Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2
  3//! Crate for all kernel procedural macros.
  4
  5// When fixdep scans this, it will find this string `CONFIG_RUSTC_VERSION_TEXT`
  6// and thus add a dependency on `include/config/RUSTC_VERSION_TEXT`, which is
  7// touched by Kconfig when the version string from the compiler changes.
  8
  9#[macro_use]
 10mod quote;
 11mod concat_idents;
 12mod helpers;
 13mod module;
 14mod paste;
 15mod pin_data;
 16mod pinned_drop;
 17mod vtable;
 18mod zeroable;
 19
 20use proc_macro::TokenStream;
 21
 22/// Declares a kernel module.
 23///
 24/// The `type` argument should be a type which implements the [`Module`]
 25/// trait. Also accepts various forms of kernel metadata.
 26///
 27/// C header: [`include/linux/moduleparam.h`](srctree/include/linux/moduleparam.h)
 28///
 29/// [`Module`]: ../kernel/trait.Module.html
 30///
 31/// # Examples
 32///
 33/// ```
 34/// use kernel::prelude::*;
 35///
 36/// module!{
 37///     type: MyModule,
 38///     name: "my_kernel_module",
 39///     author: "Rust for Linux Contributors",
 40///     description: "My very own kernel module!",
 41///     license: "GPL",
 42///     alias: ["alternate_module_name"],
 
 
 
 
 
 
 
 
 
 
 
