Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic entry points for the idle threads and
  4 * implementation of the idle task scheduling class.
  5 *
  6 * (NOTE: these are not related to SCHED_IDLE batch scheduled
  7 *        tasks which are handled in sched/fair.c )
  8 */
  9
 10/* Linker adds these: start and end of __cpuidle functions */
 11extern char __cpuidle_text_start[], __cpuidle_text_end[];
 12
 13/**
 14 * sched_idle_set_state - Record idle state for the current CPU.
 15 * @idle_state: State to record.
 16 */
 17void sched_idle_set_state(struct cpuidle_state *idle_state)
 18{
 19	idle_set_state(this_rq(), idle_state);
 20}
 21
 22static int __read_mostly cpu_idle_force_poll;
 23
 24void cpu_idle_poll_ctrl(bool enable)
 25{
 26	if (enable) {
 27		cpu_idle_force_poll++;
 28	} else {
 29		cpu_idle_force_poll--;
 30		WARN_ON_ONCE(cpu_idle_force_poll < 0);
 31	}
 32}
 33
 34#ifdef CONFIG_GENERIC_IDLE_POLL_SETUP
 35static int __init cpu_idle_poll_setup(char *__unused)
 36{
 37	cpu_idle_force_poll = 1;
 38
 39	return 1;
 40}
 41__setup("nohlt", cpu_idle_poll_setup);
 42
 43static int __init cpu_idle_nopoll_setup(char *__unused)
 44{
 45	cpu_idle_force_poll = 0;
 46
 47	return 1;
 48}
 49__setup("hlt", cpu_idle_nopoll_setup);
 50#endif
 51
 52static noinline int __cpuidle cpu_idle_poll(void)
 53{
 54	instrumentation_begin();
 55	trace_cpu_idle(0, smp_processor_id());
 56	stop_critical_timings();
 57	ct_cpuidle_enter();
 58
 59	raw_local_irq_enable();
 60	while (!tif_need_resched() &&
 61	       (cpu_idle_force_poll || tick_check_broadcast_expired()))
 62		cpu_relax();
 63	raw_local_irq_disable();
 64
 65	ct_cpuidle_exit();
 66	start_critical_timings();
 67	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
 68	local_irq_enable();
 69	instrumentation_end();
 70
 71	return 1;
 72}
 73
 74/* Weak implementations for optional arch specific functions */
 75void __weak arch_cpu_idle_prepare(void) { }
 76void __weak arch_cpu_idle_enter(void) { }
 77void __weak arch_cpu_idle_exit(void) { }
 78void __weak __noreturn arch_cpu_idle_dead(void) { while (1); }
 79void __weak arch_cpu_idle(void)
 80{
 81	cpu_idle_force_poll = 1;
 82}
 83
 84#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE
 85DEFINE_STATIC_KEY_FALSE(arch_needs_tick_broadcast);
 86
 87static inline void cond_tick_broadcast_enter(void)
 88{
 89	if (static_branch_unlikely(&arch_needs_tick_broadcast))
 90		tick_broadcast_enter();
 91}
 92
 93static inline void cond_tick_broadcast_exit(void)
 94{
 95	if (static_branch_unlikely(&arch_needs_tick_broadcast))
 96		tick_broadcast_exit();
 97}
 98#else
 99static inline void cond_tick_broadcast_enter(void) { }
100static inline void cond_tick_broadcast_exit(void) { }
101#endif
102
103/**
104 * default_idle_call - Default CPU idle routine.
105 *
106 * To use when the cpuidle framework cannot be used.
107 */
108void __cpuidle default_idle_call(void)
109{
110	instrumentation_begin();
111	if (!current_clr_polling_and_test()) {
112		cond_tick_broadcast_enter();
113		trace_cpu_idle(1, smp_processor_id());
114		stop_critical_timings();
115
116		ct_cpuidle_enter();
117		arch_cpu_idle();
118		ct_cpuidle_exit();
119
120		start_critical_timings();
121		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
122		cond_tick_broadcast_exit();
123	}
124	local_irq_enable();
125	instrumentation_end();
126}
127
128static int call_cpuidle_s2idle(struct cpuidle_driver *drv,
129			       struct cpuidle_device *dev)
130{
131	if (current_clr_polling_and_test())
132		return -EBUSY;
133
134	return cpuidle_enter_s2idle(drv, dev);
135}
136
137static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
138		      int next_state)
139{
140	/*
141	 * The idle task must be scheduled, it is pointless to go to idle, just
142	 * update no idle residency and return.
143	 */
144	if (current_clr_polling_and_test()) {
145		dev->last_residency_ns = 0;
146		local_irq_enable();
147		return -EBUSY;
148	}
149
150	/*
151	 * Enter the idle state previously returned by the governor decision.
152	 * This function will block until an interrupt occurs and will take
153	 * care of re-enabling the local interrupts
154	 */
155	return cpuidle_enter(drv, dev, next_state);
156}
157
158/**
159 * cpuidle_idle_call - the main idle function
160 *
161 * NOTE: no locks or semaphores should be used here
162 *
163 * On architectures that support TIF_POLLING_NRFLAG, is called with polling
164 * set, and it returns with polling set.  If it ever stops polling, it
165 * must clear the polling bit.
166 */
167static void cpuidle_idle_call(void)
168{
169	struct cpuidle_device *dev = cpuidle_get_device();
170	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
171	int next_state, entered_state;
172
173	/*
174	 * Check if the idle task must be rescheduled. If it is the
175	 * case, exit the function after re-enabling the local IRQ.
176	 */
177	if (need_resched()) {
178		local_irq_enable();
179		return;
180	}
181
 
