Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * f2fs compress support
   4 *
   5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
   6 */
   7
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/moduleparam.h>
  11#include <linux/writeback.h>
  12#include <linux/backing-dev.h>
  13#include <linux/lzo.h>
  14#include <linux/lz4.h>
  15#include <linux/zstd.h>
  16#include <linux/pagevec.h>
  17
  18#include "f2fs.h"
  19#include "node.h"
  20#include "segment.h"
  21#include <trace/events/f2fs.h>
  22
  23static struct kmem_cache *cic_entry_slab;
  24static struct kmem_cache *dic_entry_slab;
  25
  26static void *page_array_alloc(struct inode *inode, int nr)
  27{
  28	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  29	unsigned int size = sizeof(struct page *) * nr;
  30
  31	if (likely(size <= sbi->page_array_slab_size))
  32		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
  33					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
  34	return f2fs_kzalloc(sbi, size, GFP_NOFS);
  35}
  36
  37static void page_array_free(struct inode *inode, void *pages, int nr)
  38{
  39	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  40	unsigned int size = sizeof(struct page *) * nr;
  41
  42	if (!pages)
  43		return;
  44
  45	if (likely(size <= sbi->page_array_slab_size))
  46		kmem_cache_free(sbi->page_array_slab, pages);
  47	else
  48		kfree(pages);
  49}
  50
  51struct f2fs_compress_ops {
  52	int (*init_compress_ctx)(struct compress_ctx *cc);
  53	void (*destroy_compress_ctx)(struct compress_ctx *cc);
  54	int (*compress_pages)(struct compress_ctx *cc);
  55	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
  56	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
  57	int (*decompress_pages)(struct decompress_io_ctx *dic);
  58	bool (*is_level_valid)(int level);
  59};
  60
  61static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
  62{
  63	return index & (cc->cluster_size - 1);
  64}
  65
  66static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
  67{
  68	return index >> cc->log_cluster_size;
  69}
  70
  71static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
  72{
  73	return cc->cluster_idx << cc->log_cluster_size;
  74}
  75
  76bool f2fs_is_compressed_page(struct page *page)
  77{
  78	if (!PagePrivate(page))
  79		return false;
  80	if (!page_private(page))
  81		return false;
  82	if (page_private_nonpointer(page))
  83		return false;
  84
  85	f2fs_bug_on(F2FS_M_SB(page->mapping),
  86		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
  87	return true;
  88}
  89
  90static void f2fs_set_compressed_page(struct page *page,
  91		struct inode *inode, pgoff_t index, void *data)
  92{
  93	struct folio *folio = page_folio(page);
  94
  95	folio_attach_private(folio, (void *)data);
  96
  97	/* i_crypto_info and iv index */
  98	folio->index = index;
  99	folio->mapping = inode->i_mapping;
 100}
 101
 102static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
 103{
 104	int i;
 105
 106	for (i = 0; i < len; i++) {
 107		if (!cc->rpages[i])
 108			continue;
 109		if (unlock)
 110			unlock_page(cc->rpages[i]);
 111		else
 112			put_page(cc->rpages[i]);
 113	}
 114}
 115
 116static void f2fs_put_rpages(struct compress_ctx *cc)
 117{
 118	f2fs_drop_rpages(cc, cc->cluster_size, false);
 119}
 120
 121static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
 122{
 123	f2fs_drop_rpages(cc, len, true);
 124}
 125
 126static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
 127		struct writeback_control *wbc, bool redirty, int unlock)
 128{
 129	unsigned int i;
 130
 131	for (i = 0; i < cc->cluster_size; i++) {
 132		if (!cc->rpages[i])
 133			continue;
 134		if (redirty)
 135			redirty_page_for_writepage(wbc, cc->rpages[i]);
 136		f2fs_put_page(cc->rpages[i], unlock);
 137	}
 138}
 139
 140struct page *f2fs_compress_control_page(struct page *page)
 141{
 142	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
 143}
 144
 145int f2fs_init_compress_ctx(struct compress_ctx *cc)
 146{
 147	if (cc->rpages)
 148		return 0;
 149
 150	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
 151	return cc->rpages ? 0 : -ENOMEM;
 152}
 153
 154void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
 155{
 156	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
 157	cc->rpages = NULL;
 158	cc->nr_rpages = 0;
 159	cc->nr_cpages = 0;
 160	cc->valid_nr_cpages = 0;
 161	if (!reuse)
 162		cc->cluster_idx = NULL_CLUSTER;
 163}
 164
 165void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio)
 166{
 167	unsigned int cluster_ofs;
 168
 169	if (!f2fs_cluster_can_merge_page(cc, folio->index))
 170		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
 171
 172	cluster_ofs = offset_in_cluster(cc, folio->index);
 173	cc->rpages[cluster_ofs] = folio_page(folio, 0);
 174	cc->nr_rpages++;
 175	cc->cluster_idx = cluster_idx(cc, folio->index);
 176}
 177
 178#ifdef CONFIG_F2FS_FS_LZO
 179static int lzo_init_compress_ctx(struct compress_ctx *cc)
 180{
 181	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
 182				LZO1X_MEM_COMPRESS, GFP_NOFS);
 183	if (!cc->private)
 184		return -ENOMEM;
 185
 186	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
 187	return 0;
 188}
 189
 190static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
 191{
 192	kvfree(cc->private);
 193	cc->private = NULL;
 194}
 195
 196static int lzo_compress_pages(struct compress_ctx *cc)
 197{
 198	int ret;
 199
 200	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
 201					&cc->clen, cc->private);
 202	if (ret != LZO_E_OK) {
 203		f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
 204				"lzo compress failed, ret:%d", ret);
 205		return -EIO;
 206	}
 207	return 0;
 208}
 209
 210static int lzo_decompress_pages(struct decompress_io_ctx *dic)
 211{
 212	int ret;
 213
 214	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
 215						dic->rbuf, &dic->rlen);
 216	if (ret != LZO_E_OK) {
 217		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
 218				"lzo decompress failed, ret:%d", ret);
 219		return -EIO;
 220	}
 221
 222	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
 223		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
 224				"lzo invalid rlen:%zu, expected:%lu",
 225				dic->rlen, PAGE_SIZE << dic->log_cluster_size);
 
 
 226		return -EIO;
 227	}
 228	return 0;
 229}
 230
 231static const struct f2fs_compress_ops f2fs_lzo_ops = {
 232	.init_compress_ctx	= lzo_init_compress_ctx,
 233	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
 234	.compress_pages		= lzo_compress_pages,
 235	.decompress_pages	= lzo_decompress_pages,
 236};
 237#endif
 238
 239#ifdef CONFIG_F2FS_FS_LZ4
 240static int lz4_init_compress_ctx(struct compress_ctx *cc)
 241{
 242	unsigned int size = LZ4_MEM_COMPRESS;
 243
 244#ifdef CONFIG_F2FS_FS_LZ4HC
 245	if (F2FS_I(cc->inode)->i_compress_level)
 246		size = LZ4HC_MEM_COMPRESS;
 247#endif
 248
 249	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
 250	if (!cc->private)
 251		return -ENOMEM;
 252
 253	/*
 254	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
 255	 * adapt worst compress case, because lz4 compressor can handle
 256	 * output budget properly.
 257	 */
 258	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
 259	return 0;
 260}
 261
 262static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
 263{
 264	kvfree(cc->private);
 265	cc->private = NULL;
 266}
 267
 268static int lz4_compress_pages(struct compress_ctx *cc)
 269{
 270	int len = -EINVAL;
 271	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
 272
 273	if (!level)
 274		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
 275						cc->clen, cc->private);
 276#ifdef CONFIG_F2FS_FS_LZ4HC
 277	else
 278		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
 279					cc->clen, level, cc->private);
 280#endif
 281	if (len < 0)
 282		return len;
 283	if (!len)
 284		return -EAGAIN;
 285
 286	cc->clen = len;
 287	return 0;
 288}
 289
 290static int lz4_decompress_pages(struct decompress_io_ctx *dic)
 291{
 292	int ret;
 293
 294	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
 295						dic->clen, dic->rlen);
 296	if (ret < 0) {
 297		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
 298				"lz4 decompress failed, ret:%d", ret);
 299		return -EIO;
 300	}
 301
 302	if (ret != PAGE_SIZE << dic->log_cluster_size) {
 303		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
 304				"lz4 invalid ret:%d, expected:%lu",
 305				ret, PAGE_SIZE << dic->log_cluster_size);
 
 306		return -EIO;
 307	}
 308	return 0;
 309}
 310
 311static bool lz4_is_level_valid(int lvl)
 312{
 313#ifdef CONFIG_F2FS_FS_LZ4HC
 314	return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
 315#else
 316	return lvl == 0;
 317#endif
 318}
 319
 320static const struct f2fs_compress_ops f2fs_lz4_ops = {
 321	.init_compress_ctx	= lz4_init_compress_ctx,
 322	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
 323	.compress_pages		= lz4_compress_pages,
 324	.decompress_pages	= lz4_decompress_pages,
 325	.is_level_valid		= lz4_is_level_valid,
 326};
 327#endif
 328
 329#ifdef CONFIG_F2FS_FS_ZSTD
 330static int zstd_init_compress_ctx(struct compress_ctx *cc)
 331{
 332	zstd_parameters params;
 333	zstd_cstream *stream;
 334	void *workspace;
 335	unsigned int workspace_size;
 336	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
 337
 338	/* Need to remain this for backward compatibility */
 339	if (!level)
 340		level = F2FS_ZSTD_DEFAULT_CLEVEL;
 341
 342	params = zstd_get_params(level, cc->rlen);
 343	workspace_size = zstd_cstream_workspace_bound(&params.cParams);
 344
 345	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
 346					workspace_size, GFP_NOFS);
 347	if (!workspace)
 348		return -ENOMEM;
 349
 350	stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
 351	if (!stream) {
 352		f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
 353				"%s zstd_init_cstream failed", __func__);
 
 354		kvfree(workspace);
 355		return -EIO;
 356	}
 357
 358	cc->private = workspace;
 359	cc->private2 = stream;
 360
 361	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
 362	return 0;
 363}
 364
 365static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
 366{
 367	kvfree(cc->private);
 368	cc->private = NULL;
 369	cc->private2 = NULL;
 370}
 371
 372static int zstd_compress_pages(struct compress_ctx *cc)
 373{
 374	zstd_cstream *stream = cc->private2;
 375	zstd_in_buffer inbuf;
 376	zstd_out_buffer outbuf;
 377	int src_size = cc->rlen;
 378	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
 379	int ret;
 380
 381	inbuf.pos = 0;
 382	inbuf.src = cc->rbuf;
 383	inbuf.size = src_size;
 384
 385	outbuf.pos = 0;
 386	outbuf.dst = cc->cbuf->cdata;
 387	outbuf.size = dst_size;
 388
 389	ret = zstd_compress_stream(stream, &outbuf, &inbuf);
 390	if (zstd_is_error(ret)) {
 391		f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
 392				"%s zstd_compress_stream failed, ret: %d",
 393				__func__, zstd_get_error_code(ret));
 394		return -EIO;
 395	}
 396
 397	ret = zstd_end_stream(stream, &outbuf);
 398	if (zstd_is_error(ret)) {
 399		f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
 400				"%s zstd_end_stream returned %d",
 401				__func__, zstd_get_error_code(ret));
 402		return -EIO;
 403	}
 404
 405	/*
 406	 * there is compressed data remained in intermediate buffer due to
 407	 * no more space in cbuf.cdata
 408	 */
 409	if (ret)
 410		return -EAGAIN;
 411
 412	cc->clen = outbuf.pos;
 413	return 0;
 414}
 415
 416static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
 417{
 418	zstd_dstream *stream;
 419	void *workspace;
 420	unsigned int workspace_size;
 421	unsigned int max_window_size =
 422			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
 423
 424	workspace_size = zstd_dstream_workspace_bound(max_window_size);
 425
 426	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
 427					workspace_size, GFP_NOFS);
 428	if (!workspace)
 429		return -ENOMEM;
 430
 431	stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
 432	if (!stream) {
 433		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
 434				"%s zstd_init_dstream failed", __func__);
 
 435		kvfree(workspace);
 436		return -EIO;
 437	}
 438
 439	dic->private = workspace;
 440	dic->private2 = stream;
 441
 442	return 0;
 443}
 444
 445static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
 446{
 447	kvfree(dic->private);
 448	dic->private = NULL;
 449	dic->private2 = NULL;
 450}
 451
 452static int zstd_decompress_pages(struct decompress_io_ctx *dic)
 453{
 454	zstd_dstream *stream = dic->private2;
 455	zstd_in_buffer inbuf;
 456	zstd_out_buffer outbuf;
 457	int ret;
 458
 459	inbuf.pos = 0;
 460	inbuf.src = dic->cbuf->cdata;
 461	inbuf.size = dic->clen;
 462
 463	outbuf.pos = 0;
 464	outbuf.dst = dic->rbuf;
 465	outbuf.size = dic->rlen;
 466
 467	ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
 468	if (zstd_is_error(ret)) {
 469		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
 470				"%s zstd_decompress_stream failed, ret: %d",
 471				__func__, zstd_get_error_code(ret));
 472		return -EIO;
 473	}
 474
 475	if (dic->rlen != outbuf.pos) {
 476		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
 477				"%s ZSTD invalid rlen:%zu, expected:%lu",
 
