Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// helpers.c  --  Voltage/Current Regulator framework helper functions.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7
   8#include <linux/bitops.h>
   9#include <linux/delay.h>
  10#include <linux/err.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/regmap.h>
  14#include <linux/regulator/consumer.h>
  15#include <linux/regulator/driver.h>
  16
  17#include "internal.h"
  18
  19/**
  20 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
  21 *
  22 * @rdev: regulator to operate on
  23 *
  24 * Regulators that use regmap for their register I/O can set the
  25 * enable_reg and enable_mask fields in their descriptor and then use
  26 * this as their is_enabled operation, saving some code.
  27 */
  28int regulator_is_enabled_regmap(struct regulator_dev *rdev)
  29{
  30	unsigned int val;
  31	int ret;
  32
  33	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
  34	if (ret != 0)
  35		return ret;
  36
  37	val &= rdev->desc->enable_mask;
  38
  39	if (rdev->desc->enable_is_inverted) {
  40		if (rdev->desc->enable_val)
  41			return val != rdev->desc->enable_val;
  42		return val == 0;
  43	} else {
  44		if (rdev->desc->enable_val)
  45			return val == rdev->desc->enable_val;
  46		return val != 0;
  47	}
  48}
  49EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
  50
  51/**
  52 * regulator_enable_regmap - standard enable() for regmap users
  53 *
  54 * @rdev: regulator to operate on
  55 *
  56 * Regulators that use regmap for their register I/O can set the
  57 * enable_reg and enable_mask fields in their descriptor and then use
  58 * this as their enable() operation, saving some code.
  59 */
  60int regulator_enable_regmap(struct regulator_dev *rdev)
  61{
  62	unsigned int val;
  63
  64	if (rdev->desc->enable_is_inverted) {
  65		val = rdev->desc->disable_val;
  66	} else {
  67		val = rdev->desc->enable_val;
  68		if (!val)
  69			val = rdev->desc->enable_mask;
  70	}
  71
  72	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
  73				  rdev->desc->enable_mask, val);
  74}
  75EXPORT_SYMBOL_GPL(regulator_enable_regmap);
  76
  77/**
  78 * regulator_disable_regmap - standard disable() for regmap users
  79 *
  80 * @rdev: regulator to operate on
  81 *
  82 * Regulators that use regmap for their register I/O can set the
  83 * enable_reg and enable_mask fields in their descriptor and then use
  84 * this as their disable() operation, saving some code.
  85 */
  86int regulator_disable_regmap(struct regulator_dev *rdev)
  87{
  88	unsigned int val;
  89
  90	if (rdev->desc->enable_is_inverted) {
  91		val = rdev->desc->enable_val;
  92		if (!val)
  93			val = rdev->desc->enable_mask;
  94	} else {
  95		val = rdev->desc->disable_val;
  96	}
  97
  98	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
  99				  rdev->desc->enable_mask, val);
 100}
 101EXPORT_SYMBOL_GPL(regulator_disable_regmap);
 102
 103static int regulator_range_selector_to_index(struct regulator_dev *rdev,
 104					     unsigned int rval)
 105{
 106	int i;
 107
 108	if (!rdev->desc->linear_range_selectors_bitfield)
 109		return -EINVAL;
 110
 111	rval &= rdev->desc->vsel_range_mask;
 112	rval >>= ffs(rdev->desc->vsel_range_mask) - 1;
 113
 114	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 115		if (rdev->desc->linear_range_selectors_bitfield[i] == rval)
 116			return i;
 117	}
 118	return -EINVAL;
 119}
 120
 121/**
 122 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
 123 *
 124 * @rdev: regulator to operate on
 125 *
 126 * Regulators that use regmap for their register I/O and use pickable
 127 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
 128 * fields in their descriptor and then use this as their get_voltage_sel
 129 * operation, saving some code.
 130 */
 131int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
 132{
 133	unsigned int r_val;
 134	int range;
 135	unsigned int val;
 136	int ret;
 137	unsigned int voltages = 0;
 138	const struct linear_range *r = rdev->desc->linear_ranges;
 139
 140	if (!r)
 141		return -EINVAL;
 142
 143	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
 144	if (ret != 0)
 145		return ret;
 146
 147	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
 148	if (ret != 0)
 149		return ret;
 150
 151	val &= rdev->desc->vsel_mask;
 152	val >>= ffs(rdev->desc->vsel_mask) - 1;
 153
 154	range = regulator_range_selector_to_index(rdev, r_val);
 155	if (range < 0)
 156		return -EINVAL;
 157
 158	voltages = linear_range_values_in_range_array(r, range);
 159
 160	return val + voltages;
 161}
 162EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
 163
 164static int write_separate_vsel_and_range(struct regulator_dev *rdev,
 165					 unsigned int sel, unsigned int range)
 166{
 167	bool range_updated;
 168	int ret;
 169
 170	ret = regmap_update_bits_base(rdev->regmap, rdev->desc->vsel_range_reg,
 171				      rdev->desc->vsel_range_mask,
 172				      range, &range_updated, false, false);
 173	if (ret)
 174		return ret;
 175
 176	/*
 177	 * Some PMICs treat the vsel_reg same as apply-bit. Force it to be
 178	 * written if the range changed, even if the old selector was same as
 179	 * the new one
 180	 */
 181	if (rdev->desc->range_applied_by_vsel && range_updated)
 182		return regmap_write_bits(rdev->regmap,
 183					rdev->desc->vsel_reg,
 184					rdev->desc->vsel_mask, sel);
 185
 186	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
 187				  rdev->desc->vsel_mask, sel);
 188}
 189
 190/**
 191 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
 192 *
 193 * @rdev: regulator to operate on
 194 * @sel: Selector to set
 195 *
 196 * Regulators that use regmap for their register I/O and use pickable
 197 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
 198 * fields in their descriptor and then use this as their set_voltage_sel
 199 * operation, saving some code.
 200 */
 201int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
 202					      unsigned int sel)
 203{
 204	unsigned int range;
 205	int ret, i;
 206	unsigned int voltages_in_range = 0;
 207
 208	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 209		const struct linear_range *r;
 210
 211		r = &rdev->desc->linear_ranges[i];
 212		voltages_in_range = linear_range_values_in_range(r);
 213
 214		if (sel < voltages_in_range)
 215			break;
 216		sel -= voltages_in_range;
 217	}
 218
 219	if (i == rdev->desc->n_linear_ranges)
 220		return -EINVAL;
 221
 222	sel <<= ffs(rdev->desc->vsel_mask) - 1;
 223	sel += rdev->desc->linear_ranges[i].min_sel;
 224
 225	range = rdev->desc->linear_range_selectors_bitfield[i];
 226	range <<= ffs(rdev->desc->vsel_range_mask) - 1;
 227
 228	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg)
 229		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
 
 230					 rdev->desc->vsel_range_mask |
 231					 rdev->desc->vsel_mask, sel | range);
 232	else
 233		ret = write_separate_vsel_and_range(rdev, sel, range);
 
 
 
 
 
 
 
 
 234
 235	if (ret)
 236		return ret;
 237
 238	if (rdev->desc->apply_bit)
 239		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
 240					 rdev->desc->apply_bit,
 241					 rdev->desc->apply_bit);
 242	return ret;
 243}
 244EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
 245
 246/**
 247 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
 248 *
 249 * @rdev: regulator to operate on
 250 *
 251 * Regulators that use regmap for their register I/O can set the
 252 * vsel_reg and vsel_mask fields in their descriptor and then use this
 253 * as their get_voltage_sel operation, saving some code.