 
 
 
 
 
182	if (cpuidle_not_available(drv, dev)) {
183		tick_nohz_idle_stop_tick();
184
185		default_idle_call();
186		goto exit_idle;
187	}
188
189	/*
190	 * Suspend-to-idle ("s2idle") is a system state in which all user space
191	 * has been frozen, all I/O devices have been suspended and the only
192	 * activity happens here and in interrupts (if any). In that case bypass
193	 * the cpuidle governor and go straight for the deepest idle state
194	 * available.  Possibly also suspend the local tick and the entire
195	 * timekeeping to prevent timer interrupts from kicking us out of idle
196	 * until a proper wakeup interrupt happens.
197	 */
198
199	if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) {
200		u64 max_latency_ns;
201
202		if (idle_should_enter_s2idle()) {
203
204			entered_state = call_cpuidle_s2idle(drv, dev);
205			if (entered_state > 0)
206				goto exit_idle;
207
208			max_latency_ns = U64_MAX;
209		} else {
210			max_latency_ns = dev->forced_idle_latency_limit_ns;
211		}
212
213		tick_nohz_idle_stop_tick();
214
215		next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns);
216		call_cpuidle(drv, dev, next_state);
217	} else {
218		bool stop_tick = true;
219
220		/*
221		 * Ask the cpuidle framework to choose a convenient idle state.
222		 */
223		next_state = cpuidle_select(drv, dev, &stop_tick);
224
225		if (stop_tick || tick_nohz_tick_stopped())
226			tick_nohz_idle_stop_tick();
227		else
228			tick_nohz_idle_retain_tick();
229
230		entered_state = call_cpuidle(drv, dev, next_state);
231		/*
232		 * Give the governor an opportunity to reflect on the outcome
233		 */
234		cpuidle_reflect(dev, entered_state);
235	}
236
237exit_idle:
238	__current_set_polling();
239
240	/*
241	 * It is up to the idle functions to re-enable local interrupts
242	 */
243	if (WARN_ON_ONCE(irqs_disabled()))
244		local_irq_enable();
245}
246
247/*
248 * Generic idle loop implementation
249 *
250 * Called with polling cleared.
251 */
252static void do_idle(void)
253{
254	int cpu = smp_processor_id();
255
256	/*
257	 * Check if we need to update blocked load
258	 */
259	nohz_run_idle_balance(cpu);
260
261	/*
262	 * If the arch has a polling bit, we maintain an invariant:
263	 *
264	 * Our polling bit is clear if we're not scheduled (i.e. if rq->curr !=
265	 * rq->idle). This means that, if rq->idle has the polling bit set,
266	 * then setting need_resched is guaranteed to cause the CPU to
267	 * reschedule.
268	 */
269
270	__current_set_polling();
271	tick_nohz_idle_enter();
272
273	while (!need_resched()) {
 