 43/// }
 44///
 45/// struct MyModule(i32);
 46///
 47/// impl kernel::Module for MyModule {
 48///     fn init(_module: &'static ThisModule) -> Result<Self> {
 49///         let foo: i32 = 42;
 50///         pr_info!("I contain:  {}\n", foo);
 51///         Ok(Self(foo))
 52///     }
 53/// }
 54/// # fn main() {}
 55/// ```
 56///
 57/// ## Firmware
 58///
 59/// The following example shows how to declare a kernel module that needs
 60/// to load binary firmware files. You need to specify the file names of
 61/// the firmware in the `firmware` field. The information is embedded
 62/// in the `modinfo` section of the kernel module. For example, a tool to
 63/// build an initramfs uses this information to put the firmware files into
 64/// the initramfs image.
 65///
 66/// ```
 67/// use kernel::prelude::*;
 68///
 69/// module!{
 70///     type: MyDeviceDriverModule,
 71///     name: "my_device_driver_module",
 72///     author: "Rust for Linux Contributors",
 73///     description: "My device driver requires firmware",
 74///     license: "GPL",
 75///     firmware: ["my_device_firmware1.bin", "my_device_firmware2.bin"],
 76/// }
 77///
 78/// struct MyDeviceDriverModule;
 79///
 80/// impl kernel::Module for MyDeviceDriverModule {
 81///     fn init(_module: &'static ThisModule) -> Result<Self> {
 82///         Ok(Self)
 83///     }
 84/// }
 85/// # fn main() {}
 86/// ```
 87///
 88/// # Supported argument types
 89///   - `type`: type which implements the [`Module`] trait (required).
 90///   - `name`: ASCII string literal of the name of the kernel module (required).
 91///   - `author`: string literal of the author of the kernel module.
 92///   - `description`: string literal of the description of the kernel module.
 93///   - `license`: ASCII string literal of the license of the kernel module (required).
 94///   - `alias`: array of ASCII string literals of the alias names of the kernel module.
 95///   - `firmware`: array of ASCII string literals of the firmware files of
 96///     the kernel module.
 97#[proc_macro]
 98pub fn module(ts: TokenStream) -> TokenStream {
 99    module::module(ts)
100}
101
102/// Declares or implements a vtable trait.
103///
104/// Linux's use of pure vtables is very close to Rust traits, but they differ
105/// in how unimplemented functions are represented. In Rust, traits can provide
106/// default implementation for all non-required methods (and the default
107/// implementation could just return `Error::EINVAL`); Linux typically use C
108/// `NULL` pointers to represent these functions.
109///
110/// This attribute closes that gap. A trait can be annotated with the
111/// `#[vtable]` attribute. Implementers of the trait will then also have to
112/// annotate the trait with `#[vtable]`. This attribute generates a `HAS_*`
113/// associated constant bool for each method in the trait that is set to true if
114/// the implementer has overridden the associated method.
115///
116/// For a trait method to be optional, it must have a default implementation.
117/// This is also the case for traits annotated with `#[vtable]`, but in this
118/// case the default implementation will never be executed. The reason for this
119/// is that the functions will be called through function pointers installed in
120/// C side vtables. When an optional method is not implemented on a `#[vtable]`
121/// trait, a NULL entry is installed in the vtable. Thus the default
122/// implementation is never called. Since these traits are not designed to be
123/// used on the Rust side, it should not be possible to call the default
124/// implementation. This is done to ensure that we call the vtable methods
125/// through the C vtable, and not through the Rust vtable. Therefore, the
126/// default implementation should call `kernel::build_error`, which prevents
127/// calls to this function at compile time:
128///
129/// ```compile_fail
130/// # // Intentionally missing `use`s to simplify `rusttest`.
131/// kernel::build_error(VTABLE_DEFAULT_ERROR)
132/// ```
133///
134/// Note that you might need to import [`kernel::error::VTABLE_DEFAULT_ERROR`].
135///
136/// This macro should not be used when all functions are required.
137///
138/// # Examples
139///
140/// ```
141/// use kernel::error::VTABLE_DEFAULT_ERROR;
142/// use kernel::prelude::*;
143///
144/// // Declares a `#[vtable]` trait
145/// #[vtable]
146/// pub trait Operations: Send + Sync + Sized {
147///     fn foo(&self) -> Result<()> {
148///         kernel::build_error(VTABLE_DEFAULT_ERROR)
149///     }
150///
151///     fn bar(&self) -> Result<()> {
152///         kernel::build_error(VTABLE_DEFAULT_ERROR)
153///     }
154/// }
155///
156/// struct Foo;
157///
158/// // Implements the `#[vtable]` trait
159/// #[vtable]
160/// impl Operations for Foo {
161///     fn foo(&self) -> Result<()> {
162/// #        Err(EINVAL)
163///         // ...
164///     }
165/// }
166///
167/// assert_eq!(<Foo as Operations>::HAS_FOO, true);
168/// assert_eq!(<Foo as Operations>::HAS_BAR, false);
169/// ```
170///
171/// [`kernel::error::VTABLE_DEFAULT_ERROR`]: ../kernel/error/constant.VTABLE_DEFAULT_ERROR.html
172#[proc_macro_attribute]
173pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream {
174    vtable::vtable(attr, ts)
175}
176
177/// Concatenate two identifiers.
178///
179/// This is useful in macros that need to declare or reference items with names
180/// starting with a fixed prefix and ending in a user specified name. The resulting
181/// identifier has the span of the second argument.