 254 */
 255int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
 256{
 257	unsigned int val;
 258	int ret;
 259
 260	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
 261	if (ret != 0)
 262		return ret;
 263
 264	val &= rdev->desc->vsel_mask;
 265	val >>= ffs(rdev->desc->vsel_mask) - 1;
 266
 267	return val;
 268}
 269EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
 270
 271/**
 272 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
 273 *
 274 * @rdev: regulator to operate on
 275 * @sel: Selector to set
 276 *
 277 * Regulators that use regmap for their register I/O can set the
 278 * vsel_reg and vsel_mask fields in their descriptor and then use this
 279 * as their set_voltage_sel operation, saving some code.
 280 */
 281int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
 282{
 283	int ret;
 284
 285	sel <<= ffs(rdev->desc->vsel_mask) - 1;
 286
 287	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
 288				  rdev->desc->vsel_mask, sel);
 289	if (ret)
 290		return ret;
 291
 292	if (rdev->desc->apply_bit)
 293		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
 294					 rdev->desc->apply_bit,
 295					 rdev->desc->apply_bit);
 296	return ret;
 297}
 298EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
 299
 300/**
 301 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
 302 *
 303 * @rdev: Regulator to operate on
 304 * @min_uV: Lower bound for voltage
 305 * @max_uV: Upper bound for voltage
 306 *
 307 * Drivers implementing set_voltage_sel() and list_voltage() can use
 308 * this as their map_voltage() operation.  It will find a suitable
 309 * voltage by calling list_voltage() until it gets something in bounds
 310 * for the requested voltages.
 311 */
 312int regulator_map_voltage_iterate(struct regulator_dev *rdev,
 313				  int min_uV, int max_uV)
 314{
 315	int best_val = INT_MAX;
 316	int selector = 0;
 317	int i, ret;
 318
 319	/* Find the smallest voltage that falls within the specified
 320	 * range.
 321	 */
 322	for (i = 0; i < rdev->desc->n_voltages; i++) {
 323		ret = rdev->desc->ops->list_voltage(rdev, i);
 324		if (ret < 0)
 325			continue;
 326
 327		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
 328			best_val = ret;
 329			selector = i;
 330		}
 331	}
 332
 333	if (best_val != INT_MAX)
 334		return selector;
 335	else
 336		return -EINVAL;
 337}
 338EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
 339
 340/**
 341 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
 342 *
 343 * @rdev: Regulator to operate on
 344 * @min_uV: Lower bound for voltage
 345 * @max_uV: Upper bound for voltage
 346 *
 347 * Drivers that have ascendant voltage list can use this as their
 348 * map_voltage() operation.
 349 */
 350int regulator_map_voltage_ascend(struct regulator_dev *rdev,
 351				 int min_uV, int max_uV)
 352{
 353	int i, ret;
 354
 355	for (i = 0; i < rdev->desc->n_voltages; i++) {
 356		ret = rdev->desc->ops->list_voltage(rdev, i);
 357		if (ret < 0)
 358			continue;
 359
 360		if (ret > max_uV)
 361			break;
 362
 363		if (ret >= min_uV && ret <= max_uV)
 364			return i;
 365	}
 366
 367	return -EINVAL;
 368}
 369EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
 370
 371/**
 372 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
 373 *
 374 * @rdev: Regulator to operate on
 375 * @min_uV: Lower bound for voltage
 376 * @max_uV: Upper bound for voltage
 377 *
 378 * Drivers providing min_uV and uV_step in their regulator_desc can
 379 * use this as their map_voltage() operation.
 380 */
 381int regulator_map_voltage_linear(struct regulator_dev *rdev,
 382				 int min_uV, int max_uV)
 383{
 384	int ret, voltage;
 385
 386	/* Allow uV_step to be 0 for fixed voltage */
 387	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
 388		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
 389			return 0;
 390		else
 391			return -EINVAL;
 392	}
 393
 394	if (!rdev->desc->uV_step) {
 395		BUG_ON(!rdev->desc->uV_step);
 396		return -EINVAL;
 397	}
 398
 399	if (min_uV < rdev->desc->min_uV)
 400		min_uV = rdev->desc->min_uV;
 401
 402	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
 403	if (ret < 0)
 404		return ret;
 405
 406	ret += rdev->desc->linear_min_sel;
 407
 408	/* Map back into a voltage to verify we're still in bounds */
 409	voltage = rdev->desc->ops->list_voltage(rdev, ret);
 410	if (voltage < min_uV || voltage > max_uV)
 411		return -EINVAL;
 412
 413	return ret;
 414}
 415EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
 416
 417/**
 418 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
 419 *
 420 * @rdev: Regulator to operate on
 421 * @min_uV: Lower bound for voltage
 422 * @max_uV: Upper bound for voltage
 423 *
 424 * Drivers providing linear_ranges in their descriptor can use this as
 425 * their map_voltage() callback.
 426 */
 427int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
 428				       int min_uV, int max_uV)
 429{
 430	const struct linear_range *range;
 431	int ret = -EINVAL;
 432	unsigned int sel;
 433	bool found;
 434	int voltage, i;
 435
 436	if (!rdev->desc->n_linear_ranges) {
 437		BUG_ON(!rdev->desc->n_linear_ranges);
 438		return -EINVAL;
 439	}
 440
 441	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 442		range = &rdev->desc->linear_ranges[i];
 443
 444		ret = linear_range_get_selector_high(range, min_uV, &sel,
 445						     &found);
 446		if (ret)
 447			continue;
 448		ret = sel;
 449
 450		/*
 451		 * Map back into a voltage to verify we're still in bounds.
 452		 * If we are not, then continue checking rest of the ranges.
 453		 */
 454		voltage = rdev->desc->ops->list_voltage(rdev, sel);
 455		if (voltage >= min_uV && voltage <= max_uV)
 456			break;
 457	}
 458
 459	if (i == rdev->desc->n_linear_ranges)
 460		return -EINVAL;
 461
 462	return ret;
 463}
 464EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
 465
 466/**
 467 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
 468 *
 469 * @rdev: Regulator to operate on
 470 * @min_uV: Lower bound for voltage
 471 * @max_uV: Upper bound for voltage
 472 *
 473 * Drivers providing pickable linear_ranges in their descriptor can use
 474 * this as their map_voltage() callback.
