 342		sleep_nsecs(10000);
 343		T1 = get_nsecs();
 344		delta = T1-T0;
 345		min_delta = min(min_delta, delta);
 346	}
 347	min_delta -= 10000;
 348	sched->sleep_measurement_overhead = min_delta;
 349
 350	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 351}
 352
 353static struct sched_atom *
 354get_new_event(struct task_desc *task, u64 timestamp)
 355{
 356	struct sched_atom *event = zalloc(sizeof(*event));
 357	unsigned long idx = task->nr_events;
 358	size_t size;
 359
 360	event->timestamp = timestamp;
 361	event->nr = idx;
 362
 363	task->nr_events++;
 364	size = sizeof(struct sched_atom *) * task->nr_events;
 365	task->atoms = realloc(task->atoms, size);
 366	BUG_ON(!task->atoms);
 367
 368	task->atoms[idx] = event;
 369
 370	return event;
 371}
 372
 373static struct sched_atom *last_event(struct task_desc *task)
 374{
 375	if (!task->nr_events)
 376		return NULL;
 377
 378	return task->atoms[task->nr_events - 1];
 379}
 380
 381static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 382				u64 timestamp, u64 duration)
 383{
 384	struct sched_atom *event, *curr_event = last_event(task);
 385
 386	/*
 387	 * optimize an existing RUN event by merging this one
 388	 * to it:
 389	 */
 390	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 391		sched->nr_run_events_optimized++;
 392		curr_event->duration += duration;
 393		return;
 394	}
 395
 396	event = get_new_event(task, timestamp);
 397
 398	event->type = SCHED_EVENT_RUN;
 399	event->duration = duration;
 400
 401	sched->nr_run_events++;
 402}
 403
 404static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 405				   u64 timestamp, struct task_desc *wakee)
 406{
 407	struct sched_atom *event, *wakee_event;
 408
 409	event = get_new_event(task, timestamp);
 410	event->type = SCHED_EVENT_WAKEUP;
 411	event->wakee = wakee;
 412
 413	wakee_event = last_event(wakee);
 414	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 415		sched->targetless_wakeups++;
 416		return;
 417	}
 418	if (wakee_event->wait_sem) {
 419		sched->multitarget_wakeups++;
 420		return;
 421	}
 422
 423	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 424	sem_init(wakee_event->wait_sem, 0, 0);
 
 425	event->wait_sem = wakee_event->wait_sem;
 426
 427	sched->nr_wakeup_events++;
 428}
 429
 430static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 431				  u64 timestamp)
 432{
 433	struct sched_atom *event = get_new_event(task, timestamp);
 434
 435	event->type = SCHED_EVENT_SLEEP;
 436
 437	sched->nr_sleep_events++;
 438}
 439
 440static struct task_desc *register_pid(struct perf_sched *sched,
 441				      unsigned long pid, const char *comm)
 442{
 443	struct task_desc *task;
 444	static int pid_max;
 445
 446	if (sched->pid_to_task == NULL) {
 447		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 448			pid_max = MAX_PID;
 449		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 450	}
 451	if (pid >= (unsigned long)pid_max) {
 452		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 453			sizeof(struct task_desc *))) == NULL);
 454		while (pid >= (unsigned long)pid_max)
 455			sched->pid_to_task[pid_max++] = NULL;
 456	}
 457
 458	task = sched->pid_to_task[pid];
 459
 460	if (task)
 461		return task;
 462
 463	task = zalloc(sizeof(*task));
 464	task->pid = pid;
 465	task->nr = sched->nr_tasks;
 466	strcpy(task->comm, comm);
 467	/*
 468	 * every task starts in sleeping state - this gets ignored
 469	 * if there's no wakeup pointing to this sleep state:
 470	 */
 471	add_sched_event_sleep(sched, task, 0);
 472
 473	sched->pid_to_task[pid] = task;
 474	sched->nr_tasks++;
 475	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 476	BUG_ON(!sched->tasks);
 477	sched->tasks[task->nr] = task;
 478
 479	if (verbose > 0)
 480		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 481
 482	return task;
 483}
 484
 485
 486static void print_task_traces(struct perf_sched *sched)
 487{
 488	struct task_desc *task;
 489	unsigned long i;
 490
 491	for (i = 0; i < sched->nr_tasks; i++) {
 492		task = sched->tasks[i];
 493		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 494			task->nr, task->comm, task->pid, task->nr_events);
 495	}
 496}
 497
 498static void add_cross_task_wakeups(struct perf_sched *sched)
 499{
 500	struct task_desc *task1, *task2;
 501	unsigned long i, j;
 502
 503	for (i = 0; i < sched->nr_tasks; i++) {
 504		task1 = sched->tasks[i];
 505		j = i + 1;
 506		if (j == sched->nr_tasks)
 507			j = 0;
 508		task2 = sched->tasks[j];
 509		add_sched_event_wakeup(sched, task1, 0, task2);
 510	}
 511}
 512
 513static void perf_sched__process_event(struct perf_sched *sched,
 514				      struct sched_atom *atom)
 515{
 516	int ret = 0;
 517
 518	switch (atom->type) {
 519		case SCHED_EVENT_RUN:
 520			burn_nsecs(sched, atom->duration);
 521			break;
 522		case SCHED_EVENT_SLEEP:
 523			if (atom->wait_sem)
 524				ret = sem_wait(atom->wait_sem);
 525			BUG_ON(ret);
 526			break;
 527		case SCHED_EVENT_WAKEUP:
 528			if (atom->wait_sem)
 529				ret = sem_post(atom->wait_sem);
 530			BUG_ON(ret);
 531			break;
 
 
 532		default:
 533			BUG_ON(1);
 534	}
 535}
 536
 537static u64 get_cpu_usage_nsec_parent(void)
 538{
 539	struct rusage ru;
 540	u64 sum;
 541	int err;
 542
 543	err = getrusage(RUSAGE_SELF, &ru);
 544	BUG_ON(err);
 545
 546	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 547	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 548
 549	return sum;
 550}
 551
 552static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 553{
 554	struct perf_event_attr attr;
 555	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 556	int fd;
 557	struct rlimit limit;
 558	bool need_privilege = false;
 559
 560	memset(&attr, 0, sizeof(attr));
 561
 562	attr.type = PERF_TYPE_SOFTWARE;
 563	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 564
 565force_again:
 566	fd = sys_perf_event_open(&attr, 0, -1, -1,
 567				 perf_event_open_cloexec_flag());
 568
 569	if (fd < 0) {
 570		if (errno == EMFILE) {
 571			if (sched->force) {
 572				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 573				limit.rlim_cur += sched->nr_tasks - cur_task;
 574				if (limit.rlim_cur > limit.rlim_max) {
 575					limit.rlim_max = limit.rlim_cur;
 576					need_privilege = true;
 577				}
 578				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 579					if (need_privilege && errno == EPERM)
 580						strcpy(info, "Need privilege\n");
 581				} else
 582					goto force_again;
 583			} else
 584				strcpy(info, "Have a try with -f option\n");
 585		}
 586		pr_err("Error: sys_perf_event_open() syscall returned "
 587		       "with %d (%s)\n%s", fd,
 588		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 589		exit(EXIT_FAILURE);
 590	}
 591	return fd;
 592}
 593
 594static u64 get_cpu_usage_nsec_self(int fd)
 595{
 596	u64 runtime;
 597	int ret;
 598
 599	ret = read(fd, &runtime, sizeof(runtime));
 600	BUG_ON(ret != sizeof(runtime));
 601
 602	return runtime;
 603}
 604
 605struct sched_thread_parms {
 606	struct task_desc  *task;
 607	struct perf_sched *sched;
 608	int fd;
 609};
 610
 611static void *thread_func(void *ctx)
 612{
 613	struct sched_thread_parms *parms = ctx;
 614	struct task_desc *this_task = parms->task;
 615	struct perf_sched *sched = parms->sched;
 616	u64 cpu_usage_0, cpu_usage_1;
 617	unsigned long i, ret;
 618	char comm2[22];
 619	int fd = parms->fd;
 620
 621	zfree(&parms);
 622
 623	sprintf(comm2, ":%s", this_task->comm);
 624	prctl(PR_SET_NAME, comm2);
 625	if (fd < 0)
 626		return NULL;
 627
 628	while (!sched->thread_funcs_exit) {
 629		ret = sem_post(&this_task->ready_for_work);
 630		BUG_ON(ret);
 631		mutex_lock(&sched->start_work_mutex);
 632		mutex_unlock(&sched->start_work_mutex);
 633
 634		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 635
 636		for (i = 0; i < this_task->nr_events; i++) {
 637			this_task->curr_event = i;
 638			perf_sched__process_event(sched, this_task->atoms[i]);
 639		}
 640
 641		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 642		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 643		ret = sem_post(&this_task->work_done_sem);
 644		BUG_ON(ret);
 645
 646		mutex_lock(&sched->work_done_wait_mutex);
 647		mutex_unlock(&sched->work_done_wait_mutex);
 648	}
 649	return NULL;
 650}
 651
 652static void create_tasks(struct perf_sched *sched)
 653	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
 654	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
 655{
 656	struct task_desc *task;
 657	pthread_attr_t attr;
 658	unsigned long i;
 659	int err;
 660
 661	err = pthread_attr_init(&attr);
 662	BUG_ON(err);
 663	err = pthread_attr_setstacksize(&attr,
 664			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 665	BUG_ON(err);
 666	mutex_lock(&sched->start_work_mutex);
 667	mutex_lock(&sched->work_done_wait_mutex);
 668	for (i = 0; i < sched->nr_tasks; i++) {
 669		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 670		BUG_ON(parms == NULL);
 671		parms->task = task = sched->tasks[i];
 672		parms->sched = sched;
 673		parms->fd = self_open_counters(sched, i);
 
 674		sem_init(&task->ready_for_work, 0, 0);
 675		sem_init(&task->work_done_sem, 0, 0);
 676		task->curr_event = 0;
 677		err = pthread_create(&task->thread, &attr, thread_func, parms);
 678		BUG_ON(err);
 679	}
 680}
 681
 682static void destroy_tasks(struct perf_sched *sched)
 683	UNLOCK_FUNCTION(sched->start_work_mutex)
 684	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
 685{
 686	struct task_desc *task;
 687	unsigned long i;
 688	int err;
 689
 690	mutex_unlock(&sched->start_work_mutex);
 691	mutex_unlock(&sched->work_done_wait_mutex);
 692	/* Get rid of threads so they won't be upset by mutex destrunction */
 693	for (i = 0; i < sched->nr_tasks; i++) {
 694		task = sched->tasks[i];
 695		err = pthread_join(task->thread, NULL);
 696		BUG_ON(err);
 
 697		sem_destroy(&task->ready_for_work);
 698		sem_destroy(&task->work_done_sem);
 699	}
 700}
 701
 702static void wait_for_tasks(struct perf_sched *sched)
 703	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 704	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 705{
 706	u64 cpu_usage_0, cpu_usage_1;
 707	struct task_desc *task;
 708	unsigned long i, ret;
 709
 710	sched->start_time = get_nsecs();
 711	sched->cpu_usage = 0;
 712	mutex_unlock(&sched->work_done_wait_mutex);
 713
 714	for (i = 0; i < sched->nr_tasks; i++) {
 715		task = sched->tasks[i];
 716		ret = sem_wait(&task->ready_for_work);
 717		BUG_ON(ret);
 718		sem_init(&task->ready_for_work, 0, 0);
 719	}
 720	mutex_lock(&sched->work_done_wait_mutex);
 721
 722	cpu_usage_0 = get_cpu_usage_nsec_parent();
 723
 724	mutex_unlock(&sched->start_work_mutex);
 725
 726	for (i = 0; i < sched->nr_tasks; i++) {
 727		task = sched->tasks[i];
 728		ret = sem_wait(&task->work_done_sem);
 729		BUG_ON(ret);
 730		sem_init(&task->work_done_sem, 0, 0);
 731		sched->cpu_usage += task->cpu_usage;
 732		task->cpu_usage = 0;
 733	}
 734
 735	cpu_usage_1 = get_cpu_usage_nsec_parent();
 736	if (!sched->runavg_cpu_usage)
 737		sched->runavg_cpu_usage = sched->cpu_usage;
 738	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 739
 740	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 741	if (!sched->runavg_parent_cpu_usage)
 742		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 743	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 744					 sched->parent_cpu_usage)/sched->replay_repeat;
 745
 746	mutex_lock(&sched->start_work_mutex);
 747
 748	for (i = 0; i < sched->nr_tasks; i++) {
 749		task = sched->tasks[i];
 
 750		task->curr_event = 0;
 751	}
 752}
 753
 754static void run_one_test(struct perf_sched *sched)
 755	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 756	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 757{
 758	u64 T0, T1, delta, avg_delta, fluct;
 759
 760	T0 = get_nsecs();
 761	wait_for_tasks(sched);
 762	T1 = get_nsecs();
 763
 764	delta = T1 - T0;
 765	sched->sum_runtime += delta;
 766	sched->nr_runs++;
 767
 768	avg_delta = sched->sum_runtime / sched->nr_runs;
 769	if (delta < avg_delta)
 770		fluct = avg_delta - delta;
 771	else
 772		fluct = delta - avg_delta;
 773	sched->sum_fluct += fluct;
 774	if (!sched->run_avg)
 775		sched->run_avg = delta;
 776	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 777
 778	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 779
 780	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 781
 782	printf("cpu: %0.2f / %0.2f",
 783		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 784
 785#if 0
 786	/*
 787	 * rusage statistics done by the parent, these are less
 788	 * accurate than the sched->sum_exec_runtime based statistics:
 789	 */
 790	printf(" [%0.2f / %0.2f]",
 791		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 792		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 793#endif
 794
 795	printf("\n");
 796
 797	if (sched->nr_sleep_corrections)
 798		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 799	sched->nr_sleep_corrections = 0;
 800}
 801
 802static void test_calibrations(struct perf_sched *sched)
 803{
 804	u64 T0, T1;
 805
 806	T0 = get_nsecs();
 807	burn_nsecs(sched, NSEC_PER_MSEC);
 808	T1 = get_nsecs();
 809
 810	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 811
 812	T0 = get_nsecs();
 813	sleep_nsecs(NSEC_PER_MSEC);
 814	T1 = get_nsecs();
 815
 816	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 817}
 818
 819static int
 820replay_wakeup_event(struct perf_sched *sched,
 821		    struct evsel *evsel, struct perf_sample *sample,
 822		    struct machine *machine __maybe_unused)
 823{
 824	const char *comm = evsel__strval(evsel, sample, "comm");
 825	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 826	struct task_desc *waker, *wakee;
 827
 828	if (verbose > 0) {
 829		printf("sched_wakeup event %p\n", evsel);
 830
 831		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 832	}
 833
 834	waker = register_pid(sched, sample->tid, "<unknown>");
 835	wakee = register_pid(sched, pid, comm);
 836
 837	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 838	return 0;
 839}
 840
 841static int replay_switch_event(struct perf_sched *sched,
 842			       struct evsel *evsel,
 843			       struct perf_sample *sample,
 844			       struct machine *machine __maybe_unused)
 845{
 846	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 847		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 848	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 849		  next_pid = evsel__intval(evsel, sample, "next_pid");
 
 850	struct task_desc *prev, __maybe_unused *next;
 851	u64 timestamp0, timestamp = sample->time;
 852	int cpu = sample->cpu;
 853	s64 delta;
 854
 855	if (verbose > 0)
 856		printf("sched_switch event %p\n", evsel);
 857
 858	if (cpu >= MAX_CPUS || cpu < 0)
 859		return 0;
 860
 861	timestamp0 = sched->cpu_last_switched[cpu];
 862	if (timestamp0)
 863		delta = timestamp - timestamp0;
 864	else
 865		delta = 0;
 866
 867	if (delta < 0) {
 868		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 869		return -1;
 870	}
 871
 872	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 873		 prev_comm, prev_pid, next_comm, next_pid, delta);
 874
 875	prev = register_pid(sched, prev_pid, prev_comm);
 876	next = register_pid(sched, next_pid, next_comm);
 877
 878	sched->cpu_last_switched[cpu] = timestamp;
 879
 880	add_sched_event_run(sched, prev, timestamp, delta);
 881	add_sched_event_sleep(sched, prev, timestamp);
 882
 883	return 0;
 884}
 885
 886static int replay_fork_event(struct perf_sched *sched,
 887			     union perf_event *event,
 888			     struct machine *machine)
 889{
 890	struct thread *child, *parent;
 891
 892	child = machine__findnew_thread(machine, event->fork.pid,
 893					event->fork.tid);
 894	parent = machine__findnew_thread(machine, event->fork.ppid,
 895					 event->fork.ptid);
 896
 897	if (child == NULL || parent == NULL) {
 898		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 899				 child, parent);
 900		goto out_put;
 901	}
 902
 903	if (verbose > 0) {
 904		printf("fork event\n");
 905		printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
 906		printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
 907	}
 908
 909	register_pid(sched, thread__tid(parent), thread__comm_str(parent));
 910	register_pid(sched, thread__tid(child), thread__comm_str(child));
 911out_put:
 912	thread__put(child);
 913	thread__put(parent);
 914	return 0;
 915}
 916
 917struct sort_dimension {
 918	const char		*name;
 919	sort_fn_t		cmp;
 920	struct list_head	list;
 921};
 922
 923static inline void init_prio(struct thread_runtime *r)
 924{
 925	r->prio = -1;
 926}
 927
 928/*
 929 * handle runtime stats saved per thread
 930 */
 931static struct thread_runtime *thread__init_runtime(struct thread *thread)
 932{
 933	struct thread_runtime *r;
 934
 935	r = zalloc(sizeof(struct thread_runtime));
 936	if (!r)
 937		return NULL;
 938
 939	init_stats(&r->run_stats);
 940	init_prio(r);
 941	thread__set_priv(thread, r);
 942
 943	return r;
 944}
 945
 946static struct thread_runtime *thread__get_runtime(struct thread *thread)
 947{
 948	struct thread_runtime *tr;
 949
 950	tr = thread__priv(thread);
 951	if (tr == NULL) {
 952		tr = thread__init_runtime(thread);
 953		if (tr == NULL)
 954			pr_debug("Failed to malloc memory for runtime data.\n");
 955	}
 956
 957	return tr;
 958}
 959
 960static int
 961thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 962{
 963	struct sort_dimension *sort;
 964	int ret = 0;
 965
 966	BUG_ON(list_empty(list));
 967
 968	list_for_each_entry(sort, list, list) {
 969		ret = sort->cmp(l, r);
 970		if (ret)
 971			return ret;
 972	}
 973
 974	return ret;
 975}
 976
 977static struct work_atoms *
 978thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 979			 struct list_head *sort_list)
 980{
 981	struct rb_node *node = root->rb_root.rb_node;
 982	struct work_atoms key = { .thread = thread };
 983
 984	while (node) {
 985		struct work_atoms *atoms;
 986		int cmp;
 987
 988		atoms = container_of(node, struct work_atoms, node);
 989
 990		cmp = thread_lat_cmp(sort_list, &key, atoms);
 991		if (cmp > 0)
 992			node = node->rb_left;
 993		else if (cmp < 0)
 994			node = node->rb_right;
 995		else {
 996			BUG_ON(thread != atoms->thread);
 997			return atoms;
 998		}
 999	}
1000	return NULL;
1001}
1002
1003static void
1004__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1005			 struct list_head *sort_list)
1006{
1007	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1008	bool leftmost = true;
1009
1010	while (*new) {
1011		struct work_atoms *this;
1012		int cmp;
1013
1014		this = container_of(*new, struct work_atoms, node);
1015		parent = *new;
1016
1017		cmp = thread_lat_cmp(sort_list, data, this);
1018
1019		if (cmp > 0)
1020			new = &((*new)->rb_left);
1021		else {
1022			new = &((*new)->rb_right);
1023			leftmost = false;
1024		}
1025	}
1026
1027	rb_link_node(&data->node, parent, new);
1028	rb_insert_color_cached(&data->node, root, leftmost);
1029}
1030
1031static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1032{
1033	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1034	if (!atoms) {
1035		pr_err("No memory at %s\n", __func__);
1036		return -1;
1037	}
1038
1039	atoms->thread = thread__get(thread);
1040	INIT_LIST_HEAD(&atoms->work_list);
1041	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1042	return 0;
1043}
1044
 
 
 
 
 
 
 
