Linux Audio

Check our new training course

Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_GENERIC_DIV64_H
  3#define _ASM_GENERIC_DIV64_H
  4/*
  5 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
  6 * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
  7 *
  8 * Optimization for constant divisors on 32-bit machines:
  9 * Copyright (C) 2006-2015 Nicolas Pitre
 10 *
 11 * The semantics of do_div() is, in C++ notation, observing that the name
 12 * is a function-like macro and the n parameter has the semantics of a C++
 13 * reference:
 14 *
 15 * uint32_t do_div(uint64_t &n, uint32_t base)
 16 * {
 17 * 	uint32_t remainder = n % base;
 18 * 	n = n / base;
 19 * 	return remainder;
 20 * }
 21 *
 22 * NOTE: macro parameter n is evaluated multiple times,
 23 *       beware of side effects!
 24 */
 25
 26#include <linux/types.h>
 27#include <linux/compiler.h>
 28
 29#if BITS_PER_LONG == 64
 30
 31/**
 32 * do_div - returns 2 values: calculate remainder and update new dividend
 33 * @n: uint64_t dividend (will be updated)
 34 * @base: uint32_t divisor
 35 *
 36 * Summary:
 37 * ``uint32_t remainder = n % base;``
 38 * ``n = n / base;``
 39 *
 40 * Return: (uint32_t)remainder
 41 *
 42 * NOTE: macro parameter @n is evaluated multiple times,
 43 * beware of side effects!
 44 */
 45# define do_div(n,base) ({					\
 46	uint32_t __base = (base);				\
 47	uint32_t __rem;						\
 48	__rem = ((uint64_t)(n)) % __base;			\
 49	(n) = ((uint64_t)(n)) / __base;				\
 50	__rem;							\
 51 })
 52
 53#elif BITS_PER_LONG == 32
 54
 55#include <linux/log2.h>
 56
 57/*
 58 * If the divisor happens to be constant, we determine the appropriate
 59 * inverse at compile time to turn the division into a few inline
 60 * multiplications which ought to be much faster.
 61 *
 62 * (It is unfortunate that gcc doesn't perform all this internally.)
 63 */
 64
 65#define __div64_const32(n, ___b)					\
 66({									\
 67	/*								\
 68	 * Multiplication by reciprocal of b: n / b = n * (p / b) / p	\
 69	 *								\
 70	 * We rely on the fact that most of this code gets optimized	\
 71	 * away at compile time due to constant propagation and only	\
 72	 * a few multiplication instructions should remain.		\
 73	 * Hence this monstrous macro (static inline doesn't always	\
 74	 * do the trick here).						\
 75	 */								\
 76	uint64_t ___res, ___x, ___t, ___m, ___n = (n);			\
 77	uint32_t ___p;							\
 78	bool ___bias = false;						\
 79									\
 80	/* determine MSB of b */					\
 81	___p = 1 << ilog2(___b);					\
 82									\
 83	/* compute m = ((p << 64) + b - 1) / b */			\
 84	___m = (~0ULL / ___b) * ___p;					\
 85	___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;	\
 86									\
 87	/* one less than the dividend with highest result */		\
 88	___x = ~0ULL / ___b * ___b - 1;					\
 89									\
 90	/* test our ___m with res = m * x / (p << 64) */		\
 91	___res = (___m & 0xffffffff) * (___x & 0xffffffff);		\
 92	___t = (___m & 0xffffffff) * (___x >> 32) + (___res >> 32);	\
 93	___res = (___m >> 32) * (___x >> 32) + (___t >> 32);		\
 94	___t = (___m >> 32) * (___x & 0xffffffff) + (___t & 0xffffffff);\
 95	___res = (___res + (___t >> 32)) / ___p;			\
 
 
 96									\
 97	/* Now validate what we've got. */				\
 98	if (___res != ___x / ___b) {					\
 
 
 
 
 
 
 99		/*							\
100		 * We can't get away without a bias to compensate	\
101		 * for bit truncation errors.  To avoid it we'd need an	\
102		 * additional bit to represent m which would overflow	\
103		 * a 64-bit variable.					\
104		 *							\
105		 * Instead we do m = p / b and n / b = (n * m + m) / p.	\
106		 */							\
107		___bias = true;						\
108		/* Compute m = (p << 64) / b */				\
109		___m = (~0ULL / ___b) * ___p;				\
110		___m += ((~0ULL % ___b + 1) * ___p) / ___b;		\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111	}								\
112									\
113	/* Reduce m / p to help avoid overflow handling later. */	\
114	___p /= (___m & -___m);						\
115	___m /= (___m & -___m);						\
116									\
117	/*								\
118	 * Perform (m_bias + m * n) / (1 << 64).			\
 
