Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifndef BTRFS_BLOCK_GROUP_H
  4#define BTRFS_BLOCK_GROUP_H
  5
  6#include <linux/atomic.h>
  7#include <linux/mutex.h>
  8#include <linux/list.h>
  9#include <linux/spinlock.h>
 10#include <linux/refcount.h>
 11#include <linux/wait.h>
 12#include <linux/sizes.h>
 13#include <linux/rwsem.h>
 14#include <linux/rbtree.h>
 15#include <uapi/linux/btrfs_tree.h>
 16#include "free-space-cache.h"
 17
 18struct btrfs_chunk_map;
 19struct btrfs_fs_info;
 20struct btrfs_inode;
 21struct btrfs_trans_handle;
 22
 23enum btrfs_disk_cache_state {
 24	BTRFS_DC_WRITTEN,
 25	BTRFS_DC_ERROR,
 26	BTRFS_DC_CLEAR,
 27	BTRFS_DC_SETUP,
 28};
 29
 30enum btrfs_block_group_size_class {
 31	/* Unset */
 32	BTRFS_BG_SZ_NONE,
 33	/* 0 < size <= 128K */
 34	BTRFS_BG_SZ_SMALL,
 35	/* 128K < size <= 8M */
 36	BTRFS_BG_SZ_MEDIUM,
 37	/* 8M < size < BG_LENGTH */
 38	BTRFS_BG_SZ_LARGE,
 39};
 40
 41/*
 42 * This describes the state of the block_group for async discard.  This is due
 43 * to the two pass nature of it where extent discarding is prioritized over
 44 * bitmap discarding.  BTRFS_DISCARD_RESET_CURSOR is set when we are resetting
 45 * between lists to prevent contention for discard state variables
 46 * (eg. discard_cursor).
 47 */
 48enum btrfs_discard_state {
 49	BTRFS_DISCARD_EXTENTS,
 50	BTRFS_DISCARD_BITMAPS,
 51	BTRFS_DISCARD_RESET_CURSOR,
 52};
 53
 54/*
 55 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to
 56 * only allocate a chunk if we really need one.
 57 *
 58 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few
 59 * chunks already allocated.  This is used as part of the clustering code to
 60 * help make sure we have a good pool of storage to cluster in, without filling
 61 * the FS with empty chunks
 62 *
 63 * CHUNK_ALLOC_FORCE means it must try to allocate one
 64 *
 65 * CHUNK_ALLOC_FORCE_FOR_EXTENT like CHUNK_ALLOC_FORCE but called from
 66 * find_free_extent() that also activaes the zone
 67 */
 68enum btrfs_chunk_alloc_enum {
 69	CHUNK_ALLOC_NO_FORCE,
 70	CHUNK_ALLOC_LIMITED,
 71	CHUNK_ALLOC_FORCE,
 72	CHUNK_ALLOC_FORCE_FOR_EXTENT,
 73};
 74
 75/* Block group flags set at runtime */
 76enum btrfs_block_group_flags {
 77	BLOCK_GROUP_FLAG_IREF,
 78	BLOCK_GROUP_FLAG_REMOVED,
 79	BLOCK_GROUP_FLAG_TO_COPY,
 80	BLOCK_GROUP_FLAG_RELOCATING_REPAIR,
 81	BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
 82	BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
 83	BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
 84	/* Does the block group need to be added to the free space tree? */
 85	BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE,
 86	/* Indicate that the block group is placed on a sequential zone */
 87	BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE,
 88	/*
 89	 * Indicate that block group is in the list of new block groups of a
 90	 * transaction.
 91	 */
 92	BLOCK_GROUP_FLAG_NEW,
 93};
 94
 95enum btrfs_caching_type {
 96	BTRFS_CACHE_NO,
 97	BTRFS_CACHE_STARTED,
 98	BTRFS_CACHE_FINISHED,
 99	BTRFS_CACHE_ERROR,
100};
101
102struct btrfs_caching_control {
103	struct list_head list;
104	struct mutex mutex;
105	wait_queue_head_t wait;
106	struct btrfs_work work;
107	struct btrfs_block_group *block_group;
108	/* Track progress of caching during allocation. */
109	atomic_t progress;
110	refcount_t count;
111};
112
113/* Once caching_thread() finds this much free space, it will wake up waiters. */
114#define CACHING_CTL_WAKE_UP SZ_2M
115
116struct btrfs_block_group {
117	struct btrfs_fs_info *fs_info;
118	struct btrfs_inode *inode;
119	spinlock_t lock;
120	u64 start;
121	u64 length;
122	u64 pinned;
123	u64 reserved;
124	u64 used;
125	u64 delalloc_bytes;
126	u64 bytes_super;
127	u64 flags;
128	u64 cache_generation;
129	u64 global_root_id;
130
131	/*
132	 * The last committed used bytes of this block group, if the above @used
133	 * is still the same as @commit_used, we don't need to update block
134	 * group item of this block group.
135	 */
136	u64 commit_used;
137	/*
138	 * If the free space extent count exceeds this number, convert the block
139	 * group to bitmaps.
140	 */
141	u32 bitmap_high_thresh;
142
143	/*
144	 * If the free space extent count drops below this number, convert the
145	 * block group back to extents.
146	 */
147	u32 bitmap_low_thresh;
148
149	/*
150	 * It is just used for the delayed data space allocation because
151	 * only the data space allocation and the relative metadata update
152	 * can be done cross the transaction.
153	 */
154	struct rw_semaphore data_rwsem;
155
156	/* For raid56, this is a full stripe, without parity */
157	unsigned long full_stripe_len;
158	unsigned long runtime_flags;
159
160	unsigned int ro;
161
162	int disk_cache_state;
163
164	/* Cache tracking stuff */
165	int cached;
166	struct btrfs_caching_control *caching_ctl;
167
168	struct btrfs_space_info *space_info;
169
170	/* Free space cache stuff */
171	struct btrfs_free_space_ctl *free_space_ctl;
172
173	/* Block group cache stuff */
174	struct rb_node cache_node;
175
176	/* For block groups in the same raid type */
177	struct list_head list;
178
179	refcount_t refs;
180
181	/*
182	 * List of struct btrfs_free_clusters for this block group.
183	 * Today it will only have one thing on it, but that may change
184	 */
185	struct list_head cluster_list;
186
187	/*
188	 * Used for several lists:
189	 *
190	 * 1) struct btrfs_fs_info::unused_bgs
191	 * 2) struct btrfs_fs_info::reclaim_bgs
192	 * 3) struct btrfs_transaction::deleted_bgs
193	 * 4) struct btrfs_trans_handle::new_bgs
194	 */
195	struct list_head bg_list;
196
197	/* For read-only block groups */
198	struct list_head ro_list;
199
200	/*
201	 * When non-zero it means the block group's logical address and its
202	 * device extents can not be reused for future block group allocations
203	 * until the counter goes down to 0. This is to prevent them from being
204	 * reused while some task is still using the block group after it was
205	 * deleted - we want to make sure they can only be reused for new block
206	 * groups after that task is done with the deleted block group.
207	 */
208	atomic_t frozen;
209
210	/* For discard operations */
211	struct list_head discard_list;
212	int discard_index;
213	u64 discard_eligible_time;
214	u64 discard_cursor;
215	enum btrfs_discard_state discard_state;
216
217	/* For dirty block groups */
218	struct list_head dirty_list;
219	struct list_head io_list;
220
221	struct btrfs_io_ctl io_ctl;
222
223	/*
224	 * Incremented when doing extent allocations and holding a read lock
225	 * on the space_info's groups_sem semaphore.
226	 * Decremented when an ordered extent that represents an IO against this
227	 * block group's range is created (after it's added to its inode's
228	 * root's list of ordered extents) or immediately after the allocation
229	 * if it's a metadata extent or fallocate extent (for these cases we
230	 * don't create ordered extents).
231	 */
232	atomic_t reservations;
233
234	/*
235	 * Incremented while holding the spinlock *lock* by a task checking if
236	 * it can perform a nocow write (incremented if the value for the *ro*
237	 * field is 0). Decremented by such tasks once they create an ordered
238	 * extent or before that if some error happens before reaching that step.
239	 * This is to prevent races between block group relocation and nocow
240	 * writes through direct IO.
241	 */
242	atomic_t nocow_writers;
243
244	/* Lock for free space tree operations. */
245	struct mutex free_space_lock;
246
247	/*
248	 * Number of extents in this block group used for swap files.
249	 * All accesses protected by the spinlock 'lock'.
250	 */
251	int swap_extents;
252
253	/*
254	 * Allocation offset for the block group to implement sequential
255	 * allocation. This is used only on a zoned filesystem.
256	 */
257	u64 alloc_offset;
258	u64 zone_unusable;
259	u64 zone_capacity;
260	u64 meta_write_pointer;
261	struct btrfs_chunk_map *physical_map;
262	struct list_head active_bg_list;
263	struct work_struct zone_finish_work;
264	struct extent_buffer *last_eb;
265	enum btrfs_block_group_size_class size_class;
266	u64 reclaim_mark;
267};
268
269static inline u64 btrfs_block_group_end(const struct btrfs_block_group *block_group)
270{
271	return (block_group->start + block_group->length);
272}
273
274static inline bool btrfs_is_block_group_used(const struct btrfs_block_group *bg)
275{
276	lockdep_assert_held(&bg->lock);
277
278	return (bg->used > 0 || bg->reserved > 0 || bg->pinned > 0);
279}
280
281static inline bool btrfs_is_block_group_data_only(const struct btrfs_block_group *block_group)
 
282{
283	/*
284	 * In mixed mode the fragmentation is expected to be high, lowering the
285	 * efficiency, so only proper data block groups are considered.
286	 */
287	return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
288	       !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA);
289}
290
291#ifdef CONFIG_BTRFS_DEBUG
292int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group);
293#endif
294
295struct btrfs_block_group *btrfs_lookup_first_block_group(
296		struct btrfs_fs_info *info, u64 bytenr);
297struct btrfs_block_group *btrfs_lookup_block_group(
298		struct btrfs_fs_info *info, u64 bytenr);
299struct btrfs_block_group *btrfs_next_block_group(
300		struct btrfs_block_group *cache);
301void btrfs_get_block_group(struct btrfs_block_group *cache);
302void btrfs_put_block_group(struct btrfs_block_group *cache);
303void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
304					const u64 start);
305void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg);
306struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
307						  u64 bytenr);
308void btrfs_dec_nocow_writers(struct btrfs_block_group *bg);
309void btrfs_wait_nocow_writers(struct btrfs_block_group *bg);
310void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
311				           u64 num_bytes);
312int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait);
 
313struct btrfs_caching_control *btrfs_get_caching_control(
314		struct btrfs_block_group *cache);
315int btrfs_add_new_free_space(struct btrfs_block_group *block_group,
316			     u64 start, u64 end, u64 *total_added_ret);
317struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
318				struct btrfs_fs_info *fs_info,
319				const u64 chunk_offset);
320int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
321			     struct btrfs_chunk_map *map);
322void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
323void btrfs_mark_bg_unused(struct btrfs_block_group *bg);
324void btrfs_reclaim_bgs_work(struct work_struct *work);
325void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info);
326void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg);
327int btrfs_read_block_groups(struct btrfs_fs_info *info);
328struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
329						 u64 type,
330						 u64 chunk_offset, u64 size);
331void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
332int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
333			     bool do_chunk_alloc);
334void btrfs_dec_block_group_ro(struct btrfs_block_group *cache);
335int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
336int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans);
337int btrfs_setup_space_cache(struct btrfs_trans_handle *trans);
338int btrfs_update_block_group(struct btrfs_trans_handle *trans,
339			     u64 bytenr, u64 num_bytes, bool alloc);
340int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
341			     u64 ram_bytes, u64 num_bytes, int delalloc,
342			     bool force_wrong_size_class);
343void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
344			       u64 num_bytes, int delalloc);
345int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
346		      enum btrfs_chunk_alloc_enum force);
347int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type);
348void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type);
349void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
350				  bool is_item_insertion);
351u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags);
352void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
353int btrfs_free_block_groups(struct btrfs_fs_info *info);
354int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
355		     u64 physical, u64 **logical, int *naddrs, int *stripe_len);
356
357static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
358{
359	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
360}
361
362static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
363{
364	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
365}
366
367static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
368{
369	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
370}
371
372static inline int btrfs_block_group_done(const struct btrfs_block_group *cache)
373{
374	smp_mb();
375	return cache->cached == BTRFS_CACHE_FINISHED ||
376		cache->cached == BTRFS_CACHE_ERROR;
377}
378
379void btrfs_freeze_block_group(struct btrfs_block_group *cache);
380void btrfs_unfreeze_block_group(struct btrfs_block_group *cache);
381
382bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg);
383void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount);
384
385enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size);
386int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
387				     enum btrfs_block_group_size_class size_class,
388				     bool force_wrong_size_class);
389bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg);
390
391#endif /* BTRFS_BLOCK_GROUP_H */
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifndef BTRFS_BLOCK_GROUP_H
  4#define BTRFS_BLOCK_GROUP_H
  5
 
 
 
 
 
 
 
 
 
 
  6#include "free-space-cache.h"
  7
  8struct btrfs_chunk_map;
 
 
 
  9
 10enum btrfs_disk_cache_state {
 11	BTRFS_DC_WRITTEN,
 12	BTRFS_DC_ERROR,
 13	BTRFS_DC_CLEAR,
 14	BTRFS_DC_SETUP,
 15};
 16
 17enum btrfs_block_group_size_class {
 18	/* Unset */
 19	BTRFS_BG_SZ_NONE,
 20	/* 0 < size <= 128K */
 21	BTRFS_BG_SZ_SMALL,
 22	/* 128K < size <= 8M */
 23	BTRFS_BG_SZ_MEDIUM,
 24	/* 8M < size < BG_LENGTH */
 25	BTRFS_BG_SZ_LARGE,
 26};
 27
 28/*
 29 * This describes the state of the block_group for async discard.  This is due
 30 * to the two pass nature of it where extent discarding is prioritized over
 31 * bitmap discarding.  BTRFS_DISCARD_RESET_CURSOR is set when we are resetting
 32 * between lists to prevent contention for discard state variables
 33 * (eg. discard_cursor).
 34 */
 35enum btrfs_discard_state {
 36	BTRFS_DISCARD_EXTENTS,
 37	BTRFS_DISCARD_BITMAPS,
 38	BTRFS_DISCARD_RESET_CURSOR,
 39};
 40
 41/*
 42 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to
 43 * only allocate a chunk if we really need one.
 44 *
 45 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few
 46 * chunks already allocated.  This is used as part of the clustering code to
 47 * help make sure we have a good pool of storage to cluster in, without filling
 48 * the FS with empty chunks
 49 *
 50 * CHUNK_ALLOC_FORCE means it must try to allocate one
 51 *
 52 * CHUNK_ALLOC_FORCE_FOR_EXTENT like CHUNK_ALLOC_FORCE but called from
 53 * find_free_extent() that also activaes the zone
 54 */
 55enum btrfs_chunk_alloc_enum {
 56	CHUNK_ALLOC_NO_FORCE,
 57	CHUNK_ALLOC_LIMITED,
 58	CHUNK_ALLOC_FORCE,
 59	CHUNK_ALLOC_FORCE_FOR_EXTENT,
 60};
 61
 62/* Block group flags set at runtime */
 63enum btrfs_block_group_flags {
 64	BLOCK_GROUP_FLAG_IREF,
 65	BLOCK_GROUP_FLAG_REMOVED,
 66	BLOCK_GROUP_FLAG_TO_COPY,
 67	BLOCK_GROUP_FLAG_RELOCATING_REPAIR,
 68	BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
 69	BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
 70	BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
 71	/* Does the block group need to be added to the free space tree? */
 72	BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE,
 73	/* Indicate that the block group is placed on a sequential zone */
 74	BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE,
 75	/*
 76	 * Indicate that block group is in the list of new block groups of a
 77	 * transaction.
 78	 */
 79	BLOCK_GROUP_FLAG_NEW,
 80};
 81
 82enum btrfs_caching_type {
 83	BTRFS_CACHE_NO,
 84	BTRFS_CACHE_STARTED,
 85	BTRFS_CACHE_FINISHED,
 86	BTRFS_CACHE_ERROR,
 87};
 88
 89struct btrfs_caching_control {
 90	struct list_head list;
 91	struct mutex mutex;
 92	wait_queue_head_t wait;
 93	struct btrfs_work work;
 94	struct btrfs_block_group *block_group;
 95	/* Track progress of caching during allocation. */
 96	atomic_t progress;
 97	refcount_t count;
 98};
 99
100/* Once caching_thread() finds this much free space, it will wake up waiters. */
101#define CACHING_CTL_WAKE_UP SZ_2M
102
103struct btrfs_block_group {
104	struct btrfs_fs_info *fs_info;
105	struct inode *inode;
106	spinlock_t lock;
107	u64 start;
108	u64 length;
109	u64 pinned;
110	u64 reserved;
111	u64 used;
112	u64 delalloc_bytes;
113	u64 bytes_super;
114	u64 flags;
115	u64 cache_generation;
116	u64 global_root_id;
117
118	/*
119	 * The last committed used bytes of this block group, if the above @used
120	 * is still the same as @commit_used, we don't need to update block
121	 * group item of this block group.
122	 */
123	u64 commit_used;
124	/*
125	 * If the free space extent count exceeds this number, convert the block
126	 * group to bitmaps.
127	 */
128	u32 bitmap_high_thresh;
129
130	/*
131	 * If the free space extent count drops below this number, convert the
132	 * block group back to extents.
133	 */
134	u32 bitmap_low_thresh;
135
136	/*
137	 * It is just used for the delayed data space allocation because
138	 * only the data space allocation and the relative metadata update
139	 * can be done cross the transaction.
140	 */
141	struct rw_semaphore data_rwsem;
142
143	/* For raid56, this is a full stripe, without parity */
144	unsigned long full_stripe_len;
145	unsigned long runtime_flags;
146
147	unsigned int ro;
148
149	int disk_cache_state;
150
151	/* Cache tracking stuff */
152	int cached;
153	struct btrfs_caching_control *caching_ctl;
154
155	struct btrfs_space_info *space_info;
156
157	/* Free space cache stuff */
158	struct btrfs_free_space_ctl *free_space_ctl;
159
160	/* Block group cache stuff */
161	struct rb_node cache_node;
162
163	/* For block groups in the same raid type */
164	struct list_head list;
165
166	refcount_t refs;
167
168	/*
169	 * List of struct btrfs_free_clusters for this block group.
170	 * Today it will only have one thing on it, but that may change
171	 */
172	struct list_head cluster_list;
173
174	/*
175	 * Used for several lists:
176	 *
177	 * 1) struct btrfs_fs_info::unused_bgs
178	 * 2) struct btrfs_fs_info::reclaim_bgs
179	 * 3) struct btrfs_transaction::deleted_bgs
180	 * 4) struct btrfs_trans_handle::new_bgs
181	 */
182	struct list_head bg_list;
183
184	/* For read-only block groups */
185	struct list_head ro_list;
186
187	/*
188	 * When non-zero it means the block group's logical address and its
189	 * device extents can not be reused for future block group allocations
190	 * until the counter goes down to 0. This is to prevent them from being
191	 * reused while some task is still using the block group after it was
192	 * deleted - we want to make sure they can only be reused for new block
193	 * groups after that task is done with the deleted block group.
194	 */
195	atomic_t frozen;
196
197	/* For discard operations */
198	struct list_head discard_list;
199	int discard_index;
200	u64 discard_eligible_time;
201	u64 discard_cursor;
202	enum btrfs_discard_state discard_state;
203
204	/* For dirty block groups */
205	struct list_head dirty_list;
206	struct list_head io_list;
207
208	struct btrfs_io_ctl io_ctl;
209
210	/*
211	 * Incremented when doing extent allocations and holding a read lock
212	 * on the space_info's groups_sem semaphore.
213	 * Decremented when an ordered extent that represents an IO against this
214	 * block group's range is created (after it's added to its inode's
215	 * root's list of ordered extents) or immediately after the allocation
216	 * if it's a metadata extent or fallocate extent (for these cases we
217	 * don't create ordered extents).
218	 */
219	atomic_t reservations;
220
221	/*
222	 * Incremented while holding the spinlock *lock* by a task checking if
223	 * it can perform a nocow write (incremented if the value for the *ro*
224	 * field is 0). Decremented by such tasks once they create an ordered
225	 * extent or before that if some error happens before reaching that step.
226	 * This is to prevent races between block group relocation and nocow
227	 * writes through direct IO.
228	 */
229	atomic_t nocow_writers;
230
231	/* Lock for free space tree operations. */
232	struct mutex free_space_lock;
233
234	/*
235	 * Number of extents in this block group used for swap files.
236	 * All accesses protected by the spinlock 'lock'.
237	 */
238	int swap_extents;
239
240	/*
241	 * Allocation offset for the block group to implement sequential
242	 * allocation. This is used only on a zoned filesystem.
243	 */
244	u64 alloc_offset;
245	u64 zone_unusable;
246	u64 zone_capacity;
247	u64 meta_write_pointer;
248	struct btrfs_chunk_map *physical_map;
249	struct list_head active_bg_list;
250	struct work_struct zone_finish_work;
251	struct extent_buffer *last_eb;
252	enum btrfs_block_group_size_class size_class;
 
253};
254
255static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group)
256{
257	return (block_group->start + block_group->length);
258}
259
260static inline bool btrfs_is_block_group_used(const struct btrfs_block_group *bg)
261{
262	lockdep_assert_held(&bg->lock);
263
264	return (bg->used > 0 || bg->reserved > 0 || bg->pinned > 0);
265}
266
267static inline bool btrfs_is_block_group_data_only(
268					struct btrfs_block_group *block_group)
269{
270	/*
271	 * In mixed mode the fragmentation is expected to be high, lowering the
272	 * efficiency, so only proper data block groups are considered.
273	 */
274	return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
275	       !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA);
276}
277
278#ifdef CONFIG_BTRFS_DEBUG
279int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group);
280#endif
281
282struct btrfs_block_group *btrfs_lookup_first_block_group(
283		struct btrfs_fs_info *info, u64 bytenr);
284struct btrfs_block_group *btrfs_lookup_block_group(
285		struct btrfs_fs_info *info, u64 bytenr);
286struct btrfs_block_group *btrfs_next_block_group(
287		struct btrfs_block_group *cache);
288void btrfs_get_block_group(struct btrfs_block_group *cache);
289void btrfs_put_block_group(struct btrfs_block_group *cache);
290void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
291					const u64 start);
292void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg);
293struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
294						  u64 bytenr);
295void btrfs_dec_nocow_writers(struct btrfs_block_group *bg);
296void btrfs_wait_nocow_writers(struct btrfs_block_group *bg);
297void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
298				           u64 num_bytes);
299int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait);
300void btrfs_put_caching_control(struct btrfs_caching_control *ctl);
301struct btrfs_caching_control *btrfs_get_caching_control(
302		struct btrfs_block_group *cache);
303int btrfs_add_new_free_space(struct btrfs_block_group *block_group,
304			     u64 start, u64 end, u64 *total_added_ret);
305struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
306				struct btrfs_fs_info *fs_info,
307				const u64 chunk_offset);
308int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
309			     struct btrfs_chunk_map *map);
310void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
311void btrfs_mark_bg_unused(struct btrfs_block_group *bg);
312void btrfs_reclaim_bgs_work(struct work_struct *work);
313void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info);
314void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg);
315int btrfs_read_block_groups(struct btrfs_fs_info *info);
316struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
317						 u64 type,
318						 u64 chunk_offset, u64 size);
319void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
320int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
321			     bool do_chunk_alloc);
322void btrfs_dec_block_group_ro(struct btrfs_block_group *cache);
323int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
324int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans);
325int btrfs_setup_space_cache(struct btrfs_trans_handle *trans);
326int btrfs_update_block_group(struct btrfs_trans_handle *trans,
327			     u64 bytenr, u64 num_bytes, bool alloc);
328int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
329			     u64 ram_bytes, u64 num_bytes, int delalloc,
330			     bool force_wrong_size_class);
331void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
332			       u64 num_bytes, int delalloc);
333int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
334		      enum btrfs_chunk_alloc_enum force);
335int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type);
336void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type);
337void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
338				  bool is_item_insertion);
339u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags);
340void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
341int btrfs_free_block_groups(struct btrfs_fs_info *info);
342int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
343		     u64 physical, u64 **logical, int *naddrs, int *stripe_len);
344
345static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
346{
347	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
348}
349
350static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
351{
352	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
353}
354
355static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
356{
357	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
358}
359
360static inline int btrfs_block_group_done(struct btrfs_block_group *cache)
361{
362	smp_mb();
363	return cache->cached == BTRFS_CACHE_FINISHED ||
364		cache->cached == BTRFS_CACHE_ERROR;
365}
366
367void btrfs_freeze_block_group(struct btrfs_block_group *cache);
368void btrfs_unfreeze_block_group(struct btrfs_block_group *cache);
369
370bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg);
371void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount);
372
373enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size);
374int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
375				     enum btrfs_block_group_size_class size_class,
376				     bool force_wrong_size_class);
377bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg);
378
379#endif /* BTRFS_BLOCK_GROUP_H */