Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Context tracking: Probe on high level context boundaries such as kernel,
  4 * userspace, guest or idle.
  5 *
  6 * This is used by RCU to remove its dependency on the timer tick while a CPU
  7 * runs in idle, userspace or guest mode.
  8 *
  9 * User/guest tracking started by Frederic Weisbecker:
 10 *
 11 * Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker
 12 *
 13 * Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton,
 14 * Steven Rostedt, Peter Zijlstra for suggestions and improvements.
 15 *
 16 * RCU extended quiescent state bits imported from kernel/rcu/tree.c
 17 * where the relevant authorship may be found.
 18 */
 19
 20#include <linux/context_tracking.h>
 21#include <linux/rcupdate.h>
 22#include <linux/sched.h>
 23#include <linux/hardirq.h>
 24#include <linux/export.h>
 25#include <linux/kprobes.h>
 26#include <trace/events/rcu.h>
 27
 28
 29DEFINE_PER_CPU(struct context_tracking, context_tracking) = {
 30#ifdef CONFIG_CONTEXT_TRACKING_IDLE
 31	.nesting = 1,
 32	.nmi_nesting = CT_NESTING_IRQ_NONIDLE,
 33#endif
 34	.state = ATOMIC_INIT(CT_RCU_WATCHING),
 35};
 36EXPORT_SYMBOL_GPL(context_tracking);
 37
 38#ifdef CONFIG_CONTEXT_TRACKING_IDLE
 39#define TPS(x)  tracepoint_string(x)
 40
 41/* Record the current task on exiting RCU-tasks (dyntick-idle entry). */
 42static __always_inline void rcu_task_exit(void)
 43{
 44#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
 45	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
 46#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
 47}
 48
 49/* Record no current task on entering RCU-tasks (dyntick-idle exit). */
 50static __always_inline void rcu_task_enter(void)
 51{
 52#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
 53	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
 54#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
 55}
 56
 57/* Turn on heavyweight RCU tasks trace readers on kernel exit. */
 58static __always_inline void rcu_task_trace_heavyweight_enter(void)
 59{
 60#ifdef CONFIG_TASKS_TRACE_RCU
 61	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
 62		current->trc_reader_special.b.need_mb = true;
 63#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 64}
 65
 66/* Turn off heavyweight RCU tasks trace readers on kernel entry. */
 67static __always_inline void rcu_task_trace_heavyweight_exit(void)
 68{
 69#ifdef CONFIG_TASKS_TRACE_RCU
 70	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
 71		current->trc_reader_special.b.need_mb = false;
 72#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 73}
 74
 75/*
 76 * Record entry into an extended quiescent state.  This is only to be
 77 * called when not already in an extended quiescent state, that is,
 78 * RCU is watching prior to the call to this function and is no longer
 79 * watching upon return.
 80 */
 81static noinstr void ct_kernel_exit_state(int offset)
 82{
 83	int seq;
 84
 85	/*
 86	 * CPUs seeing atomic_add_return() must see prior RCU read-side
 87	 * critical sections, and we also must force ordering with the
 88	 * next idle sojourn.
 89	 */
 90	rcu_task_trace_heavyweight_enter();  // Before CT state update!
 91	seq = ct_state_inc(offset);
 92	// RCU is no longer watching.  Better be in extended quiescent state!
 93	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & CT_RCU_WATCHING));
 94}
 95
 96/*
 97 * Record exit from an extended quiescent state.  This is only to be
 98 * called from an extended quiescent state, that is, RCU is not watching
 99 * prior to the call to this function and is watching upon return.
100 */
101static noinstr void ct_kernel_enter_state(int offset)
102{
103	int seq;
104
105	/*
106	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
107	 * and we also must force ordering with the next RCU read-side
108	 * critical section.
109	 */
110	seq = ct_state_inc(offset);
111	// RCU is now watching.  Better not be in an extended quiescent state!
112	rcu_task_trace_heavyweight_exit();  // After CT state update!
113	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & CT_RCU_WATCHING));
114}
115
116/*
117 * Enter an RCU extended quiescent state, which can be either the
118 * idle loop or adaptive-tickless usermode execution.
119 *
120 * We crowbar the ->nmi_nesting field to zero to allow for
121 * the possibility of usermode upcalls having messed up our count
122 * of interrupt nesting level during the prior busy period.
123 */
124static void noinstr ct_kernel_exit(bool user, int offset)
125{
126	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
127
128	WARN_ON_ONCE(ct_nmi_nesting() != CT_NESTING_IRQ_NONIDLE);
129	WRITE_ONCE(ct->nmi_nesting, 0);
130	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
131		     ct_nesting() == 0);
132	if (ct_nesting() != 1) {
133		// RCU will still be watching, so just do accounting and leave.
134		ct->nesting--;
135		return;
136	}
137
138	instrumentation_begin();
139	lockdep_assert_irqs_disabled();
140	trace_rcu_watching(TPS("End"), ct_nesting(), 0, ct_rcu_watching());
141	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
142	rcu_preempt_deferred_qs(current);
143
144	// instrumentation for the noinstr ct_kernel_exit_state()
145	instrument_atomic_write(&ct->state, sizeof(ct->state));
146
147	instrumentation_end();
148	WRITE_ONCE(ct->nesting, 0); /* Avoid irq-access tearing. */
149	// RCU is watching here ...
150	ct_kernel_exit_state(offset);
151	// ... but is no longer watching here.
152	rcu_task_exit();
153}
154
155/*
156 * Exit an RCU extended quiescent state, which can be either the
157 * idle loop or adaptive-tickless usermode execution.
158 *
159 * We crowbar the ->nmi_nesting field to CT_NESTING_IRQ_NONIDLE to
160 * allow for the possibility of usermode upcalls messing up our count of
161 * interrupt nesting level during the busy period that is just now starting.
162 */
163static void noinstr ct_kernel_enter(bool user, int offset)
164{
165	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
166	long oldval;
167
168	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled());
169	oldval = ct_nesting();
170	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
171	if (oldval) {
172		// RCU was already watching, so just do accounting and leave.
173		ct->nesting++;
174		return;
175	}
176	rcu_task_enter();
177	// RCU is not watching here ...
178	ct_kernel_enter_state(offset);
179	// ... but is watching here.
