Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Shared application/kernel submission and completion ring pairs, for
   4 * supporting fast/efficient IO.
   5 *
   6 * A note on the read/write ordering memory barriers that are matched between
   7 * the application and kernel side.
   8 *
   9 * After the application reads the CQ ring tail, it must use an
  10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
  11 * before writing the tail (using smp_load_acquire to read the tail will
  12 * do). It also needs a smp_mb() before updating CQ head (ordering the
  13 * entry load(s) with the head store), pairing with an implicit barrier
  14 * through a control-dependency in io_get_cqe (smp_store_release to
  15 * store head will do). Failure to do so could lead to reading invalid
  16 * CQ entries.
  17 *
  18 * Likewise, the application must use an appropriate smp_wmb() before
  19 * writing the SQ tail (ordering SQ entry stores with the tail store),
  20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
  21 * to store the tail will do). And it needs a barrier ordering the SQ
  22 * head load before writing new SQ entries (smp_load_acquire to read
  23 * head will do).
  24 *
  25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
  26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
  27 * updating the SQ tail; a full memory barrier smp_mb() is needed
  28 * between.
  29 *
  30 * Also see the examples in the liburing library:
  31 *
  32 *	git://git.kernel.dk/liburing
  33 *
  34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
  35 * from data shared between the kernel and application. This is done both
  36 * for ordering purposes, but also to ensure that once a value is loaded from
  37 * data that the application could potentially modify, it remains stable.
  38 *
  39 * Copyright (C) 2018-2019 Jens Axboe
  40 * Copyright (c) 2018-2019 Christoph Hellwig
  41 */
  42#include <linux/kernel.h>
  43#include <linux/init.h>
  44#include <linux/errno.h>
  45#include <linux/syscalls.h>
  46#include <net/compat.h>
  47#include <linux/refcount.h>
  48#include <linux/uio.h>
  49#include <linux/bits.h>
  50
  51#include <linux/sched/signal.h>
  52#include <linux/fs.h>
  53#include <linux/file.h>
 
  54#include <linux/mm.h>
  55#include <linux/mman.h>
  56#include <linux/percpu.h>
  57#include <linux/slab.h>
  58#include <linux/bvec.h>
  59#include <linux/net.h>
  60#include <net/sock.h>
 
  61#include <linux/anon_inodes.h>
  62#include <linux/sched/mm.h>
  63#include <linux/uaccess.h>
  64#include <linux/nospec.h>
 
  65#include <linux/fsnotify.h>
  66#include <linux/fadvise.h>
  67#include <linux/task_work.h>
  68#include <linux/io_uring.h>
  69#include <linux/io_uring/cmd.h>
  70#include <linux/audit.h>
  71#include <linux/security.h>
  72#include <linux/jump_label.h>
  73#include <asm/shmparam.h>
  74
  75#define CREATE_TRACE_POINTS
  76#include <trace/events/io_uring.h>
  77
  78#include <uapi/linux/io_uring.h>
  79
  80#include "io-wq.h"
  81
  82#include "io_uring.h"
  83#include "opdef.h"
  84#include "refs.h"
  85#include "tctx.h"
  86#include "register.h"
  87#include "sqpoll.h"
  88#include "fdinfo.h"
  89#include "kbuf.h"
  90#include "rsrc.h"
  91#include "cancel.h"
  92#include "net.h"
  93#include "notif.h"
  94#include "waitid.h"
  95#include "futex.h"
  96#include "napi.h"
  97#include "uring_cmd.h"
  98#include "msg_ring.h"
  99#include "memmap.h"
 100
 101#include "timeout.h"
 102#include "poll.h"
 103#include "rw.h"
 104#include "alloc_cache.h"
 105#include "eventfd.h"
 
 
 106
 107#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
 108			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
 109
 110#define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
 111			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
 112
 113#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
 114				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
 115				REQ_F_ASYNC_DATA)
 116
 117#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
 118				 IO_REQ_CLEAN_FLAGS)
 119
 120#define IO_TCTX_REFS_CACHE_NR	(1U << 10)
 121
 122#define IO_COMPL_BATCH			32
 123#define IO_REQ_ALLOC_BATCH		8
 124#define IO_LOCAL_TW_DEFAULT_MAX		20
 
 
 
 
 125
 126struct io_defer_entry {
 127	struct list_head	list;
 128	struct io_kiocb		*req;
 129	u32			seq;
 130};
 131
 132/* requests with any of those set should undergo io_disarm_next() */
 133#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
 134#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
 135
 136/*
 137 * No waiters. It's larger than any valid value of the tw counter
 138 * so that tests against ->cq_wait_nr would fail and skip wake_up().
 139 */
 140#define IO_CQ_WAKE_INIT		(-1U)
 141/* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
 142#define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
 143
 144static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
 145					 struct io_uring_task *tctx,
 146					 bool cancel_all);
 147
 148static void io_queue_sqe(struct io_kiocb *req);
 149
 150static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
 151
 152struct kmem_cache *req_cachep;
 153static struct workqueue_struct *iou_wq __ro_after_init;
 154
 155static int __read_mostly sysctl_io_uring_disabled;
 156static int __read_mostly sysctl_io_uring_group = -1;
 157
 158#ifdef CONFIG_SYSCTL
 159static struct ctl_table kernel_io_uring_disabled_table[] = {
 160	{
 161		.procname	= "io_uring_disabled",
 162		.data		= &sysctl_io_uring_disabled,
 163		.maxlen		= sizeof(sysctl_io_uring_disabled),
 164		.mode		= 0644,
 165		.proc_handler	= proc_dointvec_minmax,
 166		.extra1		= SYSCTL_ZERO,
 167		.extra2		= SYSCTL_TWO,
 168	},
 169	{
 170		.procname	= "io_uring_group",
 171		.data		= &sysctl_io_uring_group,
 172		.maxlen		= sizeof(gid_t),
 173		.mode		= 0644,
 174		.proc_handler	= proc_dointvec,
 175	},
 
 176};
 177#endif
 178
 
 
 
 
 
 
 
 179static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
 180{
 181	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
 182}
 183
 184static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
 185{
 186	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
 187}
 188
 189static bool io_match_linked(struct io_kiocb *head)
 190{
 191	struct io_kiocb *req;
 192
 193	io_for_each_link(req, head) {
 194		if (req->flags & REQ_F_INFLIGHT)
 195			return true;
 196	}
 197	return false;
 198}
 199
 200/*
 201 * As io_match_task() but protected against racing with linked timeouts.
 202 * User must not hold timeout_lock.
 203 */
 204bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
 205			bool cancel_all)
 206{
 207	bool matched;
 208
 209	if (tctx && head->tctx != tctx)
 210		return false;
 211	if (cancel_all)
 212		return true;
 213
 214	if (head->flags & REQ_F_LINK_TIMEOUT) {
 215		struct io_ring_ctx *ctx = head->ctx;
 216
 217		/* protect against races with linked timeouts */
 218		raw_spin_lock_irq(&ctx->timeout_lock);
 219		matched = io_match_linked(head);
 220		raw_spin_unlock_irq(&ctx->timeout_lock);
 221	} else {
 222		matched = io_match_linked(head);
 223	}
 224	return matched;
 225}
 226
 227static inline void req_fail_link_node(struct io_kiocb *req, int res)
 228{
 229	req_set_fail(req);
 230	io_req_set_res(req, res, 0);
 231}
 232
 233static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
 234{
 235	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
 236}
 237
 238static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
 239{
 240	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
 241
 242	complete(&ctx->ref_comp);
 243}
 244
 245static __cold void io_fallback_req_func(struct work_struct *work)
 246{
 247	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
 248						fallback_work.work);
 249	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
 250	struct io_kiocb *req, *tmp;
 251	struct io_tw_state ts = {};
 252
 253	percpu_ref_get(&ctx->refs);
 254	mutex_lock(&ctx->uring_lock);
 255	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
 256		req->io_task_work.func(req, &ts);
 
 
 257	io_submit_flush_completions(ctx);
 258	mutex_unlock(&ctx->uring_lock);
 259	percpu_ref_put(&ctx->refs);
 260}
 261
 262static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
 263{
 264	unsigned int hash_buckets;
 265	int i;
 266
 267	do {
 268		hash_buckets = 1U << bits;
 269		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
 270						GFP_KERNEL_ACCOUNT);
 271		if (table->hbs)
 272			break;
 273		if (bits == 1)
 274			return -ENOMEM;
 275		bits--;
 276	} while (1);
 277
 278	table->hash_bits = bits;
 279	for (i = 0; i < hash_buckets; i++)
 280		INIT_HLIST_HEAD(&table->hbs[i].list);
 281	return 0;
 282}
 283
 284static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
 285{
 286	struct io_ring_ctx *ctx;
 287	int hash_bits;
 288	bool ret;
 289
 290	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 291	if (!ctx)
 292		return NULL;
 293
 294	xa_init(&ctx->io_bl_xa);
 295
 296	/*
 297	 * Use 5 bits less than the max cq entries, that should give us around
 298	 * 32 entries per hash list if totally full and uniformly spread, but
 299	 * don't keep too many buckets to not overconsume memory.
 300	 */
 301	hash_bits = ilog2(p->cq_entries) - 5;
 302	hash_bits = clamp(hash_bits, 1, 8);
 303	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
 304		goto err;
 
 
 305	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
 306			    0, GFP_KERNEL))
 307		goto err;
 308
 309	ctx->flags = p->flags;
 310	ctx->hybrid_poll_time = LLONG_MAX;
 311	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
 312	init_waitqueue_head(&ctx->sqo_sq_wait);
 313	INIT_LIST_HEAD(&ctx->sqd_list);
 314	INIT_LIST_HEAD(&ctx->cq_overflow_list);
 315	INIT_LIST_HEAD(&ctx->io_buffers_cache);
 316	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
 
 
 
 317			    sizeof(struct async_poll));
 318	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
 319			    sizeof(struct io_async_msghdr));
 320	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
 321			    sizeof(struct io_async_rw));
 322	ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
 323			    sizeof(struct io_uring_cmd_data));
 324	spin_lock_init(&ctx->msg_lock);
 325	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
 326			    sizeof(struct io_kiocb));
 327	ret |= io_futex_cache_init(ctx);
 328	if (ret)
 329		goto free_ref;
 330	init_completion(&ctx->ref_comp);
 331	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
 332	mutex_init(&ctx->uring_lock);
 333	init_waitqueue_head(&ctx->cq_wait);
 334	init_waitqueue_head(&ctx->poll_wq);
 
 335	spin_lock_init(&ctx->completion_lock);
 336	raw_spin_lock_init(&ctx->timeout_lock);
 337	INIT_WQ_LIST(&ctx->iopoll_list);
 338	INIT_LIST_HEAD(&ctx->io_buffers_comp);
 339	INIT_LIST_HEAD(&ctx->defer_list);
 340	INIT_LIST_HEAD(&ctx->timeout_list);
 341	INIT_LIST_HEAD(&ctx->ltimeout_list);
 
 342	init_llist_head(&ctx->work_llist);
 343	INIT_LIST_HEAD(&ctx->tctx_list);
 344	ctx->submit_state.free_list.next = NULL;
 
 345	INIT_HLIST_HEAD(&ctx->waitid_list);
 346#ifdef CONFIG_FUTEX
 347	INIT_HLIST_HEAD(&ctx->futex_list);
 348#endif
 349	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
 350	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
 351	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
 352	io_napi_init(ctx);
 353	mutex_init(&ctx->resize_lock);
 354
 355	return ctx;
 356
 357free_ref:
 358	percpu_ref_exit(&ctx->refs);
 359err:
 360	io_alloc_cache_free(&ctx->apoll_cache, kfree);
 361	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
 362	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
 363	io_alloc_cache_free(&ctx->uring_cache, kfree);
 364	io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
 365	io_futex_cache_free(ctx);
 366	kvfree(ctx->cancel_table.hbs);
 367	xa_destroy(&ctx->io_bl_xa);
 368	kfree(ctx);
 369	return NULL;
 370}
 371
 372static void io_account_cq_overflow(struct io_ring_ctx *ctx)
 373{
 374	struct io_rings *r = ctx->rings;
 375
 376	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
 377	ctx->cq_extra--;
 378}
 379
 380static bool req_need_defer(struct io_kiocb *req, u32 seq)
 381{
 382	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
 383		struct io_ring_ctx *ctx = req->ctx;
 384
 385		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
 386	}
 387
 388	return false;
 389}
 390
 391static void io_clean_op(struct io_kiocb *req)
 392{
 393	if (req->flags & REQ_F_BUFFER_SELECTED) {
 394		spin_lock(&req->ctx->completion_lock);
 395		io_kbuf_drop(req);
 396		spin_unlock(&req->ctx->completion_lock);
 397	}
 398
 399	if (req->flags & REQ_F_NEED_CLEANUP) {
 400		const struct io_cold_def *def = &io_cold_defs[req->opcode];
 401
 402		if (def->cleanup)
 403			def->cleanup(req);
 404	}
 405	if ((req->flags & REQ_F_POLLED) && req->apoll) {
 406		kfree(req->apoll->double_poll);
 407		kfree(req->apoll);
 408		req->apoll = NULL;
 409	}
 410	if (req->flags & REQ_F_INFLIGHT)
 411		atomic_dec(&req->tctx->inflight_tracked);
 
 
 
 412	if (req->flags & REQ_F_CREDS)
 413		put_cred(req->creds);
 414	if (req->flags & REQ_F_ASYNC_DATA) {
 415		kfree(req->async_data);
 416		req->async_data = NULL;
 417	}
 418	req->flags &= ~IO_REQ_CLEAN_FLAGS;
 419}
 420
 421static inline void io_req_track_inflight(struct io_kiocb *req)
 422{
 423	if (!(req->flags & REQ_F_INFLIGHT)) {
 424		req->flags |= REQ_F_INFLIGHT;
 425		atomic_inc(&req->tctx->inflight_tracked);
 426	}
 427}
 428
 429static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
 430{
 431	if (WARN_ON_ONCE(!req->link))
 432		return NULL;
 433
 434	req->flags &= ~REQ_F_ARM_LTIMEOUT;
 435	req->flags |= REQ_F_LINK_TIMEOUT;
 436
 437	/* linked timeouts should have two refs once prep'ed */
 438	io_req_set_refcount(req);
 439	__io_req_set_refcount(req->link, 2);
 440	return req->link;
 441}
 442
 443static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
 444{
 445	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
 446		return NULL;
 447	return __io_prep_linked_timeout(req);
 448}
 449
 450static noinline void __io_arm_ltimeout(struct io_kiocb *req)
 451{
 452	io_queue_linked_timeout(__io_prep_linked_timeout(req));
 453}
 454
 455static inline void io_arm_ltimeout(struct io_kiocb *req)
 456{
 457	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
 458		__io_arm_ltimeout(req);
 459}
 460
 461static void io_prep_async_work(struct io_kiocb *req)
 462{
 463	const struct io_issue_def *def = &io_issue_defs[req->opcode];
 464	struct io_ring_ctx *ctx = req->ctx;
 465
 466	if (!(req->flags & REQ_F_CREDS)) {
 467		req->flags |= REQ_F_CREDS;
 468		req->creds = get_current_cred();
 469	}
 470
 471	req->work.list.next = NULL;
 472	atomic_set(&req->work.flags, 0);
 
 473	if (req->flags & REQ_F_FORCE_ASYNC)
 474		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
 475
 476	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
 477		req->flags |= io_file_get_flags(req->file);
 478
 479	if (req->file && (req->flags & REQ_F_ISREG)) {
 480		bool should_hash = def->hash_reg_file;
 481
 482		/* don't serialize this request if the fs doesn't need it */
 483		if (should_hash && (req->file->f_flags & O_DIRECT) &&
 484		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
 485			should_hash = false;
 486		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
 487			io_wq_hash_work(&req->work, file_inode(req->file));
 488	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
 489		if (def->unbound_nonreg_file)
 490			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
 491	}
 492}
 493
 494static void io_prep_async_link(struct io_kiocb *req)
 495{
 496	struct io_kiocb *cur;
 497
 498	if (req->flags & REQ_F_LINK_TIMEOUT) {
 499		struct io_ring_ctx *ctx = req->ctx;
 500
 501		raw_spin_lock_irq(&ctx->timeout_lock);
 502		io_for_each_link(cur, req)
 503			io_prep_async_work(cur);
 504		raw_spin_unlock_irq(&ctx->timeout_lock);
 505	} else {
 506		io_for_each_link(cur, req)
 507			io_prep_async_work(cur);
 508	}
 509}
 510
 511static void io_queue_iowq(struct io_kiocb *req)
 512{
 513	struct io_kiocb *link = io_prep_linked_timeout(req);
 514	struct io_uring_task *tctx = req->tctx;
 515
 516	BUG_ON(!tctx);
 517
 518	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
 519		io_req_task_queue_fail(req, -ECANCELED);
 520		return;
 521	}
 522
 523	/* init ->work of the whole link before punting */
 524	io_prep_async_link(req);
 525
 526	/*
 527	 * Not expected to happen, but if we do have a bug where this _can_
 528	 * happen, catch it here and ensure the request is marked as
 529	 * canceled. That will make io-wq go through the usual work cancel
 530	 * procedure rather than attempt to run this request (or create a new
 531	 * worker for it).
 532	 */
 533	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
 534		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
 535
 536	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
 537	io_wq_enqueue(tctx->io_wq, &req->work);
 538	if (link)
 539		io_queue_linked_timeout(link);
 540}
 541
 542static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
 543{
 544	io_queue_iowq(req);
 545}
 546
 547void io_req_queue_iowq(struct io_kiocb *req)
 548{
 549	req->io_task_work.func = io_req_queue_iowq_tw;
 550	io_req_task_work_add(req);
 551}
 552
 553static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
 554{
 555	while (!list_empty(&ctx->defer_list)) {
 556		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
 557						struct io_defer_entry, list);
 558
 559		if (req_need_defer(de->req, de->seq))
 560			break;
 561		list_del_init(&de->list);
 562		io_req_task_queue(de->req);
 563		kfree(de);
 564	}
 565}
 566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
 568{
 569	if (ctx->poll_activated)
 570		io_poll_wq_wake(ctx);
 571	if (ctx->off_timeout_used)
 572		io_flush_timeouts(ctx);
 573	if (ctx->drain_active) {
 574		spin_lock(&ctx->completion_lock);
 575		io_queue_deferred(ctx);
 576		spin_unlock(&ctx->completion_lock);
 577	}
 578	if (ctx->has_evfd)
 579		io_eventfd_flush_signal(ctx);
 580}
 581
 582static inline void __io_cq_lock(struct io_ring_ctx *ctx)
 583{
 584	if (!ctx->lockless_cq)
 585		spin_lock(&ctx->completion_lock);
 586}
 587
 588static inline void io_cq_lock(struct io_ring_ctx *ctx)
 589	__acquires(ctx->completion_lock)
 590{
 591	spin_lock(&ctx->completion_lock);
 592}
 593
 594static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
 595{
 596	io_commit_cqring(ctx);
 597	if (!ctx->task_complete) {
 598		if (!ctx->lockless_cq)
 599			spin_unlock(&ctx->completion_lock);
 600		/* IOPOLL rings only need to wake up if it's also SQPOLL */
 601		if (!ctx->syscall_iopoll)
 602			io_cqring_wake(ctx);
 603	}
 604	io_commit_cqring_flush(ctx);
 605}
 606
 607static void io_cq_unlock_post(struct io_ring_ctx *ctx)
 608	__releases(ctx->completion_lock)
 609{
 610	io_commit_cqring(ctx);
 611	spin_unlock(&ctx->completion_lock);
 612	io_cqring_wake(ctx);
 613	io_commit_cqring_flush(ctx);
 614}
 615
 616static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
 
 617{
 618	size_t cqe_size = sizeof(struct io_uring_cqe);
 
 619
 620	lockdep_assert_held(&ctx->uring_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621
 622	/* don't abort if we're dying, entries must get freed */
 623	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
 624		return;
 625
 626	if (ctx->flags & IORING_SETUP_CQE32)
 627		cqe_size <<= 1;
 628
 629	io_cq_lock(ctx);
 630	while (!list_empty(&ctx->cq_overflow_list)) {
 631		struct io_uring_cqe *cqe;
 632		struct io_overflow_cqe *ocqe;
 633
 
 
 634		ocqe = list_first_entry(&ctx->cq_overflow_list,
 635					struct io_overflow_cqe, list);
 636
 637		if (!dying) {
 638			if (!io_get_cqe_overflow(ctx, &cqe, true))
 639				break;
 640			memcpy(cqe, &ocqe->cqe, cqe_size);
 641		}
 642		list_del(&ocqe->list);
 643		kfree(ocqe);
 644
 645		/*
 646		 * For silly syzbot cases that deliberately overflow by huge
 647		 * amounts, check if we need to resched and drop and
 648		 * reacquire the locks if so. Nothing real would ever hit this.
 649		 * Ideally we'd have a non-posting unlock for this, but hard
 650		 * to care for a non-real case.
 651		 */
 652		if (need_resched()) {
 653			io_cq_unlock_post(ctx);
 654			mutex_unlock(&ctx->uring_lock);
 655			cond_resched();
 656			mutex_lock(&ctx->uring_lock);
 657			io_cq_lock(ctx);
 658		}
 659	}
 660
 661	if (list_empty(&ctx->cq_overflow_list)) {
 662		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
 663		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
 664	}
 665	io_cq_unlock_post(ctx);
 666}
 667
 668static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
 669{
 670	if (ctx->rings)
 671		__io_cqring_overflow_flush(ctx, true);
 
 
 
 
 672}
 673
 674static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
 675{
 676	mutex_lock(&ctx->uring_lock);
 677	__io_cqring_overflow_flush(ctx, false);
 678	mutex_unlock(&ctx->uring_lock);
 679}
 680
 681/* must to be called somewhat shortly after putting a request */
 682static inline void io_put_task(struct io_kiocb *req)
 683{
 684	struct io_uring_task *tctx = req->tctx;
 685
 686	if (likely(tctx->task == current)) {
 687		tctx->cached_refs++;
 688	} else {
 689		percpu_counter_sub(&tctx->inflight, 1);
 690		if (unlikely(atomic_read(&tctx->in_cancel)))
 691			wake_up(&tctx->wait);
 692		put_task_struct(tctx->task);
 693	}
 
 
 
 
 
 
 
 
 
 
 
 694}
 695
 696void io_task_refs_refill(struct io_uring_task *tctx)
 697{
 698	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
 699
 700	percpu_counter_add(&tctx->inflight, refill);
 701	refcount_add(refill, &current->usage);
 702	tctx->cached_refs += refill;
 703}
 704
 705static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
 706{
 707	struct io_uring_task *tctx = task->io_uring;
 708	unsigned int refs = tctx->cached_refs;
 709
 710	if (refs) {
 711		tctx->cached_refs = 0;
 712		percpu_counter_sub(&tctx->inflight, refs);
 713		put_task_struct_many(task, refs);
 714	}
 715}
 716
 717static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
 718				     s32 res, u32 cflags, u64 extra1, u64 extra2)
 719{
 720	struct io_overflow_cqe *ocqe;
 721	size_t ocq_size = sizeof(struct io_overflow_cqe);
 722	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
 723
 724	lockdep_assert_held(&ctx->completion_lock);
 725
 726	if (is_cqe32)
 727		ocq_size += sizeof(struct io_uring_cqe);
 728
 729	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
 730	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
 731	if (!ocqe) {
 732		/*
 733		 * If we're in ring overflow flush mode, or in task cancel mode,
 734		 * or cannot allocate an overflow entry, then we need to drop it
 735		 * on the floor.
 736		 */
 737		io_account_cq_overflow(ctx);
 738		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
 739		return false;
 740	}
 741	if (list_empty(&ctx->cq_overflow_list)) {
 742		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
 743		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
 744
 745	}
 746	ocqe->cqe.user_data = user_data;
 747	ocqe->cqe.res = res;
 748	ocqe->cqe.flags = cflags;
 749	if (is_cqe32) {
 750		ocqe->cqe.big_cqe[0] = extra1;
 751		ocqe->cqe.big_cqe[1] = extra2;
 752	}
 753	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
 754	return true;
 755}
 756
 757static void io_req_cqe_overflow(struct io_kiocb *req)
 758{
 759	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
 760				req->cqe.res, req->cqe.flags,
 761				req->big_cqe.extra1, req->big_cqe.extra2);
 762	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
 763}
 764
 765/*
 766 * writes to the cq entry need to come after reading head; the
 767 * control dependency is enough as we're using WRITE_ONCE to
 768 * fill the cq entry
 769 */
 770bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
 771{
 772	struct io_rings *rings = ctx->rings;
 773	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
 774	unsigned int free, queued, len;
 775
 776	/*
 777	 * Posting into the CQ when there are pending overflowed CQEs may break
 778	 * ordering guarantees, which will affect links, F_MORE users and more.
 779	 * Force overflow the completion.
 780	 */
 781	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
 782		return false;
 783
 784	/* userspace may cheat modifying the tail, be safe and do min */
 785	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
 786	free = ctx->cq_entries - queued;
 787	/* we need a contiguous range, limit based on the current array offset */
 788	len = min(free, ctx->cq_entries - off);
 789	if (!len)
 790		return false;
 791
 792	if (ctx->flags & IORING_SETUP_CQE32) {
 793		off <<= 1;
 794		len <<= 1;
 795	}
 796
 797	ctx->cqe_cached = &rings->cqes[off];
 798	ctx->cqe_sentinel = ctx->cqe_cached + len;
 799	return true;
 800}
 801
 802static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
 803			      u32 cflags)
 804{
 805	struct io_uring_cqe *cqe;
 806
 807	ctx->cq_extra++;
 808
 809	/*
 810	 * If we can't get a cq entry, userspace overflowed the
 811	 * submission (by quite a lot). Increment the overflow count in
 812	 * the ring.
 813	 */
 814	if (likely(io_get_cqe(ctx, &cqe))) {
 
 
 815		WRITE_ONCE(cqe->user_data, user_data);
 816		WRITE_ONCE(cqe->res, res);
 817		WRITE_ONCE(cqe->flags, cflags);
 818
 819		if (ctx->flags & IORING_SETUP_CQE32) {
 820			WRITE_ONCE(cqe->big_cqe[0], 0);
 821			WRITE_ONCE(cqe->big_cqe[1], 0);
 822		}
 823
 824		trace_io_uring_complete(ctx, NULL, cqe);
 825		return true;
 826	}
 827	return false;
 828}
 829
 830static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
 831			      u32 cflags)
 832{
 833	bool filled;
 
 834
 835	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
 836	if (!filled)
 837		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
 838
 839	return filled;
 
 
 
 
 
 
 
 
 
 
 
 
 840}
 841
 842bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
 
 843{
 844	bool filled;
 845
 846	io_cq_lock(ctx);
 847	filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
 
 
 
 848	io_cq_unlock_post(ctx);
 849	return filled;
 850}
 851
 852/*
 853 * Must be called from inline task_work so we now a flush will happen later,
 854 * and obviously with ctx->uring_lock held (tw always has that).
 855 */
 856void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
 857{
 858	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
 859		spin_lock(&ctx->completion_lock);
 860		io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
 861		spin_unlock(&ctx->completion_lock);
 862	}
 863	ctx->submit_state.cq_flush = true;
 864}
 865
 866/*
 867 * A helper for multishot requests posting additional CQEs.
 868 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
 869 */
 870bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
 871{
 872	struct io_ring_ctx *ctx = req->ctx;
 873	bool posted;
 
 
 
 
 874
 875	lockdep_assert(!io_wq_current_is_worker());
 876	lockdep_assert_held(&ctx->uring_lock);
 877
 878	__io_cq_lock(ctx);
 879	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
 880	ctx->submit_state.cq_flush = true;
 881	__io_cq_unlock_post(ctx);
 882	return posted;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883}
 884
 885static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
 886{
 887	struct io_ring_ctx *ctx = req->ctx;
 888
 889	/*
 890	 * All execution paths but io-wq use the deferred completions by
 891	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
 892	 */
 893	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
 894		return;
 895
 896	/*
 897	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
 898	 * the submitter task context, IOPOLL protects with uring_lock.
 899	 */
 900	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
 901		req->io_task_work.func = io_req_task_complete;
 902		io_req_task_work_add(req);
 903		return;
 904	}
 905
 906	io_cq_lock(ctx);
 907	if (!(req->flags & REQ_F_CQE_SKIP)) {
 908		if (!io_fill_cqe_req(ctx, req))
 909			io_req_cqe_overflow(req);
 910	}
 911	io_cq_unlock_post(ctx);
 912
 913	/*
 914	 * We don't free the request here because we know it's called from
 915	 * io-wq only, which holds a reference, so it cannot be the last put.
 916	 */
 917	req_ref_put(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918}
 919
 920void io_req_defer_failed(struct io_kiocb *req, s32 res)
 921	__must_hold(&ctx->uring_lock)
 922{
 923	const struct io_cold_def *def = &io_cold_defs[req->opcode];
 924
 925	lockdep_assert_held(&req->ctx->uring_lock);
 926
 927	req_set_fail(req);
 928	io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
 929	if (def->fail)
 930		def->fail(req);
 931	io_req_complete_defer(req);
 932}
 933
 934/*
 935 * Don't initialise the fields below on every allocation, but do that in
 936 * advance and keep them valid across allocations.
 937 */
 938static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
 939{
 940	req->ctx = ctx;
 941	req->buf_node = NULL;
 942	req->file_node = NULL;
 943	req->link = NULL;
 944	req->async_data = NULL;
 945	/* not necessary, but safer to zero */
 946	memset(&req->cqe, 0, sizeof(req->cqe));
 947	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
 948}
 949
 
 
 
 
 
 
 
 
 
 950/*
 951 * A request might get retired back into the request caches even before opcode
 952 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
 953 * Because of that, io_alloc_req() should be called only under ->uring_lock
 954 * and with extra caution to not get a request that is still worked on.
 955 */
 956__cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
 957	__must_hold(&ctx->uring_lock)
 958{
 959	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
 960	void *reqs[IO_REQ_ALLOC_BATCH];
 961	int ret;
 
 
 
 
 
 
 
 
 
 
 