 475 */
 476int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
 477						int min_uV, int max_uV)
 478{
 479	const struct linear_range *range;
 480	int ret = -EINVAL;
 481	int voltage, i;
 482	unsigned int selector = 0;
 483
 484	if (!rdev->desc->n_linear_ranges) {
 485		BUG_ON(!rdev->desc->n_linear_ranges);
 486		return -EINVAL;
 487	}
 488
 489	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 490		int linear_max_uV;
 491		bool found;
 492		unsigned int sel;
 493
 494		range = &rdev->desc->linear_ranges[i];
 495		linear_max_uV = linear_range_get_max_value(range);
 496
 497		if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
 498			selector += linear_range_values_in_range(range);
 499			continue;
 500		}
 501
 502		ret = linear_range_get_selector_high(range, min_uV, &sel,
 503						     &found);
 504		if (ret) {
 505			selector += linear_range_values_in_range(range);
 506			continue;
 507		}
 508
 509		ret = selector + sel - range->min_sel;
 510
 511		voltage = rdev->desc->ops->list_voltage(rdev, ret);
 512
 513		/*
 514		 * Map back into a voltage to verify we're still in bounds.
 515		 * We may have overlapping voltage ranges. Hence we don't
 516		 * exit but retry until we have checked all ranges.
 517		 */
 518		if (voltage < min_uV || voltage > max_uV)
 519			selector += linear_range_values_in_range(range);
 520		else
 521			break;
 522	}
 523
 524	if (i == rdev->desc->n_linear_ranges)
 525		return -EINVAL;
 526
 527	return ret;
 528}
 529EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
 530
 531/**
 532 * regulator_desc_list_voltage_linear - List voltages with simple calculation
 533 *
 534 * @desc: Regulator desc for regulator which volatges are to be listed
 535 * @selector: Selector to convert into a voltage
 536 *
 537 * Regulators with a simple linear mapping between voltages and
 538 * selectors can set min_uV and uV_step in the regulator descriptor
 539 * and then use this function prior regulator registration to list
 540 * the voltages. This is useful when voltages need to be listed during
 541 * device-tree parsing.
 542 */
 543int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
 544				       unsigned int selector)
 545{
 546	if (selector >= desc->n_voltages)
 547		return -EINVAL;
 548
 549	if (selector < desc->linear_min_sel)
 550		return 0;
 551
 552	selector -= desc->linear_min_sel;
 553
 554	return desc->min_uV + (desc->uV_step * selector);
 555}
 556EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear);
 557
 558/**
 559 * regulator_list_voltage_linear - List voltages with simple calculation
 560 *
 561 * @rdev: Regulator device
 562 * @selector: Selector to convert into a voltage
 563 *
 564 * Regulators with a simple linear mapping between voltages and
 565 * selectors can set min_uV and uV_step in the regulator descriptor
 566 * and then use this function as their list_voltage() operation,
 567 */
 568int regulator_list_voltage_linear(struct regulator_dev *rdev,
 569				  unsigned int selector)
 570{
 571	return regulator_desc_list_voltage_linear(rdev->desc, selector);
 572}
 573EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
 574
 575/**
 576 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
 577 *
 578 * @rdev: Regulator device
 579 * @selector: Selector to convert into a voltage
 580 *
 581 * list_voltage() operation, intended to be used by drivers utilizing pickable
 582 * ranges helpers.
 583 */
 584int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
 585						 unsigned int selector)
 586{
 587	const struct linear_range *range;
 588	int i;
 589	unsigned int all_sels = 0;
 590
 591	if (!rdev->desc->n_linear_ranges) {
 592		BUG_ON(!rdev->desc->n_linear_ranges);
 593		return -EINVAL;
 594	}
 595
 596	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 597		unsigned int sel_indexes;
 598
 599		range = &rdev->desc->linear_ranges[i];
 600
 601		sel_indexes = linear_range_values_in_range(range) - 1;
 602
 603		if (all_sels + sel_indexes >= selector) {
 604			selector -= all_sels;
 605			/*
 606			 * As we see here, pickable ranges work only as
 607			 * long as the first selector for each pickable
 608			 * range is 0, and the each subsequent range for
 609			 * this 'pick' follow immediately at next unused
 610			 * selector (Eg. there is no gaps between ranges).
 611			 * I think this is fine but it probably should be
 612			 * documented. OTOH, whole pickable range stuff
 613			 * might benefit from some documentation
 614			 */
 615			return range->min + (range->step * selector);
 616		}
 617
 618		all_sels += (sel_indexes + 1);
 619	}
 620
 621	return -EINVAL;
 622}
 623EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
 624
 625/**
 626 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
 627 *
 628 * @desc: Regulator desc for regulator which volatges are to be listed
 629 * @selector: Selector to convert into a voltage
 630 *
 631 * Regulators with a series of simple linear mappings between voltages
 632 * and selectors who have set linear_ranges in the regulator descriptor
 633 * can use this function prior regulator registration to list voltages.
 634 * This is useful when voltages need to be listed during device-tree
 635 * parsing.
 636 */
 637int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
 638					     unsigned int selector)
 639{
 640	unsigned int val;
 641	int ret;
 642
 643	BUG_ON(!desc->n_linear_ranges);
 644
 645	ret = linear_range_get_value_array(desc->linear_ranges,
 646					   desc->n_linear_ranges, selector,
 647					   &val);
 648	if (ret)
 649		return ret;
 650
 651	return val;
 652}
 653EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
 654
 655/**
 656 * regulator_list_voltage_linear_range - List voltages for linear ranges
 657 *
 658 * @rdev: Regulator device
 659 * @selector: Selector to convert into a voltage
 660 *
 661 * Regulators with a series of simple linear mappings between voltages
 662 * and selectors can set linear_ranges in the regulator descriptor and
 663 * then use this function as their list_voltage() operation,
 664 */
 665int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
 666					unsigned int selector)
 667{
 668	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
 669}
 670EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
 671
 672/**
 673 * regulator_list_voltage_table - List voltages with table based mapping
 674 *
 675 * @rdev: Regulator device
 676 * @selector: Selector to convert into a voltage
 677 *
 678 * Regulators with table based mapping between voltages and
 679 * selectors can set volt_table in the regulator descriptor
 680 * and then use this function as their list_voltage() operation.
 681 */
 682int regulator_list_voltage_table(struct regulator_dev *rdev,
 683				 unsigned int selector)
 684{
 685	if (!rdev->desc->volt_table) {
 686		BUG_ON(!rdev->desc->volt_table);
 687		return -EINVAL;
 688	}
 689
 690	if (selector >= rdev->desc->n_voltages)
 691		return -EINVAL;
 692	if (selector < rdev->desc->linear_min_sel)
 693		return 0;
 694
 695	return rdev->desc->volt_table[selector];
 696}
 697EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
 698
 699/**
 700 * regulator_set_bypass_regmap - Default set_bypass() using regmap
 701 *
 702 * @rdev: device to operate on.
 703 * @enable: state to set.
 704 */
 705int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
 706{
 707	unsigned int val;
 708
 709	if (enable) {
 710		val = rdev->desc->bypass_val_on;
 711		if (!val)
 712			val = rdev->desc->bypass_mask;
 713	} else {
 714		val = rdev->desc->bypass_val_off;
 715	}
 716
 717	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
 718				  rdev->desc->bypass_mask, val);
 719}
 720EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
 721
 722/**
 723 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
 724 *
 725 * @rdev: device to operate on.