182///
183/// # Examples
184///
185/// ```
186/// # const binder_driver_return_protocol_BR_OK: u32 = 0;
187/// # const binder_driver_return_protocol_BR_ERROR: u32 = 1;
188/// # const binder_driver_return_protocol_BR_TRANSACTION: u32 = 2;
189/// # const binder_driver_return_protocol_BR_REPLY: u32 = 3;
190/// # const binder_driver_return_protocol_BR_DEAD_REPLY: u32 = 4;
191/// # const binder_driver_return_protocol_BR_TRANSACTION_COMPLETE: u32 = 5;
192/// # const binder_driver_return_protocol_BR_INCREFS: u32 = 6;
193/// # const binder_driver_return_protocol_BR_ACQUIRE: u32 = 7;
194/// # const binder_driver_return_protocol_BR_RELEASE: u32 = 8;
195/// # const binder_driver_return_protocol_BR_DECREFS: u32 = 9;
196/// # const binder_driver_return_protocol_BR_NOOP: u32 = 10;
197/// # const binder_driver_return_protocol_BR_SPAWN_LOOPER: u32 = 11;
198/// # const binder_driver_return_protocol_BR_DEAD_BINDER: u32 = 12;
199/// # const binder_driver_return_protocol_BR_CLEAR_DEATH_NOTIFICATION_DONE: u32 = 13;
200/// # const binder_driver_return_protocol_BR_FAILED_REPLY: u32 = 14;
201/// use kernel::macros::concat_idents;
202///
203/// macro_rules! pub_no_prefix {
204///     ($prefix:ident, $($newname:ident),+) => {
205///         $(pub(crate) const $newname: u32 = concat_idents!($prefix, $newname);)+
206///     };
207/// }
208///
209/// pub_no_prefix!(
210///     binder_driver_return_protocol_,
211///     BR_OK,
212///     BR_ERROR,
213///     BR_TRANSACTION,
214///     BR_REPLY,
215///     BR_DEAD_REPLY,
216///     BR_TRANSACTION_COMPLETE,
217///     BR_INCREFS,
218///     BR_ACQUIRE,
219///     BR_RELEASE,
220///     BR_DECREFS,
221///     BR_NOOP,
222///     BR_SPAWN_LOOPER,
223///     BR_DEAD_BINDER,
224///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
225///     BR_FAILED_REPLY
226/// );
227///
228/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
229/// ```
230#[proc_macro]
231pub fn concat_idents(ts: TokenStream) -> TokenStream {
232    concat_idents::concat_idents(ts)
233}
234
235/// Used to specify the pinning information of the fields of a struct.
236///
237/// This is somewhat similar in purpose as
238/// [pin-project-lite](https://crates.io/crates/pin-project-lite).
239/// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
240/// field you want to structurally pin.
241///
242/// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
243/// then `#[pin]` directs the type of initializer that is required.
244///
245/// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
246/// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
247/// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
248///
249/// # Examples
250///
251/// ```
252/// # #![feature(lint_reasons)]
253/// # use kernel::prelude::*;
254/// # use std::{sync::Mutex, process::Command};
255/// # use kernel::macros::pin_data;
256/// #[pin_data]
257/// struct DriverData {
258///     #[pin]
259///     queue: Mutex<KVec<Command>>,
260///     buf: KBox<[u8; 1024 * 1024]>,
261/// }
262/// ```
263///
264/// ```
265/// # #![feature(lint_reasons)]
266/// # use kernel::prelude::*;
267/// # use std::{sync::Mutex, process::Command};
268/// # use core::pin::Pin;
269/// # pub struct Info;
270/// # mod bindings {
271/// #     pub unsafe fn destroy_info(_ptr: *mut super::Info) {}
272/// # }
273/// use kernel::macros::{pin_data, pinned_drop};
274///
275/// #[pin_data(PinnedDrop)]
276/// struct DriverData {
277///     #[pin]
278///     queue: Mutex<KVec<Command>>,
279///     buf: KBox<[u8; 1024 * 1024]>,
280///     raw_info: *mut Info,
281/// }
282///
283/// #[pinned_drop]
284/// impl PinnedDrop for DriverData {
285///     fn drop(self: Pin<&mut Self>) {
286///         unsafe { bindings::destroy_info(self.raw_info) };
287///     }
288/// }
289/// # fn main() {}
290/// ```
291///
292/// [`pin_init!`]: ../kernel/macro.pin_init.html
293//  ^ cannot use direct link, since `kernel` is not a dependency of `macros`.
294#[proc_macro_attribute]
295pub fn pin_data(inner: TokenStream, item: TokenStream) -> TokenStream {
296    pin_data::pin_data(inner, item)
297}
298
299/// Used to implement `PinnedDrop` safely.
300///
301/// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
302///
303/// # Examples
304///
305/// ```
306/// # #![feature(lint_reasons)]
307/// # use kernel::prelude::*;
308/// # use macros::{pin_data, pinned_drop};
309/// # use std::{sync::Mutex, process::Command};
310/// # use core::pin::Pin;
311/// # mod bindings {
312/// #     pub struct Info;
313/// #     pub unsafe fn destroy_info(_ptr: *mut Info) {}
314/// # }
315/// #[pin_data(PinnedDrop)]
316/// struct DriverData {
317///     #[pin]
318///     queue: Mutex<KVec<Command>>,
319///     buf: KBox<[u8; 1024 * 1024]>,
320///     raw_info: *mut bindings::Info,
321/// }
322///
323/// #[pinned_drop]
324/// impl PinnedDrop for DriverData {
325///     fn drop(self: Pin<&mut Self>) {
326///         unsafe { bindings::destroy_info(self.raw_info) };
327///     }
328/// }
329/// ```
330#[proc_macro_attribute]
331pub fn pinned_drop(args: TokenStream, input: TokenStream) -> TokenStream {
332    pinned_drop::pinned_drop(args, input)
333}
334
335/// Paste identifiers together.
336///
337/// Within the `paste!` macro, identifiers inside `[<` and `>]` are concatenated together to form a
338/// single identifier.
339///
340/// This is similar to the [`paste`] crate, but with pasting feature limited to identifiers and
341/// literals (lifetimes and documentation strings are not supported). There is a difference in
342/// supported modifiers as well.
343///