 962
 963	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
 964
 965	/*
 966	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
 967	 * retry single alloc to be on the safe side.
 968	 */
 969	if (unlikely(ret <= 0)) {
 970		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
 971		if (!reqs[0])
 972			return false;
 973		ret = 1;
 974	}
 975
 976	percpu_ref_get_many(&ctx->refs, ret);
 977	while (ret--) {
 978		struct io_kiocb *req = reqs[ret];
 979
 980		io_preinit_req(req, ctx);
 981		io_req_add_to_cache(req, ctx);
 982	}
 983	return true;
 984}
 985
 986__cold void io_free_req(struct io_kiocb *req)
 987{
 988	/* refs were already put, restore them for io_req_task_complete() */
 989	req->flags &= ~REQ_F_REFCOUNT;
 990	/* we only want to free it, don't post CQEs */
 991	req->flags |= REQ_F_CQE_SKIP;
 992	req->io_task_work.func = io_req_task_complete;
 993	io_req_task_work_add(req);
 994}
 995
 996static void __io_req_find_next_prep(struct io_kiocb *req)
 997{
 998	struct io_ring_ctx *ctx = req->ctx;
 999
1000	spin_lock(&ctx->completion_lock);
1001	io_disarm_next(req);
1002	spin_unlock(&ctx->completion_lock);
1003}
1004
1005static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1006{
1007	struct io_kiocb *nxt;
1008
1009	/*
1010	 * If LINK is set, we have dependent requests in this chain. If we
1011	 * didn't fail this request, queue the first one up, moving any other
1012	 * dependencies to the next request. In case of failure, fail the rest
1013	 * of the chain.
1014	 */
1015	if (unlikely(req->flags & IO_DISARM_MASK))
1016		__io_req_find_next_prep(req);
1017	nxt = req->link;
1018	req->link = NULL;
1019	return nxt;
1020}
1021
1022static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1023{
1024	if (!ctx)
1025		return;
1026	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1027		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1028
1029	io_submit_flush_completions(ctx);
1030	mutex_unlock(&ctx->uring_lock);
 
 
1031	percpu_ref_put(&ctx->refs);
1032}
1033
1034/*
1035 * Run queued task_work, returning the number of entries processed in *count.
1036 * If more entries than max_entries are available, stop processing once this
1037 * is reached and return the rest of the list.
1038 */
1039struct llist_node *io_handle_tw_list(struct llist_node *node,
1040				     unsigned int *count,
1041				     unsigned int max_entries)
1042{
1043	struct io_ring_ctx *ctx = NULL;
1044	struct io_tw_state ts = { };
1045
1046	do {
1047		struct llist_node *next = node->next;
1048		struct io_kiocb *req = container_of(node, struct io_kiocb,
1049						    io_task_work.node);
1050
1051		if (req->ctx != ctx) {
1052			ctx_flush_and_put(ctx, &ts);
1053			ctx = req->ctx;
1054			mutex_lock(&ctx->uring_lock);
1055			percpu_ref_get(&ctx->refs);
 
 
 
1056		}
1057		INDIRECT_CALL_2(req->io_task_work.func,
1058				io_poll_task_func, io_req_rw_complete,
1059				req, &ts);
1060		node = next;
1061		(*count)++;
1062		if (unlikely(need_resched())) {
1063			ctx_flush_and_put(ctx, &ts);
1064			ctx = NULL;
1065			cond_resched();
1066		}
1067	} while (node && *count < max_entries);
1068
1069	ctx_flush_and_put(ctx, &ts);
1070	return node;
1071}
1072
1073static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
 
 
 
 
 
 
 
 
 
1074{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075	struct io_ring_ctx *last_ctx = NULL;
1076	struct io_kiocb *req;
1077
1078	while (node) {
1079		req = container_of(node, struct io_kiocb, io_task_work.node);
1080		node = node->next;
1081		if (sync && last_ctx != req->ctx) {
1082			if (last_ctx) {
1083				flush_delayed_work(&last_ctx->fallback_work);
1084				percpu_ref_put(&last_ctx->refs);
1085			}
1086			last_ctx = req->ctx;
1087			percpu_ref_get(&last_ctx->refs);
1088		}
1089		if (llist_add(&req->io_task_work.node,
1090			      &req->ctx->fallback_llist))
1091			schedule_delayed_work(&req->ctx->fallback_work, 1);
1092	}
1093
1094	if (last_ctx) {
1095		flush_delayed_work(&last_ctx->fallback_work);
1096		percpu_ref_put(&last_ctx->refs);
1097	}
1098}
1099
1100static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1101{
1102	struct llist_node *node = llist_del_all(&tctx->task_list);
1103
1104	__io_fallback_tw(node, sync);
1105}
1106
1107struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1108				      unsigned int max_entries,
1109				      unsigned int *count)
1110{
 
 
 
 
 
1111	struct llist_node *node;
 
 
1112
1113	if (unlikely(current->flags & PF_EXITING)) {
1114		io_fallback_tw(tctx, true);
1115		return NULL;
1116	}
1117
1118	node = llist_del_all(&tctx->task_list);
1119	if (node) {
1120		node = llist_reverse_order(node);
1121		node = io_handle_tw_list(node, count, max_entries);
1122	}
 
 
 
 
 
 
 
 
 
 
 
 
1123
1124	/* relaxed read is enough as only the task itself sets ->in_cancel */
1125	if (unlikely(atomic_read(&tctx->in_cancel)))
1126		io_uring_drop_tctx_refs(current);
1127
1128	trace_io_uring_task_work_run(tctx, *count);
1129	return node;
1130}
1131
1132void tctx_task_work(struct callback_head *cb)
1133{
1134	struct io_uring_task *tctx;
1135	struct llist_node *ret;
1136	unsigned int count = 0;
1137
1138	tctx = container_of(cb, struct io_uring_task, task_work);
1139	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1140	/* can't happen */
1141	WARN_ON_ONCE(ret);
1142}
1143
1144static inline void io_req_local_work_add(struct io_kiocb *req,
1145					 struct io_ring_ctx *ctx,
1146					 unsigned flags)
1147{
 
1148	unsigned nr_wait, nr_tw, nr_tw_prev;
1149	struct llist_node *head;
1150
1151	/* See comment above IO_CQ_WAKE_INIT */
1152	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1153
1154	/*
1155	 * We don't know how many reuqests is there in the link and whether
1156	 * they can even be queued lazily, fall back to non-lazy.
1157	 */
1158	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1159		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1160
1161	guard(rcu)();
1162
1163	head = READ_ONCE(ctx->work_llist.first);
1164	do {
1165		nr_tw_prev = 0;
1166		if (head) {
1167			struct io_kiocb *first_req = container_of(head,
1168							struct io_kiocb,
1169							io_task_work.node);
1170			/*
1171			 * Might be executed at any moment, rely on
1172			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1173			 */
1174			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1175		}
1176
1177		/*
1178		 * Theoretically, it can overflow, but that's fine as one of
1179		 * previous adds should've tried to wake the task.
1180		 */
1181		nr_tw = nr_tw_prev + 1;
1182		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1183			nr_tw = IO_CQ_WAKE_FORCE;
1184
1185		req->nr_tw = nr_tw;
1186		req->io_task_work.node.next = head;
1187	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1188			      &req->io_task_work.node));
1189
1190	/*
1191	 * cmpxchg implies a full barrier, which pairs with the barrier
1192	 * in set_current_state() on the io_cqring_wait() side. It's used
1193	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1194	 * going to sleep will observe the work added to the list, which
1195	 * is similar to the wait/wawke task state sync.
1196	 */
1197
1198	if (!head) {
1199		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1200			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1201		if (ctx->has_evfd)
1202			io_eventfd_signal(ctx);
1203	}
1204
1205	nr_wait = atomic_read(&ctx->cq_wait_nr);
1206	/* not enough or no one is waiting */
1207	if (nr_tw < nr_wait)
1208		return;
1209	/* the previous add has already woken it up */
1210	if (nr_tw_prev >= nr_wait)
1211		return;
1212	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1213}
1214
1215static void io_req_normal_work_add(struct io_kiocb *req)
1216{
1217	struct io_uring_task *tctx = req->tctx;
1218	struct io_ring_ctx *ctx = req->ctx;
1219
1220	/* task_work already pending, we're done */
1221	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1222		return;
1223
1224	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1225		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1226
1227	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1228	if (ctx->flags & IORING_SETUP_SQPOLL) {
1229		__set_notify_signal(tctx->task);
1230		return;
1231	}
1232
1233	if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1234		return;
1235
1236	io_fallback_tw(tctx, false);
1237}
1238
1239void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1240{
1241	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1242		io_req_local_work_add(req, req->ctx, flags);
1243	else
 
 
1244		io_req_normal_work_add(req);
1245}
1246
1247void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1248				 unsigned flags)
1249{
1250	if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1251		return;
1252	io_req_local_work_add(req, ctx, flags);
1253}
1254
1255static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1256{
1257	struct llist_node *node = llist_del_all(&ctx->work_llist);
1258
1259	__io_fallback_tw(node, false);
1260	node = llist_del_all(&ctx->retry_llist);
1261	__io_fallback_tw(node, false);
1262}
1263
1264static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1265				       int min_events)
1266{
1267	if (!io_local_work_pending(ctx))
1268		return false;
1269	if (events < min_events)
1270		return true;
1271	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1272		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1273	return false;
1274}
1275
1276static int __io_run_local_work_loop(struct llist_node **node,
1277				    struct io_tw_state *ts,
1278				    int events)
1279{
1280	int ret = 0;
1281
1282	while (*node) {
1283		struct llist_node *next = (*node)->next;
1284		struct io_kiocb *req = container_of(*node, struct io_kiocb,
1285						    io_task_work.node);
1286		INDIRECT_CALL_2(req->io_task_work.func,
1287				io_poll_task_func, io_req_rw_complete,
1288				req, ts);
1289		*node = next;
1290		if (++ret >= events)
1291			break;
1292	}
1293
1294	return ret;
 
 
1295}
1296
1297static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1298			       int min_events, int max_events)
1299{
1300	struct llist_node *node;
1301	unsigned int loops = 0;
1302	int ret = 0;
1303
1304	if (WARN_ON_ONCE(ctx->submitter_task != current))
1305		return -EEXIST;
1306	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1307		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1308again:
1309	min_events -= ret;
1310	ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events);
1311	if (ctx->retry_llist.first)
1312		goto retry_done;
1313
1314	/*
1315	 * llists are in reverse order, flip it back the right way before
1316	 * running the pending items.
1317	 */
1318	node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1319	ret += __io_run_local_work_loop(&node, ts, max_events - ret);
1320	ctx->retry_llist.first = node;
 
 
 
 
 
 
 
 
 
1321	loops++;
1322
1323	if (io_run_local_work_continue(ctx, ret, min_events))
1324		goto again;
1325retry_done:
1326	io_submit_flush_completions(ctx);
1327	if (io_run_local_work_continue(ctx, ret, min_events))
1328		goto again;
1329
1330	trace_io_uring_local_work_run(ctx, ret, loops);
1331	return ret;
1332}
1333
1334static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1335					   int min_events)
1336{
1337	struct io_tw_state ts = {};
 
1338
1339	if (!io_local_work_pending(ctx))
1340		return 0;
1341	return __io_run_local_work(ctx, &ts, min_events,
1342					max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
 
 
 
 
1343}
1344
1345static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1346			     int max_events)
1347{
1348	struct io_tw_state ts = {};
1349	int ret;
1350
1351	mutex_lock(&ctx->uring_lock);
1352	ret = __io_run_local_work(ctx, &ts, min_events, max_events);
1353	mutex_unlock(&ctx->uring_lock);
 
 
1354	return ret;
1355}
1356
1357static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1358{
1359	io_tw_lock(req->ctx, ts);
1360	io_req_defer_failed(req, req->cqe.res);
1361}
1362
1363void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1364{
1365	io_tw_lock(req->ctx, ts);
1366	if (unlikely(io_should_terminate_tw()))
 
1367		io_req_defer_failed(req, -EFAULT);
1368	else if (req->flags & REQ_F_FORCE_ASYNC)
1369		io_queue_iowq(req);
1370	else
1371		io_queue_sqe(req);
1372}
1373
1374void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1375{
1376	io_req_set_res(req, ret, 0);
1377	req->io_task_work.func = io_req_task_cancel;
1378	io_req_task_work_add(req);
1379}
1380
1381void io_req_task_queue(struct io_kiocb *req)
1382{
1383	req->io_task_work.func = io_req_task_submit;
1384	io_req_task_work_add(req);
1385}
1386
1387void io_queue_next(struct io_kiocb *req)
1388{
1389	struct io_kiocb *nxt = io_req_find_next(req);
1390
1391	if (nxt)
1392		io_req_task_queue(nxt);
1393}
1394
1395static void io_free_batch_list(struct io_ring_ctx *ctx,
1396			       struct io_wq_work_node *node)
1397	__must_hold(&ctx->uring_lock)
1398{
1399	do {
1400		struct io_kiocb *req = container_of(node, struct io_kiocb,
1401						    comp_list);
1402
1403		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1404			if (req->flags & REQ_F_REFCOUNT) {
1405				node = req->comp_list.next;
1406				if (!req_ref_put_and_test(req))
1407					continue;
1408			}
1409			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1410				struct async_poll *apoll = req->apoll;
1411
1412				if (apoll->double_poll)
1413					kfree(apoll->double_poll);
1414				if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1415					kfree(apoll);
1416				req->flags &= ~REQ_F_POLLED;
1417			}
1418			if (req->flags & IO_REQ_LINK_FLAGS)
1419				io_queue_next(req);
1420			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1421				io_clean_op(req);
1422		}
1423		io_put_file(req);
1424		io_req_put_rsrc_nodes(req);
1425		io_put_task(req);
1426
 
 
 
1427		node = req->comp_list.next;
1428		io_req_add_to_cache(req, ctx);
1429	} while (node);
1430}
1431
1432void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1433	__must_hold(&ctx->uring_lock)
1434{
1435	struct io_submit_state *state = &ctx->submit_state;
1436	struct io_wq_work_node *node;
1437
1438	__io_cq_lock(ctx);
 
 
 
1439	__wq_list_for_each(node, &state->compl_reqs) {
1440		struct io_kiocb *req = container_of(node, struct io_kiocb,
1441					    comp_list);
1442
1443		if (!(req->flags & REQ_F_CQE_SKIP) &&
1444		    unlikely(!io_fill_cqe_req(ctx, req))) {
1445			if (ctx->lockless_cq) {
1446				spin_lock(&ctx->completion_lock);
1447				io_req_cqe_overflow(req);
1448				spin_unlock(&ctx->completion_lock);
1449			} else {
1450				io_req_cqe_overflow(req);
1451			}
1452		}
1453	}
1454	__io_cq_unlock_post(ctx);
1455
1456	if (!wq_list_empty(&state->compl_reqs)) {
1457		io_free_batch_list(ctx, state->compl_reqs.first);
1458		INIT_WQ_LIST(&state->compl_reqs);
1459	}
1460	ctx->submit_state.cq_flush = false;
1461}
1462
1463static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1464{
1465	/* See comment at the top of this file */
1466	smp_rmb();
1467	return __io_cqring_events(ctx);
1468}
1469
1470/*
1471 * We can't just wait for polled events to come to us, we have to actively
1472 * find and complete them.
1473 */
1474static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1475{
1476	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1477		return;
1478
1479	mutex_lock(&ctx->uring_lock);
1480	while (!wq_list_empty(&ctx->iopoll_list)) {
1481		/* let it sleep and repeat later if can't complete a request */
1482		if (io_do_iopoll(ctx, true) == 0)
1483			break;
1484		/*
1485		 * Ensure we allow local-to-the-cpu processing to take place,
1486		 * in this case we need to ensure that we reap all events.
1487		 * Also let task_work, etc. to progress by releasing the mutex
1488		 */
1489		if (need_resched()) {
1490			mutex_unlock(&ctx->uring_lock);
1491			cond_resched();
1492			mutex_lock(&ctx->uring_lock);
1493		}
1494	}
1495	mutex_unlock(&ctx->uring_lock);
1496}
1497
1498static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1499{
1500	unsigned int nr_events = 0;
1501	unsigned long check_cq;
1502
1503	lockdep_assert_held(&ctx->uring_lock);
1504
1505	if (!io_allowed_run_tw(ctx))
1506		return -EEXIST;
1507
1508	check_cq = READ_ONCE(ctx->check_cq);
1509	if (unlikely(check_cq)) {
1510		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1511			__io_cqring_overflow_flush(ctx, false);
1512		/*
1513		 * Similarly do not spin if we have not informed the user of any
1514		 * dropped CQE.
1515		 */
1516		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1517			return -EBADR;
1518	}
1519	/*
1520	 * Don't enter poll loop if we already have events pending.
1521	 * If we do, we can potentially be spinning for commands that
1522	 * already triggered a CQE (eg in error).
1523	 */
1524	if (io_cqring_events(ctx))
1525		return 0;
1526
1527	do {
1528		int ret = 0;
1529
1530		/*
1531		 * If a submit got punted to a workqueue, we can have the
1532		 * application entering polling for a command before it gets
1533		 * issued. That app will hold the uring_lock for the duration
1534		 * of the poll right here, so we need to take a breather every
1535		 * now and then to ensure that the issue has a chance to add
1536		 * the poll to the issued list. Otherwise we can spin here
1537		 * forever, while the workqueue is stuck trying to acquire the
1538		 * very same mutex.
1539		 */
1540		if (wq_list_empty(&ctx->iopoll_list) ||
1541		    io_task_work_pending(ctx)) {
1542			u32 tail = ctx->cached_cq_tail;
1543
1544			(void) io_run_local_work_locked(ctx, min);
1545
1546			if (task_work_pending(current) ||
1547			    wq_list_empty(&ctx->iopoll_list)) {
1548				mutex_unlock(&ctx->uring_lock);
1549				io_run_task_work();
1550				mutex_lock(&ctx->uring_lock);
1551			}
1552			/* some requests don't go through iopoll_list */
1553			if (tail != ctx->cached_cq_tail ||
1554			    wq_list_empty(&ctx->iopoll_list))
1555				break;
1556		}
1557		ret = io_do_iopoll(ctx, !min);
1558		if (unlikely(ret < 0))
1559			return ret;
1560
1561		if (task_sigpending(current))
1562			return -EINTR;
1563		if (need_resched())
1564			break;
1565
1566		nr_events += ret;
1567	} while (nr_events < min);
1568
1569	return 0;
1570}
1571
1572void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1573{
1574	io_req_complete_defer(req);
 
 
 
1575}
1576
1577/*
1578 * After the iocb has been issued, it's safe to be found on the poll list.
1579 * Adding the kiocb to the list AFTER submission ensures that we don't
1580 * find it from a io_do_iopoll() thread before the issuer is done
1581 * accessing the kiocb cookie.
1582 */
1583static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1584{
1585	struct io_ring_ctx *ctx = req->ctx;
1586	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1587
1588	/* workqueue context doesn't hold uring_lock, grab it now */
1589	if (unlikely(needs_lock))
1590		mutex_lock(&ctx->uring_lock);
1591
1592	/*
1593	 * Track whether we have multiple files in our lists. This will impact
1594	 * how we do polling eventually, not spinning if we're on potentially
1595	 * different devices.
1596	 */
1597	if (wq_list_empty(&ctx->iopoll_list)) {
1598		ctx->poll_multi_queue = false;
1599	} else if (!ctx->poll_multi_queue) {
1600		struct io_kiocb *list_req;
1601
1602		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1603					comp_list);
1604		if (list_req->file != req->file)
1605			ctx->poll_multi_queue = true;
1606	}
1607
1608	/*
1609	 * For fast devices, IO may have already completed. If it has, add
1610	 * it to the front so we find it first.
1611	 */
1612	if (READ_ONCE(req->iopoll_completed))
1613		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1614	else
1615		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1616
1617	if (unlikely(needs_lock)) {
1618		/*
1619		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1620		 * in sq thread task context or in io worker task context. If
1621		 * current task context is sq thread, we don't need to check
1622		 * whether should wake up sq thread.
1623		 */
1624		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1625		    wq_has_sleeper(&ctx->sq_data->wait))
1626			wake_up(&ctx->sq_data->wait);
1627
1628		mutex_unlock(&ctx->uring_lock);
1629	}
1630}
1631
1632io_req_flags_t io_file_get_flags(struct file *file)
1633{
1634	io_req_flags_t res = 0;
1635
1636	if (S_ISREG(file_inode(file)->i_mode))
1637		res |= REQ_F_ISREG;
1638	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1639		res |= REQ_F_SUPPORT_NOWAIT;
1640	return res;
1641}
1642
1643bool io_alloc_async_data(struct io_kiocb *req)
1644{
1645	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1646
1647	WARN_ON_ONCE(!def->async_size);
1648	req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1649	if (req->async_data) {
1650		req->flags |= REQ_F_ASYNC_DATA;
1651		return false;
1652	}
1653	return true;
1654}
1655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1656static u32 io_get_sequence(struct io_kiocb *req)
1657{
1658	u32 seq = req->ctx->cached_sq_head;
1659	struct io_kiocb *cur;
1660
1661	/* need original cached_sq_head, but it was increased for each req */
1662	io_for_each_link(cur, req)
1663		seq--;
1664	return seq;
1665}
1666
1667static __cold void io_drain_req(struct io_kiocb *req)
1668	__must_hold(&ctx->uring_lock)
1669{
1670	struct io_ring_ctx *ctx = req->ctx;
1671	struct io_defer_entry *de;
1672	int ret;
1673	u32 seq = io_get_sequence(req);
1674
1675	/* Still need defer if there is pending req in defer list. */
1676	spin_lock(&ctx->completion_lock);
1677	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1678		spin_unlock(&ctx->completion_lock);
1679queue:
1680		ctx->drain_active = false;
1681		io_req_task_queue(req);
1682		return;
1683	}
1684	spin_unlock(&ctx->completion_lock);
1685
1686	io_prep_async_link(req);
1687	de = kmalloc(sizeof(*de), GFP_KERNEL);
1688	if (!de) {
1689		ret = -ENOMEM;
1690		io_req_defer_failed(req, ret);
1691		return;
1692	}
1693
1694	spin_lock(&ctx->completion_lock);
1695	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1696		spin_unlock(&ctx->completion_lock);
1697		kfree(de);
1698		goto queue;
1699	}
1700
1701	trace_io_uring_defer(req);
1702	de->req = req;
1703	de->seq = seq;
1704	list_add_tail(&de->list, &ctx->defer_list);
1705	spin_unlock(&ctx->completion_lock);
1706}
1707
1708static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1709			   unsigned int issue_flags)
1710{
1711	if (req->file || !def->needs_file)
1712		return true;
1713
1714	if (req->flags & REQ_F_FIXED_FILE)
1715		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1716	else
1717		req->file = io_file_get_normal(req, req->cqe.fd);
1718
1719	return !!req->file;
1720}
1721
1722static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1723{
1724	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1725	const struct cred *creds = NULL;
1726	int ret;
1727
1728	if (unlikely(!io_assign_file(req, def, issue_flags)))
1729		return -EBADF;
1730
1731	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1732		creds = override_creds(req->creds);
1733
1734	if (!def->audit_skip)
1735		audit_uring_entry(req->opcode);
1736
1737	ret = def->issue(req, issue_flags);
1738
1739	if (!def->audit_skip)
1740		audit_uring_exit(!ret, ret);
1741
1742	if (creds)
1743		revert_creds(creds);
1744
1745	if (ret == IOU_OK) {
1746		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1747			io_req_complete_defer(req);
1748		else
1749			io_req_complete_post(req, issue_flags);
1750
1751		return 0;
1752	}
1753
1754	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1755		ret = 0;
1756		io_arm_ltimeout(req);
1757
1758		/* If the op doesn't have a file, we're not polling for it */
1759		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1760			io_iopoll_req_issued(req, issue_flags);
1761	}
1762	return ret;
1763}
1764
1765int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1766{
1767	io_tw_lock(req->ctx, ts);
1768	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1769				 IO_URING_F_COMPLETE_DEFER);
1770}
1771
1772struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1773{
1774	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1775	struct io_kiocb *nxt = NULL;
1776
1777	if (req_ref_put_and_test(req)) {
1778		if (req->flags & IO_REQ_LINK_FLAGS)
1779			nxt = io_req_find_next(req);
1780		io_free_req(req);
1781	}
1782	return nxt ? &nxt->work : NULL;
1783}
1784
1785void io_wq_submit_work(struct io_wq_work *work)
1786{
1787	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1788	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1789	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1790	bool needs_poll = false;
1791	int ret = 0, err = -ECANCELED;
1792
1793	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1794	if (!(req->flags & REQ_F_REFCOUNT))
1795		__io_req_set_refcount(req, 2);
1796	else
1797		req_ref_get(req);
1798
1799	io_arm_ltimeout(req);
1800
1801	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1802	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1803fail:
1804		io_req_task_queue_fail(req, err);
1805		return;
1806	}
1807	if (!io_assign_file(req, def, issue_flags)) {
1808		err = -EBADF;
1809		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1810		goto fail;
1811	}
1812
1813	/*
1814	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1815	 * submitter task context. Final request completions are handed to the
1816	 * right context, however this is not the case of auxiliary CQEs,
1817	 * which is the main mean of operation for multishot requests.
1818	 * Don't allow any multishot execution from io-wq. It's more restrictive
1819	 * than necessary and also cleaner.
1820	 */
1821	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1822		err = -EBADFD;
1823		if (!io_file_can_poll(req))
1824			goto fail;
1825		if (req->file->f_flags & O_NONBLOCK ||
1826		    req->file->f_mode & FMODE_NOWAIT) {
1827			err = -ECANCELED;
1828			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1829				goto fail;
1830			return;
1831		} else {
1832			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1833		}
1834	}
1835
1836	if (req->flags & REQ_F_FORCE_ASYNC) {
1837		bool opcode_poll = def->pollin || def->pollout;
1838
1839		if (opcode_poll && io_file_can_poll(req)) {
1840			needs_poll = true;
1841			issue_flags |= IO_URING_F_NONBLOCK;
1842		}
1843	}
1844
1845	do {
1846		ret = io_issue_sqe(req, issue_flags);
1847		if (ret != -EAGAIN)
1848			break;
1849
1850		/*
1851		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1852		 * poll. -EAGAIN is final for that case.
1853		 */
1854		if (req->flags & REQ_F_NOWAIT)
1855			break;
1856
1857		/*
1858		 * We can get EAGAIN for iopolled IO even though we're
1859		 * forcing a sync submission from here, since we can't
1860		 * wait for request slots on the block side.
1861		 */
1862		if (!needs_poll) {
1863			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1864				break;
1865			if (io_wq_worker_stopped())
1866				break;
1867			cond_resched();
1868			continue;
1869		}
1870
1871		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1872			return;
1873		/* aborted or ready, in either case retry blocking */
1874		needs_poll = false;
1875		issue_flags &= ~IO_URING_F_NONBLOCK;
1876	} while (1);
1877
1878	/* avoid locking problems by failing it from a clean context */
1879	if (ret)
1880		io_req_task_queue_fail(req, ret);
1881}
1882
1883inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1884				      unsigned int issue_flags)
1885{
1886	struct io_ring_ctx *ctx = req->ctx;
1887	struct io_rsrc_node *node;
1888	struct file *file = NULL;
1889
1890	io_ring_submit_lock(ctx, issue_flags);
1891	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1892	if (node) {
1893		io_req_assign_rsrc_node(&req->file_node, node);
1894		req->flags |= io_slot_flags(node);
1895		file = io_slot_file(node);
1896	}
 
 
 
 
1897	io_ring_submit_unlock(ctx, issue_flags);
1898	return file;
1899}
1900
1901struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1902{
1903	struct file *file = fget(fd);
1904
1905	trace_io_uring_file_get(req, fd);
1906
1907	/* we don't allow fixed io_uring files */
1908	if (file && io_is_uring_fops(file))
1909		io_req_track_inflight(req);
1910	return file;
1911}
1912
1913static void io_queue_async(struct io_kiocb *req, int ret)
1914	__must_hold(&req->ctx->uring_lock)
1915{
1916	struct io_kiocb *linked_timeout;
1917
1918	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1919		io_req_defer_failed(req, ret);
1920		return;
1921	}
1922
1923	linked_timeout = io_prep_linked_timeout(req);
1924
1925	switch (io_arm_poll_handler(req, 0)) {
1926	case IO_APOLL_READY:
1927		io_kbuf_recycle(req, 0);
1928		io_req_task_queue(req);
1929		break;
1930	case IO_APOLL_ABORTED:
1931		io_kbuf_recycle(req, 0);
1932		io_queue_iowq(req);
1933		break;
1934	case IO_APOLL_OK:
1935		break;
1936	}
1937
1938	if (linked_timeout)
1939		io_queue_linked_timeout(linked_timeout);
1940}
1941
1942static inline void io_queue_sqe(struct io_kiocb *req)
1943	__must_hold(&req->ctx->uring_lock)
1944{
1945	int ret;
1946
1947	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1948
1949	/*
1950	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1951	 * doesn't support non-blocking read/write attempts
1952	 */
1953	if (unlikely(ret))
1954		io_queue_async(req, ret);
1955}
1956
1957static void io_queue_sqe_fallback(struct io_kiocb *req)
1958	__must_hold(&req->ctx->uring_lock)
1959{
1960	if (unlikely(req->flags & REQ_F_FAIL)) {
1961		/*
1962		 * We don't submit, fail them all, for that replace hardlinks
1963		 * with normal links. Extra REQ_F_LINK is tolerated.
1964		 */
1965		req->flags &= ~REQ_F_HARDLINK;
1966		req->flags |= REQ_F_LINK;
1967		io_req_defer_failed(req, req->cqe.res);
1968	} else {
 
 
 
 
 
 
 
