Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/fs.h>
12#include <linux/idr.h>
13#include <linux/init.h>
14#include <linux/kref.h>
15#include <linux/module.h>
16#include <linux/nvmem-consumer.h>
17#include <linux/nvmem-provider.h>
18#include <linux/gpio/consumer.h>
19#include <linux/of.h>
20#include <linux/slab.h>
21
22#include "internals.h"
23
24#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25
26#define FLAG_COMPAT BIT(0)
27struct nvmem_cell_entry {
28 const char *name;
29 int offset;
30 size_t raw_len;
31 int bytes;
32 int bit_offset;
33 int nbits;
34 nvmem_cell_post_process_t read_post_process;
35 void *priv;
36 struct device_node *np;
37 struct nvmem_device *nvmem;
38 struct list_head node;
39};
40
41struct nvmem_cell {
42 struct nvmem_cell_entry *entry;
43 const char *id;
44 int index;
45};
46
47static DEFINE_MUTEX(nvmem_mutex);
48static DEFINE_IDA(nvmem_ida);
49
50static DEFINE_MUTEX(nvmem_cell_mutex);
51static LIST_HEAD(nvmem_cell_tables);
52
53static DEFINE_MUTEX(nvmem_lookup_mutex);
54static LIST_HEAD(nvmem_lookup_list);
55
56static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57
58static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 void *val, size_t bytes)
60{
61 if (nvmem->reg_read)
62 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63
64 return -EINVAL;
65}
66
67static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 void *val, size_t bytes)
69{
70 int ret;
71
72 if (nvmem->reg_write) {
73 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 return ret;
77 }
78
79 return -EINVAL;
80}
81
82static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 unsigned int offset, void *val,
84 size_t bytes, int write)
85{
86
87 unsigned int end = offset + bytes;
88 unsigned int kend, ksize;
89 const struct nvmem_keepout *keepout = nvmem->keepout;
90 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 int rc;
92
93 /*
94 * Skip all keepouts before the range being accessed.
95 * Keepouts are sorted.
96 */
97 while ((keepout < keepoutend) && (keepout->end <= offset))
98 keepout++;
99
100 while ((offset < end) && (keepout < keepoutend)) {
101 /* Access the valid portion before the keepout. */
102 if (offset < keepout->start) {
103 kend = min(end, keepout->start);
104 ksize = kend - offset;
105 if (write)
106 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 else
108 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109
110 if (rc)
111 return rc;
112
113 offset += ksize;
114 val += ksize;
115 }
116
117 /*
118 * Now we're aligned to the start of this keepout zone. Go
119 * through it.
120 */
121 kend = min(end, keepout->end);
122 ksize = kend - offset;
123 if (!write)
124 memset(val, keepout->value, ksize);
125
126 val += ksize;
127 offset += ksize;
128 keepout++;
129 }
130
131 /*
132 * If we ran out of keepouts but there's still stuff to do, send it
133 * down directly
134 */
135 if (offset < end) {
136 ksize = end - offset;
137 if (write)
138 return __nvmem_reg_write(nvmem, offset, val, ksize);
139 else
140 return __nvmem_reg_read(nvmem, offset, val, ksize);
141 }
142
143 return 0;
144}
145
146static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 void *val, size_t bytes)
148{
149 if (!nvmem->nkeepout)
150 return __nvmem_reg_read(nvmem, offset, val, bytes);
151
152 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153}
154
155static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 void *val, size_t bytes)
157{
158 if (!nvmem->nkeepout)
159 return __nvmem_reg_write(nvmem, offset, val, bytes);
160
161 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162}
163
164#ifdef CONFIG_NVMEM_SYSFS
165static const char * const nvmem_type_str[] = {
166 [NVMEM_TYPE_UNKNOWN] = "Unknown",
167 [NVMEM_TYPE_EEPROM] = "EEPROM",
168 [NVMEM_TYPE_OTP] = "OTP",
169 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 [NVMEM_TYPE_FRAM] = "FRAM",
171};
172
173#ifdef CONFIG_DEBUG_LOCK_ALLOC
174static struct lock_class_key eeprom_lock_key;
175#endif
176
177static ssize_t type_show(struct device *dev,
178 struct device_attribute *attr, char *buf)
179{
180 struct nvmem_device *nvmem = to_nvmem_device(dev);
181
182 return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
183}
184
185static DEVICE_ATTR_RO(type);
186
187static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
188 char *buf)
189{
190 struct nvmem_device *nvmem = to_nvmem_device(dev);
191
192 return sysfs_emit(buf, "%d\n", nvmem->read_only);
193}
194
195static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
196 const char *buf, size_t count)
197{
198 struct nvmem_device *nvmem = to_nvmem_device(dev);
199 int ret = kstrtobool(buf, &nvmem->read_only);
200
201 if (ret < 0)
202 return ret;
203
204 return count;
205}
206
207static DEVICE_ATTR_RW(force_ro);
208
209static struct attribute *nvmem_attrs[] = {
210 &dev_attr_force_ro.attr,
211 &dev_attr_type.attr,
212 NULL,
213};
214
215static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
216 struct bin_attribute *attr, char *buf,
217 loff_t pos, size_t count)
218{
219 struct device *dev;
220 struct nvmem_device *nvmem;
221 int rc;
222
223 if (attr->private)
224 dev = attr->private;
225 else
226 dev = kobj_to_dev(kobj);
227 nvmem = to_nvmem_device(dev);
228
229 if (!IS_ALIGNED(pos, nvmem->stride))
230 return -EINVAL;
231
232 if (count < nvmem->word_size)
233 return -EINVAL;
234
235 count = round_down(count, nvmem->word_size);
236
237 if (!nvmem->reg_read)
238 return -EPERM;
239
240 rc = nvmem_reg_read(nvmem, pos, buf, count);
241
242 if (rc)
243 return rc;
244
245 return count;
246}
247
248static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
249 struct bin_attribute *attr, char *buf,
250 loff_t pos, size_t count)
251{
252 struct device *dev;
253 struct nvmem_device *nvmem;
254 int rc;
255
256 if (attr->private)
257 dev = attr->private;
258 else
259 dev = kobj_to_dev(kobj);
260 nvmem = to_nvmem_device(dev);
261
262 if (!IS_ALIGNED(pos, nvmem->stride))
263 return -EINVAL;
264
265 if (count < nvmem->word_size)
266 return -EINVAL;
267
268 count = round_down(count, nvmem->word_size);
269
270 if (!nvmem->reg_write || nvmem->read_only)
271 return -EPERM;
272
273 rc = nvmem_reg_write(nvmem, pos, buf, count);
274
275 if (rc)
276 return rc;
277
278 return count;
279}
280
281static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
282{
283 umode_t mode = 0400;
284
285 if (!nvmem->root_only)
286 mode |= 0044;
287
288 if (!nvmem->read_only)
289 mode |= 0200;
290
291 if (!nvmem->reg_write)
292 mode &= ~0200;
293
294 if (!nvmem->reg_read)
295 mode &= ~0444;
296
297 return mode;
298}
299
300static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
301 const struct bin_attribute *attr,
302 int i)
303{
304 struct device *dev = kobj_to_dev(kobj);
305 struct nvmem_device *nvmem = to_nvmem_device(dev);
306
307 return nvmem_bin_attr_get_umode(nvmem);
308}
309
310static size_t nvmem_bin_attr_size(struct kobject *kobj,
311 const struct bin_attribute *attr,
312 int i)
313{
314 struct device *dev = kobj_to_dev(kobj);
315 struct nvmem_device *nvmem = to_nvmem_device(dev);
316
317 return nvmem->size;
318}
319
320static umode_t nvmem_attr_is_visible(struct kobject *kobj,
321 struct attribute *attr, int i)
322{
323 struct device *dev = kobj_to_dev(kobj);
324 struct nvmem_device *nvmem = to_nvmem_device(dev);
325
326 /*
327 * If the device has no .reg_write operation, do not allow
328 * configuration as read-write.
329 * If the device is set as read-only by configuration, it
330 * can be forced into read-write mode using the 'force_ro'
331 * attribute.
332 */
333 if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
334 return 0; /* Attribute not visible */
335
336 return attr->mode;
337}
338
339static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
340 const char *id, int index);
341
342static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
343 struct bin_attribute *attr, char *buf,
344 loff_t pos, size_t count)
345{
346 struct nvmem_cell_entry *entry;
347 struct nvmem_cell *cell = NULL;
348 size_t cell_sz, read_len;
349 void *content;
350
351 entry = attr->private;
352 cell = nvmem_create_cell(entry, entry->name, 0);
353 if (IS_ERR(cell))
354 return PTR_ERR(cell);
355
356 if (!cell)
357 return -EINVAL;
358
359 content = nvmem_cell_read(cell, &cell_sz);
360 if (IS_ERR(content)) {
361 read_len = PTR_ERR(content);
362 goto destroy_cell;
363 }
364
365 read_len = min_t(unsigned int, cell_sz - pos, count);
366 memcpy(buf, content + pos, read_len);
367 kfree(content);
368
369destroy_cell:
370 kfree_const(cell->id);
371 kfree(cell);
372
373 return read_len;
374}
375
376/* default read/write permissions */
377static struct bin_attribute bin_attr_rw_nvmem = {
378 .attr = {
379 .name = "nvmem",
380 .mode = 0644,
381 },
382 .read = bin_attr_nvmem_read,
383 .write = bin_attr_nvmem_write,
384};
385
386static struct bin_attribute *nvmem_bin_attributes[] = {
387 &bin_attr_rw_nvmem,
388 NULL,
389};
390
391static const struct attribute_group nvmem_bin_group = {
392 .bin_attrs = nvmem_bin_attributes,
393 .attrs = nvmem_attrs,
394 .is_bin_visible = nvmem_bin_attr_is_visible,
395 .bin_size = nvmem_bin_attr_size,
396 .is_visible = nvmem_attr_is_visible,
397};
398
399static const struct attribute_group *nvmem_dev_groups[] = {
400 &nvmem_bin_group,
401 NULL,
402};
403
404static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
405 .attr = {
406 .name = "eeprom",
407 },
408 .read = bin_attr_nvmem_read,
409 .write = bin_attr_nvmem_write,
410};
411
412/*
413 * nvmem_setup_compat() - Create an additional binary entry in
414 * drivers sys directory, to be backwards compatible with the older
415 * drivers/misc/eeprom drivers.
416 */
417static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
418 const struct nvmem_config *config)
419{
420 int rval;
421
422 if (!config->compat)
423 return 0;
424
425 if (!config->base_dev)
426 return -EINVAL;
427
428 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
429 if (config->type == NVMEM_TYPE_FRAM)
430 nvmem->eeprom.attr.name = "fram";
431 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
432 nvmem->eeprom.size = nvmem->size;
433#ifdef CONFIG_DEBUG_LOCK_ALLOC
434 nvmem->eeprom.attr.key = &eeprom_lock_key;
435#endif
436 nvmem->eeprom.private = &nvmem->dev;
437 nvmem->base_dev = config->base_dev;
438
439 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
440 if (rval) {
441 dev_err(&nvmem->dev,
442 "Failed to create eeprom binary file %d\n", rval);
443 return rval;
444 }
445
446 nvmem->flags |= FLAG_COMPAT;
447
448 return 0;
449}
450
451static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
452 const struct nvmem_config *config)
453{
454 if (config->compat)
455 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
456}
457
458static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
459{
460 struct attribute_group group = {
461 .name = "cells",
462 };
463 struct nvmem_cell_entry *entry;
464 struct bin_attribute *attrs;
465 unsigned int ncells = 0, i = 0;
466 int ret = 0;
467
468 mutex_lock(&nvmem_mutex);
469
470 if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
471 goto unlock_mutex;
472
473 /* Allocate an array of attributes with a sentinel */
474 ncells = list_count_nodes(&nvmem->cells);
475 group.bin_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
476 sizeof(struct bin_attribute *), GFP_KERNEL);
477 if (!group.bin_attrs) {
478 ret = -ENOMEM;
479 goto unlock_mutex;
480 }
481
482 attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
483 if (!attrs) {
484 ret = -ENOMEM;
485 goto unlock_mutex;
486 }
487
488 /* Initialize each attribute to take the name and size of the cell */
489 list_for_each_entry(entry, &nvmem->cells, node) {
490 sysfs_bin_attr_init(&attrs[i]);
491 attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
492 "%s@%x,%x", entry->name,
493 entry->offset,
494 entry->bit_offset);
495 attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
496 attrs[i].size = entry->bytes;
497 attrs[i].read = &nvmem_cell_attr_read;
498 attrs[i].private = entry;
499 if (!attrs[i].attr.name) {
500 ret = -ENOMEM;
501 goto unlock_mutex;
502 }
503
504 group.bin_attrs[i] = &attrs[i];
505 i++;
506 }
507
508 ret = device_add_group(&nvmem->dev, &group);
509 if (ret)
510 goto unlock_mutex;
511
512 nvmem->sysfs_cells_populated = true;
513
514unlock_mutex:
515 mutex_unlock(&nvmem_mutex);
516
517 return ret;
518}
519
520#else /* CONFIG_NVMEM_SYSFS */
521
522static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
523 const struct nvmem_config *config)
524{
525 return -ENOSYS;
526}
527static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
528 const struct nvmem_config *config)
529{
530}
531
532#endif /* CONFIG_NVMEM_SYSFS */
533
534static void nvmem_release(struct device *dev)
535{
536 struct nvmem_device *nvmem = to_nvmem_device(dev);
537
538 ida_free(&nvmem_ida, nvmem->id);
539 gpiod_put(nvmem->wp_gpio);
540 kfree(nvmem);
541}
542
543static const struct device_type nvmem_provider_type = {
544 .release = nvmem_release,
545};
546
547static struct bus_type nvmem_bus_type = {
548 .name = "nvmem",
549};
550
551static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
552{
553 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
554 mutex_lock(&nvmem_mutex);
555 list_del(&cell->node);
556 mutex_unlock(&nvmem_mutex);
557 of_node_put(cell->np);
558 kfree_const(cell->name);
559 kfree(cell);
560}
561
562static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
563{
564 struct nvmem_cell_entry *cell, *p;
565
566 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
567 nvmem_cell_entry_drop(cell);
568}
569
570static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
571{
572 mutex_lock(&nvmem_mutex);
573 list_add_tail(&cell->node, &cell->nvmem->cells);
574 mutex_unlock(&nvmem_mutex);
575 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
576}
577
578static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
579 const struct nvmem_cell_info *info,
580 struct nvmem_cell_entry *cell)
581{
582 cell->nvmem = nvmem;
583 cell->offset = info->offset;
584 cell->raw_len = info->raw_len ?: info->bytes;
585 cell->bytes = info->bytes;
586 cell->name = info->name;
587 cell->read_post_process = info->read_post_process;
588 cell->priv = info->priv;
589
590 cell->bit_offset = info->bit_offset;
591 cell->nbits = info->nbits;
592 cell->np = info->np;
593
594 if (cell->nbits)
595 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
596 BITS_PER_BYTE);
597
598 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
599 dev_err(&nvmem->dev,
600 "cell %s unaligned to nvmem stride %d\n",
601 cell->name ?: "<unknown>", nvmem->stride);
602 return -EINVAL;
603 }
604
605 return 0;
606}
607
608static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
609 const struct nvmem_cell_info *info,
610 struct nvmem_cell_entry *cell)
611{
612 int err;
613
614 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
615 if (err)
616 return err;
617
618 cell->name = kstrdup_const(info->name, GFP_KERNEL);
619 if (!cell->name)
620 return -ENOMEM;
621
622 return 0;
623}
624
625/**
626 * nvmem_add_one_cell() - Add one cell information to an nvmem device
627 *
628 * @nvmem: nvmem device to add cells to.