344/// # Example
345///
346/// ```
347/// # const binder_driver_return_protocol_BR_OK: u32 = 0;
348/// # const binder_driver_return_protocol_BR_ERROR: u32 = 1;
349/// # const binder_driver_return_protocol_BR_TRANSACTION: u32 = 2;
350/// # const binder_driver_return_protocol_BR_REPLY: u32 = 3;
351/// # const binder_driver_return_protocol_BR_DEAD_REPLY: u32 = 4;
352/// # const binder_driver_return_protocol_BR_TRANSACTION_COMPLETE: u32 = 5;
353/// # const binder_driver_return_protocol_BR_INCREFS: u32 = 6;
354/// # const binder_driver_return_protocol_BR_ACQUIRE: u32 = 7;
355/// # const binder_driver_return_protocol_BR_RELEASE: u32 = 8;
356/// # const binder_driver_return_protocol_BR_DECREFS: u32 = 9;
357/// # const binder_driver_return_protocol_BR_NOOP: u32 = 10;
358/// # const binder_driver_return_protocol_BR_SPAWN_LOOPER: u32 = 11;
359/// # const binder_driver_return_protocol_BR_DEAD_BINDER: u32 = 12;
360/// # const binder_driver_return_protocol_BR_CLEAR_DEATH_NOTIFICATION_DONE: u32 = 13;
361/// # const binder_driver_return_protocol_BR_FAILED_REPLY: u32 = 14;
362/// macro_rules! pub_no_prefix {
363///     ($prefix:ident, $($newname:ident),+) => {
364///         kernel::macros::paste! {
365///             $(pub(crate) const $newname: u32 = [<$prefix $newname>];)+
366///         }
367///     };
368/// }
369///
370/// pub_no_prefix!(
371///     binder_driver_return_protocol_,
372///     BR_OK,
373///     BR_ERROR,
374///     BR_TRANSACTION,
375///     BR_REPLY,
376///     BR_DEAD_REPLY,
377///     BR_TRANSACTION_COMPLETE,
378///     BR_INCREFS,
379///     BR_ACQUIRE,
380///     BR_RELEASE,
381///     BR_DECREFS,
382///     BR_NOOP,
383///     BR_SPAWN_LOOPER,
384///     BR_DEAD_BINDER,
385///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
386///     BR_FAILED_REPLY
387/// );
388///
389/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
390/// ```
391///
392/// # Modifiers
393///
394/// For each identifier, it is possible to attach one or multiple modifiers to
395/// it.
396///
397/// Currently supported modifiers are:
398/// * `span`: change the span of concatenated identifier to the span of the specified token. By
399///   default the span of the `[< >]` group is used.
400/// * `lower`: change the identifier to lower case.
401/// * `upper`: change the identifier to upper case.
402///
403/// ```
404/// # const binder_driver_return_protocol_BR_OK: u32 = 0;
405/// # const binder_driver_return_protocol_BR_ERROR: u32 = 1;
406/// # const binder_driver_return_protocol_BR_TRANSACTION: u32 = 2;
407/// # const binder_driver_return_protocol_BR_REPLY: u32 = 3;
408/// # const binder_driver_return_protocol_BR_DEAD_REPLY: u32 = 4;
409/// # const binder_driver_return_protocol_BR_TRANSACTION_COMPLETE: u32 = 5;
410/// # const binder_driver_return_protocol_BR_INCREFS: u32 = 6;
411/// # const binder_driver_return_protocol_BR_ACQUIRE: u32 = 7;
412/// # const binder_driver_return_protocol_BR_RELEASE: u32 = 8;
413/// # const binder_driver_return_protocol_BR_DECREFS: u32 = 9;
414/// # const binder_driver_return_protocol_BR_NOOP: u32 = 10;
415/// # const binder_driver_return_protocol_BR_SPAWN_LOOPER: u32 = 11;
416/// # const binder_driver_return_protocol_BR_DEAD_BINDER: u32 = 12;
417/// # const binder_driver_return_protocol_BR_CLEAR_DEATH_NOTIFICATION_DONE: u32 = 13;
418/// # const binder_driver_return_protocol_BR_FAILED_REPLY: u32 = 14;
419/// macro_rules! pub_no_prefix {
420///     ($prefix:ident, $($newname:ident),+) => {
421///         kernel::macros::paste! {
422///             $(pub(crate) const fn [<$newname:lower:span>]() -> u32 { [<$prefix $newname:span>] })+
423///         }
424///     };
425/// }
426///
427/// pub_no_prefix!(
428///     binder_driver_return_protocol_,
429///     BR_OK,
430///     BR_ERROR,
431///     BR_TRANSACTION,
432///     BR_REPLY,
433///     BR_DEAD_REPLY,
434///     BR_TRANSACTION_COMPLETE,
435///     BR_INCREFS,
436///     BR_ACQUIRE,
437///     BR_RELEASE,
438///     BR_DECREFS,
439///     BR_NOOP,
440///     BR_SPAWN_LOOPER,
441///     BR_DEAD_BINDER,
442///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
443///     BR_FAILED_REPLY
444/// );
445///
446/// assert_eq!(br_ok(), binder_driver_return_protocol_BR_OK);
447/// ```
448///
449/// # Literals
450///
451/// Literals can also be concatenated with other identifiers:
452///
453/// ```
454/// macro_rules! create_numbered_fn {
455///     ($name:literal, $val:literal) => {
456///         kernel::macros::paste! {
457///             fn [<some_ $name _fn $val>]() -> u32 { $val }
458///         }
459///     };
460/// }
461///
462/// create_numbered_fn!("foo", 100);
463///
464/// assert_eq!(some_foo_fn100(), 100)
465/// ```
466///
467/// [`paste`]: https://docs.rs/paste/
468#[proc_macro]
469pub fn paste(input: TokenStream) -> TokenStream {
470    let mut tokens = input.into_iter().collect();
471    paste::expand(&mut tokens);
472    tokens.into_iter().collect()
473}
474
475/// Derives the [`Zeroable`] trait for the given struct.
476///
477/// This can only be used for structs where every field implements the [`Zeroable`] trait.
478///
479/// # Examples
480///
481/// ```
482/// use kernel::macros::Zeroable;
483///
484/// #[derive(Zeroable)]
485/// pub struct DriverData {
486///     id: i64,
487///     buf_ptr: *mut u8,
488///     len: usize,
489/// }
490/// ```
491#[proc_macro_derive(Zeroable)]
492pub fn derive_zeroable(input: TokenStream) -> TokenStream {
493    zeroable::derive(input)
494}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2
  3//! Crate for all kernel procedural macros.
  4
 