1045static int
1046add_sched_out_event(struct work_atoms *atoms,
1047		    char run_state,
1048		    u64 timestamp)
1049{
1050	struct work_atom *atom = zalloc(sizeof(*atom));
1051	if (!atom) {
1052		pr_err("Non memory at %s", __func__);
1053		return -1;
1054	}
1055
1056	atom->sched_out_time = timestamp;
1057
1058	if (run_state == 'R') {
1059		atom->state = THREAD_WAIT_CPU;
1060		atom->wake_up_time = atom->sched_out_time;
1061	}
1062
1063	list_add_tail(&atom->list, &atoms->work_list);
1064	return 0;
1065}
1066
1067static void
1068add_runtime_event(struct work_atoms *atoms, u64 delta,
1069		  u64 timestamp __maybe_unused)
1070{
1071	struct work_atom *atom;
1072
1073	BUG_ON(list_empty(&atoms->work_list));
1074
1075	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1076
1077	atom->runtime += delta;
1078	atoms->total_runtime += delta;
1079}
1080
1081static void
1082add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1083{
1084	struct work_atom *atom;
1085	u64 delta;
1086
1087	if (list_empty(&atoms->work_list))
1088		return;
1089
1090	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092	if (atom->state != THREAD_WAIT_CPU)
1093		return;
1094
1095	if (timestamp < atom->wake_up_time) {
1096		atom->state = THREAD_IGNORE;
1097		return;
1098	}
1099
1100	atom->state = THREAD_SCHED_IN;
1101	atom->sched_in_time = timestamp;
1102
1103	delta = atom->sched_in_time - atom->wake_up_time;
1104	atoms->total_lat += delta;
1105	if (delta > atoms->max_lat) {
1106		atoms->max_lat = delta;
1107		atoms->max_lat_start = atom->wake_up_time;
1108		atoms->max_lat_end = timestamp;
1109	}
1110	atoms->nb_atoms++;
1111}
1112
1113static int latency_switch_event(struct perf_sched *sched,
1114				struct evsel *evsel,
1115				struct perf_sample *sample,
1116				struct machine *machine)
1117{
1118	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1119		  next_pid = evsel__intval(evsel, sample, "next_pid");
1120	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1121	struct work_atoms *out_events, *in_events;
1122	struct thread *sched_out, *sched_in;
1123	u64 timestamp0, timestamp = sample->time;
1124	int cpu = sample->cpu, err = -1;
1125	s64 delta;
1126
1127	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1128
1129	timestamp0 = sched->cpu_last_switched[cpu];
1130	sched->cpu_last_switched[cpu] = timestamp;
1131	if (timestamp0)
1132		delta = timestamp - timestamp0;
1133	else
1134		delta = 0;
1135
1136	if (delta < 0) {
1137		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1138		return -1;
1139	}
1140
1141	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1142	sched_in = machine__findnew_thread(machine, -1, next_pid);
1143	if (sched_out == NULL || sched_in == NULL)
1144		goto out_put;
1145
1146	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1147	if (!out_events) {
1148		if (thread_atoms_insert(sched, sched_out))
1149			goto out_put;
1150		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1151		if (!out_events) {
1152			pr_err("out-event: Internal tree error");
1153			goto out_put;
1154		}
1155	}
1156	if (add_sched_out_event(out_events, prev_state, timestamp))
1157		return -1;
1158
1159	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1160	if (!in_events) {
1161		if (thread_atoms_insert(sched, sched_in))
1162			goto out_put;
1163		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1164		if (!in_events) {
1165			pr_err("in-event: Internal tree error");
1166			goto out_put;
1167		}
1168		/*
1169		 * Take came in we have not heard about yet,
1170		 * add in an initial atom in runnable state:
1171		 */
1172		if (add_sched_out_event(in_events, 'R', timestamp))
1173			goto out_put;
1174	}
1175	add_sched_in_event(in_events, timestamp);
1176	err = 0;
1177out_put:
1178	thread__put(sched_out);
1179	thread__put(sched_in);
1180	return err;
1181}
1182
1183static int latency_runtime_event(struct perf_sched *sched,
1184				 struct evsel *evsel,
1185				 struct perf_sample *sample,
1186				 struct machine *machine)
1187{
1188	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1189	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1190	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1191	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1192	u64 timestamp = sample->time;
1193	int cpu = sample->cpu, err = -1;
1194
1195	if (thread == NULL)
1196		return -1;
1197
1198	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1199	if (!atoms) {
1200		if (thread_atoms_insert(sched, thread))
1201			goto out_put;
1202		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1203		if (!atoms) {
1204			pr_err("in-event: Internal tree error");
1205			goto out_put;
1206		}
1207		if (add_sched_out_event(atoms, 'R', timestamp))
1208			goto out_put;
1209	}
1210
1211	add_runtime_event(atoms, runtime, timestamp);
1212	err = 0;
1213out_put:
1214	thread__put(thread);
1215	return err;
1216}
1217
1218static int latency_wakeup_event(struct perf_sched *sched,
1219				struct evsel *evsel,
1220				struct perf_sample *sample,
1221				struct machine *machine)
1222{
1223	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1224	struct work_atoms *atoms;
1225	struct work_atom *atom;
1226	struct thread *wakee;
1227	u64 timestamp = sample->time;
1228	int err = -1;
1229
1230	wakee = machine__findnew_thread(machine, -1, pid);
1231	if (wakee == NULL)
1232		return -1;
1233	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1234	if (!atoms) {
1235		if (thread_atoms_insert(sched, wakee))
1236			goto out_put;
1237		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1238		if (!atoms) {
1239			pr_err("wakeup-event: Internal tree error");
1240			goto out_put;
1241		}
1242		if (add_sched_out_event(atoms, 'S', timestamp))
1243			goto out_put;
1244	}
1245
1246	BUG_ON(list_empty(&atoms->work_list));
1247
1248	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1249
1250	/*
1251	 * As we do not guarantee the wakeup event happens when
1252	 * task is out of run queue, also may happen when task is
1253	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1254	 * then we should not set the ->wake_up_time when wake up a
1255	 * task which is on run queue.
1256	 *
1257	 * You WILL be missing events if you've recorded only
1258	 * one CPU, or are only looking at only one, so don't
1259	 * skip in this case.
1260	 */
1261	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1262		goto out_ok;
1263
1264	sched->nr_timestamps++;
1265	if (atom->sched_out_time > timestamp) {
1266		sched->nr_unordered_timestamps++;
1267		goto out_ok;
1268	}
1269
1270	atom->state = THREAD_WAIT_CPU;
1271	atom->wake_up_time = timestamp;
1272out_ok:
1273	err = 0;
1274out_put:
1275	thread__put(wakee);
1276	return err;
1277}
1278
1279static int latency_migrate_task_event(struct perf_sched *sched,
1280				      struct evsel *evsel,
1281				      struct perf_sample *sample,
1282				      struct machine *machine)
1283{
1284	const u32 pid = evsel__intval(evsel, sample, "pid");
1285	u64 timestamp = sample->time;
1286	struct work_atoms *atoms;
1287	struct work_atom *atom;
1288	struct thread *migrant;
1289	int err = -1;
1290
1291	/*
1292	 * Only need to worry about migration when profiling one CPU.
1293	 */
1294	if (sched->profile_cpu == -1)
1295		return 0;
1296
1297	migrant = machine__findnew_thread(machine, -1, pid);
1298	if (migrant == NULL)
1299		return -1;
1300	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1301	if (!atoms) {
1302		if (thread_atoms_insert(sched, migrant))
1303			goto out_put;
1304		register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1305		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1306		if (!atoms) {
1307			pr_err("migration-event: Internal tree error");
1308			goto out_put;
1309		}
1310		if (add_sched_out_event(atoms, 'R', timestamp))
1311			goto out_put;
1312	}
1313
1314	BUG_ON(list_empty(&atoms->work_list));
1315
1316	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1317	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1318
1319	sched->nr_timestamps++;
1320
1321	if (atom->sched_out_time > timestamp)
1322		sched->nr_unordered_timestamps++;
1323	err = 0;
1324out_put:
1325	thread__put(migrant);
1326	return err;
1327}
1328
1329static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1330{
1331	int i;
1332	int ret;
1333	u64 avg;
1334	char max_lat_start[32], max_lat_end[32];
1335
1336	if (!work_list->nb_atoms)
1337		return;
1338	/*
1339	 * Ignore idle threads:
1340	 */
1341	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1342		return;
1343
1344	sched->all_runtime += work_list->total_runtime;
1345	sched->all_count   += work_list->nb_atoms;
1346
1347	if (work_list->num_merged > 1) {
1348		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1349			     work_list->num_merged);
1350	} else {
1351		ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1352			     thread__tid(work_list->thread));
1353	}
1354
1355	for (i = 0; i < 24 - ret; i++)
1356		printf(" ");
1357
1358	avg = work_list->total_lat / work_list->nb_atoms;
1359	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1360	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1361
1362	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1363	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1364		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1365		 (double)work_list->max_lat / NSEC_PER_MSEC,
1366		 max_lat_start, max_lat_end);
1367}
1368
1369static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1370{
1371	pid_t l_tid, r_tid;
1372
1373	if (RC_CHK_EQUAL(l->thread, r->thread))
1374		return 0;
1375	l_tid = thread__tid(l->thread);
1376	r_tid = thread__tid(r->thread);
1377	if (l_tid < r_tid)
1378		return -1;
1379	if (l_tid > r_tid)
1380		return 1;
1381	return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1382}
1383
1384static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1385{
1386	u64 avgl, avgr;
1387
1388	if (!l->nb_atoms)
1389		return -1;
1390
1391	if (!r->nb_atoms)
1392		return 1;
1393
1394	avgl = l->total_lat / l->nb_atoms;
1395	avgr = r->total_lat / r->nb_atoms;
1396
1397	if (avgl < avgr)
1398		return -1;
1399	if (avgl > avgr)
1400		return 1;
1401
1402	return 0;
1403}
1404
1405static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407	if (l->max_lat < r->max_lat)
1408		return -1;
1409	if (l->max_lat > r->max_lat)
1410		return 1;
1411
1412	return 0;
1413}
1414
1415static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1416{
1417	if (l->nb_atoms < r->nb_atoms)
1418		return -1;
1419	if (l->nb_atoms > r->nb_atoms)
1420		return 1;
1421
1422	return 0;
1423}
1424
1425static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1426{
1427	if (l->total_runtime < r->total_runtime)
1428		return -1;
1429	if (l->total_runtime > r->total_runtime)
1430		return 1;
1431
1432	return 0;
1433}
1434
1435static int sort_dimension__add(const char *tok, struct list_head *list)
1436{
1437	size_t i;
1438	static struct sort_dimension avg_sort_dimension = {
1439		.name = "avg",
1440		.cmp  = avg_cmp,
1441	};
1442	static struct sort_dimension max_sort_dimension = {
1443		.name = "max",
1444		.cmp  = max_cmp,
1445	};
1446	static struct sort_dimension pid_sort_dimension = {
1447		.name = "pid",
1448		.cmp  = pid_cmp,
1449	};
1450	static struct sort_dimension runtime_sort_dimension = {
1451		.name = "runtime",
1452		.cmp  = runtime_cmp,
1453	};
1454	static struct sort_dimension switch_sort_dimension = {
1455		.name = "switch",
1456		.cmp  = switch_cmp,
1457	};
1458	struct sort_dimension *available_sorts[] = {
1459		&pid_sort_dimension,
1460		&avg_sort_dimension,
1461		&max_sort_dimension,
1462		&switch_sort_dimension,
1463		&runtime_sort_dimension,
1464	};
1465
1466	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1467		if (!strcmp(available_sorts[i]->name, tok)) {
1468			list_add_tail(&available_sorts[i]->list, list);
1469
1470			return 0;
1471		}
1472	}
1473
1474	return -1;
1475}
1476
1477static void perf_sched__sort_lat(struct perf_sched *sched)
1478{
1479	struct rb_node *node;
1480	struct rb_root_cached *root = &sched->atom_root;
1481again:
1482	for (;;) {
1483		struct work_atoms *data;
1484		node = rb_first_cached(root);
1485		if (!node)
1486			break;
1487
1488		rb_erase_cached(node, root);
1489		data = rb_entry(node, struct work_atoms, node);
1490		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1491	}
1492	if (root == &sched->atom_root) {
1493		root = &sched->merged_atom_root;
1494		goto again;
1495	}
1496}
1497
1498static int process_sched_wakeup_event(const struct perf_tool *tool,
1499				      struct evsel *evsel,
1500				      struct perf_sample *sample,
1501				      struct machine *machine)
1502{
1503	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1504
1505	if (sched->tp_handler->wakeup_event)
1506		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1507
1508	return 0;
1509}
1510
1511static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1512				      struct evsel *evsel __maybe_unused,
1513				      struct perf_sample *sample __maybe_unused,
1514				      struct machine *machine __maybe_unused)
1515{
1516	return 0;
1517}
1518
1519union map_priv {
1520	void	*ptr;
1521	bool	 color;
1522};
1523
1524static bool thread__has_color(struct thread *thread)
1525{
1526	union map_priv priv = {
1527		.ptr = thread__priv(thread),
1528	};
1529
1530	return priv.color;
1531}
1532
1533static struct thread*
1534map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1535{
1536	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1537	union map_priv priv = {
1538		.color = false,
1539	};
1540
1541	if (!sched->map.color_pids || !thread || thread__priv(thread))
1542		return thread;
1543
1544	if (thread_map__has(sched->map.color_pids, tid))
1545		priv.color = true;
1546
1547	thread__set_priv(thread, priv.ptr);
1548	return thread;
1549}
1550
1551static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1552{
1553	bool fuzzy_match = sched->map.fuzzy;
1554	struct strlist *task_names = sched->map.task_names;
1555	struct str_node *node;
1556
1557	strlist__for_each_entry(node, task_names) {
1558		bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1559							!strcmp(comm_str, node->s);
1560		if (match_found)
1561			return true;
1562	}
1563
1564	return false;
1565}
1566
1567static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1568								const char *color, bool sched_out)
1569{
1570	for (int i = 0; i < cpus_nr; i++) {
1571		struct perf_cpu cpu = {
1572			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1573		};
1574		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1575		struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1576		struct thread_runtime *curr_tr;
1577		const char *pid_color = color;
1578		const char *cpu_color = color;
1579		char symbol = ' ';
1580		struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1581
1582		if (thread_to_check && thread__has_color(thread_to_check))
1583			pid_color = COLOR_PIDS;
1584
1585		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1586			cpu_color = COLOR_CPUS;
1587
1588		if (cpu.cpu == this_cpu.cpu)
1589			symbol = '*';
1590
1591		color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1592
1593		thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1594								sched->curr_thread[cpu.cpu];
1595
1596		if (thread_to_check) {
1597			curr_tr = thread__get_runtime(thread_to_check);
1598			if (curr_tr == NULL)
1599				return;
1600
1601			if (sched_out) {
1602				if (cpu.cpu == this_cpu.cpu)
1603					color_fprintf(stdout, color, "-  ");
1604				else {
1605					curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1606					if (curr_tr != NULL)
1607						color_fprintf(stdout, pid_color, "%2s ",
1608										curr_tr->shortname);
1609				}
1610			} else
1611				color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1612		} else
1613			color_fprintf(stdout, color, "   ");
1614	}
1615}
1616
1617static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1618			    struct perf_sample *sample, struct machine *machine)
1619{
1620	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1621	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1622	struct thread *sched_in, *sched_out;
1623	struct thread_runtime *tr;
1624	int new_shortname;
1625	u64 timestamp0, timestamp = sample->time;
1626	s64 delta;
 
1627	struct perf_cpu this_cpu = {
1628		.cpu = sample->cpu,
1629	};
1630	int cpus_nr;
1631	int proceed;
1632	bool new_cpu = false;
1633	const char *color = PERF_COLOR_NORMAL;
1634	char stimestamp[32];
1635	const char *str;
1636
1637	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1638
1639	if (this_cpu.cpu > sched->max_cpu.cpu)
1640		sched->max_cpu = this_cpu;
1641
1642	if (sched->map.comp) {
1643		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1644		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1645			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1646			new_cpu = true;
1647		}
1648	} else
1649		cpus_nr = sched->max_cpu.cpu;
1650
1651	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1652	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1653	if (timestamp0)
1654		delta = timestamp - timestamp0;
1655	else
1656		delta = 0;
1657
1658	if (delta < 0) {
1659		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1660		return -1;
1661	}
1662
1663	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1664	sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1665	if (sched_in == NULL || sched_out == NULL)
1666		return -1;
1667
1668	tr = thread__get_runtime(sched_in);
1669	if (tr == NULL) {
1670		thread__put(sched_in);
1671		return -1;
1672	}
1673
1674	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1675	sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
1676
1677	str = thread__comm_str(sched_in);
 
1678	new_shortname = 0;
1679	if (!tr->shortname[0]) {
1680		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1681			/*
1682			 * Don't allocate a letter-number for swapper:0
1683			 * as a shortname. Instead, we use '.' for it.
1684			 */
1685			tr->shortname[0] = '.';
1686			tr->shortname[1] = ' ';
1687		} else if (!sched->map.task_name || sched_match_task(sched, str)) {
1688			tr->shortname[0] = sched->next_shortname1;
1689			tr->shortname[1] = sched->next_shortname2;
1690
1691			if (sched->next_shortname1 < 'Z') {
1692				sched->next_shortname1++;
1693			} else {
1694				sched->next_shortname1 = 'A';
1695				if (sched->next_shortname2 < '9')
1696					sched->next_shortname2++;
1697				else
1698					sched->next_shortname2 = '0';
1699			}
1700		} else {
1701			tr->shortname[0] = '-';
1702			tr->shortname[1] = ' ';
1703		}
1704		new_shortname = 1;
1705	}
1706
1707	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1708		goto out;
 
 
 
 
 
 
1709
1710	proceed = 0;
1711	str = thread__comm_str(sched_in);
1712	/*
1713	 * Check which of sched_in and sched_out matches the passed --task-name
1714	 * arguments and call the corresponding print_sched_map.
1715	 */
1716	if (sched->map.task_name && !sched_match_task(sched, str)) {
1717		if (!sched_match_task(sched, thread__comm_str(sched_out)))
1718			goto out;
 
 
1719		else
1720			goto sched_out;
1721
1722	} else {
1723		str = thread__comm_str(sched_out);
1724		if (!(sched->map.task_name && !sched_match_task(sched, str)))
1725			proceed = 1;
 
 
 
 
 
1726	}
1727
1728	printf("  ");
1729
1730	print_sched_map(sched, this_cpu, cpus_nr, color, false);
1731
1732	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1733	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1734	if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1735		const char *pid_color = color;
1736
1737		if (thread__has_color(sched_in))
1738			pid_color = COLOR_PIDS;
1739
1740		color_fprintf(stdout, pid_color, "%s => %s:%d",
1741			tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1742		tr->comm_changed = false;
1743	}
1744
1745	if (sched->map.comp && new_cpu)
1746		color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu);
1747
1748	if (proceed != 1) {
1749		color_fprintf(stdout, color, "\n");
1750		goto out;
1751	}
1752
1753sched_out:
1754	if (sched->map.task_name) {
1755		tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1756		if (strcmp(tr->shortname, "") == 0)
1757			goto out;
1758
1759		if (proceed == 1)
1760			color_fprintf(stdout, color, "\n");
1761
1762		printf("  ");
1763		print_sched_map(sched, this_cpu, cpus_nr, color, true);
1764		timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1765		color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1766	}
1767
1768	color_fprintf(stdout, color, "\n");
1769
1770out:
1771	if (sched->map.task_name)
1772		thread__put(sched_out);
1773
1774	thread__put(sched_in);
1775
1776	return 0;
1777}
1778
1779static int process_sched_switch_event(const struct perf_tool *tool,
1780				      struct evsel *evsel,
1781				      struct perf_sample *sample,
1782				      struct machine *machine)
1783{
1784	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1785	int this_cpu = sample->cpu, err = 0;
1786	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1787	    next_pid = evsel__intval(evsel, sample, "next_pid");
1788
1789	if (sched->curr_pid[this_cpu] != (u32)-1) {
1790		/*
1791		 * Are we trying to switch away a PID that is
1792		 * not current?
1793		 */
1794		if (sched->curr_pid[this_cpu] != prev_pid)
1795			sched->nr_context_switch_bugs++;
1796	}
1797
1798	if (sched->tp_handler->switch_event)
1799		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1800
1801	sched->curr_pid[this_cpu] = next_pid;
1802	return err;
1803}
1804
1805static int process_sched_runtime_event(const struct perf_tool *tool,
1806				       struct evsel *evsel,
1807				       struct perf_sample *sample,
1808				       struct machine *machine)
1809{
1810	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1811
1812	if (sched->tp_handler->runtime_event)
1813		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1814
1815	return 0;
1816}
1817
1818static int perf_sched__process_fork_event(const struct perf_tool *tool,
1819					  union perf_event *event,
1820					  struct perf_sample *sample,
1821					  struct machine *machine)
1822{
1823	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1824
1825	/* run the fork event through the perf machinery */
1826	perf_event__process_fork(tool, event, sample, machine);
1827
1828	/* and then run additional processing needed for this command */
1829	if (sched->tp_handler->fork_event)
1830		return sched->tp_handler->fork_event(sched, event, machine);
1831
1832	return 0;
1833}
1834
1835static int process_sched_migrate_task_event(const struct perf_tool *tool,
1836					    struct evsel *evsel,
1837					    struct perf_sample *sample,
1838					    struct machine *machine)
1839{
1840	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1841
1842	if (sched->tp_handler->migrate_task_event)
1843		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1844
1845	return 0;
1846}
1847
1848typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1849				  struct evsel *evsel,
1850				  struct perf_sample *sample,
1851				  struct machine *machine);
1852
1853static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1854						 union perf_event *event __maybe_unused,
1855						 struct perf_sample *sample,
1856						 struct evsel *evsel,
1857						 struct machine *machine)
1858{
1859	int err = 0;
1860
1861	if (evsel->handler != NULL) {
1862		tracepoint_handler f = evsel->handler;
1863		err = f(tool, evsel, sample, machine);
1864	}
1865
1866	return err;
1867}
1868
1869static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1870				    union perf_event *event,
1871				    struct perf_sample *sample,
1872				    struct machine *machine)
1873{
1874	struct thread *thread;
1875	struct thread_runtime *tr;
1876	int err;
1877
1878	err = perf_event__process_comm(tool, event, sample, machine);
1879	if (err)
1880		return err;
1881
1882	thread = machine__find_thread(machine, sample->pid, sample->tid);
1883	if (!thread) {
1884		pr_err("Internal error: can't find thread\n");
1885		return -1;
1886	}
1887
1888	tr = thread__get_runtime(thread);
1889	if (tr == NULL) {
1890		thread__put(thread);
1891		return -1;
1892	}
1893
1894	tr->comm_changed = true;
1895	thread__put(thread);
1896
1897	return 0;
1898}
1899
1900static int perf_sched__read_events(struct perf_sched *sched)
1901{
1902	struct evsel_str_handler handlers[] = {
1903		{ "sched:sched_switch",	      process_sched_switch_event, },
1904		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1905		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1906		{ "sched:sched_waking",	      process_sched_wakeup_event, },
1907		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1908		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1909	};
1910	struct perf_session *session;
1911	struct perf_data data = {
1912		.path  = input_name,
1913		.mode  = PERF_DATA_MODE_READ,
1914		.force = sched->force,
1915	};
1916	int rc = -1;
1917
1918	session = perf_session__new(&data, &sched->tool);
1919	if (IS_ERR(session)) {
1920		pr_debug("Error creating perf session");
1921		return PTR_ERR(session);
1922	}
1923
1924	symbol__init(&session->header.env);
1925
1926	/* prefer sched_waking if it is captured */
1927	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1928		handlers[2].handler = process_sched_wakeup_ignore;
1929
1930	if (perf_session__set_tracepoints_handlers(session, handlers))
1931		goto out_delete;
1932
1933	if (perf_session__has_traces(session, "record -R")) {
1934		int err = perf_session__process_events(session);
1935		if (err) {
1936			pr_err("Failed to process events, error %d", err);
1937			goto out_delete;
1938		}
1939
1940		sched->nr_events      = session->evlist->stats.nr_events[0];
1941		sched->nr_lost_events = session->evlist->stats.total_lost;
1942		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1943	}
1944
1945	rc = 0;
1946out_delete:
1947	perf_session__delete(session);
1948	return rc;
1949}
1950
1951/*
1952 * scheduling times are printed as msec.usec
1953 */
1954static inline void print_sched_time(unsigned long long nsecs, int width)
1955{
1956	unsigned long msecs;
1957	unsigned long usecs;
1958
1959	msecs  = nsecs / NSEC_PER_MSEC;
1960	nsecs -= msecs * NSEC_PER_MSEC;
1961	usecs  = nsecs / NSEC_PER_USEC;
1962	printf("%*lu.%03lu ", width, msecs, usecs);
1963}
1964
1965/*
1966 * returns runtime data for event, allocating memory for it the
1967 * first time it is used.
1968 */
1969static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1970{
1971	struct evsel_runtime *r = evsel->priv;
1972
1973	if (r == NULL) {
1974		r = zalloc(sizeof(struct evsel_runtime));
1975		evsel->priv = r;
1976	}
1977
1978	return r;
1979}
1980
1981/*
1982 * save last time event was seen per cpu
1983 */
1984static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1985{
1986	struct evsel_runtime *r = evsel__get_runtime(evsel);
1987
1988	if (r == NULL)
1989		return;
1990
1991	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1992		int i, n = __roundup_pow_of_two(cpu+1);
1993		void *p = r->last_time;
1994
1995		p = realloc(r->last_time, n * sizeof(u64));
1996		if (!p)
1997			return;
1998
1999		r->last_time = p;
2000		for (i = r->ncpu; i < n; ++i)
2001			r->last_time[i] = (u64) 0;
2002
2003		r->ncpu = n;
2004	}
2005
2006	r->last_time[cpu] = timestamp;
2007}
2008
2009/* returns last time this event was seen on the given cpu */
2010static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2011{
2012	struct evsel_runtime *r = evsel__get_runtime(evsel);
2013
2014	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2015		return 0;
2016
2017	return r->last_time[cpu];
2018}
2019
2020static int comm_width = 30;
2021
2022static char *timehist_get_commstr(struct thread *thread)
2023{
2024	static char str[32];
2025	const char *comm = thread__comm_str(thread);
2026	pid_t tid = thread__tid(thread);
2027	pid_t pid = thread__pid(thread);
2028	int n;
2029
2030	if (pid == 0)
2031		n = scnprintf(str, sizeof(str), "%s", comm);
2032
2033	else if (tid != pid)
2034		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2035
2036	else
2037		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2038
2039	if (n > comm_width)
2040		comm_width = n;
2041
2042	return str;
2043}
2044
2045/* prio field format: xxx or xxx->yyy */
2046#define MAX_PRIO_STR_LEN 8
2047static char *timehist_get_priostr(struct evsel *evsel,
2048				  struct thread *thread,
2049				  struct perf_sample *sample)
2050{
2051	static char prio_str[16];
2052	int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2053	struct thread_runtime *tr = thread__priv(thread);
2054
2055	if (tr->prio != prev_prio && tr->prio != -1)
2056		scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2057	else
2058		scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2059
2060	return prio_str;
2061}
2062
2063static void timehist_header(struct perf_sched *sched)
2064{
2065	u32 ncpus = sched->max_cpu.cpu + 1;
2066	u32 i, j;
2067
2068	printf("%15s %6s ", "time", "cpu");
2069
2070	if (sched->show_cpu_visual) {
2071		printf(" ");
2072		for (i = 0, j = 0; i < ncpus; ++i) {
2073			printf("%x", j++);
2074			if (j > 15)
2075				j = 0;
2076		}
2077		printf(" ");
2078	}
2079
2080	printf(" %-*s", comm_width, "task name");
2081
2082	if (sched->show_prio)
2083		printf("  %-*s", MAX_PRIO_STR_LEN, "prio");
2084
2085	printf("  %9s  %9s  %9s", "wait time", "sch delay", "run time");
2086
2087	if (sched->pre_migrations)
2088		printf("  %9s", "pre-mig time");
2089
2090	if (sched->show_state)
2091		printf("  %s", "state");
2092
2093	printf("\n");
2094
2095	/*
2096	 * units row
2097	 */
2098	printf("%15s %-6s ", "", "");
2099
2100	if (sched->show_cpu_visual)
2101		printf(" %*s ", ncpus, "");
2102
2103	printf(" %-*s", comm_width, "[tid/pid]");
2104
2105	if (sched->show_prio)
2106		printf("  %-*s", MAX_PRIO_STR_LEN, "");
2107
2108	printf("  %9s  %9s  %9s", "(msec)", "(msec)", "(msec)");
2109
2110	if (sched->pre_migrations)
2111		printf("  %9s", "(msec)");
2112
2113	printf("\n");
2114
2115	/*
2116	 * separator
2117	 */
2118	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2119
2120	if (sched->show_cpu_visual)
2121		printf(" %.*s ", ncpus, graph_dotted_line);
2122
2123	printf(" %.*s", comm_width, graph_dotted_line);
2124
2125	if (sched->show_prio)
2126		printf("  %.*s", MAX_PRIO_STR_LEN, graph_dotted_line);
2127
2128	printf("  %.9s  %.9s  %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line);
2129
2130	if (sched->pre_migrations)
2131		printf("  %.9s", graph_dotted_line);
2132
2133	if (sched->show_state)
2134		printf("  %.5s", graph_dotted_line);
2135
2136	printf("\n");
2137}
2138
 
 
 
 
 
 
 
 
 
 
 