274
275		/*
276		 * Interrupts shouldn't be re-enabled from that point on until
277		 * the CPU sleeping instruction is reached. Otherwise an interrupt
278		 * may fire and queue a timer that would be ignored until the CPU
279		 * wakes from the sleeping instruction. And testing need_resched()
280		 * doesn't tell about pending needed timer reprogram.
281		 *
282		 * Several cases to consider:
283		 *
284		 * - SLEEP-UNTIL-PENDING-INTERRUPT based instructions such as
285		 *   "wfi" or "mwait" are fine because they can be entered with
286		 *   interrupt disabled.
287		 *
288		 * - sti;mwait() couple is fine because the interrupts are
289		 *   re-enabled only upon the execution of mwait, leaving no gap
290		 *   in-between.
291		 *
292		 * - ROLLBACK based idle handlers with the sleeping instruction
293		 *   called with interrupts enabled are NOT fine. In this scheme
294		 *   when the interrupt detects it has interrupted an idle handler,
295		 *   it rolls back to its beginning which performs the
296		 *   need_resched() check before re-executing the sleeping
297		 *   instruction. This can leak a pending needed timer reprogram.
298		 *   If such a scheme is really mandatory due to the lack of an
299		 *   appropriate CPU sleeping instruction, then a FAST-FORWARD
300		 *   must instead be applied: when the interrupt detects it has
301		 *   interrupted an idle handler, it must resume to the end of
302		 *   this idle handler so that the generic idle loop is iterated
303		 *   again to reprogram the tick.
304		 */
305		local_irq_disable();
306
307		if (cpu_is_offline(cpu)) {
 