 
 
 
  5#[macro_use]
  6mod quote;
  7mod concat_idents;
  8mod helpers;
  9mod module;
 10mod paste;
 11mod pin_data;
 12mod pinned_drop;
 13mod vtable;
 14mod zeroable;
 15
 16use proc_macro::TokenStream;
 17
 18/// Declares a kernel module.
 19///
 20/// The `type` argument should be a type which implements the [`Module`]
 21/// trait. Also accepts various forms of kernel metadata.
 22///
 23/// C header: [`include/linux/moduleparam.h`](srctree/include/linux/moduleparam.h)
 24///
 25/// [`Module`]: ../kernel/trait.Module.html
 26///
 27/// # Examples
 28///
 29/// ```ignore
 30/// use kernel::prelude::*;
 31///
 32/// module!{
 33///     type: MyModule,
 34///     name: "my_kernel_module",
 35///     author: "Rust for Linux Contributors",
 36///     description: "My very own kernel module!",
 37///     license: "GPL",
 38///     params: {
 39///        my_i32: i32 {
 40///            default: 42,
 41///            permissions: 0o000,
 42///            description: "Example of i32",
 43///        },
 44///        writeable_i32: i32 {
 45///            default: 42,
 46///            permissions: 0o644,
 47///            description: "Example of i32",
 48///        },
 49///    },
 50/// }
 51///
 52/// struct MyModule;
 53///
 54/// impl kernel::Module for MyModule {
 55///     fn init() -> Result<Self> {
 56///         // If the parameter is writeable, then the kparam lock must be
 57///         // taken to read the parameter:
 58///         {
 59///             let lock = THIS_MODULE.kernel_param_lock();
 60///             pr_info!("i32 param is:  {}\n", writeable_i32.read(&lock));
 61///         }
 62///         // If the parameter is read only, it can be read without locking
 63///         // the kernel parameters:
 64///         pr_info!("i32 param is:  {}\n", my_i32.read());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 65///         Ok(Self)
 66///     }
 67/// }
 