180	instrumentation_begin();
181
182	// instrumentation for the noinstr ct_kernel_enter_state()
183	instrument_atomic_write(&ct->state, sizeof(ct->state));
184
185	trace_rcu_watching(TPS("Start"), ct_nesting(), 1, ct_rcu_watching());
186	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
187	WRITE_ONCE(ct->nesting, 1);
188	WARN_ON_ONCE(ct_nmi_nesting());
189	WRITE_ONCE(ct->nmi_nesting, CT_NESTING_IRQ_NONIDLE);
190	instrumentation_end();
191}
192
193/**
194 * ct_nmi_exit - inform RCU of exit from NMI context
195 *
196 * If we are returning from the outermost NMI handler that interrupted an
197 * RCU-idle period, update ct->state and ct->nmi_nesting
198 * to let the RCU grace-period handling know that the CPU is back to
199 * being RCU-idle.
200 *
201 * If you add or remove a call to ct_nmi_exit(), be sure to test
202 * with CONFIG_RCU_EQS_DEBUG=y.
203 */
204void noinstr ct_nmi_exit(void)
205{
206	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
207
208	instrumentation_begin();
209	/*
210	 * Check for ->nmi_nesting underflow and bad CT state.
211	 * (We are exiting an NMI handler, so RCU better be paying attention
212	 * to us!)
213	 */
214	WARN_ON_ONCE(ct_nmi_nesting() <= 0);
215	WARN_ON_ONCE(!rcu_is_watching_curr_cpu());
216
217	/*
218	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
219	 * leave it in non-RCU-idle state.
220	 */
221	if (ct_nmi_nesting() != 1) {
222		trace_rcu_watching(TPS("--="), ct_nmi_nesting(), ct_nmi_nesting() - 2,
223				  ct_rcu_watching());
224		WRITE_ONCE(ct->nmi_nesting, /* No store tearing. */
225			   ct_nmi_nesting() - 2);
226		instrumentation_end();
227		return;
228	}
229
230	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
231	trace_rcu_watching(TPS("Endirq"), ct_nmi_nesting(), 0, ct_rcu_watching());
232	WRITE_ONCE(ct->nmi_nesting, 0); /* Avoid store tearing. */
233
234	// instrumentation for the noinstr ct_kernel_exit_state()
235	instrument_atomic_write(&ct->state, sizeof(ct->state));
236	instrumentation_end();
237
238	// RCU is watching here ...
239	ct_kernel_exit_state(CT_RCU_WATCHING);
240	// ... but is no longer watching here.
241
242	if (!in_nmi())
243		rcu_task_exit();
244}
245
246/**
247 * ct_nmi_enter - inform RCU of entry to NMI context
248 *
249 * If the CPU was idle from RCU's viewpoint, update ct->state and
250 * ct->nmi_nesting to let the RCU grace-period handling know
251 * that the CPU is active.  This implementation permits nested NMIs, as
252 * long as the nesting level does not overflow an int.  (You will probably
253 * run out of stack space first.)
254 *
255 * If you add or remove a call to ct_nmi_enter(), be sure to test
256 * with CONFIG_RCU_EQS_DEBUG=y.
257 */
258void noinstr ct_nmi_enter(void)
259{
260	long incby = 2;
261	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
262
263	/* Complain about underflow. */
264	WARN_ON_ONCE(ct_nmi_nesting() < 0);
265
266	/*
267	 * If idle from RCU viewpoint, atomically increment CT state
268	 * to mark non-idle and increment ->nmi_nesting by one.
269	 * Otherwise, increment ->nmi_nesting by two.  This means
270	 * if ->nmi_nesting is equal to one, we are guaranteed
271	 * to be in the outermost NMI handler that interrupted an RCU-idle
272	 * period (observation due to Andy Lutomirski).
273	 */
274	if (!rcu_is_watching_curr_cpu()) {
275
276		if (!in_nmi())
277			rcu_task_enter();
278
279		// RCU is not watching here ...
280		ct_kernel_enter_state(CT_RCU_WATCHING);
281		// ... but is watching here.
282
283		instrumentation_begin();
284		// instrumentation for the noinstr rcu_is_watching_curr_cpu()
285		instrument_atomic_read(&ct->state, sizeof(ct->state));
286		// instrumentation for the noinstr ct_kernel_enter_state()
287		instrument_atomic_write(&ct->state, sizeof(ct->state));
288
289		incby = 1;
290	} else if (!in_nmi()) {
291		instrumentation_begin();
292		rcu_irq_enter_check_tick();
293	} else  {
294		instrumentation_begin();
295	}
296
297	trace_rcu_watching(incby == 1 ? TPS("Startirq") : TPS("++="),
298			  ct_nmi_nesting(),
299			  ct_nmi_nesting() + incby, ct_rcu_watching());
300	instrumentation_end();
301	WRITE_ONCE(ct->nmi_nesting, /* Prevent store tearing. */
302		   ct_nmi_nesting() + incby);
303	barrier();
304}
305
306/**
307 * ct_idle_enter - inform RCU that current CPU is entering idle
308 *
309 * Enter idle mode, in other words, -leave- the mode in which RCU
310 * read-side critical sections can occur.  (Though RCU read-side
311 * critical sections can occur in irq handlers in idle, a possibility
312 * handled by irq_enter() and irq_exit().)
313 *
314 * If you add or remove a call to ct_idle_enter(), be sure to test with
315 * CONFIG_RCU_EQS_DEBUG=y.
316 */
317void noinstr ct_idle_enter(void)
318{
319	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled());
320	ct_kernel_exit(false, CT_RCU_WATCHING + CT_STATE_IDLE);
321}
322EXPORT_SYMBOL_GPL(ct_idle_enter);
323
324/**
325 * ct_idle_exit - inform RCU that current CPU is leaving idle
326 *
327 * Exit idle mode, in other words, -enter- the mode in which RCU
328 * read-side critical sections can occur.
329 *
330 * If you add or remove a call to ct_idle_exit(), be sure to test with
331 * CONFIG_RCU_EQS_DEBUG=y.
332 */
333void noinstr ct_idle_exit(void)
334{
335	unsigned long flags;
336
337	raw_local_irq_save(flags);
338	ct_kernel_enter(false, CT_RCU_WATCHING - CT_STATE_IDLE);
339	raw_local_irq_restore(flags);
340}
341EXPORT_SYMBOL_GPL(ct_idle_exit);
342
343/**
344 * ct_irq_enter - inform RCU that current CPU is entering irq away from idle
345 *
346 * Enter an interrupt handler, which might possibly result in exiting
347 * idle mode, in other words, entering the mode in which read-side critical
348 * sections can occur.  The caller must have disabled interrupts.
349 *
350 * Note that the Linux kernel is fully capable of entering an interrupt
351 * handler that it never exits, for example when doing upcalls to user mode!
352 * This code assumes that the idle loop never does upcalls to user mode.