 726 */
 727int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
 728{
 729	unsigned int val;
 730
 731	val = rdev->desc->soft_start_val_on;
 732	if (!val)
 733		val = rdev->desc->soft_start_mask;
 734
 735	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
 736				  rdev->desc->soft_start_mask, val);
 737}
 738EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
 739
 740/**
 741 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
 742 *
 743 * @rdev: device to operate on.
 744 */
 745int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
 746{
 747	unsigned int val;
 748
 749	val = rdev->desc->pull_down_val_on;
 750	if (!val)
 751		val = rdev->desc->pull_down_mask;
 752
 753	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
 754				  rdev->desc->pull_down_mask, val);
 755}
 756EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
 757
 758/**
 759 * regulator_get_bypass_regmap - Default get_bypass() using regmap
 760 *
 761 * @rdev: device to operate on.
 762 * @enable: current state.
 763 */
 764int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
 765{
 766	unsigned int val;
 767	unsigned int val_on = rdev->desc->bypass_val_on;
 768	int ret;
 769
 770	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
 771	if (ret != 0)
 772		return ret;
 773
 774	if (!val_on)
 775		val_on = rdev->desc->bypass_mask;
 776
 777	*enable = (val & rdev->desc->bypass_mask) == val_on;
 778
 779	return 0;
 780}
 781EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
 782
 783/**
 784 * regulator_set_active_discharge_regmap - Default set_active_discharge()
 785 *					   using regmap
 786 *
 787 * @rdev: device to operate on.
 788 * @enable: state to set, 0 to disable and 1 to enable.
 789 */
 790int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
 791					  bool enable)
 792{
 793	unsigned int val;
 794
 795	if (enable)
 796		val = rdev->desc->active_discharge_on;
 797	else
 798		val = rdev->desc->active_discharge_off;
 799
 800	return regmap_update_bits(rdev->regmap,
 801				  rdev->desc->active_discharge_reg,
 802				  rdev->desc->active_discharge_mask, val);
 803}
 804EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
 805
 806/**
 807 * regulator_set_current_limit_regmap - set_current_limit for regmap users
 808 *
 809 * @rdev: regulator to operate on
 810 * @min_uA: Lower bound for current limit
 811 * @max_uA: Upper bound for current limit
 812 *
 813 * Regulators that use regmap for their register I/O can set curr_table,
 814 * csel_reg and csel_mask fields in their descriptor and then use this
 815 * as their set_current_limit operation, saving some code.
 816 */
 817int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
 818				       int min_uA, int max_uA)
 819{
 820	unsigned int n_currents = rdev->desc->n_current_limits;
 821	int i, sel = -1;
 822
 823	if (n_currents == 0)
 824		return -EINVAL;
 825
 826	if (rdev->desc->curr_table) {
 827		const unsigned int *curr_table = rdev->desc->curr_table;
 828		bool ascend = curr_table[n_currents - 1] > curr_table[0];
 829
 830		/* search for closest to maximum */
 831		if (ascend) {
 832			for (i = n_currents - 1; i >= 0; i--) {
 833				if (min_uA <= curr_table[i] &&
 834				    curr_table[i] <= max_uA) {
 835					sel = i;
 836					break;
 837				}
 838			}
 839		} else {
 840			for (i = 0; i < n_currents; i++) {
 841				if (min_uA <= curr_table[i] &&
 842				    curr_table[i] <= max_uA) {
 843					sel = i;
 844					break;
 845				}
 846			}
 847		}
 848	}
 849
 850	if (sel < 0)
 851		return -EINVAL;
 852
 853	sel <<= ffs(rdev->desc->csel_mask) - 1;
 854
 855	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
 856				  rdev->desc->csel_mask, sel);
 857}
 858EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
 859
 860/**
 861 * regulator_get_current_limit_regmap - get_current_limit for regmap users
 862 *
 863 * @rdev: regulator to operate on
 864 *
 865 * Regulators that use regmap for their register I/O can set the
 866 * csel_reg and csel_mask fields in their descriptor and then use this
 867 * as their get_current_limit operation, saving some code.
 868 */
 869int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
 870{
 871	unsigned int val;
 872	int ret;
 873
 874	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
 875	if (ret != 0)
 876		return ret;
 877
 878	val &= rdev->desc->csel_mask;
 879	val >>= ffs(rdev->desc->csel_mask) - 1;
 880
 881	if (rdev->desc->curr_table) {
 882		if (val >= rdev->desc->n_current_limits)
 883			return -EINVAL;
 884
 885		return rdev->desc->curr_table[val];
 886	}
 887
 888	return -EINVAL;
 889}
 890EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
 891
 892/**
 893 * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
 894 *                                   of regulator_bulk_data structs
 895 *
 896 * @consumers: array of regulator_bulk_data entries to initialize
 897 * @supply_names: array of supply name strings
 898 * @num_supplies: number of supply names to initialize
 899 *
 900 * Note: the 'consumers' array must be the size of 'num_supplies'.
 901 */
 902void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
 903				     const char *const *supply_names,
 904				     unsigned int num_supplies)
 905{
 906	unsigned int i;
 907
 908	for (i = 0; i < num_supplies; i++)
 909		consumers[i].supply = supply_names[i];
 910}
 911EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
 912
 913/**
 914 * regulator_is_equal - test whether two regulators are the same
 915 *
 916 * @reg1: first regulator to operate on
 917 * @reg2: second regulator to operate on
 918 */
 919bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
 920{
 921	return reg1->rdev == reg2->rdev;
 922}
 923EXPORT_SYMBOL_GPL(regulator_is_equal);
 924
 925/**
 926 * regulator_find_closest_bigger - helper to find offset in ramp delay table
 927 *
 928 * @target: targeted ramp_delay
 929 * @table: table with supported ramp delays
 930 * @num_sel: number of entries in the table
 931 * @sel: Pointer to store table offset
 932 *
 933 * This is the internal helper used by regulator_set_ramp_delay_regmap to
 934 * map ramp delay to register value. It should only be used directly if
 935 * regulator_set_ramp_delay_regmap cannot handle a specific device setup
 936 * (e.g. because the value is split over multiple registers).
 937 */
 938int regulator_find_closest_bigger(unsigned int target, const unsigned int *table,
 939				  unsigned int num_sel, unsigned int *sel)
 940{
 941	unsigned int s, tmp, max, maxsel = 0;
 942	bool found = false;
 943
 944	max = table[0];
 945
 946	for (s = 0; s < num_sel; s++) {
 947		if (table[s] > max) {
 948			max = table[s];
 949			maxsel = s;
 950		}
 951		if (table[s] >= target) {
 952			if (!found || table[s] - target < tmp - target) {
 953				tmp = table[s];
 954				*sel = s;
 955				found = true;
 956				if (tmp == target)
 957					break;
 958			}
 959		}
 960	}
 961
 962	if (!found) {
 963		*sel = maxsel;
 964		return -EINVAL;
 965	}
 966
 967	return 0;
 968}
 969EXPORT_SYMBOL_GPL(regulator_find_closest_bigger);
 970
 971/**
 972 * regulator_set_ramp_delay_regmap - set_ramp_delay() helper
 973 *
 974 * @rdev: regulator to operate on
 975 * @ramp_delay: ramp-rate value given in units V/S (uV/uS)
 976 *
 977 * Regulators that use regmap for their register I/O can set the ramp_reg
 978 * and ramp_mask fields in their descriptor and then use this as their
 979 * set_ramp_delay operation, saving some code.