 68/// ```
 69///
 70/// # Supported argument types
 71///   - `type`: type which implements the [`Module`] trait (required).
 72///   - `name`: byte array of the name of the kernel module (required).
 73///   - `author`: byte array of the author of the kernel module.
 74///   - `description`: byte array of the description of the kernel module.
 75///   - `license`: byte array of the license of the kernel module (required).
 76///   - `alias`: byte array of alias name of the kernel module.
 
 
 77#[proc_macro]
 78pub fn module(ts: TokenStream) -> TokenStream {
 79    module::module(ts)
 80}
 81
 82/// Declares or implements a vtable trait.
 83///
 84/// Linux's use of pure vtables is very close to Rust traits, but they differ
 85/// in how unimplemented functions are represented. In Rust, traits can provide
 86/// default implementation for all non-required methods (and the default
 87/// implementation could just return `Error::EINVAL`); Linux typically use C
 88/// `NULL` pointers to represent these functions.
 89///
 90/// This attribute closes that gap. A trait can be annotated with the
 91/// `#[vtable]` attribute. Implementers of the trait will then also have to
 92/// annotate the trait with `#[vtable]`. This attribute generates a `HAS_*`
 93/// associated constant bool for each method in the trait that is set to true if
 94/// the implementer has overridden the associated method.
 95///
 96/// For a trait method to be optional, it must have a default implementation.
 97/// This is also the case for traits annotated with `#[vtable]`, but in this
 98/// case the default implementation will never be executed. The reason for this
 99/// is that the functions will be called through function pointers installed in
100/// C side vtables. When an optional method is not implemented on a `#[vtable]`
101/// trait, a NULL entry is installed in the vtable. Thus the default
102/// implementation is never called. Since these traits are not designed to be
103/// used on the Rust side, it should not be possible to call the default
104/// implementation. This is done to ensure that we call the vtable methods
105/// through the C vtable, and not through the Rust vtable. Therefore, the
106/// default implementation should call `kernel::build_error`, which prevents
107/// calls to this function at compile time:
108///
109/// ```compile_fail
110/// # use kernel::error::VTABLE_DEFAULT_ERROR;
111/// kernel::build_error(VTABLE_DEFAULT_ERROR)
112/// ```
113///
114/// Note that you might need to import [`kernel::error::VTABLE_DEFAULT_ERROR`].
115///
116/// This macro should not be used when all functions are required.
117///
118/// # Examples
119///
120/// ```ignore
121/// use kernel::error::VTABLE_DEFAULT_ERROR;
122/// use kernel::prelude::*;
123///
124/// // Declares a `#[vtable]` trait
125/// #[vtable]
126/// pub trait Operations: Send + Sync + Sized {
127///     fn foo(&self) -> Result<()> {
128///         kernel::build_error(VTABLE_DEFAULT_ERROR)
129///     }
130///
131///     fn bar(&self) -> Result<()> {
132///         kernel::build_error(VTABLE_DEFAULT_ERROR)
133///     }
134/// }
135///
136/// struct Foo;
137///
138/// // Implements the `#[vtable]` trait
139/// #[vtable]
140/// impl Operations for Foo {
141///     fn foo(&self) -> Result<()> {
142/// #        Err(EINVAL)
143///         // ...
144///     }
145/// }
146///
147/// assert_eq!(<Foo as Operations>::HAS_FOO, true);
148/// assert_eq!(<Foo as Operations>::HAS_BAR, false);
149/// ```
150///
151/// [`kernel::error::VTABLE_DEFAULT_ERROR`]: ../kernel/error/constant.VTABLE_DEFAULT_ERROR.html
152#[proc_macro_attribute]
153pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream {
154    vtable::vtable(attr, ts)
155}
156
157/// Concatenate two identifiers.
158///
159/// This is useful in macros that need to declare or reference items with names
160/// starting with a fixed prefix and ending in a user specified name. The resulting
161/// identifier has the span of the second argument.
162///
163/// # Examples
164///
165/// ```ignore
166/// use kernel::macro::concat_idents;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167///
168/// macro_rules! pub_no_prefix {
169///     ($prefix:ident, $($newname:ident),+) => {
170///         $(pub(crate) const $newname: u32 = kernel::macros::concat_idents!($prefix, $newname);)+
171///     };
172/// }
173///
174/// pub_no_prefix!(
175///     binder_driver_return_protocol_,
176///     BR_OK,
177///     BR_ERROR,
178///     BR_TRANSACTION,
179///     BR_REPLY,
180///     BR_DEAD_REPLY,
181///     BR_TRANSACTION_COMPLETE,
182///     BR_INCREFS,
183///     BR_ACQUIRE,
184///     BR_RELEASE,
185///     BR_DECREFS,
186///     BR_NOOP,
187///     BR_SPAWN_LOOPER,
188///     BR_DEAD_BINDER,
189///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
190///     BR_FAILED_REPLY
191/// );
192///
193/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
194/// ```
195#[proc_macro]
196pub fn concat_idents(ts: TokenStream) -> TokenStream {
197    concat_idents::concat_idents(ts)
198}
199
200/// Used to specify the pinning information of the fields of a struct.
201///
202/// This is somewhat similar in purpose as
203/// [pin-project-lite](https://crates.io/crates/pin-project-lite).
204/// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
205/// field you want to structurally pin.
206///
207/// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
208/// then `#[pin]` directs the type of initializer that is required.
209///
210/// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
211/// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
212/// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
213///
214/// # Examples
215///
216/// ```rust,ignore
 