 
2139static void timehist_print_sample(struct perf_sched *sched,
2140				  struct evsel *evsel,
2141				  struct perf_sample *sample,
2142				  struct addr_location *al,
2143				  struct thread *thread,
2144				  u64 t, const char state)
2145{
2146	struct thread_runtime *tr = thread__priv(thread);
2147	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2148	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2149	u32 max_cpus = sched->max_cpu.cpu + 1;
2150	char tstr[64];
2151	char nstr[30];
2152	u64 wait_time;
2153
2154	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2155		return;
2156
2157	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2158	printf("%15s [%04d] ", tstr, sample->cpu);
2159
2160	if (sched->show_cpu_visual) {
2161		u32 i;
2162		char c;
2163
2164		printf(" ");
2165		for (i = 0; i < max_cpus; ++i) {
2166			/* flag idle times with 'i'; others are sched events */
2167			if (i == sample->cpu)
2168				c = (thread__tid(thread) == 0) ? 'i' : 's';
2169			else
2170				c = ' ';
2171			printf("%c", c);
2172		}
2173		printf(" ");
2174	}
2175
2176	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2177
2178	if (sched->show_prio)
2179		printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2180
2181	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2182	print_sched_time(wait_time, 6);
2183
2184	print_sched_time(tr->dt_delay, 6);
2185	print_sched_time(tr->dt_run, 6);
2186	if (sched->pre_migrations)
2187		print_sched_time(tr->dt_pre_mig, 6);
2188
2189	if (sched->show_state)
2190		printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2191
2192	if (sched->show_next) {
2193		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2194		printf(" %-*s", comm_width, nstr);
2195	}
2196
2197	if (sched->show_wakeups && !sched->show_next)
2198		printf("  %-*s", comm_width, "");
2199
2200	if (thread__tid(thread) == 0)
2201		goto out;
2202
2203	if (sched->show_callchain)
2204		printf("  ");
2205
2206	sample__fprintf_sym(sample, al, 0,
2207			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2208			    EVSEL__PRINT_CALLCHAIN_ARROW |
2209			    EVSEL__PRINT_SKIP_IGNORED,
2210			    get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2211
2212out:
2213	printf("\n");
2214}
2215
2216/*
2217 * Explanation of delta-time stats:
2218 *
2219 *            t = time of current schedule out event
2220 *        tprev = time of previous sched out event
2221 *                also time of schedule-in event for current task
2222 *    last_time = time of last sched change event for current task
2223 *                (i.e, time process was last scheduled out)
2224 * ready_to_run = time of wakeup for current task
2225 *     migrated = time of task migration to another CPU
2226 *
2227 * -----|-------------|-------------|-------------|-------------|-----
2228 *    last         ready         migrated       tprev           t
2229 *    time         to run
2230 *
2231 *      |---------------- dt_wait ----------------|
2232 *                   |--------- dt_delay ---------|-- dt_run --|
2233 *                   |- dt_pre_mig -|
2234 *
2235 *     dt_run = run time of current task
2236 *    dt_wait = time between last schedule out event for task and tprev
2237 *              represents time spent off the cpu
2238 *   dt_delay = time between wakeup and schedule-in of task
2239 * dt_pre_mig = time between wakeup and migration to another CPU
2240 */
2241
2242static void timehist_update_runtime_stats(struct thread_runtime *r,
2243					 u64 t, u64 tprev)
2244{
2245	r->dt_delay   = 0;
2246	r->dt_sleep   = 0;
2247	r->dt_iowait  = 0;
2248	r->dt_preempt = 0;
2249	r->dt_run     = 0;
2250	r->dt_pre_mig = 0;
2251
2252	if (tprev) {
2253		r->dt_run = t - tprev;
2254		if (r->ready_to_run) {
2255			if (r->ready_to_run > tprev)
2256				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2257			else
2258				r->dt_delay = tprev - r->ready_to_run;
2259
2260			if ((r->migrated > r->ready_to_run) && (r->migrated < tprev))
2261				r->dt_pre_mig = r->migrated - r->ready_to_run;
2262		}
2263
2264		if (r->last_time > tprev)
2265			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2266		else if (r->last_time) {
2267			u64 dt_wait = tprev - r->last_time;
2268
2269			if (r->last_state == 'R')
2270				r->dt_preempt = dt_wait;
2271			else if (r->last_state == 'D')
2272				r->dt_iowait = dt_wait;
2273			else
2274				r->dt_sleep = dt_wait;
2275		}
2276	}
2277
2278	update_stats(&r->run_stats, r->dt_run);
2279
2280	r->total_run_time     += r->dt_run;
2281	r->total_delay_time   += r->dt_delay;
2282	r->total_sleep_time   += r->dt_sleep;
2283	r->total_iowait_time  += r->dt_iowait;
2284	r->total_preempt_time += r->dt_preempt;
2285	r->total_pre_mig_time += r->dt_pre_mig;
2286}
2287
2288static bool is_idle_sample(struct perf_sample *sample,
2289			   struct evsel *evsel)
2290{
2291	/* pid 0 == swapper == idle task */
2292	if (evsel__name_is(evsel, "sched:sched_switch"))
2293		return evsel__intval(evsel, sample, "prev_pid") == 0;
2294
2295	return sample->pid == 0;
2296}
2297
2298static void save_task_callchain(struct perf_sched *sched,
2299				struct perf_sample *sample,
2300				struct evsel *evsel,
2301				struct machine *machine)
2302{
2303	struct callchain_cursor *cursor;
2304	struct thread *thread;
2305
2306	/* want main thread for process - has maps */
2307	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2308	if (thread == NULL) {
2309		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2310		return;
2311	}
2312
2313	if (!sched->show_callchain || sample->callchain == NULL)
2314		return;
2315
2316	cursor = get_tls_callchain_cursor();
2317
2318	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2319				      NULL, NULL, sched->max_stack + 2) != 0) {
2320		if (verbose > 0)
2321			pr_err("Failed to resolve callchain. Skipping\n");
2322
2323		return;
2324	}
2325
2326	callchain_cursor_commit(cursor);
2327
2328	while (true) {
2329		struct callchain_cursor_node *node;
2330		struct symbol *sym;
2331
2332		node = callchain_cursor_current(cursor);
2333		if (node == NULL)
2334			break;
2335
2336		sym = node->ms.sym;
2337		if (sym) {
2338			if (!strcmp(sym->name, "schedule") ||
2339			    !strcmp(sym->name, "__schedule") ||
2340			    !strcmp(sym->name, "preempt_schedule"))
2341				sym->ignore = 1;
2342		}
2343
2344		callchain_cursor_advance(cursor);
2345	}
2346}
2347
2348static int init_idle_thread(struct thread *thread)
2349{
2350	struct idle_thread_runtime *itr;
2351
2352	thread__set_comm(thread, idle_comm, 0);
2353
2354	itr = zalloc(sizeof(*itr));
2355	if (itr == NULL)
2356		return -ENOMEM;
2357
2358	init_prio(&itr->tr);
2359	init_stats(&itr->tr.run_stats);
2360	callchain_init(&itr->callchain);
2361	callchain_cursor_reset(&itr->cursor);
2362	thread__set_priv(thread, itr);
2363
2364	return 0;
2365}
2366
2367/*
2368 * Track idle stats per cpu by maintaining a local thread
2369 * struct for the idle task on each cpu.
2370 */
2371static int init_idle_threads(int ncpu)
2372{
2373	int i, ret;
2374
2375	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2376	if (!idle_threads)
2377		return -ENOMEM;
2378
2379	idle_max_cpu = ncpu;
2380
2381	/* allocate the actual thread struct if needed */
2382	for (i = 0; i < ncpu; ++i) {
2383		idle_threads[i] = thread__new(0, 0);
2384		if (idle_threads[i] == NULL)
2385			return -ENOMEM;
2386
2387		ret = init_idle_thread(idle_threads[i]);
2388		if (ret < 0)
2389			return ret;
2390	}
2391
2392	return 0;
2393}
2394
2395static void free_idle_threads(void)
2396{
2397	int i;
2398
2399	if (idle_threads == NULL)
2400		return;
2401
2402	for (i = 0; i < idle_max_cpu; ++i) {
2403		if ((idle_threads[i]))
2404			thread__delete(idle_threads[i]);
2405	}
2406
2407	free(idle_threads);
2408}
2409
2410static struct thread *get_idle_thread(int cpu)
2411{
2412	/*
2413	 * expand/allocate array of pointers to local thread
2414	 * structs if needed
2415	 */
2416	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2417		int i, j = __roundup_pow_of_two(cpu+1);
2418		void *p;
2419
2420		p = realloc(idle_threads, j * sizeof(struct thread *));
2421		if (!p)
2422			return NULL;
2423
2424		idle_threads = (struct thread **) p;
2425		for (i = idle_max_cpu; i < j; ++i)
2426			idle_threads[i] = NULL;
2427
2428		idle_max_cpu = j;
2429	}
2430
2431	/* allocate a new thread struct if needed */
2432	if (idle_threads[cpu] == NULL) {
2433		idle_threads[cpu] = thread__new(0, 0);
2434
2435		if (idle_threads[cpu]) {
2436			if (init_idle_thread(idle_threads[cpu]) < 0)
2437				return NULL;
2438		}
2439	}
2440
2441	return idle_threads[cpu];
2442}
2443
2444static void save_idle_callchain(struct perf_sched *sched,
2445				struct idle_thread_runtime *itr,
2446				struct perf_sample *sample)
2447{
2448	struct callchain_cursor *cursor;
2449
2450	if (!sched->show_callchain || sample->callchain == NULL)
2451		return;
2452
2453	cursor = get_tls_callchain_cursor();
2454	if (cursor == NULL)
2455		return;
2456
2457	callchain_cursor__copy(&itr->cursor, cursor);
2458}
2459
2460static struct thread *timehist_get_thread(struct perf_sched *sched,
2461					  struct perf_sample *sample,
2462					  struct machine *machine,
2463					  struct evsel *evsel)
2464{
2465	struct thread *thread;
2466
2467	if (is_idle_sample(sample, evsel)) {
2468		thread = get_idle_thread(sample->cpu);
2469		if (thread == NULL)
2470			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2471
2472	} else {
2473		/* there were samples with tid 0 but non-zero pid */
2474		thread = machine__findnew_thread(machine, sample->pid,
2475						 sample->tid ?: sample->pid);
2476		if (thread == NULL) {
2477			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2478				 sample->tid);
2479		}
2480
2481		save_task_callchain(sched, sample, evsel, machine);
2482		if (sched->idle_hist) {
2483			struct thread *idle;
2484			struct idle_thread_runtime *itr;
2485
2486			idle = get_idle_thread(sample->cpu);
2487			if (idle == NULL) {
2488				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2489				return NULL;
2490			}
2491
2492			itr = thread__priv(idle);
2493			if (itr == NULL)
2494				return NULL;
2495
2496			itr->last_thread = thread;
2497
2498			/* copy task callchain when entering to idle */
2499			if (evsel__intval(evsel, sample, "next_pid") == 0)
2500				save_idle_callchain(sched, itr, sample);
2501		}
2502	}
2503
2504	return thread;
2505}
2506
2507static bool timehist_skip_sample(struct perf_sched *sched,
2508				 struct thread *thread,
2509				 struct evsel *evsel,
2510				 struct perf_sample *sample)
2511{
2512	bool rc = false;
2513	int prio = -1;
2514	struct thread_runtime *tr = NULL;
2515
2516	if (thread__is_filtered(thread)) {
2517		rc = true;
2518		sched->skipped_samples++;
2519	}
2520
2521	if (sched->prio_str) {
2522		/*
2523		 * Because priority may be changed during task execution,
2524		 * first read priority from prev sched_in event for current task.
2525		 * If prev sched_in event is not saved, then read priority from
2526		 * current task sched_out event.
2527		 */
2528		tr = thread__get_runtime(thread);
2529		if (tr && tr->prio != -1)
2530			prio = tr->prio;
2531		else if (evsel__name_is(evsel, "sched:sched_switch"))
2532			prio = evsel__intval(evsel, sample, "prev_prio");
2533
2534		if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2535			rc = true;
2536			sched->skipped_samples++;
2537		}
2538	}
2539
2540	if (sched->idle_hist) {
2541		if (!evsel__name_is(evsel, "sched:sched_switch"))
2542			rc = true;
2543		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2544			 evsel__intval(evsel, sample, "next_pid") != 0)
2545			rc = true;
2546	}
2547
2548	return rc;
2549}
2550
2551static void timehist_print_wakeup_event(struct perf_sched *sched,
2552					struct evsel *evsel,
2553					struct perf_sample *sample,
2554					struct machine *machine,
2555					struct thread *awakened)
2556{
2557	struct thread *thread;
2558	char tstr[64];
2559
2560	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2561	if (thread == NULL)
2562		return;
2563
2564	/* show wakeup unless both awakee and awaker are filtered */
2565	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2566	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2567		return;
2568	}
2569
2570	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2571	printf("%15s [%04d] ", tstr, sample->cpu);
2572	if (sched->show_cpu_visual)
2573		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2574
2575	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2576
2577	/* dt spacer */
2578	printf("  %9s  %9s  %9s ", "", "", "");
2579
2580	printf("awakened: %s", timehist_get_commstr(awakened));
2581
2582	printf("\n");
2583}
2584
2585static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2586					union perf_event *event __maybe_unused,
2587					struct evsel *evsel __maybe_unused,
2588					struct perf_sample *sample __maybe_unused,
2589					struct machine *machine __maybe_unused)
2590{
2591	return 0;
2592}
2593
2594static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2595				       union perf_event *event __maybe_unused,
2596				       struct evsel *evsel,
2597				       struct perf_sample *sample,
2598				       struct machine *machine)
2599{
2600	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2601	struct thread *thread;
2602	struct thread_runtime *tr = NULL;
2603	/* want pid of awakened task not pid in sample */
2604	const u32 pid = evsel__intval(evsel, sample, "pid");
2605
2606	thread = machine__findnew_thread(machine, 0, pid);
2607	if (thread == NULL)
2608		return -1;
2609
2610	tr = thread__get_runtime(thread);
2611	if (tr == NULL)
2612		return -1;
2613
2614	if (tr->ready_to_run == 0)
2615		tr->ready_to_run = sample->time;
2616
2617	/* show wakeups if requested */
2618	if (sched->show_wakeups &&
2619	    !perf_time__skip_sample(&sched->ptime, sample->time))
2620		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2621
2622	return 0;
2623}
2624
2625static void timehist_print_migration_event(struct perf_sched *sched,
2626					struct evsel *evsel,
2627					struct perf_sample *sample,
2628					struct machine *machine,
2629					struct thread *migrated)
2630{
2631	struct thread *thread;
2632	char tstr[64];
2633	u32 max_cpus;
2634	u32 ocpu, dcpu;
2635
2636	if (sched->summary_only)
2637		return;
2638
2639	max_cpus = sched->max_cpu.cpu + 1;
2640	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2641	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2642
2643	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2644	if (thread == NULL)
2645		return;
2646
2647	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2648	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2649		return;
2650	}
2651
2652	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2653	printf("%15s [%04d] ", tstr, sample->cpu);
2654
2655	if (sched->show_cpu_visual) {
2656		u32 i;
2657		char c;
2658
2659		printf("  ");
2660		for (i = 0; i < max_cpus; ++i) {
2661			c = (i == sample->cpu) ? 'm' : ' ';
2662			printf("%c", c);
2663		}
2664		printf("  ");
2665	}
2666
2667	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2668
2669	/* dt spacer */
2670	printf("  %9s  %9s  %9s ", "", "", "");
2671
2672	printf("migrated: %s", timehist_get_commstr(migrated));
2673	printf(" cpu %d => %d", ocpu, dcpu);
2674
2675	printf("\n");
2676}
2677
2678static int timehist_migrate_task_event(const struct perf_tool *tool,
2679				       union perf_event *event __maybe_unused,
2680				       struct evsel *evsel,
2681				       struct perf_sample *sample,
2682				       struct machine *machine)
2683{
2684	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2685	struct thread *thread;
2686	struct thread_runtime *tr = NULL;
2687	/* want pid of migrated task not pid in sample */
2688	const u32 pid = evsel__intval(evsel, sample, "pid");
2689
2690	thread = machine__findnew_thread(machine, 0, pid);
2691	if (thread == NULL)
2692		return -1;
2693
2694	tr = thread__get_runtime(thread);
2695	if (tr == NULL)
2696		return -1;
2697
2698	tr->migrations++;
2699	tr->migrated = sample->time;
2700
2701	/* show migrations if requested */
2702	if (sched->show_migrations) {
2703		timehist_print_migration_event(sched, evsel, sample,
2704							machine, thread);
2705	}
2706
2707	return 0;
2708}
2709
2710static void timehist_update_task_prio(struct evsel *evsel,
2711				      struct perf_sample *sample,
2712				      struct machine *machine)
2713{
2714	struct thread *thread;
2715	struct thread_runtime *tr = NULL;
2716	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2717	const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2718
2719	if (next_pid == 0)
2720		thread = get_idle_thread(sample->cpu);
2721	else
2722		thread = machine__findnew_thread(machine, -1, next_pid);
2723
2724	if (thread == NULL)
2725		return;
2726
2727	tr = thread__get_runtime(thread);
2728	if (tr == NULL)
2729		return;
2730
2731	tr->prio = next_prio;
2732}
2733
2734static int timehist_sched_change_event(const struct perf_tool *tool,
2735				       union perf_event *event,
2736				       struct evsel *evsel,
2737				       struct perf_sample *sample,
2738				       struct machine *machine)
2739{
2740	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2741	struct perf_time_interval *ptime = &sched->ptime;
2742	struct addr_location al;
2743	struct thread *thread;
2744	struct thread_runtime *tr = NULL;
2745	u64 tprev, t = sample->time;
2746	int rc = 0;
2747	const char state = evsel__taskstate(evsel, sample, "prev_state");
2748
2749	addr_location__init(&al);
2750	if (machine__resolve(machine, &al, sample) < 0) {
2751		pr_err("problem processing %d event. skipping it\n",
2752		       event->header.type);
2753		rc = -1;
2754		goto out;
2755	}
2756
2757	if (sched->show_prio || sched->prio_str)
2758		timehist_update_task_prio(evsel, sample, machine);
2759
2760	thread = timehist_get_thread(sched, sample, machine, evsel);
2761	if (thread == NULL) {
2762		rc = -1;
2763		goto out;
2764	}
2765
2766	if (timehist_skip_sample(sched, thread, evsel, sample))
2767		goto out;
2768
2769	tr = thread__get_runtime(thread);
2770	if (tr == NULL) {
2771		rc = -1;
2772		goto out;
2773	}
2774
2775	tprev = evsel__get_time(evsel, sample->cpu);
2776
2777	/*
2778	 * If start time given:
2779	 * - sample time is under window user cares about - skip sample
2780	 * - tprev is under window user cares about  - reset to start of window
2781	 */
2782	if (ptime->start && ptime->start > t)
2783		goto out;
2784
2785	if (tprev && ptime->start > tprev)
2786		tprev = ptime->start;
2787
2788	/*
2789	 * If end time given:
2790	 * - previous sched event is out of window - we are done
2791	 * - sample time is beyond window user cares about - reset it
2792	 *   to close out stats for time window interest
2793	 * - If tprev is 0, that is, sched_in event for current task is
2794	 *   not recorded, cannot determine whether sched_in event is
2795	 *   within time window interest - ignore it
2796	 */
2797	if (ptime->end) {
2798		if (!tprev || tprev > ptime->end)
2799			goto out;
2800
2801		if (t > ptime->end)
2802			t = ptime->end;
2803	}
2804
2805	if (!sched->idle_hist || thread__tid(thread) == 0) {
2806		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2807			timehist_update_runtime_stats(tr, t, tprev);
2808
2809		if (sched->idle_hist) {
2810			struct idle_thread_runtime *itr = (void *)tr;
2811			struct thread_runtime *last_tr;
2812
 
 
2813			if (itr->last_thread == NULL)
2814				goto out;
2815
2816			/* add current idle time as last thread's runtime */
2817			last_tr = thread__get_runtime(itr->last_thread);
2818			if (last_tr == NULL)
2819				goto out;
2820
2821			timehist_update_runtime_stats(last_tr, t, tprev);
2822			/*
2823			 * remove delta time of last thread as it's not updated
2824			 * and otherwise it will show an invalid value next
2825			 * time.  we only care total run time and run stat.
2826			 */
2827			last_tr->dt_run = 0;
2828			last_tr->dt_delay = 0;
2829			last_tr->dt_sleep = 0;
2830			last_tr->dt_iowait = 0;
2831			last_tr->dt_preempt = 0;
2832
2833			if (itr->cursor.nr)
2834				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2835
2836			itr->last_thread = NULL;
2837		}
2838
2839		if (!sched->summary_only)
2840			timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2841	}
2842
 
 
 
2843out:
2844	if (sched->hist_time.start == 0 && t >= ptime->start)
2845		sched->hist_time.start = t;
2846	if (ptime->end == 0 || t <= ptime->end)
2847		sched->hist_time.end = t;
2848
2849	if (tr) {
2850		/* time of this sched_switch event becomes last time task seen */
2851		tr->last_time = sample->time;
2852
2853		/* last state is used to determine where to account wait time */
2854		tr->last_state = state;
2855
2856		/* sched out event for task so reset ready to run time and migrated time */
2857		if (state == 'R')
2858			tr->ready_to_run = t;
2859		else
2860			tr->ready_to_run = 0;
2861
2862		tr->migrated = 0;
2863	}
2864
2865	evsel__save_time(evsel, sample->time, sample->cpu);
2866
2867	addr_location__exit(&al);
2868	return rc;
2869}
2870
2871static int timehist_sched_switch_event(const struct perf_tool *tool,
2872			     union perf_event *event,
2873			     struct evsel *evsel,
2874			     struct perf_sample *sample,
2875			     struct machine *machine __maybe_unused)
2876{
2877	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2878}
2879
2880static int process_lost(const struct perf_tool *tool __maybe_unused,
2881			union perf_event *event,
2882			struct perf_sample *sample,
2883			struct machine *machine __maybe_unused)
2884{
2885	char tstr[64];
2886
2887	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2888	printf("%15s ", tstr);
2889	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2890
2891	return 0;
2892}
2893
2894
2895static void print_thread_runtime(struct thread *t,
2896				 struct thread_runtime *r)
2897{
2898	double mean = avg_stats(&r->run_stats);
2899	float stddev;
2900
2901	printf("%*s   %5d  %9" PRIu64 " ",
2902	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2903	       (u64) r->run_stats.n);
2904
2905	print_sched_time(r->total_run_time, 8);
2906	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2907	print_sched_time(r->run_stats.min, 6);
2908	printf(" ");
2909	print_sched_time((u64) mean, 6);
2910	printf(" ");
2911	print_sched_time(r->run_stats.max, 6);
2912	printf("  ");
2913	printf("%5.2f", stddev);
2914	printf("   %5" PRIu64, r->migrations);
2915	printf("\n");
2916}
2917
2918static void print_thread_waittime(struct thread *t,
2919				  struct thread_runtime *r)
2920{
2921	printf("%*s   %5d  %9" PRIu64 " ",
2922	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2923	       (u64) r->run_stats.n);
2924
2925	print_sched_time(r->total_run_time, 8);
2926	print_sched_time(r->total_sleep_time, 6);
2927	printf(" ");
2928	print_sched_time(r->total_iowait_time, 6);
2929	printf(" ");
2930	print_sched_time(r->total_preempt_time, 6);
2931	printf(" ");
2932	print_sched_time(r->total_delay_time, 6);
2933	printf("\n");
2934}
2935
2936struct total_run_stats {
2937	struct perf_sched *sched;
2938	u64  sched_count;
2939	u64  task_count;
2940	u64  total_run_time;
2941};
2942
2943static int show_thread_runtime(struct thread *t, void *priv)
2944{
2945	struct total_run_stats *stats = priv;
2946	struct thread_runtime *r;
2947
2948	if (thread__is_filtered(t))
2949		return 0;
2950
2951	r = thread__priv(t);
2952	if (r && r->run_stats.n) {
2953		stats->task_count++;
2954		stats->sched_count += r->run_stats.n;
2955		stats->total_run_time += r->total_run_time;
2956
2957		if (stats->sched->show_state)
2958			print_thread_waittime(t, r);
2959		else
2960			print_thread_runtime(t, r);
2961	}
2962
2963	return 0;
2964}
2965
2966static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2967{
2968	const char *sep = " <- ";
2969	struct callchain_list *chain;
2970	size_t ret = 0;
2971	char bf[1024];
2972	bool first;
2973
2974	if (node == NULL)
2975		return 0;
2976
2977	ret = callchain__fprintf_folded(fp, node->parent);
2978	first = (ret == 0);
2979
2980	list_for_each_entry(chain, &node->val, list) {
2981		if (chain->ip >= PERF_CONTEXT_MAX)
2982			continue;
2983		if (chain->ms.sym && chain->ms.sym->ignore)
2984			continue;
2985		ret += fprintf(fp, "%s%s", first ? "" : sep,
2986			       callchain_list__sym_name(chain, bf, sizeof(bf),
2987							false));
2988		first = false;
2989	}
2990
2991	return ret;
2992}
2993
2994static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2995{
2996	size_t ret = 0;
2997	FILE *fp = stdout;
2998	struct callchain_node *chain;
2999	struct rb_node *rb_node = rb_first_cached(root);
3000
3001	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
3002	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
3003	       graph_dotted_line);
3004
3005	while (rb_node) {
3006		chain = rb_entry(rb_node, struct callchain_node, rb_node);
3007		rb_node = rb_next(rb_node);
3008
3009		ret += fprintf(fp, "  ");
3010		print_sched_time(chain->hit, 12);
3011		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
3012		ret += fprintf(fp, " %8d  ", chain->count);
3013		ret += callchain__fprintf_folded(fp, chain);
3014		ret += fprintf(fp, "\n");
3015	}
3016
3017	return ret;
3018}
3019
3020static void timehist_print_summary(struct perf_sched *sched,
3021				   struct perf_session *session)
3022{
3023	struct machine *m = &session->machines.host;
3024	struct total_run_stats totals;
3025	u64 task_count;
3026	struct thread *t;
3027	struct thread_runtime *r;
3028	int i;
3029	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3030
3031	memset(&totals, 0, sizeof(totals));
3032	totals.sched = sched;
3033
3034	if (sched->idle_hist) {
3035		printf("\nIdle-time summary\n");
3036		printf("%*s  parent  sched-out  ", comm_width, "comm");
3037		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
3038	} else if (sched->show_state) {
3039		printf("\nWait-time summary\n");
3040		printf("%*s  parent   sched-in  ", comm_width, "comm");
3041		printf("   run-time      sleep      iowait     preempt       delay\n");
3042	} else {
3043		printf("\nRuntime summary\n");
3044		printf("%*s  parent   sched-in  ", comm_width, "comm");
3045		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
3046	}
3047	printf("%*s            (count)  ", comm_width, "");
3048	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
3049	       sched->show_state ? "(msec)" : "%");
3050	printf("%.117s\n", graph_dotted_line);
3051
3052	machine__for_each_thread(m, show_thread_runtime, &totals);
3053	task_count = totals.task_count;
3054	if (!task_count)
3055		printf("<no still running tasks>\n");
3056
3057	/* CPU idle stats not tracked when samples were skipped */
3058	if (sched->skipped_samples && !sched->idle_hist)
3059		return;
3060
3061	printf("\nIdle stats:\n");
3062	for (i = 0; i < idle_max_cpu; ++i) {
3063		if (cpu_list && !test_bit(i, cpu_bitmap))
3064			continue;
3065
3066		t = idle_threads[i];
3067		if (!t)
3068			continue;
3069
3070		r = thread__priv(t);
3071		if (r && r->run_stats.n) {
3072			totals.sched_count += r->run_stats.n;
3073			printf("    CPU %2d idle for ", i);
3074			print_sched_time(r->total_run_time, 6);
3075			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3076		} else
3077			printf("    CPU %2d idle entire time window\n", i);
3078	}
3079
3080	if (sched->idle_hist && sched->show_callchain) {
3081		callchain_param.mode  = CHAIN_FOLDED;
3082		callchain_param.value = CCVAL_PERIOD;
3083
3084		callchain_register_param(&callchain_param);
3085
3086		printf("\nIdle stats by callchain:\n");
3087		for (i = 0; i < idle_max_cpu; ++i) {
3088			struct idle_thread_runtime *itr;
3089
3090			t = idle_threads[i];
3091			if (!t)
3092				continue;
3093
3094			itr = thread__priv(t);
3095			if (itr == NULL)
3096				continue;
3097
3098			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3099					     0, &callchain_param);
3100
3101			printf("  CPU %2d:", i);
3102			print_sched_time(itr->tr.total_run_time, 6);
3103			printf(" msec\n");
3104			timehist_print_idlehist_callchain(&itr->sorted_root);
3105			printf("\n");
3106		}
3107	}
3108
3109	printf("\n"
3110	       "    Total number of unique tasks: %" PRIu64 "\n"
3111	       "Total number of context switches: %" PRIu64 "\n",
3112	       totals.task_count, totals.sched_count);
3113
3114	printf("           Total run time (msec): ");
3115	print_sched_time(totals.total_run_time, 2);
3116	printf("\n");
3117
3118	printf("    Total scheduling time (msec): ");
3119	print_sched_time(hist_time, 2);
3120	printf(" (x %d)\n", sched->max_cpu.cpu);
3121}
3122
3123typedef int (*sched_handler)(const struct perf_tool *tool,
3124			  union perf_event *event,
3125			  struct evsel *evsel,
3126			  struct perf_sample *sample,
3127			  struct machine *machine);
3128
3129static int perf_timehist__process_sample(const struct perf_tool *tool,
3130					 union perf_event *event,
3131					 struct perf_sample *sample,
3132					 struct evsel *evsel,
3133					 struct machine *machine)
3134{
3135	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3136	int err = 0;
3137	struct perf_cpu this_cpu = {
3138		.cpu = sample->cpu,
3139	};
3140
3141	if (this_cpu.cpu > sched->max_cpu.cpu)
3142		sched->max_cpu = this_cpu;
3143
3144	if (evsel->handler != NULL) {
3145		sched_handler f = evsel->handler;
3146
3147		err = f(tool, event, evsel, sample, machine);
3148	}
3149
3150	return err;
3151}
3152
3153static int timehist_check_attr(struct perf_sched *sched,
3154			       struct evlist *evlist)
3155{
3156	struct evsel *evsel;
3157	struct evsel_runtime *er;
3158
3159	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3160		er = evsel__get_runtime(evsel);
3161		if (er == NULL) {
3162			pr_err("Failed to allocate memory for evsel runtime data\n");
3163			return -1;
3164		}
3165
3166		/* only need to save callchain related to sched_switch event */
3167		if (sched->show_callchain &&
3168		    evsel__name_is(evsel, "sched:sched_switch") &&
3169		    !evsel__has_callchain(evsel)) {
3170			pr_info("Samples of sched_switch event do not have callchains.\n");
3171			sched->show_callchain = 0;
3172			symbol_conf.use_callchain = 0;
3173		}
3174	}
3175
3176	return 0;
3177}
3178
3179static int timehist_parse_prio_str(struct perf_sched *sched)
3180{
3181	char *p;
3182	unsigned long start_prio, end_prio;
3183	const char *str = sched->prio_str;
3184
3185	if (!str)
3186		return 0;
3187
3188	while (isdigit(*str)) {
3189		p = NULL;
3190		start_prio = strtoul(str, &p, 0);
3191		if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3192			return -1;
3193
3194		if (*p == '-') {
3195			str = ++p;
3196			p = NULL;
3197			end_prio = strtoul(str, &p, 0);
3198
3199			if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3200				return -1;
3201
3202			if (end_prio < start_prio)
3203				return -1;
3204		} else {
3205			end_prio = start_prio;
3206		}
3207
3208		for (; start_prio <= end_prio; start_prio++)
3209			__set_bit(start_prio, sched->prio_bitmap);
3210
3211		if (*p)
3212			++p;
3213
3214		str = p;
3215	}
3216
3217	return 0;
3218}
3219
3220static int perf_sched__timehist(struct perf_sched *sched)
3221{
3222	struct evsel_str_handler handlers[] = {
3223		{ "sched:sched_switch",       timehist_sched_switch_event, },
3224		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
3225		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
3226		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3227	};
3228	const struct evsel_str_handler migrate_handlers[] = {
3229		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3230	};
3231	struct perf_data data = {
3232		.path  = input_name,
3233		.mode  = PERF_DATA_MODE_READ,
3234		.force = sched->force,
3235	};
3236
3237	struct perf_session *session;
3238	struct evlist *evlist;
3239	int err = -1;
3240
3241	/*
3242	 * event handlers for timehist option
3243	 */
3244	sched->tool.sample	 = perf_timehist__process_sample;
3245	sched->tool.mmap	 = perf_event__process_mmap;
3246	sched->tool.comm	 = perf_event__process_comm;
3247	sched->tool.exit	 = perf_event__process_exit;
3248	sched->tool.fork	 = perf_event__process_fork;
3249	sched->tool.lost	 = process_lost;
3250	sched->tool.attr	 = perf_event__process_attr;
3251	sched->tool.tracing_data = perf_event__process_tracing_data;
3252	sched->tool.build_id	 = perf_event__process_build_id;
3253
 