308			cpuhp_report_idle_dead();
309			arch_cpu_idle_dead();
310		}
311
312		arch_cpu_idle_enter();
313		rcu_nocb_flush_deferred_wakeup();
314
315		/*
316		 * In poll mode we re-enable interrupts and spin. Also if we
317		 * detected in the wakeup from idle path that the tick
318		 * broadcast device expired for us, we don't want to go deep
319		 * idle as we know that the IPI is going to arrive right away.
320		 */
321		if (cpu_idle_force_poll || tick_check_broadcast_expired()) {
322			tick_nohz_idle_restart_tick();
323			cpu_idle_poll();
324		} else {
325			cpuidle_idle_call();
326		}
327		arch_cpu_idle_exit();
328	}
329
330	/*
331	 * Since we fell out of the loop above, we know TIF_NEED_RESCHED must
332	 * be set, propagate it into PREEMPT_NEED_RESCHED.
333	 *
334	 * This is required because for polling idle loops we will not have had
335	 * an IPI to fold the state for us.
336	 */
337	preempt_set_need_resched();
338	tick_nohz_idle_exit();
339	__current_clr_polling();
340
341	/*
342	 * We promise to call sched_ttwu_pending() and reschedule if
343	 * need_resched() is set while polling is set. That means that clearing
344	 * polling needs to be visible before doing these things.
345	 */
346	smp_mb__after_atomic();
347
348	/*
349	 * RCU relies on this call to be done outside of an RCU read-side
350	 * critical section.
351	 */
352	flush_smp_call_function_queue();
353	schedule_idle();
354
355	if (unlikely(klp_patch_pending(current)))
356		klp_update_patch_state(current);
357}
358
359bool cpu_in_idle(unsigned long pc)
360{
361	return pc >= (unsigned long)__cpuidle_text_start &&
362		pc < (unsigned long)__cpuidle_text_end;
363}
364
365struct idle_timer {
366	struct hrtimer timer;
367	int done;
368};
369
370static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
371{
372	struct idle_timer *it = container_of(timer, struct idle_timer, timer);
373
374	WRITE_ONCE(it->done, 1);
375	set_tsk_need_resched(current);
376
377	return HRTIMER_NORESTART;
378}
379
380void play_idle_precise(u64 duration_ns, u64 latency_ns)
381{
382	struct idle_timer it;
383
384	/*
385	 * Only FIFO tasks can disable the tick since they don't need the forced
386	 * preemption.
387	 */
388	WARN_ON_ONCE(current->policy != SCHED_FIFO);
389	WARN_ON_ONCE(current->nr_cpus_allowed != 1);
390	WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
391	WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
392	WARN_ON_ONCE(!duration_ns);
393	WARN_ON_ONCE(current->mm);
394
395	rcu_sleep_check();
396	preempt_disable();
397	current->flags |= PF_IDLE;
398	cpuidle_use_deepest_state(latency_ns);
399
400	it.done = 0;
401	hrtimer_setup_on_stack(&it.timer, idle_inject_timer_fn, CLOCK_MONOTONIC,
402			       HRTIMER_MODE_REL_HARD);
403	hrtimer_start(&it.timer, ns_to_ktime(duration_ns),
404		      HRTIMER_MODE_REL_PINNED_HARD);
405
406	while (!READ_ONCE(it.done))
407		do_idle();
408
409	cpuidle_use_deepest_state(0);
410	current->flags &= ~PF_IDLE;
411
412	preempt_fold_need_resched();
413	preempt_enable();
414}
415EXPORT_SYMBOL_GPL(play_idle_precise);
416
417void cpu_startup_entry(enum cpuhp_state state)
418{
419	current->flags |= PF_IDLE;
420	arch_cpu_idle_prepare();
421	cpuhp_online_idle(state);
422	while (1)
423		do_idle();
424}
425
426/*
427 * idle-task scheduling class.
428 */
429
430#ifdef CONFIG_SMP
431static int
432select_task_rq_idle(struct task_struct *p, int cpu, int flags)
433{
434	return task_cpu(p); /* IDLE tasks as never migrated */
435}
436
437static int
438balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
439{
440	return WARN_ON_ONCE(1);
441}
442#endif
443
444/*
445 * Idle tasks are unconditionally rescheduled:
446 */
447static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags)
448{
449	resched_curr(rq);
450}
451
452static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, struct task_struct *next)
453{
454	dl_server_update_idle_time(rq, prev);
455	scx_update_idle(rq, false, true);
456}
457
458static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
459{
460	update_idle_core(rq);
461	scx_update_idle(rq, true, true);
462	schedstat_inc(rq->sched_goidle);
463	next->se.exec_start = rq_clock_task(rq);
464}
465
466struct task_struct *pick_task_idle(struct rq *rq)
 
467{
468	scx_update_idle(rq, true, false);
469	return rq->idle;
470}
 
 
 
 
 
 
 
 
 
 
471
472/*
473 * It is not legal to sleep in the idle task - print a warning
474 * message if some code attempts to do it:
475 */
476static bool
477dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
478{
479	raw_spin_rq_unlock_irq(rq);
480	printk(KERN_ERR "bad: scheduling from the idle thread!\n");
481	dump_stack();
482	raw_spin_rq_lock_irq(rq);
483	return true;
484}
485
486/*
487 * scheduler tick hitting a task of our scheduling class.
488 *
489 * NOTE: This function can be called remotely by the tick offload that
490 * goes along full dynticks. Therefore no local assumption can be made
491 * and everything must be accessed through the @rq and @curr passed in
492 * parameters.
493 */
494static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
495{
496}
497
498static void switched_to_idle(struct rq *rq, struct task_struct *p)
499{
500	BUG();
501}
502
503static void
504prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
505{
506	BUG();
507}
508
509static void update_curr_idle(struct rq *rq)
510{
511}
512
513/*
514 * Simple, special scheduling class for the per-CPU idle tasks:
515 */
516DEFINE_SCHED_CLASS(idle) = {
517
518	/* no enqueue/yield_task for idle tasks */
519
520	/* dequeue is not valid, we print a debug message there: */
521	.dequeue_task		= dequeue_task_idle,
522
523	.wakeup_preempt		= wakeup_preempt_idle,
524
525	.pick_task		= pick_task_idle,
526	.put_prev_task		= put_prev_task_idle,
527	.set_next_task          = set_next_task_idle,
528
529#ifdef CONFIG_SMP
530	.balance		= balance_idle,
 