 
 
 
217/// #[pin_data]
218/// struct DriverData {
219///     #[pin]
220///     queue: Mutex<Vec<Command>>,
221///     buf: Box<[u8; 1024 * 1024]>,
222/// }
223/// ```
224///
225/// ```rust,ignore
 
 
 
 
 
 
 
 
 
 
226/// #[pin_data(PinnedDrop)]
227/// struct DriverData {
228///     #[pin]
229///     queue: Mutex<Vec<Command>>,
230///     buf: Box<[u8; 1024 * 1024]>,
231///     raw_info: *mut Info,
232/// }
233///
234/// #[pinned_drop]
235/// impl PinnedDrop for DriverData {
236///     fn drop(self: Pin<&mut Self>) {
237///         unsafe { bindings::destroy_info(self.raw_info) };
238///     }
239/// }
 
240/// ```
241///
242/// [`pin_init!`]: ../kernel/macro.pin_init.html
243//  ^ cannot use direct link, since `kernel` is not a dependency of `macros`.
244#[proc_macro_attribute]
245pub fn pin_data(inner: TokenStream, item: TokenStream) -> TokenStream {
246    pin_data::pin_data(inner, item)
247}
248
249/// Used to implement `PinnedDrop` safely.
250///
251/// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
252///
253/// # Examples
254///
255/// ```rust,ignore
 
 
 
 
 
 
 
 
 
256/// #[pin_data(PinnedDrop)]
257/// struct DriverData {
258///     #[pin]
259///     queue: Mutex<Vec<Command>>,
260///     buf: Box<[u8; 1024 * 1024]>,
261///     raw_info: *mut Info,
262/// }
263///
264/// #[pinned_drop]
265/// impl PinnedDrop for DriverData {
266///     fn drop(self: Pin<&mut Self>) {
267///         unsafe { bindings::destroy_info(self.raw_info) };
268///     }
269/// }
270/// ```
271#[proc_macro_attribute]
272pub fn pinned_drop(args: TokenStream, input: TokenStream) -> TokenStream {
273    pinned_drop::pinned_drop(args, input)
274}
275
276/// Paste identifiers together.
277///
278/// Within the `paste!` macro, identifiers inside `[<` and `>]` are concatenated together to form a
279/// single identifier.
280///
281/// This is similar to the [`paste`] crate, but with pasting feature limited to identifiers and
282/// literals (lifetimes and documentation strings are not supported). There is a difference in
283/// supported modifiers as well.
284///
285/// # Example
286///
287/// ```ignore
288/// use kernel::macro::paste;
289///
 