 980 */
 981int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
 982{
 983	int ret;
 984	unsigned int sel;
 985
 986	if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
 987		return -EINVAL;
 988
 989	ret = regulator_find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
 990					    rdev->desc->n_ramp_values, &sel);
 991
 992	if (ret) {
 993		dev_warn(rdev_get_dev(rdev),
 994			 "Can't set ramp-delay %u, setting %u\n", ramp_delay,
 995			 rdev->desc->ramp_delay_table[sel]);
 996	}
 997
 998	sel <<= ffs(rdev->desc->ramp_mask) - 1;
 999
1000	return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg,
1001				  rdev->desc->ramp_mask, sel);
1002}
1003EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap);
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2//
  3// helpers.c  --  Voltage/Current Regulator framework helper functions.
  4//
  5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
  6// Copyright 2008 SlimLogic Ltd.
  7
  8#include <linux/bitops.h>
  9#include <linux/delay.h>
 10#include <linux/err.h>
 11#include <linux/export.h>
 12#include <linux/kernel.h>
 13#include <linux/regmap.h>
 14#include <linux/regulator/consumer.h>
 15#include <linux/regulator/driver.h>
 16
 17#include "internal.h"
 18
 19/**
 20 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
 21 *
 22 * @rdev: regulator to operate on
 23 *
 24 * Regulators that use regmap for their register I/O can set the
 25 * enable_reg and enable_mask fields in their descriptor and then use
 26 * this as their is_enabled operation, saving some code.
 27 */
 28int regulator_is_enabled_regmap(struct regulator_dev *rdev)
 29{
 30	unsigned int val;
 31	int ret;
 32
 33	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
 34	if (ret != 0)
 35		return ret;
 36
 37	val &= rdev->desc->enable_mask;
 38
 39	if (rdev->desc->enable_is_inverted) {
 40		if (rdev->desc->enable_val)
 41			return val != rdev->desc->enable_val;
 42		return val == 0;
 43	} else {
 44		if (rdev->desc->enable_val)
 45			return val == rdev->desc->enable_val;
 46		return val != 0;
 47	}
 48}
 49EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
 50
 51/**
 52 * regulator_enable_regmap - standard enable() for regmap users
 53 *
 54 * @rdev: regulator to operate on
 55 *
 56 * Regulators that use regmap for their register I/O can set the
 57 * enable_reg and enable_mask fields in their descriptor and then use
 58 * this as their enable() operation, saving some code.
 59 */
 60int regulator_enable_regmap(struct regulator_dev *rdev)
 61{
 62	unsigned int val;
 63
 64	if (rdev->desc->enable_is_inverted) {
 65		val = rdev->desc->disable_val;
 66	} else {
 67		val = rdev->desc->enable_val;
 68		if (!val)
 69			val = rdev->desc->enable_mask;
 70	}
 71
 72	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
 73				  rdev->desc->enable_mask, val);
 74}
 75EXPORT_SYMBOL_GPL(regulator_enable_regmap);
 76
 77/**
 78 * regulator_disable_regmap - standard disable() for regmap users
 79 *
 80 * @rdev: regulator to operate on
 81 *
 82 * Regulators that use regmap for their register I/O can set the
 83 * enable_reg and enable_mask fields in their descriptor and then use
 84 * this as their disable() operation, saving some code.
 85 */
 86int regulator_disable_regmap(struct regulator_dev *rdev)
 87{
 88	unsigned int val;
 89
 90	if (rdev->desc->enable_is_inverted) {
 91		val = rdev->desc->enable_val;
 92		if (!val)
 93			val = rdev->desc->enable_mask;
 94	} else {
 95		val = rdev->desc->disable_val;
 96	}
 97
 98	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
 99				  rdev->desc->enable_mask, val);
100}
101EXPORT_SYMBOL_GPL(regulator_disable_regmap);
102
103static int regulator_range_selector_to_index(struct regulator_dev *rdev,
104					     unsigned int rval)
105{
106	int i;
107
108	if (!rdev->desc->linear_range_selectors_bitfield)
109		return -EINVAL;
110
111	rval &= rdev->desc->vsel_range_mask;
112	rval >>= ffs(rdev->desc->vsel_range_mask) - 1;
113
114	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
115		if (rdev->desc->linear_range_selectors_bitfield[i] == rval)
116			return i;
117	}
118	return -EINVAL;
119}
120
121/**
122 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
123 *
124 * @rdev: regulator to operate on
125 *
126 * Regulators that use regmap for their register I/O and use pickable
127 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
128 * fields in their descriptor and then use this as their get_voltage_vsel
129 * operation, saving some code.
130 */
131int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
132{
133	unsigned int r_val;
134	int range;
135	unsigned int val;
136	int ret;
137	unsigned int voltages = 0;
138	const struct linear_range *r = rdev->desc->linear_ranges;
139
140	if (!r)
141		return -EINVAL;
142
143	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
144	if (ret != 0)
145		return ret;
146
147	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
148	if (ret != 0)
149		return ret;
150
151	val &= rdev->desc->vsel_mask;
152	val >>= ffs(rdev->desc->vsel_mask) - 1;
153
154	range = regulator_range_selector_to_index(rdev, r_val);
155	if (range < 0)
156		return -EINVAL;
157
158	voltages = linear_range_values_in_range_array(r, range);
159
160	return val + voltages;
161}
162EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164/**
165 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
166 *
167 * @rdev: regulator to operate on
168 * @sel: Selector to set
169 *
170 * Regulators that use regmap for their register I/O and use pickable
171 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
172 * fields in their descriptor and then use this as their set_voltage_vsel
173 * operation, saving some code.