629 * @info: nvmem cell info to add to the device
630 *
631 * Return: 0 or negative error code on failure.
632 */
633int nvmem_add_one_cell(struct nvmem_device *nvmem,
634 const struct nvmem_cell_info *info)
635{
636 struct nvmem_cell_entry *cell;
637 int rval;
638
639 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
640 if (!cell)
641 return -ENOMEM;
642
643 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
644 if (rval) {
645 kfree(cell);
646 return rval;
647 }
648
649 nvmem_cell_entry_add(cell);
650
651 return 0;
652}
653EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
654
655/**
656 * nvmem_add_cells() - Add cell information to an nvmem device
657 *
658 * @nvmem: nvmem device to add cells to.
659 * @info: nvmem cell info to add to the device
660 * @ncells: number of cells in info
661 *
662 * Return: 0 or negative error code on failure.
663 */
664static int nvmem_add_cells(struct nvmem_device *nvmem,
665 const struct nvmem_cell_info *info,
666 int ncells)
667{
668 int i, rval;
669
670 for (i = 0; i < ncells; i++) {
671 rval = nvmem_add_one_cell(nvmem, &info[i]);
672 if (rval)
673 return rval;
674 }
675
676 return 0;
677}
678
679/**
680 * nvmem_register_notifier() - Register a notifier block for nvmem events.
681 *
682 * @nb: notifier block to be called on nvmem events.
683 *
684 * Return: 0 on success, negative error number on failure.
685 */
686int nvmem_register_notifier(struct notifier_block *nb)
687{
688 return blocking_notifier_chain_register(&nvmem_notifier, nb);
689}
690EXPORT_SYMBOL_GPL(nvmem_register_notifier);
691
692/**
693 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
694 *
695 * @nb: notifier block to be unregistered.
696 *
697 * Return: 0 on success, negative error number on failure.
698 */
699int nvmem_unregister_notifier(struct notifier_block *nb)
700{
701 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
702}
703EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
704
705static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
706{
707 const struct nvmem_cell_info *info;
708 struct nvmem_cell_table *table;
709 struct nvmem_cell_entry *cell;
710 int rval = 0, i;
711
712 mutex_lock(&nvmem_cell_mutex);
713 list_for_each_entry(table, &nvmem_cell_tables, node) {
714 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
715 for (i = 0; i < table->ncells; i++) {
716 info = &table->cells[i];
717
718 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
719 if (!cell) {
720 rval = -ENOMEM;
721 goto out;
722 }
723
724 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
725 if (rval) {
726 kfree(cell);
727 goto out;
728 }
729
730 nvmem_cell_entry_add(cell);
731 }
732 }
733 }
734
735out:
736 mutex_unlock(&nvmem_cell_mutex);
737 return rval;
738}
739
740static struct nvmem_cell_entry *
741nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
742{
743 struct nvmem_cell_entry *iter, *cell = NULL;
744
745 mutex_lock(&nvmem_mutex);
746 list_for_each_entry(iter, &nvmem->cells, node) {
747 if (strcmp(cell_id, iter->name) == 0) {
748 cell = iter;
749 break;
750 }
751 }
752 mutex_unlock(&nvmem_mutex);
753
754 return cell;
755}
756
757static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
758{
759 unsigned int cur = 0;
760 const struct nvmem_keepout *keepout = nvmem->keepout;
761 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
762
763 while (keepout < keepoutend) {
764 /* Ensure keepouts are sorted and don't overlap. */
765 if (keepout->start < cur) {
766 dev_err(&nvmem->dev,
767 "Keepout regions aren't sorted or overlap.\n");
768
769 return -ERANGE;
770 }
771
772 if (keepout->end < keepout->start) {
773 dev_err(&nvmem->dev,
774 "Invalid keepout region.\n");
775
776 return -EINVAL;
777 }
778
779 /*
780 * Validate keepouts (and holes between) don't violate
781 * word_size constraints.
782 */
783 if ((keepout->end - keepout->start < nvmem->word_size) ||
784 ((keepout->start != cur) &&
785 (keepout->start - cur < nvmem->word_size))) {
786
787 dev_err(&nvmem->dev,
788 "Keepout regions violate word_size constraints.\n");
789
790 return -ERANGE;
791 }
792
793 /* Validate keepouts don't violate stride (alignment). */
794 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
795 !IS_ALIGNED(keepout->end, nvmem->stride)) {
796
797 dev_err(&nvmem->dev,
798 "Keepout regions violate stride.\n");
799
800 return -EINVAL;
801 }
802
803 cur = keepout->end;
804 keepout++;
805 }
806
807 return 0;
808}
809
810static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
811{
812 struct device *dev = &nvmem->dev;
813 struct device_node *child;
814 const __be32 *addr;
815 int len, ret;
816
817 for_each_child_of_node(np, child) {
818 struct nvmem_cell_info info = {0};
819
820 addr = of_get_property(child, "reg", &len);
821 if (!addr)
822 continue;
823 if (len < 2 * sizeof(u32)) {
824 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
825 of_node_put(child);
826 return -EINVAL;
827 }
828
829 info.offset = be32_to_cpup(addr++);
830 info.bytes = be32_to_cpup(addr);
831 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
832
833 addr = of_get_property(child, "bits", &len);
834 if (addr && len == (2 * sizeof(u32))) {
835 info.bit_offset = be32_to_cpup(addr++);
836 info.nbits = be32_to_cpup(addr);
837 if (info.bit_offset >= BITS_PER_BYTE || info.nbits < 1) {
838 dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
839 of_node_put(child);
840 return -EINVAL;
841 }
842 }
843
844 info.np = of_node_get(child);
845
846 if (nvmem->fixup_dt_cell_info)
847 nvmem->fixup_dt_cell_info(nvmem, &info);
848
849 ret = nvmem_add_one_cell(nvmem, &info);
850 kfree(info.name);
851 if (ret) {
852 of_node_put(child);
853 return ret;
854 }
855 }
856
857 return 0;
858}
859
860static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
861{
862 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
863}
864
865static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
866{
867 struct device_node *layout_np;
868 int err = 0;
869
870 layout_np = of_nvmem_layout_get_container(nvmem);
871 if (!layout_np)
872 return 0;
873
874 if (of_device_is_compatible(layout_np, "fixed-layout"))
875 err = nvmem_add_cells_from_dt(nvmem, layout_np);
876
877 of_node_put(layout_np);
878
879 return err;
880}
881
882int nvmem_layout_register(struct nvmem_layout *layout)
883{
884 int ret;
885
886 if (!layout->add_cells)
887 return -EINVAL;
888
889 /* Populate the cells */
890 ret = layout->add_cells(layout);
891 if (ret)
892 return ret;
893
894#ifdef CONFIG_NVMEM_SYSFS
895 ret = nvmem_populate_sysfs_cells(layout->nvmem);
896 if (ret) {
897 nvmem_device_remove_all_cells(layout->nvmem);
898 return ret;
899 }
900#endif
901
902 return 0;
903}
904EXPORT_SYMBOL_GPL(nvmem_layout_register);
905
906void nvmem_layout_unregister(struct nvmem_layout *layout)
907{
908 /* Keep the API even with an empty stub in case we need it later */
909}
910EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
911
912/**
913 * nvmem_register() - Register a nvmem device for given nvmem_config.
914 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
915 *
916 * @config: nvmem device configuration with which nvmem device is created.
917 *
918 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
919 * on success.
920 */
921
922struct nvmem_device *nvmem_register(const struct nvmem_config *config)
923{
924 struct nvmem_device *nvmem;
925 int rval;
926
927 if (!config->dev)
928 return ERR_PTR(-EINVAL);
929
930 if (!config->reg_read && !config->reg_write)
931 return ERR_PTR(-EINVAL);
932
933 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
934 if (!nvmem)
935 return ERR_PTR(-ENOMEM);
936
937 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
938 if (rval < 0) {
939 kfree(nvmem);
940 return ERR_PTR(rval);
941 }
942
943 nvmem->id = rval;
944
945 nvmem->dev.type = &nvmem_provider_type;
946 nvmem->dev.bus = &nvmem_bus_type;
947 nvmem->dev.parent = config->dev;
948
949 device_initialize(&nvmem->dev);
950
951 if (!config->ignore_wp)
952 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
953 GPIOD_OUT_HIGH);
954 if (IS_ERR(nvmem->wp_gpio)) {
955 rval = PTR_ERR(nvmem->wp_gpio);
956 nvmem->wp_gpio = NULL;
957 goto err_put_device;
958 }
959
960 kref_init(&nvmem->refcnt);
961 INIT_LIST_HEAD(&nvmem->cells);
962 nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
963
964 nvmem->owner = config->owner;
965 if (!nvmem->owner && config->dev->driver)
966 nvmem->owner = config->dev->driver->owner;
967 nvmem->stride = config->stride ?: 1;
968 nvmem->word_size = config->word_size ?: 1;
969 nvmem->size = config->size;
970 nvmem->root_only = config->root_only;
971 nvmem->priv = config->priv;
972 nvmem->type = config->type;
973 nvmem->reg_read = config->reg_read;
974 nvmem->reg_write = config->reg_write;
975 nvmem->keepout = config->keepout;
976 nvmem->nkeepout = config->nkeepout;
977 if (config->of_node)
978 nvmem->dev.of_node = config->of_node;
979 else
980 nvmem->dev.of_node = config->dev->of_node;
981
982 switch (config->id) {
983 case NVMEM_DEVID_NONE:
984 rval = dev_set_name(&nvmem->dev, "%s", config->name);
985 break;
986 case NVMEM_DEVID_AUTO:
987 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
988 break;
989 default:
990 rval = dev_set_name(&nvmem->dev, "%s%d",
991 config->name ? : "nvmem",
992 config->name ? config->id : nvmem->id);
993 break;
994 }
995
996 if (rval)
997 goto err_put_device;
998
999 nvmem->read_only = device_property_present(config->dev, "read-only") ||
1000 config->read_only || !nvmem->reg_write;
1001
1002#ifdef CONFIG_NVMEM_SYSFS
1003 nvmem->dev.groups = nvmem_dev_groups;
1004#endif
1005
1006 if (nvmem->nkeepout) {
1007 rval = nvmem_validate_keepouts(nvmem);
1008 if (rval)
1009 goto err_put_device;
1010 }
1011
1012 if (config->compat) {
1013 rval = nvmem_sysfs_setup_compat(nvmem, config);
1014 if (rval)
1015 goto err_put_device;
1016 }
1017
1018 if (config->cells) {
1019 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1020 if (rval)
1021 goto err_remove_cells;
1022 }
1023
1024 rval = nvmem_add_cells_from_table(nvmem);
1025 if (rval)
1026 goto err_remove_cells;
1027
1028 if (config->add_legacy_fixed_of_cells) {
1029 rval = nvmem_add_cells_from_legacy_of(nvmem);
1030 if (rval)
1031 goto err_remove_cells;
1032 }
1033
1034 rval = nvmem_add_cells_from_fixed_layout(nvmem);
1035 if (rval)
1036 goto err_remove_cells;
1037
1038 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1039
1040 rval = device_add(&nvmem->dev);
1041 if (rval)
1042 goto err_remove_cells;
1043
1044 rval = nvmem_populate_layout(nvmem);
1045 if (rval)
1046 goto err_remove_dev;
1047
1048#ifdef CONFIG_NVMEM_SYSFS
1049 rval = nvmem_populate_sysfs_cells(nvmem);
1050 if (rval)
1051 goto err_destroy_layout;
1052#endif
1053
1054 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1055
1056 return nvmem;
1057
1058#ifdef CONFIG_NVMEM_SYSFS
1059err_destroy_layout:
1060 nvmem_destroy_layout(nvmem);
1061#endif
1062err_remove_dev:
1063 device_del(&nvmem->dev);
1064err_remove_cells:
1065 nvmem_device_remove_all_cells(nvmem);
1066 if (config->compat)
1067 nvmem_sysfs_remove_compat(nvmem, config);
1068err_put_device:
1069 put_device(&nvmem->dev);
1070
1071 return ERR_PTR(rval);
1072}
1073EXPORT_SYMBOL_GPL(nvmem_register);
1074
1075static void nvmem_device_release(struct kref *kref)
1076{
1077 struct nvmem_device *nvmem;
1078
1079 nvmem = container_of(kref, struct nvmem_device, refcnt);
1080
1081 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1082
1083 if (nvmem->flags & FLAG_COMPAT)
1084 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1085
1086 nvmem_device_remove_all_cells(nvmem);
1087 nvmem_destroy_layout(nvmem);
1088 device_unregister(&nvmem->dev);
1089}
1090
1091/**
1092 * nvmem_unregister() - Unregister previously registered nvmem device
1093 *
1094 * @nvmem: Pointer to previously registered nvmem device.
1095 */
1096void nvmem_unregister(struct nvmem_device *nvmem)
1097{
1098 if (nvmem)
1099 kref_put(&nvmem->refcnt, nvmem_device_release);
1100}
1101EXPORT_SYMBOL_GPL(nvmem_unregister);
1102
1103static void devm_nvmem_unregister(void *nvmem)
1104{
1105 nvmem_unregister(nvmem);
1106}
1107
1108/**
1109 * devm_nvmem_register() - Register a managed nvmem device for given
1110 * nvmem_config.
1111 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1112 *
1113 * @dev: Device that uses the nvmem device.
1114 * @config: nvmem device configuration with which nvmem device is created.
1115 *
1116 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1117 * on success.
1118 */
1119struct nvmem_device *devm_nvmem_register(struct device *dev,
1120 const struct nvmem_config *config)
1121{
1122 struct nvmem_device *nvmem;
1123 int ret;
1124
1125 nvmem = nvmem_register(config);
1126 if (IS_ERR(nvmem))
1127 return nvmem;
1128
1129 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1130 if (ret)
1131 return ERR_PTR(ret);
1132
1133 return nvmem;
1134}
1135EXPORT_SYMBOL_GPL(devm_nvmem_register);
1136
1137static struct nvmem_device *__nvmem_device_get(void *data,
1138 int (*match)(struct device *dev, const void *data))
1139{
1140 struct nvmem_device *nvmem = NULL;
1141 struct device *dev;
1142
1143 mutex_lock(&nvmem_mutex);
1144 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1145 if (dev)
1146 nvmem = to_nvmem_device(dev);
1147 mutex_unlock(&nvmem_mutex);
1148 if (!nvmem)
1149 return ERR_PTR(-EPROBE_DEFER);
1150
1151 if (!try_module_get(nvmem->owner)) {
1152 dev_err(&nvmem->dev,
1153 "could not increase module refcount for cell %s\n",
1154 nvmem_dev_name(nvmem));
1155
1156 put_device(&nvmem->dev);
1157 return ERR_PTR(-EINVAL);
1158 }
1159
1160 kref_get(&nvmem->refcnt);
1161
1162 return nvmem;
1163}
1164
1165static void __nvmem_device_put(struct nvmem_device *nvmem)
1166{
1167 put_device(&nvmem->dev);
1168 module_put(nvmem->owner);
1169 kref_put(&nvmem->refcnt, nvmem_device_release);
1170}
1171
1172#if IS_ENABLED(CONFIG_OF)
1173/**
1174 * of_nvmem_device_get() - Get nvmem device from a given id
1175 *
1176 * @np: Device tree node that uses the nvmem device.
1177 * @id: nvmem name from nvmem-names property.
1178 *
1179 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1180 * on success.
1181 */
1182struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1183{
1184
1185 struct device_node *nvmem_np;
1186 struct nvmem_device *nvmem;
1187 int index = 0;
1188
1189 if (id)
1190 index = of_property_match_string(np, "nvmem-names", id);
1191
1192 nvmem_np = of_parse_phandle(np, "nvmem", index);
1193 if (!nvmem_np)
1194 return ERR_PTR(-ENOENT);
1195
1196 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1197 of_node_put(nvmem_np);
1198 return nvmem;
1199}
1200EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1201#endif
1202
1203/**
1204 * nvmem_device_get() - Get nvmem device from a given id
1205 *
1206 * @dev: Device that uses the nvmem device.
1207 * @dev_name: name of the requested nvmem device.
1208 *
1209 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1210 * on success.
1211 */
1212struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1213{
1214 if (dev->of_node) { /* try dt first */
1215 struct nvmem_device *nvmem;
1216
1217 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1218
1219 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1220 return nvmem;
1221
1222 }
1223
1224 return __nvmem_device_get((void *)dev_name, device_match_name);
1225}
1226EXPORT_SYMBOL_GPL(nvmem_device_get);
1227
1228/**
1229 * nvmem_device_find() - Find nvmem device with matching function
1230 *
1231 * @data: Data to pass to match function
1232 * @match: Callback function to check device
1233 *
1234 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1235 * on success.
1236 */
1237struct nvmem_device *nvmem_device_find(void *data,
1238 int (*match)(struct device *dev, const void *data))
1239{
1240 return __nvmem_device_get(data, match);
1241}
1242EXPORT_SYMBOL_GPL(nvmem_device_find);
1243
1244static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1245{
1246 struct nvmem_device **nvmem = res;
1247
1248 if (WARN_ON(!nvmem || !*nvmem))
1249 return 0;
1250
1251 return *nvmem == data;
1252}
1253
1254static void devm_nvmem_device_release(struct device *dev, void *res)
1255{
1256 nvmem_device_put(*(struct nvmem_device **)res);
1257}
1258
1259/**
1260 * devm_nvmem_device_put() - put already got nvmem device
1261 *
1262 * @dev: Device that uses the nvmem device.
1263 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1264 * that needs to be released.
1265 */
1266void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1267{
1268 int ret;
1269
1270 ret = devres_release(dev, devm_nvmem_device_release,
1271 devm_nvmem_device_match, nvmem);
1272
1273 WARN_ON(ret);
1274}
1275EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1276
1277/**
1278 * nvmem_device_put() - put already got nvmem device
1279 *
1280 * @nvmem: pointer to nvmem device that needs to be released.
1281 */
1282void nvmem_device_put(struct nvmem_device *nvmem)
1283{
1284 __nvmem_device_put(nvmem);
1285}
1286EXPORT_SYMBOL_GPL(nvmem_device_put);
1287
1288/**
1289 * devm_nvmem_device_get() - Get nvmem device of device form a given id
1290 *
1291 * @dev: Device that requests the nvmem device.
1292 * @id: name id for the requested nvmem device.
1293 *
1294 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1295 * on success. The nvmem_device will be freed by the automatically once the
1296 * device is freed.
1297 */
1298struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1299{
1300 struct nvmem_device **ptr, *nvmem;
1301
1302 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1303 if (!ptr)
1304 return ERR_PTR(-ENOMEM);
1305
1306 nvmem = nvmem_device_get(dev, id);
1307 if (!IS_ERR(nvmem)) {
1308 *ptr = nvmem;
1309 devres_add(dev, ptr);
1310 } else {
1311 devres_free(ptr);
1312 }
1313
1314 return nvmem;
1315}
1316EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1317
1318static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1319 const char *id, int index)
1320{
1321 struct nvmem_cell *cell;
1322 const char *name = NULL;
1323
1324 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1325 if (!cell)
1326 return ERR_PTR(-ENOMEM);
1327
1328 if (id) {
1329 name = kstrdup_const(id, GFP_KERNEL);
1330 if (!name) {
1331 kfree(cell);
1332 return ERR_PTR(-ENOMEM);
1333 }
1334 }
1335
1336 cell->id = name;
1337 cell->entry = entry;
1338 cell->index = index;
1339
1340 return cell;
1341}
1342
1343static struct nvmem_cell *
1344nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1345{
1346 struct nvmem_cell_entry *cell_entry;
1347 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1348 struct nvmem_cell_lookup *lookup;
1349 struct nvmem_device *nvmem;
1350 const char *dev_id;
1351
1352 if (!dev)
1353 return ERR_PTR(-EINVAL);
1354
1355 dev_id = dev_name(dev);
1356
1357 mutex_lock(&nvmem_lookup_mutex);
1358
1359 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1360 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1361 (strcmp(lookup->con_id, con_id) == 0)) {
1362 /* This is the right entry. */
1363 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1364 device_match_name);
1365 if (IS_ERR(nvmem)) {
1366 /* Provider may not be registered yet. */
1367 cell = ERR_CAST(nvmem);
1368 break;
1369 }
1370
1371 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1372 lookup->cell_name);
1373 if (!cell_entry) {
1374 __nvmem_device_put(nvmem);
1375 cell = ERR_PTR(-ENOENT);
1376 } else {
1377 cell = nvmem_create_cell(cell_entry, con_id, 0);
1378 if (IS_ERR(cell))
1379 __nvmem_device_put(nvmem);
1380 }
1381 break;
1382 }
1383 }
1384
1385 mutex_unlock(&nvmem_lookup_mutex);
1386 return cell;
1387}
1388
1389static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1390{
1391 if (nvmem->layout && nvmem->layout->dev.driver)
1392 module_put(nvmem->layout->dev.driver->owner);
1393}
1394
1395#if IS_ENABLED(CONFIG_OF)
1396static struct nvmem_cell_entry *
1397nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1398{
1399 struct nvmem_cell_entry *iter, *cell = NULL;
1400
1401 mutex_lock(&nvmem_mutex);
1402 list_for_each_entry(iter, &nvmem->cells, node) {
1403 if (np == iter->np) {
1404 cell = iter;
1405 break;
1406 }
1407 }
1408 mutex_unlock(&nvmem_mutex);
1409
1410 return cell;
1411}
1412
1413static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1414{
1415 if (!nvmem->layout)
1416 return 0;
1417
1418 if (!nvmem->layout->dev.driver ||
1419 !try_module_get(nvmem->layout->dev.driver->owner))
1420 return -EPROBE_DEFER;
1421
1422 return 0;
1423}
1424
1425/**
1426 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1427 *
1428 * @np: Device tree node that uses the nvmem cell.
1429 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1430 * for the cell at index 0 (the lone cell with no accompanying
1431 * nvmem-cell-names property).
1432 *
1433 * Return: Will be an ERR_PTR() on error or a valid pointer
1434 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1435 * nvmem_cell_put().
1436 */
1437struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1438{
1439 struct device_node *cell_np, *nvmem_np;
1440 struct nvmem_device *nvmem;
1441 struct nvmem_cell_entry *cell_entry;
1442 struct nvmem_cell *cell;
1443 struct of_phandle_args cell_spec;
1444 int index = 0;
1445 int cell_index = 0;
1446 int ret;
1447
1448 /* if cell name exists, find index to the name */
1449 if (id)
1450 index = of_property_match_string(np, "nvmem-cell-names", id);
1451
1452 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1453 "#nvmem-cell-cells",
1454 index, &cell_spec);
1455 if (ret)
1456 return ERR_PTR(-ENOENT);
1457
1458 if (cell_spec.args_count > 1)
1459 return ERR_PTR(-EINVAL);
1460
1461 cell_np = cell_spec.np;
1462 if (cell_spec.args_count)
1463 cell_index = cell_spec.args[0];
1464
1465 nvmem_np = of_get_parent(cell_np);
1466 if (!nvmem_np) {
1467 of_node_put(cell_np);
1468 return ERR_PTR(-EINVAL);
1469 }
1470
1471 /* nvmem layouts produce cells within the nvmem-layout container */
1472 if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1473 nvmem_np = of_get_next_parent(nvmem_np);
1474 if (!nvmem_np) {
1475 of_node_put(cell_np);
1476 return ERR_PTR(-EINVAL);
1477 }
1478 }
1479
1480 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1481 of_node_put(nvmem_np);
1482 if (IS_ERR(nvmem)) {
1483 of_node_put(cell_np);
1484 return ERR_CAST(nvmem);
1485 }
1486
1487 ret = nvmem_layout_module_get_optional(nvmem);
1488 if (ret) {
1489 of_node_put(cell_np);
1490 __nvmem_device_put(nvmem);
1491 return ERR_PTR(ret);
1492 }
1493
1494 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1495 of_node_put(cell_np);
1496 if (!cell_entry) {
1497 __nvmem_device_put(nvmem);
1498 nvmem_layout_module_put(nvmem);
1499 if (nvmem->layout)
1500 return ERR_PTR(-EPROBE_DEFER);
1501 else
1502 return ERR_PTR(-ENOENT);
1503 }
1504
1505 cell = nvmem_create_cell(cell_entry, id, cell_index);
1506 if (IS_ERR(cell)) {
1507 __nvmem_device_put(nvmem);
1508 nvmem_layout_module_put(nvmem);
1509 }
1510
1511 return cell;
1512}
1513EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1514#endif
1515
1516/**
1517 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1518 *
1519 * @dev: Device that requests the nvmem cell.
1520 * @id: nvmem cell name to get (this corresponds with the name from the
1521 * nvmem-cell-names property for DT systems and with the con_id from
1522 * the lookup entry for non-DT systems).
1523 *
1524 * Return: Will be an ERR_PTR() on error or a valid pointer
1525 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1526 * nvmem_cell_put().
1527 */
1528struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1529{
1530 struct nvmem_cell *cell;
1531
1532 if (dev->of_node) { /* try dt first */
1533 cell = of_nvmem_cell_get(dev->of_node, id);
1534 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1535 return cell;
1536 }
1537
1538 /* NULL cell id only allowed for device tree; invalid otherwise */
1539 if (!id)
1540 return ERR_PTR(-EINVAL);
1541
1542 return nvmem_cell_get_from_lookup(dev, id);
1543}
1544EXPORT_SYMBOL_GPL(nvmem_cell_get);
1545
1546static void devm_nvmem_cell_release(struct device *dev, void *res)
1547{
1548 nvmem_cell_put(*(struct nvmem_cell **)res);
1549}
1550
1551/**
1552 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1553 *
1554 * @dev: Device that requests the nvmem cell.
1555 * @id: nvmem cell name id to get.
1556 *
1557 * Return: Will be an ERR_PTR() on error or a valid pointer
1558 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1559 * automatically once the device is freed.
1560 */
1561struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1562{
1563 struct nvmem_cell **ptr, *cell;
1564
1565 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1566 if (!ptr)
1567 return ERR_PTR(-ENOMEM);
1568
1569 cell = nvmem_cell_get(dev, id);
1570 if (!IS_ERR(cell)) {
1571 *ptr = cell;
1572 devres_add(dev, ptr);
1573 } else {
1574 devres_free(ptr);
1575 }
1576
1577 return cell;
1578}
1579EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1580
1581static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1582{
1583 struct nvmem_cell **c = res;
1584
1585 if (WARN_ON(!c || !*c))
1586 return 0;
1587
1588 return *c == data;
1589}
1590
1591/**
1592 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1593 * from devm_nvmem_cell_get.
1594 *
1595 * @dev: Device that requests the nvmem cell.
1596 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1597 */
1598void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1599{
1600 int ret;
1601
1602 ret = devres_release(dev, devm_nvmem_cell_release,
1603 devm_nvmem_cell_match, cell);
1604
1605 WARN_ON(ret);
1606}
1607EXPORT_SYMBOL(devm_nvmem_cell_put);
1608
1609/**
1610 * nvmem_cell_put() - Release previously allocated nvmem cell.
1611 *
1612 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1613 */
1614void nvmem_cell_put(struct nvmem_cell *cell)
1615{
1616 struct nvmem_device *nvmem = cell->entry->nvmem;
1617
1618 if (cell->id)
1619 kfree_const(cell->id);
1620
1621 kfree(cell);
1622 __nvmem_device_put(nvmem);
1623 nvmem_layout_module_put(nvmem);
1624}
1625EXPORT_SYMBOL_GPL(nvmem_cell_put);
1626
1627static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1628{
1629 u8 *p, *b;
1630 int i, extra, bit_offset = cell->bit_offset;
1631
1632 p = b = buf;
1633 if (bit_offset) {
1634 /* First shift */
1635 *b++ >>= bit_offset;
1636
1637 /* setup rest of the bytes if any */
1638 for (i = 1; i < cell->bytes; i++) {
1639 /* Get bits from next byte and shift them towards msb */
1640 *p |= *b << (BITS_PER_BYTE - bit_offset);
1641
1642 p = b;
1643 *b++ >>= bit_offset;
1644 }
1645 } else {
1646 /* point to the msb */
1647 p += cell->bytes - 1;
1648 }
1649
1650 /* result fits in less bytes */
1651 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1652 while (--extra >= 0)
1653 *p-- = 0;
1654
1655 /* clear msb bits if any leftover in the last byte */
1656 if (cell->nbits % BITS_PER_BYTE)
1657 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1658}
1659
1660static int __nvmem_cell_read(struct nvmem_device *nvmem,
1661 struct nvmem_cell_entry *cell,
1662 void *buf, size_t *len, const char *id, int index)
1663{
1664 int rc;
1665
1666 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1667
1668 if (rc)
1669 return rc;
1670
1671 /* shift bits in-place */
1672 if (cell->bit_offset || cell->nbits)
1673 nvmem_shift_read_buffer_in_place(cell, buf);
1674
1675 if (cell->read_post_process) {
1676 rc = cell->read_post_process(cell->priv, id, index,
1677 cell->offset, buf, cell->raw_len);
1678 if (rc)
1679 return rc;
1680 }
1681
1682 if (len)
1683 *len = cell->bytes;
1684
1685 return 0;
1686}
1687
1688/**
1689 * nvmem_cell_read() - Read a given nvmem cell
1690 *
1691 * @cell: nvmem cell to be read.
1692 * @len: pointer to length of cell which will be populated on successful read;
1693 * can be NULL.
1694 *
1695 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1696 * buffer should be freed by the consumer with a kfree().
1697 */
1698void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1699{
1700 struct nvmem_cell_entry *entry = cell->entry;
1701 struct nvmem_device *nvmem = entry->nvmem;
1702 u8 *buf;
1703 int rc;
1704
1705 if (!nvmem)
1706 return ERR_PTR(-EINVAL);
1707
1708 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1709 if (!buf)
1710 return ERR_PTR(-ENOMEM);
1711
1712 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1713 if (rc) {
1714 kfree(buf);
1715 return ERR_PTR(rc);
1716 }
1717
1718 return buf;
1719}
1720EXPORT_SYMBOL_GPL(nvmem_cell_read);
1721
1722static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1723 u8 *_buf, int len)
1724{
1725 struct nvmem_device *nvmem = cell->nvmem;
1726 int i, rc, nbits, bit_offset = cell->bit_offset;
1727 u8 v, *p, *buf, *b, pbyte, pbits;
1728
1729 nbits = cell->nbits;
1730 buf = kzalloc(cell->bytes, GFP_KERNEL);
1731 if (!buf)
1732 return ERR_PTR(-ENOMEM);
1733
1734 memcpy(buf, _buf, len);
1735 p = b = buf;
1736
1737 if (bit_offset) {
1738 pbyte = *b;
1739 *b <<= bit_offset;
1740
1741 /* setup the first byte with lsb bits from nvmem */
1742 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1743 if (rc)
1744 goto err;
1745 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1746
1747 /* setup rest of the byte if any */
1748 for (i = 1; i < cell->bytes; i++) {
1749 /* Get last byte bits and shift them towards lsb */
1750 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1751 pbyte = *b;
1752 p = b;
1753 *b <<= bit_offset;
1754 *b++ |= pbits;
1755 }
1756 }
1757
1758 /* if it's not end on byte boundary */
1759 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1760 /* setup the last byte with msb bits from nvmem */
1761 rc = nvmem_reg_read(nvmem,
1762 cell->offset + cell->bytes - 1, &v, 1);
1763 if (rc)
1764 goto err;
1765 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1766
1767 }
1768
1769 return buf;
1770err:
1771 kfree(buf);
1772 return ERR_PTR(rc);
1773}
1774
1775static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1776{
1777 struct nvmem_device *nvmem = cell->nvmem;
1778 int rc;
1779
1780 if (!nvmem || nvmem->read_only ||
1781 (cell->bit_offset == 0 && len != cell->bytes))
1782 return -EINVAL;
1783
1784 /*
1785 * Any cells which have a read_post_process hook are read-only because
1786 * we cannot reverse the operation and it might affect other cells,
1787 * too.
1788 */
1789 if (cell->read_post_process)
1790 return -EINVAL;
1791
1792 if (cell->bit_offset || cell->nbits) {
1793 if (len != BITS_TO_BYTES(cell->nbits) && len != cell->bytes)
1794 return -EINVAL;
1795 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1796 if (IS_ERR(buf))
1797 return PTR_ERR(buf);
1798 }
1799
1800 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1801
1802 /* free the tmp buffer */
1803 if (cell->bit_offset || cell->nbits)
1804 kfree(buf);
1805
1806 if (rc)
1807 return rc;
1808
1809 return len;
1810}
1811
1812/**
1813 * nvmem_cell_write() - Write to a given nvmem cell
1814 *
1815 * @cell: nvmem cell to be written.
1816 * @buf: Buffer to be written.
1817 * @len: length of buffer to be written to nvmem cell.
1818 *
1819 * Return: length of bytes written or negative on failure.
1820 */
1821int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1822{
1823 return __nvmem_cell_entry_write(cell->entry, buf, len);
1824}
1825
1826EXPORT_SYMBOL_GPL(nvmem_cell_write);
1827
1828static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1829 void *val, size_t count)
1830{
1831 struct nvmem_cell *cell;
1832 void *buf;
1833 size_t len;
1834
1835 cell = nvmem_cell_get(dev, cell_id);
1836 if (IS_ERR(cell))
1837 return PTR_ERR(cell);
1838
1839 buf = nvmem_cell_read(cell, &len);
1840 if (IS_ERR(buf)) {
1841 nvmem_cell_put(cell);
1842 return PTR_ERR(buf);
1843 }
1844 if (len != count) {
1845 kfree(buf);
1846 nvmem_cell_put(cell);
1847 return -EINVAL;
1848 }
1849 memcpy(val, buf, count);
1850 kfree(buf);
1851 nvmem_cell_put(cell);
1852
1853 return 0;
1854}
1855
1856/**
1857 * nvmem_cell_read_u8() - Read a cell value as a u8
1858 *
1859 * @dev: Device that requests the nvmem cell.
1860 * @cell_id: Name of nvmem cell to read.
1861 * @val: pointer to output value.
1862 *
1863 * Return: 0 on success or negative errno.
1864 */
1865int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1866{
1867 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1868}
1869EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1870
1871/**
1872 * nvmem_cell_read_u16() - Read a cell value as a u16
1873 *
1874 * @dev: Device that requests the nvmem cell.
1875 * @cell_id: Name of nvmem cell to read.
1876 * @val: pointer to output value.
1877 *
1878 * Return: 0 on success or negative errno.
1879 */
1880int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1881{
1882 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1883}
1884EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1885
1886/**
1887 * nvmem_cell_read_u32() - Read a cell value as a u32
1888 *
1889 * @dev: Device that requests the nvmem cell.
1890 * @cell_id: Name of nvmem cell to read.
1891 * @val: pointer to output value.
1892 *
1893 * Return: 0 on success or negative errno.
1894 */
1895int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1896{
1897 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1898}
1899EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1900
1901/**
1902 * nvmem_cell_read_u64() - Read a cell value as a u64
1903 *
1904 * @dev: Device that requests the nvmem cell.
1905 * @cell_id: Name of nvmem cell to read.
1906 * @val: pointer to output value.
1907 *
1908 * Return: 0 on success or negative errno.
1909 */
1910int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1911{
1912 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1913}
1914EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1915
1916static const void *nvmem_cell_read_variable_common(struct device *dev,
1917 const char *cell_id,
1918 size_t max_len, size_t *len)
1919{
1920 struct nvmem_cell *cell;
1921 int nbits;
1922 void *buf;
1923
1924 cell = nvmem_cell_get(dev, cell_id);
1925 if (IS_ERR(cell))
1926 return cell;
1927
1928 nbits = cell->entry->nbits;
1929 buf = nvmem_cell_read(cell, len);
1930 nvmem_cell_put(cell);
1931 if (IS_ERR(buf))
1932 return buf;
1933
1934 /*
1935 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1936 * the length of the real data. Throw away the extra junk.
1937 */
1938 if (nbits)
1939 *len = DIV_ROUND_UP(nbits, 8);
1940
1941 if (*len > max_len) {
1942 kfree(buf);
1943 return ERR_PTR(-ERANGE);
1944 }
1945
1946 return buf;
1947}
1948
1949/**
1950 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1951 *
1952 * @dev: Device that requests the nvmem cell.
1953 * @cell_id: Name of nvmem cell to read.
1954 * @val: pointer to output value.
1955 *
1956 * Return: 0 on success or negative errno.
1957 */
1958int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1959 u32 *val)
1960{
1961 size_t len;
1962 const u8 *buf;
1963 int i;
1964
1965 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1966 if (IS_ERR(buf))
1967 return PTR_ERR(buf);
1968
1969 /* Copy w/ implicit endian conversion */
1970 *val = 0;
1971 for (i = 0; i < len; i++)
1972 *val |= buf[i] << (8 * i);
1973
1974 kfree(buf);
1975
1976 return 0;
1977}
1978EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1979
1980/**
1981 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1982 *
1983 * @dev: Device that requests the nvmem cell.
1984 * @cell_id: Name of nvmem cell to read.
1985 * @val: pointer to output value.
1986 *
1987 * Return: 0 on success or negative errno.
1988 */
1989int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1990 u64 *val)
1991{
1992 size_t len;
1993 const u8 *buf;
1994 int i;
1995
1996 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1997 if (IS_ERR(buf))
1998 return PTR_ERR(buf);
1999
2000 /* Copy w/ implicit endian conversion */
2001 *val = 0;
2002 for (i = 0; i < len; i++)
2003 *val |= (uint64_t)buf[i] << (8 * i);
2004
2005 kfree(buf);
2006
2007 return 0;
2008}
2009EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
2010
2011/**
2012 * nvmem_device_cell_read() - Read a given nvmem device and cell
2013 *
2014 * @nvmem: nvmem device to read from.
2015 * @info: nvmem cell info to be read.
2016 * @buf: buffer pointer which will be populated on successful read.
2017 *
2018 * Return: length of successful bytes read on success and negative
2019 * error code on error.
2020 */
2021ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2022 struct nvmem_cell_info *info, void *buf)
2023{
2024 struct nvmem_cell_entry cell;
2025 int rc;
2026 ssize_t len;
2027
2028 if (!nvmem)
2029 return -EINVAL;
2030
2031 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2032 if (rc)
2033 return rc;
2034
2035 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2036 if (rc)
2037 return rc;
2038
2039 return len;
2040}
2041EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2042
2043/**
2044 * nvmem_device_cell_write() - Write cell to a given nvmem device
2045 *
2046 * @nvmem: nvmem device to be written to.
2047 * @info: nvmem cell info to be written.
2048 * @buf: buffer to be written to cell.
2049 *
2050 * Return: length of bytes written or negative error code on failure.
2051 */
2052int nvmem_device_cell_write(struct nvmem_device *nvmem,
2053 struct nvmem_cell_info *info, void *buf)
2054{
2055 struct nvmem_cell_entry cell;
2056 int rc;
2057
2058 if (!nvmem)
2059 return -EINVAL;
2060
2061 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2062 if (rc)
2063 return rc;
2064
2065 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2066}
2067EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2068
2069/**
2070 * nvmem_device_read() - Read from a given nvmem device
2071 *
2072 * @nvmem: nvmem device to read from.
2073 * @offset: offset in nvmem device.
2074 * @bytes: number of bytes to read.
2075 * @buf: buffer pointer which will be populated on successful read.
2076 *
2077 * Return: length of successful bytes read on success and negative
2078 * error code on error.
2079 */
2080int nvmem_device_read(struct nvmem_device *nvmem,
2081 unsigned int offset,
2082 size_t bytes, void *buf)
2083{
2084 int rc;
2085
2086 if (!nvmem)
2087 return -EINVAL;
2088
2089 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2090
2091 if (rc)
2092 return rc;
2093
2094 return bytes;
2095}
2096EXPORT_SYMBOL_GPL(nvmem_device_read);
2097
2098/**
2099 * nvmem_device_write() - Write cell to a given nvmem device
2100 *
2101 * @nvmem: nvmem device to be written to.
2102 * @offset: offset in nvmem device.
2103 * @bytes: number of bytes to write.
2104 * @buf: buffer to be written.
2105 *
2106 * Return: length of bytes written or negative error code on failure.
2107 */
2108int nvmem_device_write(struct nvmem_device *nvmem,
2109 unsigned int offset,
2110 size_t bytes, void *buf)
2111{
2112 int rc;
2113
2114 if (!nvmem)
2115 return -EINVAL;
2116
2117 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2118
2119 if (rc)
2120 return rc;
2121
2122
2123 return bytes;
2124}
2125EXPORT_SYMBOL_GPL(nvmem_device_write);
2126
2127/**
2128 * nvmem_add_cell_table() - register a table of cell info entries
2129 *
2130 * @table: table of cell info entries
2131 */
2132void nvmem_add_cell_table(struct nvmem_cell_table *table)
2133{
2134 mutex_lock(&nvmem_cell_mutex);
2135 list_add_tail(&table->node, &nvmem_cell_tables);
2136 mutex_unlock(&nvmem_cell_mutex);
2137}
2138EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2139
2140/**
2141 * nvmem_del_cell_table() - remove a previously registered cell info table
2142 *
2143 * @table: table of cell info entries
2144 */
2145void nvmem_del_cell_table(struct nvmem_cell_table *table)
2146{
2147 mutex_lock(&nvmem_cell_mutex);
2148 list_del(&table->node);
2149 mutex_unlock(&nvmem_cell_mutex);
2150}
2151EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2152
2153/**
2154 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2155 *
2156 * @entries: array of cell lookup entries
2157 * @nentries: number of cell lookup entries in the array
2158 */
2159void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2160{
2161 int i;
2162
2163 mutex_lock(&nvmem_lookup_mutex);
2164 for (i = 0; i < nentries; i++)
2165 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2166 mutex_unlock(&nvmem_lookup_mutex);
2167}
2168EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2169
2170/**
2171 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2172 * entries
2173 *
2174 * @entries: array of cell lookup entries
2175 * @nentries: number of cell lookup entries in the array
2176 */
2177void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2178{
2179 int i;
2180
2181 mutex_lock(&nvmem_lookup_mutex);
2182 for (i = 0; i < nentries; i++)
2183 list_del(&entries[i].node);
2184 mutex_unlock(&nvmem_lookup_mutex);
2185}
2186EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2187
2188/**
2189 * nvmem_dev_name() - Get the name of a given nvmem device.
2190 *
2191 * @nvmem: nvmem device.
2192 *
2193 * Return: name of the nvmem device.
2194 */
2195const char *nvmem_dev_name(struct nvmem_device *nvmem)
2196{
2197 return dev_name(&nvmem->dev);
2198}
2199EXPORT_SYMBOL_GPL(nvmem_dev_name);
2200
2201/**
2202 * nvmem_dev_size() - Get the size of a given nvmem device.
2203 *
2204 * @nvmem: nvmem device.
2205 *
2206 * Return: size of the nvmem device.
2207 */
2208size_t nvmem_dev_size(struct nvmem_device *nvmem)
2209{
2210 return nvmem->size;
2211}
2212EXPORT_SYMBOL_GPL(nvmem_dev_size);
2213
2214static int __init nvmem_init(void)
2215{
2216 int ret;
2217
2218 ret = bus_register(&nvmem_bus_type);
2219 if (ret)
2220 return ret;
2221
2222 ret = nvmem_layout_bus_register();
2223 if (ret)
2224 bus_unregister(&nvmem_bus_type);
2225
2226 return ret;
2227}
2228
2229static void __exit nvmem_exit(void)
2230{
2231 nvmem_layout_bus_unregister();
2232 bus_unregister(&nvmem_bus_type);
2233}
2234
2235subsys_initcall(nvmem_init);
2236module_exit(nvmem_exit);
2237
2238MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2239MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2240MODULE_DESCRIPTION("nvmem Driver Core");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/fs.h>
12#include <linux/idr.h>
13#include <linux/init.h>
14#include <linux/kref.h>
15#include <linux/module.h>
16#include <linux/nvmem-consumer.h>
17#include <linux/nvmem-provider.h>
18#include <linux/gpio/consumer.h>
19#include <linux/of.h>
20#include <linux/slab.h>
21
22#include "internals.h"
23
24#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25
26#define FLAG_COMPAT BIT(0)
27struct nvmem_cell_entry {
28 const char *name;
29 int offset;
30 size_t raw_len;
31 int bytes;
32 int bit_offset;
33 int nbits;
34 nvmem_cell_post_process_t read_post_process;
35 void *priv;
36 struct device_node *np;
37 struct nvmem_device *nvmem;
38 struct list_head node;
39};
40
41struct nvmem_cell {
42 struct nvmem_cell_entry *entry;
43 const char *id;
44 int index;
45};
46
47static DEFINE_MUTEX(nvmem_mutex);
48static DEFINE_IDA(nvmem_ida);
49
50static DEFINE_MUTEX(nvmem_cell_mutex);
51static LIST_HEAD(nvmem_cell_tables);
52
53static DEFINE_MUTEX(nvmem_lookup_mutex);
54static LIST_HEAD(nvmem_lookup_list);
55
56static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57
58static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 void *val, size_t bytes)
60{
61 if (nvmem->reg_read)
62 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63
64 return -EINVAL;
65}
66
67static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 void *val, size_t bytes)
69{
70 int ret;
71
72 if (nvmem->reg_write) {
73 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 return ret;
77 }
78
79 return -EINVAL;
80}
81
82static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 unsigned int offset, void *val,
84 size_t bytes, int write)
85{
86
87 unsigned int end = offset + bytes;
88 unsigned int kend, ksize;
89 const struct nvmem_keepout *keepout = nvmem->keepout;
90 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 int rc;
92
93 /*
94 * Skip all keepouts before the range being accessed.
95 * Keepouts are sorted.
96 */
97 while ((keepout < keepoutend) && (keepout->end <= offset))
98 keepout++;
99
100 while ((offset < end) && (keepout < keepoutend)) {
101 /* Access the valid portion before the keepout. */
102 if (offset < keepout->start) {
103 kend = min(end, keepout->start);
104 ksize = kend - offset;
105 if (write)
106 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 else
108 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109
110 if (rc)
111 return rc;
112
113 offset += ksize;
114 val += ksize;
115 }
116
117 /*
118 * Now we're aligned to the start of this keepout zone. Go
119 * through it.
120 */
121 kend = min(end, keepout->end);
122 ksize = kend - offset;
123 if (!write)
124 memset(val, keepout->value, ksize);
125
126 val += ksize;
127 offset += ksize;
128 keepout++;
129 }
130
131 /*
132 * If we ran out of keepouts but there's still stuff to do, send it
133 * down directly
134 */
135 if (offset < end) {
136 ksize = end - offset;
137 if (write)
138 return __nvmem_reg_write(nvmem, offset, val, ksize);
139 else
140 return __nvmem_reg_read(nvmem, offset, val, ksize);
141 }
142
143 return 0;
144}
145
146static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 void *val, size_t bytes)
148{
149 if (!nvmem->nkeepout)
150 return __nvmem_reg_read(nvmem, offset, val, bytes);
151
152 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153}
154
155static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 void *val, size_t bytes)
157{
158 if (!nvmem->nkeepout)
159 return __nvmem_reg_write(nvmem, offset, val, bytes);
160
161 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162}
163
164#ifdef CONFIG_NVMEM_SYSFS
165static const char * const nvmem_type_str[] = {
166 [NVMEM_TYPE_UNKNOWN] = "Unknown",
167 [NVMEM_TYPE_EEPROM] = "EEPROM",
168 [NVMEM_TYPE_OTP] = "OTP",
169 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 [NVMEM_TYPE_FRAM] = "FRAM",
171};
172
173#ifdef CONFIG_DEBUG_LOCK_ALLOC
174static struct lock_class_key eeprom_lock_key;
175#endif
176
177static ssize_t type_show(struct device *dev,
178 struct device_attribute *attr, char *buf)
179{
180 struct nvmem_device *nvmem = to_nvmem_device(dev);
181
182 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
183}
184
185static DEVICE_ATTR_RO(type);
186
187static struct attribute *nvmem_attrs[] = {
188 &dev_attr_type.attr,
189 NULL,
190};
191
192static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
193 struct bin_attribute *attr, char *buf,
194 loff_t pos, size_t count)
195{
196 struct device *dev;
197 struct nvmem_device *nvmem;
198 int rc;
199
200 if (attr->private)
201 dev = attr->private;
202 else
203 dev = kobj_to_dev(kobj);
204 nvmem = to_nvmem_device(dev);
205
206 /* Stop the user from reading */
207 if (pos >= nvmem->size)
208 return 0;
209
210 if (!IS_ALIGNED(pos, nvmem->stride))
211 return -EINVAL;
212
213 if (count < nvmem->word_size)
214 return -EINVAL;
215
216 if (pos + count > nvmem->size)
217 count = nvmem->size - pos;
218
219 count = round_down(count, nvmem->word_size);
220
221 if (!nvmem->reg_read)
222 return -EPERM;
223
224 rc = nvmem_reg_read(nvmem, pos, buf, count);
225
226 if (rc)
227 return rc;
228
229 return count;
230}
231
232static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
233 struct bin_attribute *attr, char *buf,
234 loff_t pos, size_t count)
235{
236 struct device *dev;
237 struct nvmem_device *nvmem;
238 int rc;
239
240 if (attr->private)
241 dev = attr->private;
242 else
243 dev = kobj_to_dev(kobj);
244 nvmem = to_nvmem_device(dev);
245
246 /* Stop the user from writing */
247 if (pos >= nvmem->size)
248 return -EFBIG;
249
250 if (!IS_ALIGNED(pos, nvmem->stride))
251 return -EINVAL;
252
253 if (count < nvmem->word_size)
254 return -EINVAL;
255
256 if (pos + count > nvmem->size)
257 count = nvmem->size - pos;
258
259 count = round_down(count, nvmem->word_size);
260
261 if (!nvmem->reg_write)
262 return -EPERM;
263
264 rc = nvmem_reg_write(nvmem, pos, buf, count);
265
266 if (rc)
267 return rc;
268
269 return count;
270}
271
272static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
273{
274 umode_t mode = 0400;
275
276 if (!nvmem->root_only)
277 mode |= 0044;
278
279 if (!nvmem->read_only)
280 mode |= 0200;
281
282 if (!nvmem->reg_write)
283 mode &= ~0200;
284
285 if (!nvmem->reg_read)
286 mode &= ~0444;
287
288 return mode;
289}
290
291static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
292 struct bin_attribute *attr, int i)
293{
294 struct device *dev = kobj_to_dev(kobj);
295 struct nvmem_device *nvmem = to_nvmem_device(dev);
296
297 attr->size = nvmem->size;
298
299 return nvmem_bin_attr_get_umode(nvmem);
300}
301
302static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
303 const char *id, int index);
304
305static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
306 struct bin_attribute *attr, char *buf,
307 loff_t pos, size_t count)
308{
309 struct nvmem_cell_entry *entry;
310 struct nvmem_cell *cell = NULL;
311 size_t cell_sz, read_len;
312 void *content;
313
314 entry = attr->private;
315 cell = nvmem_create_cell(entry, entry->name, 0);
316 if (IS_ERR(cell))
317 return PTR_ERR(cell);
318
319 if (!cell)
320 return -EINVAL;
321
322 content = nvmem_cell_read(cell, &cell_sz);
323 if (IS_ERR(content)) {
324 read_len = PTR_ERR(content);
325 goto destroy_cell;
326 }
327
328 read_len = min_t(unsigned int, cell_sz - pos, count);
329 memcpy(buf, content + pos, read_len);
330 kfree(content);
331
332destroy_cell:
333 kfree_const(cell->id);
334 kfree(cell);
335
336 return read_len;
337}
338
339/* default read/write permissions */
340static struct bin_attribute bin_attr_rw_nvmem = {
341 .attr = {
342 .name = "nvmem",
343 .mode = 0644,
344 },
345 .read = bin_attr_nvmem_read,
346 .write = bin_attr_nvmem_write,
347};
348
349static struct bin_attribute *nvmem_bin_attributes[] = {
350 &bin_attr_rw_nvmem,
351 NULL,
352};
353
354static const struct attribute_group nvmem_bin_group = {
355 .bin_attrs = nvmem_bin_attributes,
356 .attrs = nvmem_attrs,
357 .is_bin_visible = nvmem_bin_attr_is_visible,
358};
359
360/* Cell attributes will be dynamically allocated */
361static struct attribute_group nvmem_cells_group = {
362 .name = "cells",
363};
364
365static const struct attribute_group *nvmem_dev_groups[] = {
366 &nvmem_bin_group,
367 NULL,
368};
369
370static const struct attribute_group *nvmem_cells_groups[] = {
371 &nvmem_cells_group,
372 NULL,
373};
374
375static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
376 .attr = {
377 .name = "eeprom",
378 },
379 .read = bin_attr_nvmem_read,
380 .write = bin_attr_nvmem_write,
381};
382
383/*
384 * nvmem_setup_compat() - Create an additional binary entry in
385 * drivers sys directory, to be backwards compatible with the older
386 * drivers/misc/eeprom drivers.
387 */
388static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
389 const struct nvmem_config *config)
390{
391 int rval;
392
393 if (!config->compat)
394 return 0;
395
396 if (!config->base_dev)
397 return -EINVAL;
398
399 if (config->type == NVMEM_TYPE_FRAM)
400 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
401
402 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
403 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
404 nvmem->eeprom.size = nvmem->size;
405#ifdef CONFIG_DEBUG_LOCK_ALLOC
406 nvmem->eeprom.attr.key = &eeprom_lock_key;
407#endif
408 nvmem->eeprom.private = &nvmem->dev;
409 nvmem->base_dev = config->base_dev;
410
411 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
412 if (rval) {
413 dev_err(&nvmem->dev,
414 "Failed to create eeprom binary file %d\n", rval);
415 return rval;
416 }
417
418 nvmem->flags |= FLAG_COMPAT;
419
420 return 0;
421}
422
423static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
424 const struct nvmem_config *config)
425{
426 if (config->compat)
427 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
428}
429
430static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
431{
432 struct bin_attribute **cells_attrs, *attrs;
433 struct nvmem_cell_entry *entry;
434 unsigned int ncells = 0, i = 0;
435 int ret = 0;
436
437 mutex_lock(&nvmem_mutex);
438
439 if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated) {
440 nvmem_cells_group.bin_attrs = NULL;
441 goto unlock_mutex;
442 }
443
444 /* Allocate an array of attributes with a sentinel */
445 ncells = list_count_nodes(&nvmem->cells);
446 cells_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
447 sizeof(struct bin_attribute *), GFP_KERNEL);
448 if (!cells_attrs) {
449 ret = -ENOMEM;
450 goto unlock_mutex;
451 }
452
453 attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
454 if (!attrs) {
455 ret = -ENOMEM;
456 goto unlock_mutex;
457 }
458
459 /* Initialize each attribute to take the name and size of the cell */
460 list_for_each_entry(entry, &nvmem->cells, node) {
461 sysfs_bin_attr_init(&attrs[i]);
462 attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
463 "%s@%x,%x", entry->name,
464 entry->offset,
465 entry->bit_offset);
466 attrs[i].attr.mode = 0444;
467 attrs[i].size = entry->bytes;
468 attrs[i].read = &nvmem_cell_attr_read;
469 attrs[i].private = entry;
470 if (!attrs[i].attr.name) {
471 ret = -ENOMEM;
472 goto unlock_mutex;
473 }
474
475 cells_attrs[i] = &attrs[i];
476 i++;
477 }
478
479 nvmem_cells_group.bin_attrs = cells_attrs;
480
481 ret = devm_device_add_groups(&nvmem->dev, nvmem_cells_groups);
482 if (ret)
483 goto unlock_mutex;
484
485 nvmem->sysfs_cells_populated = true;
486
487unlock_mutex:
488 mutex_unlock(&nvmem_mutex);
489
490 return ret;
491}
492
493#else /* CONFIG_NVMEM_SYSFS */
494
495static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
496 const struct nvmem_config *config)
497{
498 return -ENOSYS;
499}
500static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
501 const struct nvmem_config *config)
502{
503}
504
505#endif /* CONFIG_NVMEM_SYSFS */
506
507static void nvmem_release(struct device *dev)
508{
509 struct nvmem_device *nvmem = to_nvmem_device(dev);
510
511 ida_free(&nvmem_ida, nvmem->id);
512 gpiod_put(nvmem->wp_gpio);
513 kfree(nvmem);
514}
515
516static const struct device_type nvmem_provider_type = {
517 .release = nvmem_release,
518};
519
520static struct bus_type nvmem_bus_type = {
521 .name = "nvmem",
522};
523
524static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
525{
526 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
527 mutex_lock(&nvmem_mutex);
528 list_del(&cell->node);
529 mutex_unlock(&nvmem_mutex);
530 of_node_put(cell->np);
531 kfree_const(cell->name);
532 kfree(cell);
533}
534
535static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
536{
537 struct nvmem_cell_entry *cell, *p;
538
539 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
540 nvmem_cell_entry_drop(cell);
541}
542
543static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
544{
545 mutex_lock(&nvmem_mutex);
546 list_add_tail(&cell->node, &cell->nvmem->cells);
547 mutex_unlock(&nvmem_mutex);
548 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
549}
550
551static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
552 const struct nvmem_cell_info *info,
553 struct nvmem_cell_entry *cell)
554{
555 cell->nvmem = nvmem;
556 cell->offset = info->offset;
557 cell->raw_len = info->raw_len ?: info->bytes;
558 cell->bytes = info->bytes;
559 cell->name = info->name;
560 cell->read_post_process = info->read_post_process;
561 cell->priv = info->priv;
562
563 cell->bit_offset = info->bit_offset;
564 cell->nbits = info->nbits;
565 cell->np = info->np;
566
567 if (cell->nbits)
568 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
569 BITS_PER_BYTE);
570
571 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
572 dev_err(&nvmem->dev,
573 "cell %s unaligned to nvmem stride %d\n",
574 cell->name ?: "<unknown>", nvmem->stride);
575 return -EINVAL;
576 }
577
578 return 0;
579}
580
581static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
582 const struct nvmem_cell_info *info,
583 struct nvmem_cell_entry *cell)
584{
585 int err;
586
587 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
588 if (err)
589 return err;
590
591 cell->name = kstrdup_const(info->name, GFP_KERNEL);
592 if (!cell->name)
593 return -ENOMEM;
594
595 return 0;
596}
597
598/**
599 * nvmem_add_one_cell() - Add one cell information to an nvmem device
600 *
601 * @nvmem: nvmem device to add cells to.
602 * @info: nvmem cell info to add to the device
603 *
604 * Return: 0 or negative error code on failure.
605 */
606int nvmem_add_one_cell(struct nvmem_device *nvmem,
607 const struct nvmem_cell_info *info)
608{
609 struct nvmem_cell_entry *cell;
610 int rval;
611
612 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
613 if (!cell)
614 return -ENOMEM;
615
616 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
617 if (rval) {
618 kfree(cell);
619 return rval;
620 }
621
622 nvmem_cell_entry_add(cell);
623
624 return 0;
625}
626EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
627
628/**
629 * nvmem_add_cells() - Add cell information to an nvmem device
630 *
631 * @nvmem: nvmem device to add cells to.
632 * @info: nvmem cell info to add to the device
633 * @ncells: number of cells in info
634 *
635 * Return: 0 or negative error code on failure.
636 */
637static int nvmem_add_cells(struct nvmem_device *nvmem,
638 const struct nvmem_cell_info *info,
639 int ncells)
640{
641 int i, rval;
642
643 for (i = 0; i < ncells; i++) {
644 rval = nvmem_add_one_cell(nvmem, &info[i]);
645 if (rval)
646 return rval;
647 }
648
649 return 0;
650}
651
652/**
653 * nvmem_register_notifier() - Register a notifier block for nvmem events.
654 *
655 * @nb: notifier block to be called on nvmem events.
656 *
657 * Return: 0 on success, negative error number on failure.
658 */
659int nvmem_register_notifier(struct notifier_block *nb)
660{
661 return blocking_notifier_chain_register(&nvmem_notifier, nb);
662}
663EXPORT_SYMBOL_GPL(nvmem_register_notifier);
664
665/**
666 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
667 *
668 * @nb: notifier block to be unregistered.
669 *
670 * Return: 0 on success, negative error number on failure.
671 */
672int nvmem_unregister_notifier(struct notifier_block *nb)
673{
674 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
675}
676EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
677
678static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
679{
680 const struct nvmem_cell_info *info;
681 struct nvmem_cell_table *table;
682 struct nvmem_cell_entry *cell;
683 int rval = 0, i;
684
685 mutex_lock(&nvmem_cell_mutex);
686 list_for_each_entry(table, &nvmem_cell_tables, node) {
687 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
688 for (i = 0; i < table->ncells; i++) {
689 info = &table->cells[i];
690
691 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
692 if (!cell) {
693 rval = -ENOMEM;
694 goto out;
695 }
696
697 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
698 if (rval) {
699 kfree(cell);
700 goto out;
701 }
702
703 nvmem_cell_entry_add(cell);
704 }
705 }
706 }
707
708out:
709 mutex_unlock(&nvmem_cell_mutex);
710 return rval;
711}
712
713static struct nvmem_cell_entry *
714nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
715{
716 struct nvmem_cell_entry *iter, *cell = NULL;
717
718 mutex_lock(&nvmem_mutex);
719 list_for_each_entry(iter, &nvmem->cells, node) {
720 if (strcmp(cell_id, iter->name) == 0) {
721 cell = iter;
722 break;
723 }
724 }
725 mutex_unlock(&nvmem_mutex);
726
727 return cell;
728}
729
730static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
731{
732 unsigned int cur = 0;
733 const struct nvmem_keepout *keepout = nvmem->keepout;
734 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
735
736 while (keepout < keepoutend) {
737 /* Ensure keepouts are sorted and don't overlap. */
738 if (keepout->start < cur) {
739 dev_err(&nvmem->dev,
740 "Keepout regions aren't sorted or overlap.\n");
741
742 return -ERANGE;
743 }
744
745 if (keepout->end < keepout->start) {
746 dev_err(&nvmem->dev,
747 "Invalid keepout region.\n");
748
749 return -EINVAL;
750 }
751
752 /*
753 * Validate keepouts (and holes between) don't violate
754 * word_size constraints.
755 */
756 if ((keepout->end - keepout->start < nvmem->word_size) ||
757 ((keepout->start != cur) &&
758 (keepout->start - cur < nvmem->word_size))) {
759
760 dev_err(&nvmem->dev,
761 "Keepout regions violate word_size constraints.\n");
762
763 return -ERANGE;
764 }
765
766 /* Validate keepouts don't violate stride (alignment). */
767 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
768 !IS_ALIGNED(keepout->end, nvmem->stride)) {
769
770 dev_err(&nvmem->dev,
771 "Keepout regions violate stride.\n");
772
773 return -EINVAL;
774 }
775
776 cur = keepout->end;
777 keepout++;
778 }
779
780 return 0;
781}
782
783static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
784{
785 struct device *dev = &nvmem->dev;
786 struct device_node *child;
787 const __be32 *addr;
788 int len, ret;
789
790 for_each_child_of_node(np, child) {
791 struct nvmem_cell_info info = {0};
792
793 addr = of_get_property(child, "reg", &len);
794 if (!addr)
795 continue;
796 if (len < 2 * sizeof(u32)) {
797 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
798 of_node_put(child);
799 return -EINVAL;
800 }
801
802 info.offset = be32_to_cpup(addr++);
803 info.bytes = be32_to_cpup(addr);
804 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
805
806 addr = of_get_property(child, "bits", &len);
807 if (addr && len == (2 * sizeof(u32))) {
808 info.bit_offset = be32_to_cpup(addr++);
809 info.nbits = be32_to_cpup(addr);
810 }
811
812 info.np = of_node_get(child);
813
814 if (nvmem->fixup_dt_cell_info)
815 nvmem->fixup_dt_cell_info(nvmem, &info);
816
817 ret = nvmem_add_one_cell(nvmem, &info);
818 kfree(info.name);
819 if (ret) {
820 of_node_put(child);
821 return ret;
822 }
823 }
824
825 return 0;
826}
827
828static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
829{
830 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
831}
832
833static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
834{
835 struct device_node *layout_np;
836 int err = 0;
837
838 layout_np = of_nvmem_layout_get_container(nvmem);
839 if (!layout_np)
840 return 0;
841
842 if (of_device_is_compatible(layout_np, "fixed-layout"))
843 err = nvmem_add_cells_from_dt(nvmem, layout_np);
844
845 of_node_put(layout_np);
846
847 return err;
848}
849
850int nvmem_layout_register(struct nvmem_layout *layout)
851{
852 int ret;
853
854 if (!layout->add_cells)
855 return -EINVAL;
856
857 /* Populate the cells */
858 ret = layout->add_cells(layout);
859 if (ret)
860 return ret;
861
862#ifdef CONFIG_NVMEM_SYSFS
863 ret = nvmem_populate_sysfs_cells(layout->nvmem);
864 if (ret) {
865 nvmem_device_remove_all_cells(layout->nvmem);
866 return ret;
867 }
868#endif
869
870 return 0;
871}
872EXPORT_SYMBOL_GPL(nvmem_layout_register);
873
874void nvmem_layout_unregister(struct nvmem_layout *layout)
875{
876 /* Keep the API even with an empty stub in case we need it later */
877}
878EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
879
880/**
881 * nvmem_register() - Register a nvmem device for given nvmem_config.
882 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
883 *
884 * @config: nvmem device configuration with which nvmem device is created.
885 *
886 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
887 * on success.
888 */
889
890struct nvmem_device *nvmem_register(const struct nvmem_config *config)
891{
892 struct nvmem_device *nvmem;
893 int rval;
894
895 if (!config->dev)
896 return ERR_PTR(-EINVAL);
897
898 if (!config->reg_read && !config->reg_write)
899 return ERR_PTR(-EINVAL);
900
901 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
902 if (!nvmem)
903 return ERR_PTR(-ENOMEM);
904
905 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
906 if (rval < 0) {
907 kfree(nvmem);
908 return ERR_PTR(rval);
909 }
910
911 nvmem->id = rval;
912
913 nvmem->dev.type = &nvmem_provider_type;
914 nvmem->dev.bus = &nvmem_bus_type;
915 nvmem->dev.parent = config->dev;
916
917 device_initialize(&nvmem->dev);
918
919 if (!config->ignore_wp)
920 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
921 GPIOD_OUT_HIGH);
922 if (IS_ERR(nvmem->wp_gpio)) {
923 rval = PTR_ERR(nvmem->wp_gpio);
924 nvmem->wp_gpio = NULL;
925 goto err_put_device;
926 }
927
928 kref_init(&nvmem->refcnt);
929 INIT_LIST_HEAD(&nvmem->cells);
930 nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
931
932 nvmem->owner = config->owner;
933 if (!nvmem->owner && config->dev->driver)
934 nvmem->owner = config->dev->driver->owner;
935 nvmem->stride = config->stride ?: 1;
936 nvmem->word_size = config->word_size ?: 1;
937 nvmem->size = config->size;
938 nvmem->root_only = config->root_only;
939 nvmem->priv = config->priv;
940 nvmem->type = config->type;
941 nvmem->reg_read = config->reg_read;
942 nvmem->reg_write = config->reg_write;
943 nvmem->keepout = config->keepout;
944 nvmem->nkeepout = config->nkeepout;
945 if (config->of_node)
946 nvmem->dev.of_node = config->of_node;
947 else
948 nvmem->dev.of_node = config->dev->of_node;
949
950 switch (config->id) {
951 case NVMEM_DEVID_NONE:
952 rval = dev_set_name(&nvmem->dev, "%s", config->name);
953 break;
954 case NVMEM_DEVID_AUTO:
955 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
956 break;
957 default:
958 rval = dev_set_name(&nvmem->dev, "%s%d",
959 config->name ? : "nvmem",
960 config->name ? config->id : nvmem->id);
961 break;
962 }
963
964 if (rval)
965 goto err_put_device;
966
967 nvmem->read_only = device_property_present(config->dev, "read-only") ||
968 config->read_only || !nvmem->reg_write;
969
970#ifdef CONFIG_NVMEM_SYSFS
971 nvmem->dev.groups = nvmem_dev_groups;
972#endif
973
974 if (nvmem->nkeepout) {
975 rval = nvmem_validate_keepouts(nvmem);
976 if (rval)
977 goto err_put_device;
978 }
979
980 if (config->compat) {
981 rval = nvmem_sysfs_setup_compat(nvmem, config);
982 if (rval)
983 goto err_put_device;
984 }
985
986 if (config->cells) {
987 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
988 if (rval)
989 goto err_remove_cells;
990 }
991
992 rval = nvmem_add_cells_from_table(nvmem);
993 if (rval)
994 goto err_remove_cells;
995
996 if (config->add_legacy_fixed_of_cells) {
997 rval = nvmem_add_cells_from_legacy_of(nvmem);
998 if (rval)
999 goto err_remove_cells;
1000 }
1001
1002 rval = nvmem_add_cells_from_fixed_layout(nvmem);
1003 if (rval)
1004 goto err_remove_cells;
1005
1006 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1007
1008 rval = device_add(&nvmem->dev);
1009 if (rval)
1010 goto err_remove_cells;
1011
1012 rval = nvmem_populate_layout(nvmem);
1013 if (rval)
1014 goto err_remove_dev;
1015
1016#ifdef CONFIG_NVMEM_SYSFS
1017 rval = nvmem_populate_sysfs_cells(nvmem);
1018 if (rval)
1019 goto err_destroy_layout;
1020#endif
1021
1022 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1023
1024 return nvmem;
1025
1026#ifdef CONFIG_NVMEM_SYSFS
1027err_destroy_layout:
1028 nvmem_destroy_layout(nvmem);
1029#endif
1030err_remove_dev:
1031 device_del(&nvmem->dev);
1032err_remove_cells:
1033 nvmem_device_remove_all_cells(nvmem);
1034 if (config->compat)
1035 nvmem_sysfs_remove_compat(nvmem, config);
1036err_put_device:
1037 put_device(&nvmem->dev);
1038
1039 return ERR_PTR(rval);
1040}
1041EXPORT_SYMBOL_GPL(nvmem_register);
1042
1043static void nvmem_device_release(struct kref *kref)
1044{
1045 struct nvmem_device *nvmem;
1046
1047 nvmem = container_of(kref, struct nvmem_device, refcnt);
1048
1049 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1050
1051 if (nvmem->flags & FLAG_COMPAT)
1052 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1053
1054 nvmem_device_remove_all_cells(nvmem);
1055 nvmem_destroy_layout(nvmem);
1056 device_unregister(&nvmem->dev);
1057}
1058
1059/**
1060 * nvmem_unregister() - Unregister previously registered nvmem device
1061 *
1062 * @nvmem: Pointer to previously registered nvmem device.
1063 */
1064void nvmem_unregister(struct nvmem_device *nvmem)
1065{
1066 if (nvmem)
1067 kref_put(&nvmem->refcnt, nvmem_device_release);
1068}
1069EXPORT_SYMBOL_GPL(nvmem_unregister);
1070
1071static void devm_nvmem_unregister(void *nvmem)
1072{
1073 nvmem_unregister(nvmem);
1074}
1075
1076/**
1077 * devm_nvmem_register() - Register a managed nvmem device for given
1078 * nvmem_config.
1079 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1080 *
1081 * @dev: Device that uses the nvmem device.
1082 * @config: nvmem device configuration with which nvmem device is created.
1083 *
1084 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1085 * on success.
1086 */
1087struct nvmem_device *devm_nvmem_register(struct device *dev,
1088 const struct nvmem_config *config)
1089{
1090 struct nvmem_device *nvmem;
1091 int ret;
1092
1093 nvmem = nvmem_register(config);
1094 if (IS_ERR(nvmem))
1095 return nvmem;
1096
1097 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1098 if (ret)
1099 return ERR_PTR(ret);
1100
1101 return nvmem;
1102}
1103EXPORT_SYMBOL_GPL(devm_nvmem_register);
1104
1105static struct nvmem_device *__nvmem_device_get(void *data,
1106 int (*match)(struct device *dev, const void *data))
1107{
1108 struct nvmem_device *nvmem = NULL;
1109 struct device *dev;
1110
1111 mutex_lock(&nvmem_mutex);
1112 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1113 if (dev)
1114 nvmem = to_nvmem_device(dev);
1115 mutex_unlock(&nvmem_mutex);
1116 if (!nvmem)
1117 return ERR_PTR(-EPROBE_DEFER);
1118
1119 if (!try_module_get(nvmem->owner)) {
1120 dev_err(&nvmem->dev,
1121 "could not increase module refcount for cell %s\n",
1122 nvmem_dev_name(nvmem));
1123
1124 put_device(&nvmem->dev);
1125 return ERR_PTR(-EINVAL);
1126 }
1127
1128 kref_get(&nvmem->refcnt);
1129
1130 return nvmem;
1131}
1132
1133static void __nvmem_device_put(struct nvmem_device *nvmem)
1134{
1135 put_device(&nvmem->dev);
1136 module_put(nvmem->owner);
1137 kref_put(&nvmem->refcnt, nvmem_device_release);
1138}
1139
1140#if IS_ENABLED(CONFIG_OF)
1141/**
1142 * of_nvmem_device_get() - Get nvmem device from a given id
1143 *
1144 * @np: Device tree node that uses the nvmem device.
1145 * @id: nvmem name from nvmem-names property.
1146 *
1147 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1148 * on success.
1149 */
1150struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1151{
1152
1153 struct device_node *nvmem_np;
1154 struct nvmem_device *nvmem;
1155 int index = 0;
1156
1157 if (id)
1158 index = of_property_match_string(np, "nvmem-names", id);
1159
1160 nvmem_np = of_parse_phandle(np, "nvmem", index);
1161 if (!nvmem_np)
1162 return ERR_PTR(-ENOENT);
1163
1164 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1165 of_node_put(nvmem_np);
1166 return nvmem;
1167}
1168EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1169#endif
1170
1171/**
1172 * nvmem_device_get() - Get nvmem device from a given id
1173 *
1174 * @dev: Device that uses the nvmem device.
1175 * @dev_name: name of the requested nvmem device.
1176 *
1177 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1178 * on success.
1179 */
1180struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1181{
1182 if (dev->of_node) { /* try dt first */
1183 struct nvmem_device *nvmem;
1184
1185 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1186
1187 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1188 return nvmem;
1189
1190 }
1191
1192 return __nvmem_device_get((void *)dev_name, device_match_name);
1193}
1194EXPORT_SYMBOL_GPL(nvmem_device_get);
1195
1196/**
1197 * nvmem_device_find() - Find nvmem device with matching function
1198 *
1199 * @data: Data to pass to match function
1200 * @match: Callback function to check device
1201 *
1202 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1203 * on success.
1204 */
1205struct nvmem_device *nvmem_device_find(void *data,
1206 int (*match)(struct device *dev, const void *data))
1207{
1208 return __nvmem_device_get(data, match);
1209}
1210EXPORT_SYMBOL_GPL(nvmem_device_find);
1211
1212static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1213{
1214 struct nvmem_device **nvmem = res;
1215
1216 if (WARN_ON(!nvmem || !*nvmem))
1217 return 0;
1218
1219 return *nvmem == data;
1220}
1221
1222static void devm_nvmem_device_release(struct device *dev, void *res)
1223{
1224 nvmem_device_put(*(struct nvmem_device **)res);
1225}
1226
1227/**
1228 * devm_nvmem_device_put() - put alredy got nvmem device
1229 *
1230 * @dev: Device that uses the nvmem device.
1231 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1232 * that needs to be released.
1233 */
1234void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1235{
1236 int ret;
1237
1238 ret = devres_release(dev, devm_nvmem_device_release,
1239 devm_nvmem_device_match, nvmem);
1240
1241 WARN_ON(ret);
1242}
1243EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1244
1245/**
1246 * nvmem_device_put() - put alredy got nvmem device
1247 *
1248 * @nvmem: pointer to nvmem device that needs to be released.
1249 */
1250void nvmem_device_put(struct nvmem_device *nvmem)
1251{
1252 __nvmem_device_put(nvmem);
1253}
1254EXPORT_SYMBOL_GPL(nvmem_device_put);
1255
1256/**
1257 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1258 *
1259 * @dev: Device that requests the nvmem device.
1260 * @id: name id for the requested nvmem device.
1261 *
1262 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1263 * on success. The nvmem_cell will be freed by the automatically once the
1264 * device is freed.
1265 */
1266struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1267{
1268 struct nvmem_device **ptr, *nvmem;
1269
1270 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1271 if (!ptr)
1272 return ERR_PTR(-ENOMEM);
1273
1274 nvmem = nvmem_device_get(dev, id);
1275 if (!IS_ERR(nvmem)) {
1276 *ptr = nvmem;
1277 devres_add(dev, ptr);
1278 } else {
1279 devres_free(ptr);
1280 }
1281
1282 return nvmem;
1283}
1284EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1285
1286static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1287 const char *id, int index)
1288{
1289 struct nvmem_cell *cell;
1290 const char *name = NULL;
1291
1292 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1293 if (!cell)
1294 return ERR_PTR(-ENOMEM);
1295
1296 if (id) {
1297 name = kstrdup_const(id, GFP_KERNEL);
1298 if (!name) {
1299 kfree(cell);
1300 return ERR_PTR(-ENOMEM);
1301 }
1302 }
1303
1304 cell->id = name;
1305 cell->entry = entry;
1306 cell->index = index;
1307
1308 return cell;
1309}
1310
1311static struct nvmem_cell *
1312nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1313{
1314 struct nvmem_cell_entry *cell_entry;
1315 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1316 struct nvmem_cell_lookup *lookup;
1317 struct nvmem_device *nvmem;
1318 const char *dev_id;
1319
1320 if (!dev)
1321 return ERR_PTR(-EINVAL);
1322
1323 dev_id = dev_name(dev);
1324
1325 mutex_lock(&nvmem_lookup_mutex);
1326
1327 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1328 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1329 (strcmp(lookup->con_id, con_id) == 0)) {
1330 /* This is the right entry. */
1331 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1332 device_match_name);
1333 if (IS_ERR(nvmem)) {
1334 /* Provider may not be registered yet. */
1335 cell = ERR_CAST(nvmem);
1336 break;
1337 }
1338
1339 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1340 lookup->cell_name);
1341 if (!cell_entry) {
1342 __nvmem_device_put(nvmem);
1343 cell = ERR_PTR(-ENOENT);
1344 } else {
1345 cell = nvmem_create_cell(cell_entry, con_id, 0);
1346 if (IS_ERR(cell))
1347 __nvmem_device_put(nvmem);
1348 }
1349 break;
1350 }
1351 }
1352
1353 mutex_unlock(&nvmem_lookup_mutex);
1354 return cell;
1355}
1356
1357static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1358{
1359 if (nvmem->layout && nvmem->layout->dev.driver)
1360 module_put(nvmem->layout->dev.driver->owner);
1361}
1362
1363#if IS_ENABLED(CONFIG_OF)
1364static struct nvmem_cell_entry *
1365nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1366{
1367 struct nvmem_cell_entry *iter, *cell = NULL;
1368
1369 mutex_lock(&nvmem_mutex);
1370 list_for_each_entry(iter, &nvmem->cells, node) {
1371 if (np == iter->np) {
1372 cell = iter;
1373 break;
1374 }
1375 }
1376 mutex_unlock(&nvmem_mutex);
1377
1378 return cell;
1379}
1380
1381static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1382{
1383 if (!nvmem->layout)
1384 return 0;
1385
1386 if (!nvmem->layout->dev.driver ||
1387 !try_module_get(nvmem->layout->dev.driver->owner))
1388 return -EPROBE_DEFER;
1389
1390 return 0;
1391}
1392
1393/**
1394 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1395 *
1396 * @np: Device tree node that uses the nvmem cell.
1397 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1398 * for the cell at index 0 (the lone cell with no accompanying
1399 * nvmem-cell-names property).
1400 *
1401 * Return: Will be an ERR_PTR() on error or a valid pointer
1402 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1403 * nvmem_cell_put().
1404 */
1405struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1406{
1407 struct device_node *cell_np, *nvmem_np;
1408 struct nvmem_device *nvmem;
1409 struct nvmem_cell_entry *cell_entry;
1410 struct nvmem_cell *cell;
1411 struct of_phandle_args cell_spec;
1412 int index = 0;
1413 int cell_index = 0;
1414 int ret;
1415
1416 /* if cell name exists, find index to the name */
1417 if (id)
1418 index = of_property_match_string(np, "nvmem-cell-names", id);
1419
1420 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1421 "#nvmem-cell-cells",
1422 index, &cell_spec);
1423 if (ret)
1424 return ERR_PTR(-ENOENT);
1425
1426 if (cell_spec.args_count > 1)
1427 return ERR_PTR(-EINVAL);
1428
1429 cell_np = cell_spec.np;
1430 if (cell_spec.args_count)
1431 cell_index = cell_spec.args[0];
1432
1433 nvmem_np = of_get_parent(cell_np);
1434 if (!nvmem_np) {
1435 of_node_put(cell_np);
1436 return ERR_PTR(-EINVAL);
1437 }
1438
1439 /* nvmem layouts produce cells within the nvmem-layout container */
1440 if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1441 nvmem_np = of_get_next_parent(nvmem_np);
1442 if (!nvmem_np) {
1443 of_node_put(cell_np);
1444 return ERR_PTR(-EINVAL);
1445 }
1446 }
1447
1448 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1449 of_node_put(nvmem_np);
1450 if (IS_ERR(nvmem)) {
1451 of_node_put(cell_np);
1452 return ERR_CAST(nvmem);
1453 }
1454
1455 ret = nvmem_layout_module_get_optional(nvmem);
1456 if (ret) {
1457 of_node_put(cell_np);
1458 __nvmem_device_put(nvmem);
1459 return ERR_PTR(ret);
1460 }
1461
1462 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1463 of_node_put(cell_np);
1464 if (!cell_entry) {
1465 __nvmem_device_put(nvmem);
1466 nvmem_layout_module_put(nvmem);
1467 if (nvmem->layout)
1468 return ERR_PTR(-EPROBE_DEFER);
1469 else
1470 return ERR_PTR(-ENOENT);
1471 }
1472
1473 cell = nvmem_create_cell(cell_entry, id, cell_index);
1474 if (IS_ERR(cell)) {
1475 __nvmem_device_put(nvmem);
1476 nvmem_layout_module_put(nvmem);
1477 }
1478
1479 return cell;
1480}
1481EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1482#endif
1483
1484/**
1485 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1486 *
1487 * @dev: Device that requests the nvmem cell.
1488 * @id: nvmem cell name to get (this corresponds with the name from the
1489 * nvmem-cell-names property for DT systems and with the con_id from
1490 * the lookup entry for non-DT systems).
1491 *
1492 * Return: Will be an ERR_PTR() on error or a valid pointer
1493 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1494 * nvmem_cell_put().
1495 */
1496struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1497{
1498 struct nvmem_cell *cell;
1499
1500 if (dev->of_node) { /* try dt first */
1501 cell = of_nvmem_cell_get(dev->of_node, id);
1502 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1503 return cell;
1504 }
1505
1506 /* NULL cell id only allowed for device tree; invalid otherwise */
1507 if (!id)
1508 return ERR_PTR(-EINVAL);
1509
1510 return nvmem_cell_get_from_lookup(dev, id);
1511}
1512EXPORT_SYMBOL_GPL(nvmem_cell_get);
1513
1514static void devm_nvmem_cell_release(struct device *dev, void *res)
1515{
1516 nvmem_cell_put(*(struct nvmem_cell **)res);
1517}
1518
1519/**
1520 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1521 *
1522 * @dev: Device that requests the nvmem cell.
1523 * @id: nvmem cell name id to get.
1524 *
1525 * Return: Will be an ERR_PTR() on error or a valid pointer
1526 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1527 * automatically once the device is freed.
1528 */
1529struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1530{
1531 struct nvmem_cell **ptr, *cell;
1532
1533 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1534 if (!ptr)
1535 return ERR_PTR(-ENOMEM);
1536
1537 cell = nvmem_cell_get(dev, id);
1538 if (!IS_ERR(cell)) {
1539 *ptr = cell;
1540 devres_add(dev, ptr);
1541 } else {
1542 devres_free(ptr);
1543 }
1544
1545 return cell;
1546}
1547EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1548
1549static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1550{
1551 struct nvmem_cell **c = res;
1552
1553 if (WARN_ON(!c || !*c))
1554 return 0;
1555
1556 return *c == data;
1557}
1558
1559/**
1560 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1561 * from devm_nvmem_cell_get.
1562 *
1563 * @dev: Device that requests the nvmem cell.
1564 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1565 */
1566void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1567{
1568 int ret;
1569
1570 ret = devres_release(dev, devm_nvmem_cell_release,
1571 devm_nvmem_cell_match, cell);
1572
1573 WARN_ON(ret);
1574}
1575EXPORT_SYMBOL(devm_nvmem_cell_put);
1576
1577/**
1578 * nvmem_cell_put() - Release previously allocated nvmem cell.
1579 *
1580 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1581 */
1582void nvmem_cell_put(struct nvmem_cell *cell)
1583{
1584 struct nvmem_device *nvmem = cell->entry->nvmem;
1585
1586 if (cell->id)
1587 kfree_const(cell->id);
1588
1589 kfree(cell);
1590 __nvmem_device_put(nvmem);
1591 nvmem_layout_module_put(nvmem);
1592}
1593EXPORT_SYMBOL_GPL(nvmem_cell_put);
1594
1595static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1596{
1597 u8 *p, *b;
1598 int i, extra, bit_offset = cell->bit_offset;
1599
1600 p = b = buf;
1601 if (bit_offset) {
1602 /* First shift */
1603 *b++ >>= bit_offset;
1604
1605 /* setup rest of the bytes if any */
1606 for (i = 1; i < cell->bytes; i++) {
1607 /* Get bits from next byte and shift them towards msb */
1608 *p |= *b << (BITS_PER_BYTE - bit_offset);
1609
1610 p = b;
1611 *b++ >>= bit_offset;
1612 }
1613 } else {
1614 /* point to the msb */
1615 p += cell->bytes - 1;
1616 }
1617
1618 /* result fits in less bytes */
1619 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1620 while (--extra >= 0)
1621 *p-- = 0;
1622
1623 /* clear msb bits if any leftover in the last byte */
1624 if (cell->nbits % BITS_PER_BYTE)
1625 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1626}
1627
1628static int __nvmem_cell_read(struct nvmem_device *nvmem,
1629 struct nvmem_cell_entry *cell,
1630 void *buf, size_t *len, const char *id, int index)
1631{
1632 int rc;
1633
1634 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1635
1636 if (rc)
1637 return rc;
1638
1639 /* shift bits in-place */
1640 if (cell->bit_offset || cell->nbits)
1641 nvmem_shift_read_buffer_in_place(cell, buf);
1642
1643 if (cell->read_post_process) {
1644 rc = cell->read_post_process(cell->priv, id, index,
1645 cell->offset, buf, cell->raw_len);
1646 if (rc)
1647 return rc;
1648 }
1649
1650 if (len)
1651 *len = cell->bytes;
1652
1653 return 0;
1654}
1655
1656/**
1657 * nvmem_cell_read() - Read a given nvmem cell
1658 *
1659 * @cell: nvmem cell to be read.
1660 * @len: pointer to length of cell which will be populated on successful read;
1661 * can be NULL.
1662 *
1663 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1664 * buffer should be freed by the consumer with a kfree().
1665 */
1666void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1667{
1668 struct nvmem_cell_entry *entry = cell->entry;
1669 struct nvmem_device *nvmem = entry->nvmem;
1670 u8 *buf;
1671 int rc;
1672
1673 if (!nvmem)
1674 return ERR_PTR(-EINVAL);
1675
1676 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1677 if (!buf)
1678 return ERR_PTR(-ENOMEM);
1679
1680 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1681 if (rc) {
1682 kfree(buf);
1683 return ERR_PTR(rc);
1684 }
1685
1686 return buf;
1687}
1688EXPORT_SYMBOL_GPL(nvmem_cell_read);
1689
1690static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1691 u8 *_buf, int len)
1692{
1693 struct nvmem_device *nvmem = cell->nvmem;
1694 int i, rc, nbits, bit_offset = cell->bit_offset;
1695 u8 v, *p, *buf, *b, pbyte, pbits;
1696
1697 nbits = cell->nbits;
1698 buf = kzalloc(cell->bytes, GFP_KERNEL);
1699 if (!buf)
1700 return ERR_PTR(-ENOMEM);
1701
1702 memcpy(buf, _buf, len);
1703 p = b = buf;
1704
1705 if (bit_offset) {
1706 pbyte = *b;
1707 *b <<= bit_offset;
1708
1709 /* setup the first byte with lsb bits from nvmem */
1710 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1711 if (rc)
1712 goto err;
1713 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1714
1715 /* setup rest of the byte if any */
1716 for (i = 1; i < cell->bytes; i++) {
1717 /* Get last byte bits and shift them towards lsb */
1718 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1719 pbyte = *b;
1720 p = b;
1721 *b <<= bit_offset;
1722 *b++ |= pbits;
1723 }
1724 }
1725
1726 /* if it's not end on byte boundary */
1727 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1728 /* setup the last byte with msb bits from nvmem */
1729 rc = nvmem_reg_read(nvmem,
1730 cell->offset + cell->bytes - 1, &v, 1);
1731 if (rc)
1732 goto err;
1733 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1734
1735 }
1736
1737 return buf;
1738err:
1739 kfree(buf);
1740 return ERR_PTR(rc);
1741}
1742
1743static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1744{
1745 struct nvmem_device *nvmem = cell->nvmem;
1746 int rc;
1747
1748 if (!nvmem || nvmem->read_only ||
1749 (cell->bit_offset == 0 && len != cell->bytes))
1750 return -EINVAL;
1751
1752 /*
1753 * Any cells which have a read_post_process hook are read-only because
1754 * we cannot reverse the operation and it might affect other cells,
1755 * too.
1756 */
1757 if (cell->read_post_process)
1758 return -EINVAL;
1759
1760 if (cell->bit_offset || cell->nbits) {
1761 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1762 if (IS_ERR(buf))
1763 return PTR_ERR(buf);
1764 }
1765
1766 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1767
1768 /* free the tmp buffer */
1769 if (cell->bit_offset || cell->nbits)
1770 kfree(buf);
1771
1772 if (rc)
1773 return rc;
1774
1775 return len;
1776}
1777
1778/**
1779 * nvmem_cell_write() - Write to a given nvmem cell
1780 *
1781 * @cell: nvmem cell to be written.
1782 * @buf: Buffer to be written.
1783 * @len: length of buffer to be written to nvmem cell.
1784 *
1785 * Return: length of bytes written or negative on failure.
1786 */
1787int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1788{
1789 return __nvmem_cell_entry_write(cell->entry, buf, len);
1790}
1791
1792EXPORT_SYMBOL_GPL(nvmem_cell_write);
1793
1794static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1795 void *val, size_t count)
1796{
1797 struct nvmem_cell *cell;
1798 void *buf;
1799 size_t len;
1800
1801 cell = nvmem_cell_get(dev, cell_id);
1802 if (IS_ERR(cell))
1803 return PTR_ERR(cell);
1804
1805 buf = nvmem_cell_read(cell, &len);
1806 if (IS_ERR(buf)) {
1807 nvmem_cell_put(cell);
1808 return PTR_ERR(buf);
1809 }
1810 if (len != count) {
1811 kfree(buf);
1812 nvmem_cell_put(cell);
1813 return -EINVAL;
1814 }
1815 memcpy(val, buf, count);
1816 kfree(buf);
1817 nvmem_cell_put(cell);
1818
1819 return 0;
1820}
1821
1822/**
1823 * nvmem_cell_read_u8() - Read a cell value as a u8
1824 *
1825 * @dev: Device that requests the nvmem cell.
1826 * @cell_id: Name of nvmem cell to read.
1827 * @val: pointer to output value.
1828 *
1829 * Return: 0 on success or negative errno.
1830 */
1831int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1832{
1833 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1834}
1835EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1836
1837/**
1838 * nvmem_cell_read_u16() - Read a cell value as a u16
1839 *
1840 * @dev: Device that requests the nvmem cell.
1841 * @cell_id: Name of nvmem cell to read.
1842 * @val: pointer to output value.
1843 *
1844 * Return: 0 on success or negative errno.
1845 */
1846int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1847{
1848 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1849}
1850EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1851
1852/**
1853 * nvmem_cell_read_u32() - Read a cell value as a u32
1854 *
1855 * @dev: Device that requests the nvmem cell.
1856 * @cell_id: Name of nvmem cell to read.
1857 * @val: pointer to output value.
1858 *
1859 * Return: 0 on success or negative errno.
1860 */
1861int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1862{
1863 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1864}
1865EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1866
1867/**
1868 * nvmem_cell_read_u64() - Read a cell value as a u64
1869 *
1870 * @dev: Device that requests the nvmem cell.
1871 * @cell_id: Name of nvmem cell to read.
1872 * @val: pointer to output value.
1873 *
1874 * Return: 0 on success or negative errno.
1875 */
1876int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1877{
1878 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1879}
1880EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1881
1882static const void *nvmem_cell_read_variable_common(struct device *dev,
1883 const char *cell_id,
1884 size_t max_len, size_t *len)
1885{
1886 struct nvmem_cell *cell;
1887 int nbits;
1888 void *buf;
1889
1890 cell = nvmem_cell_get(dev, cell_id);
1891 if (IS_ERR(cell))
1892 return cell;
1893
1894 nbits = cell->entry->nbits;
1895 buf = nvmem_cell_read(cell, len);
1896 nvmem_cell_put(cell);
1897 if (IS_ERR(buf))
1898 return buf;
1899
1900 /*
1901 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1902 * the length of the real data. Throw away the extra junk.
1903 */
1904 if (nbits)
1905 *len = DIV_ROUND_UP(nbits, 8);
1906
1907 if (*len > max_len) {
1908 kfree(buf);
1909 return ERR_PTR(-ERANGE);
1910 }
1911
1912 return buf;
1913}
1914
1915/**
1916 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1917 *
1918 * @dev: Device that requests the nvmem cell.
1919 * @cell_id: Name of nvmem cell to read.
1920 * @val: pointer to output value.
1921 *
1922 * Return: 0 on success or negative errno.
1923 */
1924int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1925 u32 *val)
1926{
1927 size_t len;
1928 const u8 *buf;
1929 int i;
1930
1931 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1932 if (IS_ERR(buf))
1933 return PTR_ERR(buf);
1934
1935 /* Copy w/ implicit endian conversion */
1936 *val = 0;
1937 for (i = 0; i < len; i++)
1938 *val |= buf[i] << (8 * i);
1939
1940 kfree(buf);
1941
1942 return 0;
1943}
1944EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1945
1946/**
1947 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1948 *
1949 * @dev: Device that requests the nvmem cell.
1950 * @cell_id: Name of nvmem cell to read.
1951 * @val: pointer to output value.
1952 *
1953 * Return: 0 on success or negative errno.
1954 */
1955int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1956 u64 *val)
1957{
1958 size_t len;
1959 const u8 *buf;
1960 int i;
1961
1962 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1963 if (IS_ERR(buf))
1964 return PTR_ERR(buf);
1965
1966 /* Copy w/ implicit endian conversion */
1967 *val = 0;
1968 for (i = 0; i < len; i++)
1969 *val |= (uint64_t)buf[i] << (8 * i);
1970
1971 kfree(buf);
1972
1973 return 0;
1974}
1975EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1976
1977/**
1978 * nvmem_device_cell_read() - Read a given nvmem device and cell
1979 *
1980 * @nvmem: nvmem device to read from.
1981 * @info: nvmem cell info to be read.
1982 * @buf: buffer pointer which will be populated on successful read.
1983 *
1984 * Return: length of successful bytes read on success and negative
1985 * error code on error.
1986 */
1987ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1988 struct nvmem_cell_info *info, void *buf)
1989{
1990 struct nvmem_cell_entry cell;
1991 int rc;
1992 ssize_t len;
1993
1994 if (!nvmem)
1995 return -EINVAL;
1996
1997 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1998 if (rc)
1999 return rc;
2000
2001 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2002 if (rc)
2003 return rc;
2004
2005 return len;
2006}
2007EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2008
2009/**
2010 * nvmem_device_cell_write() - Write cell to a given nvmem device
2011 *
2012 * @nvmem: nvmem device to be written to.
2013 * @info: nvmem cell info to be written.
2014 * @buf: buffer to be written to cell.
2015 *
2016 * Return: length of bytes written or negative error code on failure.
2017 */
2018int nvmem_device_cell_write(struct nvmem_device *nvmem,
2019 struct nvmem_cell_info *info, void *buf)
2020{
2021 struct nvmem_cell_entry cell;
2022 int rc;
2023
2024 if (!nvmem)
2025 return -EINVAL;
2026
2027 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2028 if (rc)
2029 return rc;
2030
2031 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2032}
2033EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2034
2035/**
2036 * nvmem_device_read() - Read from a given nvmem device
2037 *
2038 * @nvmem: nvmem device to read from.
2039 * @offset: offset in nvmem device.
2040 * @bytes: number of bytes to read.
2041 * @buf: buffer pointer which will be populated on successful read.
2042 *
2043 * Return: length of successful bytes read on success and negative
2044 * error code on error.
2045 */
2046int nvmem_device_read(struct nvmem_device *nvmem,
2047 unsigned int offset,
2048 size_t bytes, void *buf)
2049{
2050 int rc;
2051
2052 if (!nvmem)
2053 return -EINVAL;
2054
2055 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2056
2057 if (rc)
2058 return rc;
2059
2060 return bytes;
2061}
2062EXPORT_SYMBOL_GPL(nvmem_device_read);
2063
2064/**
2065 * nvmem_device_write() - Write cell to a given nvmem device
2066 *
2067 * @nvmem: nvmem device to be written to.
2068 * @offset: offset in nvmem device.
2069 * @bytes: number of bytes to write.
2070 * @buf: buffer to be written.
2071 *
2072 * Return: length of bytes written or negative error code on failure.
2073 */
2074int nvmem_device_write(struct nvmem_device *nvmem,
2075 unsigned int offset,
2076 size_t bytes, void *buf)
2077{
2078 int rc;
2079
2080 if (!nvmem)
2081 return -EINVAL;
2082
2083 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2084
2085 if (rc)
2086 return rc;
2087
2088
2089 return bytes;
2090}
2091EXPORT_SYMBOL_GPL(nvmem_device_write);
2092
2093/**
2094 * nvmem_add_cell_table() - register a table of cell info entries
2095 *
2096 * @table: table of cell info entries
2097 */
2098void nvmem_add_cell_table(struct nvmem_cell_table *table)
2099{
2100 mutex_lock(&nvmem_cell_mutex);
2101 list_add_tail(&table->node, &nvmem_cell_tables);
2102 mutex_unlock(&nvmem_cell_mutex);
2103}
2104EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2105
2106/**
2107 * nvmem_del_cell_table() - remove a previously registered cell info table
2108 *
2109 * @table: table of cell info entries
2110 */
2111void nvmem_del_cell_table(struct nvmem_cell_table *table)
2112{
2113 mutex_lock(&nvmem_cell_mutex);
2114 list_del(&table->node);
2115 mutex_unlock(&nvmem_cell_mutex);
2116}
2117EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2118
2119/**
2120 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2121 *
2122 * @entries: array of cell lookup entries
2123 * @nentries: number of cell lookup entries in the array
2124 */
2125void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2126{
2127 int i;
2128
2129 mutex_lock(&nvmem_lookup_mutex);
2130 for (i = 0; i < nentries; i++)
2131 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2132 mutex_unlock(&nvmem_lookup_mutex);
2133}
2134EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2135
2136/**
2137 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2138 * entries
2139 *
2140 * @entries: array of cell lookup entries
2141 * @nentries: number of cell lookup entries in the array
2142 */
2143void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2144{
2145 int i;
2146
2147 mutex_lock(&nvmem_lookup_mutex);
2148 for (i = 0; i < nentries; i++)
2149 list_del(&entries[i].node);
2150 mutex_unlock(&nvmem_lookup_mutex);
2151}
2152EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2153
2154/**
2155 * nvmem_dev_name() - Get the name of a given nvmem device.
2156 *
2157 * @nvmem: nvmem device.
2158 *
2159 * Return: name of the nvmem device.
2160 */
2161const char *nvmem_dev_name(struct nvmem_device *nvmem)
2162{
2163 return dev_name(&nvmem->dev);
2164}
2165EXPORT_SYMBOL_GPL(nvmem_dev_name);
2166
2167/**
2168 * nvmem_dev_size() - Get the size of a given nvmem device.
2169 *
2170 * @nvmem: nvmem device.
2171 *
2172 * Return: size of the nvmem device.
2173 */
2174size_t nvmem_dev_size(struct nvmem_device *nvmem)
2175{
2176 return nvmem->size;
2177}
2178EXPORT_SYMBOL_GPL(nvmem_dev_size);
2179
2180static int __init nvmem_init(void)
2181{
2182 int ret;
2183
2184 ret = bus_register(&nvmem_bus_type);
2185 if (ret)
2186 return ret;
2187
2188 ret = nvmem_layout_bus_register();
2189 if (ret)
2190 bus_unregister(&nvmem_bus_type);
2191
2192 return ret;
2193}
2194
2195static void __exit nvmem_exit(void)
2196{
2197 nvmem_layout_bus_unregister();
2198 bus_unregister(&nvmem_bus_type);
2199}
2200
2201subsys_initcall(nvmem_init);
2202module_exit(nvmem_exit);
2203
2204MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2205MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2206MODULE_DESCRIPTION("nvmem Driver Core");