 
 
 
 
 
 
 
 
 
 
 
 
290/// macro_rules! pub_no_prefix {
291///     ($prefix:ident, $($newname:ident),+) => {
292///         paste! {
293///             $(pub(crate) const $newname: u32 = [<$prefix $newname>];)+
294///         }
295///     };
296/// }
297///
298/// pub_no_prefix!(
299///     binder_driver_return_protocol_,
300///     BR_OK,
301///     BR_ERROR,
302///     BR_TRANSACTION,
303///     BR_REPLY,
304///     BR_DEAD_REPLY,
305///     BR_TRANSACTION_COMPLETE,
306///     BR_INCREFS,
307///     BR_ACQUIRE,
308///     BR_RELEASE,
309///     BR_DECREFS,
310///     BR_NOOP,
311///     BR_SPAWN_LOOPER,
312///     BR_DEAD_BINDER,
313///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
314///     BR_FAILED_REPLY
315/// );
316///
317/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
318/// ```
319///
320/// # Modifiers
321///
322/// For each identifier, it is possible to attach one or multiple modifiers to
323/// it.
324///
325/// Currently supported modifiers are:
326/// * `span`: change the span of concatenated identifier to the span of the specified token. By
327/// default the span of the `[< >]` group is used.
328/// * `lower`: change the identifier to lower case.
329/// * `upper`: change the identifier to upper case.
330///
331/// ```ignore
332/// use kernel::macro::paste;
333///
 
 
 
 
 
 
 
 
 
 
 
 
 
334/// macro_rules! pub_no_prefix {
335///     ($prefix:ident, $($newname:ident),+) => {
336///         kernel::macros::paste! {
337///             $(pub(crate) const fn [<$newname:lower:span>]: u32 = [<$prefix $newname:span>];)+
338///         }
339///     };
340/// }
341///
342/// pub_no_prefix!(
343///     binder_driver_return_protocol_,
344///     BR_OK,
345///     BR_ERROR,
346///     BR_TRANSACTION,
347///     BR_REPLY,
348///     BR_DEAD_REPLY,
349///     BR_TRANSACTION_COMPLETE,
350///     BR_INCREFS,
351///     BR_ACQUIRE,
352///     BR_RELEASE,
353///     BR_DECREFS,
354///     BR_NOOP,
355///     BR_SPAWN_LOOPER,
356///     BR_DEAD_BINDER,
357///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
358///     BR_FAILED_REPLY
359/// );
360///
361/// assert_eq!(br_ok(), binder_driver_return_protocol_BR_OK);
362/// ```
363///
364/// # Literals
365///
366/// Literals can also be concatenated with other identifiers:
367///
368/// ```ignore
369/// macro_rules! create_numbered_fn {
370///     ($name:literal, $val:literal) => {
371///         kernel::macros::paste! {
372///             fn [<some_ $name _fn $val>]() -> u32 { $val }
373///         }
374///     };
375/// }
376///
377/// create_numbered_fn!("foo", 100);
378///
379/// assert_eq!(some_foo_fn100(), 100)
380/// ```
381///
382/// [`paste`]: https://docs.rs/paste/
383#[proc_macro]
384pub fn paste(input: TokenStream) -> TokenStream {
385    let mut tokens = input.into_iter().collect();
386    paste::expand(&mut tokens);
387    tokens.into_iter().collect()
388}
389
390/// Derives the [`Zeroable`] trait for the given struct.
391///
392/// This can only be used for structs where every field implements the [`Zeroable`] trait.
393///
394/// # Examples
395///
396/// ```rust,ignore
 
 
397/// #[derive(Zeroable)]
398/// pub struct DriverData {
399///     id: i64,
400///     buf_ptr: *mut u8,
401///     len: usize,
402/// }
403/// ```
404#[proc_macro_derive(Zeroable)]
405pub fn derive_zeroable(input: TokenStream) -> TokenStream {
406    zeroable::derive(input)
407}