3254	sched->tool.ordering_requires_timestamps = true;
3255
3256	symbol_conf.use_callchain = sched->show_callchain;
3257
3258	session = perf_session__new(&data, &sched->tool);
3259	if (IS_ERR(session))
3260		return PTR_ERR(session);
3261
3262	if (cpu_list) {
3263		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3264		if (err < 0)
3265			goto out;
3266	}
3267
3268	evlist = session->evlist;
3269
3270	symbol__init(&session->header.env);
3271
3272	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3273		pr_err("Invalid time string\n");
3274		err = -EINVAL;
3275		goto out;
3276	}
3277
3278	if (timehist_check_attr(sched, evlist) != 0)
3279		goto out;
3280
3281	if (timehist_parse_prio_str(sched) != 0) {
3282		pr_err("Invalid prio string\n");
3283		goto out;
3284	}
3285
3286	setup_pager();
3287
3288	/* prefer sched_waking if it is captured */
3289	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3290		handlers[1].handler = timehist_sched_wakeup_ignore;
3291
3292	/* setup per-evsel handlers */
3293	if (perf_session__set_tracepoints_handlers(session, handlers))
3294		goto out;
3295
3296	/* sched_switch event at a minimum needs to exist */
3297	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3298		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3299		goto out;
3300	}
3301
3302	if ((sched->show_migrations || sched->pre_migrations) &&
3303		perf_session__set_tracepoints_handlers(session, migrate_handlers))
3304		goto out;
3305
3306	/* pre-allocate struct for per-CPU idle stats */
3307	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3308	if (sched->max_cpu.cpu == 0)
3309		sched->max_cpu.cpu = 4;
3310	if (init_idle_threads(sched->max_cpu.cpu))
3311		goto out;
3312
3313	/* summary_only implies summary option, but don't overwrite summary if set */
3314	if (sched->summary_only)
3315		sched->summary = sched->summary_only;
3316
3317	if (!sched->summary_only)
3318		timehist_header(sched);
3319
3320	err = perf_session__process_events(session);
3321	if (err) {
3322		pr_err("Failed to process events, error %d", err);
3323		goto out;
3324	}
3325
3326	sched->nr_events      = evlist->stats.nr_events[0];
3327	sched->nr_lost_events = evlist->stats.total_lost;
3328	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3329
3330	if (sched->summary)
3331		timehist_print_summary(sched, session);
3332
3333out:
3334	free_idle_threads();
3335	perf_session__delete(session);
3336
3337	return err;
3338}
3339
3340
3341static void print_bad_events(struct perf_sched *sched)
3342{
3343	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3344		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3345			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3346			sched->nr_unordered_timestamps, sched->nr_timestamps);
3347	}
3348	if (sched->nr_lost_events && sched->nr_events) {
3349		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3350			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3351			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3352	}
3353	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3354		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3355			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3356			sched->nr_context_switch_bugs, sched->nr_timestamps);
3357		if (sched->nr_lost_events)
3358			printf(" (due to lost events?)");
3359		printf("\n");
3360	}
3361}
3362
3363static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3364{
3365	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3366	struct work_atoms *this;
3367	const char *comm = thread__comm_str(data->thread), *this_comm;
3368	bool leftmost = true;
3369
3370	while (*new) {
3371		int cmp;
3372
3373		this = container_of(*new, struct work_atoms, node);
3374		parent = *new;
3375
3376		this_comm = thread__comm_str(this->thread);
3377		cmp = strcmp(comm, this_comm);
3378		if (cmp > 0) {
3379			new = &((*new)->rb_left);
3380		} else if (cmp < 0) {
3381			new = &((*new)->rb_right);
3382			leftmost = false;
3383		} else {
3384			this->num_merged++;
3385			this->total_runtime += data->total_runtime;
3386			this->nb_atoms += data->nb_atoms;
3387			this->total_lat += data->total_lat;
3388			list_splice(&data->work_list, &this->work_list);
3389			if (this->max_lat < data->max_lat) {
3390				this->max_lat = data->max_lat;
3391				this->max_lat_start = data->max_lat_start;
3392				this->max_lat_end = data->max_lat_end;
3393			}
3394			zfree(&data);
3395			return;
3396		}
3397	}
3398
3399	data->num_merged++;
3400	rb_link_node(&data->node, parent, new);
3401	rb_insert_color_cached(&data->node, root, leftmost);
3402}
3403
3404static void perf_sched__merge_lat(struct perf_sched *sched)
3405{
3406	struct work_atoms *data;
3407	struct rb_node *node;
3408
3409	if (sched->skip_merge)
3410		return;
3411
3412	while ((node = rb_first_cached(&sched->atom_root))) {
3413		rb_erase_cached(node, &sched->atom_root);
3414		data = rb_entry(node, struct work_atoms, node);
3415		__merge_work_atoms(&sched->merged_atom_root, data);
3416	}
3417}
3418
3419static int setup_cpus_switch_event(struct perf_sched *sched)
3420{
3421	unsigned int i;
3422
3423	sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3424	if (!sched->cpu_last_switched)
3425		return -1;
3426
3427	sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3428	if (!sched->curr_pid) {
3429		zfree(&sched->cpu_last_switched);
3430		return -1;
3431	}
3432
3433	for (i = 0; i < MAX_CPUS; i++)
3434		sched->curr_pid[i] = -1;
3435
3436	return 0;
3437}
3438
3439static void free_cpus_switch_event(struct perf_sched *sched)
3440{
3441	zfree(&sched->curr_pid);
3442	zfree(&sched->cpu_last_switched);
3443}
3444
3445static int perf_sched__lat(struct perf_sched *sched)
3446{
3447	int rc = -1;
3448	struct rb_node *next;
3449
3450	setup_pager();
3451
3452	if (setup_cpus_switch_event(sched))
3453		return rc;
3454
3455	if (perf_sched__read_events(sched))
3456		goto out_free_cpus_switch_event;
3457
3458	perf_sched__merge_lat(sched);
3459	perf_sched__sort_lat(sched);
3460
3461	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3462	printf("  Task                  |   Runtime ms  |  Count   | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3463	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3464
3465	next = rb_first_cached(&sched->sorted_atom_root);
3466
3467	while (next) {
3468		struct work_atoms *work_list;
3469
3470		work_list = rb_entry(next, struct work_atoms, node);
3471		output_lat_thread(sched, work_list);
3472		next = rb_next(next);
3473		thread__zput(work_list->thread);
3474	}
3475
3476	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3477	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3478		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3479
3480	printf(" ---------------------------------------------------\n");
3481
3482	print_bad_events(sched);
3483	printf("\n");
3484
3485	rc = 0;
3486
3487out_free_cpus_switch_event:
3488	free_cpus_switch_event(sched);
3489	return rc;
3490}
3491
3492static int setup_map_cpus(struct perf_sched *sched)
3493{
 
 
3494	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3495
3496	if (sched->map.comp) {
3497		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3498		if (!sched->map.comp_cpus)
3499			return -1;
3500	}
3501
3502	if (sched->map.cpus_str) {
3503		sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3504		if (!sched->map.cpus) {
3505			pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3506			zfree(&sched->map.comp_cpus);
3507			return -1;
3508		}
3509	}
3510
 
3511	return 0;
3512}
3513
3514static int setup_color_pids(struct perf_sched *sched)
3515{
3516	struct perf_thread_map *map;
3517
3518	if (!sched->map.color_pids_str)
3519		return 0;
3520
3521	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3522	if (!map) {
3523		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3524		return -1;
3525	}
3526
3527	sched->map.color_pids = map;
3528	return 0;
3529}
3530
3531static int setup_color_cpus(struct perf_sched *sched)
3532{
3533	struct perf_cpu_map *map;
3534
3535	if (!sched->map.color_cpus_str)
3536		return 0;
3537
3538	map = perf_cpu_map__new(sched->map.color_cpus_str);
3539	if (!map) {
3540		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3541		return -1;
3542	}
3543
3544	sched->map.color_cpus = map;
3545	return 0;
3546}
3547
3548static int perf_sched__map(struct perf_sched *sched)
3549{
3550	int rc = -1;
3551
3552	sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3553	if (!sched->curr_thread)
3554		return rc;
3555
3556	sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3557	if (!sched->curr_out_thread)
3558		return rc;
3559
3560	if (setup_cpus_switch_event(sched))
3561		goto out_free_curr_thread;
3562
3563	if (setup_map_cpus(sched))
3564		goto out_free_cpus_switch_event;
3565
3566	if (setup_color_pids(sched))
3567		goto out_put_map_cpus;
3568
3569	if (setup_color_cpus(sched))
3570		goto out_put_color_pids;
3571
3572	setup_pager();
3573	if (perf_sched__read_events(sched))
3574		goto out_put_color_cpus;
3575
3576	rc = 0;
3577	print_bad_events(sched);
3578
3579out_put_color_cpus:
3580	perf_cpu_map__put(sched->map.color_cpus);
3581
3582out_put_color_pids:
3583	perf_thread_map__put(sched->map.color_pids);
3584
3585out_put_map_cpus:
3586	zfree(&sched->map.comp_cpus);
3587	perf_cpu_map__put(sched->map.cpus);
3588
3589out_free_cpus_switch_event:
3590	free_cpus_switch_event(sched);
3591
3592out_free_curr_thread:
3593	zfree(&sched->curr_thread);
3594	return rc;
3595}
3596
3597static int perf_sched__replay(struct perf_sched *sched)
3598{
3599	int ret;
3600	unsigned long i;
3601
3602	mutex_init(&sched->start_work_mutex);
3603	mutex_init(&sched->work_done_wait_mutex);
3604
3605	ret = setup_cpus_switch_event(sched);
3606	if (ret)
3607		goto out_mutex_destroy;
3608
3609	calibrate_run_measurement_overhead(sched);
3610	calibrate_sleep_measurement_overhead(sched);
3611
3612	test_calibrations(sched);
3613
3614	ret = perf_sched__read_events(sched);
3615	if (ret)
3616		goto out_free_cpus_switch_event;
3617
3618	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3619	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3620	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3621
3622	if (sched->targetless_wakeups)
3623		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3624	if (sched->multitarget_wakeups)
3625		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3626	if (sched->nr_run_events_optimized)
3627		printf("run atoms optimized: %ld\n",
3628			sched->nr_run_events_optimized);
3629
3630	print_task_traces(sched);
3631	add_cross_task_wakeups(sched);
3632
3633	sched->thread_funcs_exit = false;
3634	create_tasks(sched);
3635	printf("------------------------------------------------------------\n");
3636	if (sched->replay_repeat == 0)
3637		sched->replay_repeat = UINT_MAX;
3638
3639	for (i = 0; i < sched->replay_repeat; i++)
3640		run_one_test(sched);
3641
3642	sched->thread_funcs_exit = true;
3643	destroy_tasks(sched);
3644
3645out_free_cpus_switch_event:
3646	free_cpus_switch_event(sched);
3647
3648out_mutex_destroy:
3649	mutex_destroy(&sched->start_work_mutex);
3650	mutex_destroy(&sched->work_done_wait_mutex);
3651	return ret;
3652}
3653
3654static void setup_sorting(struct perf_sched *sched, const struct option *options,
3655			  const char * const usage_msg[])
3656{
3657	char *tmp, *tok, *str = strdup(sched->sort_order);
3658
3659	for (tok = strtok_r(str, ", ", &tmp);
3660			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3661		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3662			usage_with_options_msg(usage_msg, options,
3663					"Unknown --sort key: `%s'", tok);
3664		}
3665	}
3666
3667	free(str);
3668
3669	sort_dimension__add("pid", &sched->cmp_pid);
3670}
3671
3672static bool schedstat_events_exposed(void)
3673{
3674	/*
3675	 * Select "sched:sched_stat_wait" event to check
3676	 * whether schedstat tracepoints are exposed.
3677	 */
3678	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3679		false : true;
3680}
3681
3682static int __cmd_record(int argc, const char **argv)
3683{
3684	unsigned int rec_argc, i, j;
3685	char **rec_argv;
3686	const char **rec_argv_copy;
3687	const char * const record_args[] = {
3688		"record",
3689		"-a",
3690		"-R",
3691		"-m", "1024",
3692		"-c", "1",
3693		"-e", "sched:sched_switch",
3694		"-e", "sched:sched_stat_runtime",
3695		"-e", "sched:sched_process_fork",
3696		"-e", "sched:sched_wakeup_new",
3697		"-e", "sched:sched_migrate_task",
3698	};
3699
3700	/*
3701	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3702	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3703	 * to prevent "perf sched record" execution failure, determine
3704	 * whether to record schedstat events according to actual situation.
3705	 */
3706	const char * const schedstat_args[] = {
3707		"-e", "sched:sched_stat_wait",
3708		"-e", "sched:sched_stat_sleep",
3709		"-e", "sched:sched_stat_iowait",
3710	};
3711	unsigned int schedstat_argc = schedstat_events_exposed() ?
3712		ARRAY_SIZE(schedstat_args) : 0;
3713
3714	struct tep_event *waking_event;
3715	int ret;
3716
3717	/*
3718	 * +2 for either "-e", "sched:sched_wakeup" or
3719	 * "-e", "sched:sched_waking"
3720	 */
3721	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3722	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3723	if (rec_argv == NULL)
3724		return -ENOMEM;
3725	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3726	if (rec_argv_copy == NULL) {
3727		free(rec_argv);
3728		return -ENOMEM;
3729	}
3730
3731	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3732		rec_argv[i] = strdup(record_args[i]);
3733
3734	rec_argv[i++] = strdup("-e");
3735	waking_event = trace_event__tp_format("sched", "sched_waking");
3736	if (!IS_ERR(waking_event))
3737		rec_argv[i++] = strdup("sched:sched_waking");
3738	else
3739		rec_argv[i++] = strdup("sched:sched_wakeup");
3740
3741	for (j = 0; j < schedstat_argc; j++)
3742		rec_argv[i++] = strdup(schedstat_args[j]);
3743
3744	for (j = 1; j < (unsigned int)argc; j++, i++)
3745		rec_argv[i] = strdup(argv[j]);
3746
3747	BUG_ON(i != rec_argc);
3748
3749	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3750	ret = cmd_record(rec_argc, rec_argv_copy);
3751
3752	for (i = 0; i < rec_argc; i++)
3753		free(rec_argv[i]);
3754	free(rec_argv);
3755	free(rec_argv_copy);
3756
3757	return ret;
3758}
3759
3760int cmd_sched(int argc, const char **argv)
3761{
3762	static const char default_sort_order[] = "avg, max, switch, runtime";
3763	struct perf_sched sched = {
 
 
 
 
 
 
 
 
3764		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3765		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3766		.sort_order	      = default_sort_order,
3767		.replay_repeat	      = 10,
3768		.profile_cpu	      = -1,
3769		.next_shortname1      = 'A',
3770		.next_shortname2      = '0',
3771		.skip_merge           = 0,
3772		.show_callchain	      = 1,
3773		.max_stack            = 5,
3774	};
3775	const struct option sched_options[] = {
3776	OPT_STRING('i', "input", &input_name, "file",
3777		    "input file name"),
3778	OPT_INCR('v', "verbose", &verbose,
3779		    "be more verbose (show symbol address, etc)"),
3780	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3781		    "dump raw trace in ASCII"),
3782	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3783	OPT_END()
3784	};
3785	const struct option latency_options[] = {
3786	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3787		   "sort by key(s): runtime, switch, avg, max"),
3788	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3789		    "CPU to profile on"),
3790	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3791		    "latency stats per pid instead of per comm"),
3792	OPT_PARENT(sched_options)
3793	};
3794	const struct option replay_options[] = {
3795	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3796		     "repeat the workload replay N times (0: infinite)"),
3797	OPT_PARENT(sched_options)
3798	};
3799	const struct option map_options[] = {
3800	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3801		    "map output in compact mode"),
3802	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3803		   "highlight given pids in map"),
3804	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3805                    "highlight given CPUs in map"),
3806	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3807                    "display given CPUs in map"),
3808	OPT_STRING(0, "task-name", &sched.map.task_name, "task",
3809		"map output only for the given task name(s)."),
3810	OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
3811		"given command name can be partially matched (fuzzy matching)"),
3812	OPT_PARENT(sched_options)
3813	};
3814	const struct option timehist_options[] = {
3815	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3816		   "file", "vmlinux pathname"),
3817	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3818		   "file", "kallsyms pathname"),
3819	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3820		    "Display call chains if present (default on)"),
3821	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3822		   "Maximum number of functions to display backtrace."),
3823	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3824		    "Look for files with symbols relative to this directory"),
3825	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3826		    "Show only syscall summary with statistics"),
3827	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3828		    "Show all syscalls and summary with statistics"),
3829	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3830	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3831	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3832	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3833	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3834	OPT_STRING(0, "time", &sched.time_str, "str",
3835		   "Time span for analysis (start,stop)"),
3836	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3837	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3838		   "analyze events only for given process id(s)"),
3839	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3840		   "analyze events only for given thread id(s)"),
3841	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3842	OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
3843	OPT_STRING(0, "prio", &sched.prio_str, "prio",
3844		   "analyze events only for given task priority(ies)"),
3845	OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"),
3846	OPT_PARENT(sched_options)
3847	};
3848
3849	const char * const latency_usage[] = {
3850		"perf sched latency [<options>]",
3851		NULL
3852	};
3853	const char * const replay_usage[] = {
3854		"perf sched replay [<options>]",
3855		NULL
3856	};
3857	const char * const map_usage[] = {
3858		"perf sched map [<options>]",
3859		NULL
3860	};
3861	const char * const timehist_usage[] = {
3862		"perf sched timehist [<options>]",
3863		NULL
3864	};
3865	const char *const sched_subcommands[] = { "record", "latency", "map",
3866						  "replay", "script",
3867						  "timehist", NULL };
3868	const char *sched_usage[] = {
3869		NULL,
3870		NULL
3871	};
3872	struct trace_sched_handler lat_ops  = {
3873		.wakeup_event	    = latency_wakeup_event,
3874		.switch_event	    = latency_switch_event,
3875		.runtime_event	    = latency_runtime_event,
3876		.migrate_task_event = latency_migrate_task_event,
3877	};
3878	struct trace_sched_handler map_ops  = {
3879		.switch_event	    = map_switch_event,
3880	};
3881	struct trace_sched_handler replay_ops  = {
3882		.wakeup_event	    = replay_wakeup_event,
3883		.switch_event	    = replay_switch_event,
3884		.fork_event	    = replay_fork_event,
3885	};
3886	int ret;
 
3887
3888	perf_tool__init(&sched.tool, /*ordered_events=*/true);
3889	sched.tool.sample	 = perf_sched__process_tracepoint_sample;
3890	sched.tool.comm		 = perf_sched__process_comm;
3891	sched.tool.namespaces	 = perf_event__process_namespaces;
3892	sched.tool.lost		 = perf_event__process_lost;
3893	sched.tool.fork		 = perf_sched__process_fork_event;
 
 
 
 
 
 
 
 
 
 
 
 
 
3894
3895	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3896					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3897	if (!argc)
3898		usage_with_options(sched_usage, sched_options);
3899
3900	/*
3901	 * Aliased to 'perf script' for now:
3902	 */
3903	if (!strcmp(argv[0], "script")) {
3904		return cmd_script(argc, argv);
3905	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3906		return __cmd_record(argc, argv);
3907	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3908		sched.tp_handler = &lat_ops;
3909		if (argc > 1) {
3910			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3911			if (argc)
3912				usage_with_options(latency_usage, latency_options);
3913		}
3914		setup_sorting(&sched, latency_options, latency_usage);
3915		return perf_sched__lat(&sched);
3916	} else if (!strcmp(argv[0], "map")) {
3917		if (argc) {
3918			argc = parse_options(argc, argv, map_options, map_usage, 0);
3919			if (argc)
3920				usage_with_options(map_usage, map_options);
3921
3922			if (sched.map.task_name) {
3923				sched.map.task_names = strlist__new(sched.map.task_name, NULL);
3924				if (sched.map.task_names == NULL) {
3925					fprintf(stderr, "Failed to parse task names\n");
3926					return -1;
3927				}
3928			}
3929		}
3930		sched.tp_handler = &map_ops;
3931		setup_sorting(&sched, latency_options, latency_usage);
3932		return perf_sched__map(&sched);
3933	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3934		sched.tp_handler = &replay_ops;
3935		if (argc) {
3936			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3937			if (argc)
3938				usage_with_options(replay_usage, replay_options);
3939		}
3940		return perf_sched__replay(&sched);
3941	} else if (!strcmp(argv[0], "timehist")) {
3942		if (argc) {
3943			argc = parse_options(argc, argv, timehist_options,
3944					     timehist_usage, 0);
3945			if (argc)
3946				usage_with_options(timehist_usage, timehist_options);
3947		}
3948		if ((sched.show_wakeups || sched.show_next) &&
3949		    sched.summary_only) {
3950			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3951			parse_options_usage(timehist_usage, timehist_options, "s", true);
3952			if (sched.show_wakeups)
3953				parse_options_usage(NULL, timehist_options, "w", true);
3954			if (sched.show_next)
3955				parse_options_usage(NULL, timehist_options, "n", true);
3956			return -EINVAL;
 
3957		}
3958		ret = symbol__validate_sym_arguments();
3959		if (ret)
3960			return ret;
3961
3962		return perf_sched__timehist(&sched);
3963	} else {
3964		usage_with_options(sched_usage, sched_options);
3965	}
3966
3967	/* free usage string allocated by parse_options_subcommand */
3968	free((void *)sched_usage[0]);
 
 
 
 
3969
3970	return 0;
3971}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf-sys.h"
   4
   5#include "util/cpumap.h"
   6#include "util/evlist.h"
   7#include "util/evsel.h"
   8#include "util/evsel_fprintf.h"
   9#include "util/mutex.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29#include "util/util.h"
  30
  31#include <linux/kernel.h>
  32#include <linux/log2.h>
  33#include <linux/zalloc.h>
  34#include <sys/prctl.h>
  35#include <sys/resource.h>
  36#include <inttypes.h>
  37
  38#include <errno.h>
  39#include <semaphore.h>
  40#include <pthread.h>
  41#include <math.h>
  42#include <api/fs/fs.h>
  43#include <perf/cpumap.h>
  44#include <linux/time64.h>
  45#include <linux/err.h>
  46
  47#include <linux/ctype.h>
  48
  49#define PR_SET_NAME		15               /* Set process name */
  50#define MAX_CPUS		4096
  51#define COMM_LEN		20
  52#define SYM_LEN			129
  53#define MAX_PID			1024000
 