353 * If your architecture's idle loop does do upcalls to user mode (or does
354 * anything else that results in unbalanced calls to the irq_enter() and
355 * irq_exit() functions), RCU will give you what you deserve, good and hard.
356 * But very infrequently and irreproducibly.
357 *
358 * Use things like work queues to work around this limitation.
359 *
360 * You have been warned.
361 *
362 * If you add or remove a call to ct_irq_enter(), be sure to test with
363 * CONFIG_RCU_EQS_DEBUG=y.
364 */
365noinstr void ct_irq_enter(void)
366{
367	lockdep_assert_irqs_disabled();
368	ct_nmi_enter();
369}
370
371/**
372 * ct_irq_exit - inform RCU that current CPU is exiting irq towards idle
373 *
374 * Exit from an interrupt handler, which might possibly result in entering
375 * idle mode, in other words, leaving the mode in which read-side critical
376 * sections can occur.  The caller must have disabled interrupts.
377 *
378 * This code assumes that the idle loop never does anything that might
379 * result in unbalanced calls to irq_enter() and irq_exit().  If your
380 * architecture's idle loop violates this assumption, RCU will give you what
381 * you deserve, good and hard.  But very infrequently and irreproducibly.
382 *
383 * Use things like work queues to work around this limitation.
384 *
385 * You have been warned.
386 *
387 * If you add or remove a call to ct_irq_exit(), be sure to test with
388 * CONFIG_RCU_EQS_DEBUG=y.
389 */
390noinstr void ct_irq_exit(void)
391{
392	lockdep_assert_irqs_disabled();
393	ct_nmi_exit();
394}
395
396/*
397 * Wrapper for ct_irq_enter() where interrupts are enabled.
398 *
399 * If you add or remove a call to ct_irq_enter_irqson(), be sure to test
400 * with CONFIG_RCU_EQS_DEBUG=y.
401 */
402void ct_irq_enter_irqson(void)
403{
404	unsigned long flags;
405
406	local_irq_save(flags);
407	ct_irq_enter();
408	local_irq_restore(flags);
409}
410
411/*
412 * Wrapper for ct_irq_exit() where interrupts are enabled.
413 *
414 * If you add or remove a call to ct_irq_exit_irqson(), be sure to test
415 * with CONFIG_RCU_EQS_DEBUG=y.
416 */
417void ct_irq_exit_irqson(void)
418{
419	unsigned long flags;
420
421	local_irq_save(flags);
422	ct_irq_exit();
423	local_irq_restore(flags);
424}
425#else
426static __always_inline void ct_kernel_exit(bool user, int offset) { }
427static __always_inline void ct_kernel_enter(bool user, int offset) { }
428#endif /* #ifdef CONFIG_CONTEXT_TRACKING_IDLE */
429
430#ifdef CONFIG_CONTEXT_TRACKING_USER
431
432#define CREATE_TRACE_POINTS
433#include <trace/events/context_tracking.h>
434
435DEFINE_STATIC_KEY_FALSE_RO(context_tracking_key);
436EXPORT_SYMBOL_GPL(context_tracking_key);
437
438static noinstr bool context_tracking_recursion_enter(void)
439{
440	int recursion;
441
442	recursion = __this_cpu_inc_return(context_tracking.recursion);
443	if (recursion == 1)
444		return true;
445
446	WARN_ONCE((recursion < 1), "Invalid context tracking recursion value %d\n", recursion);
447	__this_cpu_dec(context_tracking.recursion);
448
449	return false;
450}
451
452static __always_inline void context_tracking_recursion_exit(void)
453{
454	__this_cpu_dec(context_tracking.recursion);
455}
456
457/**
458 * __ct_user_enter - Inform the context tracking that the CPU is going
459 *		     to enter user or guest space mode.
460 *
461 * @state: userspace context-tracking state to enter.
462 *
463 * This function must be called right before we switch from the kernel
464 * to user or guest space, when it's guaranteed the remaining kernel
465 * instructions to execute won't use any RCU read side critical section
466 * because this function sets RCU in extended quiescent state.
467 */
468void noinstr __ct_user_enter(enum ctx_state state)
469{
470	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
471	lockdep_assert_irqs_disabled();
472
473	/* Kernel threads aren't supposed to go to userspace */
474	WARN_ON_ONCE(!current->mm);
475
476	if (!context_tracking_recursion_enter())
477		return;
478
479	if (__ct_state() != state) {
480		if (ct->active) {
481			/*
482			 * At this stage, only low level arch entry code remains and
483			 * then we'll run in userspace. We can assume there won't be
484			 * any RCU read-side critical section until the next call to
485			 * user_exit() or ct_irq_enter(). Let's remove RCU's dependency
486			 * on the tick.
487			 */
488			if (state == CT_STATE_USER) {
489				instrumentation_begin();
490				trace_user_enter(0);
491				vtime_user_enter(current);
492				instrumentation_end();
493			}
494			/*
495			 * Other than generic entry implementation, we may be past the last
496			 * rescheduling opportunity in the entry code. Trigger a self IPI
497			 * that will fire and reschedule once we resume in user/guest mode.
498			 */
499			rcu_irq_work_resched();
500
501			/*
502			 * Enter RCU idle mode right before resuming userspace.  No use of RCU
503			 * is permitted between this call and rcu_eqs_exit(). This way the
504			 * CPU doesn't need to maintain the tick for RCU maintenance purposes
505			 * when the CPU runs in userspace.
506			 */
507			ct_kernel_exit(true, CT_RCU_WATCHING + state);
508
509			/*
510			 * Special case if we only track user <-> kernel transitions for tickless
511			 * cputime accounting but we don't support RCU extended quiescent state.
512			 * In this we case we don't care about any concurrency/ordering.
513			 */
514			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE))
515				raw_atomic_set(&ct->state, state);
516		} else {
517			/*
518			 * Even if context tracking is disabled on this CPU, because it's outside
519			 * the full dynticks mask for example, we still have to keep track of the
520			 * context transitions and states to prevent inconsistency on those of
521			 * other CPUs.
522			 * If a task triggers an exception in userspace, sleep on the exception
523			 * handler and then migrate to another CPU, that new CPU must know where
524			 * the exception returns by the time we call exception_exit().
525			 * This information can only be provided by the previous CPU when it called
526			 * exception_enter().
527			 * OTOH we can spare the calls to vtime and RCU when context_tracking.active
528			 * is false because we know that CPU is not tickless.
529			 */
530			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) {
531				/* Tracking for vtime only, no concurrent RCU EQS accounting */
532				raw_atomic_set(&ct->state, state);
533			} else {
534				/*
535				 * Tracking for vtime and RCU EQS. Make sure we don't race
536				 * with NMIs. OTOH we don't care about ordering here since
537				 * RCU only requires CT_RCU_WATCHING increments to be fully
538				 * ordered.