 478				__func__, dic->rlen,
 479				PAGE_SIZE << dic->log_cluster_size);
 480		return -EIO;
 481	}
 482
 483	return 0;
 484}
 485
 486static bool zstd_is_level_valid(int lvl)
 487{
 488	return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
 489}
 490
 491static const struct f2fs_compress_ops f2fs_zstd_ops = {
 492	.init_compress_ctx	= zstd_init_compress_ctx,
 493	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
 494	.compress_pages		= zstd_compress_pages,
 495	.init_decompress_ctx	= zstd_init_decompress_ctx,
 496	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
 497	.decompress_pages	= zstd_decompress_pages,
 498	.is_level_valid		= zstd_is_level_valid,
 499};
 500#endif
 501
 502#ifdef CONFIG_F2FS_FS_LZO
 503#ifdef CONFIG_F2FS_FS_LZORLE
 504static int lzorle_compress_pages(struct compress_ctx *cc)
 505{
 506	int ret;
 507
 508	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
 509					&cc->clen, cc->private);
 510	if (ret != LZO_E_OK) {
 511		f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
 512				"lzo-rle compress failed, ret:%d", ret);
 513		return -EIO;
 514	}
 515	return 0;
 516}
 517
 518static const struct f2fs_compress_ops f2fs_lzorle_ops = {
 519	.init_compress_ctx	= lzo_init_compress_ctx,
 520	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
 521	.compress_pages		= lzorle_compress_pages,
 522	.decompress_pages	= lzo_decompress_pages,
 523};
 524#endif
 525#endif
 526
 527static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
 528#ifdef CONFIG_F2FS_FS_LZO
 529	&f2fs_lzo_ops,
 530#else
 531	NULL,
 532#endif
 533#ifdef CONFIG_F2FS_FS_LZ4
 534	&f2fs_lz4_ops,
 535#else
 536	NULL,
 537#endif
 538#ifdef CONFIG_F2FS_FS_ZSTD
 539	&f2fs_zstd_ops,
 540#else
 541	NULL,
 542#endif
 543#if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
 544	&f2fs_lzorle_ops,
 545#else
 546	NULL,
 547#endif
 548};
 549
 550bool f2fs_is_compress_backend_ready(struct inode *inode)
 551{
 552	if (!f2fs_compressed_file(inode))
 553		return true;
 554	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
 555}
 556
 557bool f2fs_is_compress_level_valid(int alg, int lvl)
 558{
 559	const struct f2fs_compress_ops *cops = f2fs_cops[alg];
 560
 561	if (cops->is_level_valid)
 562		return cops->is_level_valid(lvl);
 563
 564	return lvl == 0;
 565}
 566
 567static mempool_t *compress_page_pool;
 568static int num_compress_pages = 512;
 569module_param(num_compress_pages, uint, 0444);
 570MODULE_PARM_DESC(num_compress_pages,
 571		"Number of intermediate compress pages to preallocate");
 572
 573int __init f2fs_init_compress_mempool(void)
 574{
 575	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
 576	return compress_page_pool ? 0 : -ENOMEM;
 577}
 578
 579void f2fs_destroy_compress_mempool(void)
 580{
 581	mempool_destroy(compress_page_pool);
 582}
 583
 584static struct page *f2fs_compress_alloc_page(void)
 585{
 586	struct page *page;
 587
 588	page = mempool_alloc(compress_page_pool, GFP_NOFS);
 589	lock_page(page);
 590
 591	return page;
 592}
 593
 594static void f2fs_compress_free_page(struct page *page)
 595{
 596	if (!page)
 597		return;
 598	detach_page_private(page);
 599	page->mapping = NULL;
 600	unlock_page(page);
 601	mempool_free(page, compress_page_pool);
 602}
 603
 604#define MAX_VMAP_RETRIES	3
 605
 606static void *f2fs_vmap(struct page **pages, unsigned int count)
 607{
 608	int i;
 609	void *buf = NULL;
 610
 611	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
 612		buf = vm_map_ram(pages, count, -1);
 613		if (buf)
 614			break;
 615		vm_unmap_aliases();
 616	}
 617	return buf;
 618}
 619
 620static int f2fs_compress_pages(struct compress_ctx *cc)
 621{
 622	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
 623	const struct f2fs_compress_ops *cops =
 624				f2fs_cops[fi->i_compress_algorithm];
 625	unsigned int max_len, new_nr_cpages;
 626	u32 chksum = 0;
 627	int i, ret;
 628
 629	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
 630				cc->cluster_size, fi->i_compress_algorithm);
 631
 632	if (cops->init_compress_ctx) {
 633		ret = cops->init_compress_ctx(cc);
 634		if (ret)
 635			goto out;
 636	}
 637
 638	max_len = COMPRESS_HEADER_SIZE + cc->clen;
 639	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
 640	cc->valid_nr_cpages = cc->nr_cpages;
 641
 642	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
 643	if (!cc->cpages) {
 644		ret = -ENOMEM;
 645		goto destroy_compress_ctx;
 646	}
 647
 648	for (i = 0; i < cc->nr_cpages; i++)
 649		cc->cpages[i] = f2fs_compress_alloc_page();
 650
 651	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
 652	if (!cc->rbuf) {
 653		ret = -ENOMEM;
 654		goto out_free_cpages;
 655	}
 656
 657	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
 658	if (!cc->cbuf) {
 659		ret = -ENOMEM;
 660		goto out_vunmap_rbuf;
 661	}
 662
 663	ret = cops->compress_pages(cc);
 664	if (ret)
 665		goto out_vunmap_cbuf;
 666
 667	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
 668
 669	if (cc->clen > max_len) {
 670		ret = -EAGAIN;
 671		goto out_vunmap_cbuf;
 672	}
 673
 674	cc->cbuf->clen = cpu_to_le32(cc->clen);
 675
 676	if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
 677		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
 678					cc->cbuf->cdata, cc->clen);
 679	cc->cbuf->chksum = cpu_to_le32(chksum);
 680
 681	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
 682		cc->cbuf->reserved[i] = cpu_to_le32(0);
 683
 684	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
 685
 686	/* zero out any unused part of the last page */
 687	memset(&cc->cbuf->cdata[cc->clen], 0,
 688			(new_nr_cpages * PAGE_SIZE) -
 689			(cc->clen + COMPRESS_HEADER_SIZE));
 690
 691	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
 692	vm_unmap_ram(cc->rbuf, cc->cluster_size);
 693
 694	for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
 695		f2fs_compress_free_page(cc->cpages[i]);
 696		cc->cpages[i] = NULL;
 697	}
 698
 699	if (cops->destroy_compress_ctx)
 700		cops->destroy_compress_ctx(cc);
 701
 702	cc->valid_nr_cpages = new_nr_cpages;
 703
 704	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
 705							cc->clen, ret);
 706	return 0;
 707
 708out_vunmap_cbuf:
 709	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
 710out_vunmap_rbuf:
 711	vm_unmap_ram(cc->rbuf, cc->cluster_size);
 712out_free_cpages:
 713	for (i = 0; i < cc->nr_cpages; i++) {
 714		if (cc->cpages[i])
 715			f2fs_compress_free_page(cc->cpages[i]);
 716	}
 717	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
 718	cc->cpages = NULL;
 719destroy_compress_ctx:
 720	if (cops->destroy_compress_ctx)
 721		cops->destroy_compress_ctx(cc);
 722out:
 723	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
 724							cc->clen, ret);
 725	return ret;
 726}
 727
 728static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
 729		bool pre_alloc);
 730static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
 731		bool bypass_destroy_callback, bool pre_alloc);
 732
 733void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
 734{
 735	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
 736	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
 737	const struct f2fs_compress_ops *cops =
 738			f2fs_cops[fi->i_compress_algorithm];
 739	bool bypass_callback = false;
 740	int ret;
 741
 742	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
 743				dic->cluster_size, fi->i_compress_algorithm);
 744
 745	if (dic->failed) {
 746		ret = -EIO;
 747		goto out_end_io;
 748	}
 749
 750	ret = f2fs_prepare_decomp_mem(dic, false);
 751	if (ret) {
 752		bypass_callback = true;
 753		goto out_release;
 754	}
 755
 756	dic->clen = le32_to_cpu(dic->cbuf->clen);
 757	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
 758
 759	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
 760		ret = -EFSCORRUPTED;
 761
 762		/* Avoid f2fs_commit_super in irq context */
 763		if (!in_task)
 764			f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
 765		else
 766			f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
 767		goto out_release;
 768	}
 769
 770	ret = cops->decompress_pages(dic);
 771
 772	if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
 773		u32 provided = le32_to_cpu(dic->cbuf->chksum);
 774		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
 775
 776		if (provided != calculated) {
 777			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
 778				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
 779				f2fs_info_ratelimited(sbi,
 780					"checksum invalid, nid = %lu, %x vs %x",
 781					dic->inode->i_ino,
 782					provided, calculated);
 783			}
 784			set_sbi_flag(sbi, SBI_NEED_FSCK);
 785		}
 786	}
 787
 788out_release:
 789	f2fs_release_decomp_mem(dic, bypass_callback, false);
 790
 791out_end_io:
 792	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
 793							dic->clen, ret);
 794	f2fs_decompress_end_io(dic, ret, in_task);
 795}
 796
 797/*
 798 * This is called when a page of a compressed cluster has been read from disk
 799 * (or failed to be read from disk).  It checks whether this page was the last
 800 * page being waited on in the cluster, and if so, it decompresses the cluster
 801 * (or in the case of a failure, cleans up without actually decompressing).
 802 */
 803void f2fs_end_read_compressed_page(struct page *page, bool failed,
 804		block_t blkaddr, bool in_task)
 805{
 806	struct decompress_io_ctx *dic =
 807			(struct decompress_io_ctx *)page_private(page);
 808	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
 809
 810	dec_page_count(sbi, F2FS_RD_DATA);
 811
 812	if (failed)
 813		WRITE_ONCE(dic->failed, true);
 814	else if (blkaddr && in_task)
 815		f2fs_cache_compressed_page(sbi, page,
 816					dic->inode->i_ino, blkaddr);
 817
 818	if (atomic_dec_and_test(&dic->remaining_pages))
 819		f2fs_decompress_cluster(dic, in_task);
 820}
 821
 822static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
 823{
 824	if (cc->cluster_idx == NULL_CLUSTER)
 825		return true;
 826	return cc->cluster_idx == cluster_idx(cc, index);
 827}
 828
 829bool f2fs_cluster_is_empty(struct compress_ctx *cc)
 830{
 831	return cc->nr_rpages == 0;
 832}
 833
 834static bool f2fs_cluster_is_full(struct compress_ctx *cc)
 835{
 836	return cc->cluster_size == cc->nr_rpages;
 837}
 838
 839bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
 840{
 841	if (f2fs_cluster_is_empty(cc))
 842		return true;
 843	return is_page_in_cluster(cc, index);
 844}
 845
 846bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
 847				int index, int nr_pages, bool uptodate)
 848{
 849	unsigned long pgidx = pages[index]->index;
 850	int i = uptodate ? 0 : 1;
 851
 852	/*
 853	 * when uptodate set to true, try to check all pages in cluster is
 854	 * uptodate or not.
 855	 */
 856	if (uptodate && (pgidx % cc->cluster_size))
 857		return false;
 858
 859	if (nr_pages - index < cc->cluster_size)
 860		return false;
 861
 862	for (; i < cc->cluster_size; i++) {
 863		if (pages[index + i]->index != pgidx + i)
 864			return false;
 865		if (uptodate && !PageUptodate(pages[index + i]))
 866			return false;
 867	}
 868
 869	return true;
 870}
 871
 872static bool cluster_has_invalid_data(struct compress_ctx *cc)
 873{
 874	loff_t i_size = i_size_read(cc->inode);
 875	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
 876	int i;
 877
 878	for (i = 0; i < cc->cluster_size; i++) {
 879		struct page *page = cc->rpages[i];
 880
 881		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
 882
 883		/* beyond EOF */
 884		if (page_folio(page)->index >= nr_pages)
 885			return true;
 886	}
 887	return false;
 888}
 889
 890bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
 891{
 892#ifdef CONFIG_F2FS_CHECK_FS
 893	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 894	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
 895	int cluster_end = 0;
 896	unsigned int count;
 897	int i;
 898	char *reason = "";
 899
 900	if (dn->data_blkaddr != COMPRESS_ADDR)
 901		return false;
 902
 903	/* [..., COMPR_ADDR, ...] */
 904	if (dn->ofs_in_node % cluster_size) {
 905		reason = "[*|C|*|*]";
 906		goto out;
 907	}
 908
 909	for (i = 1, count = 1; i < cluster_size; i++, count++) {
 910		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
 911							dn->ofs_in_node + i);
 912
 913		/* [COMPR_ADDR, ..., COMPR_ADDR] */
 914		if (blkaddr == COMPRESS_ADDR) {
 915			reason = "[C|*|C|*]";
 916			goto out;
 917		}
 918		if (!__is_valid_data_blkaddr(blkaddr)) {
 919			if (!cluster_end)
 920				cluster_end = i;
 921			continue;
 922		}
 923		/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
 924		if (cluster_end) {
 925			reason = "[C|N|N|V]";
 926			goto out;
 927		}
 928	}
 929
 930	f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size &&
 931		!is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED));
 932
 933	return false;
 934out:
 935	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
 936			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
 937	set_sbi_flag(sbi, SBI_NEED_FSCK);
 938	return true;
 939#else
 940	return false;
 941#endif
 942}
 943
 944static int __f2fs_get_cluster_blocks(struct inode *inode,
 945					struct dnode_of_data *dn)
 946{
 947	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
 948	int count, i;
 949
 950	for (i = 0, count = 0; i < cluster_size; i++) {
 951		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
 952							dn->ofs_in_node + i);
 953
 954		if (__is_valid_data_blkaddr(blkaddr))
 955			count++;
 956	}
 957
 958	return count;
 959}
 960
 961static int __f2fs_cluster_blocks(struct inode *inode, unsigned int cluster_idx,
 962				enum cluster_check_type type)
 963{
 964	struct dnode_of_data dn;
 965	unsigned int start_idx = cluster_idx <<
 966				F2FS_I(inode)->i_log_cluster_size;
 967	int ret;
 968
 969	set_new_dnode(&dn, inode, NULL, NULL, 0);
 970	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
 971	if (ret) {
 972		if (ret == -ENOENT)
 973			ret = 0;
 974		goto fail;
 975	}
 976
 977	if (f2fs_sanity_check_cluster(&dn)) {
 978		ret = -EFSCORRUPTED;
 979		goto fail;
 980	}
 981
 982	if (dn.data_blkaddr == COMPRESS_ADDR) {
 983		if (type == CLUSTER_COMPR_BLKS)
 984			ret = 1 + __f2fs_get_cluster_blocks(inode, &dn);
 985		else if (type == CLUSTER_IS_COMPR)
 986			ret = 1;
 987	} else if (type == CLUSTER_RAW_BLKS) {
 988		ret = __f2fs_get_cluster_blocks(inode, &dn);
 989	}
 990fail:
 991	f2fs_put_dnode(&dn);
 992	return ret;
 993}
 994
 995/* return # of compressed blocks in compressed cluster */
 996static int f2fs_compressed_blocks(struct compress_ctx *cc)
 997{
 998	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx,
 999		CLUSTER_COMPR_BLKS);
1000}
1001
1002/* return # of raw blocks in non-compressed cluster */
1003static int f2fs_decompressed_blocks(struct inode *inode,
1004				unsigned int cluster_idx)
1005{
1006	return __f2fs_cluster_blocks(inode, cluster_idx,
1007		CLUSTER_RAW_BLKS);
1008}
1009
1010/* return whether cluster is compressed one or not */
1011int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1012{
1013	return __f2fs_cluster_blocks(inode,
1014		index >> F2FS_I(inode)->i_log_cluster_size,
1015		CLUSTER_IS_COMPR);
1016}
1017
1018/* return whether cluster contains non raw blocks or not */
1019bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index)
1020{
1021	unsigned int cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size;
1022
1023	return f2fs_decompressed_blocks(inode, cluster_idx) !=
1024		F2FS_I(inode)->i_cluster_size;
1025}
1026
1027static bool cluster_may_compress(struct compress_ctx *cc)
1028{
1029	if (!f2fs_need_compress_data(cc->inode))
1030		return false;
1031	if (f2fs_is_atomic_file(cc->inode))
1032		return false;
1033	if (!f2fs_cluster_is_full(cc))
1034		return false;
1035	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1036		return false;
1037	return !cluster_has_invalid_data(cc);
1038}
1039
1040static void set_cluster_writeback(struct compress_ctx *cc)
1041{
1042	int i;
1043
1044	for (i = 0; i < cc->cluster_size; i++) {
1045		if (cc->rpages[i])
1046			set_page_writeback(cc->rpages[i]);
1047	}
1048}
1049
1050static void cancel_cluster_writeback(struct compress_ctx *cc,
1051			struct compress_io_ctx *cic, int submitted)
1052{
1053	int i;
1054
1055	/* Wait for submitted IOs. */
1056	if (submitted > 1) {
1057		f2fs_submit_merged_write(F2FS_I_SB(cc->inode), DATA);
1058		while (atomic_read(&cic->pending_pages) !=
1059					(cc->valid_nr_cpages - submitted + 1))
1060			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1061	}
1062
1063	/* Cancel writeback and stay locked. */
1064	for (i = 0; i < cc->cluster_size; i++) {
1065		if (i < submitted) {
1066			inode_inc_dirty_pages(cc->inode);
1067			lock_page(cc->rpages[i]);
1068		}
1069		clear_page_private_gcing(cc->rpages[i]);
1070		if (folio_test_writeback(page_folio(cc->rpages[i])))
1071			end_page_writeback(cc->rpages[i]);
1072	}
1073}
1074
1075static void set_cluster_dirty(struct compress_ctx *cc)
1076{
1077	int i;
1078
1079	for (i = 0; i < cc->cluster_size; i++)
1080		if (cc->rpages[i]) {
1081			set_page_dirty(cc->rpages[i]);
1082			set_page_private_gcing(cc->rpages[i]);
1083		}
1084}
1085
1086static int prepare_compress_overwrite(struct compress_ctx *cc,
1087		struct page **pagep, pgoff_t index, void **fsdata)
1088{
1089	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1090	struct address_space *mapping = cc->inode->i_mapping;
1091	struct page *page;
1092	sector_t last_block_in_bio;
1093	fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1094	pgoff_t start_idx = start_idx_of_cluster(cc);
1095	int i, ret;
1096
1097retry:
1098	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1099	if (ret <= 0)
1100		return ret;
1101
1102	ret = f2fs_init_compress_ctx(cc);
1103	if (ret)
1104		return ret;
1105
1106	/* keep page reference to avoid page reclaim */
1107	for (i = 0; i < cc->cluster_size; i++) {
1108		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1109							fgp_flag, GFP_NOFS);
1110		if (!page) {
1111			ret = -ENOMEM;
1112			goto unlock_pages;
1113		}
1114
1115		if (PageUptodate(page))
1116			f2fs_put_page(page, 1);
1117		else
1118			f2fs_compress_ctx_add_page(cc, page_folio(page));
1119	}
1120
1121	if (!f2fs_cluster_is_empty(cc)) {
1122		struct bio *bio = NULL;
1123
1124		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1125					&last_block_in_bio, NULL, true);
1126		f2fs_put_rpages(cc);
1127		f2fs_destroy_compress_ctx(cc, true);
1128		if (ret)
1129			goto out;
1130		if (bio)
1131			f2fs_submit_read_bio(sbi, bio, DATA);
1132
1133		ret = f2fs_init_compress_ctx(cc);
1134		if (ret)
1135			goto out;
1136	}
1137
1138	for (i = 0; i < cc->cluster_size; i++) {
1139		f2fs_bug_on(sbi, cc->rpages[i]);
1140
1141		page = find_lock_page(mapping, start_idx + i);
1142		if (!page) {
1143			/* page can be truncated */
1144			goto release_and_retry;
1145		}
1146
1147		f2fs_wait_on_page_writeback(page, DATA, true, true);
1148		f2fs_compress_ctx_add_page(cc, page_folio(page));
1149
1150		if (!PageUptodate(page)) {
1151release_and_retry:
1152			f2fs_put_rpages(cc);
1153			f2fs_unlock_rpages(cc, i + 1);
1154			f2fs_destroy_compress_ctx(cc, true);
1155			goto retry;
1156		}
1157	}
1158
1159	if (likely(!ret)) {
1160		*fsdata = cc->rpages;
1161		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1162		return cc->cluster_size;
1163	}
1164
1165unlock_pages:
1166	f2fs_put_rpages(cc);
1167	f2fs_unlock_rpages(cc, i);
1168	f2fs_destroy_compress_ctx(cc, true);
1169out:
1170	return ret;
1171}
1172
1173int f2fs_prepare_compress_overwrite(struct inode *inode,
1174		struct page **pagep, pgoff_t index, void **fsdata)
1175{
1176	struct compress_ctx cc = {
1177		.inode = inode,
1178		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1179		.cluster_size = F2FS_I(inode)->i_cluster_size,
1180		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1181		.rpages = NULL,
1182		.nr_rpages = 0,
1183	};
1184
1185	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1186}
1187
1188bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1189					pgoff_t index, unsigned copied)
1190
1191{
1192	struct compress_ctx cc = {
1193		.inode = inode,
1194		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1195		.cluster_size = F2FS_I(inode)->i_cluster_size,
1196		.rpages = fsdata,
1197	};
1198	bool first_index = (index == cc.rpages[0]->index);
1199
1200	if (copied)
1201		set_cluster_dirty(&cc);
1202
1203	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1204	f2fs_destroy_compress_ctx(&cc, false);
1205
1206	return first_index;
1207}
1208
1209int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1210{
1211	void *fsdata = NULL;
1212	struct page *pagep;
1213	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1214	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1215							log_cluster_size;
1216	int err;
1217
1218	err = f2fs_is_compressed_cluster(inode, start_idx);
1219	if (err < 0)
1220		return err;
1221
1222	/* truncate normal cluster */
1223	if (!err)
1224		return f2fs_do_truncate_blocks(inode, from, lock);
1225
1226	/* truncate compressed cluster */
1227	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1228						start_idx, &fsdata);
1229
1230	/* should not be a normal cluster */
1231	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1232
1233	if (err <= 0)
1234		return err;
1235
1236	if (err > 0) {
1237		struct page **rpages = fsdata;
1238		int cluster_size = F2FS_I(inode)->i_cluster_size;
1239		int i;
1240
1241		for (i = cluster_size - 1; i >= 0; i--) {
1242			loff_t start = rpages[i]->index << PAGE_SHIFT;
1243
1244			if (from <= start) {
1245				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1246			} else {
1247				zero_user_segment(rpages[i], from - start,
1248								PAGE_SIZE);
1249				break;
1250			}
1251		}
1252
1253		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1254	}
1255	return 0;
1256}
1257
1258static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1259					int *submitted,
1260					struct writeback_control *wbc,
1261					enum iostat_type io_type)
1262{
1263	struct inode *inode = cc->inode;
1264	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1265	struct f2fs_inode_info *fi = F2FS_I(inode);
1266	struct f2fs_io_info fio = {
1267		.sbi = sbi,
1268		.ino = cc->inode->i_ino,
1269		.type = DATA,
1270		.op = REQ_OP_WRITE,
1271		.op_flags = wbc_to_write_flags(wbc),
1272		.old_blkaddr = NEW_ADDR,
1273		.page = NULL,
1274		.encrypted_page = NULL,
1275		.compressed_page = NULL,
 
1276		.io_type = io_type,
1277		.io_wbc = wbc,
1278		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1279									1 : 0,
1280	};
1281	struct dnode_of_data dn;
1282	struct node_info ni;
1283	struct compress_io_ctx *cic;
1284	pgoff_t start_idx = start_idx_of_cluster(cc);
1285	unsigned int last_index = cc->cluster_size - 1;
1286	loff_t psize;
1287	int i, err;
1288	bool quota_inode = IS_NOQUOTA(inode);
1289
1290	/* we should bypass data pages to proceed the kworker jobs */
1291	if (unlikely(f2fs_cp_error(sbi))) {
1292		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1293		goto out_free;
1294	}
1295
1296	if (quota_inode) {
1297		/*
1298		 * We need to wait for node_write to avoid block allocation during
1299		 * checkpoint. This can only happen to quota writes which can cause
1300		 * the below discard race condition.
1301		 */
1302		f2fs_down_read(&sbi->node_write);
1303	} else if (!f2fs_trylock_op(sbi)) {
1304		goto out_free;
1305	}
1306
1307	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1308
1309	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1310	if (err)
1311		goto out_unlock_op;
1312
1313	for (i = 0; i < cc->cluster_size; i++) {
1314		if (data_blkaddr(dn.inode, dn.node_page,
1315					dn.ofs_in_node + i) == NULL_ADDR)
1316			goto out_put_dnode;
1317	}
1318
1319	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1320
1321	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1322	if (err)
1323		goto out_put_dnode;
1324
1325	fio.version = ni.version;
1326
1327	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1328	if (!cic)
1329		goto out_put_dnode;
1330
1331	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1332	cic->inode = inode;
1333	atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1334	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1335	if (!cic->rpages)
1336		goto out_put_cic;
1337
1338	cic->nr_rpages = cc->cluster_size;
1339
1340	for (i = 0; i < cc->valid_nr_cpages; i++) {
1341		f2fs_set_compressed_page(cc->cpages[i], inode,
1342					cc->rpages[i + 1]->index, cic);
1343		fio.compressed_page = cc->cpages[i];
1344
1345		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1346						dn.ofs_in_node + i + 1);
1347
1348		/* wait for GCed page writeback via META_MAPPING */
1349		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1350
1351		if (fio.encrypted) {
1352			fio.page = cc->rpages[i + 1];
1353			err = f2fs_encrypt_one_page(&fio);
1354			if (err)
1355				goto out_destroy_crypt;
1356			cc->cpages[i] = fio.encrypted_page;
1357		}
1358	}
1359
1360	set_cluster_writeback(cc);
1361
1362	for (i = 0; i < cc->cluster_size; i++)
1363		cic->rpages[i] = cc->rpages[i];
1364
1365	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1366		block_t blkaddr;
1367
1368		blkaddr = f2fs_data_blkaddr(&dn);
1369		fio.page = cc->rpages[i];
1370		fio.old_blkaddr = blkaddr;
1371
1372		/* cluster header */
1373		if (i == 0) {
1374			if (blkaddr == COMPRESS_ADDR)
1375				fio.compr_blocks++;
1376			if (__is_valid_data_blkaddr(blkaddr))
1377				f2fs_invalidate_blocks(sbi, blkaddr);
1378			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1379			goto unlock_continue;
1380		}
1381
1382		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1383			fio.compr_blocks++;
1384
1385		if (i > cc->valid_nr_cpages) {
1386			if (__is_valid_data_blkaddr(blkaddr)) {
1387				f2fs_invalidate_blocks(sbi, blkaddr);
1388				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1389			}
1390			goto unlock_continue;
1391		}
1392
1393		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1394
1395		if (fio.encrypted)
1396			fio.encrypted_page = cc->cpages[i - 1];
1397		else
1398			fio.compressed_page = cc->cpages[i - 1];
1399
1400		cc->cpages[i - 1] = NULL;
1401		fio.submitted = 0;
1402		f2fs_outplace_write_data(&dn, &fio);
1403		if (unlikely(!fio.submitted)) {
1404			cancel_cluster_writeback(cc, cic, i);
1405
1406			/* To call fscrypt_finalize_bounce_page */
1407			i = cc->valid_nr_cpages;
1408			*submitted = 0;
1409			goto out_destroy_crypt;
1410		}
1411		(*submitted)++;
1412unlock_continue:
1413		inode_dec_dirty_pages(cc->inode);
1414		unlock_page(fio.page);
1415	}
1416
1417	if (fio.compr_blocks)
1418		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1419	f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1420	add_compr_block_stat(inode, cc->valid_nr_cpages);
1421
1422	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1423
1424	f2fs_put_dnode(&dn);
1425	if (quota_inode)
1426		f2fs_up_read(&sbi->node_write);
1427	else
1428		f2fs_unlock_op(sbi);
1429
1430	spin_lock(&fi->i_size_lock);
1431	if (fi->last_disk_size < psize)
1432		fi->last_disk_size = psize;
1433	spin_unlock(&fi->i_size_lock);
1434
1435	f2fs_put_rpages(cc);
1436	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1437	cc->cpages = NULL;
1438	f2fs_destroy_compress_ctx(cc, false);
1439	return 0;
1440
1441out_destroy_crypt:
1442	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1443
1444	for (--i; i >= 0; i--) {
1445		if (!cc->cpages[i])
1446			continue;
1447		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1448	}
1449out_put_cic:
1450	kmem_cache_free(cic_entry_slab, cic);
1451out_put_dnode:
1452	f2fs_put_dnode(&dn);
1453out_unlock_op:
1454	if (quota_inode)
1455		f2fs_up_read(&sbi->node_write);
1456	else
1457		f2fs_unlock_op(sbi);
1458out_free:
1459	for (i = 0; i < cc->valid_nr_cpages; i++) {
1460		f2fs_compress_free_page(cc->cpages[i]);
1461		cc->cpages[i] = NULL;
1462	}
1463	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1464	cc->cpages = NULL;
1465	return -EAGAIN;
1466}
1467
1468void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1469{
1470	struct f2fs_sb_info *sbi = bio->bi_private;
1471	struct compress_io_ctx *cic =
1472			(struct compress_io_ctx *)page_private(page);
1473	enum count_type type = WB_DATA_TYPE(page,
1474				f2fs_is_compressed_page(page));
1475	int i;
1476
1477	if (unlikely(bio->bi_status))
1478		mapping_set_error(cic->inode->i_mapping, -EIO);
1479
1480	f2fs_compress_free_page(page);
1481
1482	dec_page_count(sbi, type);
1483
1484	if (atomic_dec_return(&cic->pending_pages))
1485		return;
1486
1487	for (i = 0; i < cic->nr_rpages; i++) {
1488		WARN_ON(!cic->rpages[i]);
1489		clear_page_private_gcing(cic->rpages[i]);
1490		end_page_writeback(cic->rpages[i]);
1491	}
1492
1493	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1494	kmem_cache_free(cic_entry_slab, cic);
1495}
1496
1497static int f2fs_write_raw_pages(struct compress_ctx *cc,
1498					int *submitted_p,
1499					struct writeback_control *wbc,
1500					enum iostat_type io_type)
1501{
1502	struct address_space *mapping = cc->inode->i_mapping;
1503	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1504	int submitted, compr_blocks, i;
1505	int ret = 0;
1506
1507	compr_blocks = f2fs_compressed_blocks(cc);
1508
1509	for (i = 0; i < cc->cluster_size; i++) {
1510		if (!cc->rpages[i])
1511			continue;
1512
1513		redirty_page_for_writepage(wbc, cc->rpages[i]);
1514		unlock_page(cc->rpages[i]);
1515	}
1516
1517	if (compr_blocks < 0)
1518		return compr_blocks;
1519
1520	/* overwrite compressed cluster w/ normal cluster */
1521	if (compr_blocks > 0)
1522		f2fs_lock_op(sbi);
1523
1524	for (i = 0; i < cc->cluster_size; i++) {
1525		if (!cc->rpages[i])
1526			continue;
1527retry_write:
1528		lock_page(cc->rpages[i]);
1529
1530		if (cc->rpages[i]->mapping != mapping) {
1531continue_unlock:
1532			unlock_page(cc->rpages[i]);
1533			continue;
1534		}
1535
1536		if (!PageDirty(cc->rpages[i]))
1537			goto continue_unlock;
1538
1539		if (folio_test_writeback(page_folio(cc->rpages[i]))) {
1540			if (wbc->sync_mode == WB_SYNC_NONE)
1541				goto continue_unlock;
1542			f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1543		}
1544
1545		if (!clear_page_dirty_for_io(cc->rpages[i]))
1546			goto continue_unlock;
1547
1548		ret = f2fs_write_single_data_page(page_folio(cc->rpages[i]),
1549						&submitted,
1550						NULL, NULL, wbc, io_type,
1551						compr_blocks, false);
1552		if (ret) {
1553			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1554				unlock_page(cc->rpages[i]);
1555				ret = 0;
1556			} else if (ret == -EAGAIN) {
1557				ret = 0;
1558				/*
1559				 * for quota file, just redirty left pages to
1560				 * avoid deadlock caused by cluster update race
1561				 * from foreground operation.
1562				 */
1563				if (IS_NOQUOTA(cc->inode))
1564					goto out;
 
1565				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1566				goto retry_write;
1567			}
1568			goto out;
1569		}
1570
1571		*submitted_p += submitted;
1572	}
1573
1574out:
1575	if (compr_blocks > 0)
1576		f2fs_unlock_op(sbi);
1577
1578	f2fs_balance_fs(sbi, true);
1579	return ret;
1580}
1581
1582int f2fs_write_multi_pages(struct compress_ctx *cc,
1583					int *submitted,
1584					struct writeback_control *wbc,
1585					enum iostat_type io_type)
1586{
1587	int err;
1588
1589	*submitted = 0;
1590	if (cluster_may_compress(cc)) {
1591		err = f2fs_compress_pages(cc);
1592		if (err == -EAGAIN) {
1593			add_compr_block_stat(cc->inode, cc->cluster_size);
1594			goto write;
1595		} else if (err) {
1596			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1597			goto destroy_out;
1598		}
1599
1600		err = f2fs_write_compressed_pages(cc, submitted,
1601							wbc, io_type);
1602		if (!err)
1603			return 0;
1604		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1605	}
1606write:
1607	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1608
1609	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1610	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1611destroy_out:
1612	f2fs_destroy_compress_ctx(cc, false);
1613	return err;
1614}
1615
1616static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1617		bool pre_alloc)
1618{
1619	return pre_alloc ^ f2fs_low_mem_mode(sbi);
1620}
1621
1622static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1623		bool pre_alloc)
1624{
1625	const struct f2fs_compress_ops *cops =
1626		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1627	int i;
1628
1629	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1630		return 0;
1631
1632	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1633	if (!dic->tpages)
1634		return -ENOMEM;
1635
1636	for (i = 0; i < dic->cluster_size; i++) {
1637		if (dic->rpages[i]) {
1638			dic->tpages[i] = dic->rpages[i];
1639			continue;
1640		}
1641
1642		dic->tpages[i] = f2fs_compress_alloc_page();
1643	}
1644
1645	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1646	if (!dic->rbuf)
1647		return -ENOMEM;
1648
1649	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1650	if (!dic->cbuf)
1651		return -ENOMEM;
1652
1653	if (cops->init_decompress_ctx)
1654		return cops->init_decompress_ctx(dic);
1655
1656	return 0;
1657}
1658
1659static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1660		bool bypass_destroy_callback, bool pre_alloc)
1661{
1662	const struct f2fs_compress_ops *cops =
1663		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1664
1665	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1666		return;
1667
1668	if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1669		cops->destroy_decompress_ctx(dic);
1670
1671	if (dic->cbuf)
1672		vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1673
1674	if (dic->rbuf)
1675		vm_unmap_ram(dic->rbuf, dic->cluster_size);
1676}
1677
1678static void f2fs_free_dic(struct decompress_io_ctx *dic,
1679		bool bypass_destroy_callback);
1680
1681struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1682{
1683	struct decompress_io_ctx *dic;
1684	pgoff_t start_idx = start_idx_of_cluster(cc);
1685	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1686	int i, ret;
1687
1688	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1689	if (!dic)
1690		return ERR_PTR(-ENOMEM);
1691
1692	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1693	if (!dic->rpages) {
1694		kmem_cache_free(dic_entry_slab, dic);
1695		return ERR_PTR(-ENOMEM);
1696	}
1697
1698	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1699	dic->inode = cc->inode;
1700	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1701	dic->cluster_idx = cc->cluster_idx;
1702	dic->cluster_size = cc->cluster_size;
1703	dic->log_cluster_size = cc->log_cluster_size;
1704	dic->nr_cpages = cc->nr_cpages;
1705	refcount_set(&dic->refcnt, 1);
1706	dic->failed = false;
1707	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1708
1709	for (i = 0; i < dic->cluster_size; i++)
1710		dic->rpages[i] = cc->rpages[i];
1711	dic->nr_rpages = cc->cluster_size;
1712
1713	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1714	if (!dic->cpages) {
1715		ret = -ENOMEM;
1716		goto out_free;
1717	}
1718
1719	for (i = 0; i < dic->nr_cpages; i++) {
1720		struct page *page;
1721
1722		page = f2fs_compress_alloc_page();
1723		f2fs_set_compressed_page(page, cc->inode,
1724					start_idx + i + 1, dic);
1725		dic->cpages[i] = page;
1726	}
1727
1728	ret = f2fs_prepare_decomp_mem(dic, true);
1729	if (ret)
1730		goto out_free;
1731
1732	return dic;
1733
1734out_free:
1735	f2fs_free_dic(dic, true);
1736	return ERR_PTR(ret);
1737}
1738
1739static void f2fs_free_dic(struct decompress_io_ctx *dic,
1740		bool bypass_destroy_callback)
1741{
1742	int i;
1743
1744	f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1745
1746	if (dic->tpages) {
1747		for (i = 0; i < dic->cluster_size; i++) {
1748			if (dic->rpages[i])
1749				continue;
1750			if (!dic->tpages[i])
1751				continue;
1752			f2fs_compress_free_page(dic->tpages[i]);
1753		}
1754		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1755	}
1756
1757	if (dic->cpages) {
1758		for (i = 0; i < dic->nr_cpages; i++) {
1759			if (!dic->cpages[i])
1760				continue;
1761			f2fs_compress_free_page(dic->cpages[i]);
1762		}
1763		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1764	}
1765
1766	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1767	kmem_cache_free(dic_entry_slab, dic);
1768}
1769
1770static void f2fs_late_free_dic(struct work_struct *work)
1771{
1772	struct decompress_io_ctx *dic =
1773		container_of(work, struct decompress_io_ctx, free_work);
1774
1775	f2fs_free_dic(dic, false);
1776}
1777
1778static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1779{
1780	if (refcount_dec_and_test(&dic->refcnt)) {
1781		if (in_task) {
1782			f2fs_free_dic(dic, false);
1783		} else {
1784			INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1785			queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1786					&dic->free_work);
1787		}
1788	}
1789}
1790
1791static void f2fs_verify_cluster(struct work_struct *work)
1792{
1793	struct decompress_io_ctx *dic =
1794		container_of(work, struct decompress_io_ctx, verity_work);
1795	int i;
1796
1797	/* Verify, update, and unlock the decompressed pages. */
1798	for (i = 0; i < dic->cluster_size; i++) {
1799		struct page *rpage = dic->rpages[i];
1800
1801		if (!rpage)
1802			continue;
1803
1804		if (fsverity_verify_page(rpage))
1805			SetPageUptodate(rpage);
1806		else
1807			ClearPageUptodate(rpage);
1808		unlock_page(rpage);
1809	}
1810
1811	f2fs_put_dic(dic, true);
1812}
1813
1814/*
1815 * This is called when a compressed cluster has been decompressed
1816 * (or failed to be read and/or decompressed).
1817 */
1818void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1819				bool in_task)
1820{
1821	int i;
1822
1823	if (!failed && dic->need_verity) {
1824		/*
1825		 * Note that to avoid deadlocks, the verity work can't be done
1826		 * on the decompression workqueue.  This is because verifying
1827		 * the data pages can involve reading metadata pages from the
1828		 * file, and these metadata pages may be compressed.
1829		 */
1830		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1831		fsverity_enqueue_verify_work(&dic->verity_work);
1832		return;
1833	}
1834
1835	/* Update and unlock the cluster's pagecache pages. */
1836	for (i = 0; i < dic->cluster_size; i++) {
1837		struct page *rpage = dic->rpages[i];
1838
1839		if (!rpage)
1840			continue;
1841
1842		if (failed)
1843			ClearPageUptodate(rpage);
1844		else
1845			SetPageUptodate(rpage);
1846		unlock_page(rpage);
1847	}
1848
1849	/*
1850	 * Release the reference to the decompress_io_ctx that was being held
1851	 * for I/O completion.
1852	 */
1853	f2fs_put_dic(dic, in_task);
1854}
1855
1856/*
1857 * Put a reference to a compressed page's decompress_io_ctx.
1858 *
1859 * This is called when the page is no longer needed and can be freed.
1860 */
1861void f2fs_put_page_dic(struct page *page, bool in_task)
1862{
1863	struct decompress_io_ctx *dic =
1864			(struct decompress_io_ctx *)page_private(page);
1865
1866	f2fs_put_dic(dic, in_task);
1867}
1868
1869/*
1870 * check whether cluster blocks are contiguous, and add extent cache entry
1871 * only if cluster blocks are logically and physically contiguous.
1872 */
1873unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
1874						unsigned int ofs_in_node)
1875{
1876	bool compressed = data_blkaddr(dn->inode, dn->node_page,
1877					ofs_in_node) == COMPRESS_ADDR;
1878	int i = compressed ? 1 : 0;
1879	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1880							ofs_in_node + i);
1881
1882	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1883		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1884							ofs_in_node + i);
1885
1886		if (!__is_valid_data_blkaddr(blkaddr))
1887			break;
1888		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1889			return 0;
1890	}
1891
1892	return compressed ? i - 1 : i;
1893}
1894
1895const struct address_space_operations f2fs_compress_aops = {
1896	.release_folio = f2fs_release_folio,
1897	.invalidate_folio = f2fs_invalidate_folio,
1898	.migrate_folio	= filemap_migrate_folio,
1899};
1900
1901struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1902{
1903	return sbi->compress_inode->i_mapping;
1904}
1905
1906void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1907{
1908	if (!sbi->compress_inode)
1909		return;
1910	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1911}
1912
1913void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1914						nid_t ino, block_t blkaddr)
1915{
1916	struct page *cpage;
1917	int ret;
1918
1919	if (!test_opt(sbi, COMPRESS_CACHE))
1920		return;
1921
1922	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1923		return;
1924
1925	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1926		return;
1927
1928	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1929	if (cpage) {
1930		f2fs_put_page(cpage, 0);
1931		return;
1932	}
1933
1934	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1935	if (!cpage)
1936		return;
1937
1938	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1939						blkaddr, GFP_NOFS);
1940	if (ret) {
1941		f2fs_put_page(cpage, 0);
1942		return;
1943	}
1944
1945	set_page_private_data(cpage, ino);
1946
 
 
 
1947	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1948	SetPageUptodate(cpage);
 
1949	f2fs_put_page(cpage, 1);
1950}
1951
1952bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1953								block_t blkaddr)
1954{
1955	struct page *cpage;
1956	bool hitted = false;
1957
1958	if (!test_opt(sbi, COMPRESS_CACHE))
1959		return false;
1960
1961	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1962				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1963	if (cpage) {
1964		if (PageUptodate(cpage)) {
1965			atomic_inc(&sbi->compress_page_hit);
1966			memcpy(page_address(page),
1967				page_address(cpage), PAGE_SIZE);
1968			hitted = true;
1969		}
1970		f2fs_put_page(cpage, 1);
1971	}
1972
1973	return hitted;
1974}
1975
1976void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1977{
1978	struct address_space *mapping = COMPRESS_MAPPING(sbi);
1979	struct folio_batch fbatch;
1980	pgoff_t index = 0;
1981	pgoff_t end = MAX_BLKADDR(sbi);
1982
1983	if (!mapping->nrpages)
1984		return;
1985
1986	folio_batch_init(&fbatch);
1987
1988	do {
1989		unsigned int nr, i;
1990
1991		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1992		if (!nr)
1993			break;
1994
1995		for (i = 0; i < nr; i++) {
1996			struct folio *folio = fbatch.folios[i];
1997
1998			folio_lock(folio);
1999			if (folio->mapping != mapping) {
2000				folio_unlock(folio);
2001				continue;
2002			}
2003
2004			if (ino != get_page_private_data(&folio->page)) {
2005				folio_unlock(folio);
2006				continue;
2007			}
2008
2009			generic_error_remove_folio(mapping, folio);
2010			folio_unlock(folio);
2011		}
2012		folio_batch_release(&fbatch);
2013		cond_resched();
2014	} while (index < end);
2015}
2016
2017int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
2018{
2019	struct inode *inode;
2020
2021	if (!test_opt(sbi, COMPRESS_CACHE))
2022		return 0;
2023
2024	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
2025	if (IS_ERR(inode))
2026		return PTR_ERR(inode);
2027	sbi->compress_inode = inode;
2028
2029	sbi->compress_percent = COMPRESS_PERCENT;
2030	sbi->compress_watermark = COMPRESS_WATERMARK;
2031
2032	atomic_set(&sbi->compress_page_hit, 0);
2033
2034	return 0;
2035}
2036
2037void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
2038{
2039	if (!sbi->compress_inode)
2040		return;
2041	iput(sbi->compress_inode);
2042	sbi->compress_inode = NULL;
2043}
2044
2045int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
2046{
2047	dev_t dev = sbi->sb->s_bdev->bd_dev;
2048	char slab_name[35];
2049
2050	if (!f2fs_sb_has_compression(sbi))
2051		return 0;
2052
2053	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
2054
2055	sbi->page_array_slab_size = sizeof(struct page *) <<
2056					F2FS_OPTION(sbi).compress_log_size;
2057
2058	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
2059					sbi->page_array_slab_size);
2060	return sbi->page_array_slab ? 0 : -ENOMEM;
2061}
2062
2063void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2064{
2065	kmem_cache_destroy(sbi->page_array_slab);
2066}
2067
2068int __init f2fs_init_compress_cache(void)
2069{
2070	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2071					sizeof(struct compress_io_ctx));
2072	if (!cic_entry_slab)
2073		return -ENOMEM;
2074	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2075					sizeof(struct decompress_io_ctx));
2076	if (!dic_entry_slab)
2077		goto free_cic;
2078	return 0;
2079free_cic:
2080	kmem_cache_destroy(cic_entry_slab);
2081	return -ENOMEM;
2082}
2083
2084void f2fs_destroy_compress_cache(void)
2085{
2086	kmem_cache_destroy(dic_entry_slab);
2087	kmem_cache_destroy(cic_entry_slab);
2088}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * f2fs compress support
   4 *
   5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
   6 */
   7
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/moduleparam.h>
  11#include <linux/writeback.h>
  12#include <linux/backing-dev.h>
  13#include <linux/lzo.h>
  14#include <linux/lz4.h>
  15#include <linux/zstd.h>
  16#include <linux/pagevec.h>
  17
  18#include "f2fs.h"
  19#include "node.h"
  20#include "segment.h"
  21#include <trace/events/f2fs.h>
  22
  23static struct kmem_cache *cic_entry_slab;
  24static struct kmem_cache *dic_entry_slab;
  25
  26static void *page_array_alloc(struct inode *inode, int nr)
  27{
  28	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  29	unsigned int size = sizeof(struct page *) * nr;
  30
  31	if (likely(size <= sbi->page_array_slab_size))
  32		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
  33					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
  34	return f2fs_kzalloc(sbi, size, GFP_NOFS);
  35}
  36
  37static void page_array_free(struct inode *inode, void *pages, int nr)
  38{
  39	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  40	unsigned int size = sizeof(struct page *) * nr;
  41
  42	if (!pages)
  43		return;
  44
  45	if (likely(size <= sbi->page_array_slab_size))
  46		kmem_cache_free(sbi->page_array_slab, pages);
  47	else
  48		kfree(pages);
  49}
  50
  51struct f2fs_compress_ops {
  52	int (*init_compress_ctx)(struct compress_ctx *cc);
  53	void (*destroy_compress_ctx)(struct compress_ctx *cc);
  54	int (*compress_pages)(struct compress_ctx *cc);
  55	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
  56	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
  57	int (*decompress_pages)(struct decompress_io_ctx *dic);
  58	bool (*is_level_valid)(int level);
  59};
  60
  61static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
  62{
  63	return index & (cc->cluster_size - 1);
  64}
  65
  66static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
  67{
  68	return index >> cc->log_cluster_size;
  69}
  70
  71static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
  72{
  73	return cc->cluster_idx << cc->log_cluster_size;
  74}
  75
  76bool f2fs_is_compressed_page(struct page *page)
  77{
  78	if (!PagePrivate(page))
  79		return false;
  80	if (!page_private(page))
  81		return false;
  82	if (page_private_nonpointer(page))
  83		return false;
  84
  85	f2fs_bug_on(F2FS_M_SB(page->mapping),
  86		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
  87	return true;
  88}
  89
  90static void f2fs_set_compressed_page(struct page *page,
  91		struct inode *inode, pgoff_t index, void *data)
  92{
  93	attach_page_private(page, (void *)data);
 
 
  94
  95	/* i_crypto_info and iv index */
  96	page->index = index;
  97	page->mapping = inode->i_mapping;
  98}
  99
 100static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
 101{
 102	int i;
 103
 104	for (i = 0; i < len; i++) {
 105		if (!cc->rpages[i])
 106			continue;
 107		if (unlock)
 108			unlock_page(cc->rpages[i]);
 109		else
 110			put_page(cc->rpages[i]);
 111	}
 112}
 113
 114static void f2fs_put_rpages(struct compress_ctx *cc)
 115{
 116	f2fs_drop_rpages(cc, cc->cluster_size, false);
 117}
 118
 119static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
 120{
 121	f2fs_drop_rpages(cc, len, true);
 122}
 123
 124static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
 125		struct writeback_control *wbc, bool redirty, int unlock)
 126{
 127	unsigned int i;
 128
 129	for (i = 0; i < cc->cluster_size; i++) {
 130		if (!cc->rpages[i])
 131			continue;
 132		if (redirty)
 133			redirty_page_for_writepage(wbc, cc->rpages[i]);
 134		f2fs_put_page(cc->rpages[i], unlock);
 135	}
 136}
 137
 138struct page *f2fs_compress_control_page(struct page *page)
 139{
 140	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
 141}
 142
 143int f2fs_init_compress_ctx(struct compress_ctx *cc)
 144{
 145	if (cc->rpages)
 146		return 0;
 147
 148	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
 149	return cc->rpages ? 0 : -ENOMEM;
 150}
 151
 152void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
 153{
 154	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
 155	cc->rpages = NULL;
 156	cc->nr_rpages = 0;
 157	cc->nr_cpages = 0;
 158	cc->valid_nr_cpages = 0;
 159	if (!reuse)
 160		cc->cluster_idx = NULL_CLUSTER;
 161}
 162
 163void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
 164{
 165	unsigned int cluster_ofs;
 166
 167	if (!f2fs_cluster_can_merge_page(cc, page->index))
 168		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
 169
 170	cluster_ofs = offset_in_cluster(cc, page->index);
 171	cc->rpages[cluster_ofs] = page;
 172	cc->nr_rpages++;
 173	cc->cluster_idx = cluster_idx(cc, page->index);
 174}
 175
 176#ifdef CONFIG_F2FS_FS_LZO
 177static int lzo_init_compress_ctx(struct compress_ctx *cc)
 178{
 179	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
 180				LZO1X_MEM_COMPRESS, GFP_NOFS);
 181	if (!cc->private)
 182		return -ENOMEM;
 183
 184	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
 185	return 0;
 186}
 187
 188static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
 189{
 190	kvfree(cc->private);
 191	cc->private = NULL;
 192}
 193
 194static int lzo_compress_pages(struct compress_ctx *cc)
 195{
 196	int ret;
 197
 198	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
 199					&cc->clen, cc->private);
 200	if (ret != LZO_E_OK) {
 201		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
 202				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
 203		return -EIO;
 204	}
 205	return 0;
 206}
 207
 208static int lzo_decompress_pages(struct decompress_io_ctx *dic)
 209{
 210	int ret;
 211
 212	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
 213						dic->rbuf, &dic->rlen);
 214	if (ret != LZO_E_OK) {
 215		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
 216				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
 217		return -EIO;
 218	}
 219
 220	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
 221		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
 222					"expected:%lu\n", KERN_ERR,
 223					F2FS_I_SB(dic->inode)->sb->s_id,
 224					dic->rlen,
 225					PAGE_SIZE << dic->log_cluster_size);
 226		return -EIO;
 227	}
 228	return 0;
 229}
 230
 231static const struct f2fs_compress_ops f2fs_lzo_ops = {
 232	.init_compress_ctx	= lzo_init_compress_ctx,
 233	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
 234	.compress_pages		= lzo_compress_pages,
 235	.decompress_pages	= lzo_decompress_pages,
 236};
 237#endif
 238
 239#ifdef CONFIG_F2FS_FS_LZ4
 240static int lz4_init_compress_ctx(struct compress_ctx *cc)
 241{
 242	unsigned int size = LZ4_MEM_COMPRESS;
 243
 244#ifdef CONFIG_F2FS_FS_LZ4HC
 245	if (F2FS_I(cc->inode)->i_compress_level)
 246		size = LZ4HC_MEM_COMPRESS;
 247#endif
 248
 249	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
 250	if (!cc->private)
 251		return -ENOMEM;
 252
 253	/*
 254	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
 255	 * adapt worst compress case, because lz4 compressor can handle
 256	 * output budget properly.
 257	 */
 258	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
 259	return 0;
 260}
 261
 262static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
 263{
 264	kvfree(cc->private);
 265	cc->private = NULL;
 266}
 267
 268static int lz4_compress_pages(struct compress_ctx *cc)
 269{
 270	int len = -EINVAL;
 271	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
 272
 273	if (!level)
 274		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
 275						cc->clen, cc->private);
 276#ifdef CONFIG_F2FS_FS_LZ4HC
 277	else
 278		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
 279					cc->clen, level, cc->private);
 280#endif
 281	if (len < 0)
 282		return len;
 283	if (!len)
 284		return -EAGAIN;
 285
 286	cc->clen = len;
 287	return 0;
 288}
 289
 290static int lz4_decompress_pages(struct decompress_io_ctx *dic)
 291{
 292	int ret;
 293
 294	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
 295						dic->clen, dic->rlen);
 296	if (ret < 0) {
 297		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
 298				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
 299		return -EIO;
 300	}
 301
 302	if (ret != PAGE_SIZE << dic->log_cluster_size) {
 303		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
 304					"expected:%lu\n", KERN_ERR,
 305					F2FS_I_SB(dic->inode)->sb->s_id, ret,
 306					PAGE_SIZE << dic->log_cluster_size);
 307		return -EIO;
 308	}
 309	return 0;
 310}
 311
 312static bool lz4_is_level_valid(int lvl)
 313{
 314#ifdef CONFIG_F2FS_FS_LZ4HC
 315	return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
 316#else
 317	return lvl == 0;
 318#endif
 319}
 320
 321static const struct f2fs_compress_ops f2fs_lz4_ops = {
 322	.init_compress_ctx	= lz4_init_compress_ctx,
 323	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
 324	.compress_pages		= lz4_compress_pages,
 325	.decompress_pages	= lz4_decompress_pages,
 326	.is_level_valid		= lz4_is_level_valid,
 327};
 328#endif
 329
 330#ifdef CONFIG_F2FS_FS_ZSTD
 331static int zstd_init_compress_ctx(struct compress_ctx *cc)
 332{
 333	zstd_parameters params;
 334	zstd_cstream *stream;
 335	void *workspace;
 336	unsigned int workspace_size;
 337	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
 338
 339	/* Need to remain this for backward compatibility */
 340	if (!level)
 341		level = F2FS_ZSTD_DEFAULT_CLEVEL;
 342
 343	params = zstd_get_params(level, cc->rlen);
 344	workspace_size = zstd_cstream_workspace_bound(&params.cParams);
 345
 346	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
 347					workspace_size, GFP_NOFS);
 348	if (!workspace)
 349		return -ENOMEM;
 350
 351	stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
 352	if (!stream) {
 353		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
 354				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
 355				__func__);
 356		kvfree(workspace);
 357		return -EIO;
 358	}
 359
 360	cc->private = workspace;
 361	cc->private2 = stream;
 362
 363	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
 364	return 0;
 365}
 366
 367static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
 368{
 369	kvfree(cc->private);
 370	cc->private = NULL;
 371	cc->private2 = NULL;
 372}
 373
 374static int zstd_compress_pages(struct compress_ctx *cc)
 375{
 376	zstd_cstream *stream = cc->private2;
 377	zstd_in_buffer inbuf;
 378	zstd_out_buffer outbuf;
 379	int src_size = cc->rlen;
 380	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
 381	int ret;
 382
 383	inbuf.pos = 0;
 384	inbuf.src = cc->rbuf;
 385	inbuf.size = src_size;
 386
 387	outbuf.pos = 0;
 388	outbuf.dst = cc->cbuf->cdata;
 389	outbuf.size = dst_size;
 390
 391	ret = zstd_compress_stream(stream, &outbuf, &inbuf);
 392	if (zstd_is_error(ret)) {
 393		printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
 394				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
 395				__func__, zstd_get_error_code(ret));
 396		return -EIO;
 397	}
 398
 399	ret = zstd_end_stream(stream, &outbuf);
 400	if (zstd_is_error(ret)) {
 401		printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
 402				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
 403				__func__, zstd_get_error_code(ret));
 404		return -EIO;
 405	}
 406
 407	/*
 408	 * there is compressed data remained in intermediate buffer due to
 409	 * no more space in cbuf.cdata
 410	 */
 411	if (ret)
 412		return -EAGAIN;
 413
 414	cc->clen = outbuf.pos;
 415	return 0;
 416}
 417
 418static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
 419{
 420	zstd_dstream *stream;
 421	void *workspace;
 422	unsigned int workspace_size;
 423	unsigned int max_window_size =
 424			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
 425
 426	workspace_size = zstd_dstream_workspace_bound(max_window_size);
 427
 428	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
 429					workspace_size, GFP_NOFS);
 430	if (!workspace)
 431		return -ENOMEM;
 432
 433	stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
 434	if (!stream) {
 435		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
 436				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
 437				__func__);
 438		kvfree(workspace);
 439		return -EIO;
 440	}
 441
 442	dic->private = workspace;
 443	dic->private2 = stream;
 444
 445	return 0;
 446}
 447
 448static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
 449{
 450	kvfree(dic->private);
 451	dic->private = NULL;
 452	dic->private2 = NULL;
 453}
 454
 455static int zstd_decompress_pages(struct decompress_io_ctx *dic)
 456{
 457	zstd_dstream *stream = dic->private2;
 458	zstd_in_buffer inbuf;
 459	zstd_out_buffer outbuf;
 460	int ret;
 461
 462	inbuf.pos = 0;
 463	inbuf.src = dic->cbuf->cdata;
 464	inbuf.size = dic->clen;
 465
 466	outbuf.pos = 0;
 467	outbuf.dst = dic->rbuf;
 468	outbuf.size = dic->rlen;
 469
 470	ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
 471	if (zstd_is_error(ret)) {
 472		printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
 473				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
 474				__func__, zstd_get_error_code(ret));
 475		return -EIO;
 476	}
 477
 478	if (dic->rlen != outbuf.pos) {
 479		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
 480				"expected:%lu\n", KERN_ERR,
 481				F2FS_I_SB(dic->inode)->sb->s_id,
 482				__func__, dic->rlen,
 483				PAGE_SIZE << dic->log_cluster_size);
 484		return -EIO;
 485	}
 486
 487	return 0;
 488}
 489
 490static bool zstd_is_level_valid(int lvl)
 491{
 492	return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
 493}
 494
 495static const struct f2fs_compress_ops f2fs_zstd_ops = {
 496	.init_compress_ctx	= zstd_init_compress_ctx,
 497	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
 498	.compress_pages		= zstd_compress_pages,
 499	.init_decompress_ctx	= zstd_init_decompress_ctx,
 500	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
 501	.decompress_pages	= zstd_decompress_pages,
 502	.is_level_valid		= zstd_is_level_valid,
 503};
 504#endif
 505
 506#ifdef CONFIG_F2FS_FS_LZO
 507#ifdef CONFIG_F2FS_FS_LZORLE
 508static int lzorle_compress_pages(struct compress_ctx *cc)
 509{
 510	int ret;
 511
 512	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
 513					&cc->clen, cc->private);
 514	if (ret != LZO_E_OK) {
 515		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
 516				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
 517		return -EIO;
 518	}
 519	return 0;
 520}
 521
 522static const struct f2fs_compress_ops f2fs_lzorle_ops = {
 523	.init_compress_ctx	= lzo_init_compress_ctx,
 524	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
 525	.compress_pages		= lzorle_compress_pages,
 526	.decompress_pages	= lzo_decompress_pages,
 527};
 528#endif
 529#endif
 530
 531static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
 532#ifdef CONFIG_F2FS_FS_LZO
 533	&f2fs_lzo_ops,
 534#else
 535	NULL,
 536#endif
 537#ifdef CONFIG_F2FS_FS_LZ4
 538	&f2fs_lz4_ops,
 539#else
 540	NULL,
 541#endif
 542#ifdef CONFIG_F2FS_FS_ZSTD
 543	&f2fs_zstd_ops,
 544#else
 545	NULL,
 546#endif
 547#if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
 548	&f2fs_lzorle_ops,
 549#else
 550	NULL,
 551#endif
 552};
 553
 554bool f2fs_is_compress_backend_ready(struct inode *inode)
 555{
 556	if (!f2fs_compressed_file(inode))
 557		return true;
 558	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
 559}
 560
 561bool f2fs_is_compress_level_valid(int alg, int lvl)
 562{
 563	const struct f2fs_compress_ops *cops = f2fs_cops[alg];
 564
 565	if (cops->is_level_valid)
 566		return cops->is_level_valid(lvl);
 567
 568	return lvl == 0;
 569}
 570
 571static mempool_t *compress_page_pool;
 572static int num_compress_pages = 512;
 573module_param(num_compress_pages, uint, 0444);
 574MODULE_PARM_DESC(num_compress_pages,
 575		"Number of intermediate compress pages to preallocate");
 576
 577int __init f2fs_init_compress_mempool(void)
 578{
 579	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
 580	return compress_page_pool ? 0 : -ENOMEM;
 581}
 582
 583void f2fs_destroy_compress_mempool(void)
 584{
 585	mempool_destroy(compress_page_pool);
 586}
 587
 588static struct page *f2fs_compress_alloc_page(void)
 589{
 590	struct page *page;
 591
 592	page = mempool_alloc(compress_page_pool, GFP_NOFS);
 593	lock_page(page);
 594
 595	return page;
 596}
 597
 598static void f2fs_compress_free_page(struct page *page)
 599{
 600	if (!page)
 601		return;
 602	detach_page_private(page);
 603	page->mapping = NULL;
 604	unlock_page(page);
 605	mempool_free(page, compress_page_pool);
 606}
 607
 608#define MAX_VMAP_RETRIES	3
 609
 610static void *f2fs_vmap(struct page **pages, unsigned int count)
 611{
 612	int i;
 613	void *buf = NULL;
 614
 615	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
 616		buf = vm_map_ram(pages, count, -1);
 617		if (buf)
 618			break;
 619		vm_unmap_aliases();
 620	}
 621	return buf;
 622}
 623
 624static int f2fs_compress_pages(struct compress_ctx *cc)
 625{
 626	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
 627	const struct f2fs_compress_ops *cops =
 628				f2fs_cops[fi->i_compress_algorithm];
 629	unsigned int max_len, new_nr_cpages;
 630	u32 chksum = 0;
 631	int i, ret;
 632
 633	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
 634				cc->cluster_size, fi->i_compress_algorithm);
 635
 636	if (cops->init_compress_ctx) {
 637		ret = cops->init_compress_ctx(cc);
 638		if (ret)
 639			goto out;
 640	}
 641
 642	max_len = COMPRESS_HEADER_SIZE + cc->clen;
 643	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
 644	cc->valid_nr_cpages = cc->nr_cpages;
 645
 646	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
 647	if (!cc->cpages) {
 648		ret = -ENOMEM;
 649		goto destroy_compress_ctx;
 650	}
 651
 652	for (i = 0; i < cc->nr_cpages; i++)
 653		cc->cpages[i] = f2fs_compress_alloc_page();
 654
 655	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
 656	if (!cc->rbuf) {
 657		ret = -ENOMEM;
 658		goto out_free_cpages;
 659	}
 660
 661	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
 662	if (!cc->cbuf) {
 663		ret = -ENOMEM;
 664		goto out_vunmap_rbuf;
 665	}
 666
 667	ret = cops->compress_pages(cc);
 668	if (ret)
 669		goto out_vunmap_cbuf;
 670
 671	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
 672
 673	if (cc->clen > max_len) {
 674		ret = -EAGAIN;
 675		goto out_vunmap_cbuf;
 676	}
 677
 678	cc->cbuf->clen = cpu_to_le32(cc->clen);
 679
 680	if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
 681		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
 682					cc->cbuf->cdata, cc->clen);
 683	cc->cbuf->chksum = cpu_to_le32(chksum);
 684
 685	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
 686		cc->cbuf->reserved[i] = cpu_to_le32(0);
 687
 688	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
 689
 690	/* zero out any unused part of the last page */
 691	memset(&cc->cbuf->cdata[cc->clen], 0,
 692			(new_nr_cpages * PAGE_SIZE) -
 693			(cc->clen + COMPRESS_HEADER_SIZE));
 694
 695	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
 696	vm_unmap_ram(cc->rbuf, cc->cluster_size);
 697
 698	for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
 699		f2fs_compress_free_page(cc->cpages[i]);
 700		cc->cpages[i] = NULL;
 701	}
 702
 703	if (cops->destroy_compress_ctx)
 704		cops->destroy_compress_ctx(cc);
 705
 706	cc->valid_nr_cpages = new_nr_cpages;
 707
 708	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
 709							cc->clen, ret);
 710	return 0;
 711
 712out_vunmap_cbuf:
 713	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
 714out_vunmap_rbuf:
 715	vm_unmap_ram(cc->rbuf, cc->cluster_size);
 716out_free_cpages:
 717	for (i = 0; i < cc->nr_cpages; i++) {
 718		if (cc->cpages[i])
 719			f2fs_compress_free_page(cc->cpages[i]);
 720	}
 721	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
 722	cc->cpages = NULL;
 723destroy_compress_ctx:
 724	if (cops->destroy_compress_ctx)
 725		cops->destroy_compress_ctx(cc);
 726out:
 727	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
 728							cc->clen, ret);
 729	return ret;
 730}
 731
 732static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
 733		bool pre_alloc);
 734static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
 735		bool bypass_destroy_callback, bool pre_alloc);
 736
 737void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
 738{
 739	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
 740	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
 741	const struct f2fs_compress_ops *cops =
 742			f2fs_cops[fi->i_compress_algorithm];
 743	bool bypass_callback = false;
 744	int ret;
 745
 746	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
 747				dic->cluster_size, fi->i_compress_algorithm);
 748
 749	if (dic->failed) {
 750		ret = -EIO;
 751		goto out_end_io;
 752	}
 753
 754	ret = f2fs_prepare_decomp_mem(dic, false);
 755	if (ret) {
 756		bypass_callback = true;
 757		goto out_release;
 758	}
 759
 760	dic->clen = le32_to_cpu(dic->cbuf->clen);
 761	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
 762
 763	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
 764		ret = -EFSCORRUPTED;
 765
 766		/* Avoid f2fs_commit_super in irq context */
 767		if (!in_task)
 768			f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
 769		else
 770			f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
 771		goto out_release;
 772	}
 773
 774	ret = cops->decompress_pages(dic);
 775
 776	if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
 777		u32 provided = le32_to_cpu(dic->cbuf->chksum);
 778		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
 779
 780		if (provided != calculated) {
 781			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
 782				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
 783				printk_ratelimited(
 784					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
 785					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
 786					provided, calculated);
 787			}
 788			set_sbi_flag(sbi, SBI_NEED_FSCK);
 789		}
 790	}
 791
 792out_release:
 793	f2fs_release_decomp_mem(dic, bypass_callback, false);
 794
 795out_end_io:
 796	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
 797							dic->clen, ret);
 798	f2fs_decompress_end_io(dic, ret, in_task);
 799}
 800
 801/*
 802 * This is called when a page of a compressed cluster has been read from disk
 803 * (or failed to be read from disk).  It checks whether this page was the last
 804 * page being waited on in the cluster, and if so, it decompresses the cluster
 805 * (or in the case of a failure, cleans up without actually decompressing).
 806 */
 807void f2fs_end_read_compressed_page(struct page *page, bool failed,
 808		block_t blkaddr, bool in_task)
 809{
 810	struct decompress_io_ctx *dic =
 811			(struct decompress_io_ctx *)page_private(page);
 812	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
 813
 814	dec_page_count(sbi, F2FS_RD_DATA);
 815
 816	if (failed)
 817		WRITE_ONCE(dic->failed, true);
 818	else if (blkaddr && in_task)
 819		f2fs_cache_compressed_page(sbi, page,
 820					dic->inode->i_ino, blkaddr);
 821
 822	if (atomic_dec_and_test(&dic->remaining_pages))
 823		f2fs_decompress_cluster(dic, in_task);
 824}
 825
 826static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
 827{
 828	if (cc->cluster_idx == NULL_CLUSTER)
 829		return true;
 830	return cc->cluster_idx == cluster_idx(cc, index);
 831}
 832
 833bool f2fs_cluster_is_empty(struct compress_ctx *cc)
 834{
 835	return cc->nr_rpages == 0;
 836}
 837
 838static bool f2fs_cluster_is_full(struct compress_ctx *cc)
 839{
 840	return cc->cluster_size == cc->nr_rpages;
 841}
 842
 843bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
 844{
 845	if (f2fs_cluster_is_empty(cc))
 846		return true;
 847	return is_page_in_cluster(cc, index);
 848}
 849
 850bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
 851				int index, int nr_pages, bool uptodate)
 852{
 853	unsigned long pgidx = pages[index]->index;
 854	int i = uptodate ? 0 : 1;
 855
 856	/*
 857	 * when uptodate set to true, try to check all pages in cluster is
 858	 * uptodate or not.
 859	 */
 860	if (uptodate && (pgidx % cc->cluster_size))
 861		return false;
 862
 863	if (nr_pages - index < cc->cluster_size)
 864		return false;
 865
 866	for (; i < cc->cluster_size; i++) {
 867		if (pages[index + i]->index != pgidx + i)
 868			return false;
 869		if (uptodate && !PageUptodate(pages[index + i]))
 870			return false;
 871	}
 872
 873	return true;
 874}
 875
 876static bool cluster_has_invalid_data(struct compress_ctx *cc)
 877{
 878	loff_t i_size = i_size_read(cc->inode);
 879	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
 880	int i;
 881
 882	for (i = 0; i < cc->cluster_size; i++) {
 883		struct page *page = cc->rpages[i];
 884
 885		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
 886
 887		/* beyond EOF */
 888		if (page->index >= nr_pages)
 889			return true;
 890	}
 891	return false;
 892}
 893
 894bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
 895{
 896#ifdef CONFIG_F2FS_CHECK_FS
 897	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 898	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
 899	int cluster_end = 0;
 900	unsigned int count;
 901	int i;
 902	char *reason = "";
 903
 904	if (dn->data_blkaddr != COMPRESS_ADDR)
 905		return false;
 906
 907	/* [..., COMPR_ADDR, ...] */
 908	if (dn->ofs_in_node % cluster_size) {
 909		reason = "[*|C|*|*]";
 910		goto out;
 911	}
 912
 913	for (i = 1, count = 1; i < cluster_size; i++, count++) {
 914		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
 915							dn->ofs_in_node + i);
 916
 917		/* [COMPR_ADDR, ..., COMPR_ADDR] */
 918		if (blkaddr == COMPRESS_ADDR) {
 919			reason = "[C|*|C|*]";
 920			goto out;
 921		}
 922		if (!__is_valid_data_blkaddr(blkaddr)) {
 923			if (!cluster_end)
 924				cluster_end = i;
 925			continue;
 926		}
 927		/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
 928		if (cluster_end) {
 929			reason = "[C|N|N|V]";
 930			goto out;
 931		}
 932	}
 933
 934	f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size &&
 935		!is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED));
 936
 937	return false;
 938out:
 939	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
 940			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
 941	set_sbi_flag(sbi, SBI_NEED_FSCK);
 942	return true;
 943#else
 944	return false;
 945#endif
 946}
 947
 948static int __f2fs_get_cluster_blocks(struct inode *inode,
 949					struct dnode_of_data *dn)
 950{
 951	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
 952	int count, i;
 953
 954	for (i = 1, count = 1; i < cluster_size; i++) {
 955		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
 956							dn->ofs_in_node + i);
 957
 958		if (__is_valid_data_blkaddr(blkaddr))
 959			count++;
 960	}
 961
 962	return count;
 963}
 964
 965static int __f2fs_cluster_blocks(struct inode *inode,
 966				unsigned int cluster_idx, bool compr_blks)
 967{
 968	struct dnode_of_data dn;
 969	unsigned int start_idx = cluster_idx <<
 970				F2FS_I(inode)->i_log_cluster_size;
 971	int ret;
 972
 973	set_new_dnode(&dn, inode, NULL, NULL, 0);
 974	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
 975	if (ret) {
 976		if (ret == -ENOENT)
 977			ret = 0;
 978		goto fail;
 979	}
 980
 981	if (f2fs_sanity_check_cluster(&dn)) {
 982		ret = -EFSCORRUPTED;
 983		goto fail;
 984	}
 985
 986	if (dn.data_blkaddr == COMPRESS_ADDR) {
 987		if (compr_blks)
 988			ret = __f2fs_get_cluster_blocks(inode, &dn);
 989		else
 990			ret = 1;
 
 
 991	}
 992fail:
 993	f2fs_put_dnode(&dn);
 994	return ret;
 995}
 996
 997/* return # of compressed blocks in compressed cluster */
 998static int f2fs_compressed_blocks(struct compress_ctx *cc)
 999{
1000	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
 
 
 
 
 
 
 
 
 
1001}
1002
1003/* return whether cluster is compressed one or not */
1004int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1005{
1006	return __f2fs_cluster_blocks(inode,
1007		index >> F2FS_I(inode)->i_log_cluster_size,
1008		false);
 
 
 
 
 
 
 
 
 
1009}
1010
1011static bool cluster_may_compress(struct compress_ctx *cc)
1012{
1013	if (!f2fs_need_compress_data(cc->inode))
1014		return false;
1015	if (f2fs_is_atomic_file(cc->inode))
1016		return false;
1017	if (!f2fs_cluster_is_full(cc))
1018		return false;
1019	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1020		return false;
1021	return !cluster_has_invalid_data(cc);
1022}
1023
1024static void set_cluster_writeback(struct compress_ctx *cc)
1025{
1026	int i;
1027
1028	for (i = 0; i < cc->cluster_size; i++) {
1029		if (cc->rpages[i])
1030			set_page_writeback(cc->rpages[i]);
1031	}
1032}
1033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034static void set_cluster_dirty(struct compress_ctx *cc)
1035{
1036	int i;
1037
1038	for (i = 0; i < cc->cluster_size; i++)
1039		if (cc->rpages[i]) {
1040			set_page_dirty(cc->rpages[i]);
1041			set_page_private_gcing(cc->rpages[i]);
1042		}
1043}
1044
1045static int prepare_compress_overwrite(struct compress_ctx *cc,
1046		struct page **pagep, pgoff_t index, void **fsdata)
1047{
1048	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1049	struct address_space *mapping = cc->inode->i_mapping;
1050	struct page *page;
1051	sector_t last_block_in_bio;
1052	fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1053	pgoff_t start_idx = start_idx_of_cluster(cc);
1054	int i, ret;
1055
1056retry:
1057	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1058	if (ret <= 0)
1059		return ret;
1060
1061	ret = f2fs_init_compress_ctx(cc);
1062	if (ret)
1063		return ret;
1064
1065	/* keep page reference to avoid page reclaim */
1066	for (i = 0; i < cc->cluster_size; i++) {
1067		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1068							fgp_flag, GFP_NOFS);
1069		if (!page) {
1070			ret = -ENOMEM;
1071			goto unlock_pages;
1072		}
1073
1074		if (PageUptodate(page))
1075			f2fs_put_page(page, 1);
1076		else
1077			f2fs_compress_ctx_add_page(cc, page);
1078	}
1079
1080	if (!f2fs_cluster_is_empty(cc)) {
1081		struct bio *bio = NULL;
1082
1083		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1084					&last_block_in_bio, false, true);
1085		f2fs_put_rpages(cc);
1086		f2fs_destroy_compress_ctx(cc, true);
1087		if (ret)
1088			goto out;
1089		if (bio)
1090			f2fs_submit_read_bio(sbi, bio, DATA);
1091
1092		ret = f2fs_init_compress_ctx(cc);
1093		if (ret)
1094			goto out;
1095	}
1096
1097	for (i = 0; i < cc->cluster_size; i++) {
1098		f2fs_bug_on(sbi, cc->rpages[i]);
1099
1100		page = find_lock_page(mapping, start_idx + i);
1101		if (!page) {
1102			/* page can be truncated */
1103			goto release_and_retry;
1104		}
1105
1106		f2fs_wait_on_page_writeback(page, DATA, true, true);
1107		f2fs_compress_ctx_add_page(cc, page);
1108
1109		if (!PageUptodate(page)) {
1110release_and_retry:
1111			f2fs_put_rpages(cc);
1112			f2fs_unlock_rpages(cc, i + 1);
1113			f2fs_destroy_compress_ctx(cc, true);
1114			goto retry;
1115		}
1116	}
1117
1118	if (likely(!ret)) {
1119		*fsdata = cc->rpages;
1120		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1121		return cc->cluster_size;
1122	}
1123
1124unlock_pages:
1125	f2fs_put_rpages(cc);
1126	f2fs_unlock_rpages(cc, i);
1127	f2fs_destroy_compress_ctx(cc, true);
1128out:
1129	return ret;
1130}
1131
1132int f2fs_prepare_compress_overwrite(struct inode *inode,
1133		struct page **pagep, pgoff_t index, void **fsdata)
1134{
1135	struct compress_ctx cc = {
1136		.inode = inode,
1137		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1138		.cluster_size = F2FS_I(inode)->i_cluster_size,
1139		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1140		.rpages = NULL,
1141		.nr_rpages = 0,
1142	};
1143
1144	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1145}
1146
1147bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1148					pgoff_t index, unsigned copied)
1149
1150{
1151	struct compress_ctx cc = {
1152		.inode = inode,
1153		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1154		.cluster_size = F2FS_I(inode)->i_cluster_size,
1155		.rpages = fsdata,
1156	};
1157	bool first_index = (index == cc.rpages[0]->index);
1158
1159	if (copied)
1160		set_cluster_dirty(&cc);
1161
1162	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1163	f2fs_destroy_compress_ctx(&cc, false);
1164
1165	return first_index;
1166}
1167
1168int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1169{
1170	void *fsdata = NULL;
1171	struct page *pagep;
1172	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1173	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1174							log_cluster_size;
1175	int err;
1176
1177	err = f2fs_is_compressed_cluster(inode, start_idx);
1178	if (err < 0)
1179		return err;
1180
1181	/* truncate normal cluster */
1182	if (!err)
1183		return f2fs_do_truncate_blocks(inode, from, lock);
1184
1185	/* truncate compressed cluster */
1186	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1187						start_idx, &fsdata);
1188
1189	/* should not be a normal cluster */
1190	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1191
1192	if (err <= 0)
1193		return err;
1194
1195	if (err > 0) {
1196		struct page **rpages = fsdata;
1197		int cluster_size = F2FS_I(inode)->i_cluster_size;
1198		int i;
1199
1200		for (i = cluster_size - 1; i >= 0; i--) {
1201			loff_t start = rpages[i]->index << PAGE_SHIFT;
1202
1203			if (from <= start) {
1204				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1205			} else {
1206				zero_user_segment(rpages[i], from - start,
1207								PAGE_SIZE);
1208				break;
1209			}
1210		}
1211
1212		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1213	}
1214	return 0;
1215}
1216
1217static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1218					int *submitted,
1219					struct writeback_control *wbc,
1220					enum iostat_type io_type)
1221{
1222	struct inode *inode = cc->inode;
1223	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1224	struct f2fs_inode_info *fi = F2FS_I(inode);
1225	struct f2fs_io_info fio = {
1226		.sbi = sbi,
1227		.ino = cc->inode->i_ino,
1228		.type = DATA,
1229		.op = REQ_OP_WRITE,
1230		.op_flags = wbc_to_write_flags(wbc),
1231		.old_blkaddr = NEW_ADDR,
1232		.page = NULL,
1233		.encrypted_page = NULL,
1234		.compressed_page = NULL,
1235		.submitted = 0,
1236		.io_type = io_type,
1237		.io_wbc = wbc,
1238		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1239									1 : 0,
1240	};
1241	struct dnode_of_data dn;
1242	struct node_info ni;
1243	struct compress_io_ctx *cic;
1244	pgoff_t start_idx = start_idx_of_cluster(cc);
1245	unsigned int last_index = cc->cluster_size - 1;
1246	loff_t psize;
1247	int i, err;
1248	bool quota_inode = IS_NOQUOTA(inode);
1249
1250	/* we should bypass data pages to proceed the kworker jobs */
1251	if (unlikely(f2fs_cp_error(sbi))) {
1252		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1253		goto out_free;
1254	}
1255
1256	if (quota_inode) {
1257		/*
1258		 * We need to wait for node_write to avoid block allocation during
1259		 * checkpoint. This can only happen to quota writes which can cause
1260		 * the below discard race condition.
1261		 */
1262		f2fs_down_read(&sbi->node_write);
1263	} else if (!f2fs_trylock_op(sbi)) {
1264		goto out_free;
1265	}
1266
1267	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1268
1269	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1270	if (err)
1271		goto out_unlock_op;
1272
1273	for (i = 0; i < cc->cluster_size; i++) {
1274		if (data_blkaddr(dn.inode, dn.node_page,
1275					dn.ofs_in_node + i) == NULL_ADDR)
1276			goto out_put_dnode;
1277	}
1278
1279	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1280
1281	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1282	if (err)
1283		goto out_put_dnode;
1284
1285	fio.version = ni.version;
1286
1287	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1288	if (!cic)
1289		goto out_put_dnode;
1290
1291	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1292	cic->inode = inode;
1293	atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1294	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1295	if (!cic->rpages)
1296		goto out_put_cic;
1297
1298	cic->nr_rpages = cc->cluster_size;
1299
1300	for (i = 0; i < cc->valid_nr_cpages; i++) {
1301		f2fs_set_compressed_page(cc->cpages[i], inode,
1302					cc->rpages[i + 1]->index, cic);
1303		fio.compressed_page = cc->cpages[i];
1304
1305		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1306						dn.ofs_in_node + i + 1);
1307
1308		/* wait for GCed page writeback via META_MAPPING */
1309		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1310
1311		if (fio.encrypted) {
1312			fio.page = cc->rpages[i + 1];
1313			err = f2fs_encrypt_one_page(&fio);
1314			if (err)
1315				goto out_destroy_crypt;
1316			cc->cpages[i] = fio.encrypted_page;
1317		}
1318	}
1319
1320	set_cluster_writeback(cc);
1321
1322	for (i = 0; i < cc->cluster_size; i++)
1323		cic->rpages[i] = cc->rpages[i];
1324
1325	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1326		block_t blkaddr;
1327
1328		blkaddr = f2fs_data_blkaddr(&dn);
1329		fio.page = cc->rpages[i];
1330		fio.old_blkaddr = blkaddr;
1331
1332		/* cluster header */
1333		if (i == 0) {
1334			if (blkaddr == COMPRESS_ADDR)
1335				fio.compr_blocks++;
1336			if (__is_valid_data_blkaddr(blkaddr))
1337				f2fs_invalidate_blocks(sbi, blkaddr);
1338			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1339			goto unlock_continue;
1340		}
1341
1342		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1343			fio.compr_blocks++;
1344
1345		if (i > cc->valid_nr_cpages) {
1346			if (__is_valid_data_blkaddr(blkaddr)) {
1347				f2fs_invalidate_blocks(sbi, blkaddr);
1348				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1349			}
1350			goto unlock_continue;
1351		}
1352
1353		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1354
1355		if (fio.encrypted)
1356			fio.encrypted_page = cc->cpages[i - 1];
1357		else
1358			fio.compressed_page = cc->cpages[i - 1];
1359
1360		cc->cpages[i - 1] = NULL;
 
1361		f2fs_outplace_write_data(&dn, &fio);
 
 
 
 
 
 
 
 
1362		(*submitted)++;
1363unlock_continue:
1364		inode_dec_dirty_pages(cc->inode);
1365		unlock_page(fio.page);
1366	}
1367
1368	if (fio.compr_blocks)
1369		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1370	f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1371	add_compr_block_stat(inode, cc->valid_nr_cpages);
1372
1373	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1374
1375	f2fs_put_dnode(&dn);
1376	if (quota_inode)
1377		f2fs_up_read(&sbi->node_write);
1378	else
1379		f2fs_unlock_op(sbi);
1380
1381	spin_lock(&fi->i_size_lock);
1382	if (fi->last_disk_size < psize)
1383		fi->last_disk_size = psize;
1384	spin_unlock(&fi->i_size_lock);
1385
1386	f2fs_put_rpages(cc);
1387	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1388	cc->cpages = NULL;
1389	f2fs_destroy_compress_ctx(cc, false);
1390	return 0;
1391
1392out_destroy_crypt:
1393	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1394
1395	for (--i; i >= 0; i--)
 
 
1396		fscrypt_finalize_bounce_page(&cc->cpages[i]);
 
1397out_put_cic:
1398	kmem_cache_free(cic_entry_slab, cic);
1399out_put_dnode:
1400	f2fs_put_dnode(&dn);
1401out_unlock_op:
1402	if (quota_inode)
1403		f2fs_up_read(&sbi->node_write);
1404	else
1405		f2fs_unlock_op(sbi);
1406out_free:
1407	for (i = 0; i < cc->valid_nr_cpages; i++) {
1408		f2fs_compress_free_page(cc->cpages[i]);
1409		cc->cpages[i] = NULL;
1410	}
1411	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1412	cc->cpages = NULL;
1413	return -EAGAIN;
1414}
1415
1416void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1417{
1418	struct f2fs_sb_info *sbi = bio->bi_private;
1419	struct compress_io_ctx *cic =
1420			(struct compress_io_ctx *)page_private(page);
 
 
1421	int i;
1422
1423	if (unlikely(bio->bi_status))
1424		mapping_set_error(cic->inode->i_mapping, -EIO);
1425
1426	f2fs_compress_free_page(page);
1427
1428	dec_page_count(sbi, F2FS_WB_DATA);
1429
1430	if (atomic_dec_return(&cic->pending_pages))
1431		return;
1432
1433	for (i = 0; i < cic->nr_rpages; i++) {
1434		WARN_ON(!cic->rpages[i]);
1435		clear_page_private_gcing(cic->rpages[i]);
1436		end_page_writeback(cic->rpages[i]);
1437	}
1438
1439	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1440	kmem_cache_free(cic_entry_slab, cic);
1441}
1442
1443static int f2fs_write_raw_pages(struct compress_ctx *cc,
1444					int *submitted,
1445					struct writeback_control *wbc,
1446					enum iostat_type io_type)
1447{
1448	struct address_space *mapping = cc->inode->i_mapping;
1449	int _submitted, compr_blocks, ret, i;
 
 
1450
1451	compr_blocks = f2fs_compressed_blocks(cc);
1452
1453	for (i = 0; i < cc->cluster_size; i++) {
1454		if (!cc->rpages[i])
1455			continue;
1456
1457		redirty_page_for_writepage(wbc, cc->rpages[i]);
1458		unlock_page(cc->rpages[i]);
1459	}
1460
1461	if (compr_blocks < 0)
1462		return compr_blocks;
1463
 
 
 
 
1464	for (i = 0; i < cc->cluster_size; i++) {
1465		if (!cc->rpages[i])
1466			continue;
1467retry_write:
1468		lock_page(cc->rpages[i]);
1469
1470		if (cc->rpages[i]->mapping != mapping) {
1471continue_unlock:
1472			unlock_page(cc->rpages[i]);
1473			continue;
1474		}
1475
1476		if (!PageDirty(cc->rpages[i]))
1477			goto continue_unlock;
1478
1479		if (PageWriteback(cc->rpages[i])) {
1480			if (wbc->sync_mode == WB_SYNC_NONE)
1481				goto continue_unlock;
1482			f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1483		}
1484
1485		if (!clear_page_dirty_for_io(cc->rpages[i]))
1486			goto continue_unlock;
1487
1488		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
 
1489						NULL, NULL, wbc, io_type,
1490						compr_blocks, false);
1491		if (ret) {
1492			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1493				unlock_page(cc->rpages[i]);
1494				ret = 0;
1495			} else if (ret == -EAGAIN) {
 
1496				/*
1497				 * for quota file, just redirty left pages to
1498				 * avoid deadlock caused by cluster update race
1499				 * from foreground operation.
1500				 */
1501				if (IS_NOQUOTA(cc->inode))
1502					return 0;
1503				ret = 0;
1504				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1505				goto retry_write;
1506			}
1507			return ret;
1508		}
1509
1510		*submitted += _submitted;
1511	}
1512
1513	f2fs_balance_fs(F2FS_M_SB(mapping), true);
 
 
1514
1515	return 0;
 
1516}
1517
1518int f2fs_write_multi_pages(struct compress_ctx *cc,
1519					int *submitted,
1520					struct writeback_control *wbc,
1521					enum iostat_type io_type)
1522{
1523	int err;
1524
1525	*submitted = 0;
1526	if (cluster_may_compress(cc)) {
1527		err = f2fs_compress_pages(cc);
1528		if (err == -EAGAIN) {
1529			add_compr_block_stat(cc->inode, cc->cluster_size);
1530			goto write;
1531		} else if (err) {
1532			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1533			goto destroy_out;
1534		}
1535
1536		err = f2fs_write_compressed_pages(cc, submitted,
1537							wbc, io_type);
1538		if (!err)
1539			return 0;
1540		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1541	}
1542write:
1543	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1544
1545	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1546	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1547destroy_out:
1548	f2fs_destroy_compress_ctx(cc, false);
1549	return err;
1550}
1551
1552static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1553		bool pre_alloc)
1554{
1555	return pre_alloc ^ f2fs_low_mem_mode(sbi);
1556}
1557
1558static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1559		bool pre_alloc)
1560{
1561	const struct f2fs_compress_ops *cops =
1562		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1563	int i;
1564
1565	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1566		return 0;
1567
1568	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1569	if (!dic->tpages)
1570		return -ENOMEM;
1571
1572	for (i = 0; i < dic->cluster_size; i++) {
1573		if (dic->rpages[i]) {
1574			dic->tpages[i] = dic->rpages[i];
1575			continue;
1576		}
1577
1578		dic->tpages[i] = f2fs_compress_alloc_page();
1579	}
1580
1581	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1582	if (!dic->rbuf)
1583		return -ENOMEM;
1584
1585	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1586	if (!dic->cbuf)
1587		return -ENOMEM;
1588
1589	if (cops->init_decompress_ctx)
1590		return cops->init_decompress_ctx(dic);
1591
1592	return 0;
1593}
1594
1595static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1596		bool bypass_destroy_callback, bool pre_alloc)
1597{
1598	const struct f2fs_compress_ops *cops =
1599		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1600
1601	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1602		return;
1603
1604	if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1605		cops->destroy_decompress_ctx(dic);
1606
1607	if (dic->cbuf)
1608		vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1609
1610	if (dic->rbuf)
1611		vm_unmap_ram(dic->rbuf, dic->cluster_size);
1612}
1613
1614static void f2fs_free_dic(struct decompress_io_ctx *dic,
1615		bool bypass_destroy_callback);
1616
1617struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1618{
1619	struct decompress_io_ctx *dic;
1620	pgoff_t start_idx = start_idx_of_cluster(cc);
1621	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1622	int i, ret;
1623
1624	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1625	if (!dic)
1626		return ERR_PTR(-ENOMEM);
1627
1628	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1629	if (!dic->rpages) {
1630		kmem_cache_free(dic_entry_slab, dic);
1631		return ERR_PTR(-ENOMEM);
1632	}
1633
1634	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1635	dic->inode = cc->inode;
1636	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1637	dic->cluster_idx = cc->cluster_idx;
1638	dic->cluster_size = cc->cluster_size;
1639	dic->log_cluster_size = cc->log_cluster_size;
1640	dic->nr_cpages = cc->nr_cpages;
1641	refcount_set(&dic->refcnt, 1);
1642	dic->failed = false;
1643	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1644
1645	for (i = 0; i < dic->cluster_size; i++)
1646		dic->rpages[i] = cc->rpages[i];
1647	dic->nr_rpages = cc->cluster_size;
1648
1649	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1650	if (!dic->cpages) {
1651		ret = -ENOMEM;
1652		goto out_free;
1653	}
1654
1655	for (i = 0; i < dic->nr_cpages; i++) {
1656		struct page *page;
1657
1658		page = f2fs_compress_alloc_page();
1659		f2fs_set_compressed_page(page, cc->inode,
1660					start_idx + i + 1, dic);
1661		dic->cpages[i] = page;
1662	}
1663
1664	ret = f2fs_prepare_decomp_mem(dic, true);
1665	if (ret)
1666		goto out_free;
1667
1668	return dic;
1669
1670out_free:
1671	f2fs_free_dic(dic, true);
1672	return ERR_PTR(ret);
1673}
1674
1675static void f2fs_free_dic(struct decompress_io_ctx *dic,
1676		bool bypass_destroy_callback)
1677{
1678	int i;
1679
1680	f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1681
1682	if (dic->tpages) {
1683		for (i = 0; i < dic->cluster_size; i++) {
1684			if (dic->rpages[i])
1685				continue;
1686			if (!dic->tpages[i])
1687				continue;
1688			f2fs_compress_free_page(dic->tpages[i]);
1689		}
1690		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1691	}
1692
1693	if (dic->cpages) {
1694		for (i = 0; i < dic->nr_cpages; i++) {
1695			if (!dic->cpages[i])
1696				continue;
1697			f2fs_compress_free_page(dic->cpages[i]);
1698		}
1699		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1700	}
1701
1702	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1703	kmem_cache_free(dic_entry_slab, dic);
1704}
1705
1706static void f2fs_late_free_dic(struct work_struct *work)
1707{
1708	struct decompress_io_ctx *dic =
1709		container_of(work, struct decompress_io_ctx, free_work);
1710
1711	f2fs_free_dic(dic, false);
1712}
1713
1714static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1715{
1716	if (refcount_dec_and_test(&dic->refcnt)) {
1717		if (in_task) {
1718			f2fs_free_dic(dic, false);
1719		} else {
1720			INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1721			queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1722					&dic->free_work);
1723		}
1724	}
1725}
1726
1727static void f2fs_verify_cluster(struct work_struct *work)
1728{
1729	struct decompress_io_ctx *dic =
1730		container_of(work, struct decompress_io_ctx, verity_work);
1731	int i;
1732
1733	/* Verify, update, and unlock the decompressed pages. */
1734	for (i = 0; i < dic->cluster_size; i++) {
1735		struct page *rpage = dic->rpages[i];
1736
1737		if (!rpage)
1738			continue;
1739
1740		if (fsverity_verify_page(rpage))
1741			SetPageUptodate(rpage);
1742		else
1743			ClearPageUptodate(rpage);
1744		unlock_page(rpage);
1745	}
1746
1747	f2fs_put_dic(dic, true);
1748}
1749
1750/*
1751 * This is called when a compressed cluster has been decompressed
1752 * (or failed to be read and/or decompressed).
1753 */
1754void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1755				bool in_task)
1756{
1757	int i;
1758
1759	if (!failed && dic->need_verity) {
1760		/*
1761		 * Note that to avoid deadlocks, the verity work can't be done
1762		 * on the decompression workqueue.  This is because verifying
1763		 * the data pages can involve reading metadata pages from the
1764		 * file, and these metadata pages may be compressed.
1765		 */
1766		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1767		fsverity_enqueue_verify_work(&dic->verity_work);
1768		return;
1769	}
1770
1771	/* Update and unlock the cluster's pagecache pages. */
1772	for (i = 0; i < dic->cluster_size; i++) {
1773		struct page *rpage = dic->rpages[i];
1774
1775		if (!rpage)
1776			continue;
1777
1778		if (failed)
1779			ClearPageUptodate(rpage);
1780		else
1781			SetPageUptodate(rpage);
1782		unlock_page(rpage);
1783	}
1784
1785	/*
1786	 * Release the reference to the decompress_io_ctx that was being held
1787	 * for I/O completion.
1788	 */
1789	f2fs_put_dic(dic, in_task);
1790}
1791
1792/*
1793 * Put a reference to a compressed page's decompress_io_ctx.
1794 *
1795 * This is called when the page is no longer needed and can be freed.
1796 */
1797void f2fs_put_page_dic(struct page *page, bool in_task)
1798{
1799	struct decompress_io_ctx *dic =
1800			(struct decompress_io_ctx *)page_private(page);
1801
1802	f2fs_put_dic(dic, in_task);
1803}
1804
1805/*
1806 * check whether cluster blocks are contiguous, and add extent cache entry
1807 * only if cluster blocks are logically and physically contiguous.
1808 */
1809unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
 
1810{
1811	bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
 
1812	int i = compressed ? 1 : 0;
1813	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1814						dn->ofs_in_node + i);
1815
1816	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1817		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1818						dn->ofs_in_node + i);
1819
1820		if (!__is_valid_data_blkaddr(blkaddr))
1821			break;
1822		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1823			return 0;
1824	}
1825
1826	return compressed ? i - 1 : i;
1827}
1828
1829const struct address_space_operations f2fs_compress_aops = {
1830	.release_folio = f2fs_release_folio,
1831	.invalidate_folio = f2fs_invalidate_folio,
1832	.migrate_folio	= filemap_migrate_folio,
1833};
1834
1835struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1836{
1837	return sbi->compress_inode->i_mapping;
1838}
1839
1840void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1841{
1842	if (!sbi->compress_inode)
1843		return;
1844	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1845}
1846
1847void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1848						nid_t ino, block_t blkaddr)
1849{
1850	struct page *cpage;
1851	int ret;
1852
1853	if (!test_opt(sbi, COMPRESS_CACHE))
1854		return;
1855
1856	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1857		return;
1858
1859	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1860		return;
1861
1862	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1863	if (cpage) {
1864		f2fs_put_page(cpage, 0);
1865		return;
1866	}
1867
1868	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1869	if (!cpage)
1870		return;
1871
1872	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1873						blkaddr, GFP_NOFS);
1874	if (ret) {
1875		f2fs_put_page(cpage, 0);
1876		return;
1877	}
1878
1879	set_page_private_data(cpage, ino);
1880
1881	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1882		goto out;
1883
1884	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1885	SetPageUptodate(cpage);
1886out:
1887	f2fs_put_page(cpage, 1);
1888}
1889
1890bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1891								block_t blkaddr)
1892{
1893	struct page *cpage;
1894	bool hitted = false;
1895
1896	if (!test_opt(sbi, COMPRESS_CACHE))
1897		return false;
1898
1899	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1900				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1901	if (cpage) {
1902		if (PageUptodate(cpage)) {
1903			atomic_inc(&sbi->compress_page_hit);
1904			memcpy(page_address(page),
1905				page_address(cpage), PAGE_SIZE);
1906			hitted = true;
1907		}
1908		f2fs_put_page(cpage, 1);
1909	}
1910
1911	return hitted;
1912}
1913
1914void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1915{
1916	struct address_space *mapping = COMPRESS_MAPPING(sbi);
1917	struct folio_batch fbatch;
1918	pgoff_t index = 0;
1919	pgoff_t end = MAX_BLKADDR(sbi);
1920
1921	if (!mapping->nrpages)
1922		return;
1923
1924	folio_batch_init(&fbatch);
1925
1926	do {
1927		unsigned int nr, i;
1928
1929		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1930		if (!nr)
1931			break;
1932
1933		for (i = 0; i < nr; i++) {
1934			struct folio *folio = fbatch.folios[i];
1935
1936			folio_lock(folio);
1937			if (folio->mapping != mapping) {
1938				folio_unlock(folio);
1939				continue;
1940			}
1941
1942			if (ino != get_page_private_data(&folio->page)) {
1943				folio_unlock(folio);
1944				continue;
1945			}
1946
1947			generic_error_remove_folio(mapping, folio);
1948			folio_unlock(folio);
1949		}
1950		folio_batch_release(&fbatch);
1951		cond_resched();
1952	} while (index < end);
1953}
1954
1955int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1956{
1957	struct inode *inode;
1958
1959	if (!test_opt(sbi, COMPRESS_CACHE))
1960		return 0;
1961
1962	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1963	if (IS_ERR(inode))
1964		return PTR_ERR(inode);
1965	sbi->compress_inode = inode;
1966
1967	sbi->compress_percent = COMPRESS_PERCENT;
1968	sbi->compress_watermark = COMPRESS_WATERMARK;
1969
1970	atomic_set(&sbi->compress_page_hit, 0);
1971
1972	return 0;
1973}
1974
1975void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1976{
1977	if (!sbi->compress_inode)
1978		return;
1979	iput(sbi->compress_inode);
1980	sbi->compress_inode = NULL;
1981}
1982
1983int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1984{
1985	dev_t dev = sbi->sb->s_bdev->bd_dev;
1986	char slab_name[35];
1987
1988	if (!f2fs_sb_has_compression(sbi))
1989		return 0;
1990
1991	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1992
1993	sbi->page_array_slab_size = sizeof(struct page *) <<
1994					F2FS_OPTION(sbi).compress_log_size;
1995
1996	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1997					sbi->page_array_slab_size);
1998	return sbi->page_array_slab ? 0 : -ENOMEM;
1999}
2000
2001void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2002{
2003	kmem_cache_destroy(sbi->page_array_slab);
2004}
2005
2006int __init f2fs_init_compress_cache(void)
2007{
2008	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2009					sizeof(struct compress_io_ctx));
2010	if (!cic_entry_slab)
2011		return -ENOMEM;
2012	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2013					sizeof(struct decompress_io_ctx));
2014	if (!dic_entry_slab)
2015		goto free_cic;
2016	return 0;
2017free_cic:
2018	kmem_cache_destroy(cic_entry_slab);
2019	return -ENOMEM;
2020}
2021
2022void f2fs_destroy_compress_cache(void)
2023{
2024	kmem_cache_destroy(dic_entry_slab);
2025	kmem_cache_destroy(cic_entry_slab);
2026}