  54
  55static const char *cpu_list;
  56static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  57
  58struct sched_atom;
  59
  60struct task_desc {
  61	unsigned long		nr;
  62	unsigned long		pid;
  63	char			comm[COMM_LEN];
  64
  65	unsigned long		nr_events;
  66	unsigned long		curr_event;
  67	struct sched_atom	**atoms;
  68
  69	pthread_t		thread;
  70	sem_t			sleep_sem;
  71
  72	sem_t			ready_for_work;
  73	sem_t			work_done_sem;
  74
  75	u64			cpu_usage;
  76};
  77
  78enum sched_event_type {
  79	SCHED_EVENT_RUN,
  80	SCHED_EVENT_SLEEP,
  81	SCHED_EVENT_WAKEUP,
  82	SCHED_EVENT_MIGRATION,
  83};
  84
  85struct sched_atom {
  86	enum sched_event_type	type;
  87	int			specific_wait;
  88	u64			timestamp;
  89	u64			duration;
  90	unsigned long		nr;
  91	sem_t			*wait_sem;
  92	struct task_desc	*wakee;
  93};
  94
  95#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  96
  97/* task state bitmask, copied from include/linux/sched.h */
  98#define TASK_RUNNING		0
  99#define TASK_INTERRUPTIBLE	1
 100#define TASK_UNINTERRUPTIBLE	2
 101#define __TASK_STOPPED		4
 102#define __TASK_TRACED		8
 103/* in tsk->exit_state */
 104#define EXIT_DEAD		16
 105#define EXIT_ZOMBIE		32
 106#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 107/* in tsk->state again */
 108#define TASK_DEAD		64
 109#define TASK_WAKEKILL		128
 110#define TASK_WAKING		256
 111#define TASK_PARKED		512
 112
 113enum thread_state {
 114	THREAD_SLEEPING = 0,
 115	THREAD_WAIT_CPU,
 116	THREAD_SCHED_IN,
 117	THREAD_IGNORE
 118};
 119
 120struct work_atom {
 121	struct list_head	list;
 122	enum thread_state	state;
 123	u64			sched_out_time;
 124	u64			wake_up_time;
 125	u64			sched_in_time;
 126	u64			runtime;
 127};
 128
 129struct work_atoms {
 130	struct list_head	work_list;
 131	struct thread		*thread;
 132	struct rb_node		node;
 133	u64			max_lat;
 134	u64			max_lat_start;
 135	u64			max_lat_end;
 136	u64			total_lat;
 137	u64			nb_atoms;
 138	u64			total_runtime;
 139	int			num_merged;
 140};
 141
 142typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 143
 144struct perf_sched;
 145
 146struct trace_sched_handler {
 147	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 148			    struct perf_sample *sample, struct machine *machine);
 149
 150	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 151			     struct perf_sample *sample, struct machine *machine);
 152
 153	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 154			    struct perf_sample *sample, struct machine *machine);
 155
 156	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 157	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 158			  struct machine *machine);
 159
 160	int (*migrate_task_event)(struct perf_sched *sched,
 161				  struct evsel *evsel,
 162				  struct perf_sample *sample,
 163				  struct machine *machine);
 164};
 165
 166#define COLOR_PIDS PERF_COLOR_BLUE
 167#define COLOR_CPUS PERF_COLOR_BG_RED
 168
 169struct perf_sched_map {
 170	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 171	struct perf_cpu		*comp_cpus;
 172	bool			 comp;
 173	struct perf_thread_map *color_pids;
 174	const char		*color_pids_str;
 175	struct perf_cpu_map	*color_cpus;
 176	const char		*color_cpus_str;
 
 
 
 177	struct perf_cpu_map	*cpus;
 178	const char		*cpus_str;
 179};
 180
 181struct perf_sched {
 182	struct perf_tool tool;
 183	const char	 *sort_order;
 184	unsigned long	 nr_tasks;
 185	struct task_desc **pid_to_task;
 186	struct task_desc **tasks;
 187	const struct trace_sched_handler *tp_handler;
 188	struct mutex	 start_work_mutex;
 189	struct mutex	 work_done_wait_mutex;
 190	int		 profile_cpu;
 191/*
 192 * Track the current task - that way we can know whether there's any
 193 * weird events, such as a task being switched away that is not current.
 194 */
 195	struct perf_cpu	 max_cpu;
 196	u32		 *curr_pid;
 197	struct thread	 **curr_thread;
 
 198	char		 next_shortname1;
 199	char		 next_shortname2;
 200	unsigned int	 replay_repeat;
 201	unsigned long	 nr_run_events;
 202	unsigned long	 nr_sleep_events;
 203	unsigned long	 nr_wakeup_events;
 204	unsigned long	 nr_sleep_corrections;
 205	unsigned long	 nr_run_events_optimized;
 206	unsigned long	 targetless_wakeups;
 207	unsigned long	 multitarget_wakeups;
 208	unsigned long	 nr_runs;
 209	unsigned long	 nr_timestamps;
 210	unsigned long	 nr_unordered_timestamps;
 211	unsigned long	 nr_context_switch_bugs;
 212	unsigned long	 nr_events;
 213	unsigned long	 nr_lost_chunks;
 214	unsigned long	 nr_lost_events;
 215	u64		 run_measurement_overhead;
 216	u64		 sleep_measurement_overhead;
 217	u64		 start_time;
 218	u64		 cpu_usage;
 219	u64		 runavg_cpu_usage;
 220	u64		 parent_cpu_usage;
 221	u64		 runavg_parent_cpu_usage;
 222	u64		 sum_runtime;
 223	u64		 sum_fluct;
 224	u64		 run_avg;
 225	u64		 all_runtime;
 226	u64		 all_count;
 227	u64		 *cpu_last_switched;
 228	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 229	struct list_head sort_list, cmp_pid;
 230	bool force;
 231	bool skip_merge;
 232	struct perf_sched_map map;
 233
 234	/* options for timehist command */
 235	bool		summary;
 236	bool		summary_only;
 237	bool		idle_hist;
 238	bool		show_callchain;
 239	unsigned int	max_stack;
 240	bool		show_cpu_visual;
 241	bool		show_wakeups;
 242	bool		show_next;
 243	bool		show_migrations;
 
 244	bool		show_state;
 
 245	u64		skipped_samples;
 246	const char	*time_str;
 247	struct perf_time_interval ptime;
 248	struct perf_time_interval hist_time;
 249	volatile bool   thread_funcs_exit;
 
 
 250};
 251
 252/* per thread run time data */
 253struct thread_runtime {
 254	u64 last_time;      /* time of previous sched in/out event */
 255	u64 dt_run;         /* run time */
 256	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 257	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 258	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 259	u64 dt_delay;       /* time between wakeup and sched-in */
 
 260	u64 ready_to_run;   /* time of wakeup */
 
 261
 262	struct stats run_stats;
 263	u64 total_run_time;
 264	u64 total_sleep_time;
 265	u64 total_iowait_time;
 266	u64 total_preempt_time;
 267	u64 total_delay_time;
 
 268
 269	int last_state;
 270
 271	char shortname[3];
 272	bool comm_changed;
 273
 274	u64 migrations;
 
 
 275};
 276
 277/* per event run time data */
 278struct evsel_runtime {
 279	u64 *last_time; /* time this event was last seen per cpu */
 280	u32 ncpu;       /* highest cpu slot allocated */
 281};
 282
 283/* per cpu idle time data */
 284struct idle_thread_runtime {
 285	struct thread_runtime	tr;
 286	struct thread		*last_thread;
 287	struct rb_root_cached	sorted_root;
 288	struct callchain_root	callchain;
 289	struct callchain_cursor	cursor;
 290};
 291
 292/* track idle times per cpu */
 293static struct thread **idle_threads;
 294static int idle_max_cpu;
 295static char idle_comm[] = "<idle>";
 296
 297static u64 get_nsecs(void)
 298{
 299	struct timespec ts;
 300
 301	clock_gettime(CLOCK_MONOTONIC, &ts);
 302
 303	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 304}
 305
 306static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 307{
 308	u64 T0 = get_nsecs(), T1;
 309
 310	do {
 311		T1 = get_nsecs();
 312	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 313}
 314
 315static void sleep_nsecs(u64 nsecs)
 316{
 317	struct timespec ts;
 318
 319	ts.tv_nsec = nsecs % 999999999;
 320	ts.tv_sec = nsecs / 999999999;
 321
 322	nanosleep(&ts, NULL);
 323}
 324
 325static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 326{
 327	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 328	int i;
 329
 330	for (i = 0; i < 10; i++) {
 331		T0 = get_nsecs();
 332		burn_nsecs(sched, 0);
 333		T1 = get_nsecs();
 334		delta = T1-T0;
 335		min_delta = min(min_delta, delta);
 336	}
 337	sched->run_measurement_overhead = min_delta;
 338
 339	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 340}
 341
 342static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 343{
 344	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 345	int i;
 346
 347	for (i = 0; i < 10; i++) {
 348		T0 = get_nsecs();
 349		sleep_nsecs(10000);
 350		T1 = get_nsecs();
 351		delta = T1-T0;
 352		min_delta = min(min_delta, delta);
 353	}
 354	min_delta -= 10000;
 355	sched->sleep_measurement_overhead = min_delta;
 356
 357	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 358}
 359
 360static struct sched_atom *
 361get_new_event(struct task_desc *task, u64 timestamp)
 362{
 363	struct sched_atom *event = zalloc(sizeof(*event));
 364	unsigned long idx = task->nr_events;
 365	size_t size;
 366
 367	event->timestamp = timestamp;
 368	event->nr = idx;
 369
 370	task->nr_events++;
 371	size = sizeof(struct sched_atom *) * task->nr_events;
 372	task->atoms = realloc(task->atoms, size);
 373	BUG_ON(!task->atoms);
 374
 375	task->atoms[idx] = event;
 376
 377	return event;
 378}
 379
 380static struct sched_atom *last_event(struct task_desc *task)
 381{
 382	if (!task->nr_events)
 383		return NULL;
 384
 385	return task->atoms[task->nr_events - 1];
 386}
 387
 388static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 389				u64 timestamp, u64 duration)
 390{
 391	struct sched_atom *event, *curr_event = last_event(task);
 392
 393	/*
 394	 * optimize an existing RUN event by merging this one
 395	 * to it:
 396	 */
 397	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 398		sched->nr_run_events_optimized++;
 399		curr_event->duration += duration;
 400		return;
 401	}
 402
 403	event = get_new_event(task, timestamp);
 404
 405	event->type = SCHED_EVENT_RUN;
 406	event->duration = duration;
 407
 408	sched->nr_run_events++;
 409}
 410
 411static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 412				   u64 timestamp, struct task_desc *wakee)
 413{
 414	struct sched_atom *event, *wakee_event;
 415
 416	event = get_new_event(task, timestamp);
 417	event->type = SCHED_EVENT_WAKEUP;
 418	event->wakee = wakee;
 419
 420	wakee_event = last_event(wakee);
 421	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 422		sched->targetless_wakeups++;
 423		return;
 424	}
 425	if (wakee_event->wait_sem) {
 426		sched->multitarget_wakeups++;
 427		return;
 428	}
 429
 430	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 431	sem_init(wakee_event->wait_sem, 0, 0);
 432	wakee_event->specific_wait = 1;
 433	event->wait_sem = wakee_event->wait_sem;
 434
 435	sched->nr_wakeup_events++;
 436}
 437
 438static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 439				  u64 timestamp, u64 task_state __maybe_unused)
 440{
 441	struct sched_atom *event = get_new_event(task, timestamp);
 442
 443	event->type = SCHED_EVENT_SLEEP;
 444
 445	sched->nr_sleep_events++;
 446}
 447
 448static struct task_desc *register_pid(struct perf_sched *sched,
 449				      unsigned long pid, const char *comm)
 450{
 451	struct task_desc *task;
 452	static int pid_max;
 453
 454	if (sched->pid_to_task == NULL) {
 455		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 456			pid_max = MAX_PID;
 457		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 458	}
 459	if (pid >= (unsigned long)pid_max) {
 460		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 461			sizeof(struct task_desc *))) == NULL);
 462		while (pid >= (unsigned long)pid_max)
 463			sched->pid_to_task[pid_max++] = NULL;
 464	}
 465
 466	task = sched->pid_to_task[pid];
 467
 468	if (task)
 469		return task;
 470
 471	task = zalloc(sizeof(*task));
 472	task->pid = pid;
 473	task->nr = sched->nr_tasks;
 474	strcpy(task->comm, comm);
 475	/*
 476	 * every task starts in sleeping state - this gets ignored
 477	 * if there's no wakeup pointing to this sleep state:
 478	 */
 479	add_sched_event_sleep(sched, task, 0, 0);
 480
 481	sched->pid_to_task[pid] = task;
 482	sched->nr_tasks++;
 483	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 484	BUG_ON(!sched->tasks);
 485	sched->tasks[task->nr] = task;
 486
 487	if (verbose > 0)
 488		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 489
 490	return task;
 491}
 492
 493
 494static void print_task_traces(struct perf_sched *sched)
 495{
 496	struct task_desc *task;
 497	unsigned long i;
 498
 499	for (i = 0; i < sched->nr_tasks; i++) {
 500		task = sched->tasks[i];
 501		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 502			task->nr, task->comm, task->pid, task->nr_events);
 503	}
 504}
 505
 506static void add_cross_task_wakeups(struct perf_sched *sched)
 507{
 508	struct task_desc *task1, *task2;
 509	unsigned long i, j;
 510
 511	for (i = 0; i < sched->nr_tasks; i++) {
 512		task1 = sched->tasks[i];
 513		j = i + 1;
 514		if (j == sched->nr_tasks)
 515			j = 0;
 516		task2 = sched->tasks[j];
 517		add_sched_event_wakeup(sched, task1, 0, task2);
 518	}
 519}
 520
 521static void perf_sched__process_event(struct perf_sched *sched,
 522				      struct sched_atom *atom)
 523{
 524	int ret = 0;
 525
 526	switch (atom->type) {
 527		case SCHED_EVENT_RUN:
 528			burn_nsecs(sched, atom->duration);
 529			break;
 530		case SCHED_EVENT_SLEEP:
 531			if (atom->wait_sem)
 532				ret = sem_wait(atom->wait_sem);
 533			BUG_ON(ret);
 534			break;
 535		case SCHED_EVENT_WAKEUP:
 536			if (atom->wait_sem)
 537				ret = sem_post(atom->wait_sem);
 538			BUG_ON(ret);
 539			break;
 540		case SCHED_EVENT_MIGRATION:
 541			break;
 542		default:
 543			BUG_ON(1);
 544	}
 545}
 546
 547static u64 get_cpu_usage_nsec_parent(void)
 548{
 549	struct rusage ru;
 550	u64 sum;
 551	int err;
 552
 553	err = getrusage(RUSAGE_SELF, &ru);
 554	BUG_ON(err);
 555
 556	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 557	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 558
 559	return sum;
 560}
 561
 562static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 563{
 564	struct perf_event_attr attr;
 565	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 566	int fd;
 567	struct rlimit limit;
 568	bool need_privilege = false;
 569
 570	memset(&attr, 0, sizeof(attr));
 571
 572	attr.type = PERF_TYPE_SOFTWARE;
 573	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 574
 575force_again:
 576	fd = sys_perf_event_open(&attr, 0, -1, -1,
 577				 perf_event_open_cloexec_flag());
 578
 579	if (fd < 0) {
 580		if (errno == EMFILE) {
 581			if (sched->force) {
 582				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 583				limit.rlim_cur += sched->nr_tasks - cur_task;
 584				if (limit.rlim_cur > limit.rlim_max) {
 585					limit.rlim_max = limit.rlim_cur;
 586					need_privilege = true;
 587				}
 588				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 589					if (need_privilege && errno == EPERM)
 590						strcpy(info, "Need privilege\n");
 591				} else
 592					goto force_again;
 593			} else
 594				strcpy(info, "Have a try with -f option\n");
 595		}
 596		pr_err("Error: sys_perf_event_open() syscall returned "
 597		       "with %d (%s)\n%s", fd,
 598		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 599		exit(EXIT_FAILURE);
 600	}
 601	return fd;
 602}
 603
 604static u64 get_cpu_usage_nsec_self(int fd)
 605{
 606	u64 runtime;
 607	int ret;
 608
 609	ret = read(fd, &runtime, sizeof(runtime));
 610	BUG_ON(ret != sizeof(runtime));
 611
 612	return runtime;
 613}
 614
 615struct sched_thread_parms {
 616	struct task_desc  *task;
 617	struct perf_sched *sched;
 618	int fd;
 619};
 620
 621static void *thread_func(void *ctx)
 622{
 623	struct sched_thread_parms *parms = ctx;
 624	struct task_desc *this_task = parms->task;
 625	struct perf_sched *sched = parms->sched;
 626	u64 cpu_usage_0, cpu_usage_1;
 627	unsigned long i, ret;
 628	char comm2[22];
 629	int fd = parms->fd;
 630
 631	zfree(&parms);
 632
 633	sprintf(comm2, ":%s", this_task->comm);
 634	prctl(PR_SET_NAME, comm2);
 635	if (fd < 0)
 636		return NULL;
 637
 638	while (!sched->thread_funcs_exit) {
 639		ret = sem_post(&this_task->ready_for_work);
 640		BUG_ON(ret);
 641		mutex_lock(&sched->start_work_mutex);
 642		mutex_unlock(&sched->start_work_mutex);
 643
 644		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 645
 646		for (i = 0; i < this_task->nr_events; i++) {
 647			this_task->curr_event = i;
 648			perf_sched__process_event(sched, this_task->atoms[i]);
 649		}
 650
 651		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 652		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 653		ret = sem_post(&this_task->work_done_sem);
 654		BUG_ON(ret);
 655
 656		mutex_lock(&sched->work_done_wait_mutex);
 657		mutex_unlock(&sched->work_done_wait_mutex);
 658	}
 659	return NULL;
 660}
 661
 662static void create_tasks(struct perf_sched *sched)
 663	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
 664	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
 665{
 666	struct task_desc *task;
 667	pthread_attr_t attr;
 668	unsigned long i;
 669	int err;
 670
 671	err = pthread_attr_init(&attr);
 672	BUG_ON(err);
 673	err = pthread_attr_setstacksize(&attr,
 674			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 675	BUG_ON(err);
 676	mutex_lock(&sched->start_work_mutex);
 677	mutex_lock(&sched->work_done_wait_mutex);
 678	for (i = 0; i < sched->nr_tasks; i++) {
 679		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 680		BUG_ON(parms == NULL);
 681		parms->task = task = sched->tasks[i];
 682		parms->sched = sched;
 683		parms->fd = self_open_counters(sched, i);
 684		sem_init(&task->sleep_sem, 0, 0);
 685		sem_init(&task->ready_for_work, 0, 0);
 686		sem_init(&task->work_done_sem, 0, 0);
 687		task->curr_event = 0;
 688		err = pthread_create(&task->thread, &attr, thread_func, parms);
 689		BUG_ON(err);
 690	}
 691}
 692
 693static void destroy_tasks(struct perf_sched *sched)
 694	UNLOCK_FUNCTION(sched->start_work_mutex)
 695	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
 696{
 697	struct task_desc *task;
 698	unsigned long i;
 699	int err;
 700
 701	mutex_unlock(&sched->start_work_mutex);
 702	mutex_unlock(&sched->work_done_wait_mutex);
 703	/* Get rid of threads so they won't be upset by mutex destrunction */
 704	for (i = 0; i < sched->nr_tasks; i++) {
 705		task = sched->tasks[i];
 706		err = pthread_join(task->thread, NULL);
 707		BUG_ON(err);
 708		sem_destroy(&task->sleep_sem);
 709		sem_destroy(&task->ready_for_work);
 710		sem_destroy(&task->work_done_sem);
 711	}
 712}
 713
 714static void wait_for_tasks(struct perf_sched *sched)
 715	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 716	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 717{
 718	u64 cpu_usage_0, cpu_usage_1;
 719	struct task_desc *task;
 720	unsigned long i, ret;
 721
 722	sched->start_time = get_nsecs();
 723	sched->cpu_usage = 0;
 724	mutex_unlock(&sched->work_done_wait_mutex);
 725
 726	for (i = 0; i < sched->nr_tasks; i++) {
 727		task = sched->tasks[i];
 728		ret = sem_wait(&task->ready_for_work);
 729		BUG_ON(ret);
 730		sem_init(&task->ready_for_work, 0, 0);
 731	}
 732	mutex_lock(&sched->work_done_wait_mutex);
 733
 734	cpu_usage_0 = get_cpu_usage_nsec_parent();
 735
 736	mutex_unlock(&sched->start_work_mutex);
 737
 738	for (i = 0; i < sched->nr_tasks; i++) {
 739		task = sched->tasks[i];
 740		ret = sem_wait(&task->work_done_sem);
 741		BUG_ON(ret);
 742		sem_init(&task->work_done_sem, 0, 0);
 743		sched->cpu_usage += task->cpu_usage;
 744		task->cpu_usage = 0;
 745	}
 746
 747	cpu_usage_1 = get_cpu_usage_nsec_parent();
 748	if (!sched->runavg_cpu_usage)
 749		sched->runavg_cpu_usage = sched->cpu_usage;
 750	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 751
 752	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 753	if (!sched->runavg_parent_cpu_usage)
 754		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 755	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 756					 sched->parent_cpu_usage)/sched->replay_repeat;
 757
 758	mutex_lock(&sched->start_work_mutex);
 759
 760	for (i = 0; i < sched->nr_tasks; i++) {
 761		task = sched->tasks[i];
 762		sem_init(&task->sleep_sem, 0, 0);
 763		task->curr_event = 0;
 764	}
 765}
 766
 767static void run_one_test(struct perf_sched *sched)
 768	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 769	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 770{
 771	u64 T0, T1, delta, avg_delta, fluct;
 772
 773	T0 = get_nsecs();
 774	wait_for_tasks(sched);
 775	T1 = get_nsecs();
 776
 777	delta = T1 - T0;
 778	sched->sum_runtime += delta;
 779	sched->nr_runs++;
 780
 781	avg_delta = sched->sum_runtime / sched->nr_runs;
 782	if (delta < avg_delta)
 783		fluct = avg_delta - delta;
 784	else
 785		fluct = delta - avg_delta;
 786	sched->sum_fluct += fluct;
 787	if (!sched->run_avg)
 788		sched->run_avg = delta;
 789	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 790
 791	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 792
 793	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 794
 795	printf("cpu: %0.2f / %0.2f",
 796		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 797
 798#if 0
 799	/*
 800	 * rusage statistics done by the parent, these are less
 801	 * accurate than the sched->sum_exec_runtime based statistics:
 802	 */
 803	printf(" [%0.2f / %0.2f]",
 804		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 805		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 806#endif
 807
 808	printf("\n");
 809
 810	if (sched->nr_sleep_corrections)
 811		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 812	sched->nr_sleep_corrections = 0;
 813}
 814
 815static void test_calibrations(struct perf_sched *sched)
 816{
 817	u64 T0, T1;
 818
 819	T0 = get_nsecs();
 820	burn_nsecs(sched, NSEC_PER_MSEC);
 821	T1 = get_nsecs();
 822
 823	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 824
 825	T0 = get_nsecs();
 826	sleep_nsecs(NSEC_PER_MSEC);
 827	T1 = get_nsecs();
 828
 829	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 830}
 831
 832static int
 833replay_wakeup_event(struct perf_sched *sched,
 834		    struct evsel *evsel, struct perf_sample *sample,
 835		    struct machine *machine __maybe_unused)
 836{
 837	const char *comm = evsel__strval(evsel, sample, "comm");
 838	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 839	struct task_desc *waker, *wakee;
 840
 841	if (verbose > 0) {
 842		printf("sched_wakeup event %p\n", evsel);
 843
 844		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 845	}
 846
 847	waker = register_pid(sched, sample->tid, "<unknown>");
 848	wakee = register_pid(sched, pid, comm);
 849
 850	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 851	return 0;
 852}
 853
 854static int replay_switch_event(struct perf_sched *sched,
 855			       struct evsel *evsel,
 856			       struct perf_sample *sample,
 857			       struct machine *machine __maybe_unused)
 858{
 859	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 860		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 861	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 862		  next_pid = evsel__intval(evsel, sample, "next_pid");
 863	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 864	struct task_desc *prev, __maybe_unused *next;
 865	u64 timestamp0, timestamp = sample->time;
 866	int cpu = sample->cpu;
 867	s64 delta;
 868
 869	if (verbose > 0)
 870		printf("sched_switch event %p\n", evsel);
 871
 872	if (cpu >= MAX_CPUS || cpu < 0)
 873		return 0;
 874
 875	timestamp0 = sched->cpu_last_switched[cpu];
 876	if (timestamp0)
 877		delta = timestamp - timestamp0;
 878	else
 879		delta = 0;
 880
 881	if (delta < 0) {
 882		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 883		return -1;
 884	}
 885
 886	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 887		 prev_comm, prev_pid, next_comm, next_pid, delta);
 888
 889	prev = register_pid(sched, prev_pid, prev_comm);
 890	next = register_pid(sched, next_pid, next_comm);
 891
 892	sched->cpu_last_switched[cpu] = timestamp;
 893
 894	add_sched_event_run(sched, prev, timestamp, delta);
 895	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 896
 897	return 0;
 898}
 899
 900static int replay_fork_event(struct perf_sched *sched,
 901			     union perf_event *event,
 902			     struct machine *machine)
 903{
 904	struct thread *child, *parent;
 905
 906	child = machine__findnew_thread(machine, event->fork.pid,
 907					event->fork.tid);
 908	parent = machine__findnew_thread(machine, event->fork.ppid,
 909					 event->fork.ptid);
 910
 911	if (child == NULL || parent == NULL) {
 912		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 913				 child, parent);
 914		goto out_put;
 915	}
 916
 917	if (verbose > 0) {
 918		printf("fork event\n");
 919		printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
 920		printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
 921	}
 922
 923	register_pid(sched, thread__tid(parent), thread__comm_str(parent));
 924	register_pid(sched, thread__tid(child), thread__comm_str(child));
 925out_put:
 926	thread__put(child);
 927	thread__put(parent);
 928	return 0;
 929}
 930
 931struct sort_dimension {
 932	const char		*name;
 933	sort_fn_t		cmp;
 934	struct list_head	list;
 935};
 936
 