539				 */
540				raw_atomic_add(state, &ct->state);
541			}
542		}
543	}
544	context_tracking_recursion_exit();
545}
546EXPORT_SYMBOL_GPL(__ct_user_enter);
547
548/*
549 * OBSOLETE:
550 * This function should be noinstr but the below local_irq_restore() is
551 * unsafe because it involves illegal RCU uses through tracing and lockdep.
552 * This is unlikely to be fixed as this function is obsolete. The preferred
553 * way is to call __context_tracking_enter() through user_enter_irqoff()
554 * or context_tracking_guest_enter(). It should be the arch entry code
555 * responsibility to call into context tracking with IRQs disabled.
556 */
557void ct_user_enter(enum ctx_state state)
558{
559	unsigned long flags;
560
561	/*
562	 * Some contexts may involve an exception occuring in an irq,
563	 * leading to that nesting:
564	 * ct_irq_enter() rcu_eqs_exit(true) rcu_eqs_enter(true) ct_irq_exit()
565	 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
566	 * helpers are enough to protect RCU uses inside the exception. So
567	 * just return immediately if we detect we are in an IRQ.
568	 */
569	if (in_interrupt())
570		return;
571
572	local_irq_save(flags);
573	__ct_user_enter(state);
574	local_irq_restore(flags);
575}
576NOKPROBE_SYMBOL(ct_user_enter);
577EXPORT_SYMBOL_GPL(ct_user_enter);
578
579/**
580 * user_enter_callable() - Unfortunate ASM callable version of user_enter() for
581 *			   archs that didn't manage to check the context tracking
582 *			   static key from low level code.
583 *
584 * This OBSOLETE function should be noinstr but it unsafely calls
585 * local_irq_restore(), involving illegal RCU uses through tracing and lockdep.
586 * This is unlikely to be fixed as this function is obsolete. The preferred
587 * way is to call user_enter_irqoff(). It should be the arch entry code
588 * responsibility to call into context tracking with IRQs disabled.
589 */
590void user_enter_callable(void)
591{
592	user_enter();
593}
594NOKPROBE_SYMBOL(user_enter_callable);
595
596/**
597 * __ct_user_exit - Inform the context tracking that the CPU is
598 *		    exiting user or guest mode and entering the kernel.
599 *
600 * @state: userspace context-tracking state being exited from.
601 *
602 * This function must be called after we entered the kernel from user or
603 * guest space before any use of RCU read side critical section. This
604 * potentially include any high level kernel code like syscalls, exceptions,
605 * signal handling, etc...
606 *
607 * This call supports re-entrancy. This way it can be called from any exception
608 * handler without needing to know if we came from userspace or not.
609 */
610void noinstr __ct_user_exit(enum ctx_state state)
611{
612	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
613
614	if (!context_tracking_recursion_enter())
615		return;
616
617	if (__ct_state() == state) {
618		if (ct->active) {
619			/*
620			 * Exit RCU idle mode while entering the kernel because it can
621			 * run a RCU read side critical section anytime.
622			 */
623			ct_kernel_enter(true, CT_RCU_WATCHING - state);
624			if (state == CT_STATE_USER) {
625				instrumentation_begin();
626				vtime_user_exit(current);
627				trace_user_exit(0);
628				instrumentation_end();
629			}
630
631			/*
632			 * Special case if we only track user <-> kernel transitions for tickless
633			 * cputime accounting but we don't support RCU extended quiescent state.
634			 * In this we case we don't care about any concurrency/ordering.
635			 */
636			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE))
637				raw_atomic_set(&ct->state, CT_STATE_KERNEL);
638
639		} else {
640			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) {
641				/* Tracking for vtime only, no concurrent RCU EQS accounting */
642				raw_atomic_set(&ct->state, CT_STATE_KERNEL);
643			} else {
644				/*
645				 * Tracking for vtime and RCU EQS. Make sure we don't race
646				 * with NMIs. OTOH we don't care about ordering here since
647				 * RCU only requires CT_RCU_WATCHING increments to be fully
648				 * ordered.
649				 */
650				raw_atomic_sub(state, &ct->state);
651			}
652		}
653	}
654	context_tracking_recursion_exit();
655}
656EXPORT_SYMBOL_GPL(__ct_user_exit);
657
658/*
659 * OBSOLETE:
660 * This function should be noinstr but the below local_irq_save() is
661 * unsafe because it involves illegal RCU uses through tracing and lockdep.
662 * This is unlikely to be fixed as this function is obsolete. The preferred
663 * way is to call __context_tracking_exit() through user_exit_irqoff()
664 * or context_tracking_guest_exit(). It should be the arch entry code
665 * responsibility to call into context tracking with IRQs disabled.
666 */
667void ct_user_exit(enum ctx_state state)
668{
669	unsigned long flags;
670
671	if (in_interrupt())
672		return;
673
674	local_irq_save(flags);
675	__ct_user_exit(state);
676	local_irq_restore(flags);
677}
678NOKPROBE_SYMBOL(ct_user_exit);
679EXPORT_SYMBOL_GPL(ct_user_exit);
680
681/**
682 * user_exit_callable() - Unfortunate ASM callable version of user_exit() for
683 *			  archs that didn't manage to check the context tracking
684 *			  static key from low level code.
685 *
686 * This OBSOLETE function should be noinstr but it unsafely calls local_irq_save(),
687 * involving illegal RCU uses through tracing and lockdep. This is unlikely
688 * to be fixed as this function is obsolete. The preferred way is to call
689 * user_exit_irqoff(). It should be the arch entry code responsibility to
690 * call into context tracking with IRQs disabled.
691 */
692void user_exit_callable(void)
693{
694	user_exit();
695}
696NOKPROBE_SYMBOL(user_exit_callable);
697
698void __init ct_cpu_track_user(int cpu)
699{
700	static __initdata bool initialized = false;
701
702	if (!per_cpu(context_tracking.active, cpu)) {
703		per_cpu(context_tracking.active, cpu) = true;
704		static_branch_inc(&context_tracking_key);
705	}
706
707	if (initialized)
708		return;
709
710#ifdef CONFIG_HAVE_TIF_NOHZ
711	/*
712	 * Set TIF_NOHZ to init/0 and let it propagate to all tasks through fork
713	 * This assumes that init is the only task at this early boot stage.