1969		if (unlikely(req->ctx->drain_active))
1970			io_drain_req(req);
1971		else
1972			io_queue_iowq(req);
1973	}
1974}
1975
1976/*
1977 * Check SQE restrictions (opcode and flags).
1978 *
1979 * Returns 'true' if SQE is allowed, 'false' otherwise.
1980 */
1981static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1982					struct io_kiocb *req,
1983					unsigned int sqe_flags)
1984{
1985	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1986		return false;
1987
1988	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1989	    ctx->restrictions.sqe_flags_required)
1990		return false;
1991
1992	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1993			  ctx->restrictions.sqe_flags_required))
1994		return false;
1995
1996	return true;
1997}
1998
1999static void io_init_req_drain(struct io_kiocb *req)
2000{
2001	struct io_ring_ctx *ctx = req->ctx;
2002	struct io_kiocb *head = ctx->submit_state.link.head;
2003
2004	ctx->drain_active = true;
2005	if (head) {
2006		/*
2007		 * If we need to drain a request in the middle of a link, drain
2008		 * the head request and the next request/link after the current
2009		 * link. Considering sequential execution of links,
2010		 * REQ_F_IO_DRAIN will be maintained for every request of our
2011		 * link.
2012		 */
2013		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2014		ctx->drain_next = true;
2015	}
2016}
2017
2018static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2019{
2020	/* ensure per-opcode data is cleared if we fail before prep */
2021	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2022	return err;
2023}
2024
2025static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2026		       const struct io_uring_sqe *sqe)
2027	__must_hold(&ctx->uring_lock)
2028{
2029	const struct io_issue_def *def;
2030	unsigned int sqe_flags;
2031	int personality;
2032	u8 opcode;
2033
2034	/* req is partially pre-initialised, see io_preinit_req() */
2035	req->opcode = opcode = READ_ONCE(sqe->opcode);
2036	/* same numerical values with corresponding REQ_F_*, safe to copy */
2037	sqe_flags = READ_ONCE(sqe->flags);
2038	req->flags = (__force io_req_flags_t) sqe_flags;
2039	req->cqe.user_data = READ_ONCE(sqe->user_data);
2040	req->file = NULL;
2041	req->tctx = current->io_uring;
2042	req->cancel_seq_set = false;
2043
2044	if (unlikely(opcode >= IORING_OP_LAST)) {
2045		req->opcode = 0;
2046		return io_init_fail_req(req, -EINVAL);
2047	}
2048	opcode = array_index_nospec(opcode, IORING_OP_LAST);
2049
2050	def = &io_issue_defs[opcode];
2051	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2052		/* enforce forwards compatibility on users */
2053		if (sqe_flags & ~SQE_VALID_FLAGS)
2054			return io_init_fail_req(req, -EINVAL);
2055		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2056			if (!def->buffer_select)
2057				return io_init_fail_req(req, -EOPNOTSUPP);
2058			req->buf_index = READ_ONCE(sqe->buf_group);
2059		}
2060		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2061			ctx->drain_disabled = true;
2062		if (sqe_flags & IOSQE_IO_DRAIN) {
2063			if (ctx->drain_disabled)
2064				return io_init_fail_req(req, -EOPNOTSUPP);
2065			io_init_req_drain(req);
2066		}
2067	}
2068	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2069		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2070			return io_init_fail_req(req, -EACCES);
2071		/* knock it to the slow queue path, will be drained there */
2072		if (ctx->drain_active)
2073			req->flags |= REQ_F_FORCE_ASYNC;
2074		/* if there is no link, we're at "next" request and need to drain */
2075		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2076			ctx->drain_next = false;
2077			ctx->drain_active = true;
2078			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2079		}
2080	}
2081
2082	if (!def->ioprio && sqe->ioprio)
2083		return io_init_fail_req(req, -EINVAL);
2084	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2085		return io_init_fail_req(req, -EINVAL);
2086
2087	if (def->needs_file) {
2088		struct io_submit_state *state = &ctx->submit_state;
2089
2090		req->cqe.fd = READ_ONCE(sqe->fd);
2091
2092		/*
2093		 * Plug now if we have more than 2 IO left after this, and the
2094		 * target is potentially a read/write to block based storage.
2095		 */
2096		if (state->need_plug && def->plug) {
2097			state->plug_started = true;
2098			state->need_plug = false;
2099			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2100		}
2101	}
2102
2103	personality = READ_ONCE(sqe->personality);
2104	if (personality) {
2105		int ret;
2106
2107		req->creds = xa_load(&ctx->personalities, personality);
2108		if (!req->creds)
2109			return io_init_fail_req(req, -EINVAL);
2110		get_cred(req->creds);
2111		ret = security_uring_override_creds(req->creds);
2112		if (ret) {
2113			put_cred(req->creds);
2114			return io_init_fail_req(req, ret);
2115		}
2116		req->flags |= REQ_F_CREDS;
2117	}
2118
2119	return def->prep(req, sqe);
2120}
2121
2122static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2123				      struct io_kiocb *req, int ret)
2124{
2125	struct io_ring_ctx *ctx = req->ctx;
2126	struct io_submit_link *link = &ctx->submit_state.link;
2127	struct io_kiocb *head = link->head;
2128
2129	trace_io_uring_req_failed(sqe, req, ret);
2130
2131	/*
2132	 * Avoid breaking links in the middle as it renders links with SQPOLL
2133	 * unusable. Instead of failing eagerly, continue assembling the link if
2134	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2135	 * should find the flag and handle the rest.
2136	 */
2137	req_fail_link_node(req, ret);
2138	if (head && !(head->flags & REQ_F_FAIL))
2139		req_fail_link_node(head, -ECANCELED);
2140
2141	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2142		if (head) {
2143			link->last->link = req;
2144			link->head = NULL;
2145			req = head;
2146		}
2147		io_queue_sqe_fallback(req);
2148		return ret;
2149	}
2150
2151	if (head)
2152		link->last->link = req;
2153	else
2154		link->head = req;
2155	link->last = req;
2156	return 0;
2157}
2158
2159static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2160			 const struct io_uring_sqe *sqe)
2161	__must_hold(&ctx->uring_lock)
2162{
2163	struct io_submit_link *link = &ctx->submit_state.link;
2164	int ret;
2165
2166	ret = io_init_req(ctx, req, sqe);
2167	if (unlikely(ret))
2168		return io_submit_fail_init(sqe, req, ret);
2169
2170	trace_io_uring_submit_req(req);
2171
2172	/*
2173	 * If we already have a head request, queue this one for async
2174	 * submittal once the head completes. If we don't have a head but
2175	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2176	 * submitted sync once the chain is complete. If none of those
2177	 * conditions are true (normal request), then just queue it.
2178	 */
2179	if (unlikely(link->head)) {
2180		trace_io_uring_link(req, link->last);
 
 
 
 
2181		link->last->link = req;
2182		link->last = req;
2183
2184		if (req->flags & IO_REQ_LINK_FLAGS)
2185			return 0;
2186		/* last request of the link, flush it */
2187		req = link->head;
2188		link->head = NULL;
2189		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2190			goto fallback;
2191
2192	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2193					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2194		if (req->flags & IO_REQ_LINK_FLAGS) {
2195			link->head = req;
2196			link->last = req;
2197		} else {
2198fallback:
2199			io_queue_sqe_fallback(req);
2200		}
2201		return 0;
2202	}
2203
2204	io_queue_sqe(req);
2205	return 0;
2206}
2207
2208/*
2209 * Batched submission is done, ensure local IO is flushed out.
2210 */
2211static void io_submit_state_end(struct io_ring_ctx *ctx)
2212{
2213	struct io_submit_state *state = &ctx->submit_state;
2214
2215	if (unlikely(state->link.head))
2216		io_queue_sqe_fallback(state->link.head);
2217	/* flush only after queuing links as they can generate completions */
2218	io_submit_flush_completions(ctx);
2219	if (state->plug_started)
2220		blk_finish_plug(&state->plug);
2221}
2222
2223/*
2224 * Start submission side cache.
2225 */
2226static void io_submit_state_start(struct io_submit_state *state,
2227				  unsigned int max_ios)
2228{
2229	state->plug_started = false;
2230	state->need_plug = max_ios > 2;
2231	state->submit_nr = max_ios;
2232	/* set only head, no need to init link_last in advance */
2233	state->link.head = NULL;
2234}
2235
2236static void io_commit_sqring(struct io_ring_ctx *ctx)
2237{
2238	struct io_rings *rings = ctx->rings;
2239
2240	/*
2241	 * Ensure any loads from the SQEs are done at this point,
2242	 * since once we write the new head, the application could
2243	 * write new data to them.
2244	 */
2245	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2246}
2247
2248/*
2249 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2250 * that is mapped by userspace. This means that care needs to be taken to
2251 * ensure that reads are stable, as we cannot rely on userspace always
2252 * being a good citizen. If members of the sqe are validated and then later
2253 * used, it's important that those reads are done through READ_ONCE() to
2254 * prevent a re-load down the line.
2255 */
2256static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2257{
2258	unsigned mask = ctx->sq_entries - 1;
2259	unsigned head = ctx->cached_sq_head++ & mask;
2260
2261	if (static_branch_unlikely(&io_key_has_sqarray) &&
2262	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2263		head = READ_ONCE(ctx->sq_array[head]);
2264		if (unlikely(head >= ctx->sq_entries)) {
2265			/* drop invalid entries */
2266			spin_lock(&ctx->completion_lock);
2267			ctx->cq_extra--;
2268			spin_unlock(&ctx->completion_lock);
2269			WRITE_ONCE(ctx->rings->sq_dropped,
2270				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2271			return false;
2272		}
2273		head = array_index_nospec(head, ctx->sq_entries);
2274	}
2275
2276	/*
2277	 * The cached sq head (or cq tail) serves two purposes:
2278	 *
2279	 * 1) allows us to batch the cost of updating the user visible
2280	 *    head updates.
2281	 * 2) allows the kernel side to track the head on its own, even
2282	 *    though the application is the one updating it.
2283	 */
2284
2285	/* double index for 128-byte SQEs, twice as long */
2286	if (ctx->flags & IORING_SETUP_SQE128)
2287		head <<= 1;
2288	*sqe = &ctx->sq_sqes[head];
2289	return true;
2290}
2291
2292int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2293	__must_hold(&ctx->uring_lock)
2294{
2295	unsigned int entries = io_sqring_entries(ctx);
2296	unsigned int left;
2297	int ret;
2298
2299	if (unlikely(!entries))
2300		return 0;
2301	/* make sure SQ entry isn't read before tail */
2302	ret = left = min(nr, entries);
2303	io_get_task_refs(left);
2304	io_submit_state_start(&ctx->submit_state, left);
2305
2306	do {
2307		const struct io_uring_sqe *sqe;
2308		struct io_kiocb *req;
2309
2310		if (unlikely(!io_alloc_req(ctx, &req)))
2311			break;
2312		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2313			io_req_add_to_cache(req, ctx);
2314			break;
2315		}
2316
2317		/*
2318		 * Continue submitting even for sqe failure if the
2319		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2320		 */
2321		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2322		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2323			left--;
2324			break;
2325		}
2326	} while (--left);
2327
2328	if (unlikely(left)) {
2329		ret -= left;
2330		/* try again if it submitted nothing and can't allocate a req */
2331		if (!ret && io_req_cache_empty(ctx))
2332			ret = -EAGAIN;
2333		current->io_uring->cached_refs += left;
2334	}
2335
2336	io_submit_state_end(ctx);
2337	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2338	io_commit_sqring(ctx);
2339	return ret;
2340}
2341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2342static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2343			    int wake_flags, void *key)
2344{
2345	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2346
2347	/*
2348	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2349	 * the task, and the next invocation will do it.
2350	 */
2351	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2352		return autoremove_wake_function(curr, mode, wake_flags, key);
2353	return -1;
2354}
2355
2356int io_run_task_work_sig(struct io_ring_ctx *ctx)
2357{
2358	if (io_local_work_pending(ctx)) {
2359		__set_current_state(TASK_RUNNING);
2360		if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2361			return 0;
2362	}
2363	if (io_run_task_work() > 0)
2364		return 0;
2365	if (task_sigpending(current))
2366		return -EINTR;
2367	return 0;
2368}
2369
2370static bool current_pending_io(void)
2371{
2372	struct io_uring_task *tctx = current->io_uring;
2373
2374	if (!tctx)
2375		return false;
2376	return percpu_counter_read_positive(&tctx->inflight);
2377}
2378
2379static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2380{
2381	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2382
2383	WRITE_ONCE(iowq->hit_timeout, 1);
2384	iowq->min_timeout = 0;
2385	wake_up_process(iowq->wq.private);
2386	return HRTIMER_NORESTART;
2387}
2388
2389/*
2390 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2391 * wake up. If not, and we have a normal timeout, switch to that and keep
2392 * sleeping.
2393 */
2394static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2395{
2396	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2397	struct io_ring_ctx *ctx = iowq->ctx;
2398
2399	/* no general timeout, or shorter (or equal), we are done */
2400	if (iowq->timeout == KTIME_MAX ||
2401	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2402		goto out_wake;
2403	/* work we may need to run, wake function will see if we need to wake */
2404	if (io_has_work(ctx))
2405		goto out_wake;
2406	/* got events since we started waiting, min timeout is done */
2407	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2408		goto out_wake;
2409	/* if we have any events and min timeout expired, we're done */
2410	if (io_cqring_events(ctx))
2411		goto out_wake;
2412
2413	/*
2414	 * If using deferred task_work running and application is waiting on
2415	 * more than one request, ensure we reset it now where we are switching
2416	 * to normal sleeps. Any request completion post min_wait should wake
2417	 * the task and return.
2418	 */
2419	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2420		atomic_set(&ctx->cq_wait_nr, 1);
2421		smp_mb();
2422		if (!llist_empty(&ctx->work_llist))
2423			goto out_wake;
2424	}
2425
2426	iowq->t.function = io_cqring_timer_wakeup;
2427	hrtimer_set_expires(timer, iowq->timeout);
2428	return HRTIMER_RESTART;
2429out_wake:
2430	return io_cqring_timer_wakeup(timer);
2431}
2432
2433static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2434				      clockid_t clock_id, ktime_t start_time)
2435{
2436	ktime_t timeout;
2437
2438	if (iowq->min_timeout) {
2439		timeout = ktime_add_ns(iowq->min_timeout, start_time);
2440		hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2441				       HRTIMER_MODE_ABS);
2442	} else {
2443		timeout = iowq->timeout;
2444		hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2445				       HRTIMER_MODE_ABS);
2446	}
2447
2448	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2449	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2450
2451	if (!READ_ONCE(iowq->hit_timeout))
2452		schedule();
2453
2454	hrtimer_cancel(&iowq->t);
2455	destroy_hrtimer_on_stack(&iowq->t);
2456	__set_current_state(TASK_RUNNING);
2457
2458	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2459}
2460
2461static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2462				     struct io_wait_queue *iowq,
2463				     ktime_t start_time)
2464{
2465	int ret = 0;
 
 
 
 
 
2466
2467	/*
2468	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2469	 * can take into account that the task is waiting for IO - turns out
2470	 * to be important for low QD IO.
2471	 */
 
2472	if (current_pending_io())
2473		current->in_iowait = 1;
2474	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2475		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2476	else
2477		schedule();
2478	current->in_iowait = 0;
 
 
2479	return ret;
2480}
2481
2482/* If this returns > 0, the caller should retry */
2483static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2484					  struct io_wait_queue *iowq,
2485					  ktime_t start_time)
2486{
2487	if (unlikely(READ_ONCE(ctx->check_cq)))
2488		return 1;
2489	if (unlikely(io_local_work_pending(ctx)))
2490		return 1;
2491	if (unlikely(task_work_pending(current)))
2492		return 1;
2493	if (unlikely(task_sigpending(current)))
2494		return -EINTR;
2495	if (unlikely(io_should_wake(iowq)))
2496		return 0;
2497
2498	return __io_cqring_wait_schedule(ctx, iowq, start_time);
2499}
2500
2501struct ext_arg {
2502	size_t argsz;
2503	struct timespec64 ts;
2504	const sigset_t __user *sig;
2505	ktime_t min_time;
2506	bool ts_set;
2507};
2508
2509/*
2510 * Wait until events become available, if we don't already have some. The
2511 * application must reap them itself, as they reside on the shared cq ring.
2512 */
2513static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2514			  struct ext_arg *ext_arg)
 
2515{
2516	struct io_wait_queue iowq;
2517	struct io_rings *rings = ctx->rings;
2518	ktime_t start_time;
2519	int ret;
2520
2521	if (!io_allowed_run_tw(ctx))
2522		return -EEXIST;
2523	if (io_local_work_pending(ctx))
2524		io_run_local_work(ctx, min_events,
2525				  max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2526	io_run_task_work();
2527
2528	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2529		io_cqring_do_overflow_flush(ctx);
2530	if (__io_cqring_events_user(ctx) >= min_events)
2531		return 0;
2532
2533	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2534	iowq.wq.private = current;
2535	INIT_LIST_HEAD(&iowq.wq.entry);
2536	iowq.ctx = ctx;
2537	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2538	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2539	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2540	iowq.hit_timeout = 0;
2541	iowq.min_timeout = ext_arg->min_time;
2542	iowq.timeout = KTIME_MAX;
2543	start_time = io_get_time(ctx);
2544
2545	if (ext_arg->ts_set) {
2546		iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2547		if (!(flags & IORING_ENTER_ABS_TIMER))
2548			iowq.timeout = ktime_add(iowq.timeout, start_time);
2549	}
2550
2551	if (ext_arg->sig) {
2552#ifdef CONFIG_COMPAT
2553		if (in_compat_syscall())
2554			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2555						      ext_arg->argsz);
2556		else
2557#endif
2558			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2559
2560		if (ret)
2561			return ret;
2562	}
2563
2564	io_napi_busy_loop(ctx, &iowq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2565
2566	trace_io_uring_cqring_wait(ctx, min_events);
2567	do {
2568		unsigned long check_cq;
2569		int nr_wait;
2570
2571		/* if min timeout has been hit, don't reset wait count */
2572		if (!iowq.hit_timeout)
2573			nr_wait = (int) iowq.cq_tail -
2574					READ_ONCE(ctx->rings->cq.tail);
2575		else
2576			nr_wait = 1;
2577
2578		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
 
 
2579			atomic_set(&ctx->cq_wait_nr, nr_wait);
2580			set_current_state(TASK_INTERRUPTIBLE);
2581		} else {
2582			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2583							TASK_INTERRUPTIBLE);
2584		}
2585
2586		ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2587		__set_current_state(TASK_RUNNING);
2588		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2589
2590		/*
2591		 * Run task_work after scheduling and before io_should_wake().
2592		 * If we got woken because of task_work being processed, run it
2593		 * now rather than let the caller do another wait loop.
2594		 */
2595		if (io_local_work_pending(ctx))
2596			io_run_local_work(ctx, nr_wait, nr_wait);
2597		io_run_task_work();
 
 
2598
2599		/*
2600		 * Non-local task_work will be run on exit to userspace, but
2601		 * if we're using DEFER_TASKRUN, then we could have waited
2602		 * with a timeout for a number of requests. If the timeout
2603		 * hits, we could have some requests ready to process. Ensure
2604		 * this break is _after_ we have run task_work, to avoid
2605		 * deferring running potentially pending requests until the
2606		 * next time we wait for events.
2607		 */
2608		if (ret < 0)
2609			break;
2610
2611		check_cq = READ_ONCE(ctx->check_cq);
2612		if (unlikely(check_cq)) {
2613			/* let the caller flush overflows, retry */
2614			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2615				io_cqring_do_overflow_flush(ctx);
2616			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2617				ret = -EBADR;
2618				break;
2619			}
2620		}
2621
2622		if (io_should_wake(&iowq)) {
2623			ret = 0;
2624			break;
2625		}
2626		cond_resched();
2627	} while (1);
2628
2629	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2630		finish_wait(&ctx->cq_wait, &iowq.wq);
2631	restore_saved_sigmask_unless(ret == -EINTR);
2632
2633	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2634}
2635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2637			  size_t size)
2638{
2639	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2640				size);
2641}
2642
2643static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2644			 size_t size)
2645{
2646	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2647				size);
2648}
2649
2650static void io_rings_free(struct io_ring_ctx *ctx)
2651{
2652	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2653		io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2654				true);
2655		io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2656				true);
2657	} else {
2658		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2659		ctx->n_ring_pages = 0;
2660		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2661		ctx->n_sqe_pages = 0;
2662		vunmap(ctx->rings);
2663		vunmap(ctx->sq_sqes);
2664	}
 
 
 
 
 
 
2665
2666	ctx->rings = NULL;
2667	ctx->sq_sqes = NULL;
 
 
2668}
2669
2670unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2671			 unsigned int cq_entries, size_t *sq_offset)
2672{
2673	struct io_rings *rings;
2674	size_t off, sq_array_size;
2675
2676	off = struct_size(rings, cqes, cq_entries);
2677	if (off == SIZE_MAX)
2678		return SIZE_MAX;
2679	if (flags & IORING_SETUP_CQE32) {
2680		if (check_shl_overflow(off, 1, &off))
2681			return SIZE_MAX;
2682	}
2683
2684#ifdef CONFIG_SMP
2685	off = ALIGN(off, SMP_CACHE_BYTES);
2686	if (off == 0)
2687		return SIZE_MAX;
2688#endif
2689
2690	if (flags & IORING_SETUP_NO_SQARRAY) {
2691		*sq_offset = SIZE_MAX;
 
2692		return off;
2693	}
2694
2695	*sq_offset = off;
 
2696
2697	sq_array_size = array_size(sizeof(u32), sq_entries);
2698	if (sq_array_size == SIZE_MAX)
2699		return SIZE_MAX;
2700
2701	if (check_add_overflow(off, sq_array_size, &off))
2702		return SIZE_MAX;
2703
2704	return off;
2705}
2706
2707static void io_req_caches_free(struct io_ring_ctx *ctx)
2708{
2709	struct io_kiocb *req;
2710	int nr = 0;
2711
2712	mutex_lock(&ctx->uring_lock);
 
2713
2714	while (!io_req_cache_empty(ctx)) {
2715		req = io_extract_req(ctx);
2716		kmem_cache_free(req_cachep, req);
2717		nr++;
2718	}
2719	if (nr)
2720		percpu_ref_put_many(&ctx->refs, nr);
2721	mutex_unlock(&ctx->uring_lock);
2722}
2723
 
 
 
 
 
2724static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2725{
2726	io_sq_thread_finish(ctx);
 
 
 
2727
2728	mutex_lock(&ctx->uring_lock);
2729	io_sqe_buffers_unregister(ctx);
2730	io_sqe_files_unregister(ctx);
 
 
2731	io_cqring_overflow_kill(ctx);
2732	io_eventfd_unregister(ctx);
2733	io_alloc_cache_free(&ctx->apoll_cache, kfree);
2734	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2735	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2736	io_alloc_cache_free(&ctx->uring_cache, kfree);
2737	io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
2738	io_futex_cache_free(ctx);
2739	io_destroy_buffers(ctx);
2740	io_free_region(ctx, &ctx->param_region);
2741	mutex_unlock(&ctx->uring_lock);
2742	if (ctx->sq_creds)
2743		put_cred(ctx->sq_creds);
2744	if (ctx->submitter_task)
2745		put_task_struct(ctx->submitter_task);
2746
 
 
 
 
 
2747	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2748
 
2749	if (ctx->mm_account) {
2750		mmdrop(ctx->mm_account);
2751		ctx->mm_account = NULL;
2752	}
2753	io_rings_free(ctx);
2754
2755	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2756		static_branch_dec(&io_key_has_sqarray);
2757
2758	percpu_ref_exit(&ctx->refs);
2759	free_uid(ctx->user);
2760	io_req_caches_free(ctx);
2761	if (ctx->hash_map)
2762		io_wq_put_hash(ctx->hash_map);
2763	io_napi_free(ctx);
2764	kvfree(ctx->cancel_table.hbs);
 
2765	xa_destroy(&ctx->io_bl_xa);
2766	kfree(ctx);
2767}
2768
2769static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2770{
2771	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2772					       poll_wq_task_work);
2773
2774	mutex_lock(&ctx->uring_lock);
2775	ctx->poll_activated = true;
2776	mutex_unlock(&ctx->uring_lock);
2777
2778	/*
2779	 * Wake ups for some events between start of polling and activation
2780	 * might've been lost due to loose synchronisation.
2781	 */
2782	wake_up_all(&ctx->poll_wq);
2783	percpu_ref_put(&ctx->refs);
2784}
2785
2786__cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2787{
2788	spin_lock(&ctx->completion_lock);
2789	/* already activated or in progress */
2790	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2791		goto out;
2792	if (WARN_ON_ONCE(!ctx->task_complete))
2793		goto out;
2794	if (!ctx->submitter_task)
2795		goto out;
2796	/*
2797	 * with ->submitter_task only the submitter task completes requests, we
2798	 * only need to sync with it, which is done by injecting a tw
2799	 */
2800	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2801	percpu_ref_get(&ctx->refs);
2802	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2803		percpu_ref_put(&ctx->refs);
2804out:
2805	spin_unlock(&ctx->completion_lock);
2806}
2807
2808static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2809{
2810	struct io_ring_ctx *ctx = file->private_data;
2811	__poll_t mask = 0;
2812
2813	if (unlikely(!ctx->poll_activated))
2814		io_activate_pollwq(ctx);
 
 
2815	/*
2816	 * provides mb() which pairs with barrier from wq_has_sleeper
2817	 * call in io_commit_cqring
2818	 */
2819	poll_wait(file, &ctx->poll_wq, wait);
2820
2821	if (!io_sqring_full(ctx))
2822		mask |= EPOLLOUT | EPOLLWRNORM;
2823
2824	/*
2825	 * Don't flush cqring overflow list here, just do a simple check.
2826	 * Otherwise there could possible be ABBA deadlock:
2827	 *      CPU0                    CPU1
2828	 *      ----                    ----
2829	 * lock(&ctx->uring_lock);
2830	 *                              lock(&ep->mtx);
2831	 *                              lock(&ctx->uring_lock);
2832	 * lock(&ep->mtx);
2833	 *
2834	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2835	 * pushes them to do the flush.
2836	 */
2837
2838	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2839		mask |= EPOLLIN | EPOLLRDNORM;
2840
2841	return mask;
2842}
2843
2844struct io_tctx_exit {
2845	struct callback_head		task_work;
2846	struct completion		completion;
2847	struct io_ring_ctx		*ctx;
2848};
2849
2850static __cold void io_tctx_exit_cb(struct callback_head *cb)
2851{
2852	struct io_uring_task *tctx = current->io_uring;
2853	struct io_tctx_exit *work;
2854
2855	work = container_of(cb, struct io_tctx_exit, task_work);
2856	/*
2857	 * When @in_cancel, we're in cancellation and it's racy to remove the
2858	 * node. It'll be removed by the end of cancellation, just ignore it.
2859	 * tctx can be NULL if the queueing of this task_work raced with
2860	 * work cancelation off the exec path.
2861	 */
2862	if (tctx && !atomic_read(&tctx->in_cancel))
2863		io_uring_del_tctx_node((unsigned long)work->ctx);
2864	complete(&work->completion);
2865}
2866
2867static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2868{
2869	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2870
2871	return req->ctx == data;
2872}
2873
2874static __cold void io_ring_exit_work(struct work_struct *work)
2875{
2876	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2877	unsigned long timeout = jiffies + HZ * 60 * 5;
2878	unsigned long interval = HZ / 20;
2879	struct io_tctx_exit exit;
2880	struct io_tctx_node *node;
2881	int ret;
2882
2883	/*
2884	 * If we're doing polled IO and end up having requests being
2885	 * submitted async (out-of-line), then completions can come in while
2886	 * we're waiting for refs to drop. We need to reap these manually,
2887	 * as nobody else will be looking for them.
2888	 */
2889	do {
2890		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2891			mutex_lock(&ctx->uring_lock);
2892			io_cqring_overflow_kill(ctx);
2893			mutex_unlock(&ctx->uring_lock);
2894		}
2895
2896		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2897			io_move_task_work_from_local(ctx);
2898
2899		while (io_uring_try_cancel_requests(ctx, NULL, true))
2900			cond_resched();
2901
2902		if (ctx->sq_data) {
2903			struct io_sq_data *sqd = ctx->sq_data;
2904			struct task_struct *tsk;
2905
2906			io_sq_thread_park(sqd);
2907			tsk = sqd->thread;
2908			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2909				io_wq_cancel_cb(tsk->io_uring->io_wq,
2910						io_cancel_ctx_cb, ctx, true);
2911			io_sq_thread_unpark(sqd);
2912		}
2913
2914		io_req_caches_free(ctx);
2915
2916		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2917			/* there is little hope left, don't run it too often */
2918			interval = HZ * 60;
2919		}
2920		/*
2921		 * This is really an uninterruptible wait, as it has to be
2922		 * complete. But it's also run from a kworker, which doesn't
2923		 * take signals, so it's fine to make it interruptible. This
2924		 * avoids scenarios where we knowingly can wait much longer
2925		 * on completions, for example if someone does a SIGSTOP on
2926		 * a task that needs to finish task_work to make this loop
2927		 * complete. That's a synthetic situation that should not
2928		 * cause a stuck task backtrace, and hence a potential panic
2929		 * on stuck tasks if that is enabled.
2930		 */
2931	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2932
2933	init_completion(&exit.completion);
2934	init_task_work(&exit.task_work, io_tctx_exit_cb);
2935	exit.ctx = ctx;
2936
2937	mutex_lock(&ctx->uring_lock);
2938	while (!list_empty(&ctx->tctx_list)) {
2939		WARN_ON_ONCE(time_after(jiffies, timeout));
2940
2941		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2942					ctx_node);
2943		/* don't spin on a single task if cancellation failed */
2944		list_rotate_left(&ctx->tctx_list);
2945		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2946		if (WARN_ON_ONCE(ret))
2947			continue;
2948
2949		mutex_unlock(&ctx->uring_lock);
2950		/*
2951		 * See comment above for
2952		 * wait_for_completion_interruptible_timeout() on why this
2953		 * wait is marked as interruptible.
2954		 */
2955		wait_for_completion_interruptible(&exit.completion);
2956		mutex_lock(&ctx->uring_lock);
2957	}
2958	mutex_unlock(&ctx->uring_lock);
2959	spin_lock(&ctx->completion_lock);
2960	spin_unlock(&ctx->completion_lock);
2961
2962	/* pairs with RCU read section in io_req_local_work_add() */
2963	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2964		synchronize_rcu();
2965
2966	io_ring_ctx_free(ctx);
2967}
2968
2969static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2970{
2971	unsigned long index;
2972	struct creds *creds;
2973
2974	mutex_lock(&ctx->uring_lock);
2975	percpu_ref_kill(&ctx->refs);
2976	xa_for_each(&ctx->personalities, index, creds)
2977		io_unregister_personality(ctx, index);
 