 
 
 
 
 937/*
 938 * handle runtime stats saved per thread
 939 */
 940static struct thread_runtime *thread__init_runtime(struct thread *thread)
 941{
 942	struct thread_runtime *r;
 943
 944	r = zalloc(sizeof(struct thread_runtime));
 945	if (!r)
 946		return NULL;
 947
 948	init_stats(&r->run_stats);
 
 949	thread__set_priv(thread, r);
 950
 951	return r;
 952}
 953
 954static struct thread_runtime *thread__get_runtime(struct thread *thread)
 955{
 956	struct thread_runtime *tr;
 957
 958	tr = thread__priv(thread);
 959	if (tr == NULL) {
 960		tr = thread__init_runtime(thread);
 961		if (tr == NULL)
 962			pr_debug("Failed to malloc memory for runtime data.\n");
 963	}
 964
 965	return tr;
 966}
 967
 968static int
 969thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 970{
 971	struct sort_dimension *sort;
 972	int ret = 0;
 973
 974	BUG_ON(list_empty(list));
 975
 976	list_for_each_entry(sort, list, list) {
 977		ret = sort->cmp(l, r);
 978		if (ret)
 979			return ret;
 980	}
 981
 982	return ret;
 983}
 984
 985static struct work_atoms *
 986thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 987			 struct list_head *sort_list)
 988{
 989	struct rb_node *node = root->rb_root.rb_node;
 990	struct work_atoms key = { .thread = thread };
 991
 992	while (node) {
 993		struct work_atoms *atoms;
 994		int cmp;
 995
 996		atoms = container_of(node, struct work_atoms, node);
 997
 998		cmp = thread_lat_cmp(sort_list, &key, atoms);
 999		if (cmp > 0)
1000			node = node->rb_left;
1001		else if (cmp < 0)
1002			node = node->rb_right;
1003		else {
1004			BUG_ON(thread != atoms->thread);
1005			return atoms;
1006		}
1007	}
1008	return NULL;
1009}
1010
1011static void
1012__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1013			 struct list_head *sort_list)
1014{
1015	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1016	bool leftmost = true;
1017
1018	while (*new) {
1019		struct work_atoms *this;
1020		int cmp;
1021
1022		this = container_of(*new, struct work_atoms, node);
1023		parent = *new;
1024
1025		cmp = thread_lat_cmp(sort_list, data, this);
1026
1027		if (cmp > 0)
1028			new = &((*new)->rb_left);
1029		else {
1030			new = &((*new)->rb_right);
1031			leftmost = false;
1032		}
1033	}
1034
1035	rb_link_node(&data->node, parent, new);
1036	rb_insert_color_cached(&data->node, root, leftmost);
1037}
1038
1039static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1040{
1041	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1042	if (!atoms) {
1043		pr_err("No memory at %s\n", __func__);
1044		return -1;
1045	}
1046
1047	atoms->thread = thread__get(thread);
1048	INIT_LIST_HEAD(&atoms->work_list);
1049	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1050	return 0;
1051}
1052
1053static char sched_out_state(u64 prev_state)
1054{
1055	const char *str = TASK_STATE_TO_CHAR_STR;
1056
1057	return str[prev_state];
1058}
1059
1060static int
1061add_sched_out_event(struct work_atoms *atoms,
1062		    char run_state,
1063		    u64 timestamp)
1064{
1065	struct work_atom *atom = zalloc(sizeof(*atom));
1066	if (!atom) {
1067		pr_err("Non memory at %s", __func__);
1068		return -1;
1069	}
1070
1071	atom->sched_out_time = timestamp;
1072
1073	if (run_state == 'R') {
1074		atom->state = THREAD_WAIT_CPU;
1075		atom->wake_up_time = atom->sched_out_time;
1076	}
1077
1078	list_add_tail(&atom->list, &atoms->work_list);
1079	return 0;
1080}
1081
1082static void
1083add_runtime_event(struct work_atoms *atoms, u64 delta,
1084		  u64 timestamp __maybe_unused)
1085{
1086	struct work_atom *atom;
1087
1088	BUG_ON(list_empty(&atoms->work_list));
1089
1090	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092	atom->runtime += delta;
1093	atoms->total_runtime += delta;
1094}
1095
1096static void
1097add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1098{
1099	struct work_atom *atom;
1100	u64 delta;
1101
1102	if (list_empty(&atoms->work_list))
1103		return;
1104
1105	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1106
1107	if (atom->state != THREAD_WAIT_CPU)
1108		return;
1109
1110	if (timestamp < atom->wake_up_time) {
1111		atom->state = THREAD_IGNORE;
1112		return;
1113	}
1114
1115	atom->state = THREAD_SCHED_IN;
1116	atom->sched_in_time = timestamp;
1117
1118	delta = atom->sched_in_time - atom->wake_up_time;
1119	atoms->total_lat += delta;
1120	if (delta > atoms->max_lat) {
1121		atoms->max_lat = delta;
1122		atoms->max_lat_start = atom->wake_up_time;
1123		atoms->max_lat_end = timestamp;
1124	}
1125	atoms->nb_atoms++;
1126}
1127
1128static int latency_switch_event(struct perf_sched *sched,
1129				struct evsel *evsel,
1130				struct perf_sample *sample,
1131				struct machine *machine)
1132{
1133	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1134		  next_pid = evsel__intval(evsel, sample, "next_pid");
1135	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1136	struct work_atoms *out_events, *in_events;
1137	struct thread *sched_out, *sched_in;
1138	u64 timestamp0, timestamp = sample->time;
1139	int cpu = sample->cpu, err = -1;
1140	s64 delta;
1141
1142	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1143
1144	timestamp0 = sched->cpu_last_switched[cpu];
1145	sched->cpu_last_switched[cpu] = timestamp;
1146	if (timestamp0)
1147		delta = timestamp - timestamp0;
1148	else
1149		delta = 0;
1150
1151	if (delta < 0) {
1152		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1153		return -1;
1154	}
1155
1156	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1157	sched_in = machine__findnew_thread(machine, -1, next_pid);
1158	if (sched_out == NULL || sched_in == NULL)
1159		goto out_put;
1160
1161	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1162	if (!out_events) {
1163		if (thread_atoms_insert(sched, sched_out))
1164			goto out_put;
1165		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1166		if (!out_events) {
1167			pr_err("out-event: Internal tree error");
1168			goto out_put;
1169		}
1170	}
1171	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1172		return -1;
1173
1174	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1175	if (!in_events) {
1176		if (thread_atoms_insert(sched, sched_in))
1177			goto out_put;
1178		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1179		if (!in_events) {
1180			pr_err("in-event: Internal tree error");
1181			goto out_put;
1182		}
1183		/*
1184		 * Take came in we have not heard about yet,
1185		 * add in an initial atom in runnable state:
1186		 */
1187		if (add_sched_out_event(in_events, 'R', timestamp))
1188			goto out_put;
1189	}
1190	add_sched_in_event(in_events, timestamp);
1191	err = 0;
1192out_put:
1193	thread__put(sched_out);
1194	thread__put(sched_in);
1195	return err;
1196}
1197
1198static int latency_runtime_event(struct perf_sched *sched,
1199				 struct evsel *evsel,
1200				 struct perf_sample *sample,
1201				 struct machine *machine)
1202{
1203	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1204	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1205	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1206	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1207	u64 timestamp = sample->time;
1208	int cpu = sample->cpu, err = -1;
1209
1210	if (thread == NULL)
1211		return -1;
1212
1213	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1214	if (!atoms) {
1215		if (thread_atoms_insert(sched, thread))
1216			goto out_put;
1217		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1218		if (!atoms) {
1219			pr_err("in-event: Internal tree error");
1220			goto out_put;
1221		}
1222		if (add_sched_out_event(atoms, 'R', timestamp))
1223			goto out_put;
1224	}
1225
1226	add_runtime_event(atoms, runtime, timestamp);
1227	err = 0;
1228out_put:
1229	thread__put(thread);
1230	return err;
1231}
1232
1233static int latency_wakeup_event(struct perf_sched *sched,
1234				struct evsel *evsel,
1235				struct perf_sample *sample,
1236				struct machine *machine)
1237{
1238	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1239	struct work_atoms *atoms;
1240	struct work_atom *atom;
1241	struct thread *wakee;
1242	u64 timestamp = sample->time;
1243	int err = -1;
1244
1245	wakee = machine__findnew_thread(machine, -1, pid);
1246	if (wakee == NULL)
1247		return -1;
1248	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1249	if (!atoms) {
1250		if (thread_atoms_insert(sched, wakee))
1251			goto out_put;
1252		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1253		if (!atoms) {
1254			pr_err("wakeup-event: Internal tree error");
1255			goto out_put;
1256		}
1257		if (add_sched_out_event(atoms, 'S', timestamp))
1258			goto out_put;
1259	}
1260
1261	BUG_ON(list_empty(&atoms->work_list));
1262
1263	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1264
1265	/*
1266	 * As we do not guarantee the wakeup event happens when
1267	 * task is out of run queue, also may happen when task is
1268	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1269	 * then we should not set the ->wake_up_time when wake up a
1270	 * task which is on run queue.
1271	 *
1272	 * You WILL be missing events if you've recorded only
1273	 * one CPU, or are only looking at only one, so don't
1274	 * skip in this case.
1275	 */
1276	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1277		goto out_ok;
1278
1279	sched->nr_timestamps++;
1280	if (atom->sched_out_time > timestamp) {
1281		sched->nr_unordered_timestamps++;
1282		goto out_ok;
1283	}
1284
1285	atom->state = THREAD_WAIT_CPU;
1286	atom->wake_up_time = timestamp;
1287out_ok:
1288	err = 0;
1289out_put:
1290	thread__put(wakee);
1291	return err;
1292}
1293
1294static int latency_migrate_task_event(struct perf_sched *sched,
1295				      struct evsel *evsel,
1296				      struct perf_sample *sample,
1297				      struct machine *machine)
1298{
1299	const u32 pid = evsel__intval(evsel, sample, "pid");
1300	u64 timestamp = sample->time;
1301	struct work_atoms *atoms;
1302	struct work_atom *atom;
1303	struct thread *migrant;
1304	int err = -1;
1305
1306	/*
1307	 * Only need to worry about migration when profiling one CPU.
1308	 */
1309	if (sched->profile_cpu == -1)
1310		return 0;
1311
1312	migrant = machine__findnew_thread(machine, -1, pid);
1313	if (migrant == NULL)
1314		return -1;
1315	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1316	if (!atoms) {
1317		if (thread_atoms_insert(sched, migrant))
1318			goto out_put;
1319		register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1320		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1321		if (!atoms) {
1322			pr_err("migration-event: Internal tree error");
1323			goto out_put;
1324		}
1325		if (add_sched_out_event(atoms, 'R', timestamp))
1326			goto out_put;
1327	}
1328
1329	BUG_ON(list_empty(&atoms->work_list));
1330
1331	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1332	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1333
1334	sched->nr_timestamps++;
1335
1336	if (atom->sched_out_time > timestamp)
1337		sched->nr_unordered_timestamps++;
1338	err = 0;
1339out_put:
1340	thread__put(migrant);
1341	return err;
1342}
1343
1344static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1345{
1346	int i;
1347	int ret;
1348	u64 avg;
1349	char max_lat_start[32], max_lat_end[32];
1350
1351	if (!work_list->nb_atoms)
1352		return;
1353	/*
1354	 * Ignore idle threads:
1355	 */
1356	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1357		return;
1358
1359	sched->all_runtime += work_list->total_runtime;
1360	sched->all_count   += work_list->nb_atoms;
1361
1362	if (work_list->num_merged > 1) {
1363		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1364			     work_list->num_merged);
1365	} else {
1366		ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1367			     thread__tid(work_list->thread));
1368	}
1369
1370	for (i = 0; i < 24 - ret; i++)
1371		printf(" ");
1372
1373	avg = work_list->total_lat / work_list->nb_atoms;
1374	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1375	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1376
1377	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1378	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1379		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1380		 (double)work_list->max_lat / NSEC_PER_MSEC,
1381		 max_lat_start, max_lat_end);
1382}
1383
1384static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1385{
1386	pid_t l_tid, r_tid;
1387
1388	if (RC_CHK_EQUAL(l->thread, r->thread))
1389		return 0;
1390	l_tid = thread__tid(l->thread);
1391	r_tid = thread__tid(r->thread);
1392	if (l_tid < r_tid)
1393		return -1;
1394	if (l_tid > r_tid)
1395		return 1;
1396	return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1397}
1398
1399static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1400{
1401	u64 avgl, avgr;
1402
1403	if (!l->nb_atoms)
1404		return -1;
1405
1406	if (!r->nb_atoms)
1407		return 1;
1408
1409	avgl = l->total_lat / l->nb_atoms;
1410	avgr = r->total_lat / r->nb_atoms;
1411
1412	if (avgl < avgr)
1413		return -1;
1414	if (avgl > avgr)
1415		return 1;
1416
1417	return 0;
1418}
1419
1420static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1421{
1422	if (l->max_lat < r->max_lat)
1423		return -1;
1424	if (l->max_lat > r->max_lat)
1425		return 1;
1426
1427	return 0;
1428}
1429
1430static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1431{
1432	if (l->nb_atoms < r->nb_atoms)
1433		return -1;
1434	if (l->nb_atoms > r->nb_atoms)
1435		return 1;
1436
1437	return 0;
1438}
1439
1440static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1441{
1442	if (l->total_runtime < r->total_runtime)
1443		return -1;
1444	if (l->total_runtime > r->total_runtime)
1445		return 1;
1446
1447	return 0;
1448}
1449
1450static int sort_dimension__add(const char *tok, struct list_head *list)
1451{
1452	size_t i;
1453	static struct sort_dimension avg_sort_dimension = {
1454		.name = "avg",
1455		.cmp  = avg_cmp,
1456	};
1457	static struct sort_dimension max_sort_dimension = {
1458		.name = "max",
1459		.cmp  = max_cmp,
1460	};
1461	static struct sort_dimension pid_sort_dimension = {
1462		.name = "pid",
1463		.cmp  = pid_cmp,
1464	};
1465	static struct sort_dimension runtime_sort_dimension = {
1466		.name = "runtime",
1467		.cmp  = runtime_cmp,
1468	};
1469	static struct sort_dimension switch_sort_dimension = {
1470		.name = "switch",
1471		.cmp  = switch_cmp,
1472	};
1473	struct sort_dimension *available_sorts[] = {
1474		&pid_sort_dimension,
1475		&avg_sort_dimension,
1476		&max_sort_dimension,
1477		&switch_sort_dimension,
1478		&runtime_sort_dimension,
1479	};
1480
1481	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1482		if (!strcmp(available_sorts[i]->name, tok)) {
1483			list_add_tail(&available_sorts[i]->list, list);
1484
1485			return 0;
1486		}
1487	}
1488
1489	return -1;
1490}
1491
1492static void perf_sched__sort_lat(struct perf_sched *sched)
1493{
1494	struct rb_node *node;
1495	struct rb_root_cached *root = &sched->atom_root;
1496again:
1497	for (;;) {
1498		struct work_atoms *data;
1499		node = rb_first_cached(root);
1500		if (!node)
1501			break;
1502
1503		rb_erase_cached(node, root);
1504		data = rb_entry(node, struct work_atoms, node);
1505		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1506	}
1507	if (root == &sched->atom_root) {
1508		root = &sched->merged_atom_root;
1509		goto again;
1510	}
1511}
1512
1513static int process_sched_wakeup_event(struct perf_tool *tool,
1514				      struct evsel *evsel,
1515				      struct perf_sample *sample,
1516				      struct machine *machine)
1517{
1518	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1519
1520	if (sched->tp_handler->wakeup_event)
1521		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1522
1523	return 0;
1524}
1525
1526static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
1527				      struct evsel *evsel __maybe_unused,
1528				      struct perf_sample *sample __maybe_unused,
1529				      struct machine *machine __maybe_unused)
1530{
1531	return 0;
1532}
1533
1534union map_priv {
1535	void	*ptr;
1536	bool	 color;
1537};
1538
1539static bool thread__has_color(struct thread *thread)
1540{
1541	union map_priv priv = {
1542		.ptr = thread__priv(thread),
1543	};
1544
1545	return priv.color;
1546}
1547
1548static struct thread*
1549map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1550{
1551	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1552	union map_priv priv = {
1553		.color = false,
1554	};
1555
1556	if (!sched->map.color_pids || !thread || thread__priv(thread))
1557		return thread;
1558
1559	if (thread_map__has(sched->map.color_pids, tid))
1560		priv.color = true;
1561
1562	thread__set_priv(thread, priv.ptr);
1563	return thread;
1564}
1565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1566static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1567			    struct perf_sample *sample, struct machine *machine)
1568{
1569	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1570	struct thread *sched_in;
 
1571	struct thread_runtime *tr;
1572	int new_shortname;
1573	u64 timestamp0, timestamp = sample->time;
1574	s64 delta;
1575	int i;
1576	struct perf_cpu this_cpu = {
1577		.cpu = sample->cpu,
1578	};
1579	int cpus_nr;
 
1580	bool new_cpu = false;
1581	const char *color = PERF_COLOR_NORMAL;
1582	char stimestamp[32];
 
1583
1584	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1585
1586	if (this_cpu.cpu > sched->max_cpu.cpu)
1587		sched->max_cpu = this_cpu;
1588
1589	if (sched->map.comp) {
1590		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1591		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1592			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1593			new_cpu = true;
1594		}
1595	} else
1596		cpus_nr = sched->max_cpu.cpu;
1597
1598	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1599	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1600	if (timestamp0)
1601		delta = timestamp - timestamp0;
1602	else
1603		delta = 0;
1604
1605	if (delta < 0) {
1606		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1607		return -1;
1608	}
1609
1610	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1611	if (sched_in == NULL)
 
1612		return -1;
1613
1614	tr = thread__get_runtime(sched_in);
1615	if (tr == NULL) {
1616		thread__put(sched_in);
1617		return -1;
1618	}
1619
1620	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
 
1621
1622	printf("  ");
1623
1624	new_shortname = 0;
1625	if (!tr->shortname[0]) {
1626		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1627			/*
1628			 * Don't allocate a letter-number for swapper:0
1629			 * as a shortname. Instead, we use '.' for it.
1630			 */
1631			tr->shortname[0] = '.';
1632			tr->shortname[1] = ' ';
1633		} else {
1634			tr->shortname[0] = sched->next_shortname1;
1635			tr->shortname[1] = sched->next_shortname2;
1636
1637			if (sched->next_shortname1 < 'Z') {
1638				sched->next_shortname1++;
1639			} else {
1640				sched->next_shortname1 = 'A';
1641				if (sched->next_shortname2 < '9')
1642					sched->next_shortname2++;
1643				else
1644					sched->next_shortname2 = '0';
1645			}
 
 
 
1646		}
1647		new_shortname = 1;
1648	}
1649
1650	for (i = 0; i < cpus_nr; i++) {
1651		struct perf_cpu cpu = {
1652			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1653		};
1654		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1655		struct thread_runtime *curr_tr;
1656		const char *pid_color = color;
1657		const char *cpu_color = color;
1658
1659		if (curr_thread && thread__has_color(curr_thread))
1660			pid_color = COLOR_PIDS;
1661
1662		if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1663			continue;
1664
1665		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1666			cpu_color = COLOR_CPUS;
1667
1668		if (cpu.cpu != this_cpu.cpu)
1669			color_fprintf(stdout, color, " ");
1670		else
1671			color_fprintf(stdout, cpu_color, "*");
1672
1673		if (sched->curr_thread[cpu.cpu]) {
1674			curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1675			if (curr_tr == NULL) {
1676				thread__put(sched_in);
1677				return -1;
1678			}
1679			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1680		} else
1681			color_fprintf(stdout, color, "   ");
1682	}
1683
1684	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1685		goto out;
 
1686
1687	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1688	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1689	if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1690		const char *pid_color = color;
1691
1692		if (thread__has_color(sched_in))
1693			pid_color = COLOR_PIDS;
1694
1695		color_fprintf(stdout, pid_color, "%s => %s:%d",
1696			tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1697		tr->comm_changed = false;
1698	}
1699
1700	if (sched->map.comp && new_cpu)
1701		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702
1703out:
1704	color_fprintf(stdout, color, "\n");
 
1705
1706	thread__put(sched_in);
1707
1708	return 0;
1709}
1710
1711static int process_sched_switch_event(struct perf_tool *tool,
1712				      struct evsel *evsel,
1713				      struct perf_sample *sample,
1714				      struct machine *machine)
1715{
1716	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1717	int this_cpu = sample->cpu, err = 0;
1718	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1719	    next_pid = evsel__intval(evsel, sample, "next_pid");
1720
1721	if (sched->curr_pid[this_cpu] != (u32)-1) {
1722		/*
1723		 * Are we trying to switch away a PID that is
1724		 * not current?
1725		 */
1726		if (sched->curr_pid[this_cpu] != prev_pid)
1727			sched->nr_context_switch_bugs++;
1728	}
1729
1730	if (sched->tp_handler->switch_event)
1731		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1732
1733	sched->curr_pid[this_cpu] = next_pid;
1734	return err;
1735}
1736
1737static int process_sched_runtime_event(struct perf_tool *tool,
1738				       struct evsel *evsel,
1739				       struct perf_sample *sample,
1740				       struct machine *machine)
1741{
1742	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1743
1744	if (sched->tp_handler->runtime_event)
1745		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1746
1747	return 0;
1748}
1749
1750static int perf_sched__process_fork_event(struct perf_tool *tool,
1751					  union perf_event *event,
1752					  struct perf_sample *sample,
1753					  struct machine *machine)
1754{
1755	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1756
1757	/* run the fork event through the perf machinery */
1758	perf_event__process_fork(tool, event, sample, machine);
1759
1760	/* and then run additional processing needed for this command */
1761	if (sched->tp_handler->fork_event)
1762		return sched->tp_handler->fork_event(sched, event, machine);
1763
1764	return 0;
1765}
1766
1767static int process_sched_migrate_task_event(struct perf_tool *tool,
1768					    struct evsel *evsel,
1769					    struct perf_sample *sample,
1770					    struct machine *machine)
1771{
1772	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1773
1774	if (sched->tp_handler->migrate_task_event)
1775		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1776
1777	return 0;
1778}
1779
1780typedef int (*tracepoint_handler)(struct perf_tool *tool,
1781				  struct evsel *evsel,
1782				  struct perf_sample *sample,
1783				  struct machine *machine);
1784
1785static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1786						 union perf_event *event __maybe_unused,
1787						 struct perf_sample *sample,
1788						 struct evsel *evsel,
1789						 struct machine *machine)
1790{
1791	int err = 0;
1792
1793	if (evsel->handler != NULL) {
1794		tracepoint_handler f = evsel->handler;
1795		err = f(tool, evsel, sample, machine);
1796	}
1797
1798	return err;
1799}
1800
1801static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1802				    union perf_event *event,
1803				    struct perf_sample *sample,
1804				    struct machine *machine)
1805{
1806	struct thread *thread;
1807	struct thread_runtime *tr;
1808	int err;
1809
1810	err = perf_event__process_comm(tool, event, sample, machine);
1811	if (err)
1812		return err;
1813
1814	thread = machine__find_thread(machine, sample->pid, sample->tid);
1815	if (!thread) {
1816		pr_err("Internal error: can't find thread\n");
1817		return -1;
1818	}
1819
1820	tr = thread__get_runtime(thread);
1821	if (tr == NULL) {
1822		thread__put(thread);
1823		return -1;
1824	}
1825
1826	tr->comm_changed = true;
1827	thread__put(thread);
1828
1829	return 0;
1830}
1831
1832static int perf_sched__read_events(struct perf_sched *sched)
1833{
1834	struct evsel_str_handler handlers[] = {
1835		{ "sched:sched_switch",	      process_sched_switch_event, },
1836		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1837		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1838		{ "sched:sched_waking",	      process_sched_wakeup_event, },
1839		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1840		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1841	};
1842	struct perf_session *session;
1843	struct perf_data data = {
1844		.path  = input_name,
1845		.mode  = PERF_DATA_MODE_READ,
1846		.force = sched->force,
1847	};
1848	int rc = -1;
1849
1850	session = perf_session__new(&data, &sched->tool);
1851	if (IS_ERR(session)) {
1852		pr_debug("Error creating perf session");
1853		return PTR_ERR(session);
1854	}
1855
1856	symbol__init(&session->header.env);
1857
1858	/* prefer sched_waking if it is captured */
1859	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1860		handlers[2].handler = process_sched_wakeup_ignore;
1861
1862	if (perf_session__set_tracepoints_handlers(session, handlers))
1863		goto out_delete;
1864
1865	if (perf_session__has_traces(session, "record -R")) {
1866		int err = perf_session__process_events(session);
1867		if (err) {
1868			pr_err("Failed to process events, error %d", err);
1869			goto out_delete;
1870		}
1871
1872		sched->nr_events      = session->evlist->stats.nr_events[0];
1873		sched->nr_lost_events = session->evlist->stats.total_lost;
1874		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1875	}
1876
1877	rc = 0;
1878out_delete:
1879	perf_session__delete(session);
1880	return rc;
1881}
1882
1883/*
1884 * scheduling times are printed as msec.usec
1885 */
1886static inline void print_sched_time(unsigned long long nsecs, int width)
1887{
1888	unsigned long msecs;
1889	unsigned long usecs;
1890
1891	msecs  = nsecs / NSEC_PER_MSEC;
1892	nsecs -= msecs * NSEC_PER_MSEC;
1893	usecs  = nsecs / NSEC_PER_USEC;
1894	printf("%*lu.%03lu ", width, msecs, usecs);
1895}
1896
1897/*
1898 * returns runtime data for event, allocating memory for it the
1899 * first time it is used.
1900 */
1901static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1902{
1903	struct evsel_runtime *r = evsel->priv;
1904
1905	if (r == NULL) {
1906		r = zalloc(sizeof(struct evsel_runtime));
1907		evsel->priv = r;
1908	}
1909
1910	return r;
1911}
1912
1913/*
1914 * save last time event was seen per cpu
1915 */
1916static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1917{
1918	struct evsel_runtime *r = evsel__get_runtime(evsel);
1919
1920	if (r == NULL)
1921		return;
1922
1923	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1924		int i, n = __roundup_pow_of_two(cpu+1);
1925		void *p = r->last_time;
1926
1927		p = realloc(r->last_time, n * sizeof(u64));
1928		if (!p)
1929			return;
1930
1931		r->last_time = p;
1932		for (i = r->ncpu; i < n; ++i)
1933			r->last_time[i] = (u64) 0;
1934
1935		r->ncpu = n;
1936	}
1937
1938	r->last_time[cpu] = timestamp;
1939}
1940
1941/* returns last time this event was seen on the given cpu */
1942static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1943{
1944	struct evsel_runtime *r = evsel__get_runtime(evsel);
1945
1946	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1947		return 0;
1948
1949	return r->last_time[cpu];
1950}
1951
1952static int comm_width = 30;
1953
1954static char *timehist_get_commstr(struct thread *thread)
1955{
1956	static char str[32];
1957	const char *comm = thread__comm_str(thread);
1958	pid_t tid = thread__tid(thread);
1959	pid_t pid = thread__pid(thread);
1960	int n;
1961
1962	if (pid == 0)
1963		n = scnprintf(str, sizeof(str), "%s", comm);
1964
1965	else if (tid != pid)
1966		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1967
1968	else
1969		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1970
1971	if (n > comm_width)
1972		comm_width = n;
1973
1974	return str;
1975}
1976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977static void timehist_header(struct perf_sched *sched)
1978{
1979	u32 ncpus = sched->max_cpu.cpu + 1;
1980	u32 i, j;
1981
1982	printf("%15s %6s ", "time", "cpu");
1983
1984	if (sched->show_cpu_visual) {
1985		printf(" ");
1986		for (i = 0, j = 0; i < ncpus; ++i) {
1987			printf("%x", j++);
1988			if (j > 15)
1989				j = 0;
1990		}
1991		printf(" ");
1992	}
1993
1994	printf(" %-*s  %9s  %9s  %9s", comm_width,
1995		"task name", "wait time", "sch delay", "run time");
 