714	 */
715	set_tsk_thread_flag(&init_task, TIF_NOHZ);
716#endif
717	WARN_ON_ONCE(!tasklist_empty());
718
719	initialized = true;
720}
721
722#ifdef CONFIG_CONTEXT_TRACKING_USER_FORCE
723void __init context_tracking_init(void)
724{
725	int cpu;
726
727	for_each_possible_cpu(cpu)
728		ct_cpu_track_user(cpu);
729}
730#endif
731
732#endif /* #ifdef CONFIG_CONTEXT_TRACKING_USER */
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Context tracking: Probe on high level context boundaries such as kernel,
  4 * userspace, guest or idle.
  5 *
  6 * This is used by RCU to remove its dependency on the timer tick while a CPU
  7 * runs in idle, userspace or guest mode.
  8 *
  9 * User/guest tracking started by Frederic Weisbecker:
 10 *
 11 * Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker
 12 *
 13 * Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton,
 14 * Steven Rostedt, Peter Zijlstra for suggestions and improvements.
 15 *
 16 * RCU extended quiescent state bits imported from kernel/rcu/tree.c
 17 * where the relevant authorship may be found.
 18 */
 19
 20#include <linux/context_tracking.h>
 21#include <linux/rcupdate.h>
 22#include <linux/sched.h>
 23#include <linux/hardirq.h>
 24#include <linux/export.h>
 25#include <linux/kprobes.h>
 26#include <trace/events/rcu.h>
 27
 28
 29DEFINE_PER_CPU(struct context_tracking, context_tracking) = {
 30#ifdef CONFIG_CONTEXT_TRACKING_IDLE
 31	.dynticks_nesting = 1,
 32	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
 33#endif
 34	.state = ATOMIC_INIT(RCU_DYNTICKS_IDX),
 35};
 36EXPORT_SYMBOL_GPL(context_tracking);
 37
 38#ifdef CONFIG_CONTEXT_TRACKING_IDLE
 39#define TPS(x)  tracepoint_string(x)
 40
 41/* Record the current task on dyntick-idle entry. */
 42static __always_inline void rcu_dynticks_task_enter(void)
 43{
 44#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
 45	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
 46#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
 47}
 48
 49/* Record no current task on dyntick-idle exit. */
 50static __always_inline void rcu_dynticks_task_exit(void)
 51{
 52#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
 53	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
 54#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
 55}
 56
 57/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
 58static __always_inline void rcu_dynticks_task_trace_enter(void)
 59{
 60#ifdef CONFIG_TASKS_TRACE_RCU
 61	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
 62		current->trc_reader_special.b.need_mb = true;
 63#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 64}
 65
 66/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
 67static __always_inline void rcu_dynticks_task_trace_exit(void)
 68{
 69#ifdef CONFIG_TASKS_TRACE_RCU
 70	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
 71		current->trc_reader_special.b.need_mb = false;
 72#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 73}
 74
 75/*
 76 * Record entry into an extended quiescent state.  This is only to be
 77 * called when not already in an extended quiescent state, that is,
 78 * RCU is watching prior to the call to this function and is no longer
 79 * watching upon return.
 80 */
 81static noinstr void ct_kernel_exit_state(int offset)
 82{
 83	int seq;
 84
 85	/*
 86	 * CPUs seeing atomic_add_return() must see prior RCU read-side
 87	 * critical sections, and we also must force ordering with the
 88	 * next idle sojourn.
 89	 */
 90	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
 91	seq = ct_state_inc(offset);
 92	// RCU is no longer watching.  Better be in extended quiescent state!
 93	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & RCU_DYNTICKS_IDX));
 94}
 95
 96/*
 97 * Record exit from an extended quiescent state.  This is only to be
 98 * called from an extended quiescent state, that is, RCU is not watching
 99 * prior to the call to this function and is watching upon return.
100 */
101static noinstr void ct_kernel_enter_state(int offset)
102{
103	int seq;
104
105	/*
106	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
107	 * and we also must force ordering with the next RCU read-side
108	 * critical section.
109	 */
110	seq = ct_state_inc(offset);
111	// RCU is now watching.  Better not be in an extended quiescent state!
112	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
113	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & RCU_DYNTICKS_IDX));
114}
115
116/*
117 * Enter an RCU extended quiescent state, which can be either the
118 * idle loop or adaptive-tickless usermode execution.
119 *
120 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
121 * the possibility of usermode upcalls having messed up our count
122 * of interrupt nesting level during the prior busy period.
123 */
124static void noinstr ct_kernel_exit(bool user, int offset)
125{
126	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
127
128	WARN_ON_ONCE(ct_dynticks_nmi_nesting() != DYNTICK_IRQ_NONIDLE);
129	WRITE_ONCE(ct->dynticks_nmi_nesting, 0);
130	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
131		     ct_dynticks_nesting() == 0);
132	if (ct_dynticks_nesting() != 1) {
133		// RCU will still be watching, so just do accounting and leave.
134		ct->dynticks_nesting--;
135		return;
136	}
137
138	instrumentation_begin();
139	lockdep_assert_irqs_disabled();
140	trace_rcu_dyntick(TPS("Start"), ct_dynticks_nesting(), 0, ct_dynticks());
141	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
142	rcu_preempt_deferred_qs(current);
143
144	// instrumentation for the noinstr ct_kernel_exit_state()
145	instrument_atomic_write(&ct->state, sizeof(ct->state));
146
147	instrumentation_end();
148	WRITE_ONCE(ct->dynticks_nesting, 0); /* Avoid irq-access tearing. */
149	// RCU is watching here ...
150	ct_kernel_exit_state(offset);
151	// ... but is no longer watching here.
152	rcu_dynticks_task_enter();
153}
154
155/*
156 * Exit an RCU extended quiescent state, which can be either the
157 * idle loop or adaptive-tickless usermode execution.
158 *
159 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
160 * allow for the possibility of usermode upcalls messing up our count of
161 * interrupt nesting level during the busy period that is just now starting.
162 */
163static void noinstr ct_kernel_enter(bool user, int offset)
164{
165	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
166	long oldval;
167
168	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled());
169	oldval = ct_dynticks_nesting();
170	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
171	if (oldval) {
172		// RCU was already watching, so just do accounting and leave.
173		ct->dynticks_nesting++;
174		return;
175	}
176	rcu_dynticks_task_exit();
177	// RCU is not watching here ...
178	ct_kernel_enter_state(offset);
179	// ... but is watching here.