 
2978	mutex_unlock(&ctx->uring_lock);
2979
 
 
 
 
 
 
 
2980	flush_delayed_work(&ctx->fallback_work);
2981
2982	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2983	/*
2984	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2985	 * if we're exiting a ton of rings at the same time. It just adds
2986	 * noise and overhead, there's no discernable change in runtime
2987	 * over using system_wq.
2988	 */
2989	queue_work(iou_wq, &ctx->exit_work);
2990}
2991
2992static int io_uring_release(struct inode *inode, struct file *file)
2993{
2994	struct io_ring_ctx *ctx = file->private_data;
2995
2996	file->private_data = NULL;
2997	io_ring_ctx_wait_and_kill(ctx);
2998	return 0;
2999}
3000
3001struct io_task_cancel {
3002	struct io_uring_task *tctx;
3003	bool all;
3004};
3005
3006static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3007{
3008	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3009	struct io_task_cancel *cancel = data;
3010
3011	return io_match_task_safe(req, cancel->tctx, cancel->all);
3012}
3013
3014static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3015					 struct io_uring_task *tctx,
3016					 bool cancel_all)
3017{
3018	struct io_defer_entry *de;
3019	LIST_HEAD(list);
3020
3021	spin_lock(&ctx->completion_lock);
3022	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3023		if (io_match_task_safe(de->req, tctx, cancel_all)) {
3024			list_cut_position(&list, &ctx->defer_list, &de->list);
3025			break;
3026		}
3027	}
3028	spin_unlock(&ctx->completion_lock);
3029	if (list_empty(&list))
3030		return false;
3031
3032	while (!list_empty(&list)) {
3033		de = list_first_entry(&list, struct io_defer_entry, list);
3034		list_del_init(&de->list);
3035		io_req_task_queue_fail(de->req, -ECANCELED);
3036		kfree(de);
3037	}
3038	return true;
3039}
3040
3041static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3042{
3043	struct io_tctx_node *node;
3044	enum io_wq_cancel cret;
3045	bool ret = false;
3046
3047	mutex_lock(&ctx->uring_lock);
3048	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3049		struct io_uring_task *tctx = node->task->io_uring;
3050
3051		/*
3052		 * io_wq will stay alive while we hold uring_lock, because it's
3053		 * killed after ctx nodes, which requires to take the lock.
3054		 */
3055		if (!tctx || !tctx->io_wq)
3056			continue;
3057		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3058		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3059	}
3060	mutex_unlock(&ctx->uring_lock);
3061
3062	return ret;
3063}
3064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3065static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3066						struct io_uring_task *tctx,
3067						bool cancel_all)
3068{
3069	struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
 
3070	enum io_wq_cancel cret;
3071	bool ret = false;
3072
3073	/* set it so io_req_local_work_add() would wake us up */
3074	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3075		atomic_set(&ctx->cq_wait_nr, 1);
3076		smp_mb();
3077	}
3078
3079	/* failed during ring init, it couldn't have issued any requests */
3080	if (!ctx->rings)
3081		return false;
3082
3083	if (!tctx) {
3084		ret |= io_uring_try_cancel_iowq(ctx);
3085	} else if (tctx->io_wq) {
3086		/*
3087		 * Cancels requests of all rings, not only @ctx, but
3088		 * it's fine as the task is in exit/exec.
3089		 */
3090		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3091				       &cancel, true);
3092		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3093	}
3094
3095	/* SQPOLL thread does its own polling */
3096	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3097	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3098		while (!wq_list_empty(&ctx->iopoll_list)) {
3099			io_iopoll_try_reap_events(ctx);
3100			ret = true;
3101			cond_resched();
3102		}
3103	}
3104
3105	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3106	    io_allowed_defer_tw_run(ctx))
3107		ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3108	ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3109	mutex_lock(&ctx->uring_lock);
3110	ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3111	ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3112	ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3113	ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3114	mutex_unlock(&ctx->uring_lock);
3115	ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3116	if (tctx)
3117		ret |= io_run_task_work() > 0;
3118	else
3119		ret |= flush_delayed_work(&ctx->fallback_work);
3120	return ret;
3121}
3122
3123static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3124{
3125	if (tracked)
3126		return atomic_read(&tctx->inflight_tracked);
3127	return percpu_counter_sum(&tctx->inflight);
3128}
3129
3130/*
3131 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3132 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3133 */
3134__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3135{
3136	struct io_uring_task *tctx = current->io_uring;
3137	struct io_ring_ctx *ctx;
3138	struct io_tctx_node *node;
3139	unsigned long index;
3140	s64 inflight;
3141	DEFINE_WAIT(wait);
3142
3143	WARN_ON_ONCE(sqd && sqd->thread != current);
3144
3145	if (!current->io_uring)
3146		return;
3147	if (tctx->io_wq)
3148		io_wq_exit_start(tctx->io_wq);
3149
3150	atomic_inc(&tctx->in_cancel);
3151	do {
3152		bool loop = false;
3153
3154		io_uring_drop_tctx_refs(current);
3155		if (!tctx_inflight(tctx, !cancel_all))
3156			break;
3157
3158		/* read completions before cancelations */
3159		inflight = tctx_inflight(tctx, false);
3160		if (!inflight)
3161			break;
3162
3163		if (!sqd) {
3164			xa_for_each(&tctx->xa, index, node) {
3165				/* sqpoll task will cancel all its requests */
3166				if (node->ctx->sq_data)
3167					continue;
3168				loop |= io_uring_try_cancel_requests(node->ctx,
3169							current->io_uring,
3170							cancel_all);
3171			}
3172		} else {
3173			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3174				loop |= io_uring_try_cancel_requests(ctx,
3175								     current->io_uring,
3176								     cancel_all);
3177		}
3178
3179		if (loop) {
3180			cond_resched();
3181			continue;
3182		}
3183
3184		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3185		io_run_task_work();
3186		io_uring_drop_tctx_refs(current);
3187		xa_for_each(&tctx->xa, index, node) {
3188			if (io_local_work_pending(node->ctx)) {
3189				WARN_ON_ONCE(node->ctx->submitter_task &&
3190					     node->ctx->submitter_task != current);
3191				goto end_wait;
3192			}
3193		}
3194		/*
3195		 * If we've seen completions, retry without waiting. This
3196		 * avoids a race where a completion comes in before we did
3197		 * prepare_to_wait().
3198		 */
3199		if (inflight == tctx_inflight(tctx, !cancel_all))
3200			schedule();
3201end_wait:
3202		finish_wait(&tctx->wait, &wait);
3203	} while (1);
3204
3205	io_uring_clean_tctx(tctx);
3206	if (cancel_all) {
3207		/*
3208		 * We shouldn't run task_works after cancel, so just leave
3209		 * ->in_cancel set for normal exit.
3210		 */
3211		atomic_dec(&tctx->in_cancel);
3212		/* for exec all current's requests should be gone, kill tctx */
3213		__io_uring_free(current);
3214	}
3215}
3216
3217void __io_uring_cancel(bool cancel_all)
3218{
3219	io_uring_unreg_ringfd();
3220	io_uring_cancel_generic(cancel_all, NULL);
3221}
3222
3223static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3224			const struct io_uring_getevents_arg __user *uarg)
3225{
3226	unsigned long size = sizeof(struct io_uring_reg_wait);
3227	unsigned long offset = (uintptr_t)uarg;
3228	unsigned long end;
 
3229
3230	if (unlikely(offset % sizeof(long)))
3231		return ERR_PTR(-EFAULT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3232
3233	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3234	if (unlikely(check_add_overflow(offset, size, &end) ||
3235		     end > ctx->cq_wait_size))
3236		return ERR_PTR(-EFAULT);
 
 
 
 
 
 
 
3237
3238	offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3239	return ctx->cq_wait_arg + offset;
 
 
 
3240}
3241
3242static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3243			       const void __user *argp, size_t argsz)
 
3244{
3245	struct io_uring_getevents_arg arg;
 
 
3246
3247	if (!(flags & IORING_ENTER_EXT_ARG))
3248		return 0;
3249	if (flags & IORING_ENTER_EXT_ARG_REG)
3250		return -EINVAL;
3251	if (argsz != sizeof(arg))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3252		return -EINVAL;
3253	if (copy_from_user(&arg, argp, sizeof(arg)))
3254		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3255	return 0;
3256}
3257
3258static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3259			  const void __user *argp, struct ext_arg *ext_arg)
 
3260{
3261	const struct io_uring_getevents_arg __user *uarg = argp;
3262	struct io_uring_getevents_arg arg;
3263
3264	/*
3265	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3266	 * is just a pointer to the sigset_t.
3267	 */
3268	if (!(flags & IORING_ENTER_EXT_ARG)) {
3269		ext_arg->sig = (const sigset_t __user *) argp;
3270		return 0;
3271	}
3272
3273	if (flags & IORING_ENTER_EXT_ARG_REG) {
3274		struct io_uring_reg_wait *w;
3275
3276		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3277			return -EINVAL;
3278		w = io_get_ext_arg_reg(ctx, argp);
3279		if (IS_ERR(w))
3280			return PTR_ERR(w);
3281
3282		if (w->flags & ~IORING_REG_WAIT_TS)
3283			return -EINVAL;
3284		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3285		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3286		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3287		if (w->flags & IORING_REG_WAIT_TS) {
3288			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3289			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3290			ext_arg->ts_set = true;
3291		}
3292		return 0;
3293	}
3294
3295	/*
3296	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3297	 * timespec and sigset_t pointers if good.
3298	 */
3299	if (ext_arg->argsz != sizeof(arg))
3300		return -EINVAL;
3301#ifdef CONFIG_64BIT
3302	if (!user_access_begin(uarg, sizeof(*uarg)))
3303		return -EFAULT;
3304	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3305	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3306	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3307	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3308	user_access_end();
3309#else
3310	if (copy_from_user(&arg, uarg, sizeof(arg)))
3311		return -EFAULT;
3312#endif
3313	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3314	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3315	ext_arg->argsz = arg.sigmask_sz;
3316	if (arg.ts) {
3317		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3318			return -EFAULT;
3319		ext_arg->ts_set = true;
3320	}
3321	return 0;
3322#ifdef CONFIG_64BIT
3323uaccess_end:
3324	user_access_end();
3325	return -EFAULT;
3326#endif
3327}
3328
3329SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3330		u32, min_complete, u32, flags, const void __user *, argp,
3331		size_t, argsz)
3332{
3333	struct io_ring_ctx *ctx;
3334	struct file *file;
3335	long ret;
3336
3337	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3338			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3339			       IORING_ENTER_REGISTERED_RING |
3340			       IORING_ENTER_ABS_TIMER |
3341			       IORING_ENTER_EXT_ARG_REG)))
3342		return -EINVAL;
3343
3344	/*
3345	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3346	 * need only dereference our task private array to find it.
3347	 */
3348	if (flags & IORING_ENTER_REGISTERED_RING) {
3349		struct io_uring_task *tctx = current->io_uring;
3350
3351		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3352			return -EINVAL;
3353		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3354		file = tctx->registered_rings[fd];
3355		if (unlikely(!file))
3356			return -EBADF;
3357	} else {
3358		file = fget(fd);
3359		if (unlikely(!file))
3360			return -EBADF;
3361		ret = -EOPNOTSUPP;
3362		if (unlikely(!io_is_uring_fops(file)))
3363			goto out;
3364	}
3365
3366	ctx = file->private_data;
3367	ret = -EBADFD;
3368	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3369		goto out;
3370
3371	/*
3372	 * For SQ polling, the thread will do all submissions and completions.
3373	 * Just return the requested submit count, and wake the thread if
3374	 * we were asked to.
3375	 */
3376	ret = 0;
3377	if (ctx->flags & IORING_SETUP_SQPOLL) {
 
 
3378		if (unlikely(ctx->sq_data->thread == NULL)) {
3379			ret = -EOWNERDEAD;
3380			goto out;
3381		}
3382		if (flags & IORING_ENTER_SQ_WAKEUP)
3383			wake_up(&ctx->sq_data->wait);
3384		if (flags & IORING_ENTER_SQ_WAIT)
3385			io_sqpoll_wait_sq(ctx);
3386
3387		ret = to_submit;
3388	} else if (to_submit) {
3389		ret = io_uring_add_tctx_node(ctx);
3390		if (unlikely(ret))
3391			goto out;
3392
3393		mutex_lock(&ctx->uring_lock);
3394		ret = io_submit_sqes(ctx, to_submit);
3395		if (ret != to_submit) {
3396			mutex_unlock(&ctx->uring_lock);
3397			goto out;
3398		}
3399		if (flags & IORING_ENTER_GETEVENTS) {
3400			if (ctx->syscall_iopoll)
3401				goto iopoll_locked;
3402			/*
3403			 * Ignore errors, we'll soon call io_cqring_wait() and
3404			 * it should handle ownership problems if any.
3405			 */
3406			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3407				(void)io_run_local_work_locked(ctx, min_complete);
3408		}
3409		mutex_unlock(&ctx->uring_lock);
3410	}
3411
3412	if (flags & IORING_ENTER_GETEVENTS) {
3413		int ret2;
3414
3415		if (ctx->syscall_iopoll) {
3416			/*
3417			 * We disallow the app entering submit/complete with
3418			 * polling, but we still need to lock the ring to
3419			 * prevent racing with polled issue that got punted to
3420			 * a workqueue.
3421			 */
3422			mutex_lock(&ctx->uring_lock);
3423iopoll_locked:
3424			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3425			if (likely(!ret2)) {
3426				min_complete = min(min_complete,
3427						   ctx->cq_entries);
3428				ret2 = io_iopoll_check(ctx, min_complete);
3429			}
3430			mutex_unlock(&ctx->uring_lock);
3431		} else {
3432			struct ext_arg ext_arg = { .argsz = argsz };
 
3433
3434			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3435			if (likely(!ret2)) {
3436				min_complete = min(min_complete,
3437						   ctx->cq_entries);
3438				ret2 = io_cqring_wait(ctx, min_complete, flags,
3439						      &ext_arg);
3440			}
3441		}
3442
3443		if (!ret) {
3444			ret = ret2;
3445
3446			/*
3447			 * EBADR indicates that one or more CQE were dropped.
3448			 * Once the user has been informed we can clear the bit
3449			 * as they are obviously ok with those drops.
3450			 */
3451			if (unlikely(ret2 == -EBADR))
3452				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3453					  &ctx->check_cq);
3454		}
3455	}
3456out:
3457	if (!(flags & IORING_ENTER_REGISTERED_RING))
3458		fput(file);
3459	return ret;
3460}
3461
3462static const struct file_operations io_uring_fops = {
3463	.release	= io_uring_release,
3464	.mmap		= io_uring_mmap,
3465	.get_unmapped_area = io_uring_get_unmapped_area,
3466#ifndef CONFIG_MMU
 
3467	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
 
 
3468#endif
3469	.poll		= io_uring_poll,
3470#ifdef CONFIG_PROC_FS
3471	.show_fdinfo	= io_uring_show_fdinfo,
3472#endif
3473};
3474
3475bool io_is_uring_fops(struct file *file)
3476{
3477	return file->f_op == &io_uring_fops;
3478}
3479
3480static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3481					 struct io_uring_params *p)
3482{
3483	struct io_rings *rings;
3484	size_t size, sq_array_offset;
3485	void *ptr;
3486
3487	/* make sure these are sane, as we already accounted them */
3488	ctx->sq_entries = p->sq_entries;
3489	ctx->cq_entries = p->cq_entries;
3490
3491	size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3492			  &sq_array_offset);
3493	if (size == SIZE_MAX)
3494		return -EOVERFLOW;
3495
3496	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3497		rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3498	else
3499		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3500
3501	if (IS_ERR(rings))
3502		return PTR_ERR(rings);
3503
3504	ctx->rings = rings;
3505	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3506		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3507	rings->sq_ring_mask = p->sq_entries - 1;
3508	rings->cq_ring_mask = p->cq_entries - 1;
3509	rings->sq_ring_entries = p->sq_entries;
3510	rings->cq_ring_entries = p->cq_entries;
3511
3512	if (p->flags & IORING_SETUP_SQE128)
3513		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3514	else
3515		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3516	if (size == SIZE_MAX) {
3517		io_rings_free(ctx);
3518		return -EOVERFLOW;
3519	}
3520
3521	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3522		ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3523	else
3524		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3525
3526	if (IS_ERR(ptr)) {
3527		io_rings_free(ctx);
3528		return PTR_ERR(ptr);
3529	}
3530
3531	ctx->sq_sqes = ptr;
3532	return 0;
3533}
3534
3535static int io_uring_install_fd(struct file *file)
3536{
3537	int fd;
3538
3539	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3540	if (fd < 0)
3541		return fd;
3542	fd_install(fd, file);
3543	return fd;
3544}
3545
3546/*
3547 * Allocate an anonymous fd, this is what constitutes the application
3548 * visible backing of an io_uring instance. The application mmaps this
3549 * fd to gain access to the SQ/CQ ring details.
3550 */
3551static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3552{
3553	/* Create a new inode so that the LSM can block the creation.  */
3554	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3555					 O_RDWR | O_CLOEXEC, NULL);
3556}
3557
3558int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
 
3559{
 
 
 
 
 
3560	if (!entries)
3561		return -EINVAL;
3562	if (entries > IORING_MAX_ENTRIES) {
3563		if (!(p->flags & IORING_SETUP_CLAMP))
3564			return -EINVAL;
3565		entries = IORING_MAX_ENTRIES;
3566	}
3567
3568	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3569	    && !(p->flags & IORING_SETUP_NO_MMAP))
3570		return -EINVAL;
3571
3572	/*
3573	 * Use twice as many entries for the CQ ring. It's possible for the
3574	 * application to drive a higher depth than the size of the SQ ring,
3575	 * since the sqes are only used at submission time. This allows for
3576	 * some flexibility in overcommitting a bit. If the application has
3577	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3578	 * of CQ ring entries manually.
3579	 */
3580	p->sq_entries = roundup_pow_of_two(entries);
3581	if (p->flags & IORING_SETUP_CQSIZE) {
3582		/*
3583		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3584		 * to a power-of-two, if it isn't already. We do NOT impose
3585		 * any cq vs sq ring sizing.
3586		 */
3587		if (!p->cq_entries)
3588			return -EINVAL;
3589		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3590			if (!(p->flags & IORING_SETUP_CLAMP))
3591				return -EINVAL;
3592			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3593		}
3594		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3595		if (p->cq_entries < p->sq_entries)
3596			return -EINVAL;
3597	} else {
3598		p->cq_entries = 2 * p->sq_entries;
3599	}
3600
3601	p->sq_off.head = offsetof(struct io_rings, sq.head);
3602	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3603	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3604	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3605	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3606	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3607	p->sq_off.resv1 = 0;
3608	if (!(p->flags & IORING_SETUP_NO_MMAP))
3609		p->sq_off.user_addr = 0;
3610
3611	p->cq_off.head = offsetof(struct io_rings, cq.head);
3612	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3613	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3614	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3615	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3616	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3617	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3618	p->cq_off.resv1 = 0;
3619	if (!(p->flags & IORING_SETUP_NO_MMAP))
3620		p->cq_off.user_addr = 0;
3621
3622	return 0;
3623}
3624
3625static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3626				  struct io_uring_params __user *params)
3627{
3628	struct io_ring_ctx *ctx;
3629	struct io_uring_task *tctx;
3630	struct file *file;
3631	int ret;
3632
3633	ret = io_uring_fill_params(entries, p);
3634	if (unlikely(ret))
3635		return ret;
3636
3637	ctx = io_ring_ctx_alloc(p);
3638	if (!ctx)
3639		return -ENOMEM;
3640
3641	ctx->clockid = CLOCK_MONOTONIC;
3642	ctx->clock_offset = 0;
3643
3644	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3645		static_branch_inc(&io_key_has_sqarray);
3646
3647	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3648	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3649	    !(ctx->flags & IORING_SETUP_SQPOLL))
3650		ctx->task_complete = true;
3651
3652	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3653		ctx->lockless_cq = true;
3654
3655	/*
3656	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3657	 * purposes, see io_activate_pollwq()
3658	 */
3659	if (!ctx->task_complete)
3660		ctx->poll_activated = true;
3661
3662	/*
3663	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3664	 * space applications don't need to do io completion events
3665	 * polling again, they can rely on io_sq_thread to do polling
3666	 * work, which can reduce cpu usage and uring_lock contention.
3667	 */
3668	if (ctx->flags & IORING_SETUP_IOPOLL &&
3669	    !(ctx->flags & IORING_SETUP_SQPOLL))
3670		ctx->syscall_iopoll = 1;
3671
3672	ctx->compat = in_compat_syscall();
3673	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3674		ctx->user = get_uid(current_user());
3675
3676	/*
3677	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3678	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3679	 */
3680	ret = -EINVAL;
3681	if (ctx->flags & IORING_SETUP_SQPOLL) {
3682		/* IPI related flags don't make sense with SQPOLL */
3683		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3684				  IORING_SETUP_TASKRUN_FLAG |
3685				  IORING_SETUP_DEFER_TASKRUN))
3686			goto err;
3687		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3688	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3689		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3690	} else {
3691		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3692		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3693			goto err;
3694		ctx->notify_method = TWA_SIGNAL;
3695	}
3696
3697	/* HYBRID_IOPOLL only valid with IOPOLL */
3698	if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) ==
3699			IORING_SETUP_HYBRID_IOPOLL)
3700		goto err;
3701
3702	/*
3703	 * For DEFER_TASKRUN we require the completion task to be the same as the
3704	 * submission task. This implies that there is only one submitter, so enforce
3705	 * that.
3706	 */
3707	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3708	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3709		goto err;
3710	}
3711
3712	/*
3713	 * This is just grabbed for accounting purposes. When a process exits,
3714	 * the mm is exited and dropped before the files, hence we need to hang
3715	 * on to this mm purely for the purposes of being able to unaccount
3716	 * memory (locked/pinned vm). It's not used for anything else.
3717	 */
3718	mmgrab(current->mm);
3719	ctx->mm_account = current->mm;
3720
3721	ret = io_allocate_scq_urings(ctx, p);
3722	if (ret)
3723		goto err;
3724
3725	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3726		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3727
3728	ret = io_sq_offload_create(ctx, p);
3729	if (ret)
3730		goto err;
3731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3732	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3733			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3734			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3735			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3736			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3737			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3738			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3739			IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT;
3740
3741	if (copy_to_user(params, p, sizeof(*p))) {
3742		ret = -EFAULT;
3743		goto err;
3744	}
3745
3746	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3747	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3748		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3749
3750	file = io_uring_get_file(ctx);
3751	if (IS_ERR(file)) {
3752		ret = PTR_ERR(file);
3753		goto err;
3754	}
3755
3756	ret = __io_uring_add_tctx_node(ctx);
3757	if (ret)
3758		goto err_fput;
3759	tctx = current->io_uring;
3760
3761	/*
3762	 * Install ring fd as the very last thing, so we don't risk someone
3763	 * having closed it before we finish setup
3764	 */
3765	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3766		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3767	else
3768		ret = io_uring_install_fd(file);
3769	if (ret < 0)
3770		goto err_fput;
3771
3772	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3773	return ret;
3774err:
3775	io_ring_ctx_wait_and_kill(ctx);
3776	return ret;
3777err_fput:
3778	fput(file);
3779	return ret;
3780}
3781
3782/*
3783 * Sets up an aio uring context, and returns the fd. Applications asks for a
3784 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3785 * params structure passed in.
3786 */
3787static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3788{
3789	struct io_uring_params p;
3790	int i;
3791
3792	if (copy_from_user(&p, params, sizeof(p)))
3793		return -EFAULT;
3794	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3795		if (p.resv[i])
3796			return -EINVAL;
3797	}
3798
3799	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3800			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3801			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3802			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3803			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3804			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3805			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3806			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3807			IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3808		return -EINVAL;
3809
3810	return io_uring_create(entries, &p, params);
3811}
3812
3813static inline bool io_uring_allowed(void)
3814{
3815	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3816	kgid_t io_uring_group;
3817
3818	if (disabled == 2)
3819		return false;
3820
3821	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3822		return true;
3823
3824	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3825	if (!gid_valid(io_uring_group))
3826		return false;
3827
3828	return in_group_p(io_uring_group);
3829}
3830
3831SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3832		struct io_uring_params __user *, params)
3833{
3834	if (!io_uring_allowed())
3835		return -EPERM;
3836
3837	return io_uring_setup(entries, params);
3838}
3839
3840static int __init io_uring_init(void)
3841{
3842	struct kmem_cache_args kmem_args = {
3843		.useroffset = offsetof(struct io_kiocb, cmd.data),
3844		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3845		.freeptr_offset = offsetof(struct io_kiocb, work),
3846		.use_freeptr_offset = true,
3847	};
3848
3849#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3850	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3851	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3852} while (0)
3853
3854#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3855	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3856#define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3857	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3858	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3859	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3860	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3861	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3862	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3863	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3864	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3865	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3866	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3867	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3868	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3869	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3870	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3871	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3872	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3873	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3874	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3875	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3876	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3877	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3878	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3879	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3880	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3881	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3882	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3883	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3884	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3885	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3886	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3887	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3888	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3889	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3890	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3891	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3892	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3893	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3894	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3895	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3896	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3897	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3898	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3899	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3900	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3901
3902	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3903		     sizeof(struct io_uring_rsrc_update));
3904	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3905		     sizeof(struct io_uring_rsrc_update2));
3906
3907	/* ->buf_index is u16 */
3908	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3909	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3910		     offsetof(struct io_uring_buf_ring, tail));
3911
3912	/* should fit into one byte */
3913	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3914	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3915	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3916
3917	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3918
3919	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3920
3921	/* top 8bits are for internal use */
3922	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3923
3924	io_uring_optable_init();
3925
3926	/*
3927	 * Allow user copy in the per-command field, which starts after the
3928	 * file in io_kiocb and until the opcode field. The openat2 handling
3929	 * requires copying in user memory into the io_kiocb object in that
3930	 * range, and HARDENED_USERCOPY will complain if we haven't
3931	 * correctly annotated this range.
3932	 */
3933	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3934				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3935				SLAB_TYPESAFE_BY_RCU);
3936	io_buf_cachep = KMEM_CACHE(io_buffer,
3937					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3938
3939	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
 
 
3940
3941#ifdef CONFIG_SYSCTL
3942	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3943#endif
3944
3945	return 0;
3946};
3947__initcall(io_uring_init);
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Shared application/kernel submission and completion ring pairs, for
   4 * supporting fast/efficient IO.
   5 *
   6 * A note on the read/write ordering memory barriers that are matched between
   7 * the application and kernel side.
   8 *
   9 * After the application reads the CQ ring tail, it must use an
  10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
  11 * before writing the tail (using smp_load_acquire to read the tail will
  12 * do). It also needs a smp_mb() before updating CQ head (ordering the
  13 * entry load(s) with the head store), pairing with an implicit barrier
  14 * through a control-dependency in io_get_cqe (smp_store_release to
  15 * store head will do). Failure to do so could lead to reading invalid
  16 * CQ entries.
  17 *
  18 * Likewise, the application must use an appropriate smp_wmb() before
  19 * writing the SQ tail (ordering SQ entry stores with the tail store),
  20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
  21 * to store the tail will do). And it needs a barrier ordering the SQ
  22 * head load before writing new SQ entries (smp_load_acquire to read
  23 * head will do).
  24 *
  25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
  26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
  27 * updating the SQ tail; a full memory barrier smp_mb() is needed
  28 * between.
  29 *
  30 * Also see the examples in the liburing library:
  31 *
  32 *	git://git.kernel.dk/liburing
  33 *
  34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
  35 * from data shared between the kernel and application. This is done both
  36 * for ordering purposes, but also to ensure that once a value is loaded from
  37 * data that the application could potentially modify, it remains stable.
  38 *
  39 * Copyright (C) 2018-2019 Jens Axboe
  40 * Copyright (c) 2018-2019 Christoph Hellwig
  41 */
  42#include <linux/kernel.h>
  43#include <linux/init.h>
  44#include <linux/errno.h>
  45#include <linux/syscalls.h>
  46#include <net/compat.h>
  47#include <linux/refcount.h>
  48#include <linux/uio.h>
  49#include <linux/bits.h>
  50
  51#include <linux/sched/signal.h>
  52#include <linux/fs.h>
  53#include <linux/file.h>
  54#include <linux/fdtable.h>
  55#include <linux/mm.h>
  56#include <linux/mman.h>
  57#include <linux/percpu.h>
  58#include <linux/slab.h>
  59#include <linux/bvec.h>
  60#include <linux/net.h>
  61#include <net/sock.h>
  62#include <net/af_unix.h>
  63#include <linux/anon_inodes.h>
  64#include <linux/sched/mm.h>
  65#include <linux/uaccess.h>
  66#include <linux/nospec.h>
  67#include <linux/highmem.h>
  68#include <linux/fsnotify.h>
  69#include <linux/fadvise.h>
  70#include <linux/task_work.h>
  71#include <linux/io_uring.h>
  72#include <linux/io_uring/cmd.h>
  73#include <linux/audit.h>
  74#include <linux/security.h>
 
  75#include <asm/shmparam.h>
  76
  77#define CREATE_TRACE_POINTS
  78#include <trace/events/io_uring.h>
  79
  80#include <uapi/linux/io_uring.h>
  81
  82#include "io-wq.h"
  83
  84#include "io_uring.h"
  85#include "opdef.h"
  86#include "refs.h"
  87#include "tctx.h"
  88#include "register.h"
  89#include "sqpoll.h"
  90#include "fdinfo.h"
  91#include "kbuf.h"
  92#include "rsrc.h"
  93#include "cancel.h"
  94#include "net.h"
  95#include "notif.h"
  96#include "waitid.h"
  97#include "futex.h"
 
 
 