 
 
 
 
 
 
1996
1997	if (sched->show_state)
1998		printf("  %s", "state");
1999
2000	printf("\n");
2001
2002	/*
2003	 * units row
2004	 */
2005	printf("%15s %-6s ", "", "");
2006
2007	if (sched->show_cpu_visual)
2008		printf(" %*s ", ncpus, "");
2009
2010	printf(" %-*s  %9s  %9s  %9s", comm_width,
2011	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
 
 
2012
2013	if (sched->show_state)
2014		printf("  %5s", "");
 
 
2015
2016	printf("\n");
2017
2018	/*
2019	 * separator
2020	 */
2021	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2022
2023	if (sched->show_cpu_visual)
2024		printf(" %.*s ", ncpus, graph_dotted_line);
2025
2026	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
2027		graph_dotted_line, graph_dotted_line, graph_dotted_line,
2028		graph_dotted_line);
 
 
 
 
 
 
2029
2030	if (sched->show_state)
2031		printf("  %.5s", graph_dotted_line);
2032
2033	printf("\n");
2034}
2035
2036static char task_state_char(struct thread *thread, int state)
2037{
2038	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
2039	unsigned bit = state ? ffs(state) : 0;
2040
2041	/* 'I' for idle */
2042	if (thread__tid(thread) == 0)
2043		return 'I';
2044
2045	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
2046}
2047
2048static void timehist_print_sample(struct perf_sched *sched,
2049				  struct evsel *evsel,
2050				  struct perf_sample *sample,
2051				  struct addr_location *al,
2052				  struct thread *thread,
2053				  u64 t, int state)
2054{
2055	struct thread_runtime *tr = thread__priv(thread);
2056	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2057	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2058	u32 max_cpus = sched->max_cpu.cpu + 1;
2059	char tstr[64];
2060	char nstr[30];
2061	u64 wait_time;
2062
2063	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2064		return;
2065
2066	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2067	printf("%15s [%04d] ", tstr, sample->cpu);
2068
2069	if (sched->show_cpu_visual) {
2070		u32 i;
2071		char c;
2072
2073		printf(" ");
2074		for (i = 0; i < max_cpus; ++i) {
2075			/* flag idle times with 'i'; others are sched events */
2076			if (i == sample->cpu)
2077				c = (thread__tid(thread) == 0) ? 'i' : 's';
2078			else
2079				c = ' ';
2080			printf("%c", c);
2081		}
2082		printf(" ");
2083	}
2084
2085	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2086
 
 
 
2087	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2088	print_sched_time(wait_time, 6);
2089
2090	print_sched_time(tr->dt_delay, 6);
2091	print_sched_time(tr->dt_run, 6);
 
 
2092
2093	if (sched->show_state)
2094		printf(" %5c ", task_state_char(thread, state));
2095
2096	if (sched->show_next) {
2097		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2098		printf(" %-*s", comm_width, nstr);
2099	}
2100
2101	if (sched->show_wakeups && !sched->show_next)
2102		printf("  %-*s", comm_width, "");
2103
2104	if (thread__tid(thread) == 0)
2105		goto out;
2106
2107	if (sched->show_callchain)
2108		printf("  ");
2109
2110	sample__fprintf_sym(sample, al, 0,
2111			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2112			    EVSEL__PRINT_CALLCHAIN_ARROW |
2113			    EVSEL__PRINT_SKIP_IGNORED,
2114			    get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2115
2116out:
2117	printf("\n");
2118}
2119
2120/*
2121 * Explanation of delta-time stats:
2122 *
2123 *            t = time of current schedule out event
2124 *        tprev = time of previous sched out event
2125 *                also time of schedule-in event for current task
2126 *    last_time = time of last sched change event for current task
2127 *                (i.e, time process was last scheduled out)
2128 * ready_to_run = time of wakeup for current task
 
2129 *
2130 * -----|------------|------------|------------|------
2131 *    last         ready        tprev          t
2132 *    time         to run
2133 *
2134 *      |-------- dt_wait --------|
2135 *                   |- dt_delay -|-- dt_run --|
 
2136 *
2137 *   dt_run = run time of current task
2138 *  dt_wait = time between last schedule out event for task and tprev
2139 *            represents time spent off the cpu
2140 * dt_delay = time between wakeup and schedule-in of task
 
2141 */
2142
2143static void timehist_update_runtime_stats(struct thread_runtime *r,
2144					 u64 t, u64 tprev)
2145{
2146	r->dt_delay   = 0;
2147	r->dt_sleep   = 0;
2148	r->dt_iowait  = 0;
2149	r->dt_preempt = 0;
2150	r->dt_run     = 0;
 
2151
2152	if (tprev) {
2153		r->dt_run = t - tprev;
2154		if (r->ready_to_run) {
2155			if (r->ready_to_run > tprev)
2156				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2157			else
2158				r->dt_delay = tprev - r->ready_to_run;
 
 
 
2159		}
2160
2161		if (r->last_time > tprev)
2162			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2163		else if (r->last_time) {
2164			u64 dt_wait = tprev - r->last_time;
2165
2166			if (r->last_state == TASK_RUNNING)
2167				r->dt_preempt = dt_wait;
2168			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2169				r->dt_iowait = dt_wait;
2170			else
2171				r->dt_sleep = dt_wait;
2172		}
2173	}
2174
2175	update_stats(&r->run_stats, r->dt_run);
2176
2177	r->total_run_time     += r->dt_run;
2178	r->total_delay_time   += r->dt_delay;
2179	r->total_sleep_time   += r->dt_sleep;
2180	r->total_iowait_time  += r->dt_iowait;
2181	r->total_preempt_time += r->dt_preempt;
 
2182}
2183
2184static bool is_idle_sample(struct perf_sample *sample,
2185			   struct evsel *evsel)
2186{
2187	/* pid 0 == swapper == idle task */
2188	if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2189		return evsel__intval(evsel, sample, "prev_pid") == 0;
2190
2191	return sample->pid == 0;
2192}
2193
2194static void save_task_callchain(struct perf_sched *sched,
2195				struct perf_sample *sample,
2196				struct evsel *evsel,
2197				struct machine *machine)
2198{
2199	struct callchain_cursor *cursor;
2200	struct thread *thread;
2201
2202	/* want main thread for process - has maps */
2203	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2204	if (thread == NULL) {
2205		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2206		return;
2207	}
2208
2209	if (!sched->show_callchain || sample->callchain == NULL)
2210		return;
2211
2212	cursor = get_tls_callchain_cursor();
2213
2214	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2215				      NULL, NULL, sched->max_stack + 2) != 0) {
2216		if (verbose > 0)
2217			pr_err("Failed to resolve callchain. Skipping\n");
2218
2219		return;
2220	}
2221
2222	callchain_cursor_commit(cursor);
2223
2224	while (true) {
2225		struct callchain_cursor_node *node;
2226		struct symbol *sym;
2227
2228		node = callchain_cursor_current(cursor);
2229		if (node == NULL)
2230			break;
2231
2232		sym = node->ms.sym;
2233		if (sym) {
2234			if (!strcmp(sym->name, "schedule") ||
2235			    !strcmp(sym->name, "__schedule") ||
2236			    !strcmp(sym->name, "preempt_schedule"))
2237				sym->ignore = 1;
2238		}
2239
2240		callchain_cursor_advance(cursor);
2241	}
2242}
2243
2244static int init_idle_thread(struct thread *thread)
2245{
2246	struct idle_thread_runtime *itr;
2247
2248	thread__set_comm(thread, idle_comm, 0);
2249
2250	itr = zalloc(sizeof(*itr));
2251	if (itr == NULL)
2252		return -ENOMEM;
2253
 
2254	init_stats(&itr->tr.run_stats);
2255	callchain_init(&itr->callchain);
2256	callchain_cursor_reset(&itr->cursor);
2257	thread__set_priv(thread, itr);
2258
2259	return 0;
2260}
2261
2262/*
2263 * Track idle stats per cpu by maintaining a local thread
2264 * struct for the idle task on each cpu.
2265 */
2266static int init_idle_threads(int ncpu)
2267{
2268	int i, ret;
2269
2270	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2271	if (!idle_threads)
2272		return -ENOMEM;
2273
2274	idle_max_cpu = ncpu;
2275
2276	/* allocate the actual thread struct if needed */
2277	for (i = 0; i < ncpu; ++i) {
2278		idle_threads[i] = thread__new(0, 0);
2279		if (idle_threads[i] == NULL)
2280			return -ENOMEM;
2281
2282		ret = init_idle_thread(idle_threads[i]);
2283		if (ret < 0)
2284			return ret;
2285	}
2286
2287	return 0;
2288}
2289
2290static void free_idle_threads(void)
2291{
2292	int i;
2293
2294	if (idle_threads == NULL)
2295		return;
2296
2297	for (i = 0; i < idle_max_cpu; ++i) {
2298		if ((idle_threads[i]))
2299			thread__delete(idle_threads[i]);
2300	}
2301
2302	free(idle_threads);
2303}
2304
2305static struct thread *get_idle_thread(int cpu)
2306{
2307	/*
2308	 * expand/allocate array of pointers to local thread
2309	 * structs if needed
2310	 */
2311	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2312		int i, j = __roundup_pow_of_two(cpu+1);
2313		void *p;
2314
2315		p = realloc(idle_threads, j * sizeof(struct thread *));
2316		if (!p)
2317			return NULL;
2318
2319		idle_threads = (struct thread **) p;
2320		for (i = idle_max_cpu; i < j; ++i)
2321			idle_threads[i] = NULL;
2322
2323		idle_max_cpu = j;
2324	}
2325
2326	/* allocate a new thread struct if needed */
2327	if (idle_threads[cpu] == NULL) {
2328		idle_threads[cpu] = thread__new(0, 0);
2329
2330		if (idle_threads[cpu]) {
2331			if (init_idle_thread(idle_threads[cpu]) < 0)
2332				return NULL;
2333		}
2334	}
2335
2336	return idle_threads[cpu];
2337}
2338
2339static void save_idle_callchain(struct perf_sched *sched,
2340				struct idle_thread_runtime *itr,
2341				struct perf_sample *sample)
2342{
2343	struct callchain_cursor *cursor;
2344
2345	if (!sched->show_callchain || sample->callchain == NULL)
2346		return;
2347
2348	cursor = get_tls_callchain_cursor();
2349	if (cursor == NULL)
2350		return;
2351
2352	callchain_cursor__copy(&itr->cursor, cursor);
2353}
2354
2355static struct thread *timehist_get_thread(struct perf_sched *sched,
2356					  struct perf_sample *sample,
2357					  struct machine *machine,
2358					  struct evsel *evsel)
2359{
2360	struct thread *thread;
2361
2362	if (is_idle_sample(sample, evsel)) {
2363		thread = get_idle_thread(sample->cpu);
2364		if (thread == NULL)
2365			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2366
2367	} else {
2368		/* there were samples with tid 0 but non-zero pid */
2369		thread = machine__findnew_thread(machine, sample->pid,
2370						 sample->tid ?: sample->pid);
2371		if (thread == NULL) {
2372			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2373				 sample->tid);
2374		}
2375
2376		save_task_callchain(sched, sample, evsel, machine);
2377		if (sched->idle_hist) {
2378			struct thread *idle;
2379			struct idle_thread_runtime *itr;
2380
2381			idle = get_idle_thread(sample->cpu);
2382			if (idle == NULL) {
2383				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2384				return NULL;
2385			}
2386
2387			itr = thread__priv(idle);
2388			if (itr == NULL)
2389				return NULL;
2390
2391			itr->last_thread = thread;
2392
2393			/* copy task callchain when entering to idle */
2394			if (evsel__intval(evsel, sample, "next_pid") == 0)
2395				save_idle_callchain(sched, itr, sample);
2396		}
2397	}
2398
2399	return thread;
2400}
2401
2402static bool timehist_skip_sample(struct perf_sched *sched,
2403				 struct thread *thread,
2404				 struct evsel *evsel,
2405				 struct perf_sample *sample)
2406{
2407	bool rc = false;
 
 
2408
2409	if (thread__is_filtered(thread)) {
2410		rc = true;
2411		sched->skipped_samples++;
2412	}
2413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2414	if (sched->idle_hist) {
2415		if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2416			rc = true;
2417		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2418			 evsel__intval(evsel, sample, "next_pid") != 0)
2419			rc = true;
2420	}
2421
2422	return rc;
2423}
2424
2425static void timehist_print_wakeup_event(struct perf_sched *sched,
2426					struct evsel *evsel,
2427					struct perf_sample *sample,
2428					struct machine *machine,
2429					struct thread *awakened)
2430{
2431	struct thread *thread;
2432	char tstr[64];
2433
2434	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2435	if (thread == NULL)
2436		return;
2437
2438	/* show wakeup unless both awakee and awaker are filtered */
2439	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2440	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2441		return;
2442	}
2443
2444	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2445	printf("%15s [%04d] ", tstr, sample->cpu);
2446	if (sched->show_cpu_visual)
2447		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2448
2449	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2450
2451	/* dt spacer */
2452	printf("  %9s  %9s  %9s ", "", "", "");
2453
2454	printf("awakened: %s", timehist_get_commstr(awakened));
2455
2456	printf("\n");
2457}
2458
2459static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2460					union perf_event *event __maybe_unused,
2461					struct evsel *evsel __maybe_unused,
2462					struct perf_sample *sample __maybe_unused,
2463					struct machine *machine __maybe_unused)
2464{
2465	return 0;
2466}
2467
2468static int timehist_sched_wakeup_event(struct perf_tool *tool,
2469				       union perf_event *event __maybe_unused,
2470				       struct evsel *evsel,
2471				       struct perf_sample *sample,
2472				       struct machine *machine)
2473{
2474	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2475	struct thread *thread;
2476	struct thread_runtime *tr = NULL;
2477	/* want pid of awakened task not pid in sample */
2478	const u32 pid = evsel__intval(evsel, sample, "pid");
2479
2480	thread = machine__findnew_thread(machine, 0, pid);
2481	if (thread == NULL)
2482		return -1;
2483
2484	tr = thread__get_runtime(thread);
2485	if (tr == NULL)
2486		return -1;
2487
2488	if (tr->ready_to_run == 0)
2489		tr->ready_to_run = sample->time;
2490
2491	/* show wakeups if requested */
2492	if (sched->show_wakeups &&
2493	    !perf_time__skip_sample(&sched->ptime, sample->time))
2494		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2495
2496	return 0;
2497}
2498
2499static void timehist_print_migration_event(struct perf_sched *sched,
2500					struct evsel *evsel,
2501					struct perf_sample *sample,
2502					struct machine *machine,
2503					struct thread *migrated)
2504{
2505	struct thread *thread;
2506	char tstr[64];
2507	u32 max_cpus;
2508	u32 ocpu, dcpu;
2509
2510	if (sched->summary_only)
2511		return;
2512
2513	max_cpus = sched->max_cpu.cpu + 1;
2514	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2515	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2516
2517	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2518	if (thread == NULL)
2519		return;
2520
2521	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2522	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2523		return;
2524	}
2525
2526	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2527	printf("%15s [%04d] ", tstr, sample->cpu);
2528
2529	if (sched->show_cpu_visual) {
2530		u32 i;
2531		char c;
2532
2533		printf("  ");
2534		for (i = 0; i < max_cpus; ++i) {
2535			c = (i == sample->cpu) ? 'm' : ' ';
2536			printf("%c", c);
2537		}
2538		printf("  ");
2539	}
2540
2541	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2542
2543	/* dt spacer */
2544	printf("  %9s  %9s  %9s ", "", "", "");
2545
2546	printf("migrated: %s", timehist_get_commstr(migrated));
2547	printf(" cpu %d => %d", ocpu, dcpu);
2548
2549	printf("\n");
2550}
2551
2552static int timehist_migrate_task_event(struct perf_tool *tool,
2553				       union perf_event *event __maybe_unused,
2554				       struct evsel *evsel,
2555				       struct perf_sample *sample,
2556				       struct machine *machine)
2557{
2558	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2559	struct thread *thread;
2560	struct thread_runtime *tr = NULL;
2561	/* want pid of migrated task not pid in sample */
2562	const u32 pid = evsel__intval(evsel, sample, "pid");
2563
2564	thread = machine__findnew_thread(machine, 0, pid);
2565	if (thread == NULL)
2566		return -1;
2567
2568	tr = thread__get_runtime(thread);
2569	if (tr == NULL)
2570		return -1;
2571
2572	tr->migrations++;
 
2573
2574	/* show migrations if requested */
2575	timehist_print_migration_event(sched, evsel, sample, machine, thread);
 
 
 
2576
2577	return 0;
2578}
2579
2580static int timehist_sched_change_event(struct perf_tool *tool,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2581				       union perf_event *event,
2582				       struct evsel *evsel,
2583				       struct perf_sample *sample,
2584				       struct machine *machine)
2585{
2586	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2587	struct perf_time_interval *ptime = &sched->ptime;
2588	struct addr_location al;
2589	struct thread *thread;
2590	struct thread_runtime *tr = NULL;
2591	u64 tprev, t = sample->time;
2592	int rc = 0;
2593	int state = evsel__intval(evsel, sample, "prev_state");
2594
2595	addr_location__init(&al);
2596	if (machine__resolve(machine, &al, sample) < 0) {
2597		pr_err("problem processing %d event. skipping it\n",
2598		       event->header.type);
2599		rc = -1;
2600		goto out;
2601	}
2602
 
 
 
2603	thread = timehist_get_thread(sched, sample, machine, evsel);
2604	if (thread == NULL) {
2605		rc = -1;
2606		goto out;
2607	}
2608
2609	if (timehist_skip_sample(sched, thread, evsel, sample))
2610		goto out;
2611
2612	tr = thread__get_runtime(thread);
2613	if (tr == NULL) {
2614		rc = -1;
2615		goto out;
2616	}
2617
2618	tprev = evsel__get_time(evsel, sample->cpu);
2619
2620	/*
2621	 * If start time given:
2622	 * - sample time is under window user cares about - skip sample
2623	 * - tprev is under window user cares about  - reset to start of window
2624	 */
2625	if (ptime->start && ptime->start > t)
2626		goto out;
2627
2628	if (tprev && ptime->start > tprev)
2629		tprev = ptime->start;
2630
2631	/*
2632	 * If end time given:
2633	 * - previous sched event is out of window - we are done
2634	 * - sample time is beyond window user cares about - reset it
2635	 *   to close out stats for time window interest
 
 
 
2636	 */
2637	if (ptime->end) {
2638		if (tprev > ptime->end)
2639			goto out;
2640
2641		if (t > ptime->end)
2642			t = ptime->end;
2643	}
2644
2645	if (!sched->idle_hist || thread__tid(thread) == 0) {
2646		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2647			timehist_update_runtime_stats(tr, t, tprev);
2648
2649		if (sched->idle_hist) {
2650			struct idle_thread_runtime *itr = (void *)tr;
2651			struct thread_runtime *last_tr;
2652
2653			BUG_ON(thread__tid(thread) != 0);
2654
2655			if (itr->last_thread == NULL)
2656				goto out;
2657
2658			/* add current idle time as last thread's runtime */
2659			last_tr = thread__get_runtime(itr->last_thread);
2660			if (last_tr == NULL)
2661				goto out;
2662
2663			timehist_update_runtime_stats(last_tr, t, tprev);
2664			/*
2665			 * remove delta time of last thread as it's not updated
2666			 * and otherwise it will show an invalid value next
2667			 * time.  we only care total run time and run stat.
2668			 */
2669			last_tr->dt_run = 0;
2670			last_tr->dt_delay = 0;
2671			last_tr->dt_sleep = 0;
2672			last_tr->dt_iowait = 0;
2673			last_tr->dt_preempt = 0;
2674
2675			if (itr->cursor.nr)
2676				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2677
2678			itr->last_thread = NULL;
2679		}
 
 
 
2680	}
2681
2682	if (!sched->summary_only)
2683		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2684
2685out:
2686	if (sched->hist_time.start == 0 && t >= ptime->start)
2687		sched->hist_time.start = t;
2688	if (ptime->end == 0 || t <= ptime->end)
2689		sched->hist_time.end = t;
2690
2691	if (tr) {
2692		/* time of this sched_switch event becomes last time task seen */
2693		tr->last_time = sample->time;
2694
2695		/* last state is used to determine where to account wait time */
2696		tr->last_state = state;
2697
2698		/* sched out event for task so reset ready to run time */
2699		tr->ready_to_run = 0;
 
 
 
 
 