174 */
175int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
176					      unsigned int sel)
177{
178	unsigned int range;
179	int ret, i;
180	unsigned int voltages_in_range = 0;
181
182	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
183		const struct linear_range *r;
184
185		r = &rdev->desc->linear_ranges[i];
186		voltages_in_range = linear_range_values_in_range(r);
187
188		if (sel < voltages_in_range)
189			break;
190		sel -= voltages_in_range;
191	}
192
193	if (i == rdev->desc->n_linear_ranges)
194		return -EINVAL;
195
196	sel <<= ffs(rdev->desc->vsel_mask) - 1;
197	sel += rdev->desc->linear_ranges[i].min_sel;
198
199	range = rdev->desc->linear_range_selectors_bitfield[i];
200	range <<= ffs(rdev->desc->vsel_range_mask) - 1;
201
202	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
203		ret = regmap_update_bits(rdev->regmap,
204					 rdev->desc->vsel_reg,
205					 rdev->desc->vsel_range_mask |
206					 rdev->desc->vsel_mask, sel | range);
207	} else {
208		ret = regmap_update_bits(rdev->regmap,
209					 rdev->desc->vsel_range_reg,
210					 rdev->desc->vsel_range_mask, range);
211		if (ret)
212			return ret;
213
214		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
215				  rdev->desc->vsel_mask, sel);
216	}
217
218	if (ret)
219		return ret;
220
221	if (rdev->desc->apply_bit)
222		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
223					 rdev->desc->apply_bit,
224					 rdev->desc->apply_bit);
225	return ret;
226}
227EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
228
229/**
230 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
231 *
232 * @rdev: regulator to operate on
233 *
234 * Regulators that use regmap for their register I/O can set the
235 * vsel_reg and vsel_mask fields in their descriptor and then use this
236 * as their get_voltage_vsel operation, saving some code.
237 */
238int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
239{
240	unsigned int val;
241	int ret;
242
243	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
244	if (ret != 0)
245		return ret;
246
247	val &= rdev->desc->vsel_mask;
248	val >>= ffs(rdev->desc->vsel_mask) - 1;
249
250	return val;
251}
252EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
253
254/**
255 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
256 *
257 * @rdev: regulator to operate on
258 * @sel: Selector to set
259 *
260 * Regulators that use regmap for their register I/O can set the
261 * vsel_reg and vsel_mask fields in their descriptor and then use this
262 * as their set_voltage_vsel operation, saving some code.
263 */
264int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
265{
266	int ret;
267
268	sel <<= ffs(rdev->desc->vsel_mask) - 1;
269
270	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
271				  rdev->desc->vsel_mask, sel);
272	if (ret)
273		return ret;
274
275	if (rdev->desc->apply_bit)
276		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
277					 rdev->desc->apply_bit,
278					 rdev->desc->apply_bit);
279	return ret;
280}
281EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
282
283/**
284 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
285 *
286 * @rdev: Regulator to operate on
287 * @min_uV: Lower bound for voltage
288 * @max_uV: Upper bound for voltage
289 *
290 * Drivers implementing set_voltage_sel() and list_voltage() can use
291 * this as their map_voltage() operation.  It will find a suitable
292 * voltage by calling list_voltage() until it gets something in bounds
293 * for the requested voltages.
294 */
295int regulator_map_voltage_iterate(struct regulator_dev *rdev,
296				  int min_uV, int max_uV)
297{
298	int best_val = INT_MAX;
299	int selector = 0;
300	int i, ret;
301
302	/* Find the smallest voltage that falls within the specified
303	 * range.
304	 */
305	for (i = 0; i < rdev->desc->n_voltages; i++) {
306		ret = rdev->desc->ops->list_voltage(rdev, i);
307		if (ret < 0)
308			continue;
309
310		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
311			best_val = ret;
312			selector = i;
313		}
314	}
315
316	if (best_val != INT_MAX)
317		return selector;
318	else
319		return -EINVAL;
320}
321EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
322
323/**
324 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
325 *
326 * @rdev: Regulator to operate on
327 * @min_uV: Lower bound for voltage
328 * @max_uV: Upper bound for voltage
329 *
330 * Drivers that have ascendant voltage list can use this as their
331 * map_voltage() operation.
332 */
333int regulator_map_voltage_ascend(struct regulator_dev *rdev,
334				 int min_uV, int max_uV)
335{
336	int i, ret;
337
338	for (i = 0; i < rdev->desc->n_voltages; i++) {
339		ret = rdev->desc->ops->list_voltage(rdev, i);
340		if (ret < 0)
341			continue;
342
343		if (ret > max_uV)
344			break;
345
346		if (ret >= min_uV && ret <= max_uV)
347			return i;
348	}
349
350	return -EINVAL;
351}
352EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
353
354/**
355 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
356 *
357 * @rdev: Regulator to operate on
358 * @min_uV: Lower bound for voltage
359 * @max_uV: Upper bound for voltage
360 *
361 * Drivers providing min_uV and uV_step in their regulator_desc can
362 * use this as their map_voltage() operation.
363 */
364int regulator_map_voltage_linear(struct regulator_dev *rdev,
365				 int min_uV, int max_uV)
366{
367	int ret, voltage;
368
369	/* Allow uV_step to be 0 for fixed voltage */
370	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
371		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
372			return 0;
373		else
374			return -EINVAL;
375	}
376
377	if (!rdev->desc->uV_step) {
378		BUG_ON(!rdev->desc->uV_step);
379		return -EINVAL;
380	}
381
382	if (min_uV < rdev->desc->min_uV)
383		min_uV = rdev->desc->min_uV;
384
385	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
386	if (ret < 0)
387		return ret;
388
389	ret += rdev->desc->linear_min_sel;
390
391	/* Map back into a voltage to verify we're still in bounds */
392	voltage = rdev->desc->ops->list_voltage(rdev, ret);
393	if (voltage < min_uV || voltage > max_uV)
394		return -EINVAL;
395
396	return ret;
397}
398EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
399
400/**
401 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
402 *
403 * @rdev: Regulator to operate on
404 * @min_uV: Lower bound for voltage
405 * @max_uV: Upper bound for voltage
406 *
407 * Drivers providing linear_ranges in their descriptor can use this as
408 * their map_voltage() callback.
409 */
410int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
411				       int min_uV, int max_uV)
412{
413	const struct linear_range *range;
414	int ret = -EINVAL;
415	unsigned int sel;
416	bool found;
417	int voltage, i;
418
419	if (!rdev->desc->n_linear_ranges) {
420		BUG_ON(!rdev->desc->n_linear_ranges);
421		return -EINVAL;
422	}
423
424	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
425		range = &rdev->desc->linear_ranges[i];
426
427		ret = linear_range_get_selector_high(range, min_uV, &sel,
428						     &found);
429		if (ret)
430			continue;
431		ret = sel;
432
433		/*
434		 * Map back into a voltage to verify we're still in bounds.
435		 * If we are not, then continue checking rest of the ranges.
436		 */
437		voltage = rdev->desc->ops->list_voltage(rdev, sel);
438		if (voltage >= min_uV && voltage <= max_uV)
439			break;
440	}
441
442	if (i == rdev->desc->n_linear_ranges)
443		return -EINVAL;
444
445	return ret;
446}
447EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
448
449/**
450 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
451 *
452 * @rdev: Regulator to operate on
453 * @min_uV: Lower bound for voltage
454 * @max_uV: Upper bound for voltage
455 *
456 * Drivers providing pickable linear_ranges in their descriptor can use
457 * this as their map_voltage() callback.