 
 
 
 
 
 
119	 * From now on there will be actual runtime code generated.	\
120	 */								\
121	___res = __arch_xprod_64(___m, ___n, ___bias);			\
122									\
123	___res /= ___p;							\
124})
125
126#ifndef __arch_xprod_64
127/*
128 * Default C implementation for __arch_xprod_64()
129 *
130 * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
131 * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
132 *
133 * The product is a 128-bit value, scaled down to 64 bits.
134 * Hoping for compile-time optimization of  conditional code.
135 * Architectures may provide their own optimized assembly implementation.
136 */
137#ifdef CONFIG_CC_OPTIMIZE_FOR_PERFORMANCE
138static __always_inline
139#else
140static inline
141#endif
142uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
143{
144	uint32_t m_lo = m;
145	uint32_t m_hi = m >> 32;
146	uint32_t n_lo = n;
147	uint32_t n_hi = n >> 32;
148	uint64_t x, y;
 
149
150	/* Determine if overflow handling can be dispensed with. */
151	bool no_ovf = __builtin_constant_p(m) &&
152		      ((m >> 32) + (m & 0xffffffff) < 0x100000000);
 
 
 
 
 
 
 
 
153
154	if (no_ovf) {
155		x = (uint64_t)m_lo * n_lo + (bias ? m : 0);
156		x >>= 32;
157		x += (uint64_t)m_lo * n_hi;
158		x += (uint64_t)m_hi * n_lo;
159		x >>= 32;
160		x += (uint64_t)m_hi * n_hi;
161	} else {
162		x = (uint64_t)m_lo * n_lo + (bias ? m_lo : 0);
163		y = (uint64_t)m_lo * n_hi + (uint32_t)(x >> 32) + (bias ? m_hi : 0);
164		x = (uint64_t)m_hi * n_hi + (uint32_t)(y >> 32);
165		y = (uint64_t)m_hi * n_lo + (uint32_t)y;
166		x += (uint32_t)(y >> 32);
 
167	}
168
169	return x;
 