2700	}
2701
2702	evsel__save_time(evsel, sample->time, sample->cpu);
2703
2704	addr_location__exit(&al);
2705	return rc;
2706}
2707
2708static int timehist_sched_switch_event(struct perf_tool *tool,
2709			     union perf_event *event,
2710			     struct evsel *evsel,
2711			     struct perf_sample *sample,
2712			     struct machine *machine __maybe_unused)
2713{
2714	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2715}
2716
2717static int process_lost(struct perf_tool *tool __maybe_unused,
2718			union perf_event *event,
2719			struct perf_sample *sample,
2720			struct machine *machine __maybe_unused)
2721{
2722	char tstr[64];
2723
2724	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2725	printf("%15s ", tstr);
2726	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2727
2728	return 0;
2729}
2730
2731
2732static void print_thread_runtime(struct thread *t,
2733				 struct thread_runtime *r)
2734{
2735	double mean = avg_stats(&r->run_stats);
2736	float stddev;
2737
2738	printf("%*s   %5d  %9" PRIu64 " ",
2739	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2740	       (u64) r->run_stats.n);
2741
2742	print_sched_time(r->total_run_time, 8);
2743	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2744	print_sched_time(r->run_stats.min, 6);
2745	printf(" ");
2746	print_sched_time((u64) mean, 6);
2747	printf(" ");
2748	print_sched_time(r->run_stats.max, 6);
2749	printf("  ");
2750	printf("%5.2f", stddev);
2751	printf("   %5" PRIu64, r->migrations);
2752	printf("\n");
2753}
2754
2755static void print_thread_waittime(struct thread *t,
2756				  struct thread_runtime *r)
2757{
2758	printf("%*s   %5d  %9" PRIu64 " ",
2759	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2760	       (u64) r->run_stats.n);
2761
2762	print_sched_time(r->total_run_time, 8);
2763	print_sched_time(r->total_sleep_time, 6);
2764	printf(" ");
2765	print_sched_time(r->total_iowait_time, 6);
2766	printf(" ");
2767	print_sched_time(r->total_preempt_time, 6);
2768	printf(" ");
2769	print_sched_time(r->total_delay_time, 6);
2770	printf("\n");
2771}
2772
2773struct total_run_stats {
2774	struct perf_sched *sched;
2775	u64  sched_count;
2776	u64  task_count;
2777	u64  total_run_time;
2778};
2779
2780static int show_thread_runtime(struct thread *t, void *priv)
2781{
2782	struct total_run_stats *stats = priv;
2783	struct thread_runtime *r;
2784
2785	if (thread__is_filtered(t))
2786		return 0;
2787
2788	r = thread__priv(t);
2789	if (r && r->run_stats.n) {
2790		stats->task_count++;
2791		stats->sched_count += r->run_stats.n;
2792		stats->total_run_time += r->total_run_time;
2793
2794		if (stats->sched->show_state)
2795			print_thread_waittime(t, r);
2796		else
2797			print_thread_runtime(t, r);
2798	}
2799
2800	return 0;
2801}
2802
2803static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2804{
2805	const char *sep = " <- ";
2806	struct callchain_list *chain;
2807	size_t ret = 0;
2808	char bf[1024];
2809	bool first;
2810
2811	if (node == NULL)
2812		return 0;
2813
2814	ret = callchain__fprintf_folded(fp, node->parent);
2815	first = (ret == 0);
2816
2817	list_for_each_entry(chain, &node->val, list) {
2818		if (chain->ip >= PERF_CONTEXT_MAX)
2819			continue;
2820		if (chain->ms.sym && chain->ms.sym->ignore)
2821			continue;
2822		ret += fprintf(fp, "%s%s", first ? "" : sep,
2823			       callchain_list__sym_name(chain, bf, sizeof(bf),
2824							false));
2825		first = false;
2826	}
2827
2828	return ret;
2829}
2830
2831static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2832{
2833	size_t ret = 0;
2834	FILE *fp = stdout;
2835	struct callchain_node *chain;
2836	struct rb_node *rb_node = rb_first_cached(root);
2837
2838	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2839	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2840	       graph_dotted_line);
2841
2842	while (rb_node) {
2843		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2844		rb_node = rb_next(rb_node);
2845
2846		ret += fprintf(fp, "  ");
2847		print_sched_time(chain->hit, 12);
2848		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2849		ret += fprintf(fp, " %8d  ", chain->count);
2850		ret += callchain__fprintf_folded(fp, chain);
2851		ret += fprintf(fp, "\n");
2852	}
2853
2854	return ret;
2855}
2856
2857static void timehist_print_summary(struct perf_sched *sched,
2858				   struct perf_session *session)
2859{
2860	struct machine *m = &session->machines.host;
2861	struct total_run_stats totals;
2862	u64 task_count;
2863	struct thread *t;
2864	struct thread_runtime *r;
2865	int i;
2866	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2867
2868	memset(&totals, 0, sizeof(totals));
2869	totals.sched = sched;
2870
2871	if (sched->idle_hist) {
2872		printf("\nIdle-time summary\n");
2873		printf("%*s  parent  sched-out  ", comm_width, "comm");
2874		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2875	} else if (sched->show_state) {
2876		printf("\nWait-time summary\n");
2877		printf("%*s  parent   sched-in  ", comm_width, "comm");
2878		printf("   run-time      sleep      iowait     preempt       delay\n");
2879	} else {
2880		printf("\nRuntime summary\n");
2881		printf("%*s  parent   sched-in  ", comm_width, "comm");
2882		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2883	}
2884	printf("%*s            (count)  ", comm_width, "");
2885	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2886	       sched->show_state ? "(msec)" : "%");
2887	printf("%.117s\n", graph_dotted_line);
2888
2889	machine__for_each_thread(m, show_thread_runtime, &totals);
2890	task_count = totals.task_count;
2891	if (!task_count)
2892		printf("<no still running tasks>\n");
2893
2894	/* CPU idle stats not tracked when samples were skipped */
2895	if (sched->skipped_samples && !sched->idle_hist)
2896		return;
2897
2898	printf("\nIdle stats:\n");
2899	for (i = 0; i < idle_max_cpu; ++i) {
2900		if (cpu_list && !test_bit(i, cpu_bitmap))
2901			continue;
2902
2903		t = idle_threads[i];
2904		if (!t)
2905			continue;
2906
2907		r = thread__priv(t);
2908		if (r && r->run_stats.n) {
2909			totals.sched_count += r->run_stats.n;
2910			printf("    CPU %2d idle for ", i);
2911			print_sched_time(r->total_run_time, 6);
2912			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2913		} else
2914			printf("    CPU %2d idle entire time window\n", i);
2915	}
2916
2917	if (sched->idle_hist && sched->show_callchain) {
2918		callchain_param.mode  = CHAIN_FOLDED;
2919		callchain_param.value = CCVAL_PERIOD;
2920
2921		callchain_register_param(&callchain_param);
2922
2923		printf("\nIdle stats by callchain:\n");
2924		for (i = 0; i < idle_max_cpu; ++i) {
2925			struct idle_thread_runtime *itr;
2926
2927			t = idle_threads[i];
2928			if (!t)
2929				continue;
2930
2931			itr = thread__priv(t);
2932			if (itr == NULL)
2933				continue;
2934
2935			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2936					     0, &callchain_param);
2937
2938			printf("  CPU %2d:", i);
2939			print_sched_time(itr->tr.total_run_time, 6);
2940			printf(" msec\n");
2941			timehist_print_idlehist_callchain(&itr->sorted_root);
2942			printf("\n");
2943		}
2944	}
2945
2946	printf("\n"
2947	       "    Total number of unique tasks: %" PRIu64 "\n"
2948	       "Total number of context switches: %" PRIu64 "\n",
2949	       totals.task_count, totals.sched_count);
2950
2951	printf("           Total run time (msec): ");
2952	print_sched_time(totals.total_run_time, 2);
2953	printf("\n");
2954
2955	printf("    Total scheduling time (msec): ");
2956	print_sched_time(hist_time, 2);
2957	printf(" (x %d)\n", sched->max_cpu.cpu);
2958}
2959
2960typedef int (*sched_handler)(struct perf_tool *tool,
2961			  union perf_event *event,
2962			  struct evsel *evsel,
2963			  struct perf_sample *sample,
2964			  struct machine *machine);
2965
2966static int perf_timehist__process_sample(struct perf_tool *tool,
2967					 union perf_event *event,
2968					 struct perf_sample *sample,
2969					 struct evsel *evsel,
2970					 struct machine *machine)
2971{
2972	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2973	int err = 0;
2974	struct perf_cpu this_cpu = {
2975		.cpu = sample->cpu,
2976	};
2977
2978	if (this_cpu.cpu > sched->max_cpu.cpu)
2979		sched->max_cpu = this_cpu;
2980
2981	if (evsel->handler != NULL) {
2982		sched_handler f = evsel->handler;
2983
2984		err = f(tool, event, evsel, sample, machine);
2985	}
2986
2987	return err;
2988}
2989
2990static int timehist_check_attr(struct perf_sched *sched,
2991			       struct evlist *evlist)
2992{
2993	struct evsel *evsel;
2994	struct evsel_runtime *er;
2995
2996	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2997		er = evsel__get_runtime(evsel);
2998		if (er == NULL) {
2999			pr_err("Failed to allocate memory for evsel runtime data\n");
3000			return -1;
3001		}
3002
3003		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
3004			pr_info("Samples do not have callchains.\n");
 
 
 
3005			sched->show_callchain = 0;
3006			symbol_conf.use_callchain = 0;
3007		}
3008	}
3009
3010	return 0;
3011}
3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3013static int perf_sched__timehist(struct perf_sched *sched)
3014{
3015	struct evsel_str_handler handlers[] = {
3016		{ "sched:sched_switch",       timehist_sched_switch_event, },
3017		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
3018		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
3019		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3020	};
3021	const struct evsel_str_handler migrate_handlers[] = {
3022		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3023	};
3024	struct perf_data data = {
3025		.path  = input_name,
3026		.mode  = PERF_DATA_MODE_READ,
3027		.force = sched->force,
3028	};
3029
3030	struct perf_session *session;
3031	struct evlist *evlist;
3032	int err = -1;
3033
3034	/*
3035	 * event handlers for timehist option
3036	 */
3037	sched->tool.sample	 = perf_timehist__process_sample;
3038	sched->tool.mmap	 = perf_event__process_mmap;
3039	sched->tool.comm	 = perf_event__process_comm;
3040	sched->tool.exit	 = perf_event__process_exit;
3041	sched->tool.fork	 = perf_event__process_fork;
3042	sched->tool.lost	 = process_lost;
3043	sched->tool.attr	 = perf_event__process_attr;
3044	sched->tool.tracing_data = perf_event__process_tracing_data;
3045	sched->tool.build_id	 = perf_event__process_build_id;
3046
3047	sched->tool.ordered_events = true;
3048	sched->tool.ordering_requires_timestamps = true;
3049
3050	symbol_conf.use_callchain = sched->show_callchain;
3051
3052	session = perf_session__new(&data, &sched->tool);
3053	if (IS_ERR(session))
3054		return PTR_ERR(session);
3055
3056	if (cpu_list) {
3057		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3058		if (err < 0)
3059			goto out;
3060	}
3061
3062	evlist = session->evlist;
3063
3064	symbol__init(&session->header.env);
3065
3066	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3067		pr_err("Invalid time string\n");
3068		return -EINVAL;
 
3069	}
3070
3071	if (timehist_check_attr(sched, evlist) != 0)
3072		goto out;
3073
 
 
 
 
 
3074	setup_pager();
3075
3076	/* prefer sched_waking if it is captured */
3077	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3078		handlers[1].handler = timehist_sched_wakeup_ignore;
3079
3080	/* setup per-evsel handlers */
3081	if (perf_session__set_tracepoints_handlers(session, handlers))
3082		goto out;
3083
3084	/* sched_switch event at a minimum needs to exist */
3085	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3086		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3087		goto out;
3088	}
3089
3090	if (sched->show_migrations &&
3091	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3092		goto out;
3093
3094	/* pre-allocate struct for per-CPU idle stats */
3095	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3096	if (sched->max_cpu.cpu == 0)
3097		sched->max_cpu.cpu = 4;
3098	if (init_idle_threads(sched->max_cpu.cpu))
3099		goto out;
3100
3101	/* summary_only implies summary option, but don't overwrite summary if set */
3102	if (sched->summary_only)
3103		sched->summary = sched->summary_only;
3104
3105	if (!sched->summary_only)
3106		timehist_header(sched);
3107
3108	err = perf_session__process_events(session);
3109	if (err) {
3110		pr_err("Failed to process events, error %d", err);
3111		goto out;
3112	}
3113
3114	sched->nr_events      = evlist->stats.nr_events[0];
3115	sched->nr_lost_events = evlist->stats.total_lost;
3116	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3117
3118	if (sched->summary)
3119		timehist_print_summary(sched, session);
3120
3121out:
3122	free_idle_threads();
3123	perf_session__delete(session);
3124
3125	return err;
3126}
3127
3128
3129static void print_bad_events(struct perf_sched *sched)
3130{
3131	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3132		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3133			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3134			sched->nr_unordered_timestamps, sched->nr_timestamps);
3135	}
3136	if (sched->nr_lost_events && sched->nr_events) {
3137		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3138			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3139			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3140	}
3141	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3142		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3143			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3144			sched->nr_context_switch_bugs, sched->nr_timestamps);
3145		if (sched->nr_lost_events)
3146			printf(" (due to lost events?)");
3147		printf("\n");
3148	}
3149}
3150
3151static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3152{
3153	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3154	struct work_atoms *this;
3155	const char *comm = thread__comm_str(data->thread), *this_comm;
3156	bool leftmost = true;
3157
3158	while (*new) {
3159		int cmp;
3160
3161		this = container_of(*new, struct work_atoms, node);
3162		parent = *new;
3163
3164		this_comm = thread__comm_str(this->thread);
3165		cmp = strcmp(comm, this_comm);
3166		if (cmp > 0) {
3167			new = &((*new)->rb_left);
3168		} else if (cmp < 0) {
3169			new = &((*new)->rb_right);
3170			leftmost = false;
3171		} else {
3172			this->num_merged++;
3173			this->total_runtime += data->total_runtime;
3174			this->nb_atoms += data->nb_atoms;
3175			this->total_lat += data->total_lat;
3176			list_splice(&data->work_list, &this->work_list);
3177			if (this->max_lat < data->max_lat) {
3178				this->max_lat = data->max_lat;
3179				this->max_lat_start = data->max_lat_start;
3180				this->max_lat_end = data->max_lat_end;
3181			}
3182			zfree(&data);
3183			return;
3184		}
3185	}
3186
3187	data->num_merged++;
3188	rb_link_node(&data->node, parent, new);
3189	rb_insert_color_cached(&data->node, root, leftmost);
3190}
3191
3192static void perf_sched__merge_lat(struct perf_sched *sched)
3193{
3194	struct work_atoms *data;
3195	struct rb_node *node;
3196
3197	if (sched->skip_merge)
3198		return;
3199
3200	while ((node = rb_first_cached(&sched->atom_root))) {
3201		rb_erase_cached(node, &sched->atom_root);
3202		data = rb_entry(node, struct work_atoms, node);
3203		__merge_work_atoms(&sched->merged_atom_root, data);
3204	}
3205}
3206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3207static int perf_sched__lat(struct perf_sched *sched)
3208{
 
3209	struct rb_node *next;
3210
3211	setup_pager();
3212
 
 
 
3213	if (perf_sched__read_events(sched))
3214		return -1;
3215
3216	perf_sched__merge_lat(sched);
3217	perf_sched__sort_lat(sched);
3218
3219	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3220	printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3221	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3222
3223	next = rb_first_cached(&sched->sorted_atom_root);
3224
3225	while (next) {
3226		struct work_atoms *work_list;
3227
3228		work_list = rb_entry(next, struct work_atoms, node);
3229		output_lat_thread(sched, work_list);
3230		next = rb_next(next);
3231		thread__zput(work_list->thread);
3232	}
3233
3234	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3235	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3236		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3237
3238	printf(" ---------------------------------------------------\n");
3239
3240	print_bad_events(sched);
3241	printf("\n");
3242
3243	return 0;
 
 
 
 
3244}
3245
3246static int setup_map_cpus(struct perf_sched *sched)
3247{
3248	struct perf_cpu_map *map;
3249
3250	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3251
3252	if (sched->map.comp) {
3253		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3254		if (!sched->map.comp_cpus)
3255			return -1;
3256	}
3257
3258	if (!sched->map.cpus_str)
3259		return 0;
3260
3261	map = perf_cpu_map__new(sched->map.cpus_str);
3262	if (!map) {
3263		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3264		return -1;
3265	}
3266
3267	sched->map.cpus = map;
3268	return 0;
3269}
3270
3271static int setup_color_pids(struct perf_sched *sched)
3272{
3273	struct perf_thread_map *map;
3274
3275	if (!sched->map.color_pids_str)
3276		return 0;
3277
3278	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3279	if (!map) {
3280		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3281		return -1;
3282	}
3283
3284	sched->map.color_pids = map;
3285	return 0;
3286}
3287
3288static int setup_color_cpus(struct perf_sched *sched)
3289{
3290	struct perf_cpu_map *map;
3291
3292	if (!sched->map.color_cpus_str)
3293		return 0;
3294
3295	map = perf_cpu_map__new(sched->map.color_cpus_str);
3296	if (!map) {
3297		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3298		return -1;
3299	}
3300
3301	sched->map.color_cpus = map;
3302	return 0;
3303}
3304
3305static int perf_sched__map(struct perf_sched *sched)
3306{
 
 
 
 
 
 
 
 
 
 
 
 
 
3307	if (setup_map_cpus(sched))
3308		return -1;
3309
3310	if (setup_color_pids(sched))
3311		return -1;
3312
3313	if (setup_color_cpus(sched))
3314		return -1;
3315
3316	setup_pager();
3317	if (perf_sched__read_events(sched))
3318		return -1;
 
 
3319	print_bad_events(sched);
3320	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3321}
3322
3323static int perf_sched__replay(struct perf_sched *sched)
3324{
 
3325	unsigned long i;
3326
 
 
 
 
 
 
 
3327	calibrate_run_measurement_overhead(sched);
3328	calibrate_sleep_measurement_overhead(sched);
3329
3330	test_calibrations(sched);
3331
3332	if (perf_sched__read_events(sched))
3333		return -1;
 
3334
3335	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3336	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3337	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3338
3339	if (sched->targetless_wakeups)
3340		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3341	if (sched->multitarget_wakeups)
3342		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3343	if (sched->nr_run_events_optimized)
3344		printf("run atoms optimized: %ld\n",
3345			sched->nr_run_events_optimized);
3346
3347	print_task_traces(sched);
3348	add_cross_task_wakeups(sched);
3349
3350	sched->thread_funcs_exit = false;
3351	create_tasks(sched);
3352	printf("------------------------------------------------------------\n");
 
 
 
3353	for (i = 0; i < sched->replay_repeat; i++)
3354		run_one_test(sched);
3355
3356	sched->thread_funcs_exit = true;
3357	destroy_tasks(sched);
3358	return 0;
 
 
 
 
 
 
 
3359}
3360
3361static void setup_sorting(struct perf_sched *sched, const struct option *options,
3362			  const char * const usage_msg[])
3363{
3364	char *tmp, *tok, *str = strdup(sched->sort_order);
3365
3366	for (tok = strtok_r(str, ", ", &tmp);
3367			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3368		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3369			usage_with_options_msg(usage_msg, options,
3370					"Unknown --sort key: `%s'", tok);
3371		}
3372	}
3373
3374	free(str);
3375
3376	sort_dimension__add("pid", &sched->cmp_pid);
3377}
3378
3379static bool schedstat_events_exposed(void)
3380{
3381	/*
3382	 * Select "sched:sched_stat_wait" event to check
3383	 * whether schedstat tracepoints are exposed.
3384	 */
3385	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3386		false : true;
3387}
3388
3389static int __cmd_record(int argc, const char **argv)
3390{
3391	unsigned int rec_argc, i, j;
3392	char **rec_argv;
3393	const char **rec_argv_copy;
3394	const char * const record_args[] = {
3395		"record",
3396		"-a",
3397		"-R",
3398		"-m", "1024",
3399		"-c", "1",
3400		"-e", "sched:sched_switch",
3401		"-e", "sched:sched_stat_runtime",
3402		"-e", "sched:sched_process_fork",
3403		"-e", "sched:sched_wakeup_new",
3404		"-e", "sched:sched_migrate_task",
3405	};
3406
3407	/*
3408	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3409	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3410	 * to prevent "perf sched record" execution failure, determine
3411	 * whether to record schedstat events according to actual situation.
3412	 */
3413	const char * const schedstat_args[] = {
3414		"-e", "sched:sched_stat_wait",
3415		"-e", "sched:sched_stat_sleep",
3416		"-e", "sched:sched_stat_iowait",
3417	};
3418	unsigned int schedstat_argc = schedstat_events_exposed() ?
3419		ARRAY_SIZE(schedstat_args) : 0;
3420
3421	struct tep_event *waking_event;
3422	int ret;
3423
3424	/*
3425	 * +2 for either "-e", "sched:sched_wakeup" or
3426	 * "-e", "sched:sched_waking"
3427	 */
3428	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3429	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3430	if (rec_argv == NULL)
3431		return -ENOMEM;
3432	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3433	if (rec_argv_copy == NULL) {
3434		free(rec_argv);
3435		return -ENOMEM;
3436	}
3437
3438	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3439		rec_argv[i] = strdup(record_args[i]);
3440
3441	rec_argv[i++] = strdup("-e");
3442	waking_event = trace_event__tp_format("sched", "sched_waking");
3443	if (!IS_ERR(waking_event))
3444		rec_argv[i++] = strdup("sched:sched_waking");
3445	else
3446		rec_argv[i++] = strdup("sched:sched_wakeup");
3447
3448	for (j = 0; j < schedstat_argc; j++)
3449		rec_argv[i++] = strdup(schedstat_args[j]);
3450
3451	for (j = 1; j < (unsigned int)argc; j++, i++)
3452		rec_argv[i] = strdup(argv[j]);
3453
3454	BUG_ON(i != rec_argc);
3455
3456	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3457	ret = cmd_record(rec_argc, rec_argv_copy);
3458
3459	for (i = 0; i < rec_argc; i++)
3460		free(rec_argv[i]);
3461	free(rec_argv);
3462	free(rec_argv_copy);
3463
3464	return ret;
3465}
3466
3467int cmd_sched(int argc, const char **argv)
3468{
3469	static const char default_sort_order[] = "avg, max, switch, runtime";
3470	struct perf_sched sched = {
3471		.tool = {
3472			.sample		 = perf_sched__process_tracepoint_sample,
3473			.comm		 = perf_sched__process_comm,
3474			.namespaces	 = perf_event__process_namespaces,
3475			.lost		 = perf_event__process_lost,
3476			.fork		 = perf_sched__process_fork_event,
3477			.ordered_events = true,
3478		},
3479		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3480		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3481		.sort_order	      = default_sort_order,
3482		.replay_repeat	      = 10,
3483		.profile_cpu	      = -1,
3484		.next_shortname1      = 'A',
3485		.next_shortname2      = '0',
3486		.skip_merge           = 0,
3487		.show_callchain	      = 1,
3488		.max_stack            = 5,
3489	};
3490	const struct option sched_options[] = {
3491	OPT_STRING('i', "input", &input_name, "file",
3492		    "input file name"),
3493	OPT_INCR('v', "verbose", &verbose,
3494		    "be more verbose (show symbol address, etc)"),
3495	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3496		    "dump raw trace in ASCII"),
3497	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3498	OPT_END()
3499	};
3500	const struct option latency_options[] = {
3501	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3502		   "sort by key(s): runtime, switch, avg, max"),
3503	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3504		    "CPU to profile on"),
3505	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3506		    "latency stats per pid instead of per comm"),
3507	OPT_PARENT(sched_options)
3508	};
3509	const struct option replay_options[] = {
3510	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3511		     "repeat the workload replay N times (-1: infinite)"),
3512	OPT_PARENT(sched_options)
3513	};
3514	const struct option map_options[] = {
3515	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3516		    "map output in compact mode"),
3517	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3518		   "highlight given pids in map"),
3519	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3520                    "highlight given CPUs in map"),
3521	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3522                    "display given CPUs in map"),
 
 
 
 
3523	OPT_PARENT(sched_options)
3524	};
3525	const struct option timehist_options[] = {
3526	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3527		   "file", "vmlinux pathname"),
3528	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3529		   "file", "kallsyms pathname"),
3530	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3531		    "Display call chains if present (default on)"),
3532	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3533		   "Maximum number of functions to display backtrace."),
3534	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3535		    "Look for files with symbols relative to this directory"),
3536	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3537		    "Show only syscall summary with statistics"),
3538	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3539		    "Show all syscalls and summary with statistics"),
3540	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3541	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3542	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3543	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3544	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3545	OPT_STRING(0, "time", &sched.time_str, "str",
3546		   "Time span for analysis (start,stop)"),
3547	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3548	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3549		   "analyze events only for given process id(s)"),
3550	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3551		   "analyze events only for given thread id(s)"),
3552	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
 
 
 
 
3553	OPT_PARENT(sched_options)
3554	};
3555
3556	const char * const latency_usage[] = {
3557		"perf sched latency [<options>]",
3558		NULL
3559	};
3560	const char * const replay_usage[] = {
3561		"perf sched replay [<options>]",
3562		NULL
3563	};
3564	const char * const map_usage[] = {
3565		"perf sched map [<options>]",
3566		NULL
3567	};
3568	const char * const timehist_usage[] = {
3569		"perf sched timehist [<options>]",
3570		NULL
3571	};
3572	const char *const sched_subcommands[] = { "record", "latency", "map",
3573						  "replay", "script",
3574						  "timehist", NULL };
3575	const char *sched_usage[] = {
3576		NULL,
3577		NULL
3578	};
3579	struct trace_sched_handler lat_ops  = {
3580		.wakeup_event	    = latency_wakeup_event,
3581		.switch_event	    = latency_switch_event,
3582		.runtime_event	    = latency_runtime_event,
3583		.migrate_task_event = latency_migrate_task_event,
3584	};
3585	struct trace_sched_handler map_ops  = {
3586		.switch_event	    = map_switch_event,
3587	};
3588	struct trace_sched_handler replay_ops  = {
3589		.wakeup_event	    = replay_wakeup_event,
3590		.switch_event	    = replay_switch_event,
3591		.fork_event	    = replay_fork_event,
3592	};
3593	unsigned int i;
3594	int ret = 0;
3595
3596	mutex_init(&sched.start_work_mutex);
3597	mutex_init(&sched.work_done_wait_mutex);
3598	sched.curr_thread = calloc(MAX_CPUS, sizeof(*sched.curr_thread));
3599	if (!sched.curr_thread) {
3600		ret = -ENOMEM;
3601		goto out;
3602	}
3603	sched.cpu_last_switched = calloc(MAX_CPUS, sizeof(*sched.cpu_last_switched));
3604	if (!sched.cpu_last_switched) {
3605		ret = -ENOMEM;
3606		goto out;
3607	}
3608	sched.curr_pid = malloc(MAX_CPUS * sizeof(*sched.curr_pid));
3609	if (!sched.curr_pid) {
3610		ret = -ENOMEM;
3611		goto out;
3612	}
3613	for (i = 0; i < MAX_CPUS; i++)
3614		sched.curr_pid[i] = -1;
3615
3616	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3617					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3618	if (!argc)
3619		usage_with_options(sched_usage, sched_options);
3620
3621	/*
3622	 * Aliased to 'perf script' for now:
3623	 */
3624	if (!strcmp(argv[0], "script")) {
3625		ret = cmd_script(argc, argv);
3626	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3627		ret = __cmd_record(argc, argv);
3628	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3629		sched.tp_handler = &lat_ops;
3630		if (argc > 1) {
3631			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3632			if (argc)
3633				usage_with_options(latency_usage, latency_options);
3634		}
3635		setup_sorting(&sched, latency_options, latency_usage);
3636		ret = perf_sched__lat(&sched);
3637	} else if (!strcmp(argv[0], "map")) {
3638		if (argc) {
3639			argc = parse_options(argc, argv, map_options, map_usage, 0);
3640			if (argc)
3641				usage_with_options(map_usage, map_options);
 
 
 
 
 
 
 
 
3642		}
3643		sched.tp_handler = &map_ops;
3644		setup_sorting(&sched, latency_options, latency_usage);
3645		ret = perf_sched__map(&sched);
3646	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3647		sched.tp_handler = &replay_ops;
3648		if (argc) {
3649			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3650			if (argc)
3651				usage_with_options(replay_usage, replay_options);
3652		}
3653		ret = perf_sched__replay(&sched);
3654	} else if (!strcmp(argv[0], "timehist")) {
3655		if (argc) {
3656			argc = parse_options(argc, argv, timehist_options,
3657					     timehist_usage, 0);
3658			if (argc)
3659				usage_with_options(timehist_usage, timehist_options);
3660		}
3661		if ((sched.show_wakeups || sched.show_next) &&
3662		    sched.summary_only) {
3663			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3664			parse_options_usage(timehist_usage, timehist_options, "s", true);
3665			if (sched.show_wakeups)
3666				parse_options_usage(NULL, timehist_options, "w", true);
3667			if (sched.show_next)
3668				parse_options_usage(NULL, timehist_options, "n", true);
3669			ret = -EINVAL;
3670			goto out;
3671		}
3672		ret = symbol__validate_sym_arguments();
3673		if (ret)
3674			goto out;
3675
3676		ret = perf_sched__timehist(&sched);
3677	} else {
3678		usage_with_options(sched_usage, sched_options);
3679	}
3680
3681out:
3682	free(sched.curr_pid);
3683	free(sched.cpu_last_switched);
3684	free(sched.curr_thread);
3685	mutex_destroy(&sched.start_work_mutex);
3686	mutex_destroy(&sched.work_done_wait_mutex);
3687
3688	return ret;
3689}