458 */
459int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
460						int min_uV, int max_uV)
461{
462	const struct linear_range *range;
463	int ret = -EINVAL;
464	int voltage, i;
465	unsigned int selector = 0;
466
467	if (!rdev->desc->n_linear_ranges) {
468		BUG_ON(!rdev->desc->n_linear_ranges);
469		return -EINVAL;
470	}
471
472	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
473		int linear_max_uV;
474		bool found;
475		unsigned int sel;
476
477		range = &rdev->desc->linear_ranges[i];
478		linear_max_uV = linear_range_get_max_value(range);
479
480		if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
481			selector += linear_range_values_in_range(range);
482			continue;
483		}
484
485		ret = linear_range_get_selector_high(range, min_uV, &sel,
486						     &found);
487		if (ret) {
488			selector += linear_range_values_in_range(range);
489			continue;
490		}
491
492		ret = selector + sel - range->min_sel;
493
494		voltage = rdev->desc->ops->list_voltage(rdev, ret);
495
496		/*
497		 * Map back into a voltage to verify we're still in bounds.
498		 * We may have overlapping voltage ranges. Hence we don't
499		 * exit but retry until we have checked all ranges.
500		 */
501		if (voltage < min_uV || voltage > max_uV)
502			selector += linear_range_values_in_range(range);
503		else
504			break;
505	}
506
507	if (i == rdev->desc->n_linear_ranges)
508		return -EINVAL;
509
510	return ret;
511}
512EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
513
514/**
515 * regulator_desc_list_voltage_linear - List voltages with simple calculation
516 *
517 * @desc: Regulator desc for regulator which volatges are to be listed
518 * @selector: Selector to convert into a voltage
519 *
520 * Regulators with a simple linear mapping between voltages and
521 * selectors can set min_uV and uV_step in the regulator descriptor
522 * and then use this function prior regulator registration to list
523 * the voltages. This is useful when voltages need to be listed during
524 * device-tree parsing.
525 */
526int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
527				       unsigned int selector)
528{
529	if (selector >= desc->n_voltages)
530		return -EINVAL;
531
532	if (selector < desc->linear_min_sel)
533		return 0;
534
535	selector -= desc->linear_min_sel;
536
537	return desc->min_uV + (desc->uV_step * selector);
538}
539EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear);
540
541/**
542 * regulator_list_voltage_linear - List voltages with simple calculation
543 *
544 * @rdev: Regulator device
545 * @selector: Selector to convert into a voltage
546 *
547 * Regulators with a simple linear mapping between voltages and
548 * selectors can set min_uV and uV_step in the regulator descriptor
549 * and then use this function as their list_voltage() operation,
550 */
551int regulator_list_voltage_linear(struct regulator_dev *rdev,
552				  unsigned int selector)
553{
554	return regulator_desc_list_voltage_linear(rdev->desc, selector);
555}
556EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
557
558/**
559 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
560 *
561 * @rdev: Regulator device
562 * @selector: Selector to convert into a voltage
563 *
564 * list_voltage() operation, intended to be used by drivers utilizing pickable
565 * ranges helpers.
566 */
567int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
568						 unsigned int selector)
569{
570	const struct linear_range *range;
571	int i;
572	unsigned int all_sels = 0;
573
574	if (!rdev->desc->n_linear_ranges) {
575		BUG_ON(!rdev->desc->n_linear_ranges);
576		return -EINVAL;
577	}
578
579	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
580		unsigned int sel_indexes;
581
582		range = &rdev->desc->linear_ranges[i];
583
584		sel_indexes = linear_range_values_in_range(range) - 1;
585
586		if (all_sels + sel_indexes >= selector) {
587			selector -= all_sels;
588			/*
589			 * As we see here, pickable ranges work only as
590			 * long as the first selector for each pickable
591			 * range is 0, and the each subsequent range for
592			 * this 'pick' follow immediately at next unused
593			 * selector (Eg. there is no gaps between ranges).
594			 * I think this is fine but it probably should be
595			 * documented. OTOH, whole pickable range stuff
596			 * might benefit from some documentation
597			 */
598			return range->min + (range->step * selector);
599		}
600
601		all_sels += (sel_indexes + 1);
602	}
603
604	return -EINVAL;
605}
606EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
607
608/**
609 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
610 *
611 * @desc: Regulator desc for regulator which volatges are to be listed
612 * @selector: Selector to convert into a voltage
613 *
614 * Regulators with a series of simple linear mappings between voltages
615 * and selectors who have set linear_ranges in the regulator descriptor
616 * can use this function prior regulator registration to list voltages.
617 * This is useful when voltages need to be listed during device-tree
618 * parsing.
619 */
620int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
621					     unsigned int selector)
622{
623	unsigned int val;
624	int ret;
625
626	BUG_ON(!desc->n_linear_ranges);
627
628	ret = linear_range_get_value_array(desc->linear_ranges,
629					   desc->n_linear_ranges, selector,
630					   &val);
631	if (ret)
632		return ret;
633
634	return val;
635}
636EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
637
638/**
639 * regulator_list_voltage_linear_range - List voltages for linear ranges
640 *
641 * @rdev: Regulator device
642 * @selector: Selector to convert into a voltage
643 *
644 * Regulators with a series of simple linear mappings between voltages
645 * and selectors can set linear_ranges in the regulator descriptor and
646 * then use this function as their list_voltage() operation,
647 */
648int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
649					unsigned int selector)
650{
651	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
652}
653EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
654
655/**
656 * regulator_list_voltage_table - List voltages with table based mapping
657 *
658 * @rdev: Regulator device
659 * @selector: Selector to convert into a voltage
660 *
661 * Regulators with table based mapping between voltages and
662 * selectors can set volt_table in the regulator descriptor
663 * and then use this function as their list_voltage() operation.
664 */
665int regulator_list_voltage_table(struct regulator_dev *rdev,
666				 unsigned int selector)
667{
668	if (!rdev->desc->volt_table) {
669		BUG_ON(!rdev->desc->volt_table);
670		return -EINVAL;
671	}
672
673	if (selector >= rdev->desc->n_voltages)
674		return -EINVAL;
675	if (selector < rdev->desc->linear_min_sel)
676		return 0;
677
678	return rdev->desc->volt_table[selector];
679}
680EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
681
682/**
683 * regulator_set_bypass_regmap - Default set_bypass() using regmap
684 *
685 * @rdev: device to operate on.
686 * @enable: state to set.
687 */
688int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
689{
690	unsigned int val;
691
692	if (enable) {
693		val = rdev->desc->bypass_val_on;
694		if (!val)
695			val = rdev->desc->bypass_mask;
696	} else {
697		val = rdev->desc->bypass_val_off;
698	}
699
700	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
701				  rdev->desc->bypass_mask, val);
702}
703EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
704
705/**
706 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
707 *
708 * @rdev: device to operate on.
709 */
710int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
711{
712	unsigned int val;
713
714	val = rdev->desc->soft_start_val_on;
715	if (!val)
716		val = rdev->desc->soft_start_mask;
717
718	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
719				  rdev->desc->soft_start_mask, val);
720}
721EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
722
723/**
724 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
725 *
726 * @rdev: device to operate on.