531	.select_task_rq		= select_task_rq_idle,
532	.set_cpus_allowed	= set_cpus_allowed_common,
533#endif
534
535	.task_tick		= task_tick_idle,
536
537	.prio_changed		= prio_changed_idle,
538	.switched_to		= switched_to_idle,
539	.update_curr		= update_curr_idle,
540};
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic entry points for the idle threads and
  4 * implementation of the idle task scheduling class.
  5 *
  6 * (NOTE: these are not related to SCHED_IDLE batch scheduled
  7 *        tasks which are handled in sched/fair.c )
  8 */
  9
 10/* Linker adds these: start and end of __cpuidle functions */
 11extern char __cpuidle_text_start[], __cpuidle_text_end[];
 12
 13/**
 14 * sched_idle_set_state - Record idle state for the current CPU.
 15 * @idle_state: State to record.
 16 */
 17void sched_idle_set_state(struct cpuidle_state *idle_state)
 18{
 19	idle_set_state(this_rq(), idle_state);
 20}
 21
 22static int __read_mostly cpu_idle_force_poll;
 23
 24void cpu_idle_poll_ctrl(bool enable)
 25{
 26	if (enable) {
 27		cpu_idle_force_poll++;
 28	} else {
 29		cpu_idle_force_poll--;
 30		WARN_ON_ONCE(cpu_idle_force_poll < 0);
 31	}
 32}
 33
 34#ifdef CONFIG_GENERIC_IDLE_POLL_SETUP
 35static int __init cpu_idle_poll_setup(char *__unused)
 36{
 37	cpu_idle_force_poll = 1;
 38
 39	return 1;
 40}
 41__setup("nohlt", cpu_idle_poll_setup);
 42
 43static int __init cpu_idle_nopoll_setup(char *__unused)
 44{
 45	cpu_idle_force_poll = 0;
 46
 47	return 1;
 48}
 49__setup("hlt", cpu_idle_nopoll_setup);
 50#endif
 51
 52static noinline int __cpuidle cpu_idle_poll(void)
 53{
 54	instrumentation_begin();
 55	trace_cpu_idle(0, smp_processor_id());
 56	stop_critical_timings();
 57	ct_cpuidle_enter();
 58
 59	raw_local_irq_enable();
 60	while (!tif_need_resched() &&
 61	       (cpu_idle_force_poll || tick_check_broadcast_expired()))
 62		cpu_relax();
 63	raw_local_irq_disable();
 64
 65	ct_cpuidle_exit();
 66	start_critical_timings();
 67	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
 68	local_irq_enable();
 69	instrumentation_end();
 70
 71	return 1;
 72}
 73
 74/* Weak implementations for optional arch specific functions */
 75void __weak arch_cpu_idle_prepare(void) { }
 76void __weak arch_cpu_idle_enter(void) { }
 77void __weak arch_cpu_idle_exit(void) { }
 78void __weak __noreturn arch_cpu_idle_dead(void) { while (1); }
 79void __weak arch_cpu_idle(void)
 80{
 81	cpu_idle_force_poll = 1;
 82}
 83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 84/**
 85 * default_idle_call - Default CPU idle routine.
 86 *
 87 * To use when the cpuidle framework cannot be used.
 88 */
 89void __cpuidle default_idle_call(void)
 90{
 91	instrumentation_begin();
 92	if (!current_clr_polling_and_test()) {
 
 93		trace_cpu_idle(1, smp_processor_id());
 94		stop_critical_timings();
 95
 96		ct_cpuidle_enter();
 97		arch_cpu_idle();
 98		ct_cpuidle_exit();
 99
100		start_critical_timings();
101		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
 