 
  98
  99#include "timeout.h"
 100#include "poll.h"
 101#include "rw.h"
 102#include "alloc_cache.h"
 103
 104#define IORING_MAX_ENTRIES	32768
 105#define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
 106
 107#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
 108			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
 109
 110#define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
 111			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
 112
 113#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
 114				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
 115				REQ_F_ASYNC_DATA)
 116
 117#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
 118				 IO_REQ_CLEAN_FLAGS)
 119
 120#define IO_TCTX_REFS_CACHE_NR	(1U << 10)
 121
 122#define IO_COMPL_BATCH			32
 123#define IO_REQ_ALLOC_BATCH		8
 124
 125enum {
 126	IO_CHECK_CQ_OVERFLOW_BIT,
 127	IO_CHECK_CQ_DROPPED_BIT,
 128};
 129
 130struct io_defer_entry {
 131	struct list_head	list;
 132	struct io_kiocb		*req;
 133	u32			seq;
 134};
 135
 136/* requests with any of those set should undergo io_disarm_next() */
 137#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
 138#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
 139
 140/*
 141 * No waiters. It's larger than any valid value of the tw counter
 142 * so that tests against ->cq_wait_nr would fail and skip wake_up().
 143 */
 144#define IO_CQ_WAKE_INIT		(-1U)
 145/* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
 146#define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
 147
 148static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
 149					 struct task_struct *task,
 150					 bool cancel_all);
 151
 152static void io_queue_sqe(struct io_kiocb *req);
 153
 
 
 154struct kmem_cache *req_cachep;
 
 155
 156static int __read_mostly sysctl_io_uring_disabled;
 157static int __read_mostly sysctl_io_uring_group = -1;
 158
 159#ifdef CONFIG_SYSCTL
 160static struct ctl_table kernel_io_uring_disabled_table[] = {
 161	{
 162		.procname	= "io_uring_disabled",
 163		.data		= &sysctl_io_uring_disabled,
 164		.maxlen		= sizeof(sysctl_io_uring_disabled),
 165		.mode		= 0644,
 166		.proc_handler	= proc_dointvec_minmax,
 167		.extra1		= SYSCTL_ZERO,
 168		.extra2		= SYSCTL_TWO,
 169	},
 170	{
 171		.procname	= "io_uring_group",
 172		.data		= &sysctl_io_uring_group,
 173		.maxlen		= sizeof(gid_t),
 174		.mode		= 0644,
 175		.proc_handler	= proc_dointvec,
 176	},
 177	{},
 178};
 179#endif
 180
 181static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
 182{
 183	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
 184	    ctx->submit_state.cqes_count)
 185		__io_submit_flush_completions(ctx);
 186}
 187
 188static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
 189{
 190	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
 191}
 192
 193static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
 194{
 195	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
 196}
 197
 198static bool io_match_linked(struct io_kiocb *head)
 199{
 200	struct io_kiocb *req;
 201
 202	io_for_each_link(req, head) {
 203		if (req->flags & REQ_F_INFLIGHT)
 204			return true;
 205	}
 206	return false;
 207}
 208
 209/*
 210 * As io_match_task() but protected against racing with linked timeouts.
 211 * User must not hold timeout_lock.
 212 */
 213bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
 214			bool cancel_all)
 215{
 216	bool matched;
 217
 218	if (task && head->task != task)
 219		return false;
 220	if (cancel_all)
 221		return true;
 222
 223	if (head->flags & REQ_F_LINK_TIMEOUT) {
 224		struct io_ring_ctx *ctx = head->ctx;
 225
 226		/* protect against races with linked timeouts */
 227		spin_lock_irq(&ctx->timeout_lock);
 228		matched = io_match_linked(head);
 229		spin_unlock_irq(&ctx->timeout_lock);
 230	} else {
 231		matched = io_match_linked(head);
 232	}
 233	return matched;
 234}
 235
 236static inline void req_fail_link_node(struct io_kiocb *req, int res)
 237{
 238	req_set_fail(req);
 239	io_req_set_res(req, res, 0);
 240}
 241
 242static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
 243{
 244	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
 245}
 246
 247static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
 248{
 249	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
 250
 251	complete(&ctx->ref_comp);
 252}
 253
 254static __cold void io_fallback_req_func(struct work_struct *work)
 255{
 256	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
 257						fallback_work.work);
 258	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
 259	struct io_kiocb *req, *tmp;
 260	struct io_tw_state ts = { .locked = true, };
 261
 262	percpu_ref_get(&ctx->refs);
 263	mutex_lock(&ctx->uring_lock);
 264	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
 265		req->io_task_work.func(req, &ts);
 266	if (WARN_ON_ONCE(!ts.locked))
 267		return;
 268	io_submit_flush_completions(ctx);
 269	mutex_unlock(&ctx->uring_lock);
 270	percpu_ref_put(&ctx->refs);
 271}
 272
 273static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
 274{
 275	unsigned hash_buckets = 1U << bits;
 276	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
 277
 278	table->hbs = kmalloc(hash_size, GFP_KERNEL);
 279	if (!table->hbs)
 280		return -ENOMEM;
 
 
 
 
 
 
 
 281
 282	table->hash_bits = bits;
 283	init_hash_table(table, hash_buckets);
 
 284	return 0;
 285}
 286
 287static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
 288{
 289	struct io_ring_ctx *ctx;
 290	int hash_bits;
 
 291
 292	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 293	if (!ctx)
 294		return NULL;
 295
 296	xa_init(&ctx->io_bl_xa);
 297
 298	/*
 299	 * Use 5 bits less than the max cq entries, that should give us around
 300	 * 32 entries per hash list if totally full and uniformly spread, but
 301	 * don't keep too many buckets to not overconsume memory.
 302	 */
 303	hash_bits = ilog2(p->cq_entries) - 5;
 304	hash_bits = clamp(hash_bits, 1, 8);
 305	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
 306		goto err;
 307	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
 308		goto err;
 309	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
 310			    0, GFP_KERNEL))
 311		goto err;
 312
 313	ctx->flags = p->flags;
 
 314	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
 315	init_waitqueue_head(&ctx->sqo_sq_wait);
 316	INIT_LIST_HEAD(&ctx->sqd_list);
 317	INIT_LIST_HEAD(&ctx->cq_overflow_list);
 318	INIT_LIST_HEAD(&ctx->io_buffers_cache);
 319	INIT_HLIST_HEAD(&ctx->io_buf_list);
 320	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
 321			    sizeof(struct io_rsrc_node));
 322	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
 323			    sizeof(struct async_poll));
 324	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
 325			    sizeof(struct io_async_msghdr));
 326	io_futex_cache_init(ctx);
 
 
 
 
 
 
 
 
 
 327	init_completion(&ctx->ref_comp);
 328	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
 329	mutex_init(&ctx->uring_lock);
 330	init_waitqueue_head(&ctx->cq_wait);
 331	init_waitqueue_head(&ctx->poll_wq);
 332	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
 333	spin_lock_init(&ctx->completion_lock);
 334	spin_lock_init(&ctx->timeout_lock);
 335	INIT_WQ_LIST(&ctx->iopoll_list);
 336	INIT_LIST_HEAD(&ctx->io_buffers_comp);
 337	INIT_LIST_HEAD(&ctx->defer_list);
 338	INIT_LIST_HEAD(&ctx->timeout_list);
 339	INIT_LIST_HEAD(&ctx->ltimeout_list);
 340	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
 341	init_llist_head(&ctx->work_llist);
 342	INIT_LIST_HEAD(&ctx->tctx_list);
 343	ctx->submit_state.free_list.next = NULL;
 344	INIT_WQ_LIST(&ctx->locked_free_list);
 345	INIT_HLIST_HEAD(&ctx->waitid_list);
 346#ifdef CONFIG_FUTEX
 347	INIT_HLIST_HEAD(&ctx->futex_list);
 348#endif
 349	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
 350	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
 351	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
 
 
 
 352	return ctx;
 
 
 
 353err:
 354	kfree(ctx->cancel_table.hbs);
 355	kfree(ctx->cancel_table_locked.hbs);
 356	kfree(ctx->io_bl);
 
 
 
 
 357	xa_destroy(&ctx->io_bl_xa);
 358	kfree(ctx);
 359	return NULL;
 360}
 361
 362static void io_account_cq_overflow(struct io_ring_ctx *ctx)
 363{
 364	struct io_rings *r = ctx->rings;
 365
 366	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
 367	ctx->cq_extra--;
 368}
 369
 370static bool req_need_defer(struct io_kiocb *req, u32 seq)
 371{
 372	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
 373		struct io_ring_ctx *ctx = req->ctx;
 374
 375		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
 376	}
 377
 378	return false;
 379}
 380
 381static void io_clean_op(struct io_kiocb *req)
 382{
 383	if (req->flags & REQ_F_BUFFER_SELECTED) {
 384		spin_lock(&req->ctx->completion_lock);
 385		io_put_kbuf_comp(req);
 386		spin_unlock(&req->ctx->completion_lock);
 387	}
 388
 389	if (req->flags & REQ_F_NEED_CLEANUP) {
 390		const struct io_cold_def *def = &io_cold_defs[req->opcode];
 391
 392		if (def->cleanup)
 393			def->cleanup(req);
 394	}
 395	if ((req->flags & REQ_F_POLLED) && req->apoll) {
 396		kfree(req->apoll->double_poll);
 397		kfree(req->apoll);
 398		req->apoll = NULL;
 399	}
 400	if (req->flags & REQ_F_INFLIGHT) {
 401		struct io_uring_task *tctx = req->task->io_uring;
 402
 403		atomic_dec(&tctx->inflight_tracked);
 404	}
 405	if (req->flags & REQ_F_CREDS)
 406		put_cred(req->creds);
 407	if (req->flags & REQ_F_ASYNC_DATA) {
 408		kfree(req->async_data);
 409		req->async_data = NULL;
 410	}
 411	req->flags &= ~IO_REQ_CLEAN_FLAGS;
 412}
 413
 414static inline void io_req_track_inflight(struct io_kiocb *req)
 415{
 416	if (!(req->flags & REQ_F_INFLIGHT)) {
 417		req->flags |= REQ_F_INFLIGHT;
 418		atomic_inc(&req->task->io_uring->inflight_tracked);
 419	}
 420}
 421
 422static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
 423{
 424	if (WARN_ON_ONCE(!req->link))
 425		return NULL;
 426
 427	req->flags &= ~REQ_F_ARM_LTIMEOUT;
 428	req->flags |= REQ_F_LINK_TIMEOUT;
 429
 430	/* linked timeouts should have two refs once prep'ed */
 431	io_req_set_refcount(req);
 432	__io_req_set_refcount(req->link, 2);
 433	return req->link;
 434}
 435
 436static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
 437{
 438	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
 439		return NULL;
 440	return __io_prep_linked_timeout(req);
 441}
 442
 443static noinline void __io_arm_ltimeout(struct io_kiocb *req)
 444{
 445	io_queue_linked_timeout(__io_prep_linked_timeout(req));
 446}
 447
 448static inline void io_arm_ltimeout(struct io_kiocb *req)
 449{
 450	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
 451		__io_arm_ltimeout(req);
 452}
 453
 454static void io_prep_async_work(struct io_kiocb *req)
 455{
 456	const struct io_issue_def *def = &io_issue_defs[req->opcode];
 457	struct io_ring_ctx *ctx = req->ctx;
 458
 459	if (!(req->flags & REQ_F_CREDS)) {
 460		req->flags |= REQ_F_CREDS;
 461		req->creds = get_current_cred();
 462	}
 463
 464	req->work.list.next = NULL;
 465	req->work.flags = 0;
 466	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
 467	if (req->flags & REQ_F_FORCE_ASYNC)
 468		req->work.flags |= IO_WQ_WORK_CONCURRENT;
 469
 470	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
 471		req->flags |= io_file_get_flags(req->file);
 472
 473	if (req->file && (req->flags & REQ_F_ISREG)) {
 474		bool should_hash = def->hash_reg_file;
 475
 476		/* don't serialize this request if the fs doesn't need it */
 477		if (should_hash && (req->file->f_flags & O_DIRECT) &&
 478		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
 479			should_hash = false;
 480		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
 481			io_wq_hash_work(&req->work, file_inode(req->file));
 482	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
 483		if (def->unbound_nonreg_file)
 484			req->work.flags |= IO_WQ_WORK_UNBOUND;
 485	}
 486}
 487
 488static void io_prep_async_link(struct io_kiocb *req)
 489{
 490	struct io_kiocb *cur;
 491
 492	if (req->flags & REQ_F_LINK_TIMEOUT) {
 493		struct io_ring_ctx *ctx = req->ctx;
 494
 495		spin_lock_irq(&ctx->timeout_lock);
 496		io_for_each_link(cur, req)
 497			io_prep_async_work(cur);
 498		spin_unlock_irq(&ctx->timeout_lock);
 499	} else {
 500		io_for_each_link(cur, req)
 501			io_prep_async_work(cur);
 502	}
 503}
 504
 505void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
 506{
 507	struct io_kiocb *link = io_prep_linked_timeout(req);
 508	struct io_uring_task *tctx = req->task->io_uring;
 509
 510	BUG_ON(!tctx);
 511	BUG_ON(!tctx->io_wq);
 
 
 
 
 512
 513	/* init ->work of the whole link before punting */
 514	io_prep_async_link(req);
 515
 516	/*
 517	 * Not expected to happen, but if we do have a bug where this _can_
 518	 * happen, catch it here and ensure the request is marked as
 519	 * canceled. That will make io-wq go through the usual work cancel
 520	 * procedure rather than attempt to run this request (or create a new
 521	 * worker for it).
 522	 */
 523	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
 524		req->work.flags |= IO_WQ_WORK_CANCEL;
 525
 526	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
 527	io_wq_enqueue(tctx->io_wq, &req->work);
 528	if (link)
 529		io_queue_linked_timeout(link);
 530}
 531
 
 
 
 
 
 
 
 
 
 
 
 532static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
 533{
 534	while (!list_empty(&ctx->defer_list)) {
 535		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
 536						struct io_defer_entry, list);
 537
 538		if (req_need_defer(de->req, de->seq))
 539			break;
 540		list_del_init(&de->list);
 541		io_req_task_queue(de->req);
 542		kfree(de);
 543	}
 544}
 545
 546void io_eventfd_ops(struct rcu_head *rcu)
 547{
 548	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
 549	int ops = atomic_xchg(&ev_fd->ops, 0);
 550
 551	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
 552		eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE);
 553
 554	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
 555	 * ordering in a race but if references are 0 we know we have to free
 556	 * it regardless.
 557	 */
 558	if (atomic_dec_and_test(&ev_fd->refs)) {
 559		eventfd_ctx_put(ev_fd->cq_ev_fd);
 560		kfree(ev_fd);
 561	}
 562}
 563
 564static void io_eventfd_signal(struct io_ring_ctx *ctx)
 565{
 566	struct io_ev_fd *ev_fd = NULL;
 567
 568	rcu_read_lock();
 569	/*
 570	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
 571	 * and eventfd_signal
 572	 */
 573	ev_fd = rcu_dereference(ctx->io_ev_fd);
 574
 575	/*
 576	 * Check again if ev_fd exists incase an io_eventfd_unregister call
 577	 * completed between the NULL check of ctx->io_ev_fd at the start of
 578	 * the function and rcu_read_lock.
 579	 */
 580	if (unlikely(!ev_fd))
 581		goto out;
 582	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
 583		goto out;
 584	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
 585		goto out;
 586
 587	if (likely(eventfd_signal_allowed())) {
 588		eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE);
 589	} else {
 590		atomic_inc(&ev_fd->refs);
 591		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
 592			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
 593		else
 594			atomic_dec(&ev_fd->refs);
 595	}
 596
 597out:
 598	rcu_read_unlock();
 599}
 600
 601static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
 602{
 603	bool skip;
 604
 605	spin_lock(&ctx->completion_lock);
 606
 607	/*
 608	 * Eventfd should only get triggered when at least one event has been
 609	 * posted. Some applications rely on the eventfd notification count
 610	 * only changing IFF a new CQE has been added to the CQ ring. There's
 611	 * no depedency on 1:1 relationship between how many times this
 612	 * function is called (and hence the eventfd count) and number of CQEs
 613	 * posted to the CQ ring.
 614	 */
 615	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
 616	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
 617	spin_unlock(&ctx->completion_lock);
 618	if (skip)
 619		return;
 620
 621	io_eventfd_signal(ctx);
 622}
 623
 624void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
 625{
 626	if (ctx->poll_activated)
 627		io_poll_wq_wake(ctx);
 628	if (ctx->off_timeout_used)
 629		io_flush_timeouts(ctx);
 630	if (ctx->drain_active) {
 631		spin_lock(&ctx->completion_lock);
 632		io_queue_deferred(ctx);
 633		spin_unlock(&ctx->completion_lock);
 634	}
 635	if (ctx->has_evfd)
 636		io_eventfd_flush_signal(ctx);
 637}
 638
 639static inline void __io_cq_lock(struct io_ring_ctx *ctx)
 640{
 641	if (!ctx->lockless_cq)
 642		spin_lock(&ctx->completion_lock);
 643}
 644
 645static inline void io_cq_lock(struct io_ring_ctx *ctx)
 646	__acquires(ctx->completion_lock)
 647{
 648	spin_lock(&ctx->completion_lock);
 649}
 650
 651static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
 652{
 653	io_commit_cqring(ctx);
 654	if (!ctx->task_complete) {
 655		if (!ctx->lockless_cq)
 656			spin_unlock(&ctx->completion_lock);
 657		/* IOPOLL rings only need to wake up if it's also SQPOLL */
 658		if (!ctx->syscall_iopoll)
 659			io_cqring_wake(ctx);
 660	}
 661	io_commit_cqring_flush(ctx);
 662}
 663
 664static void io_cq_unlock_post(struct io_ring_ctx *ctx)
 665	__releases(ctx->completion_lock)
 666{
 667	io_commit_cqring(ctx);
 668	spin_unlock(&ctx->completion_lock);
 669	io_cqring_wake(ctx);
 670	io_commit_cqring_flush(ctx);
 671}
 672
 673/* Returns true if there are no backlogged entries after the flush */
 674static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
 675{
 676	struct io_overflow_cqe *ocqe;
 677	LIST_HEAD(list);
 678
 679	spin_lock(&ctx->completion_lock);
 680	list_splice_init(&ctx->cq_overflow_list, &list);
 681	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
 682	spin_unlock(&ctx->completion_lock);
 683
 684	while (!list_empty(&list)) {
 685		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
 686		list_del(&ocqe->list);
 687		kfree(ocqe);
 688	}
 689}
 690
 691static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
 692{
 693	size_t cqe_size = sizeof(struct io_uring_cqe);
 694
 695	if (__io_cqring_events(ctx) == ctx->cq_entries)
 
 696		return;
 697
 698	if (ctx->flags & IORING_SETUP_CQE32)
 699		cqe_size <<= 1;
 700
 701	io_cq_lock(ctx);
 702	while (!list_empty(&ctx->cq_overflow_list)) {
 703		struct io_uring_cqe *cqe;
 704		struct io_overflow_cqe *ocqe;
 705
 706		if (!io_get_cqe_overflow(ctx, &cqe, true))
 707			break;
 708		ocqe = list_first_entry(&ctx->cq_overflow_list,
 709					struct io_overflow_cqe, list);
 710		memcpy(cqe, &ocqe->cqe, cqe_size);
 
 
 
 
 
 711		list_del(&ocqe->list);
 712		kfree(ocqe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713	}
 714
 715	if (list_empty(&ctx->cq_overflow_list)) {
 716		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
 717		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
 718	}
 719	io_cq_unlock_post(ctx);
 720}
 721
 722static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
 723{
 724	/* iopoll syncs against uring_lock, not completion_lock */
 725	if (ctx->flags & IORING_SETUP_IOPOLL)
 726		mutex_lock(&ctx->uring_lock);
 727	__io_cqring_overflow_flush(ctx);
 728	if (ctx->flags & IORING_SETUP_IOPOLL)
 729		mutex_unlock(&ctx->uring_lock);
 730}
 731
 732static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
 733{
 734	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
 735		io_cqring_do_overflow_flush(ctx);
 
 736}
 737
 738/* can be called by any task */
 739static void io_put_task_remote(struct task_struct *task)
 740{
 741	struct io_uring_task *tctx = task->io_uring;
 742
 743	percpu_counter_sub(&tctx->inflight, 1);
 744	if (unlikely(atomic_read(&tctx->in_cancel)))
 745		wake_up(&tctx->wait);
 746	put_task_struct(task);
 747}
 748
 749/* used by a task to put its own references */
 750static void io_put_task_local(struct task_struct *task)
 751{
 752	task->io_uring->cached_refs++;
 753}
 754
 755/* must to be called somewhat shortly after putting a request */
 756static inline void io_put_task(struct task_struct *task)
 757{
 758	if (likely(task == current))
 759		io_put_task_local(task);
 760	else
 761		io_put_task_remote(task);
 762}
 763
 764void io_task_refs_refill(struct io_uring_task *tctx)
 765{
 766	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
 767
 768	percpu_counter_add(&tctx->inflight, refill);
 769	refcount_add(refill, &current->usage);
 770	tctx->cached_refs += refill;
 771}
 772
 773static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
 774{
 775	struct io_uring_task *tctx = task->io_uring;
 776	unsigned int refs = tctx->cached_refs;
 777
 778	if (refs) {
 779		tctx->cached_refs = 0;
 780		percpu_counter_sub(&tctx->inflight, refs);
 781		put_task_struct_many(task, refs);
 782	}
 783}
 784
 785static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
 786				     s32 res, u32 cflags, u64 extra1, u64 extra2)
 787{
 788	struct io_overflow_cqe *ocqe;
 789	size_t ocq_size = sizeof(struct io_overflow_cqe);
 790	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
 791
 792	lockdep_assert_held(&ctx->completion_lock);
 793
 794	if (is_cqe32)
 795		ocq_size += sizeof(struct io_uring_cqe);
 796
 797	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
 798	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
 799	if (!ocqe) {
 800		/*
 801		 * If we're in ring overflow flush mode, or in task cancel mode,
 802		 * or cannot allocate an overflow entry, then we need to drop it
 803		 * on the floor.
 804		 */
 805		io_account_cq_overflow(ctx);
 806		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
 807		return false;
 808	}
 809	if (list_empty(&ctx->cq_overflow_list)) {
 810		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
 811		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
 812
 813	}
 814	ocqe->cqe.user_data = user_data;
 815	ocqe->cqe.res = res;
 816	ocqe->cqe.flags = cflags;
 817	if (is_cqe32) {
 818		ocqe->cqe.big_cqe[0] = extra1;
 819		ocqe->cqe.big_cqe[1] = extra2;
 820	}
 821	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
 822	return true;
 823}
 824
 825void io_req_cqe_overflow(struct io_kiocb *req)
 826{
 827	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
 828				req->cqe.res, req->cqe.flags,
 829				req->big_cqe.extra1, req->big_cqe.extra2);
 830	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
 831}
 832
 833/*
 834 * writes to the cq entry need to come after reading head; the
 835 * control dependency is enough as we're using WRITE_ONCE to
 836 * fill the cq entry
 837 */
 838bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
 839{
 840	struct io_rings *rings = ctx->rings;
 841	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
 842	unsigned int free, queued, len;
 843
 844	/*
 845	 * Posting into the CQ when there are pending overflowed CQEs may break
 846	 * ordering guarantees, which will affect links, F_MORE users and more.
 847	 * Force overflow the completion.
 848	 */
 849	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
 850		return false;
 851
 852	/* userspace may cheat modifying the tail, be safe and do min */
 853	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
 854	free = ctx->cq_entries - queued;
 855	/* we need a contiguous range, limit based on the current array offset */
 856	len = min(free, ctx->cq_entries - off);
 857	if (!len)
 858		return false;
 859
 860	if (ctx->flags & IORING_SETUP_CQE32) {
 861		off <<= 1;
 862		len <<= 1;
 863	}
 864
 865	ctx->cqe_cached = &rings->cqes[off];
 866	ctx->cqe_sentinel = ctx->cqe_cached + len;
 867	return true;
 868}
 869
 870static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
 871			      u32 cflags)
 872{
 873	struct io_uring_cqe *cqe;
 874
 875	ctx->cq_extra++;
 876
 877	/*
 878	 * If we can't get a cq entry, userspace overflowed the
 879	 * submission (by quite a lot). Increment the overflow count in
 880	 * the ring.
 881	 */
 882	if (likely(io_get_cqe(ctx, &cqe))) {
 883		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
 884
 885		WRITE_ONCE(cqe->user_data, user_data);
 886		WRITE_ONCE(cqe->res, res);
 887		WRITE_ONCE(cqe->flags, cflags);
 888
 889		if (ctx->flags & IORING_SETUP_CQE32) {
 890			WRITE_ONCE(cqe->big_cqe[0], 0);
 891			WRITE_ONCE(cqe->big_cqe[1], 0);
 892		}
 
 
 893		return true;
 894	}
 895	return false;
 896}
 897
 898static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
 899	__must_hold(&ctx->uring_lock)
 900{
 901	struct io_submit_state *state = &ctx->submit_state;
 902	unsigned int i;
 903
 904	lockdep_assert_held(&ctx->uring_lock);
 905	for (i = 0; i < state->cqes_count; i++) {
 906		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
 907
 908		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
 909			if (ctx->lockless_cq) {
 910				spin_lock(&ctx->completion_lock);
 911				io_cqring_event_overflow(ctx, cqe->user_data,
 912							cqe->res, cqe->flags, 0, 0);
 913				spin_unlock(&ctx->completion_lock);
 914			} else {
 915				io_cqring_event_overflow(ctx, cqe->user_data,
 916							cqe->res, cqe->flags, 0, 0);
 917			}
 918		}
 919	}
 920	state->cqes_count = 0;
 921}
 922
 923static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
 924			      bool allow_overflow)
 925{
 926	bool filled;
 927
 928	io_cq_lock(ctx);
 929	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
 930	if (!filled && allow_overflow)
 931		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
 932
 933	io_cq_unlock_post(ctx);
 934	return filled;
 935}
 936
 937bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
 
 
 
 
 938{
 939	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
 
 
 
 
 
 940}
 941
 942/*
 943 * A helper for multishot requests posting additional CQEs.
 944 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
 945 */
 946bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
 947{
 948	struct io_ring_ctx *ctx = req->ctx;
 949	u64 user_data = req->cqe.user_data;
 950	struct io_uring_cqe *cqe;
 951
 952	if (!defer)
 953		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
 954
 
 955	lockdep_assert_held(&ctx->uring_lock);
 956
 957	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
 958		__io_cq_lock(ctx);
 959		__io_flush_post_cqes(ctx);
 960		/* no need to flush - flush is deferred */
 961		__io_cq_unlock_post(ctx);
 962	}
 963
 964	/* For defered completions this is not as strict as it is otherwise,
 965	 * however it's main job is to prevent unbounded posted completions,
 966	 * and in that it works just as well.
 967	 */
 968	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
 969		return false;
 970
 971	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
 972	cqe->user_data = user_data;
 973	cqe->res = res;
 974	cqe->flags = cflags;
 975	return true;
 976}
 977
 978static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
 979{
 980	struct io_ring_ctx *ctx = req->ctx;
 981	struct io_rsrc_node *rsrc_node = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982
 983	io_cq_lock(ctx);
 984	if (!(req->flags & REQ_F_CQE_SKIP)) {
 985		if (!io_fill_cqe_req(ctx, req))
 986			io_req_cqe_overflow(req);
 987	}
 
 988
 989	/*
 990	 * If we're the last reference to this request, add to our locked
 991	 * free_list cache.
 992	 */
 993	if (req_ref_put_and_test(req)) {
 994		if (req->flags & IO_REQ_LINK_FLAGS) {
 995			if (req->flags & IO_DISARM_MASK)
 996				io_disarm_next(req);
 997			if (req->link) {
 998				io_req_task_queue(req->link);
 999				req->link = NULL;
1000			}
1001		}
1002		io_put_kbuf_comp(req);
1003		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1004			io_clean_op(req);
1005		io_put_file(req);
1006
1007		rsrc_node = req->rsrc_node;
1008		/*
1009		 * Selected buffer deallocation in io_clean_op() assumes that
1010		 * we don't hold ->completion_lock. Clean them here to avoid
1011		 * deadlocks.
1012		 */
1013		io_put_task_remote(req->task);
1014		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1015		ctx->locked_free_nr++;
1016	}
1017	io_cq_unlock_post(ctx);
1018
1019	if (rsrc_node) {
1020		io_ring_submit_lock(ctx, issue_flags);
1021		io_put_rsrc_node(ctx, rsrc_node);
1022		io_ring_submit_unlock(ctx, issue_flags);
1023	}
1024}
1025
1026void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1027{
1028	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1029		req->io_task_work.func = io_req_task_complete;
1030		io_req_task_work_add(req);
1031	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1032		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1033		__io_req_complete_post(req, issue_flags);
1034	} else {
1035		struct io_ring_ctx *ctx = req->ctx;
1036
1037		mutex_lock(&ctx->uring_lock);
1038		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1039		mutex_unlock(&ctx->uring_lock);
1040	}
1041}
1042
1043void io_req_defer_failed(struct io_kiocb *req, s32 res)
1044	__must_hold(&ctx->uring_lock)
1045{
1046	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1047
1048	lockdep_assert_held(&req->ctx->uring_lock);
1049
1050	req_set_fail(req);
1051	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1052	if (def->fail)
1053		def->fail(req);
1054	io_req_complete_defer(req);
1055}
1056
1057/*
1058 * Don't initialise the fields below on every allocation, but do that in
1059 * advance and keep them valid across allocations.
1060 */
1061static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1062{
1063	req->ctx = ctx;
 