727 */
728int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
729{
730	unsigned int val;
731
732	val = rdev->desc->pull_down_val_on;
733	if (!val)
734		val = rdev->desc->pull_down_mask;
735
736	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
737				  rdev->desc->pull_down_mask, val);
738}
739EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
740
741/**
742 * regulator_get_bypass_regmap - Default get_bypass() using regmap
743 *
744 * @rdev: device to operate on.
745 * @enable: current state.
746 */
747int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
748{
749	unsigned int val;
750	unsigned int val_on = rdev->desc->bypass_val_on;
751	int ret;
752
753	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
754	if (ret != 0)
755		return ret;
756
757	if (!val_on)
758		val_on = rdev->desc->bypass_mask;
759
760	*enable = (val & rdev->desc->bypass_mask) == val_on;
761
762	return 0;
763}
764EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
765
766/**
767 * regulator_set_active_discharge_regmap - Default set_active_discharge()
768 *					   using regmap
769 *
770 * @rdev: device to operate on.
771 * @enable: state to set, 0 to disable and 1 to enable.
772 */
773int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
774					  bool enable)
775{
776	unsigned int val;
777
778	if (enable)
779		val = rdev->desc->active_discharge_on;
780	else
781		val = rdev->desc->active_discharge_off;
782
783	return regmap_update_bits(rdev->regmap,
784				  rdev->desc->active_discharge_reg,
785				  rdev->desc->active_discharge_mask, val);
786}
787EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
788
789/**
790 * regulator_set_current_limit_regmap - set_current_limit for regmap users
791 *
792 * @rdev: regulator to operate on
793 * @min_uA: Lower bound for current limit
794 * @max_uA: Upper bound for current limit
795 *
796 * Regulators that use regmap for their register I/O can set curr_table,
797 * csel_reg and csel_mask fields in their descriptor and then use this
798 * as their set_current_limit operation, saving some code.
799 */
800int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
801				       int min_uA, int max_uA)
802{
803	unsigned int n_currents = rdev->desc->n_current_limits;
804	int i, sel = -1;
805
806	if (n_currents == 0)
807		return -EINVAL;
808
809	if (rdev->desc->curr_table) {
810		const unsigned int *curr_table = rdev->desc->curr_table;
811		bool ascend = curr_table[n_currents - 1] > curr_table[0];
812
813		/* search for closest to maximum */
814		if (ascend) {
815			for (i = n_currents - 1; i >= 0; i--) {
816				if (min_uA <= curr_table[i] &&
817				    curr_table[i] <= max_uA) {
818					sel = i;
819					break;
820				}
821			}
822		} else {
823			for (i = 0; i < n_currents; i++) {
824				if (min_uA <= curr_table[i] &&
825				    curr_table[i] <= max_uA) {
826					sel = i;
827					break;
828				}
829			}
830		}
831	}
832
833	if (sel < 0)
834		return -EINVAL;
835
836	sel <<= ffs(rdev->desc->csel_mask) - 1;
837
838	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
839				  rdev->desc->csel_mask, sel);
840}
841EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
842
843/**
844 * regulator_get_current_limit_regmap - get_current_limit for regmap users
845 *
846 * @rdev: regulator to operate on
847 *
848 * Regulators that use regmap for their register I/O can set the
849 * csel_reg and csel_mask fields in their descriptor and then use this
850 * as their get_current_limit operation, saving some code.
851 */
852int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
853{
854	unsigned int val;
855	int ret;
856
857	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
858	if (ret != 0)
859		return ret;
860
861	val &= rdev->desc->csel_mask;
862	val >>= ffs(rdev->desc->csel_mask) - 1;
863
864	if (rdev->desc->curr_table) {
865		if (val >= rdev->desc->n_current_limits)
866			return -EINVAL;
867
868		return rdev->desc->curr_table[val];
869	}
870
871	return -EINVAL;
872}
873EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
874
875/**
876 * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
877 *                                   of regulator_bulk_data structs
878 *
879 * @consumers: array of regulator_bulk_data entries to initialize
880 * @supply_names: array of supply name strings
881 * @num_supplies: number of supply names to initialize
882 *
883 * Note: the 'consumers' array must be the size of 'num_supplies'.
884 */
885void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
886				     const char *const *supply_names,
887				     unsigned int num_supplies)
888{
889	unsigned int i;
890
891	for (i = 0; i < num_supplies; i++)
892		consumers[i].supply = supply_names[i];
893}
894EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
895
896/**
897 * regulator_is_equal - test whether two regulators are the same
898 *
899 * @reg1: first regulator to operate on
900 * @reg2: second regulator to operate on
901 */
902bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
903{
904	return reg1->rdev == reg2->rdev;
905}
906EXPORT_SYMBOL_GPL(regulator_is_equal);
907
908/**
909 * regulator_find_closest_bigger - helper to find offset in ramp delay table
910 *
911 * @target: targeted ramp_delay
912 * @table: table with supported ramp delays
913 * @num_sel: number of entries in the table
914 * @sel: Pointer to store table offset
915 *
916 * This is the internal helper used by regulator_set_ramp_delay_regmap to
917 * map ramp delay to register value. It should only be used directly if
918 * regulator_set_ramp_delay_regmap cannot handle a specific device setup
919 * (e.g. because the value is split over multiple registers).
920 */
921int regulator_find_closest_bigger(unsigned int target, const unsigned int *table,
922				  unsigned int num_sel, unsigned int *sel)
923{
924	unsigned int s, tmp, max, maxsel = 0;
925	bool found = false;
926
927	max = table[0];
928
929	for (s = 0; s < num_sel; s++) {
930		if (table[s] > max) {
931			max = table[s];
932			maxsel = s;
933		}
934		if (table[s] >= target) {
935			if (!found || table[s] - target < tmp - target) {
936				tmp = table[s];
937				*sel = s;
938				found = true;
939				if (tmp == target)
940					break;
941			}
942		}
943	}
944
945	if (!found) {
946		*sel = maxsel;
947		return -EINVAL;
948	}
949
950	return 0;
951}
952EXPORT_SYMBOL_GPL(regulator_find_closest_bigger);
953
954/**
955 * regulator_set_ramp_delay_regmap - set_ramp_delay() helper
956 *
957 * @rdev: regulator to operate on
958 * @ramp_delay: ramp-rate value given in units V/S (uV/uS)
959 *
960 * Regulators that use regmap for their register I/O can set the ramp_reg
961 * and ramp_mask fields in their descriptor and then use this as their
962 * set_ramp_delay operation, saving some code.
963 */
964int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
965{
966	int ret;
967	unsigned int sel;
968
969	if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
970		return -EINVAL;
971
972	ret = regulator_find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
973					    rdev->desc->n_ramp_values, &sel);
974
975	if (ret) {
976		dev_warn(rdev_get_dev(rdev),
977			 "Can't set ramp-delay %u, setting %u\n", ramp_delay,
978			 rdev->desc->ramp_delay_table[sel]);
979	}
980
981	sel <<= ffs(rdev->desc->ramp_mask) - 1;
982
983	return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg,
984				  rdev->desc->ramp_mask, sel);
985}
986EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap);