Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * fs/crypto/hooks.c
  4 *
  5 * Encryption hooks for higher-level filesystem operations.
  6 */
  7
  8#include "fscrypt_private.h"
  9
 10/**
 11 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
 12 * @inode: the inode being opened
 13 * @filp: the struct file being set up
 14 *
 15 * Currently, an encrypted regular file can only be opened if its encryption key
 16 * is available; access to the raw encrypted contents is not supported.
 17 * Therefore, we first set up the inode's encryption key (if not already done)
 18 * and return an error if it's unavailable.
 19 *
 20 * We also verify that if the parent directory (from the path via which the file
 21 * is being opened) is encrypted, then the inode being opened uses the same
 22 * encryption policy.  This is needed as part of the enforcement that all files
 23 * in an encrypted directory tree use the same encryption policy, as a
 24 * protection against certain types of offline attacks.  Note that this check is
 25 * needed even when opening an *unencrypted* file, since it's forbidden to have
 26 * an unencrypted file in an encrypted directory.
 27 *
 28 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
 29 */
 30int fscrypt_file_open(struct inode *inode, struct file *filp)
 31{
 32	int err;
 33	struct dentry *dentry, *dentry_parent;
 34	struct inode *inode_parent;
 35
 36	err = fscrypt_require_key(inode);
 37	if (err)
 38		return err;
 39
 40	dentry = file_dentry(filp);
 41
 42	/*
 43	 * Getting a reference to the parent dentry is needed for the actual
 44	 * encryption policy comparison, but it's expensive on multi-core
 45	 * systems.  Since this function runs on unencrypted files too, start
 46	 * with a lightweight RCU-mode check for the parent directory being
 47	 * unencrypted (in which case it's fine for the child to be either
 48	 * unencrypted, or encrypted with any policy).  Only continue on to the
 49	 * full policy check if the parent directory is actually encrypted.
 50	 */
 51	rcu_read_lock();
 52	dentry_parent = READ_ONCE(dentry->d_parent);
 53	inode_parent = d_inode_rcu(dentry_parent);
 54	if (inode_parent != NULL && !IS_ENCRYPTED(inode_parent)) {
 55		rcu_read_unlock();
 56		return 0;
 57	}
 58	rcu_read_unlock();
 59
 60	dentry_parent = dget_parent(dentry);
 61	if (!fscrypt_has_permitted_context(d_inode(dentry_parent), inode)) {
 62		fscrypt_warn(inode,
 63			     "Inconsistent encryption context (parent directory: %lu)",
 64			     d_inode(dentry_parent)->i_ino);
 65		err = -EPERM;
 66	}
 67	dput(dentry_parent);
 68	return err;
 69}
 70EXPORT_SYMBOL_GPL(fscrypt_file_open);
 71
 72int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
 73			   struct dentry *dentry)
 74{
 75	if (fscrypt_is_nokey_name(dentry))
 76		return -ENOKEY;
 77	/*
 78	 * We don't need to separately check that the directory inode's key is
 79	 * available, as it's implied by the dentry not being a no-key name.
 80	 */
 81
 82	if (!fscrypt_has_permitted_context(dir, inode))
 83		return -EXDEV;
 84
 85	return 0;
 86}
 87EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
 88
 89int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
 90			     struct inode *new_dir, struct dentry *new_dentry,
 91			     unsigned int flags)
 92{
 93	if (fscrypt_is_nokey_name(old_dentry) ||
 94	    fscrypt_is_nokey_name(new_dentry))
 95		return -ENOKEY;
 96	/*
 97	 * We don't need to separately check that the directory inodes' keys are
 98	 * available, as it's implied by the dentries not being no-key names.
 99	 */
100
101	if (old_dir != new_dir) {
102		if (IS_ENCRYPTED(new_dir) &&
103		    !fscrypt_has_permitted_context(new_dir,
104						   d_inode(old_dentry)))
105			return -EXDEV;
106
107		if ((flags & RENAME_EXCHANGE) &&
108		    IS_ENCRYPTED(old_dir) &&
109		    !fscrypt_has_permitted_context(old_dir,
110						   d_inode(new_dentry)))
111			return -EXDEV;
112	}
113	return 0;
114}
115EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
116
117int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
118			     struct fscrypt_name *fname)
119{
120	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
121
122	if (err && err != -ENOENT)
123		return err;
124
125	fscrypt_prepare_dentry(dentry, fname->is_nokey_name);
126
 
 
 
127	return err;
128}
129EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
130
131/**
132 * fscrypt_prepare_lookup_partial() - prepare lookup without filename setup
133 * @dir: the encrypted directory being searched
134 * @dentry: the dentry being looked up in @dir
135 *
136 * This function should be used by the ->lookup and ->atomic_open methods of
137 * filesystems that handle filename encryption and no-key name encoding
138 * themselves and thus can't use fscrypt_prepare_lookup().  Like
139 * fscrypt_prepare_lookup(), this will try to set up the directory's encryption
140 * key and will set DCACHE_NOKEY_NAME on the dentry if the key is unavailable.
141 * However, this function doesn't set up a struct fscrypt_name for the filename.
142 *
143 * Return: 0 on success; -errno on error.  Note that the encryption key being
144 *	   unavailable is not considered an error.  It is also not an error if
145 *	   the encryption policy is unsupported by this kernel; that is treated
146 *	   like the key being unavailable, so that files can still be deleted.
147 */
148int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry)
149{
150	int err = fscrypt_get_encryption_info(dir, true);
151	bool is_nokey_name = (!err && !fscrypt_has_encryption_key(dir));
152
153	fscrypt_prepare_dentry(dentry, is_nokey_name);
154
 
 
 
 
 
155	return err;
156}
157EXPORT_SYMBOL_GPL(fscrypt_prepare_lookup_partial);
158
159int __fscrypt_prepare_readdir(struct inode *dir)
160{
161	return fscrypt_get_encryption_info(dir, true);
162}
163EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
164
165int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
166{
167	if (attr->ia_valid & ATTR_SIZE)
168		return fscrypt_require_key(d_inode(dentry));
169	return 0;
170}
171EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
172
173/**
174 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
175 * @inode: the inode on which flags are being changed
176 * @oldflags: the old flags
177 * @flags: the new flags
178 *
179 * The caller should be holding i_rwsem for write.
180 *
181 * Return: 0 on success; -errno if the flags change isn't allowed or if
182 *	   another error occurs.
183 */
184int fscrypt_prepare_setflags(struct inode *inode,
185			     unsigned int oldflags, unsigned int flags)
186{
187	struct fscrypt_inode_info *ci;
188	struct fscrypt_master_key *mk;
189	int err;
190
191	/*
192	 * When the CASEFOLD flag is set on an encrypted directory, we must
193	 * derive the secret key needed for the dirhash.  This is only possible
194	 * if the directory uses a v2 encryption policy.
195	 */
196	if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
197		err = fscrypt_require_key(inode);
198		if (err)
199			return err;
200		ci = inode->i_crypt_info;
201		if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
202			return -EINVAL;
203		mk = ci->ci_master_key;
204		down_read(&mk->mk_sem);
205		if (mk->mk_present)
206			err = fscrypt_derive_dirhash_key(ci, mk);
207		else
208			err = -ENOKEY;
209		up_read(&mk->mk_sem);
210		return err;
211	}
212	return 0;
213}
214
215/**
216 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
217 * @dir: directory in which the symlink is being created
218 * @target: plaintext symlink target
219 * @len: length of @target excluding null terminator
220 * @max_len: space the filesystem has available to store the symlink target
221 * @disk_link: (out) the on-disk symlink target being prepared
222 *
223 * This function computes the size the symlink target will require on-disk,
224 * stores it in @disk_link->len, and validates it against @max_len.  An
225 * encrypted symlink may be longer than the original.
226 *
227 * Additionally, @disk_link->name is set to @target if the symlink will be
228 * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
229 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
230 * on-disk target later.  (The reason for the two-step process is that some
231 * filesystems need to know the size of the symlink target before creating the
232 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
233 *
234 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
235 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
236 * occurred while setting up the encryption key.
237 */
238int fscrypt_prepare_symlink(struct inode *dir, const char *target,
239			    unsigned int len, unsigned int max_len,
240			    struct fscrypt_str *disk_link)
241{
242	const union fscrypt_policy *policy;
243
244	/*
245	 * To calculate the size of the encrypted symlink target we need to know
246	 * the amount of NUL padding, which is determined by the flags set in
247	 * the encryption policy which will be inherited from the directory.
248	 */
249	policy = fscrypt_policy_to_inherit(dir);
250	if (policy == NULL) {
251		/* Not encrypted */
252		disk_link->name = (unsigned char *)target;
253		disk_link->len = len + 1;
254		if (disk_link->len > max_len)
255			return -ENAMETOOLONG;
256		return 0;
257	}
258	if (IS_ERR(policy))
259		return PTR_ERR(policy);
260
261	/*
262	 * Calculate the size of the encrypted symlink and verify it won't
263	 * exceed max_len.  Note that for historical reasons, encrypted symlink
264	 * targets are prefixed with the ciphertext length, despite this
265	 * actually being redundant with i_size.  This decreases by 2 bytes the
266	 * longest symlink target we can accept.
267	 *
268	 * We could recover 1 byte by not counting a null terminator, but
269	 * counting it (even though it is meaningless for ciphertext) is simpler
270	 * for now since filesystems will assume it is there and subtract it.
271	 */
272	if (!__fscrypt_fname_encrypted_size(policy, len,
273					    max_len - sizeof(struct fscrypt_symlink_data) - 1,
274					    &disk_link->len))
275		return -ENAMETOOLONG;
276	disk_link->len += sizeof(struct fscrypt_symlink_data) + 1;
277
278	disk_link->name = NULL;
279	return 0;
280}
281EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
282
283int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
284			      unsigned int len, struct fscrypt_str *disk_link)
285{
286	int err;
287	struct qstr iname = QSTR_INIT(target, len);
288	struct fscrypt_symlink_data *sd;
289	unsigned int ciphertext_len;
290
291	/*
292	 * fscrypt_prepare_new_inode() should have already set up the new
293	 * symlink inode's encryption key.  We don't wait until now to do it,
294	 * since we may be in a filesystem transaction now.
295	 */
296	if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
297		return -ENOKEY;
298
299	if (disk_link->name) {
300		/* filesystem-provided buffer */
301		sd = (struct fscrypt_symlink_data *)disk_link->name;
302	} else {
303		sd = kmalloc(disk_link->len, GFP_NOFS);
304		if (!sd)
305			return -ENOMEM;
306	}
307	ciphertext_len = disk_link->len - sizeof(*sd) - 1;
308	sd->len = cpu_to_le16(ciphertext_len);
309
310	err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
311				    ciphertext_len);
312	if (err)
313		goto err_free_sd;
314
315	/*
316	 * Null-terminating the ciphertext doesn't make sense, but we still
317	 * count the null terminator in the length, so we might as well
318	 * initialize it just in case the filesystem writes it out.
319	 */
320	sd->encrypted_path[ciphertext_len] = '\0';
321
322	/* Cache the plaintext symlink target for later use by get_link() */
323	err = -ENOMEM;
324	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
325	if (!inode->i_link)
326		goto err_free_sd;
327
328	if (!disk_link->name)
329		disk_link->name = (unsigned char *)sd;
330	return 0;
331
332err_free_sd:
333	if (!disk_link->name)
334		kfree(sd);
335	return err;
336}
337EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
338
339/**
340 * fscrypt_get_symlink() - get the target of an encrypted symlink
341 * @inode: the symlink inode
342 * @caddr: the on-disk contents of the symlink
343 * @max_size: size of @caddr buffer
344 * @done: if successful, will be set up to free the returned target if needed
345 *
346 * If the symlink's encryption key is available, we decrypt its target.
347 * Otherwise, we encode its target for presentation.
348 *
349 * This may sleep, so the filesystem must have dropped out of RCU mode already.
350 *
351 * Return: the presentable symlink target or an ERR_PTR()
352 */
353const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
354				unsigned int max_size,
355				struct delayed_call *done)
356{
357	const struct fscrypt_symlink_data *sd;
358	struct fscrypt_str cstr, pstr;
359	bool has_key;
360	int err;
361
362	/* This is for encrypted symlinks only */
363	if (WARN_ON_ONCE(!IS_ENCRYPTED(inode)))
364		return ERR_PTR(-EINVAL);
365
366	/* If the decrypted target is already cached, just return it. */
367	pstr.name = READ_ONCE(inode->i_link);
368	if (pstr.name)
369		return pstr.name;
370
371	/*
372	 * Try to set up the symlink's encryption key, but we can continue
373	 * regardless of whether the key is available or not.
374	 */
375	err = fscrypt_get_encryption_info(inode, false);
376	if (err)
377		return ERR_PTR(err);
378	has_key = fscrypt_has_encryption_key(inode);
379
380	/*
381	 * For historical reasons, encrypted symlink targets are prefixed with
382	 * the ciphertext length, even though this is redundant with i_size.
383	 */
384
385	if (max_size < sizeof(*sd) + 1)
386		return ERR_PTR(-EUCLEAN);
387	sd = caddr;
388	cstr.name = (unsigned char *)sd->encrypted_path;
389	cstr.len = le16_to_cpu(sd->len);
390
391	if (cstr.len == 0)
392		return ERR_PTR(-EUCLEAN);
393
394	if (cstr.len + sizeof(*sd) > max_size)
395		return ERR_PTR(-EUCLEAN);
396
397	err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
398	if (err)
399		return ERR_PTR(err);
400
401	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
402	if (err)
403		goto err_kfree;
404
405	err = -EUCLEAN;
406	if (pstr.name[0] == '\0')
407		goto err_kfree;
408
409	pstr.name[pstr.len] = '\0';
410
411	/*
412	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
413	 * symlink targets encoded without the key, since those become outdated
414	 * once the key is added.  This pairs with the READ_ONCE() above and in
415	 * the VFS path lookup code.
416	 */
417	if (!has_key ||
418	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
419		set_delayed_call(done, kfree_link, pstr.name);
420
421	return pstr.name;
422
423err_kfree:
424	kfree(pstr.name);
425	return ERR_PTR(err);
426}
427EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
428
429/**
430 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
431 * @path: the path for the encrypted symlink being queried
432 * @stat: the struct being filled with the symlink's attributes
433 *
434 * Override st_size of encrypted symlinks to be the length of the decrypted
435 * symlink target (or the no-key encoded symlink target, if the key is
436 * unavailable) rather than the length of the encrypted symlink target.  This is
437 * necessary for st_size to match the symlink target that userspace actually
438 * sees.  POSIX requires this, and some userspace programs depend on it.
439 *
440 * This requires reading the symlink target from disk if needed, setting up the
441 * inode's encryption key if possible, and then decrypting or encoding the
442 * symlink target.  This makes lstat() more heavyweight than is normally the
443 * case.  However, decrypted symlink targets will be cached in ->i_link, so
444 * usually the symlink won't have to be read and decrypted again later if/when
445 * it is actually followed, readlink() is called, or lstat() is called again.
446 *
447 * Return: 0 on success, -errno on failure
448 */
449int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
450{
451	struct dentry *dentry = path->dentry;
452	struct inode *inode = d_inode(dentry);
453	const char *link;
454	DEFINE_DELAYED_CALL(done);
455
456	/*
457	 * To get the symlink target that userspace will see (whether it's the
458	 * decrypted target or the no-key encoded target), we can just get it in
459	 * the same way the VFS does during path resolution and readlink().
460	 */
461	link = READ_ONCE(inode->i_link);
462	if (!link) {
463		link = inode->i_op->get_link(dentry, inode, &done);
464		if (IS_ERR(link))
465			return PTR_ERR(link);
466	}
467	stat->size = strlen(link);
468	do_delayed_call(&done);
469	return 0;
470}
471EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * fs/crypto/hooks.c
  4 *
  5 * Encryption hooks for higher-level filesystem operations.
  6 */
  7
  8#include "fscrypt_private.h"
  9
 10/**
 11 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
 12 * @inode: the inode being opened
 13 * @filp: the struct file being set up
 14 *
 15 * Currently, an encrypted regular file can only be opened if its encryption key
 16 * is available; access to the raw encrypted contents is not supported.
 17 * Therefore, we first set up the inode's encryption key (if not already done)
 18 * and return an error if it's unavailable.
 19 *
 20 * We also verify that if the parent directory (from the path via which the file
 21 * is being opened) is encrypted, then the inode being opened uses the same
 22 * encryption policy.  This is needed as part of the enforcement that all files
 23 * in an encrypted directory tree use the same encryption policy, as a
 24 * protection against certain types of offline attacks.  Note that this check is
 25 * needed even when opening an *unencrypted* file, since it's forbidden to have
 26 * an unencrypted file in an encrypted directory.
 27 *
 28 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
 29 */
 30int fscrypt_file_open(struct inode *inode, struct file *filp)
 31{
 32	int err;
 33	struct dentry *dir;
 
 34
 35	err = fscrypt_require_key(inode);
 36	if (err)
 37		return err;
 38
 39	dir = dget_parent(file_dentry(filp));
 40	if (IS_ENCRYPTED(d_inode(dir)) &&
 41	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42		fscrypt_warn(inode,
 43			     "Inconsistent encryption context (parent directory: %lu)",
 44			     d_inode(dir)->i_ino);
 45		err = -EPERM;
 46	}
 47	dput(dir);
 48	return err;
 49}
 50EXPORT_SYMBOL_GPL(fscrypt_file_open);
 51
 52int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
 53			   struct dentry *dentry)
 54{
 55	if (fscrypt_is_nokey_name(dentry))
 56		return -ENOKEY;
 57	/*
 58	 * We don't need to separately check that the directory inode's key is
 59	 * available, as it's implied by the dentry not being a no-key name.
 60	 */
 61
 62	if (!fscrypt_has_permitted_context(dir, inode))
 63		return -EXDEV;
 64
 65	return 0;
 66}
 67EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
 68
 69int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
 70			     struct inode *new_dir, struct dentry *new_dentry,
 71			     unsigned int flags)
 72{
 73	if (fscrypt_is_nokey_name(old_dentry) ||
 74	    fscrypt_is_nokey_name(new_dentry))
 75		return -ENOKEY;
 76	/*
 77	 * We don't need to separately check that the directory inodes' keys are
 78	 * available, as it's implied by the dentries not being no-key names.
 79	 */
 80
 81	if (old_dir != new_dir) {
 82		if (IS_ENCRYPTED(new_dir) &&
 83		    !fscrypt_has_permitted_context(new_dir,
 84						   d_inode(old_dentry)))
 85			return -EXDEV;
 86
 87		if ((flags & RENAME_EXCHANGE) &&
 88		    IS_ENCRYPTED(old_dir) &&
 89		    !fscrypt_has_permitted_context(old_dir,
 90						   d_inode(new_dentry)))
 91			return -EXDEV;
 92	}
 93	return 0;
 94}
 95EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
 96
 97int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
 98			     struct fscrypt_name *fname)
 99{
100	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
101
102	if (err && err != -ENOENT)
103		return err;
104
105	if (fname->is_nokey_name) {
106		spin_lock(&dentry->d_lock);
107		dentry->d_flags |= DCACHE_NOKEY_NAME;
108		spin_unlock(&dentry->d_lock);
109	}
110	return err;
111}
112EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
113
114/**
115 * fscrypt_prepare_lookup_partial() - prepare lookup without filename setup
116 * @dir: the encrypted directory being searched
117 * @dentry: the dentry being looked up in @dir
118 *
119 * This function should be used by the ->lookup and ->atomic_open methods of
120 * filesystems that handle filename encryption and no-key name encoding
121 * themselves and thus can't use fscrypt_prepare_lookup().  Like
122 * fscrypt_prepare_lookup(), this will try to set up the directory's encryption
123 * key and will set DCACHE_NOKEY_NAME on the dentry if the key is unavailable.
124 * However, this function doesn't set up a struct fscrypt_name for the filename.
125 *
126 * Return: 0 on success; -errno on error.  Note that the encryption key being
127 *	   unavailable is not considered an error.  It is also not an error if
128 *	   the encryption policy is unsupported by this kernel; that is treated
129 *	   like the key being unavailable, so that files can still be deleted.
130 */
131int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry)
132{
133	int err = fscrypt_get_encryption_info(dir, true);
 
 
 
134
135	if (!err && !fscrypt_has_encryption_key(dir)) {
136		spin_lock(&dentry->d_lock);
137		dentry->d_flags |= DCACHE_NOKEY_NAME;
138		spin_unlock(&dentry->d_lock);
139	}
140	return err;
141}
142EXPORT_SYMBOL_GPL(fscrypt_prepare_lookup_partial);
143
144int __fscrypt_prepare_readdir(struct inode *dir)
145{
146	return fscrypt_get_encryption_info(dir, true);
147}
148EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
149
150int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
151{
152	if (attr->ia_valid & ATTR_SIZE)
153		return fscrypt_require_key(d_inode(dentry));
154	return 0;
155}
156EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
157
158/**
159 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
160 * @inode: the inode on which flags are being changed
161 * @oldflags: the old flags
162 * @flags: the new flags
163 *
164 * The caller should be holding i_rwsem for write.
165 *
166 * Return: 0 on success; -errno if the flags change isn't allowed or if
167 *	   another error occurs.
168 */
169int fscrypt_prepare_setflags(struct inode *inode,
170			     unsigned int oldflags, unsigned int flags)
171{
172	struct fscrypt_inode_info *ci;
173	struct fscrypt_master_key *mk;
174	int err;
175
176	/*
177	 * When the CASEFOLD flag is set on an encrypted directory, we must
178	 * derive the secret key needed for the dirhash.  This is only possible
179	 * if the directory uses a v2 encryption policy.
180	 */
181	if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
182		err = fscrypt_require_key(inode);
183		if (err)
184			return err;
185		ci = inode->i_crypt_info;
186		if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
187			return -EINVAL;
188		mk = ci->ci_master_key;
189		down_read(&mk->mk_sem);
190		if (mk->mk_present)
191			err = fscrypt_derive_dirhash_key(ci, mk);
192		else
193			err = -ENOKEY;
194		up_read(&mk->mk_sem);
195		return err;
196	}
197	return 0;
198}
199
200/**
201 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
202 * @dir: directory in which the symlink is being created
203 * @target: plaintext symlink target
204 * @len: length of @target excluding null terminator
205 * @max_len: space the filesystem has available to store the symlink target
206 * @disk_link: (out) the on-disk symlink target being prepared
207 *
208 * This function computes the size the symlink target will require on-disk,
209 * stores it in @disk_link->len, and validates it against @max_len.  An
210 * encrypted symlink may be longer than the original.
211 *
212 * Additionally, @disk_link->name is set to @target if the symlink will be
213 * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
214 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
215 * on-disk target later.  (The reason for the two-step process is that some
216 * filesystems need to know the size of the symlink target before creating the
217 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
218 *
219 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
220 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
221 * occurred while setting up the encryption key.
222 */
223int fscrypt_prepare_symlink(struct inode *dir, const char *target,
224			    unsigned int len, unsigned int max_len,
225			    struct fscrypt_str *disk_link)
226{
227	const union fscrypt_policy *policy;
228
229	/*
230	 * To calculate the size of the encrypted symlink target we need to know
231	 * the amount of NUL padding, which is determined by the flags set in
232	 * the encryption policy which will be inherited from the directory.
233	 */
234	policy = fscrypt_policy_to_inherit(dir);
235	if (policy == NULL) {
236		/* Not encrypted */
237		disk_link->name = (unsigned char *)target;
238		disk_link->len = len + 1;
239		if (disk_link->len > max_len)
240			return -ENAMETOOLONG;
241		return 0;
242	}
243	if (IS_ERR(policy))
244		return PTR_ERR(policy);
245
246	/*
247	 * Calculate the size of the encrypted symlink and verify it won't
248	 * exceed max_len.  Note that for historical reasons, encrypted symlink
249	 * targets are prefixed with the ciphertext length, despite this
250	 * actually being redundant with i_size.  This decreases by 2 bytes the
251	 * longest symlink target we can accept.
252	 *
253	 * We could recover 1 byte by not counting a null terminator, but
254	 * counting it (even though it is meaningless for ciphertext) is simpler
255	 * for now since filesystems will assume it is there and subtract it.
256	 */
257	if (!__fscrypt_fname_encrypted_size(policy, len,
258					    max_len - sizeof(struct fscrypt_symlink_data) - 1,
259					    &disk_link->len))
260		return -ENAMETOOLONG;
261	disk_link->len += sizeof(struct fscrypt_symlink_data) + 1;
262
263	disk_link->name = NULL;
264	return 0;
265}
266EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
267
268int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
269			      unsigned int len, struct fscrypt_str *disk_link)
270{
271	int err;
272	struct qstr iname = QSTR_INIT(target, len);
273	struct fscrypt_symlink_data *sd;
274	unsigned int ciphertext_len;
275
276	/*
277	 * fscrypt_prepare_new_inode() should have already set up the new
278	 * symlink inode's encryption key.  We don't wait until now to do it,
279	 * since we may be in a filesystem transaction now.
280	 */
281	if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
282		return -ENOKEY;
283
284	if (disk_link->name) {
285		/* filesystem-provided buffer */
286		sd = (struct fscrypt_symlink_data *)disk_link->name;
287	} else {
288		sd = kmalloc(disk_link->len, GFP_NOFS);
289		if (!sd)
290			return -ENOMEM;
291	}
292	ciphertext_len = disk_link->len - sizeof(*sd) - 1;
293	sd->len = cpu_to_le16(ciphertext_len);
294
295	err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
296				    ciphertext_len);
297	if (err)
298		goto err_free_sd;
299
300	/*
301	 * Null-terminating the ciphertext doesn't make sense, but we still
302	 * count the null terminator in the length, so we might as well
303	 * initialize it just in case the filesystem writes it out.
304	 */
305	sd->encrypted_path[ciphertext_len] = '\0';
306
307	/* Cache the plaintext symlink target for later use by get_link() */
308	err = -ENOMEM;
309	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
310	if (!inode->i_link)
311		goto err_free_sd;
312
313	if (!disk_link->name)
314		disk_link->name = (unsigned char *)sd;
315	return 0;
316
317err_free_sd:
318	if (!disk_link->name)
319		kfree(sd);
320	return err;
321}
322EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
323
324/**
325 * fscrypt_get_symlink() - get the target of an encrypted symlink
326 * @inode: the symlink inode
327 * @caddr: the on-disk contents of the symlink
328 * @max_size: size of @caddr buffer
329 * @done: if successful, will be set up to free the returned target if needed
330 *
331 * If the symlink's encryption key is available, we decrypt its target.
332 * Otherwise, we encode its target for presentation.
333 *
334 * This may sleep, so the filesystem must have dropped out of RCU mode already.
335 *
336 * Return: the presentable symlink target or an ERR_PTR()
337 */
338const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
339				unsigned int max_size,
340				struct delayed_call *done)
341{
342	const struct fscrypt_symlink_data *sd;
343	struct fscrypt_str cstr, pstr;
344	bool has_key;
345	int err;
346
347	/* This is for encrypted symlinks only */
348	if (WARN_ON_ONCE(!IS_ENCRYPTED(inode)))
349		return ERR_PTR(-EINVAL);
350
351	/* If the decrypted target is already cached, just return it. */
352	pstr.name = READ_ONCE(inode->i_link);
353	if (pstr.name)
354		return pstr.name;
355
356	/*
357	 * Try to set up the symlink's encryption key, but we can continue
358	 * regardless of whether the key is available or not.
359	 */
360	err = fscrypt_get_encryption_info(inode, false);
361	if (err)
362		return ERR_PTR(err);
363	has_key = fscrypt_has_encryption_key(inode);
364
365	/*
366	 * For historical reasons, encrypted symlink targets are prefixed with
367	 * the ciphertext length, even though this is redundant with i_size.
368	 */
369
370	if (max_size < sizeof(*sd) + 1)
371		return ERR_PTR(-EUCLEAN);
372	sd = caddr;
373	cstr.name = (unsigned char *)sd->encrypted_path;
374	cstr.len = le16_to_cpu(sd->len);
375
376	if (cstr.len == 0)
377		return ERR_PTR(-EUCLEAN);
378
379	if (cstr.len + sizeof(*sd) > max_size)
380		return ERR_PTR(-EUCLEAN);
381
382	err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
383	if (err)
384		return ERR_PTR(err);
385
386	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
387	if (err)
388		goto err_kfree;
389
390	err = -EUCLEAN;
391	if (pstr.name[0] == '\0')
392		goto err_kfree;
393
394	pstr.name[pstr.len] = '\0';
395
396	/*
397	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
398	 * symlink targets encoded without the key, since those become outdated
399	 * once the key is added.  This pairs with the READ_ONCE() above and in
400	 * the VFS path lookup code.
401	 */
402	if (!has_key ||
403	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
404		set_delayed_call(done, kfree_link, pstr.name);
405
406	return pstr.name;
407
408err_kfree:
409	kfree(pstr.name);
410	return ERR_PTR(err);
411}
412EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
413
414/**
415 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
416 * @path: the path for the encrypted symlink being queried
417 * @stat: the struct being filled with the symlink's attributes
418 *
419 * Override st_size of encrypted symlinks to be the length of the decrypted
420 * symlink target (or the no-key encoded symlink target, if the key is
421 * unavailable) rather than the length of the encrypted symlink target.  This is
422 * necessary for st_size to match the symlink target that userspace actually
423 * sees.  POSIX requires this, and some userspace programs depend on it.
424 *
425 * This requires reading the symlink target from disk if needed, setting up the
426 * inode's encryption key if possible, and then decrypting or encoding the
427 * symlink target.  This makes lstat() more heavyweight than is normally the
428 * case.  However, decrypted symlink targets will be cached in ->i_link, so
429 * usually the symlink won't have to be read and decrypted again later if/when
430 * it is actually followed, readlink() is called, or lstat() is called again.
431 *
432 * Return: 0 on success, -errno on failure
433 */
434int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
435{
436	struct dentry *dentry = path->dentry;
437	struct inode *inode = d_inode(dentry);
438	const char *link;
439	DEFINE_DELAYED_CALL(done);
440
441	/*
442	 * To get the symlink target that userspace will see (whether it's the
443	 * decrypted target or the no-key encoded target), we can just get it in
444	 * the same way the VFS does during path resolution and readlink().
445	 */
446	link = READ_ONCE(inode->i_link);
447	if (!link) {
448		link = inode->i_op->get_link(dentry, inode, &done);
449		if (IS_ERR(link))
450			return PTR_ERR(link);
451	}
452	stat->size = strlen(link);
453	do_delayed_call(&done);
454	return 0;
455}
456EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);