102	}
103	local_irq_enable();
104	instrumentation_end();
105}
106
107static int call_cpuidle_s2idle(struct cpuidle_driver *drv,
108			       struct cpuidle_device *dev)
109{
110	if (current_clr_polling_and_test())
111		return -EBUSY;
112
113	return cpuidle_enter_s2idle(drv, dev);
114}
115
116static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
117		      int next_state)
118{
119	/*
120	 * The idle task must be scheduled, it is pointless to go to idle, just
121	 * update no idle residency and return.
122	 */
123	if (current_clr_polling_and_test()) {
124		dev->last_residency_ns = 0;
125		local_irq_enable();
126		return -EBUSY;
127	}
128
129	/*
130	 * Enter the idle state previously returned by the governor decision.
131	 * This function will block until an interrupt occurs and will take
132	 * care of re-enabling the local interrupts
133	 */
134	return cpuidle_enter(drv, dev, next_state);
135}
136
137/**
138 * cpuidle_idle_call - the main idle function
139 *
140 * NOTE: no locks or semaphores should be used here
141 *
142 * On architectures that support TIF_POLLING_NRFLAG, is called with polling
143 * set, and it returns with polling set.  If it ever stops polling, it
144 * must clear the polling bit.
145 */
146static void cpuidle_idle_call(void)
147{
148	struct cpuidle_device *dev = cpuidle_get_device();
149	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
150	int next_state, entered_state;
151
152	/*
153	 * Check if the idle task must be rescheduled. If it is the
154	 * case, exit the function after re-enabling the local irq.
155	 */
156	if (need_resched()) {
157		local_irq_enable();
158		return;
159	}
160
161	/*
162	 * The RCU framework needs to be told that we are entering an idle
163	 * section, so no more rcu read side critical sections and one more
164	 * step to the grace period
165	 */
166
167	if (cpuidle_not_available(drv, dev)) {
168		tick_nohz_idle_stop_tick();
169
170		default_idle_call();
171		goto exit_idle;
172	}
173
174	/*
175	 * Suspend-to-idle ("s2idle") is a system state in which all user space
176	 * has been frozen, all I/O devices have been suspended and the only
177	 * activity happens here and in interrupts (if any). In that case bypass
178	 * the cpuidle governor and go straight for the deepest idle state
179	 * available.  Possibly also suspend the local tick and the entire
180	 * timekeeping to prevent timer interrupts from kicking us out of idle
181	 * until a proper wakeup interrupt happens.
182	 */
183
184	if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) {
185		u64 max_latency_ns;
186
187		if (idle_should_enter_s2idle()) {
188
189			entered_state = call_cpuidle_s2idle(drv, dev);
190			if (entered_state > 0)
191				goto exit_idle;
192
193			max_latency_ns = U64_MAX;
194		} else {
195			max_latency_ns = dev->forced_idle_latency_limit_ns;
196		}
197
198		tick_nohz_idle_stop_tick();
199
200		next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns);
201		call_cpuidle(drv, dev, next_state);
202	} else {
203		bool stop_tick = true;
204
205		/*
206		 * Ask the cpuidle framework to choose a convenient idle state.
207		 */
208		next_state = cpuidle_select(drv, dev, &stop_tick);
209
210		if (stop_tick || tick_nohz_tick_stopped())
211			tick_nohz_idle_stop_tick();
212		else
213			tick_nohz_idle_retain_tick();
214
215		entered_state = call_cpuidle(drv, dev, next_state);
216		/*
217		 * Give the governor an opportunity to reflect on the outcome
218		 */
219		cpuidle_reflect(dev, entered_state);
220	}
221
222exit_idle:
223	__current_set_polling();
224
225	/*
226	 * It is up to the idle functions to reenable local interrupts
227	 */
228	if (WARN_ON_ONCE(irqs_disabled()))
229		local_irq_enable();
230}
231
232/*
233 * Generic idle loop implementation
234 *
235 * Called with polling cleared.
236 */
237static void do_idle(void)
238{
239	int cpu = smp_processor_id();
240
241	/*
242	 * Check if we need to update blocked load
243	 */
244	nohz_run_idle_balance(cpu);
245
246	/*
247	 * If the arch has a polling bit, we maintain an invariant:
248	 *
249	 * Our polling bit is clear if we're not scheduled (i.e. if rq->curr !=
250	 * rq->idle). This means that, if rq->idle has the polling bit set,
251	 * then setting need_resched is guaranteed to cause the CPU to
252	 * reschedule.
253	 */
254
255	__current_set_polling();
256	tick_nohz_idle_enter();
257
258	while (!need_resched()) {
259		rmb();
260
261		/*
262		 * Interrupts shouldn't be re-enabled from that point on until
263		 * the CPU sleeping instruction is reached. Otherwise an interrupt
264		 * may fire and queue a timer that would be ignored until the CPU
265		 * wakes from the sleeping instruction. And testing need_resched()
266		 * doesn't tell about pending needed timer reprogram.
267		 *
268		 * Several cases to consider:
269		 *
270		 * - SLEEP-UNTIL-PENDING-INTERRUPT based instructions such as
271		 *   "wfi" or "mwait" are fine because they can be entered with