180	instrumentation_begin();
181
182	// instrumentation for the noinstr ct_kernel_enter_state()
183	instrument_atomic_write(&ct->state, sizeof(ct->state));
184
185	trace_rcu_dyntick(TPS("End"), ct_dynticks_nesting(), 1, ct_dynticks());
186	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
187	WRITE_ONCE(ct->dynticks_nesting, 1);
188	WARN_ON_ONCE(ct_dynticks_nmi_nesting());
189	WRITE_ONCE(ct->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
190	instrumentation_end();
191}
192
193/**
194 * ct_nmi_exit - inform RCU of exit from NMI context
195 *
196 * If we are returning from the outermost NMI handler that interrupted an
197 * RCU-idle period, update ct->state and ct->dynticks_nmi_nesting
198 * to let the RCU grace-period handling know that the CPU is back to
199 * being RCU-idle.
200 *
201 * If you add or remove a call to ct_nmi_exit(), be sure to test
202 * with CONFIG_RCU_EQS_DEBUG=y.
203 */
204void noinstr ct_nmi_exit(void)
205{
206	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
207
208	instrumentation_begin();
209	/*
210	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
211	 * (We are exiting an NMI handler, so RCU better be paying attention
212	 * to us!)
213	 */
214	WARN_ON_ONCE(ct_dynticks_nmi_nesting() <= 0);
215	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
216
217	/*
218	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
219	 * leave it in non-RCU-idle state.
220	 */
221	if (ct_dynticks_nmi_nesting() != 1) {
222		trace_rcu_dyntick(TPS("--="), ct_dynticks_nmi_nesting(), ct_dynticks_nmi_nesting() - 2,
223				  ct_dynticks());
224		WRITE_ONCE(ct->dynticks_nmi_nesting, /* No store tearing. */
225			   ct_dynticks_nmi_nesting() - 2);
226		instrumentation_end();
227		return;
228	}
229
230	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
231	trace_rcu_dyntick(TPS("Startirq"), ct_dynticks_nmi_nesting(), 0, ct_dynticks());
232	WRITE_ONCE(ct->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
233
234	// instrumentation for the noinstr ct_kernel_exit_state()
235	instrument_atomic_write(&ct->state, sizeof(ct->state));
236	instrumentation_end();
237
238	// RCU is watching here ...
239	ct_kernel_exit_state(RCU_DYNTICKS_IDX);
240	// ... but is no longer watching here.
241
242	if (!in_nmi())
243		rcu_dynticks_task_enter();
244}
245
246/**
247 * ct_nmi_enter - inform RCU of entry to NMI context
248 *
249 * If the CPU was idle from RCU's viewpoint, update ct->state and
250 * ct->dynticks_nmi_nesting to let the RCU grace-period handling know
251 * that the CPU is active.  This implementation permits nested NMIs, as
252 * long as the nesting level does not overflow an int.  (You will probably
253 * run out of stack space first.)
254 *
255 * If you add or remove a call to ct_nmi_enter(), be sure to test
256 * with CONFIG_RCU_EQS_DEBUG=y.
257 */
258void noinstr ct_nmi_enter(void)
259{
260	long incby = 2;
261	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
262
263	/* Complain about underflow. */
264	WARN_ON_ONCE(ct_dynticks_nmi_nesting() < 0);
265
266	/*
267	 * If idle from RCU viewpoint, atomically increment ->dynticks
268	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
269	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
270	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
271	 * to be in the outermost NMI handler that interrupted an RCU-idle
272	 * period (observation due to Andy Lutomirski).
273	 */
274	if (rcu_dynticks_curr_cpu_in_eqs()) {
275
276		if (!in_nmi())
277			rcu_dynticks_task_exit();
278
279		// RCU is not watching here ...
280		ct_kernel_enter_state(RCU_DYNTICKS_IDX);
281		// ... but is watching here.
282
283		instrumentation_begin();
284		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
285		instrument_atomic_read(&ct->state, sizeof(ct->state));
286		// instrumentation for the noinstr ct_kernel_enter_state()
287		instrument_atomic_write(&ct->state, sizeof(ct->state));
288
289		incby = 1;
290	} else if (!in_nmi()) {
291		instrumentation_begin();
292		rcu_irq_enter_check_tick();
293	} else  {
294		instrumentation_begin();
295	}
296
297	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
298			  ct_dynticks_nmi_nesting(),
299			  ct_dynticks_nmi_nesting() + incby, ct_dynticks());
300	instrumentation_end();
301	WRITE_ONCE(ct->dynticks_nmi_nesting, /* Prevent store tearing. */
302		   ct_dynticks_nmi_nesting() + incby);
303	barrier();
304}
305
306/**
307 * ct_idle_enter - inform RCU that current CPU is entering idle
308 *
309 * Enter idle mode, in other words, -leave- the mode in which RCU
310 * read-side critical sections can occur.  (Though RCU read-side
311 * critical sections can occur in irq handlers in idle, a possibility
312 * handled by irq_enter() and irq_exit().)
313 *
314 * If you add or remove a call to ct_idle_enter(), be sure to test with
315 * CONFIG_RCU_EQS_DEBUG=y.
316 */
317void noinstr ct_idle_enter(void)
318{
319	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled());
320	ct_kernel_exit(false, RCU_DYNTICKS_IDX + CONTEXT_IDLE);
321}
322EXPORT_SYMBOL_GPL(ct_idle_enter);
323
324/**
325 * ct_idle_exit - inform RCU that current CPU is leaving idle
326 *
327 * Exit idle mode, in other words, -enter- the mode in which RCU
328 * read-side critical sections can occur.
329 *
330 * If you add or remove a call to ct_idle_exit(), be sure to test with
331 * CONFIG_RCU_EQS_DEBUG=y.
332 */
333void noinstr ct_idle_exit(void)
334{
335	unsigned long flags;
336
337	raw_local_irq_save(flags);
338	ct_kernel_enter(false, RCU_DYNTICKS_IDX - CONTEXT_IDLE);
339	raw_local_irq_restore(flags);
340}
341EXPORT_SYMBOL_GPL(ct_idle_exit);
342
343/**
344 * ct_irq_enter - inform RCU that current CPU is entering irq away from idle
345 *
346 * Enter an interrupt handler, which might possibly result in exiting
347 * idle mode, in other words, entering the mode in which read-side critical
348 * sections can occur.  The caller must have disabled interrupts.
349 *
350 * Note that the Linux kernel is fully capable of entering an interrupt
351 * handler that it never exits, for example when doing upcalls to user mode!
352 * This code assumes that the idle loop never does upcalls to user mode.
353 * If your architecture's idle loop does do upcalls to user mode (or does
354 * anything else that results in unbalanced calls to the irq_enter() and
355 * irq_exit() functions), RCU will give you what you deserve, good and hard.
356 * But very infrequently and irreproducibly.
357 *
358 * Use things like work queues to work around this limitation.
359 *
360 * You have been warned.