 
1064	req->link = NULL;
1065	req->async_data = NULL;
1066	/* not necessary, but safer to zero */
1067	memset(&req->cqe, 0, sizeof(req->cqe));
1068	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1069}
1070
1071static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1072					struct io_submit_state *state)
1073{
1074	spin_lock(&ctx->completion_lock);
1075	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1076	ctx->locked_free_nr = 0;
1077	spin_unlock(&ctx->completion_lock);
1078}
1079
1080/*
1081 * A request might get retired back into the request caches even before opcode
1082 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1083 * Because of that, io_alloc_req() should be called only under ->uring_lock
1084 * and with extra caution to not get a request that is still worked on.
1085 */
1086__cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1087	__must_hold(&ctx->uring_lock)
1088{
1089	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1090	void *reqs[IO_REQ_ALLOC_BATCH];
1091	int ret, i;
1092
1093	/*
1094	 * If we have more than a batch's worth of requests in our IRQ side
1095	 * locked cache, grab the lock and move them over to our submission
1096	 * side cache.
1097	 */
1098	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1099		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1100		if (!io_req_cache_empty(ctx))
1101			return true;
1102	}
1103
1104	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1105
1106	/*
1107	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1108	 * retry single alloc to be on the safe side.
1109	 */
1110	if (unlikely(ret <= 0)) {
1111		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1112		if (!reqs[0])
1113			return false;
1114		ret = 1;
1115	}
1116
1117	percpu_ref_get_many(&ctx->refs, ret);
1118	for (i = 0; i < ret; i++) {
1119		struct io_kiocb *req = reqs[i];
1120
1121		io_preinit_req(req, ctx);
1122		io_req_add_to_cache(req, ctx);
1123	}
1124	return true;
1125}
1126
1127__cold void io_free_req(struct io_kiocb *req)
1128{
1129	/* refs were already put, restore them for io_req_task_complete() */
1130	req->flags &= ~REQ_F_REFCOUNT;
1131	/* we only want to free it, don't post CQEs */
1132	req->flags |= REQ_F_CQE_SKIP;
1133	req->io_task_work.func = io_req_task_complete;
1134	io_req_task_work_add(req);
1135}
1136
1137static void __io_req_find_next_prep(struct io_kiocb *req)
1138{
1139	struct io_ring_ctx *ctx = req->ctx;
1140
1141	spin_lock(&ctx->completion_lock);
1142	io_disarm_next(req);
1143	spin_unlock(&ctx->completion_lock);
1144}
1145
1146static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1147{
1148	struct io_kiocb *nxt;
1149
1150	/*
1151	 * If LINK is set, we have dependent requests in this chain. If we
1152	 * didn't fail this request, queue the first one up, moving any other
1153	 * dependencies to the next request. In case of failure, fail the rest
1154	 * of the chain.
1155	 */
1156	if (unlikely(req->flags & IO_DISARM_MASK))
1157		__io_req_find_next_prep(req);
1158	nxt = req->link;
1159	req->link = NULL;
1160	return nxt;
1161}
1162
1163static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1164{
1165	if (!ctx)
1166		return;
1167	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1168		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1169	if (ts->locked) {
1170		io_submit_flush_completions(ctx);
1171		mutex_unlock(&ctx->uring_lock);
1172		ts->locked = false;
1173	}
1174	percpu_ref_put(&ctx->refs);
1175}
1176
1177static unsigned int handle_tw_list(struct llist_node *node,
1178				   struct io_ring_ctx **ctx,
1179				   struct io_tw_state *ts,
1180				   struct llist_node *last)
 
 
 
 
1181{
1182	unsigned int count = 0;
 
1183
1184	while (node && node != last) {
1185		struct llist_node *next = node->next;
1186		struct io_kiocb *req = container_of(node, struct io_kiocb,
1187						    io_task_work.node);
1188
1189		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1190
1191		if (req->ctx != *ctx) {
1192			ctx_flush_and_put(*ctx, ts);
1193			*ctx = req->ctx;
1194			/* if not contended, grab and improve batching */
1195			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1196			percpu_ref_get(&(*ctx)->refs);
1197		}
1198		INDIRECT_CALL_2(req->io_task_work.func,
1199				io_poll_task_func, io_req_rw_complete,
1200				req, ts);
1201		node = next;
1202		count++;
1203		if (unlikely(need_resched())) {
1204			ctx_flush_and_put(*ctx, ts);
1205			*ctx = NULL;
1206			cond_resched();
1207		}
1208	}
1209
1210	return count;
 
1211}
1212
1213/**
1214 * io_llist_xchg - swap all entries in a lock-less list
1215 * @head:	the head of lock-less list to delete all entries
1216 * @new:	new entry as the head of the list
1217 *
1218 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1219 * The order of entries returned is from the newest to the oldest added one.
1220 */
1221static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1222					       struct llist_node *new)
1223{
1224	return xchg(&head->first, new);
1225}
1226
1227/**
1228 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1229 * @head:	the head of lock-less list to delete all entries
1230 * @old:	expected old value of the first entry of the list
1231 * @new:	new entry as the head of the list
1232 *
1233 * perform a cmpxchg on the first entry of the list.
1234 */
1235
1236static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1237						  struct llist_node *old,
1238						  struct llist_node *new)
1239{
1240	return cmpxchg(&head->first, old, new);
1241}
1242
1243static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1244{
1245	struct llist_node *node = llist_del_all(&tctx->task_list);
1246	struct io_ring_ctx *last_ctx = NULL;
1247	struct io_kiocb *req;
1248
1249	while (node) {
1250		req = container_of(node, struct io_kiocb, io_task_work.node);
1251		node = node->next;
1252		if (sync && last_ctx != req->ctx) {
1253			if (last_ctx) {
1254				flush_delayed_work(&last_ctx->fallback_work);
1255				percpu_ref_put(&last_ctx->refs);
1256			}
1257			last_ctx = req->ctx;
1258			percpu_ref_get(&last_ctx->refs);
1259		}
1260		if (llist_add(&req->io_task_work.node,
1261			      &req->ctx->fallback_llist))
1262			schedule_delayed_work(&req->ctx->fallback_work, 1);
1263	}
1264
1265	if (last_ctx) {
1266		flush_delayed_work(&last_ctx->fallback_work);
1267		percpu_ref_put(&last_ctx->refs);
1268	}
1269}
1270
1271void tctx_task_work(struct callback_head *cb)
 
 
 
 
 
 
 
 
 
1272{
1273	struct io_tw_state ts = {};
1274	struct io_ring_ctx *ctx = NULL;
1275	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1276						  task_work);
1277	struct llist_node fake = {};
1278	struct llist_node *node;
1279	unsigned int loops = 0;
1280	unsigned int count = 0;
1281
1282	if (unlikely(current->flags & PF_EXITING)) {
1283		io_fallback_tw(tctx, true);
1284		return;
1285	}
1286
1287	do {
1288		loops++;
1289		node = io_llist_xchg(&tctx->task_list, &fake);
1290		count += handle_tw_list(node, &ctx, &ts, &fake);
1291
1292		/* skip expensive cmpxchg if there are items in the list */
1293		if (READ_ONCE(tctx->task_list.first) != &fake)
1294			continue;
1295		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1296			io_submit_flush_completions(ctx);
1297			if (READ_ONCE(tctx->task_list.first) != &fake)
1298				continue;
1299		}
1300		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1301	} while (node != &fake);
1302
1303	ctx_flush_and_put(ctx, &ts);
1304
1305	/* relaxed read is enough as only the task itself sets ->in_cancel */
1306	if (unlikely(atomic_read(&tctx->in_cancel)))
1307		io_uring_drop_tctx_refs(current);
1308
1309	trace_io_uring_task_work_run(tctx, count, loops);
 
 
 
 
 
 
 
 
 
 
 
 
 
1310}
1311
1312static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
 
 
1313{
1314	struct io_ring_ctx *ctx = req->ctx;
1315	unsigned nr_wait, nr_tw, nr_tw_prev;
1316	struct llist_node *head;
1317
1318	/* See comment above IO_CQ_WAKE_INIT */
1319	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1320
1321	/*
1322	 * We don't know how many reuqests is there in the link and whether
1323	 * they can even be queued lazily, fall back to non-lazy.
1324	 */
1325	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1326		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1327
 
 
1328	head = READ_ONCE(ctx->work_llist.first);
1329	do {
1330		nr_tw_prev = 0;
1331		if (head) {
1332			struct io_kiocb *first_req = container_of(head,
1333							struct io_kiocb,
1334							io_task_work.node);
1335			/*
1336			 * Might be executed at any moment, rely on
1337			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1338			 */
1339			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1340		}
1341
1342		/*
1343		 * Theoretically, it can overflow, but that's fine as one of
1344		 * previous adds should've tried to wake the task.
1345		 */
1346		nr_tw = nr_tw_prev + 1;
1347		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1348			nr_tw = IO_CQ_WAKE_FORCE;
1349
1350		req->nr_tw = nr_tw;
1351		req->io_task_work.node.next = head;
1352	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1353			      &req->io_task_work.node));
1354
1355	/*
1356	 * cmpxchg implies a full barrier, which pairs with the barrier
1357	 * in set_current_state() on the io_cqring_wait() side. It's used
1358	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1359	 * going to sleep will observe the work added to the list, which
1360	 * is similar to the wait/wawke task state sync.
1361	 */
1362
1363	if (!head) {
1364		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1365			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1366		if (ctx->has_evfd)
1367			io_eventfd_signal(ctx);
1368	}
1369
1370	nr_wait = atomic_read(&ctx->cq_wait_nr);
1371	/* not enough or no one is waiting */
1372	if (nr_tw < nr_wait)
1373		return;
1374	/* the previous add has already woken it up */
1375	if (nr_tw_prev >= nr_wait)
1376		return;
1377	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1378}
1379
1380static void io_req_normal_work_add(struct io_kiocb *req)
1381{
1382	struct io_uring_task *tctx = req->task->io_uring;
1383	struct io_ring_ctx *ctx = req->ctx;
1384
1385	/* task_work already pending, we're done */
1386	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1387		return;
1388
1389	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1390		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1391
1392	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
 
 
 
 
 
 
1393		return;
1394
1395	io_fallback_tw(tctx, false);
1396}
1397
1398void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1399{
1400	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1401		rcu_read_lock();
1402		io_req_local_work_add(req, flags);
1403		rcu_read_unlock();
1404	} else {
1405		io_req_normal_work_add(req);
1406	}
 
 
 
 
 
 
 
1407}
1408
1409static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1410{
1411	struct llist_node *node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1412
1413	node = llist_del_all(&ctx->work_llist);
1414	while (node) {
1415		struct io_kiocb *req = container_of(node, struct io_kiocb,
1416						    io_task_work.node);
 
 
 
 
 
 
 
1417
1418		node = node->next;
1419		io_req_normal_work_add(req);
1420	}
1421}
1422
1423static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
 
1424{
1425	struct llist_node *node;
1426	unsigned int loops = 0;
1427	int ret = 0;
1428
1429	if (WARN_ON_ONCE(ctx->submitter_task != current))
1430		return -EEXIST;
1431	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1432		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1433again:
 
 
 
 
 
1434	/*
1435	 * llists are in reverse order, flip it back the right way before
1436	 * running the pending items.
1437	 */
1438	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1439	while (node) {
1440		struct llist_node *next = node->next;
1441		struct io_kiocb *req = container_of(node, struct io_kiocb,
1442						    io_task_work.node);
1443		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1444		INDIRECT_CALL_2(req->io_task_work.func,
1445				io_poll_task_func, io_req_rw_complete,
1446				req, ts);
1447		ret++;
1448		node = next;
1449	}
1450	loops++;
1451
1452	if (!llist_empty(&ctx->work_llist))
1453		goto again;
1454	if (ts->locked) {
1455		io_submit_flush_completions(ctx);
1456		if (!llist_empty(&ctx->work_llist))
1457			goto again;
1458	}
1459	trace_io_uring_local_work_run(ctx, ret, loops);
1460	return ret;
1461}
1462
1463static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
 
1464{
1465	struct io_tw_state ts = { .locked = true, };
1466	int ret;
1467
1468	if (llist_empty(&ctx->work_llist))
1469		return 0;
1470
1471	ret = __io_run_local_work(ctx, &ts);
1472	/* shouldn't happen! */
1473	if (WARN_ON_ONCE(!ts.locked))
1474		mutex_lock(&ctx->uring_lock);
1475	return ret;
1476}
1477
1478static int io_run_local_work(struct io_ring_ctx *ctx)
 
1479{
1480	struct io_tw_state ts = {};
1481	int ret;
1482
1483	ts.locked = mutex_trylock(&ctx->uring_lock);
1484	ret = __io_run_local_work(ctx, &ts);
1485	if (ts.locked)
1486		mutex_unlock(&ctx->uring_lock);
1487
1488	return ret;
1489}
1490
1491static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1492{
1493	io_tw_lock(req->ctx, ts);
1494	io_req_defer_failed(req, req->cqe.res);
1495}
1496
1497void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1498{
1499	io_tw_lock(req->ctx, ts);
1500	/* req->task == current here, checking PF_EXITING is safe */
1501	if (unlikely(req->task->flags & PF_EXITING))
1502		io_req_defer_failed(req, -EFAULT);
1503	else if (req->flags & REQ_F_FORCE_ASYNC)
1504		io_queue_iowq(req, ts);
1505	else
1506		io_queue_sqe(req);
1507}
1508
1509void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1510{
1511	io_req_set_res(req, ret, 0);
1512	req->io_task_work.func = io_req_task_cancel;
1513	io_req_task_work_add(req);
1514}
1515
1516void io_req_task_queue(struct io_kiocb *req)
1517{
1518	req->io_task_work.func = io_req_task_submit;
1519	io_req_task_work_add(req);
1520}
1521
1522void io_queue_next(struct io_kiocb *req)
1523{
1524	struct io_kiocb *nxt = io_req_find_next(req);
1525
1526	if (nxt)
1527		io_req_task_queue(nxt);
1528}
1529
1530static void io_free_batch_list(struct io_ring_ctx *ctx,
1531			       struct io_wq_work_node *node)
1532	__must_hold(&ctx->uring_lock)
1533{
1534	do {
1535		struct io_kiocb *req = container_of(node, struct io_kiocb,
1536						    comp_list);
1537
1538		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1539			if (req->flags & REQ_F_REFCOUNT) {
1540				node = req->comp_list.next;
1541				if (!req_ref_put_and_test(req))
1542					continue;
1543			}
1544			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1545				struct async_poll *apoll = req->apoll;
1546
1547				if (apoll->double_poll)
1548					kfree(apoll->double_poll);
1549				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1550					kfree(apoll);
1551				req->flags &= ~REQ_F_POLLED;
1552			}
1553			if (req->flags & IO_REQ_LINK_FLAGS)
1554				io_queue_next(req);
1555			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1556				io_clean_op(req);
1557		}
1558		io_put_file(req);
 
 
1559
1560		io_req_put_rsrc_locked(req, ctx);
1561
1562		io_put_task(req->task);
1563		node = req->comp_list.next;
1564		io_req_add_to_cache(req, ctx);
1565	} while (node);
1566}
1567
1568void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1569	__must_hold(&ctx->uring_lock)
1570{
1571	struct io_submit_state *state = &ctx->submit_state;
1572	struct io_wq_work_node *node;
1573
1574	__io_cq_lock(ctx);
1575	/* must come first to preserve CQE ordering in failure cases */
1576	if (state->cqes_count)
1577		__io_flush_post_cqes(ctx);
1578	__wq_list_for_each(node, &state->compl_reqs) {
1579		struct io_kiocb *req = container_of(node, struct io_kiocb,
1580					    comp_list);
1581
1582		if (!(req->flags & REQ_F_CQE_SKIP) &&
1583		    unlikely(!io_fill_cqe_req(ctx, req))) {
1584			if (ctx->lockless_cq) {
1585				spin_lock(&ctx->completion_lock);
1586				io_req_cqe_overflow(req);
1587				spin_unlock(&ctx->completion_lock);
1588			} else {
1589				io_req_cqe_overflow(req);
1590			}
1591		}
1592	}
1593	__io_cq_unlock_post(ctx);
1594
1595	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1596		io_free_batch_list(ctx, state->compl_reqs.first);
1597		INIT_WQ_LIST(&state->compl_reqs);
1598	}
 
1599}
1600
1601static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1602{
1603	/* See comment at the top of this file */
1604	smp_rmb();
1605	return __io_cqring_events(ctx);
1606}
1607
1608/*
1609 * We can't just wait for polled events to come to us, we have to actively
1610 * find and complete them.
1611 */
1612static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1613{
1614	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1615		return;
1616
1617	mutex_lock(&ctx->uring_lock);
1618	while (!wq_list_empty(&ctx->iopoll_list)) {
1619		/* let it sleep and repeat later if can't complete a request */
1620		if (io_do_iopoll(ctx, true) == 0)
1621			break;
1622		/*
1623		 * Ensure we allow local-to-the-cpu processing to take place,
1624		 * in this case we need to ensure that we reap all events.
1625		 * Also let task_work, etc. to progress by releasing the mutex
1626		 */
1627		if (need_resched()) {
1628			mutex_unlock(&ctx->uring_lock);
1629			cond_resched();
1630			mutex_lock(&ctx->uring_lock);
1631		}
1632	}
1633	mutex_unlock(&ctx->uring_lock);
1634}
1635
1636static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1637{
1638	unsigned int nr_events = 0;
1639	unsigned long check_cq;
1640
 
 
1641	if (!io_allowed_run_tw(ctx))
1642		return -EEXIST;
1643
1644	check_cq = READ_ONCE(ctx->check_cq);
1645	if (unlikely(check_cq)) {
1646		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1647			__io_cqring_overflow_flush(ctx);
1648		/*
1649		 * Similarly do not spin if we have not informed the user of any
1650		 * dropped CQE.
1651		 */
1652		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1653			return -EBADR;
1654	}
1655	/*
1656	 * Don't enter poll loop if we already have events pending.
1657	 * If we do, we can potentially be spinning for commands that
1658	 * already triggered a CQE (eg in error).
1659	 */
1660	if (io_cqring_events(ctx))
1661		return 0;
1662
1663	do {
1664		int ret = 0;
1665
1666		/*
1667		 * If a submit got punted to a workqueue, we can have the
1668		 * application entering polling for a command before it gets
1669		 * issued. That app will hold the uring_lock for the duration
1670		 * of the poll right here, so we need to take a breather every
1671		 * now and then to ensure that the issue has a chance to add
1672		 * the poll to the issued list. Otherwise we can spin here
1673		 * forever, while the workqueue is stuck trying to acquire the
1674		 * very same mutex.
1675		 */
1676		if (wq_list_empty(&ctx->iopoll_list) ||
1677		    io_task_work_pending(ctx)) {
1678			u32 tail = ctx->cached_cq_tail;
1679
1680			(void) io_run_local_work_locked(ctx);
1681
1682			if (task_work_pending(current) ||
1683			    wq_list_empty(&ctx->iopoll_list)) {
1684				mutex_unlock(&ctx->uring_lock);
1685				io_run_task_work();
1686				mutex_lock(&ctx->uring_lock);
1687			}
1688			/* some requests don't go through iopoll_list */
1689			if (tail != ctx->cached_cq_tail ||
1690			    wq_list_empty(&ctx->iopoll_list))
1691				break;
1692		}
1693		ret = io_do_iopoll(ctx, !min);
1694		if (unlikely(ret < 0))
1695			return ret;
1696
1697		if (task_sigpending(current))
1698			return -EINTR;
1699		if (need_resched())
1700			break;
1701
1702		nr_events += ret;
1703	} while (nr_events < min);
1704
1705	return 0;
1706}
1707
1708void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1709{
1710	if (ts->locked)
1711		io_req_complete_defer(req);
1712	else
1713		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1714}
1715
1716/*
1717 * After the iocb has been issued, it's safe to be found on the poll list.
1718 * Adding the kiocb to the list AFTER submission ensures that we don't
1719 * find it from a io_do_iopoll() thread before the issuer is done
1720 * accessing the kiocb cookie.
1721 */
1722static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1723{
1724	struct io_ring_ctx *ctx = req->ctx;
1725	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1726
1727	/* workqueue context doesn't hold uring_lock, grab it now */
1728	if (unlikely(needs_lock))
1729		mutex_lock(&ctx->uring_lock);
1730
1731	/*
1732	 * Track whether we have multiple files in our lists. This will impact
1733	 * how we do polling eventually, not spinning if we're on potentially
1734	 * different devices.
1735	 */
1736	if (wq_list_empty(&ctx->iopoll_list)) {
1737		ctx->poll_multi_queue = false;
1738	} else if (!ctx->poll_multi_queue) {
1739		struct io_kiocb *list_req;
1740
1741		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1742					comp_list);
1743		if (list_req->file != req->file)
1744			ctx->poll_multi_queue = true;
1745	}
1746
1747	/*
1748	 * For fast devices, IO may have already completed. If it has, add
1749	 * it to the front so we find it first.
1750	 */
1751	if (READ_ONCE(req->iopoll_completed))
1752		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1753	else
1754		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1755
1756	if (unlikely(needs_lock)) {
1757		/*
1758		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1759		 * in sq thread task context or in io worker task context. If
1760		 * current task context is sq thread, we don't need to check
1761		 * whether should wake up sq thread.
1762		 */
1763		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1764		    wq_has_sleeper(&ctx->sq_data->wait))
1765			wake_up(&ctx->sq_data->wait);
1766
1767		mutex_unlock(&ctx->uring_lock);
1768	}
1769}
1770
1771unsigned int io_file_get_flags(struct file *file)
1772{
1773	unsigned int res = 0;
1774
1775	if (S_ISREG(file_inode(file)->i_mode))
1776		res |= REQ_F_ISREG;
1777	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1778		res |= REQ_F_SUPPORT_NOWAIT;
1779	return res;
1780}
1781
1782bool io_alloc_async_data(struct io_kiocb *req)
1783{
1784	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1785	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
 
 
1786	if (req->async_data) {
1787		req->flags |= REQ_F_ASYNC_DATA;
1788		return false;
1789	}
1790	return true;
1791}
1792
1793int io_req_prep_async(struct io_kiocb *req)
1794{
1795	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1796	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1797
1798	/* assign early for deferred execution for non-fixed file */
1799	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1800		req->file = io_file_get_normal(req, req->cqe.fd);
1801	if (!cdef->prep_async)
1802		return 0;
1803	if (WARN_ON_ONCE(req_has_async_data(req)))
1804		return -EFAULT;
1805	if (!def->manual_alloc) {
1806		if (io_alloc_async_data(req))
1807			return -EAGAIN;
1808	}
1809	return cdef->prep_async(req);
1810}
1811
1812static u32 io_get_sequence(struct io_kiocb *req)
1813{
1814	u32 seq = req->ctx->cached_sq_head;
1815	struct io_kiocb *cur;
1816
1817	/* need original cached_sq_head, but it was increased for each req */
1818	io_for_each_link(cur, req)
1819		seq--;
1820	return seq;
1821}
1822
1823static __cold void io_drain_req(struct io_kiocb *req)
1824	__must_hold(&ctx->uring_lock)
1825{
1826	struct io_ring_ctx *ctx = req->ctx;
1827	struct io_defer_entry *de;
1828	int ret;
1829	u32 seq = io_get_sequence(req);
1830
1831	/* Still need defer if there is pending req in defer list. */
1832	spin_lock(&ctx->completion_lock);
1833	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1834		spin_unlock(&ctx->completion_lock);
1835queue:
1836		ctx->drain_active = false;
1837		io_req_task_queue(req);
1838		return;
1839	}
1840	spin_unlock(&ctx->completion_lock);
1841
1842	io_prep_async_link(req);
1843	de = kmalloc(sizeof(*de), GFP_KERNEL);
1844	if (!de) {
1845		ret = -ENOMEM;
1846		io_req_defer_failed(req, ret);
1847		return;
1848	}
1849
1850	spin_lock(&ctx->completion_lock);
1851	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1852		spin_unlock(&ctx->completion_lock);
1853		kfree(de);
1854		goto queue;
1855	}
1856
1857	trace_io_uring_defer(req);
1858	de->req = req;
1859	de->seq = seq;
1860	list_add_tail(&de->list, &ctx->defer_list);
1861	spin_unlock(&ctx->completion_lock);
1862}
1863
1864static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1865			   unsigned int issue_flags)
1866{
1867	if (req->file || !def->needs_file)
1868		return true;
1869
1870	if (req->flags & REQ_F_FIXED_FILE)
1871		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1872	else
1873		req->file = io_file_get_normal(req, req->cqe.fd);
1874
1875	return !!req->file;
1876}
1877
1878static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1879{
1880	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1881	const struct cred *creds = NULL;
1882	int ret;
1883
1884	if (unlikely(!io_assign_file(req, def, issue_flags)))
1885		return -EBADF;
1886
1887	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1888		creds = override_creds(req->creds);
1889
1890	if (!def->audit_skip)
1891		audit_uring_entry(req->opcode);
1892
1893	ret = def->issue(req, issue_flags);
1894
1895	if (!def->audit_skip)
1896		audit_uring_exit(!ret, ret);
1897
1898	if (creds)
1899		revert_creds(creds);
1900
1901	if (ret == IOU_OK) {
1902		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1903			io_req_complete_defer(req);
1904		else
1905			io_req_complete_post(req, issue_flags);
1906
1907		return 0;
1908	}
1909
1910	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1911		ret = 0;
1912		io_arm_ltimeout(req);
1913
1914		/* If the op doesn't have a file, we're not polling for it */
1915		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1916			io_iopoll_req_issued(req, issue_flags);
1917	}
1918	return ret;
1919}
1920
1921int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1922{
1923	io_tw_lock(req->ctx, ts);
1924	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1925				 IO_URING_F_COMPLETE_DEFER);
1926}
1927
1928struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1929{
1930	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1931	struct io_kiocb *nxt = NULL;
1932
1933	if (req_ref_put_and_test(req)) {
1934		if (req->flags & IO_REQ_LINK_FLAGS)
1935			nxt = io_req_find_next(req);
1936		io_free_req(req);
1937	}
1938	return nxt ? &nxt->work : NULL;
1939}
1940
1941void io_wq_submit_work(struct io_wq_work *work)
1942{
1943	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1944	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1945	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1946	bool needs_poll = false;
1947	int ret = 0, err = -ECANCELED;
1948
1949	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1950	if (!(req->flags & REQ_F_REFCOUNT))
1951		__io_req_set_refcount(req, 2);
1952	else
1953		req_ref_get(req);
1954
1955	io_arm_ltimeout(req);
1956
1957	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1958	if (work->flags & IO_WQ_WORK_CANCEL) {
1959fail:
1960		io_req_task_queue_fail(req, err);
1961		return;
1962	}
1963	if (!io_assign_file(req, def, issue_flags)) {
1964		err = -EBADF;
1965		work->flags |= IO_WQ_WORK_CANCEL;
1966		goto fail;
1967	}
1968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1969	if (req->flags & REQ_F_FORCE_ASYNC) {
1970		bool opcode_poll = def->pollin || def->pollout;
1971
1972		if (opcode_poll && file_can_poll(req->file)) {
1973			needs_poll = true;
1974			issue_flags |= IO_URING_F_NONBLOCK;
1975		}
1976	}
1977
1978	do {
1979		ret = io_issue_sqe(req, issue_flags);
1980		if (ret != -EAGAIN)
1981			break;
1982
1983		/*
1984		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1985		 * poll. -EAGAIN is final for that case.
1986		 */
1987		if (req->flags & REQ_F_NOWAIT)
1988			break;
1989
1990		/*
1991		 * We can get EAGAIN for iopolled IO even though we're
1992		 * forcing a sync submission from here, since we can't
1993		 * wait for request slots on the block side.
1994		 */
1995		if (!needs_poll) {
1996			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1997				break;
1998			if (io_wq_worker_stopped())
1999				break;
2000			cond_resched();
2001			continue;
2002		}
2003
2004		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
2005			return;
2006		/* aborted or ready, in either case retry blocking */
2007		needs_poll = false;
2008		issue_flags &= ~IO_URING_F_NONBLOCK;
2009	} while (1);
2010
2011	/* avoid locking problems by failing it from a clean context */
2012	if (ret < 0)
2013		io_req_task_queue_fail(req, ret);
2014}
2015
2016inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2017				      unsigned int issue_flags)
2018{
2019	struct io_ring_ctx *ctx = req->ctx;
2020	struct io_fixed_file *slot;
2021	struct file *file = NULL;
2022
2023	io_ring_submit_lock(ctx, issue_flags);
2024
2025	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2026		goto out;
2027	fd = array_index_nospec(fd, ctx->nr_user_files);
2028	slot = io_fixed_file_slot(&ctx->file_table, fd);
2029	if (!req->rsrc_node)
2030		__io_req_set_rsrc_node(req, ctx);
2031	req->flags |= io_slot_flags(slot);
2032	file = io_slot_file(slot);
2033out:
2034	io_ring_submit_unlock(ctx, issue_flags);
2035	return file;
2036}
2037
2038struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2039{
2040	struct file *file = fget(fd);
2041
2042	trace_io_uring_file_get(req, fd);
2043
2044	/* we don't allow fixed io_uring files */
2045	if (file && io_is_uring_fops(file))
2046		io_req_track_inflight(req);
2047	return file;
2048}
2049
2050static void io_queue_async(struct io_kiocb *req, int ret)
2051	__must_hold(&req->ctx->uring_lock)
2052{
2053	struct io_kiocb *linked_timeout;
2054
2055	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2056		io_req_defer_failed(req, ret);
2057		return;
2058	}
2059
2060	linked_timeout = io_prep_linked_timeout(req);
2061
2062	switch (io_arm_poll_handler(req, 0)) {
2063	case IO_APOLL_READY:
2064		io_kbuf_recycle(req, 0);
2065		io_req_task_queue(req);
2066		break;
2067	case IO_APOLL_ABORTED:
2068		io_kbuf_recycle(req, 0);
2069		io_queue_iowq(req, NULL);
2070		break;
2071	case IO_APOLL_OK:
2072		break;
2073	}
2074
2075	if (linked_timeout)
2076		io_queue_linked_timeout(linked_timeout);
2077}
2078
2079static inline void io_queue_sqe(struct io_kiocb *req)
2080	__must_hold(&req->ctx->uring_lock)
2081{
2082	int ret;
2083
2084	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2085
2086	/*
2087	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2088	 * doesn't support non-blocking read/write attempts
2089	 */
2090	if (unlikely(ret))
2091		io_queue_async(req, ret);
2092}
2093
2094static void io_queue_sqe_fallback(struct io_kiocb *req)
2095	__must_hold(&req->ctx->uring_lock)
2096{
2097	if (unlikely(req->flags & REQ_F_FAIL)) {
2098		/*
2099		 * We don't submit, fail them all, for that replace hardlinks
2100		 * with normal links. Extra REQ_F_LINK is tolerated.
2101		 */
2102		req->flags &= ~REQ_F_HARDLINK;
2103		req->flags |= REQ_F_LINK;
2104		io_req_defer_failed(req, req->cqe.res);
2105	} else {
2106		int ret = io_req_prep_async(req);
2107
2108		if (unlikely(ret)) {
2109			io_req_defer_failed(req, ret);
2110			return;
2111		}
2112
2113		if (unlikely(req->ctx->drain_active))
2114			io_drain_req(req);
2115		else
2116			io_queue_iowq(req, NULL);
2117	}
2118}
2119
2120/*
2121 * Check SQE restrictions (opcode and flags).
2122 *
2123 * Returns 'true' if SQE is allowed, 'false' otherwise.
2124 */
2125static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2126					struct io_kiocb *req,
2127					unsigned int sqe_flags)
2128{
2129	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2130		return false;
2131
2132	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2133	    ctx->restrictions.sqe_flags_required)
2134		return false;
2135
2136	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2137			  ctx->restrictions.sqe_flags_required))
2138		return false;
2139
2140	return true;
2141}
2142
2143static void io_init_req_drain(struct io_kiocb *req)
2144{
2145	struct io_ring_ctx *ctx = req->ctx;
2146	struct io_kiocb *head = ctx->submit_state.link.head;
2147
2148	ctx->drain_active = true;
2149	if (head) {
2150		/*
2151		 * If we need to drain a request in the middle of a link, drain
2152		 * the head request and the next request/link after the current
2153		 * link. Considering sequential execution of links,
2154		 * REQ_F_IO_DRAIN will be maintained for every request of our
2155		 * link.
2156		 */
2157		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2158		ctx->drain_next = true;
2159	}
2160}
2161
 