272		 *   interrupt disabled.
273		 *
274		 * - sti;mwait() couple is fine because the interrupts are
275		 *   re-enabled only upon the execution of mwait, leaving no gap
276		 *   in-between.
277		 *
278		 * - ROLLBACK based idle handlers with the sleeping instruction
279		 *   called with interrupts enabled are NOT fine. In this scheme
280		 *   when the interrupt detects it has interrupted an idle handler,
281		 *   it rolls back to its beginning which performs the
282		 *   need_resched() check before re-executing the sleeping
283		 *   instruction. This can leak a pending needed timer reprogram.
284		 *   If such a scheme is really mandatory due to the lack of an
285		 *   appropriate CPU sleeping instruction, then a FAST-FORWARD
286		 *   must instead be applied: when the interrupt detects it has
287		 *   interrupted an idle handler, it must resume to the end of
288		 *   this idle handler so that the generic idle loop is iterated
289		 *   again to reprogram the tick.
290		 */
291		local_irq_disable();
292
293		if (cpu_is_offline(cpu)) {
294			tick_nohz_idle_stop_tick();
295			cpuhp_report_idle_dead();
296			arch_cpu_idle_dead();
297		}
298
299		arch_cpu_idle_enter();
300		rcu_nocb_flush_deferred_wakeup();
301
302		/*
303		 * In poll mode we reenable interrupts and spin. Also if we
304		 * detected in the wakeup from idle path that the tick
305		 * broadcast device expired for us, we don't want to go deep
306		 * idle as we know that the IPI is going to arrive right away.
307		 */
308		if (cpu_idle_force_poll || tick_check_broadcast_expired()) {
309			tick_nohz_idle_restart_tick();
310			cpu_idle_poll();
311		} else {
312			cpuidle_idle_call();
313		}
314		arch_cpu_idle_exit();
315	}
316
317	/*
318	 * Since we fell out of the loop above, we know TIF_NEED_RESCHED must
319	 * be set, propagate it into PREEMPT_NEED_RESCHED.
320	 *
321	 * This is required because for polling idle loops we will not have had
322	 * an IPI to fold the state for us.
323	 */
324	preempt_set_need_resched();
325	tick_nohz_idle_exit();
326	__current_clr_polling();
327
328	/*
329	 * We promise to call sched_ttwu_pending() and reschedule if
330	 * need_resched() is set while polling is set. That means that clearing
331	 * polling needs to be visible before doing these things.
332	 */
333	smp_mb__after_atomic();
334
335	/*
336	 * RCU relies on this call to be done outside of an RCU read-side
337	 * critical section.
338	 */
339	flush_smp_call_function_queue();
340	schedule_idle();
341
342	if (unlikely(klp_patch_pending(current)))
343		klp_update_patch_state(current);
344}
345
346bool cpu_in_idle(unsigned long pc)
347{
348	return pc >= (unsigned long)__cpuidle_text_start &&
349		pc < (unsigned long)__cpuidle_text_end;
350}
351
352struct idle_timer {
353	struct hrtimer timer;
354	int done;
355};
356
357static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
358{
359	struct idle_timer *it = container_of(timer, struct idle_timer, timer);
360
361	WRITE_ONCE(it->done, 1);
362	set_tsk_need_resched(current);
363
364	return HRTIMER_NORESTART;
365}
366
367void play_idle_precise(u64 duration_ns, u64 latency_ns)
368{
369	struct idle_timer it;
370
371	/*
372	 * Only FIFO tasks can disable the tick since they don't need the forced
373	 * preemption.
374	 */
375	WARN_ON_ONCE(current->policy != SCHED_FIFO);
376	WARN_ON_ONCE(current->nr_cpus_allowed != 1);
377	WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
378	WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
379	WARN_ON_ONCE(!duration_ns);
380	WARN_ON_ONCE(current->mm);
381
382	rcu_sleep_check();
383	preempt_disable();
384	current->flags |= PF_IDLE;
385	cpuidle_use_deepest_state(latency_ns);
386
387	it.done = 0;
388	hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
389	it.timer.function = idle_inject_timer_fn;
390	hrtimer_start(&it.timer, ns_to_ktime(duration_ns),
391		      HRTIMER_MODE_REL_PINNED_HARD);
392
393	while (!READ_ONCE(it.done))
394		do_idle();
395
396	cpuidle_use_deepest_state(0);
397	current->flags &= ~PF_IDLE;
398
399	preempt_fold_need_resched();
400	preempt_enable();
401}
402EXPORT_SYMBOL_GPL(play_idle_precise);
403
404void cpu_startup_entry(enum cpuhp_state state)
405{
406	current->flags |= PF_IDLE;
407	arch_cpu_idle_prepare();
408	cpuhp_online_idle(state);
409	while (1)
410		do_idle();
411}
412
413/*
414 * idle-task scheduling class.
415 */
416
417#ifdef CONFIG_SMP
418static int
419select_task_rq_idle(struct task_struct *p, int cpu, int flags)
420{
421	return task_cpu(p); /* IDLE tasks as never migrated */
422}
423
424static int
425balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
426{
427	return WARN_ON_ONCE(1);
428}
429#endif
430
431/*
432 * Idle tasks are unconditionally rescheduled:
433 */
434static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags)
435{
436	resched_curr(rq);
437}
438
439static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
440{
 
 
441}
442
443static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
444{
445	update_idle_core(rq);
 
446	schedstat_inc(rq->sched_goidle);
 
447}
448
449#ifdef CONFIG_SMP
450static struct task_struct *pick_task_idle(struct rq *rq)
451{
 
452	return rq->idle;
453}
454#endif
455
456struct task_struct *pick_next_task_idle(struct rq *rq)
457{
458	struct task_struct *next = rq->idle;
459
460	set_next_task_idle(rq, next, true);
461
462	return next;
463}
464
465/*
466 * It is not legal to sleep in the idle task - print a warning
467 * message if some code attempts to do it:
468 */
469static void
470dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
471{
472	raw_spin_rq_unlock_irq(rq);
473	printk(KERN_ERR "bad: scheduling from the idle thread!\n");
474	dump_stack();
475	raw_spin_rq_lock_irq(rq);
 
476}
477
478/*
479 * scheduler tick hitting a task of our scheduling class.
480 *
481 * NOTE: This function can be called remotely by the tick offload that
482 * goes along full dynticks. Therefore no local assumption can be made
483 * and everything must be accessed through the @rq and @curr passed in
484 * parameters.
485 */
486static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
487{
488}
489
490static void switched_to_idle(struct rq *rq, struct task_struct *p)
491{
492	BUG();
493}
494
495static void
496prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
497{
498	BUG();
499}
500
501static void update_curr_idle(struct rq *rq)
502{
503}
504
505/*
506 * Simple, special scheduling class for the per-CPU idle tasks:
507 */
508DEFINE_SCHED_CLASS(idle) = {
509
510	/* no enqueue/yield_task for idle tasks */
511
512	/* dequeue is not valid, we print a debug message there: */
513	.dequeue_task		= dequeue_task_idle,
514
515	.wakeup_preempt		= wakeup_preempt_idle,
516
517	.pick_next_task		= pick_next_task_idle,
518	.put_prev_task		= put_prev_task_idle,
519	.set_next_task          = set_next_task_idle,
520
521#ifdef CONFIG_SMP
522	.balance		= balance_idle,
523	.pick_task		= pick_task_idle,
524	.select_task_rq		= select_task_rq_idle,
525	.set_cpus_allowed	= set_cpus_allowed_common,
526#endif
527
528	.task_tick		= task_tick_idle,
529
530	.prio_changed		= prio_changed_idle,
531	.switched_to		= switched_to_idle,
532	.update_curr		= update_curr_idle,
533};