361 *
362 * If you add or remove a call to ct_irq_enter(), be sure to test with
363 * CONFIG_RCU_EQS_DEBUG=y.
364 */
365noinstr void ct_irq_enter(void)
366{
367	lockdep_assert_irqs_disabled();
368	ct_nmi_enter();
369}
370
371/**
372 * ct_irq_exit - inform RCU that current CPU is exiting irq towards idle
373 *
374 * Exit from an interrupt handler, which might possibly result in entering
375 * idle mode, in other words, leaving the mode in which read-side critical
376 * sections can occur.  The caller must have disabled interrupts.
377 *
378 * This code assumes that the idle loop never does anything that might
379 * result in unbalanced calls to irq_enter() and irq_exit().  If your
380 * architecture's idle loop violates this assumption, RCU will give you what
381 * you deserve, good and hard.  But very infrequently and irreproducibly.
382 *
383 * Use things like work queues to work around this limitation.
384 *
385 * You have been warned.
386 *
387 * If you add or remove a call to ct_irq_exit(), be sure to test with
388 * CONFIG_RCU_EQS_DEBUG=y.
389 */
390noinstr void ct_irq_exit(void)
391{
392	lockdep_assert_irqs_disabled();
393	ct_nmi_exit();
394}
395
396/*
397 * Wrapper for ct_irq_enter() where interrupts are enabled.
398 *
399 * If you add or remove a call to ct_irq_enter_irqson(), be sure to test
400 * with CONFIG_RCU_EQS_DEBUG=y.
401 */
402void ct_irq_enter_irqson(void)
403{
404	unsigned long flags;
405
406	local_irq_save(flags);
407	ct_irq_enter();
408	local_irq_restore(flags);
409}
410
411/*
412 * Wrapper for ct_irq_exit() where interrupts are enabled.
413 *
414 * If you add or remove a call to ct_irq_exit_irqson(), be sure to test
415 * with CONFIG_RCU_EQS_DEBUG=y.
416 */
417void ct_irq_exit_irqson(void)
418{
419	unsigned long flags;
420
421	local_irq_save(flags);
422	ct_irq_exit();
423	local_irq_restore(flags);
424}
425#else
426static __always_inline void ct_kernel_exit(bool user, int offset) { }
427static __always_inline void ct_kernel_enter(bool user, int offset) { }
428#endif /* #ifdef CONFIG_CONTEXT_TRACKING_IDLE */
429
430#ifdef CONFIG_CONTEXT_TRACKING_USER
431
432#define CREATE_TRACE_POINTS
433#include <trace/events/context_tracking.h>
434
435DEFINE_STATIC_KEY_FALSE(context_tracking_key);
436EXPORT_SYMBOL_GPL(context_tracking_key);
437
438static noinstr bool context_tracking_recursion_enter(void)
439{
440	int recursion;
441
442	recursion = __this_cpu_inc_return(context_tracking.recursion);
443	if (recursion == 1)
444		return true;
445
446	WARN_ONCE((recursion < 1), "Invalid context tracking recursion value %d\n", recursion);
447	__this_cpu_dec(context_tracking.recursion);
448
449	return false;
450}
451
452static __always_inline void context_tracking_recursion_exit(void)
453{
454	__this_cpu_dec(context_tracking.recursion);
455}
456
457/**
458 * __ct_user_enter - Inform the context tracking that the CPU is going
459 *		     to enter user or guest space mode.
460 *
 
 
461 * This function must be called right before we switch from the kernel
462 * to user or guest space, when it's guaranteed the remaining kernel
463 * instructions to execute won't use any RCU read side critical section
464 * because this function sets RCU in extended quiescent state.
465 */
466void noinstr __ct_user_enter(enum ctx_state state)
467{
468	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
469	lockdep_assert_irqs_disabled();
470
471	/* Kernel threads aren't supposed to go to userspace */
472	WARN_ON_ONCE(!current->mm);
473
474	if (!context_tracking_recursion_enter())
475		return;
476
477	if (__ct_state() != state) {
478		if (ct->active) {
479			/*
480			 * At this stage, only low level arch entry code remains and
481			 * then we'll run in userspace. We can assume there won't be
482			 * any RCU read-side critical section until the next call to
483			 * user_exit() or ct_irq_enter(). Let's remove RCU's dependency
484			 * on the tick.
485			 */
486			if (state == CONTEXT_USER) {
487				instrumentation_begin();
488				trace_user_enter(0);
489				vtime_user_enter(current);
490				instrumentation_end();
491			}
492			/*
493			 * Other than generic entry implementation, we may be past the last
494			 * rescheduling opportunity in the entry code. Trigger a self IPI
495			 * that will fire and reschedule once we resume in user/guest mode.
496			 */
497			rcu_irq_work_resched();
498
499			/*
500			 * Enter RCU idle mode right before resuming userspace.  No use of RCU
501			 * is permitted between this call and rcu_eqs_exit(). This way the
502			 * CPU doesn't need to maintain the tick for RCU maintenance purposes
503			 * when the CPU runs in userspace.
504			 */
505			ct_kernel_exit(true, RCU_DYNTICKS_IDX + state);
506
507			/*
508			 * Special case if we only track user <-> kernel transitions for tickless
509			 * cputime accounting but we don't support RCU extended quiescent state.
510			 * In this we case we don't care about any concurrency/ordering.
511			 */
512			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE))
513				raw_atomic_set(&ct->state, state);
514		} else {
515			/*
516			 * Even if context tracking is disabled on this CPU, because it's outside
517			 * the full dynticks mask for example, we still have to keep track of the
518			 * context transitions and states to prevent inconsistency on those of
519			 * other CPUs.
520			 * If a task triggers an exception in userspace, sleep on the exception
521			 * handler and then migrate to another CPU, that new CPU must know where
522			 * the exception returns by the time we call exception_exit().
523			 * This information can only be provided by the previous CPU when it called
524			 * exception_enter().
525			 * OTOH we can spare the calls to vtime and RCU when context_tracking.active
526			 * is false because we know that CPU is not tickless.
527			 */
528			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) {
529				/* Tracking for vtime only, no concurrent RCU EQS accounting */
530				raw_atomic_set(&ct->state, state);
531			} else {
532				/*
533				 * Tracking for vtime and RCU EQS. Make sure we don't race
534				 * with NMIs. OTOH we don't care about ordering here since
535				 * RCU only requires RCU_DYNTICKS_IDX increments to be fully
536				 * ordered.