 
170}
171#endif
172
173#ifndef __div64_32
174extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
175#endif
176
177/* The unnecessary pointer compare is there
178 * to check for type safety (n must be 64bit)
179 */
180# define do_div(n,base) ({				\
181	uint32_t __base = (base);			\
182	uint32_t __rem;					\
183	(void)(((typeof((n)) *)0) == ((uint64_t *)0));	\
184	if (__builtin_constant_p(__base) &&		\
185	    is_power_of_2(__base)) {			\
186		__rem = (n) & (__base - 1);		\
187		(n) >>= ilog2(__base);			\
188	} else if (__builtin_constant_p(__base) &&	\
189		   __base != 0) {			\
190		uint32_t __res_lo, __n_lo = (n);	\
191		(n) = __div64_const32(n, __base);	\
192		/* the remainder can be computed with 32-bit regs */ \
193		__res_lo = (n);				\
194		__rem = __n_lo - __res_lo * __base;	\
195	} else if (likely(((n) >> 32) == 0)) {		\
196		__rem = (uint32_t)(n) % __base;		\
197		(n) = (uint32_t)(n) / __base;		\
198	} else {					\
199		__rem = __div64_32(&(n), __base);	\
200	}						\
201	__rem;						\
202 })
203
204#else /* BITS_PER_LONG == ?? */
205
206# error do_div() does not yet support the C64
207
208#endif /* BITS_PER_LONG */
209
210#endif /* _ASM_GENERIC_DIV64_H */
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_GENERIC_DIV64_H
  3#define _ASM_GENERIC_DIV64_H
  4/*
  5 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
  6 * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
  7 *
  8 * Optimization for constant divisors on 32-bit machines:
  9 * Copyright (C) 2006-2015 Nicolas Pitre
 10 *
 11 * The semantics of do_div() is, in C++ notation, observing that the name
 12 * is a function-like macro and the n parameter has the semantics of a C++
 13 * reference:
 14 *
 15 * uint32_t do_div(uint64_t &n, uint32_t base)
 16 * {
 17 * 	uint32_t remainder = n % base;
 18 * 	n = n / base;
 19 * 	return remainder;
 20 * }
 21 *
 22 * NOTE: macro parameter n is evaluated multiple times,
 23 *       beware of side effects!
 24 */
 25
 26#include <linux/types.h>
 27#include <linux/compiler.h>
 28
 29#if BITS_PER_LONG == 64
 30
 31/**
 32 * do_div - returns 2 values: calculate remainder and update new dividend
 33 * @n: uint64_t dividend (will be updated)
 34 * @base: uint32_t divisor
 35 *
 36 * Summary:
 37 * ``uint32_t remainder = n % base;``
 38 * ``n = n / base;``
 39 *
 40 * Return: (uint32_t)remainder
 41 *
 42 * NOTE: macro parameter @n is evaluated multiple times,
 43 * beware of side effects!
 44 */
 45# define do_div(n,base) ({					\
 46	uint32_t __base = (base);				\
 47	uint32_t __rem;						\
 48	__rem = ((uint64_t)(n)) % __base;			\
 49	(n) = ((uint64_t)(n)) / __base;				\
 50	__rem;							\
 51 })
 52
 53#elif BITS_PER_LONG == 32
 54
 55#include <linux/log2.h>
 56
 57/*
 58 * If the divisor happens to be constant, we determine the appropriate
 59 * inverse at compile time to turn the division into a few inline
 60 * multiplications which ought to be much faster.
 61 *
 62 * (It is unfortunate that gcc doesn't perform all this internally.)
 63 */
 64
 65#define __div64_const32(n, ___b)					\
 66({									\
 67	/*								\
 68	 * Multiplication by reciprocal of b: n / b = n * (p / b) / p	\
 69	 *								\
 70	 * We rely on the fact that most of this code gets optimized	\
 71	 * away at compile time due to constant propagation and only	\
 72	 * a few multiplication instructions should remain.		\
 73	 * Hence this monstrous macro (static inline doesn't always	\
 74	 * do the trick here).						\
 75	 */								\
 76	uint64_t ___res, ___x, ___t, ___m, ___n = (n);			\
 77	uint32_t ___p, ___bias;						\
 
 78									\
 79	/* determine MSB of b */					\
 80	___p = 1 << ilog2(___b);					\
 81									\
 82	/* compute m = ((p << 64) + b - 1) / b */			\
 83	___m = (~0ULL / ___b) * ___p;					\
 84	___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;	\
 85									\
 86	/* one less than the dividend with highest result */		\
 87	___x = ~0ULL / ___b * ___b - 1;					\
 88									\
 89	/* test our ___m with res = m * x / (p << 64) */		\
 90	___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;	\
 91	___t = ___res += (___m & 0xffffffff) * (___x >> 32);		\
 92	___res += (___x & 0xffffffff) * (___m >> 32);			\
 93	___t = (___res < ___t) ? (1ULL << 32) : 0;			\
 94	___res = (___res >> 32) + ___t;					\
 95	___res += (___m >> 32) * (___x >> 32);				\
 96	___res /= ___p;							\
 97									\
 98	/* Now sanitize and optimize what we've got. */			\
 99	if (~0ULL % (___b / (___b & -___b)) == 0) {			\
100		/* special case, can be simplified to ... */		\
101		___n /= (___b & -___b);					\
102		___m = ~0ULL / (___b / (___b & -___b));			\
103		___p = 1;						\
104		___bias = 1;						\
105	} else if (___res != ___x / ___b) {				\
106		/*							\
107		 * We can't get away without a bias to compensate	\
108		 * for bit truncation errors.  To avoid it we'd need an	\
109		 * additional bit to represent m which would overflow	\
110		 * a 64-bit variable.					\
111		 *							\
112		 * Instead we do m = p / b and n / b = (n * m + m) / p.	\
113		 */							\
114		___bias = 1;						\
115		/* Compute m = (p << 64) / b */				\
116		___m = (~0ULL / ___b) * ___p;				\
117		___m += ((~0ULL % ___b + 1) * ___p) / ___b;		\
118	} else {							\
119		/*							\
120		 * Reduce m / p, and try to clear bit 31 of m when	\
121		 * possible, otherwise that'll need extra overflow	\
122		 * handling later.					\
123		 */							\
124		uint32_t ___bits = -(___m & -___m);			\
125		___bits |= ___m >> 32;					\
126		___bits = (~___bits) << 1;				\
127		/*							\
128		 * If ___bits == 0 then setting bit 31 is  unavoidable.	\
129		 * Simply apply the maximum possible reduction in that	\
130		 * case. Otherwise the MSB of ___bits indicates the	\
131		 * best reduction we should apply.			\
132		 */							\
133		if (!___bits) {						\
134			___p /= (___m & -___m);				\
135			___m /= (___m & -___m);				\
136		} else {						\
137			___p >>= ilog2(___bits);			\
138			___m >>= ilog2(___bits);			\
139		}							\
140		/* No bias needed. */					\
141		___bias = 0;						\
142	}								\
143									\
 
 
 
 
144	/*								\
145	 * Now we have a combination of 2 conditions:			\
146	 *								\
147	 * 1) whether or not we need to apply a bias, and		\
148	 *								\
149	 * 2) whether or not there might be an overflow in the cross	\
150	 *    product determined by (___m & ((1 << 63) | (1 << 31))).	\
151	 *								\
152	 * Select the best way to do (m_bias + m * n) / (1 << 64).	\
153	 * From now on there will be actual runtime code generated.	\
154	 */								\
155	___res = __arch_xprod_64(___m, ___n, ___bias);			\
156									\
157	___res /= ___p;							\
158})
159
160#ifndef __arch_xprod_64
161/*
162 * Default C implementation for __arch_xprod_64()
163 *
164 * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
165 * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
166 *
167 * The product is a 128-bit value, scaled down to 64 bits.
168 * Assuming constant propagation to optimize away unused conditional code.
169 * Architectures may provide their own optimized assembly implementation.
170 */
171static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
 
 
 
 
 
172{
173	uint32_t m_lo = m;
174	uint32_t m_hi = m >> 32;
175	uint32_t n_lo = n;
176	uint32_t n_hi = n >> 32;
177	uint64_t res;
178	uint32_t res_lo, res_hi, tmp;
179
180	if (!bias) {
181		res = ((uint64_t)m_lo * n_lo) >> 32;
182	} else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
183		/* there can't be any overflow here */
184		res = (m + (uint64_t)m_lo * n_lo) >> 32;
185	} else {
186		res = m + (uint64_t)m_lo * n_lo;
187		res_lo = res >> 32;
188		res_hi = (res_lo < m_hi);
189		res = res_lo | ((uint64_t)res_hi << 32);
190	}
191
192	if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
193		/* there can't be any overflow here */
194		res += (uint64_t)m_lo * n_hi;
195		res += (uint64_t)m_hi * n_lo;
196		res >>= 32;
 
 
197	} else {
198		res += (uint64_t)m_lo * n_hi;
199		tmp = res >> 32;
200		res += (uint64_t)m_hi * n_lo;
201		res_lo = res >> 32;
202		res_hi = (res_lo < tmp);
203		res = res_lo | ((uint64_t)res_hi << 32);
204	}
205
206	res += (uint64_t)m_hi * n_hi;
207
208	return res;
209}
210#endif
211
212#ifndef __div64_32
213extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
214#endif
215
216/* The unnecessary pointer compare is there
217 * to check for type safety (n must be 64bit)
218 */
219# define do_div(n,base) ({				\
220	uint32_t __base = (base);			\
221	uint32_t __rem;					\
222	(void)(((typeof((n)) *)0) == ((uint64_t *)0));	\
223	if (__builtin_constant_p(__base) &&		\
224	    is_power_of_2(__base)) {			\
225		__rem = (n) & (__base - 1);		\
226		(n) >>= ilog2(__base);			\
227	} else if (__builtin_constant_p(__base) &&	\
228		   __base != 0) {			\
229		uint32_t __res_lo, __n_lo = (n);	\
230		(n) = __div64_const32(n, __base);	\
231		/* the remainder can be computed with 32-bit regs */ \
232		__res_lo = (n);				\
233		__rem = __n_lo - __res_lo * __base;	\
234	} else if (likely(((n) >> 32) == 0)) {		\
235		__rem = (uint32_t)(n) % __base;		\
236		(n) = (uint32_t)(n) / __base;		\
237	} else {					\
238		__rem = __div64_32(&(n), __base);	\
239	}						\
240	__rem;						\
241 })
242
243#else /* BITS_PER_LONG == ?? */
244
245# error do_div() does not yet support the C64
246
247#endif /* BITS_PER_LONG */
248
249#endif /* _ASM_GENERIC_DIV64_H */