 
 
 
 
 
 
2162static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2163		       const struct io_uring_sqe *sqe)
2164	__must_hold(&ctx->uring_lock)
2165{
2166	const struct io_issue_def *def;
2167	unsigned int sqe_flags;
2168	int personality;
2169	u8 opcode;
2170
2171	/* req is partially pre-initialised, see io_preinit_req() */
2172	req->opcode = opcode = READ_ONCE(sqe->opcode);
2173	/* same numerical values with corresponding REQ_F_*, safe to copy */
2174	req->flags = sqe_flags = READ_ONCE(sqe->flags);
 
2175	req->cqe.user_data = READ_ONCE(sqe->user_data);
2176	req->file = NULL;
2177	req->rsrc_node = NULL;
2178	req->task = current;
2179
2180	if (unlikely(opcode >= IORING_OP_LAST)) {
2181		req->opcode = 0;
2182		return -EINVAL;
2183	}
 
 
2184	def = &io_issue_defs[opcode];
2185	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2186		/* enforce forwards compatibility on users */
2187		if (sqe_flags & ~SQE_VALID_FLAGS)
2188			return -EINVAL;
2189		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2190			if (!def->buffer_select)
2191				return -EOPNOTSUPP;
2192			req->buf_index = READ_ONCE(sqe->buf_group);
2193		}
2194		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2195			ctx->drain_disabled = true;
2196		if (sqe_flags & IOSQE_IO_DRAIN) {
2197			if (ctx->drain_disabled)
2198				return -EOPNOTSUPP;
2199			io_init_req_drain(req);
2200		}
2201	}
2202	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2203		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2204			return -EACCES;
2205		/* knock it to the slow queue path, will be drained there */
2206		if (ctx->drain_active)
2207			req->flags |= REQ_F_FORCE_ASYNC;
2208		/* if there is no link, we're at "next" request and need to drain */
2209		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2210			ctx->drain_next = false;
2211			ctx->drain_active = true;
2212			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2213		}
2214	}
2215
2216	if (!def->ioprio && sqe->ioprio)
2217		return -EINVAL;
2218	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2219		return -EINVAL;
2220
2221	if (def->needs_file) {
2222		struct io_submit_state *state = &ctx->submit_state;
2223
2224		req->cqe.fd = READ_ONCE(sqe->fd);
2225
2226		/*
2227		 * Plug now if we have more than 2 IO left after this, and the
2228		 * target is potentially a read/write to block based storage.
2229		 */
2230		if (state->need_plug && def->plug) {
2231			state->plug_started = true;
2232			state->need_plug = false;
2233			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2234		}
2235	}
2236
2237	personality = READ_ONCE(sqe->personality);
2238	if (personality) {
2239		int ret;
2240
2241		req->creds = xa_load(&ctx->personalities, personality);
2242		if (!req->creds)
2243			return -EINVAL;
2244		get_cred(req->creds);
2245		ret = security_uring_override_creds(req->creds);
2246		if (ret) {
2247			put_cred(req->creds);
2248			return ret;
2249		}
2250		req->flags |= REQ_F_CREDS;
2251	}
2252
2253	return def->prep(req, sqe);
2254}
2255
2256static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2257				      struct io_kiocb *req, int ret)
2258{
2259	struct io_ring_ctx *ctx = req->ctx;
2260	struct io_submit_link *link = &ctx->submit_state.link;
2261	struct io_kiocb *head = link->head;
2262
2263	trace_io_uring_req_failed(sqe, req, ret);
2264
2265	/*
2266	 * Avoid breaking links in the middle as it renders links with SQPOLL
2267	 * unusable. Instead of failing eagerly, continue assembling the link if
2268	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2269	 * should find the flag and handle the rest.
2270	 */
2271	req_fail_link_node(req, ret);
2272	if (head && !(head->flags & REQ_F_FAIL))
2273		req_fail_link_node(head, -ECANCELED);
2274
2275	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2276		if (head) {
2277			link->last->link = req;
2278			link->head = NULL;
2279			req = head;
2280		}
2281		io_queue_sqe_fallback(req);
2282		return ret;
2283	}
2284
2285	if (head)
2286		link->last->link = req;
2287	else
2288		link->head = req;
2289	link->last = req;
2290	return 0;
2291}
2292
2293static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2294			 const struct io_uring_sqe *sqe)
2295	__must_hold(&ctx->uring_lock)
2296{
2297	struct io_submit_link *link = &ctx->submit_state.link;
2298	int ret;
2299
2300	ret = io_init_req(ctx, req, sqe);
2301	if (unlikely(ret))
2302		return io_submit_fail_init(sqe, req, ret);
2303
2304	trace_io_uring_submit_req(req);
2305
2306	/*
2307	 * If we already have a head request, queue this one for async
2308	 * submittal once the head completes. If we don't have a head but
2309	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2310	 * submitted sync once the chain is complete. If none of those
2311	 * conditions are true (normal request), then just queue it.
2312	 */
2313	if (unlikely(link->head)) {
2314		ret = io_req_prep_async(req);
2315		if (unlikely(ret))
2316			return io_submit_fail_init(sqe, req, ret);
2317
2318		trace_io_uring_link(req, link->head);
2319		link->last->link = req;
2320		link->last = req;
2321
2322		if (req->flags & IO_REQ_LINK_FLAGS)
2323			return 0;
2324		/* last request of the link, flush it */
2325		req = link->head;
2326		link->head = NULL;
2327		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2328			goto fallback;
2329
2330	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2331					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2332		if (req->flags & IO_REQ_LINK_FLAGS) {
2333			link->head = req;
2334			link->last = req;
2335		} else {
2336fallback:
2337			io_queue_sqe_fallback(req);
2338		}
2339		return 0;
2340	}
2341
2342	io_queue_sqe(req);
2343	return 0;
2344}
2345
2346/*
2347 * Batched submission is done, ensure local IO is flushed out.
2348 */
2349static void io_submit_state_end(struct io_ring_ctx *ctx)
2350{
2351	struct io_submit_state *state = &ctx->submit_state;
2352
2353	if (unlikely(state->link.head))
2354		io_queue_sqe_fallback(state->link.head);
2355	/* flush only after queuing links as they can generate completions */
2356	io_submit_flush_completions(ctx);
2357	if (state->plug_started)
2358		blk_finish_plug(&state->plug);
2359}
2360
2361/*
2362 * Start submission side cache.
2363 */
2364static void io_submit_state_start(struct io_submit_state *state,
2365				  unsigned int max_ios)
2366{
2367	state->plug_started = false;
2368	state->need_plug = max_ios > 2;
2369	state->submit_nr = max_ios;
2370	/* set only head, no need to init link_last in advance */
2371	state->link.head = NULL;
2372}
2373
2374static void io_commit_sqring(struct io_ring_ctx *ctx)
2375{
2376	struct io_rings *rings = ctx->rings;
2377
2378	/*
2379	 * Ensure any loads from the SQEs are done at this point,
2380	 * since once we write the new head, the application could
2381	 * write new data to them.
2382	 */
2383	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2384}
2385
2386/*
2387 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2388 * that is mapped by userspace. This means that care needs to be taken to
2389 * ensure that reads are stable, as we cannot rely on userspace always
2390 * being a good citizen. If members of the sqe are validated and then later
2391 * used, it's important that those reads are done through READ_ONCE() to
2392 * prevent a re-load down the line.
2393 */
2394static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2395{
2396	unsigned mask = ctx->sq_entries - 1;
2397	unsigned head = ctx->cached_sq_head++ & mask;
2398
2399	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
 
2400		head = READ_ONCE(ctx->sq_array[head]);
2401		if (unlikely(head >= ctx->sq_entries)) {
2402			/* drop invalid entries */
2403			spin_lock(&ctx->completion_lock);
2404			ctx->cq_extra--;
2405			spin_unlock(&ctx->completion_lock);
2406			WRITE_ONCE(ctx->rings->sq_dropped,
2407				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2408			return false;
2409		}
 
2410	}
2411
2412	/*
2413	 * The cached sq head (or cq tail) serves two purposes:
2414	 *
2415	 * 1) allows us to batch the cost of updating the user visible
2416	 *    head updates.
2417	 * 2) allows the kernel side to track the head on its own, even
2418	 *    though the application is the one updating it.
2419	 */
2420
2421	/* double index for 128-byte SQEs, twice as long */
2422	if (ctx->flags & IORING_SETUP_SQE128)
2423		head <<= 1;
2424	*sqe = &ctx->sq_sqes[head];
2425	return true;
2426}
2427
2428int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2429	__must_hold(&ctx->uring_lock)
2430{
2431	unsigned int entries = io_sqring_entries(ctx);
2432	unsigned int left;
2433	int ret;
2434
2435	if (unlikely(!entries))
2436		return 0;
2437	/* make sure SQ entry isn't read before tail */
2438	ret = left = min(nr, entries);
2439	io_get_task_refs(left);
2440	io_submit_state_start(&ctx->submit_state, left);
2441
2442	do {
2443		const struct io_uring_sqe *sqe;
2444		struct io_kiocb *req;
2445
2446		if (unlikely(!io_alloc_req(ctx, &req)))
2447			break;
2448		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2449			io_req_add_to_cache(req, ctx);
2450			break;
2451		}
2452
2453		/*
2454		 * Continue submitting even for sqe failure if the
2455		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2456		 */
2457		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2458		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2459			left--;
2460			break;
2461		}
2462	} while (--left);
2463
2464	if (unlikely(left)) {
2465		ret -= left;
2466		/* try again if it submitted nothing and can't allocate a req */
2467		if (!ret && io_req_cache_empty(ctx))
2468			ret = -EAGAIN;
2469		current->io_uring->cached_refs += left;
2470	}
2471
2472	io_submit_state_end(ctx);
2473	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2474	io_commit_sqring(ctx);
2475	return ret;
2476}
2477
2478struct io_wait_queue {
2479	struct wait_queue_entry wq;
2480	struct io_ring_ctx *ctx;
2481	unsigned cq_tail;
2482	unsigned nr_timeouts;
2483	ktime_t timeout;
2484};
2485
2486static inline bool io_has_work(struct io_ring_ctx *ctx)
2487{
2488	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2489	       !llist_empty(&ctx->work_llist);
2490}
2491
2492static inline bool io_should_wake(struct io_wait_queue *iowq)
2493{
2494	struct io_ring_ctx *ctx = iowq->ctx;
2495	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2496
2497	/*
2498	 * Wake up if we have enough events, or if a timeout occurred since we
2499	 * started waiting. For timeouts, we always want to return to userspace,
2500	 * regardless of event count.
2501	 */
2502	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2503}
2504
2505static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2506			    int wake_flags, void *key)
2507{
2508	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2509
2510	/*
2511	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2512	 * the task, and the next invocation will do it.
2513	 */
2514	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2515		return autoremove_wake_function(curr, mode, wake_flags, key);
2516	return -1;
2517}
2518
2519int io_run_task_work_sig(struct io_ring_ctx *ctx)
2520{
2521	if (!llist_empty(&ctx->work_llist)) {
2522		__set_current_state(TASK_RUNNING);
2523		if (io_run_local_work(ctx) > 0)
2524			return 0;
2525	}
2526	if (io_run_task_work() > 0)
2527		return 0;
2528	if (task_sigpending(current))
2529		return -EINTR;
2530	return 0;
2531}
2532
2533static bool current_pending_io(void)
2534{
2535	struct io_uring_task *tctx = current->io_uring;
2536
2537	if (!tctx)
2538		return false;
2539	return percpu_counter_read_positive(&tctx->inflight);
2540}
2541
2542/* when returns >0, the caller should retry */
2543static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2544					  struct io_wait_queue *iowq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2545{
2546	int io_wait, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2547
2548	if (unlikely(READ_ONCE(ctx->check_cq)))
2549		return 1;
2550	if (unlikely(!llist_empty(&ctx->work_llist)))
2551		return 1;
2552	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2553		return 1;
2554	if (unlikely(task_sigpending(current)))
2555		return -EINTR;
2556	if (unlikely(io_should_wake(iowq)))
2557		return 0;
2558
2559	/*
2560	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2561	 * can take into account that the task is waiting for IO - turns out
2562	 * to be important for low QD IO.
2563	 */
2564	io_wait = current->in_iowait;
2565	if (current_pending_io())
2566		current->in_iowait = 1;
2567	ret = 0;
2568	if (iowq->timeout == KTIME_MAX)
 
2569		schedule();
2570	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2571		ret = -ETIME;
2572	current->in_iowait = io_wait;
2573	return ret;
2574}
2575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2576/*
2577 * Wait until events become available, if we don't already have some. The
2578 * application must reap them itself, as they reside on the shared cq ring.
2579 */
2580static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2581			  const sigset_t __user *sig, size_t sigsz,
2582			  struct __kernel_timespec __user *uts)
2583{
2584	struct io_wait_queue iowq;
2585	struct io_rings *rings = ctx->rings;
 
2586	int ret;
2587
2588	if (!io_allowed_run_tw(ctx))
2589		return -EEXIST;
2590	if (!llist_empty(&ctx->work_llist))
2591		io_run_local_work(ctx);
 
2592	io_run_task_work();
2593	io_cqring_overflow_flush(ctx);
2594	/* if user messes with these they will just get an early return */
 
2595	if (__io_cqring_events_user(ctx) >= min_events)
2596		return 0;
2597
2598	if (sig) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2599#ifdef CONFIG_COMPAT
2600		if (in_compat_syscall())
2601			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2602						      sigsz);
2603		else
2604#endif
2605			ret = set_user_sigmask(sig, sigsz);
2606
2607		if (ret)
2608			return ret;
2609	}
2610
2611	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2612	iowq.wq.private = current;
2613	INIT_LIST_HEAD(&iowq.wq.entry);
2614	iowq.ctx = ctx;
2615	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2616	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2617	iowq.timeout = KTIME_MAX;
2618
2619	if (uts) {
2620		struct timespec64 ts;
2621
2622		if (get_timespec64(&ts, uts))
2623			return -EFAULT;
2624		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2625	}
2626
2627	trace_io_uring_cqring_wait(ctx, min_events);
2628	do {
2629		unsigned long check_cq;
 
 
 
 
 
 
 
 
2630
2631		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2632			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2633
2634			atomic_set(&ctx->cq_wait_nr, nr_wait);
2635			set_current_state(TASK_INTERRUPTIBLE);
2636		} else {
2637			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2638							TASK_INTERRUPTIBLE);
2639		}
2640
2641		ret = io_cqring_wait_schedule(ctx, &iowq);
2642		__set_current_state(TASK_RUNNING);
2643		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2644
2645		/*
2646		 * Run task_work after scheduling and before io_should_wake().
2647		 * If we got woken because of task_work being processed, run it
2648		 * now rather than let the caller do another wait loop.
2649		 */
 
 
2650		io_run_task_work();
2651		if (!llist_empty(&ctx->work_llist))
2652			io_run_local_work(ctx);
2653
2654		/*
2655		 * Non-local task_work will be run on exit to userspace, but
2656		 * if we're using DEFER_TASKRUN, then we could have waited
2657		 * with a timeout for a number of requests. If the timeout
2658		 * hits, we could have some requests ready to process. Ensure
2659		 * this break is _after_ we have run task_work, to avoid
2660		 * deferring running potentially pending requests until the
2661		 * next time we wait for events.
2662		 */
2663		if (ret < 0)
2664			break;
2665
2666		check_cq = READ_ONCE(ctx->check_cq);
2667		if (unlikely(check_cq)) {
2668			/* let the caller flush overflows, retry */
2669			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2670				io_cqring_do_overflow_flush(ctx);
2671			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2672				ret = -EBADR;
2673				break;
2674			}
2675		}
2676
2677		if (io_should_wake(&iowq)) {
2678			ret = 0;
2679			break;
2680		}
2681		cond_resched();
2682	} while (1);
2683
2684	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2685		finish_wait(&ctx->cq_wait, &iowq.wq);
2686	restore_saved_sigmask_unless(ret == -EINTR);
2687
2688	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2689}
2690
2691void io_mem_free(void *ptr)
2692{
2693	if (!ptr)
2694		return;
2695
2696	folio_put(virt_to_folio(ptr));
2697}
2698
2699static void io_pages_free(struct page ***pages, int npages)
2700{
2701	struct page **page_array;
2702	int i;
2703
2704	if (!pages)
2705		return;
2706
2707	page_array = *pages;
2708	if (!page_array)
2709		return;
2710
2711	for (i = 0; i < npages; i++)
2712		unpin_user_page(page_array[i]);
2713	kvfree(page_array);
2714	*pages = NULL;
2715}
2716
2717static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2718			    unsigned long uaddr, size_t size)
2719{
2720	struct page **page_array;
2721	unsigned int nr_pages;
2722	void *page_addr;
2723	int ret, i;
2724
2725	*npages = 0;
2726
2727	if (uaddr & (PAGE_SIZE - 1) || !size)
2728		return ERR_PTR(-EINVAL);
2729
2730	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2731	if (nr_pages > USHRT_MAX)
2732		return ERR_PTR(-EINVAL);
2733	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2734	if (!page_array)
2735		return ERR_PTR(-ENOMEM);
2736
2737	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2738					page_array);
2739	if (ret != nr_pages) {
2740err:
2741		io_pages_free(&page_array, ret > 0 ? ret : 0);
2742		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2743	}
2744
2745	page_addr = page_address(page_array[0]);
2746	for (i = 0; i < nr_pages; i++) {
2747		ret = -EINVAL;
2748
2749		/*
2750		 * Can't support mapping user allocated ring memory on 32-bit
2751		 * archs where it could potentially reside in highmem. Just
2752		 * fail those with -EINVAL, just like we did on kernels that
2753		 * didn't support this feature.
2754		 */
2755		if (PageHighMem(page_array[i]))
2756			goto err;
2757
2758		/*
2759		 * No support for discontig pages for now, should either be a
2760		 * single normal page, or a huge page. Later on we can add
2761		 * support for remapping discontig pages, for now we will
2762		 * just fail them with EINVAL.
2763		 */
2764		if (page_address(page_array[i]) != page_addr)
2765			goto err;
2766		page_addr += PAGE_SIZE;
2767	}
2768
2769	*pages = page_array;
2770	*npages = nr_pages;
2771	return page_to_virt(page_array[0]);
2772}
2773
2774static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2775			  size_t size)
2776{
2777	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2778				size);
2779}
2780
2781static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2782			 size_t size)
2783{
2784	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2785				size);
2786}
2787
2788static void io_rings_free(struct io_ring_ctx *ctx)
2789{
2790	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2791		io_mem_free(ctx->rings);
2792		io_mem_free(ctx->sq_sqes);
2793		ctx->rings = NULL;
2794		ctx->sq_sqes = NULL;
2795	} else {
2796		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2797		ctx->n_ring_pages = 0;
2798		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2799		ctx->n_sqe_pages = 0;
 
 
2800	}
2801}
2802
2803void *io_mem_alloc(size_t size)
2804{
2805	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2806	void *ret;
2807
2808	ret = (void *) __get_free_pages(gfp, get_order(size));
2809	if (ret)
2810		return ret;
2811	return ERR_PTR(-ENOMEM);
2812}
2813
2814static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2815				unsigned int cq_entries, size_t *sq_offset)
2816{
2817	struct io_rings *rings;
2818	size_t off, sq_array_size;
2819
2820	off = struct_size(rings, cqes, cq_entries);
2821	if (off == SIZE_MAX)
2822		return SIZE_MAX;
2823	if (ctx->flags & IORING_SETUP_CQE32) {
2824		if (check_shl_overflow(off, 1, &off))
2825			return SIZE_MAX;
2826	}
2827
2828#ifdef CONFIG_SMP
2829	off = ALIGN(off, SMP_CACHE_BYTES);
2830	if (off == 0)
2831		return SIZE_MAX;
2832#endif
2833
2834	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2835		if (sq_offset)
2836			*sq_offset = SIZE_MAX;
2837		return off;
2838	}
2839
2840	if (sq_offset)
2841		*sq_offset = off;
2842
2843	sq_array_size = array_size(sizeof(u32), sq_entries);
2844	if (sq_array_size == SIZE_MAX)
2845		return SIZE_MAX;
2846
2847	if (check_add_overflow(off, sq_array_size, &off))
2848		return SIZE_MAX;
2849
2850	return off;
2851}
2852
2853static void io_req_caches_free(struct io_ring_ctx *ctx)
2854{
2855	struct io_kiocb *req;
2856	int nr = 0;
2857
2858	mutex_lock(&ctx->uring_lock);
2859	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2860
2861	while (!io_req_cache_empty(ctx)) {
2862		req = io_extract_req(ctx);
2863		kmem_cache_free(req_cachep, req);
2864		nr++;
2865	}
2866	if (nr)
2867		percpu_ref_put_many(&ctx->refs, nr);
2868	mutex_unlock(&ctx->uring_lock);
2869}
2870
2871static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2872{
2873	kfree(container_of(entry, struct io_rsrc_node, cache));
2874}
2875
2876static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2877{
2878	io_sq_thread_finish(ctx);
2879	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2880	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2881		return;
2882
2883	mutex_lock(&ctx->uring_lock);
2884	if (ctx->buf_data)
2885		__io_sqe_buffers_unregister(ctx);
2886	if (ctx->file_data)
2887		__io_sqe_files_unregister(ctx);
2888	io_cqring_overflow_kill(ctx);
2889	io_eventfd_unregister(ctx);
2890	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2891	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
 
 
 
2892	io_futex_cache_free(ctx);
2893	io_destroy_buffers(ctx);
 
2894	mutex_unlock(&ctx->uring_lock);
2895	if (ctx->sq_creds)
2896		put_cred(ctx->sq_creds);
2897	if (ctx->submitter_task)
2898		put_task_struct(ctx->submitter_task);
2899
2900	/* there are no registered resources left, nobody uses it */
2901	if (ctx->rsrc_node)
2902		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2903
2904	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2905	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2906
2907	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2908	if (ctx->mm_account) {
2909		mmdrop(ctx->mm_account);
2910		ctx->mm_account = NULL;
2911	}
2912	io_rings_free(ctx);
2913	io_kbuf_mmap_list_free(ctx);
 
 
2914
2915	percpu_ref_exit(&ctx->refs);
2916	free_uid(ctx->user);
2917	io_req_caches_free(ctx);
2918	if (ctx->hash_map)
2919		io_wq_put_hash(ctx->hash_map);
2920	kfree(ctx->cancel_table.hbs);
2921	kfree(ctx->cancel_table_locked.hbs);
2922	kfree(ctx->io_bl);
2923	xa_destroy(&ctx->io_bl_xa);
2924	kfree(ctx);
2925}
2926
2927static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2928{
2929	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2930					       poll_wq_task_work);
2931
2932	mutex_lock(&ctx->uring_lock);
2933	ctx->poll_activated = true;
2934	mutex_unlock(&ctx->uring_lock);
2935
2936	/*
2937	 * Wake ups for some events between start of polling and activation
2938	 * might've been lost due to loose synchronisation.
2939	 */
2940	wake_up_all(&ctx->poll_wq);
2941	percpu_ref_put(&ctx->refs);
2942}
2943
2944__cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2945{
2946	spin_lock(&ctx->completion_lock);
2947	/* already activated or in progress */
2948	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2949		goto out;
2950	if (WARN_ON_ONCE(!ctx->task_complete))
2951		goto out;
2952	if (!ctx->submitter_task)
2953		goto out;
2954	/*
2955	 * with ->submitter_task only the submitter task completes requests, we
2956	 * only need to sync with it, which is done by injecting a tw
2957	 */
2958	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2959	percpu_ref_get(&ctx->refs);
2960	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2961		percpu_ref_put(&ctx->refs);
2962out:
2963	spin_unlock(&ctx->completion_lock);
2964}
2965
2966static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2967{
2968	struct io_ring_ctx *ctx = file->private_data;
2969	__poll_t mask = 0;
2970
2971	if (unlikely(!ctx->poll_activated))
2972		io_activate_pollwq(ctx);
2973
2974	poll_wait(file, &ctx->poll_wq, wait);
2975	/*
2976	 * synchronizes with barrier from wq_has_sleeper call in
2977	 * io_commit_cqring
2978	 */
2979	smp_rmb();
 
2980	if (!io_sqring_full(ctx))
2981		mask |= EPOLLOUT | EPOLLWRNORM;
2982
2983	/*
2984	 * Don't flush cqring overflow list here, just do a simple check.
2985	 * Otherwise there could possible be ABBA deadlock:
2986	 *      CPU0                    CPU1
2987	 *      ----                    ----
2988	 * lock(&ctx->uring_lock);
2989	 *                              lock(&ep->mtx);
2990	 *                              lock(&ctx->uring_lock);
2991	 * lock(&ep->mtx);
2992	 *
2993	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2994	 * pushes them to do the flush.
2995	 */
2996
2997	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2998		mask |= EPOLLIN | EPOLLRDNORM;
2999
3000	return mask;
3001}
3002
3003struct io_tctx_exit {
3004	struct callback_head		task_work;
3005	struct completion		completion;
3006	struct io_ring_ctx		*ctx;
3007};
3008
3009static __cold void io_tctx_exit_cb(struct callback_head *cb)
3010{
3011	struct io_uring_task *tctx = current->io_uring;
3012	struct io_tctx_exit *work;
3013
3014	work = container_of(cb, struct io_tctx_exit, task_work);
3015	/*
3016	 * When @in_cancel, we're in cancellation and it's racy to remove the
3017	 * node. It'll be removed by the end of cancellation, just ignore it.
3018	 * tctx can be NULL if the queueing of this task_work raced with
3019	 * work cancelation off the exec path.
3020	 */
3021	if (tctx && !atomic_read(&tctx->in_cancel))
3022		io_uring_del_tctx_node((unsigned long)work->ctx);
3023	complete(&work->completion);
3024}
3025
3026static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3027{
3028	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3029
3030	return req->ctx == data;
3031}
3032
3033static __cold void io_ring_exit_work(struct work_struct *work)
3034{
3035	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3036	unsigned long timeout = jiffies + HZ * 60 * 5;
3037	unsigned long interval = HZ / 20;
3038	struct io_tctx_exit exit;
3039	struct io_tctx_node *node;
3040	int ret;
3041
3042	/*
3043	 * If we're doing polled IO and end up having requests being
3044	 * submitted async (out-of-line), then completions can come in while
3045	 * we're waiting for refs to drop. We need to reap these manually,
3046	 * as nobody else will be looking for them.
3047	 */
3048	do {
3049		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3050			mutex_lock(&ctx->uring_lock);
3051			io_cqring_overflow_kill(ctx);
3052			mutex_unlock(&ctx->uring_lock);
3053		}
3054
3055		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3056			io_move_task_work_from_local(ctx);
3057
3058		while (io_uring_try_cancel_requests(ctx, NULL, true))
3059			cond_resched();
3060
3061		if (ctx->sq_data) {
3062			struct io_sq_data *sqd = ctx->sq_data;
3063			struct task_struct *tsk;
3064
3065			io_sq_thread_park(sqd);
3066			tsk = sqd->thread;
3067			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3068				io_wq_cancel_cb(tsk->io_uring->io_wq,
3069						io_cancel_ctx_cb, ctx, true);
3070			io_sq_thread_unpark(sqd);
3071		}
3072
3073		io_req_caches_free(ctx);
3074
3075		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3076			/* there is little hope left, don't run it too often */
3077			interval = HZ * 60;
3078		}
3079		/*
3080		 * This is really an uninterruptible wait, as it has to be
3081		 * complete. But it's also run from a kworker, which doesn't
3082		 * take signals, so it's fine to make it interruptible. This
3083		 * avoids scenarios where we knowingly can wait much longer
3084		 * on completions, for example if someone does a SIGSTOP on
3085		 * a task that needs to finish task_work to make this loop
3086		 * complete. That's a synthetic situation that should not
3087		 * cause a stuck task backtrace, and hence a potential panic
3088		 * on stuck tasks if that is enabled.
3089		 */
3090	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3091
3092	init_completion(&exit.completion);
3093	init_task_work(&exit.task_work, io_tctx_exit_cb);
3094	exit.ctx = ctx;
3095
3096	mutex_lock(&ctx->uring_lock);
3097	while (!list_empty(&ctx->tctx_list)) {
3098		WARN_ON_ONCE(time_after(jiffies, timeout));
3099
3100		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3101					ctx_node);
3102		/* don't spin on a single task if cancellation failed */
3103		list_rotate_left(&ctx->tctx_list);
3104		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3105		if (WARN_ON_ONCE(ret))
3106			continue;
3107
3108		mutex_unlock(&ctx->uring_lock);
3109		/*
3110		 * See comment above for
3111		 * wait_for_completion_interruptible_timeout() on why this
3112		 * wait is marked as interruptible.
3113		 */
3114		wait_for_completion_interruptible(&exit.completion);
3115		mutex_lock(&ctx->uring_lock);
3116	}
3117	mutex_unlock(&ctx->uring_lock);
3118	spin_lock(&ctx->completion_lock);
3119	spin_unlock(&ctx->completion_lock);
3120
3121	/* pairs with RCU read section in io_req_local_work_add() */
3122	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3123		synchronize_rcu();
3124
3125	io_ring_ctx_free(ctx);
3126}
3127
3128static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3129{
3130	unsigned long index;
3131	struct creds *creds;
3132
3133	mutex_lock(&ctx->uring_lock);
3134	percpu_ref_kill(&ctx->refs);
3135	xa_for_each(&ctx->personalities, index, creds)
3136		io_unregister_personality(ctx, index);
3137	if (ctx->rings)
3138		io_poll_remove_all(ctx, NULL, true);
3139	mutex_unlock(&ctx->uring_lock);
3140
3141	/*
3142	 * If we failed setting up the ctx, we might not have any rings
3143	 * and therefore did not submit any requests
3144	 */
3145	if (ctx->rings)
3146		io_kill_timeouts(ctx, NULL, true);
3147
3148	flush_delayed_work(&ctx->fallback_work);
3149
3150	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3151	/*
3152	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3153	 * if we're exiting a ton of rings at the same time. It just adds
3154	 * noise and overhead, there's no discernable change in runtime
3155	 * over using system_wq.
3156	 */
3157	queue_work(system_unbound_wq, &ctx->exit_work);
3158}
3159
3160static int io_uring_release(struct inode *inode, struct file *file)
3161{
3162	struct io_ring_ctx *ctx = file->private_data;
3163
3164	file->private_data = NULL;
3165	io_ring_ctx_wait_and_kill(ctx);
3166	return 0;
3167}
3168
3169struct io_task_cancel {
3170	struct task_struct *task;
3171	bool all;
3172};
3173
3174static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3175{
3176	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3177	struct io_task_cancel *cancel = data;
3178
3179	return io_match_task_safe(req, cancel->task, cancel->all);
3180}
3181
3182static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3183					 struct task_struct *task,
3184					 bool cancel_all)
3185{
3186	struct io_defer_entry *de;
3187	LIST_HEAD(list);
3188
3189	spin_lock(&ctx->completion_lock);
3190	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3191		if (io_match_task_safe(de->req, task, cancel_all)) {
3192			list_cut_position(&list, &ctx->defer_list, &de->list);
3193			break;
3194		}
3195	}
3196	spin_unlock(&ctx->completion_lock);
3197	if (list_empty(&list))
3198		return false;
3199
3200	while (!list_empty(&list)) {
3201		de = list_first_entry(&list, struct io_defer_entry, list);
3202		list_del_init(&de->list);
3203		io_req_task_queue_fail(de->req, -ECANCELED);
3204		kfree(de);
3205	}
3206	return true;
3207}
3208
3209static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3210{
3211	struct io_tctx_node *node;
3212	enum io_wq_cancel cret;
3213	bool ret = false;
3214
3215	mutex_lock(&ctx->uring_lock);
3216	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3217		struct io_uring_task *tctx = node->task->io_uring;
3218
3219		/*
3220		 * io_wq will stay alive while we hold uring_lock, because it's
3221		 * killed after ctx nodes, which requires to take the lock.
3222		 */
3223		if (!tctx || !tctx->io_wq)
3224			continue;
3225		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3226		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3227	}
3228	mutex_unlock(&ctx->uring_lock);
3229
3230	return ret;
3231}
3232
3233static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx,
3234		struct task_struct *task, bool cancel_all)
3235{
3236	struct hlist_node *tmp;
3237	struct io_kiocb *req;
3238	bool ret = false;
3239
3240	lockdep_assert_held(&ctx->uring_lock);
3241
3242	hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd,
3243			hash_node) {
3244		struct io_uring_cmd *cmd = io_kiocb_to_cmd(req,
3245				struct io_uring_cmd);
3246		struct file *file = req->file;
3247
3248		if (!cancel_all && req->task != task)
3249			continue;
3250
3251		if (cmd->flags & IORING_URING_CMD_CANCELABLE) {
3252			/* ->sqe isn't available if no async data */
3253			if (!req_has_async_data(req))
3254				cmd->sqe = NULL;
3255			file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL);
3256			ret = true;
3257		}
3258	}
3259	io_submit_flush_completions(ctx);
3260
3261	return ret;
3262}
3263
3264static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3265						struct task_struct *task,
3266						bool cancel_all)
3267{
3268	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3269	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3270	enum io_wq_cancel cret;
3271	bool ret = false;
3272
3273	/* set it so io_req_local_work_add() would wake us up */
3274	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3275		atomic_set(&ctx->cq_wait_nr, 1);
3276		smp_mb();
3277	}
3278
3279	/* failed during ring init, it couldn't have issued any requests */
3280	if (!ctx->rings)
3281		return false;
3282
3283	if (!task) {
3284		ret |= io_uring_try_cancel_iowq(ctx);
3285	} else if (tctx && tctx->io_wq) {
3286		/*
3287		 * Cancels requests of all rings, not only @ctx, but
3288		 * it's fine as the task is in exit/exec.
3289		 */
3290		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3291				       &cancel, true);
3292		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3293	}
3294
3295	/* SQPOLL thread does its own polling */
3296	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3297	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3298		while (!wq_list_empty(&ctx->iopoll_list)) {
3299			io_iopoll_try_reap_events(ctx);
3300			ret = true;
3301			cond_resched();
3302		}
3303	}
3304
3305	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3306	    io_allowed_defer_tw_run(ctx))
3307		ret |= io_run_local_work(ctx) > 0;
3308	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3309	mutex_lock(&ctx->uring_lock);
3310	ret |= io_poll_remove_all(ctx, task, cancel_all);
3311	ret |= io_waitid_remove_all(ctx, task, cancel_all);
3312	ret |= io_futex_remove_all(ctx, task, cancel_all);
3313	ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3314	mutex_unlock(&ctx->uring_lock);
3315	ret |= io_kill_timeouts(ctx, task, cancel_all);
3316	if (task)
3317		ret |= io_run_task_work() > 0;
 
 
3318	return ret;
3319}
3320
3321static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3322{
3323	if (tracked)
3324		return atomic_read(&tctx->inflight_tracked);
3325	return percpu_counter_sum(&tctx->inflight);
3326}
3327
3328/*
3329 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3330 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3331 */
3332__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3333{
3334	struct io_uring_task *tctx = current->io_uring;
3335	struct io_ring_ctx *ctx;
3336	struct io_tctx_node *node;
3337	unsigned long index;
3338	s64 inflight;
3339	DEFINE_WAIT(wait);
3340
3341	WARN_ON_ONCE(sqd && sqd->thread != current);
3342
3343	if (!current->io_uring)
3344		return;
3345	if (tctx->io_wq)
3346		io_wq_exit_start(tctx->io_wq);
3347
3348	atomic_inc(&tctx->in_cancel);
3349	do {
3350		bool loop = false;
3351
3352		io_uring_drop_tctx_refs(current);
 
 
 
3353		/* read completions before cancelations */
3354		inflight = tctx_inflight(tctx, !cancel_all);
3355		if (!inflight)
3356			break;
3357
3358		if (!sqd) {
3359			xa_for_each(&tctx->xa, index, node) {
3360				/* sqpoll task will cancel all its requests */
3361				if (node->ctx->sq_data)
3362					continue;
3363				loop |= io_uring_try_cancel_requests(node->ctx,
3364							current, cancel_all);
 
3365			}
3366		} else {
3367			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3368				loop |= io_uring_try_cancel_requests(ctx,
3369								     current,
3370								     cancel_all);
3371		}
3372
3373		if (loop) {
3374			cond_resched();
3375			continue;
3376		}
3377
3378		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3379		io_run_task_work();
3380		io_uring_drop_tctx_refs(current);
3381		xa_for_each(&tctx->xa, index, node) {
3382			if (!llist_empty(&node->ctx->work_llist)) {
3383				WARN_ON_ONCE(node->ctx->submitter_task &&
3384					     node->ctx->submitter_task != current);
3385				goto end_wait;
3386			}
3387		}
3388		/*
3389		 * If we've seen completions, retry without waiting. This
3390		 * avoids a race where a completion comes in before we did
3391		 * prepare_to_wait().
3392		 */
3393		if (inflight == tctx_inflight(tctx, !cancel_all))
3394			schedule();
3395end_wait:
3396		finish_wait(&tctx->wait, &wait);
3397	} while (1);
3398
3399	io_uring_clean_tctx(tctx);
3400	if (cancel_all) {
3401		/*
3402		 * We shouldn't run task_works after cancel, so just leave
3403		 * ->in_cancel set for normal exit.
3404		 */
3405		atomic_dec(&tctx->in_cancel);
3406		/* for exec all current's requests should be gone, kill tctx */
3407		__io_uring_free(current);
3408	}
3409}
3410
3411void __io_uring_cancel(bool cancel_all)
3412{
 
3413	io_uring_cancel_generic(cancel_all, NULL);
3414}
3415
3416static void *io_uring_validate_mmap_request(struct file *file,
3417					    loff_t pgoff, size_t sz)
3418{
3419	struct io_ring_ctx *ctx = file->private_data;
3420	loff_t offset = pgoff << PAGE_SHIFT;
3421	struct page *page;
3422	void *ptr;
3423
3424	switch (offset & IORING_OFF_MMAP_MASK) {
3425	case IORING_OFF_SQ_RING:
3426	case IORING_OFF_CQ_RING:
3427		/* Don't allow mmap if the ring was setup without it */
3428		if (ctx->flags & IORING_SETUP_NO_MMAP)
3429			return ERR_PTR(-EINVAL);
3430		ptr = ctx->rings;
3431		break;
3432	case IORING_OFF_SQES:
3433		/* Don't allow mmap if the ring was setup without it */
3434		if (ctx->flags & IORING_SETUP_NO_MMAP)
3435			return ERR_PTR(-EINVAL);
3436		ptr = ctx->sq_sqes;
3437		break;
3438	case IORING_OFF_PBUF_RING: {
3439		unsigned int bgid;
3440
3441		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3442		rcu_read_lock();
3443		ptr = io_pbuf_get_address(ctx, bgid);
3444		rcu_read_unlock();
3445		if (!ptr)
3446			return ERR_PTR(-EINVAL);
3447		break;
3448		}
3449	default:
3450		return ERR_PTR(-EINVAL);
3451	}
3452
3453	page = virt_to_head_page(ptr);
3454	if (sz > page_size(page))
3455		return ERR_PTR(-EINVAL);
3456
3457	return ptr;
3458}
3459
3460#ifdef CONFIG_MMU
3461
3462static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3463{
3464	size_t sz = vma->vm_end - vma->vm_start;
3465	unsigned long pfn;
3466	void *ptr;
3467
3468	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3469	if (IS_ERR(ptr))
3470		return PTR_ERR(ptr);
3471
3472	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3473	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3474}
3475
3476static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3477			unsigned long addr, unsigned long len,
3478			unsigned long pgoff, unsigned long flags)
3479{
3480	void *ptr;
3481
3482	/*
3483	 * Do not allow to map to user-provided address to avoid breaking the
3484	 * aliasing rules. Userspace is not able to guess the offset address of
3485	 * kernel kmalloc()ed memory area.
3486	 */
3487	if (addr)
3488		return -EINVAL;
3489
3490	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3491	if (IS_ERR(ptr))
3492		return -ENOMEM;
3493
3494	/*
3495	 * Some architectures have strong cache aliasing requirements.
3496	 * For such architectures we need a coherent mapping which aliases
3497	 * kernel memory *and* userspace memory. To achieve that:
3498	 * - use a NULL file pointer to reference physical memory, and
3499	 * - use the kernel virtual address of the shared io_uring context
3500	 *   (instead of the userspace-provided address, which has to be 0UL
3501	 *   anyway).
3502	 * - use the same pgoff which the get_unmapped_area() uses to
3503	 *   calculate the page colouring.
3504	 * For architectures without such aliasing requirements, the
3505	 * architecture will return any suitable mapping because addr is 0.
3506	 */
3507	filp = NULL;
3508	flags |= MAP_SHARED;
3509	pgoff = 0;	/* has been translated to ptr above */
3510#ifdef SHM_COLOUR
3511	addr = (uintptr_t) ptr;
3512	pgoff = addr >> PAGE_SHIFT;
3513#else
3514	addr = 0UL;
3515#endif
3516	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3517}
3518
3519#else /* !CONFIG_MMU */
3520
3521static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3522{
3523	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3524}
3525
3526static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3527{
3528	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3529}
3530
3531static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3532	unsigned long addr, unsigned long len,
3533	unsigned long pgoff, unsigned long flags)
3534{
3535	void *ptr;
3536
3537	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3538	if (IS_ERR(ptr))
3539		return PTR_ERR(ptr);
3540
3541	return (unsigned long) ptr;
3542}
3543
3544#endif /* !CONFIG_MMU */
3545
3546static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3547{
3548	if (flags & IORING_ENTER_EXT_ARG) {
3549		struct io_uring_getevents_arg arg;
3550
3551		if (argsz != sizeof(arg))
3552			return -EINVAL;
3553		if (copy_from_user(&arg, argp, sizeof(arg)))
3554			return -EFAULT;
3555	}
3556	return 0;
3557}
3558
3559static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3560			  struct __kernel_timespec __user **ts,
3561			  const sigset_t __user **sig)
3562{
 
3563	struct io_uring_getevents_arg arg;
3564
3565	/*
3566	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3567	 * is just a pointer to the sigset_t.
3568	 */
3569	if (!(flags & IORING_ENTER_EXT_ARG)) {
3570		*sig = (const sigset_t __user *) argp;
3571		*ts = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3572		return 0;
3573	}
3574
3575	/*
3576	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3577	 * timespec and sigset_t pointers if good.
3578	 */
3579	if (*argsz != sizeof(arg))
3580		return -EINVAL;
3581	if (copy_from_user(&arg, argp, sizeof(arg)))
 
 
 
 
 
 
 
 
 
3582		return -EFAULT;
3583	if (arg.pad)
3584		return -EINVAL;
3585	*sig = u64_to_user_ptr(arg.sigmask);
3586	*argsz = arg.sigmask_sz;
3587	*ts = u64_to_user_ptr(arg.ts);
 
 
 
 
3588	return 0;
 
 
 
 
 
3589}
3590
3591SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3592		u32, min_complete, u32, flags, const void __user *, argp,
3593		size_t, argsz)
3594{
3595	struct io_ring_ctx *ctx;
3596	struct file *file;
3597	long ret;
3598
3599	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3600			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3601			       IORING_ENTER_REGISTERED_RING)))
 
 
3602		return -EINVAL;
3603
3604	/*
3605	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3606	 * need only dereference our task private array to find it.
3607	 */
3608	if (flags & IORING_ENTER_REGISTERED_RING) {
3609		struct io_uring_task *tctx = current->io_uring;
3610
3611		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3612			return -EINVAL;
3613		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3614		file = tctx->registered_rings[fd];
3615		if (unlikely(!file))
3616			return -EBADF;
3617	} else {
3618		file = fget(fd);
3619		if (unlikely(!file))
3620			return -EBADF;
3621		ret = -EOPNOTSUPP;
3622		if (unlikely(!io_is_uring_fops(file)))
3623			goto out;
3624	}
3625
3626	ctx = file->private_data;
3627	ret = -EBADFD;
3628	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3629		goto out;
3630
3631	/*
3632	 * For SQ polling, the thread will do all submissions and completions.
3633	 * Just return the requested submit count, and wake the thread if
3634	 * we were asked to.
3635	 */
3636	ret = 0;
3637	if (ctx->flags & IORING_SETUP_SQPOLL) {
3638		io_cqring_overflow_flush(ctx);
3639
3640		if (unlikely(ctx->sq_data->thread == NULL)) {
3641			ret = -EOWNERDEAD;
3642			goto out;
3643		}
3644		if (flags & IORING_ENTER_SQ_WAKEUP)
3645			wake_up(&ctx->sq_data->wait);
3646		if (flags & IORING_ENTER_SQ_WAIT)
3647			io_sqpoll_wait_sq(ctx);
3648
3649		ret = to_submit;
3650	} else if (to_submit) {
3651		ret = io_uring_add_tctx_node(ctx);
3652		if (unlikely(ret))
3653			goto out;
3654
3655		mutex_lock(&ctx->uring_lock);
3656		ret = io_submit_sqes(ctx, to_submit);
3657		if (ret != to_submit) {
3658			mutex_unlock(&ctx->uring_lock);
3659			goto out;
3660		}
3661		if (flags & IORING_ENTER_GETEVENTS) {
3662			if (ctx->syscall_iopoll)
3663				goto iopoll_locked;
3664			/*
3665			 * Ignore errors, we'll soon call io_cqring_wait() and
3666			 * it should handle ownership problems if any.
3667			 */
3668			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3669				(void)io_run_local_work_locked(ctx);
3670		}
3671		mutex_unlock(&ctx->uring_lock);
3672	}
3673
3674	if (flags & IORING_ENTER_GETEVENTS) {
3675		int ret2;
3676
3677		if (ctx->syscall_iopoll) {
3678			/*
3679			 * We disallow the app entering submit/complete with
3680			 * polling, but we still need to lock the ring to
3681			 * prevent racing with polled issue that got punted to
3682			 * a workqueue.
3683			 */
3684			mutex_lock(&ctx->uring_lock);
3685iopoll_locked:
3686			ret2 = io_validate_ext_arg(flags, argp, argsz);
3687			if (likely(!ret2)) {
3688				min_complete = min(min_complete,
3689						   ctx->cq_entries);
3690				ret2 = io_iopoll_check(ctx, min_complete);
3691			}
3692			mutex_unlock(&ctx->uring_lock);
3693		} else {
3694			const sigset_t __user *sig;
3695			struct __kernel_timespec __user *ts;
3696
3697			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3698			if (likely(!ret2)) {
3699				min_complete = min(min_complete,
3700						   ctx->cq_entries);
3701				ret2 = io_cqring_wait(ctx, min_complete, sig,
3702						      argsz, ts);
3703			}
3704		}
3705
3706		if (!ret) {
3707			ret = ret2;
3708
3709			/*
3710			 * EBADR indicates that one or more CQE were dropped.
3711			 * Once the user has been informed we can clear the bit
3712			 * as they are obviously ok with those drops.
3713			 */
3714			if (unlikely(ret2 == -EBADR))
3715				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3716					  &ctx->check_cq);
3717		}
3718	}
3719out:
3720	if (!(flags & IORING_ENTER_REGISTERED_RING))
3721		fput(file);
3722	return ret;
3723}
3724
3725static const struct file_operations io_uring_fops = {
3726	.release	= io_uring_release,
3727	.mmap		= io_uring_mmap,
 
3728#ifndef CONFIG_MMU
3729	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3730	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3731#else
3732	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3733#endif
3734	.poll		= io_uring_poll,
3735#ifdef CONFIG_PROC_FS
3736	.show_fdinfo	= io_uring_show_fdinfo,
3737#endif
3738};
3739
3740bool io_is_uring_fops(struct file *file)
3741{
3742	return file->f_op == &io_uring_fops;
3743}
3744
3745static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3746					 struct io_uring_params *p)
3747{
3748	struct io_rings *rings;
3749	size_t size, sq_array_offset;
3750	void *ptr;
3751
3752	/* make sure these are sane, as we already accounted them */
3753	ctx->sq_entries = p->sq_entries;
3754	ctx->cq_entries = p->cq_entries;
3755
3756	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
 
3757	if (size == SIZE_MAX)
3758		return -EOVERFLOW;
3759
3760	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3761		rings = io_mem_alloc(size);
3762	else
3763		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3764
3765	if (IS_ERR(rings))
3766		return PTR_ERR(rings);
3767
3768	ctx->rings = rings;
3769	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3770		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3771	rings->sq_ring_mask = p->sq_entries - 1;
3772	rings->cq_ring_mask = p->cq_entries - 1;
3773	rings->sq_ring_entries = p->sq_entries;
3774	rings->cq_ring_entries = p->cq_entries;
3775
3776	if (p->flags & IORING_SETUP_SQE128)
3777		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3778	else
3779		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3780	if (size == SIZE_MAX) {
3781		io_rings_free(ctx);
3782		return -EOVERFLOW;
3783	}
3784
3785	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3786		ptr = io_mem_alloc(size);
3787	else
3788		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3789
3790	if (IS_ERR(ptr)) {
3791		io_rings_free(ctx);
3792		return PTR_ERR(ptr);
3793	}
3794
3795	ctx->sq_sqes = ptr;
3796	return 0;
3797}
3798
3799static int io_uring_install_fd(struct file *file)
3800{
3801	int fd;
3802
3803	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3804	if (fd < 0)
3805		return fd;
3806	fd_install(fd, file);
3807	return fd;
3808}
3809
3810/*
3811 * Allocate an anonymous fd, this is what constitutes the application
3812 * visible backing of an io_uring instance. The application mmaps this
3813 * fd to gain access to the SQ/CQ ring details.
3814 */
3815static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3816{
3817	/* Create a new inode so that the LSM can block the creation.  */
3818	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3819					 O_RDWR | O_CLOEXEC, NULL);
3820}
3821
3822static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3823				  struct io_uring_params __user *params)
3824{
3825	struct io_ring_ctx *ctx;
3826	struct io_uring_task *tctx;
3827	struct file *file;
3828	int ret;
3829
3830	if (!entries)
3831		return -EINVAL;
3832	if (entries > IORING_MAX_ENTRIES) {
3833		if (!(p->flags & IORING_SETUP_CLAMP))
3834			return -EINVAL;
3835		entries = IORING_MAX_ENTRIES;
3836	}
3837
3838	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3839	    && !(p->flags & IORING_SETUP_NO_MMAP))
3840		return -EINVAL;
3841
3842	/*
3843	 * Use twice as many entries for the CQ ring. It's possible for the
3844	 * application to drive a higher depth than the size of the SQ ring,
3845	 * since the sqes are only used at submission time. This allows for
3846	 * some flexibility in overcommitting a bit. If the application has
3847	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3848	 * of CQ ring entries manually.
3849	 */
3850	p->sq_entries = roundup_pow_of_two(entries);
3851	if (p->flags & IORING_SETUP_CQSIZE) {
3852		/*
3853		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3854		 * to a power-of-two, if it isn't already. We do NOT impose
3855		 * any cq vs sq ring sizing.
3856		 */
3857		if (!p->cq_entries)
3858			return -EINVAL;
3859		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3860			if (!(p->flags & IORING_SETUP_CLAMP))
3861				return -EINVAL;
3862			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3863		}
3864		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3865		if (p->cq_entries < p->sq_entries)
3866			return -EINVAL;
3867	} else {
3868		p->cq_entries = 2 * p->sq_entries;
3869	}
3870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3871	ctx = io_ring_ctx_alloc(p);
3872	if (!ctx)
3873		return -ENOMEM;
3874
 
 
 
 
 
 
3875	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3876	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3877	    !(ctx->flags & IORING_SETUP_SQPOLL))
3878		ctx->task_complete = true;
3879
3880	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3881		ctx->lockless_cq = true;
3882
3883	/*
3884	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3885	 * purposes, see io_activate_pollwq()
3886	 */
3887	if (!ctx->task_complete)
3888		ctx->poll_activated = true;
3889
3890	/*
3891	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3892	 * space applications don't need to do io completion events
3893	 * polling again, they can rely on io_sq_thread to do polling
3894	 * work, which can reduce cpu usage and uring_lock contention.
3895	 */
3896	if (ctx->flags & IORING_SETUP_IOPOLL &&
3897	    !(ctx->flags & IORING_SETUP_SQPOLL))
3898		ctx->syscall_iopoll = 1;
3899
3900	ctx->compat = in_compat_syscall();
3901	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3902		ctx->user = get_uid(current_user());
3903
3904	/*
3905	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3906	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3907	 */
3908	ret = -EINVAL;
3909	if (ctx->flags & IORING_SETUP_SQPOLL) {
3910		/* IPI related flags don't make sense with SQPOLL */
3911		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3912				  IORING_SETUP_TASKRUN_FLAG |
3913				  IORING_SETUP_DEFER_TASKRUN))
3914			goto err;
3915		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3916	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3917		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3918	} else {
3919		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3920		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3921			goto err;
3922		ctx->notify_method = TWA_SIGNAL;
3923	}
3924
 
 
 
 
 
3925	/*
3926	 * For DEFER_TASKRUN we require the completion task to be the same as the
3927	 * submission task. This implies that there is only one submitter, so enforce
3928	 * that.
3929	 */
3930	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3931	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3932		goto err;
3933	}
3934
3935	/*
3936	 * This is just grabbed for accounting purposes. When a process exits,
3937	 * the mm is exited and dropped before the files, hence we need to hang
3938	 * on to this mm purely for the purposes of being able to unaccount
3939	 * memory (locked/pinned vm). It's not used for anything else.
3940	 */
3941	mmgrab(current->mm);
3942	ctx->mm_account = current->mm;
3943
3944	ret = io_allocate_scq_urings(ctx, p);
3945	if (ret)
3946		goto err;
3947
 
 
 
3948	ret = io_sq_offload_create(ctx, p);
3949	if (ret)
3950		goto err;
3951
3952	ret = io_rsrc_init(ctx);
3953	if (ret)
3954		goto err;
3955
3956	p->sq_off.head = offsetof(struct io_rings, sq.head);
3957	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3958	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3959	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3960	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3961	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3962	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3963		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3964	p->sq_off.resv1 = 0;
3965	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3966		p->sq_off.user_addr = 0;
3967
3968	p->cq_off.head = offsetof(struct io_rings, cq.head);
3969	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3970	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3971	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3972	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3973	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3974	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3975	p->cq_off.resv1 = 0;
3976	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3977		p->cq_off.user_addr = 0;
3978
3979	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3980			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3981			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3982			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3983			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3984			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3985			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
 
3986
3987	if (copy_to_user(params, p, sizeof(*p))) {
3988		ret = -EFAULT;
3989		goto err;
3990	}
3991
3992	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3993	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3994		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3995
3996	file = io_uring_get_file(ctx);
3997	if (IS_ERR(file)) {
3998		ret = PTR_ERR(file);
3999		goto err;
4000	}
4001
4002	ret = __io_uring_add_tctx_node(ctx);
4003	if (ret)
4004		goto err_fput;
4005	tctx = current->io_uring;
4006
4007	/*
4008	 * Install ring fd as the very last thing, so we don't risk someone
4009	 * having closed it before we finish setup
4010	 */
4011	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4012		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4013	else
4014		ret = io_uring_install_fd(file);
4015	if (ret < 0)
4016		goto err_fput;
4017
4018	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4019	return ret;
4020err:
4021	io_ring_ctx_wait_and_kill(ctx);
4022	return ret;
4023err_fput:
4024	fput(file);
4025	return ret;
4026}
4027
4028/*
4029 * Sets up an aio uring context, and returns the fd. Applications asks for a
4030 * ring size, we return the actual sq/cq ring sizes (among other things) in the
4031 * params structure passed in.
4032 */
4033static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4034{
4035	struct io_uring_params p;
4036	int i;
4037
4038	if (copy_from_user(&p, params, sizeof(p)))
4039		return -EFAULT;
4040	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4041		if (p.resv[i])
4042			return -EINVAL;
4043	}
4044
4045	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4046			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4047			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4048			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4049			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4050			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4051			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4052			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4053			IORING_SETUP_NO_SQARRAY))
4054		return -EINVAL;
4055
4056	return io_uring_create(entries, &p, params);
4057}
4058
4059static inline bool io_uring_allowed(void)
4060{
4061	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4062	kgid_t io_uring_group;
4063
4064	if (disabled == 2)
4065		return false;
4066
4067	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4068		return true;
4069
4070	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4071	if (!gid_valid(io_uring_group))
4072		return false;
4073
4074	return in_group_p(io_uring_group);
4075}
4076
4077SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4078		struct io_uring_params __user *, params)
4079{
4080	if (!io_uring_allowed())
4081		return -EPERM;
4082
4083	return io_uring_setup(entries, params);
4084}
4085
4086static int __init io_uring_init(void)
4087{
 
 
 
 
 
 
 
4088#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4089	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4090	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4091} while (0)
4092
4093#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4094	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4095#define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4096	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4097	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4098	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4099	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4100	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4101	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4102	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4103	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4104	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4105	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4106	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4107	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4108	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4109	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4110	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4111	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4112	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4113	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4114	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4115	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4116	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4117	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4118	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4119	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4120	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4121	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4122	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4123	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4124	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4125	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4126	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4127	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4128	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4129	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4130	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4131	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4132	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4133	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4134	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4135	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4136	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4137	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4138	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4139	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4140
4141	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4142		     sizeof(struct io_uring_rsrc_update));
4143	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4144		     sizeof(struct io_uring_rsrc_update2));
4145
4146	/* ->buf_index is u16 */
4147	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4148	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4149		     offsetof(struct io_uring_buf_ring, tail));
4150
4151	/* should fit into one byte */
4152	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4153	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4154	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4155
4156	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4157
4158	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4159
4160	/* top 8bits are for internal use */
4161	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
4162
4163	io_uring_optable_init();
4164
4165	/*
4166	 * Allow user copy in the per-command field, which starts after the
4167	 * file in io_kiocb and until the opcode field. The openat2 handling
4168	 * requires copying in user memory into the io_kiocb object in that
4169	 * range, and HARDENED_USERCOPY will complain if we haven't
4170	 * correctly annotated this range.
4171	 */
4172	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4173				sizeof(struct io_kiocb), 0,
4174				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4175				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4176				offsetof(struct io_kiocb, cmd.data),
4177				sizeof_field(struct io_kiocb, cmd.data), NULL);
4178	io_buf_cachep = kmem_cache_create("io_buffer", sizeof(struct io_buffer), 0,
4179					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
4180					  NULL);
4181
4182#ifdef CONFIG_SYSCTL
4183	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4184#endif
4185
4186	return 0;
4187};
4188__initcall(io_uring_init);