537				 */
538				raw_atomic_add(state, &ct->state);
539			}
540		}
541	}
542	context_tracking_recursion_exit();
543}
544EXPORT_SYMBOL_GPL(__ct_user_enter);
545
546/*
547 * OBSOLETE:
548 * This function should be noinstr but the below local_irq_restore() is
549 * unsafe because it involves illegal RCU uses through tracing and lockdep.
550 * This is unlikely to be fixed as this function is obsolete. The preferred
551 * way is to call __context_tracking_enter() through user_enter_irqoff()
552 * or context_tracking_guest_enter(). It should be the arch entry code
553 * responsibility to call into context tracking with IRQs disabled.
554 */
555void ct_user_enter(enum ctx_state state)
556{
557	unsigned long flags;
558
559	/*
560	 * Some contexts may involve an exception occuring in an irq,
561	 * leading to that nesting:
562	 * ct_irq_enter() rcu_eqs_exit(true) rcu_eqs_enter(true) ct_irq_exit()
563	 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
564	 * helpers are enough to protect RCU uses inside the exception. So
565	 * just return immediately if we detect we are in an IRQ.
566	 */
567	if (in_interrupt())
568		return;
569
570	local_irq_save(flags);
571	__ct_user_enter(state);
572	local_irq_restore(flags);
573}
574NOKPROBE_SYMBOL(ct_user_enter);
575EXPORT_SYMBOL_GPL(ct_user_enter);
576
577/**
578 * user_enter_callable() - Unfortunate ASM callable version of user_enter() for
579 *			   archs that didn't manage to check the context tracking
580 *			   static key from low level code.
581 *
582 * This OBSOLETE function should be noinstr but it unsafely calls
583 * local_irq_restore(), involving illegal RCU uses through tracing and lockdep.
584 * This is unlikely to be fixed as this function is obsolete. The preferred
585 * way is to call user_enter_irqoff(). It should be the arch entry code
586 * responsibility to call into context tracking with IRQs disabled.
587 */
588void user_enter_callable(void)
589{
590	user_enter();
591}
592NOKPROBE_SYMBOL(user_enter_callable);
593
594/**
595 * __ct_user_exit - Inform the context tracking that the CPU is
596 *		    exiting user or guest mode and entering the kernel.
597 *
 
 
598 * This function must be called after we entered the kernel from user or
599 * guest space before any use of RCU read side critical section. This
600 * potentially include any high level kernel code like syscalls, exceptions,
601 * signal handling, etc...
602 *
603 * This call supports re-entrancy. This way it can be called from any exception
604 * handler without needing to know if we came from userspace or not.
605 */
606void noinstr __ct_user_exit(enum ctx_state state)
607{
608	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
609
610	if (!context_tracking_recursion_enter())
611		return;
612
613	if (__ct_state() == state) {
614		if (ct->active) {
615			/*
616			 * Exit RCU idle mode while entering the kernel because it can
617			 * run a RCU read side critical section anytime.
618			 */
619			ct_kernel_enter(true, RCU_DYNTICKS_IDX - state);
620			if (state == CONTEXT_USER) {
621				instrumentation_begin();
622				vtime_user_exit(current);
623				trace_user_exit(0);
624				instrumentation_end();
625			}
626
627			/*
628			 * Special case if we only track user <-> kernel transitions for tickless
629			 * cputime accounting but we don't support RCU extended quiescent state.
630			 * In this we case we don't care about any concurrency/ordering.
631			 */
632			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE))
633				raw_atomic_set(&ct->state, CONTEXT_KERNEL);
634
635		} else {
636			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) {
637				/* Tracking for vtime only, no concurrent RCU EQS accounting */
638				raw_atomic_set(&ct->state, CONTEXT_KERNEL);
639			} else {
640				/*
641				 * Tracking for vtime and RCU EQS. Make sure we don't race
642				 * with NMIs. OTOH we don't care about ordering here since
643				 * RCU only requires RCU_DYNTICKS_IDX increments to be fully
644				 * ordered.
645				 */
646				raw_atomic_sub(state, &ct->state);
647			}
648		}
649	}
650	context_tracking_recursion_exit();
651}
652EXPORT_SYMBOL_GPL(__ct_user_exit);
653
654/*
655 * OBSOLETE:
656 * This function should be noinstr but the below local_irq_save() is
657 * unsafe because it involves illegal RCU uses through tracing and lockdep.
658 * This is unlikely to be fixed as this function is obsolete. The preferred
659 * way is to call __context_tracking_exit() through user_exit_irqoff()
660 * or context_tracking_guest_exit(). It should be the arch entry code
661 * responsibility to call into context tracking with IRQs disabled.
662 */
663void ct_user_exit(enum ctx_state state)
664{
665	unsigned long flags;
666
667	if (in_interrupt())
668		return;
669
670	local_irq_save(flags);
671	__ct_user_exit(state);
672	local_irq_restore(flags);
673}
674NOKPROBE_SYMBOL(ct_user_exit);
675EXPORT_SYMBOL_GPL(ct_user_exit);
676
677/**
678 * user_exit_callable() - Unfortunate ASM callable version of user_exit() for
679 *			  archs that didn't manage to check the context tracking
680 *			  static key from low level code.
681 *
682 * This OBSOLETE function should be noinstr but it unsafely calls local_irq_save(),
683 * involving illegal RCU uses through tracing and lockdep. This is unlikely
684 * to be fixed as this function is obsolete. The preferred way is to call
685 * user_exit_irqoff(). It should be the arch entry code responsibility to
686 * call into context tracking with IRQs disabled.
687 */
688void user_exit_callable(void)
689{
690	user_exit();
691}
692NOKPROBE_SYMBOL(user_exit_callable);
693
694void __init ct_cpu_track_user(int cpu)
695{
696	static __initdata bool initialized = false;
697
698	if (!per_cpu(context_tracking.active, cpu)) {
699		per_cpu(context_tracking.active, cpu) = true;
700		static_branch_inc(&context_tracking_key);
701	}
702
703	if (initialized)
704		return;
705
706#ifdef CONFIG_HAVE_TIF_NOHZ
707	/*
708	 * Set TIF_NOHZ to init/0 and let it propagate to all tasks through fork
709	 * This assumes that init is the only task at this early boot stage.
710	 */
711	set_tsk_thread_flag(&init_task, TIF_NOHZ);
712#endif
713	WARN_ON_ONCE(!tasklist_empty());
714
715	initialized = true;
716}
717
718#ifdef CONFIG_CONTEXT_TRACKING_USER_FORCE
719void __init context_tracking_init(void)
720{
721	int cpu;
722
723	for_each_possible_cpu(cpu)
724		ct_cpu_track_user(cpu);
725}
726#endif
727
728#endif /* #ifdef CONFIG_CONTEXT_TRACKING_USER */