Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Copyright © 2014-2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include "bxt_dpio_phy_regs.h"
  25#include "i915_reg.h"
  26#include "intel_ddi.h"
  27#include "intel_ddi_buf_trans.h"
  28#include "intel_de.h"
  29#include "intel_display_power_well.h"
  30#include "intel_display_types.h"
  31#include "intel_dp.h"
  32#include "intel_dpio_phy.h"
  33#include "vlv_dpio_phy_regs.h"
  34#include "vlv_sideband.h"
  35
  36/**
  37 * DOC: DPIO
  38 *
  39 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
  40 * ports. DPIO is the name given to such a display PHY. These PHYs
  41 * don't follow the standard programming model using direct MMIO
  42 * registers, and instead their registers must be accessed trough IOSF
  43 * sideband. VLV has one such PHY for driving ports B and C, and CHV
  44 * adds another PHY for driving port D. Each PHY responds to specific
  45 * IOSF-SB port.
  46 *
  47 * Each display PHY is made up of one or two channels. Each channel
  48 * houses a common lane part which contains the PLL and other common
  49 * logic. CH0 common lane also contains the IOSF-SB logic for the
  50 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
  51 * must be running when any DPIO registers are accessed.
  52 *
  53 * In addition to having their own registers, the PHYs are also
  54 * controlled through some dedicated signals from the display
  55 * controller. These include PLL reference clock enable, PLL enable,
  56 * and CRI clock selection, for example.
  57 *
  58 * Eeach channel also has two splines (also called data lanes), and
  59 * each spline is made up of one Physical Access Coding Sub-Layer
  60 * (PCS) block and two TX lanes. So each channel has two PCS blocks
  61 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
  62 * data/clock pairs depending on the output type.
  63 *
  64 * Additionally the PHY also contains an AUX lane with AUX blocks
  65 * for each channel. This is used for DP AUX communication, but
  66 * this fact isn't really relevant for the driver since AUX is
  67 * controlled from the display controller side. No DPIO registers
  68 * need to be accessed during AUX communication,
  69 *
  70 * Generally on VLV/CHV the common lane corresponds to the pipe and
  71 * the spline (PCS/TX) corresponds to the port.
  72 *
  73 * For dual channel PHY (VLV/CHV):
  74 *
  75 *  pipe A == CMN/PLL/REF CH0
  76 *
  77 *  pipe B == CMN/PLL/REF CH1
  78 *
  79 *  port B == PCS/TX CH0
  80 *
  81 *  port C == PCS/TX CH1
  82 *
  83 * This is especially important when we cross the streams
  84 * ie. drive port B with pipe B, or port C with pipe A.
  85 *
  86 * For single channel PHY (CHV):
  87 *
  88 *  pipe C == CMN/PLL/REF CH0
  89 *
  90 *  port D == PCS/TX CH0
  91 *
  92 * On BXT the entire PHY channel corresponds to the port. That means
  93 * the PLL is also now associated with the port rather than the pipe,
  94 * and so the clock needs to be routed to the appropriate transcoder.
  95 * Port A PLL is directly connected to transcoder EDP and port B/C
  96 * PLLs can be routed to any transcoder A/B/C.
  97 *
  98 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
  99 * digital port D (CHV) or port A (BXT). ::
 100 *
 101 *
 102 *     Dual channel PHY (VLV/CHV/BXT)
 103 *     ---------------------------------
 104 *     |      CH0      |      CH1      |
 105 *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
 106 *     |---------------|---------------| Display PHY
 107 *     | PCS01 | PCS23 | PCS01 | PCS23 |
 108 *     |-------|-------|-------|-------|
 109 *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
 110 *     ---------------------------------
 111 *     |     DDI0      |     DDI1      | DP/HDMI ports
 112 *     ---------------------------------
 113 *
 114 *     Single channel PHY (CHV/BXT)
 115 *     -----------------
 116 *     |      CH0      |
 117 *     |  CMN/PLL/REF  |
 118 *     |---------------| Display PHY
 119 *     | PCS01 | PCS23 |
 120 *     |-------|-------|
 121 *     |TX0|TX1|TX2|TX3|
 122 *     -----------------
 123 *     |     DDI2      | DP/HDMI port
 124 *     -----------------
 125 */
 126
 127/**
 128 * struct bxt_dpio_phy_info - Hold info for a broxton DDI phy
 129 */
 130struct bxt_dpio_phy_info {
 131	/**
 132	 * @dual_channel: true if this phy has a second channel.
 133	 */
 134	bool dual_channel;
 135
 136	/**
 137	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
 138	 * Otherwise the GRC value will be copied from the phy indicated by
 139	 * this field.
 140	 */
 141	enum dpio_phy rcomp_phy;
 142
 143	/**
 144	 * @reset_delay: delay in us to wait before setting the common reset
 145	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
 146	 */
 147	int reset_delay;
 148
 149	/**
 150	 * @pwron_mask: Mask with the appropriate bit set that would cause the
 151	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
 152	 */
 153	u32 pwron_mask;
 154
 155	/**
 156	 * @channel: struct containing per channel information.
 157	 */
 158	struct {
 159		/**
 160		 * @channel.port: which port maps to this channel.
 161		 */
 162		enum port port;
 163	} channel[2];
 164};
 165
 166static const struct bxt_dpio_phy_info bxt_dpio_phy_info[] = {
 167	[DPIO_PHY0] = {
 168		.dual_channel = true,
 169		.rcomp_phy = DPIO_PHY1,
 170		.pwron_mask = BIT(0),
 171
 172		.channel = {
 173			[DPIO_CH0] = { .port = PORT_B },
 174			[DPIO_CH1] = { .port = PORT_C },
 175		}
 176	},
 177	[DPIO_PHY1] = {
 178		.dual_channel = false,
 179		.rcomp_phy = -1,
 180		.pwron_mask = BIT(1),
 181
 182		.channel = {
 183			[DPIO_CH0] = { .port = PORT_A },
 184		}
 185	},
 186};
 187
 188static const struct bxt_dpio_phy_info glk_dpio_phy_info[] = {
 189	[DPIO_PHY0] = {
 190		.dual_channel = false,
 191		.rcomp_phy = DPIO_PHY1,
 192		.pwron_mask = BIT(0),
 193		.reset_delay = 20,
 194
 195		.channel = {
 196			[DPIO_CH0] = { .port = PORT_B },
 197		}
 198	},
 199	[DPIO_PHY1] = {
 200		.dual_channel = false,
 201		.rcomp_phy = -1,
 202		.pwron_mask = BIT(3),
 203		.reset_delay = 20,
 204
 205		.channel = {
 206			[DPIO_CH0] = { .port = PORT_A },
 207		}
 208	},
 209	[DPIO_PHY2] = {
 210		.dual_channel = false,
 211		.rcomp_phy = DPIO_PHY1,
 212		.pwron_mask = BIT(1),
 213		.reset_delay = 20,
 214
 215		.channel = {
 216			[DPIO_CH0] = { .port = PORT_C },
 217		}
 218	},
 219};
 220
 221static const struct bxt_dpio_phy_info *
 222bxt_get_phy_list(struct intel_display *display, int *count)
 223{
 224	struct drm_i915_private *dev_priv = to_i915(display->drm);
 225
 226	if (IS_GEMINILAKE(dev_priv)) {
 227		*count =  ARRAY_SIZE(glk_dpio_phy_info);
 228		return glk_dpio_phy_info;
 229	} else {
 230		*count =  ARRAY_SIZE(bxt_dpio_phy_info);
 231		return bxt_dpio_phy_info;
 232	}
 233}
 234
 235static const struct bxt_dpio_phy_info *
 236bxt_get_phy_info(struct intel_display *display, enum dpio_phy phy)
 237{
 238	int count;
 239	const struct bxt_dpio_phy_info *phy_list =
 240		bxt_get_phy_list(display, &count);
 241
 242	return &phy_list[phy];
 243}
 244
 245void bxt_port_to_phy_channel(struct intel_display *display, enum port port,
 246			     enum dpio_phy *phy, enum dpio_channel *ch)
 247{
 248	const struct bxt_dpio_phy_info *phy_info, *phys;
 249	int i, count;
 250
 251	phys = bxt_get_phy_list(display, &count);
 252
 253	for (i = 0; i < count; i++) {
 254		phy_info = &phys[i];
 255
 256		if (port == phy_info->channel[DPIO_CH0].port) {
 257			*phy = i;
 258			*ch = DPIO_CH0;
 259			return;
 260		}
 261
 262		if (phy_info->dual_channel &&
 263		    port == phy_info->channel[DPIO_CH1].port) {
 264			*phy = i;
 265			*ch = DPIO_CH1;
 266			return;
 267		}
 268	}
 269
 270	drm_WARN(display->drm, 1, "PHY not found for PORT %c",
 271		 port_name(port));
 272	*phy = DPIO_PHY0;
 273	*ch = DPIO_CH0;
 274}
 275
 276/*
 277 * Like intel_de_rmw() but reads from a single per-lane register and
 278 * writes to the group register to write the same value to all the lanes.
 279 */
 280static u32 bxt_dpio_phy_rmw_grp(struct intel_display *display,
 281				i915_reg_t reg_single,
 282				i915_reg_t reg_group,
 283				u32 clear, u32 set)
 284{
 285	u32 old, val;
 286
 287	old = intel_de_read(display, reg_single);
 288	val = (old & ~clear) | set;
 289	intel_de_write(display, reg_group, val);
 290
 291	return old;
 292}
 293
 294void bxt_dpio_phy_set_signal_levels(struct intel_encoder *encoder,
 295				    const struct intel_crtc_state *crtc_state)
 296{
 297	struct intel_display *display = to_intel_display(encoder);
 298	const struct intel_ddi_buf_trans *trans;
 299	enum dpio_channel ch;
 300	enum dpio_phy phy;
 301	int lane, n_entries;
 
 302
 303	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
 304	if (drm_WARN_ON_ONCE(display->drm, !trans))
 305		return;
 306
 307	bxt_port_to_phy_channel(display, encoder->port, &phy, &ch);
 308
 309	/*
 310	 * While we write to the group register to program all lanes at once we
 311	 * can read only lane registers and we pick lanes 0/1 for that.
 312	 */
 313	bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch),
 314			     BXT_PORT_PCS_DW10_GRP(phy, ch),
 315			     TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT, 0);
 316
 317	for (lane = 0; lane < crtc_state->lane_count; lane++) {
 318		int level = intel_ddi_level(encoder, crtc_state, lane);
 
 
 
 319
 320		intel_de_rmw(display, BXT_PORT_TX_DW2_LN(phy, ch, lane),
 321			     MARGIN_000_MASK | UNIQ_TRANS_SCALE_MASK,
 322			     MARGIN_000(trans->entries[level].bxt.margin) |
 323			     UNIQ_TRANS_SCALE(trans->entries[level].bxt.scale));
 324	}
 325
 326	for (lane = 0; lane < crtc_state->lane_count; lane++) {
 327		int level = intel_ddi_level(encoder, crtc_state, lane);
 328		u32 val;
 329
 330		intel_de_rmw(display, BXT_PORT_TX_DW3_LN(phy, ch, lane),
 331			     SCALE_DCOMP_METHOD,
 332			     trans->entries[level].bxt.enable ?
 333			     SCALE_DCOMP_METHOD : 0);
 334
 335		val = intel_de_read(display, BXT_PORT_TX_DW3_LN(phy, ch, lane));
 336		if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
 337			drm_err(display->drm,
 338				"Disabled scaling while ouniqetrangenmethod was set");
 339	}
 340
 341	for (lane = 0; lane < crtc_state->lane_count; lane++) {
 342		int level = intel_ddi_level(encoder, crtc_state, lane);
 343
 344		intel_de_rmw(display, BXT_PORT_TX_DW4_LN(phy, ch, lane),
 345			     DE_EMPHASIS_MASK,
 346			     DE_EMPHASIS(trans->entries[level].bxt.deemphasis));
 347	}
 348
 349	bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch),
 350			     BXT_PORT_PCS_DW10_GRP(phy, ch),
 351			     0, TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
 352}
 353
 354bool bxt_dpio_phy_is_enabled(struct intel_display *display,
 355			     enum dpio_phy phy)
 356{
 357	const struct bxt_dpio_phy_info *phy_info;
 358
 359	phy_info = bxt_get_phy_info(display, phy);
 360
 361	if (!(intel_de_read(display, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
 362		return false;
 363
 364	if ((intel_de_read(display, BXT_PORT_CL1CM_DW0(phy)) &
 365	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
 366		drm_dbg(display->drm,
 367			"DDI PHY %d powered, but power hasn't settled\n", phy);
 368
 369		return false;
 370	}
 371
 372	if (!(intel_de_read(display, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
 373		drm_dbg(display->drm,
 374			"DDI PHY %d powered, but still in reset\n", phy);
 375
 376		return false;
 377	}
 378
 379	return true;
 380}
 381
 382static u32 bxt_get_grc(struct intel_display *display, enum dpio_phy phy)
 383{
 384	u32 val = intel_de_read(display, BXT_PORT_REF_DW6(phy));
 385
 386	return REG_FIELD_GET(GRC_CODE_MASK, val);
 387}
 388
 389static void bxt_phy_wait_grc_done(struct intel_display *display,
 390				  enum dpio_phy phy)
 391{
 392	if (intel_de_wait_for_set(display, BXT_PORT_REF_DW3(phy), GRC_DONE, 10))
 393		drm_err(display->drm, "timeout waiting for PHY%d GRC\n", phy);
 
 
 394}
 395
 396static void _bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy)
 
 397{
 398	const struct bxt_dpio_phy_info *phy_info;
 399	u32 val;
 400
 401	phy_info = bxt_get_phy_info(display, phy);
 402
 403	if (bxt_dpio_phy_is_enabled(display, phy)) {
 404		/* Still read out the GRC value for state verification */
 405		if (phy_info->rcomp_phy != -1)
 406			display->state.bxt_phy_grc = bxt_get_grc(display, phy);
 407
 408		if (bxt_dpio_phy_verify_state(display, phy)) {
 409			drm_dbg(display->drm, "DDI PHY %d already enabled, "
 410				"won't reprogram it\n", phy);
 411			return;
 412		}
 413
 414		drm_dbg(display->drm,
 415			"DDI PHY %d enabled with invalid state, "
 416			"force reprogramming it\n", phy);
 417	}
 418
 419	intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask);
 420
 421	/*
 422	 * The PHY registers start out inaccessible and respond to reads with
 423	 * all 1s.  Eventually they become accessible as they power up, then
 424	 * the reserved bit will give the default 0.  Poll on the reserved bit
 425	 * becoming 0 to find when the PHY is accessible.
 426	 * The flag should get set in 100us according to the HW team, but
 427	 * use 1ms due to occasional timeouts observed with that.
 428	 */
 429	if (intel_de_wait_fw(display, BXT_PORT_CL1CM_DW0(phy),
 430			     PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, 1))
 431		drm_err(display->drm, "timeout during PHY%d power on\n",
 
 
 
 432			phy);
 433
 434	/* Program PLL Rcomp code offset */
 435	intel_de_rmw(display, BXT_PORT_CL1CM_DW9(phy),
 436		     IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xE4));
 437
 438	intel_de_rmw(display, BXT_PORT_CL1CM_DW10(phy),
 439		     IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xE4));
 440
 441	/* Program power gating */
 442	intel_de_rmw(display, BXT_PORT_CL1CM_DW28(phy), 0,
 443		     OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG);
 444
 445	if (phy_info->dual_channel)
 446		intel_de_rmw(display, BXT_PORT_CL2CM_DW6(phy), 0,
 447			     DW6_OLDO_DYN_PWR_DOWN_EN);
 448
 449	if (phy_info->rcomp_phy != -1) {
 450		u32 grc_code;
 451
 452		bxt_phy_wait_grc_done(display, phy_info->rcomp_phy);
 453
 454		/*
 455		 * PHY0 isn't connected to an RCOMP resistor so copy over
 456		 * the corresponding calibrated value from PHY1, and disable
 457		 * the automatic calibration on PHY0.
 458		 */
 459		val = bxt_get_grc(display, phy_info->rcomp_phy);
 460		display->state.bxt_phy_grc = val;
 461
 462		grc_code = GRC_CODE_FAST(val) |
 463			GRC_CODE_SLOW(val) |
 464			GRC_CODE_NOM(val);
 465		intel_de_write(display, BXT_PORT_REF_DW6(phy), grc_code);
 466		intel_de_rmw(display, BXT_PORT_REF_DW8(phy),
 467			     0, GRC_DIS | GRC_RDY_OVRD);
 468	}
 469
 470	if (phy_info->reset_delay)
 471		udelay(phy_info->reset_delay);
 472
 473	intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS);
 474}
 475
 476void bxt_dpio_phy_uninit(struct intel_display *display, enum dpio_phy phy)
 477{
 478	const struct bxt_dpio_phy_info *phy_info;
 479
 480	phy_info = bxt_get_phy_info(display, phy);
 481
 482	intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0);
 483
 484	intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0);
 485}
 486
 487void bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy)
 488{
 489	const struct bxt_dpio_phy_info *phy_info = bxt_get_phy_info(display, phy);
 
 490	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
 491	bool was_enabled;
 492
 493	lockdep_assert_held(&display->power.domains.lock);
 494
 495	was_enabled = true;
 496	if (rcomp_phy != -1)
 497		was_enabled = bxt_dpio_phy_is_enabled(display, rcomp_phy);
 498
 499	/*
 500	 * We need to copy the GRC calibration value from rcomp_phy,
 501	 * so make sure it's powered up.
 502	 */
 503	if (!was_enabled)
 504		_bxt_dpio_phy_init(display, rcomp_phy);
 505
 506	_bxt_dpio_phy_init(display, phy);
 507
 508	if (!was_enabled)
 509		bxt_dpio_phy_uninit(display, rcomp_phy);
 510}
 511
 512static bool __printf(6, 7)
 513__phy_reg_verify_state(struct intel_display *display, enum dpio_phy phy,
 514		       i915_reg_t reg, u32 mask, u32 expected,
 515		       const char *reg_fmt, ...)
 516{
 517	struct va_format vaf;
 518	va_list args;
 519	u32 val;
 520
 521	val = intel_de_read(display, reg);
 522	if ((val & mask) == expected)
 523		return true;
 524
 525	va_start(args, reg_fmt);
 526	vaf.fmt = reg_fmt;
 527	vaf.va = &args;
 528
 529	drm_dbg(display->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
 530			 "current %08x, expected %08x (mask %08x)\n",
 531			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
 532			 mask);
 533
 534	va_end(args);
 535
 536	return false;
 537}
 538
 539bool bxt_dpio_phy_verify_state(struct intel_display *display,
 540			       enum dpio_phy phy)
 541{
 542	const struct bxt_dpio_phy_info *phy_info;
 543	u32 mask;
 544	bool ok;
 545
 546	phy_info = bxt_get_phy_info(display, phy);
 547
 548#define _CHK(reg, mask, exp, fmt, ...)					\
 549	__phy_reg_verify_state(display, phy, reg, mask, exp, fmt,	\
 550			       ## __VA_ARGS__)
 551
 552	if (!bxt_dpio_phy_is_enabled(display, phy))
 553		return false;
 554
 555	ok = true;
 556
 557	/* PLL Rcomp code offset */
 558	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
 559		   IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xe4),
 560		   "BXT_PORT_CL1CM_DW9(%d)", phy);
 561	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
 562		   IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xe4),
 563		   "BXT_PORT_CL1CM_DW10(%d)", phy);
 564
 565	/* Power gating */
 566	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
 567	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
 568		   "BXT_PORT_CL1CM_DW28(%d)", phy);
 569
 570	if (phy_info->dual_channel)
 571		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
 572			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
 573			   "BXT_PORT_CL2CM_DW6(%d)", phy);
 574
 575	if (phy_info->rcomp_phy != -1) {
 576		u32 grc_code = display->state.bxt_phy_grc;
 577
 578		grc_code = GRC_CODE_FAST(grc_code) |
 579			GRC_CODE_SLOW(grc_code) |
 580			GRC_CODE_NOM(grc_code);
 581		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
 582		       GRC_CODE_NOM_MASK;
 583		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
 584			   "BXT_PORT_REF_DW6(%d)", phy);
 585
 586		mask = GRC_DIS | GRC_RDY_OVRD;
 587		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
 588			   "BXT_PORT_REF_DW8(%d)", phy);
 589	}
 590
 591	return ok;
 592#undef _CHK
 593}
 594
 595u8
 596bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count)
 597{
 598	switch (lane_count) {
 599	case 1:
 600		return 0;
 601	case 2:
 602		return BIT(2) | BIT(0);
 603	case 4:
 604		return BIT(3) | BIT(2) | BIT(0);
 605	default:
 606		MISSING_CASE(lane_count);
 607
 608		return 0;
 609	}
 610}
 611
 612void bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder *encoder,
 613				      u8 lane_lat_optim_mask)
 614{
 615	struct intel_display *display = to_intel_display(encoder);
 616	enum port port = encoder->port;
 617	enum dpio_phy phy;
 618	enum dpio_channel ch;
 619	int lane;
 620
 621	bxt_port_to_phy_channel(display, port, &phy, &ch);
 622
 623	for (lane = 0; lane < 4; lane++) {
 
 
 
 624		/*
 625		 * Note that on CHV this flag is called UPAR, but has
 626		 * the same function.
 627		 */
 628		intel_de_rmw(display, BXT_PORT_TX_DW14_LN(phy, ch, lane),
 629			     LATENCY_OPTIM,
 630			     lane_lat_optim_mask & BIT(lane) ? LATENCY_OPTIM : 0);
 
 
 
 631	}
 632}
 633
 634u8
 635bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
 636{
 637	struct intel_display *display = to_intel_display(encoder);
 638	enum port port = encoder->port;
 639	enum dpio_phy phy;
 640	enum dpio_channel ch;
 641	int lane;
 642	u8 mask;
 643
 644	bxt_port_to_phy_channel(display, port, &phy, &ch);
 645
 646	mask = 0;
 647	for (lane = 0; lane < 4; lane++) {
 648		u32 val = intel_de_read(display,
 649					BXT_PORT_TX_DW14_LN(phy, ch, lane));
 650
 651		if (val & LATENCY_OPTIM)
 652			mask |= BIT(lane);
 653	}
 654
 655	return mask;
 656}
 657
 658enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
 659{
 660	switch (dig_port->base.port) {
 661	default:
 662		MISSING_CASE(dig_port->base.port);
 663		fallthrough;
 664	case PORT_B:
 665	case PORT_D:
 666		return DPIO_CH0;
 667	case PORT_C:
 668		return DPIO_CH1;
 669	}
 670}
 671
 672enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
 673{
 674	switch (dig_port->base.port) {
 675	default:
 676		MISSING_CASE(dig_port->base.port);
 677		fallthrough;
 678	case PORT_B:
 679	case PORT_C:
 680		return DPIO_PHY0;
 681	case PORT_D:
 682		return DPIO_PHY1;
 683	}
 684}
 685
 686enum dpio_phy vlv_pipe_to_phy(enum pipe pipe)
 687{
 688	switch (pipe) {
 689	default:
 690		MISSING_CASE(pipe);
 691		fallthrough;
 692	case PIPE_A:
 693	case PIPE_B:
 694		return DPIO_PHY0;
 695	case PIPE_C:
 696		return DPIO_PHY1;
 697	}
 698}
 699
 700enum dpio_channel vlv_pipe_to_channel(enum pipe pipe)
 701{
 702	switch (pipe) {
 703	default:
 704		MISSING_CASE(pipe);
 705		fallthrough;
 706	case PIPE_A:
 707	case PIPE_C:
 708		return DPIO_CH0;
 709	case PIPE_B:
 710		return DPIO_CH1;
 711	}
 712}
 713
 714void chv_set_phy_signal_level(struct intel_encoder *encoder,
 715			      const struct intel_crtc_state *crtc_state,
 716			      u32 deemph_reg_value, u32 margin_reg_value,
 717			      bool uniq_trans_scale)
 718{
 719	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 720	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 
 721	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 722	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
 723	u32 val;
 724	int i;
 725
 726	vlv_dpio_get(dev_priv);
 727
 728	/* Clear calc init */
 729	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
 730	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
 731	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
 732	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
 733	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
 734
 735	if (crtc_state->lane_count > 2) {
 736		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
 737		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
 738		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
 739		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
 740		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
 741	}
 742
 743	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW9(ch));
 744	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
 745	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
 746	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW9(ch), val);
 747
 748	if (crtc_state->lane_count > 2) {
 749		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW9(ch));
 750		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
 751		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
 752		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW9(ch), val);
 753	}
 754
 755	/* Program swing deemph */
 756	for (i = 0; i < crtc_state->lane_count; i++) {
 757		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW4(ch, i));
 758		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
 759		val |= DPIO_SWING_DEEMPH9P5(deemph_reg_value);
 760		vlv_dpio_write(dev_priv, phy, CHV_TX_DW4(ch, i), val);
 761	}
 762
 763	/* Program swing margin */
 764	for (i = 0; i < crtc_state->lane_count; i++) {
 765		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW2(ch, i));
 766
 767		val &= ~DPIO_SWING_MARGIN000_MASK;
 768		val |= DPIO_SWING_MARGIN000(margin_reg_value);
 769
 770		/*
 771		 * Supposedly this value shouldn't matter when unique transition
 772		 * scale is disabled, but in fact it does matter. Let's just
 773		 * always program the same value and hope it's OK.
 774		 */
 775		val &= ~DPIO_UNIQ_TRANS_SCALE_MASK;
 776		val |= DPIO_UNIQ_TRANS_SCALE(0x9a);
 777
 778		vlv_dpio_write(dev_priv, phy, CHV_TX_DW2(ch, i), val);
 779	}
 780
 781	/*
 782	 * The document said it needs to set bit 27 for ch0 and bit 26
 783	 * for ch1. Might be a typo in the doc.
 784	 * For now, for this unique transition scale selection, set bit
 785	 * 27 for ch0 and ch1.
 786	 */
 787	for (i = 0; i < crtc_state->lane_count; i++) {
 788		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW3(ch, i));
 789		if (uniq_trans_scale)
 790			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
 791		else
 792			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
 793		vlv_dpio_write(dev_priv, phy, CHV_TX_DW3(ch, i), val);
 794	}
 795
 796	/* Start swing calculation */
 797	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
 798	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
 799	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
 800
 801	if (crtc_state->lane_count > 2) {
 802		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
 803		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
 804		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
 805	}
 806
 807	vlv_dpio_put(dev_priv);
 808}
 809
 810void chv_data_lane_soft_reset(struct intel_encoder *encoder,
 811			      const struct intel_crtc_state *crtc_state,
 812			      bool reset)
 813{
 814	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 815	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 816	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 817	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
 818	u32 val;
 819
 820	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW0(ch));
 821	if (reset)
 822		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
 823	else
 824		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
 825	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW0(ch), val);
 826
 827	if (crtc_state->lane_count > 2) {
 828		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW0(ch));
 829		if (reset)
 830			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
 831		else
 832			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
 833		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW0(ch), val);
 834	}
 835
 836	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW1(ch));
 837	val |= CHV_PCS_REQ_SOFTRESET_EN;
 838	if (reset)
 839		val &= ~DPIO_PCS_CLK_SOFT_RESET;
 840	else
 841		val |= DPIO_PCS_CLK_SOFT_RESET;
 842	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW1(ch), val);
 843
 844	if (crtc_state->lane_count > 2) {
 845		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW1(ch));
 846		val |= CHV_PCS_REQ_SOFTRESET_EN;
 847		if (reset)
 848			val &= ~DPIO_PCS_CLK_SOFT_RESET;
 849		else
 850			val |= DPIO_PCS_CLK_SOFT_RESET;
 851		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW1(ch), val);
 852	}
 853}
 854
 855void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
 856			    const struct intel_crtc_state *crtc_state)
 857{
 858	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 859	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 860	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 861	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 862	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
 863	enum pipe pipe = crtc->pipe;
 864	unsigned int lane_mask =
 865		intel_dp_unused_lane_mask(crtc_state->lane_count);
 866	u32 val;
 867
 868	/*
 869	 * Must trick the second common lane into life.
 870	 * Otherwise we can't even access the PLL.
 871	 */
 872	if (ch == DPIO_CH0 && pipe == PIPE_B)
 873		dig_port->release_cl2_override =
 874			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
 875
 876	chv_phy_powergate_lanes(encoder, true, lane_mask);
 877
 878	vlv_dpio_get(dev_priv);
 879
 880	/* Assert data lane reset */
 881	chv_data_lane_soft_reset(encoder, crtc_state, true);
 882
 883	/* program left/right clock distribution */
 884	if (pipe != PIPE_B) {
 885		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
 886		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
 887		if (ch == DPIO_CH0)
 888			val |= CHV_BUFLEFTENA1_FORCE;
 889		if (ch == DPIO_CH1)
 890			val |= CHV_BUFRIGHTENA1_FORCE;
 891		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
 892	} else {
 893		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
 894		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
 895		if (ch == DPIO_CH0)
 896			val |= CHV_BUFLEFTENA2_FORCE;
 897		if (ch == DPIO_CH1)
 898			val |= CHV_BUFRIGHTENA2_FORCE;
 899		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
 900	}
 901
 902	/* program clock channel usage */
 903	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(ch));
 904	val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
 905	if (pipe == PIPE_B)
 906		val |= DPIO_PCS_USEDCLKCHANNEL;
 907	else
 908		val &= ~DPIO_PCS_USEDCLKCHANNEL;
 909	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW8(ch), val);
 910
 911	if (crtc_state->lane_count > 2) {
 912		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW8(ch));
 913		val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
 914		if (pipe == PIPE_B)
 915			val |= DPIO_PCS_USEDCLKCHANNEL;
 916		else
 917			val &= ~DPIO_PCS_USEDCLKCHANNEL;
 918		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW8(ch), val);
 919	}
 920
 921	/*
 922	 * This a a bit weird since generally CL
 923	 * matches the pipe, but here we need to
 924	 * pick the CL based on the port.
 925	 */
 926	val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW19(ch));
 927	if (pipe == PIPE_B)
 928		val |= CHV_CMN_USEDCLKCHANNEL;
 929	else
 930		val &= ~CHV_CMN_USEDCLKCHANNEL;
 
 
 931	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW19(ch), val);
 932
 933	vlv_dpio_put(dev_priv);
 934}
 935
 936void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
 937				const struct intel_crtc_state *crtc_state)
 938{
 939	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 940	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
 941	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 
 942	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 943	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
 944	int data, i, stagger;
 945	u32 val;
 946
 947	vlv_dpio_get(dev_priv);
 948
 949	/* allow hardware to manage TX FIFO reset source */
 950	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
 951	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
 952	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
 953
 954	if (crtc_state->lane_count > 2) {
 955		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
 956		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
 957		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
 958	}
 959
 960	/* Program Tx lane latency optimal setting*/
 961	for (i = 0; i < crtc_state->lane_count; i++) {
 962		/* Set the upar bit */
 963		if (crtc_state->lane_count == 1)
 964			data = 0;
 965		else
 966			data = (i == 1) ? 0 : DPIO_UPAR;
 967		vlv_dpio_write(dev_priv, phy, CHV_TX_DW14(ch, i), data);
 
 968	}
 969
 970	/* Data lane stagger programming */
 971	if (crtc_state->port_clock > 270000)
 972		stagger = 0x18;
 973	else if (crtc_state->port_clock > 135000)
 974		stagger = 0xd;
 975	else if (crtc_state->port_clock > 67500)
 976		stagger = 0x7;
 977	else if (crtc_state->port_clock > 33750)
 978		stagger = 0x4;
 979	else
 980		stagger = 0x2;
 981
 982	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
 983	val |= DPIO_TX2_STAGGER_MASK(0x1f);
 984	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
 985
 986	if (crtc_state->lane_count > 2) {
 987		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
 988		val |= DPIO_TX2_STAGGER_MASK(0x1f);
 989		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
 990	}
 991
 992	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW12(ch),
 993		       DPIO_LANESTAGGER_STRAP(stagger) |
 994		       DPIO_LANESTAGGER_STRAP_OVRD |
 995		       DPIO_TX1_STAGGER_MASK(0x1f) |
 996		       DPIO_TX1_STAGGER_MULT(6) |
 997		       DPIO_TX2_STAGGER_MULT(0));
 998
 999	if (crtc_state->lane_count > 2) {
1000		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW12(ch),
1001			       DPIO_LANESTAGGER_STRAP(stagger) |
1002			       DPIO_LANESTAGGER_STRAP_OVRD |
1003			       DPIO_TX1_STAGGER_MASK(0x1f) |
1004			       DPIO_TX1_STAGGER_MULT(7) |
1005			       DPIO_TX2_STAGGER_MULT(5));
1006	}
1007
1008	/* Deassert data lane reset */
1009	chv_data_lane_soft_reset(encoder, crtc_state, false);
1010
1011	vlv_dpio_put(dev_priv);
1012}
1013
1014void chv_phy_release_cl2_override(struct intel_encoder *encoder)
1015{
1016	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1017	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1018
1019	if (dig_port->release_cl2_override) {
1020		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
1021		dig_port->release_cl2_override = false;
1022	}
1023}
1024
1025void chv_phy_post_pll_disable(struct intel_encoder *encoder,
1026			      const struct intel_crtc_state *old_crtc_state)
1027{
1028	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1029	enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder));
1030	enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
 
1031	u32 val;
1032
1033	vlv_dpio_get(dev_priv);
1034
1035	/* disable left/right clock distribution */
1036	if (pipe != PIPE_B) {
1037		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
1038		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1039		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
1040	} else {
1041		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
1042		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1043		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
1044	}
1045
1046	vlv_dpio_put(dev_priv);
1047
1048	/*
1049	 * Leave the power down bit cleared for at least one
1050	 * lane so that chv_powergate_phy_ch() will power
1051	 * on something when the channel is otherwise unused.
1052	 * When the port is off and the override is removed
1053	 * the lanes power down anyway, so otherwise it doesn't
1054	 * really matter what the state of power down bits is
1055	 * after this.
1056	 */
1057	chv_phy_powergate_lanes(encoder, false, 0x0);
1058}
1059
1060void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1061			      const struct intel_crtc_state *crtc_state,
1062			      u32 demph_reg_value, u32 preemph_reg_value,
1063			      u32 uniqtranscale_reg_value, u32 tx3_demph)
1064{
1065	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1066	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1067	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1068	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
 
1069
1070	vlv_dpio_get(dev_priv);
1071
1072	vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), 0x00000000);
1073	vlv_dpio_write(dev_priv, phy, VLV_TX_DW4_GRP(ch), demph_reg_value);
1074	vlv_dpio_write(dev_priv, phy, VLV_TX_DW2_GRP(ch),
1075			 uniqtranscale_reg_value);
1076	vlv_dpio_write(dev_priv, phy, VLV_TX_DW3_GRP(ch), 0x0C782040);
1077
1078	if (tx3_demph)
1079		vlv_dpio_write(dev_priv, phy, VLV_TX_DW4(ch, 3), tx3_demph);
1080
1081	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW11_GRP(ch), 0x00030000);
1082	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW9_GRP(ch), preemph_reg_value);
1083	vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), DPIO_TX_OCALINIT_EN);
1084
1085	vlv_dpio_put(dev_priv);
1086}
1087
1088void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1089			    const struct intel_crtc_state *crtc_state)
1090{
1091	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1092	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1093	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1094	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
 
1095
1096	/* Program Tx lane resets to default */
1097	vlv_dpio_get(dev_priv);
1098
1099	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch),
1100		       DPIO_PCS_TX_LANE2_RESET |
1101		       DPIO_PCS_TX_LANE1_RESET);
1102	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch),
1103		       DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1104		       DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1105		       DPIO_PCS_CLK_DATAWIDTH_8_10 |
1106		       DPIO_PCS_CLK_SOFT_RESET);
1107
1108	/* Fix up inter-pair skew failure */
1109	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW12_GRP(ch), 0x00750f00);
1110	vlv_dpio_write(dev_priv, phy, VLV_TX_DW11_GRP(ch), 0x00001500);
1111	vlv_dpio_write(dev_priv, phy, VLV_TX_DW14_GRP(ch), 0x40400000);
1112
1113	vlv_dpio_put(dev_priv);
1114}
1115
1116void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1117				const struct intel_crtc_state *crtc_state)
1118{
1119	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1120	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1121	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1122	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1123	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1124	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1125	enum pipe pipe = crtc->pipe;
 
1126	u32 val;
1127
1128	vlv_dpio_get(dev_priv);
1129
1130	/* Enable clock channels for this port */
1131	val = DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
1132	if (pipe == PIPE_B)
1133		val |= DPIO_PCS_USEDCLKCHANNEL;
1134	val |= 0xc4;
1135	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW8_GRP(ch), val);
 
 
 
1136
1137	/* Program lane clock */
1138	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW14_GRP(ch), 0x00760018);
1139	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW23_GRP(ch), 0x00400888);
1140
1141	vlv_dpio_put(dev_priv);
1142}
1143
1144void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1145			 const struct intel_crtc_state *old_crtc_state)
1146{
1147	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1148	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1149	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1150	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
 
1151
1152	vlv_dpio_get(dev_priv);
1153	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch), 0x00000000);
1154	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch), 0x00e00060);
1155	vlv_dpio_put(dev_priv);
1156}
v6.8
   1/*
   2 * Copyright © 2014-2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 */
  23
 
  24#include "i915_reg.h"
  25#include "intel_ddi.h"
  26#include "intel_ddi_buf_trans.h"
  27#include "intel_de.h"
  28#include "intel_display_power_well.h"
  29#include "intel_display_types.h"
  30#include "intel_dp.h"
  31#include "intel_dpio_phy.h"
 
  32#include "vlv_sideband.h"
  33
  34/**
  35 * DOC: DPIO
  36 *
  37 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
  38 * ports. DPIO is the name given to such a display PHY. These PHYs
  39 * don't follow the standard programming model using direct MMIO
  40 * registers, and instead their registers must be accessed trough IOSF
  41 * sideband. VLV has one such PHY for driving ports B and C, and CHV
  42 * adds another PHY for driving port D. Each PHY responds to specific
  43 * IOSF-SB port.
  44 *
  45 * Each display PHY is made up of one or two channels. Each channel
  46 * houses a common lane part which contains the PLL and other common
  47 * logic. CH0 common lane also contains the IOSF-SB logic for the
  48 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
  49 * must be running when any DPIO registers are accessed.
  50 *
  51 * In addition to having their own registers, the PHYs are also
  52 * controlled through some dedicated signals from the display
  53 * controller. These include PLL reference clock enable, PLL enable,
  54 * and CRI clock selection, for example.
  55 *
  56 * Eeach channel also has two splines (also called data lanes), and
  57 * each spline is made up of one Physical Access Coding Sub-Layer
  58 * (PCS) block and two TX lanes. So each channel has two PCS blocks
  59 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
  60 * data/clock pairs depending on the output type.
  61 *
  62 * Additionally the PHY also contains an AUX lane with AUX blocks
  63 * for each channel. This is used for DP AUX communication, but
  64 * this fact isn't really relevant for the driver since AUX is
  65 * controlled from the display controller side. No DPIO registers
  66 * need to be accessed during AUX communication,
  67 *
  68 * Generally on VLV/CHV the common lane corresponds to the pipe and
  69 * the spline (PCS/TX) corresponds to the port.
  70 *
  71 * For dual channel PHY (VLV/CHV):
  72 *
  73 *  pipe A == CMN/PLL/REF CH0
  74 *
  75 *  pipe B == CMN/PLL/REF CH1
  76 *
  77 *  port B == PCS/TX CH0
  78 *
  79 *  port C == PCS/TX CH1
  80 *
  81 * This is especially important when we cross the streams
  82 * ie. drive port B with pipe B, or port C with pipe A.
  83 *
  84 * For single channel PHY (CHV):
  85 *
  86 *  pipe C == CMN/PLL/REF CH0
  87 *
  88 *  port D == PCS/TX CH0
  89 *
  90 * On BXT the entire PHY channel corresponds to the port. That means
  91 * the PLL is also now associated with the port rather than the pipe,
  92 * and so the clock needs to be routed to the appropriate transcoder.
  93 * Port A PLL is directly connected to transcoder EDP and port B/C
  94 * PLLs can be routed to any transcoder A/B/C.
  95 *
  96 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
  97 * digital port D (CHV) or port A (BXT). ::
  98 *
  99 *
 100 *     Dual channel PHY (VLV/CHV/BXT)
 101 *     ---------------------------------
 102 *     |      CH0      |      CH1      |
 103 *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
 104 *     |---------------|---------------| Display PHY
 105 *     | PCS01 | PCS23 | PCS01 | PCS23 |
 106 *     |-------|-------|-------|-------|
 107 *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
 108 *     ---------------------------------
 109 *     |     DDI0      |     DDI1      | DP/HDMI ports
 110 *     ---------------------------------
 111 *
 112 *     Single channel PHY (CHV/BXT)
 113 *     -----------------
 114 *     |      CH0      |
 115 *     |  CMN/PLL/REF  |
 116 *     |---------------| Display PHY
 117 *     | PCS01 | PCS23 |
 118 *     |-------|-------|
 119 *     |TX0|TX1|TX2|TX3|
 120 *     -----------------
 121 *     |     DDI2      | DP/HDMI port
 122 *     -----------------
 123 */
 124
 125/**
 126 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
 127 */
 128struct bxt_ddi_phy_info {
 129	/**
 130	 * @dual_channel: true if this phy has a second channel.
 131	 */
 132	bool dual_channel;
 133
 134	/**
 135	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
 136	 * Otherwise the GRC value will be copied from the phy indicated by
 137	 * this field.
 138	 */
 139	enum dpio_phy rcomp_phy;
 140
 141	/**
 142	 * @reset_delay: delay in us to wait before setting the common reset
 143	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
 144	 */
 145	int reset_delay;
 146
 147	/**
 148	 * @pwron_mask: Mask with the appropriate bit set that would cause the
 149	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
 150	 */
 151	u32 pwron_mask;
 152
 153	/**
 154	 * @channel: struct containing per channel information.
 155	 */
 156	struct {
 157		/**
 158		 * @channel.port: which port maps to this channel.
 159		 */
 160		enum port port;
 161	} channel[2];
 162};
 163
 164static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
 165	[DPIO_PHY0] = {
 166		.dual_channel = true,
 167		.rcomp_phy = DPIO_PHY1,
 168		.pwron_mask = BIT(0),
 169
 170		.channel = {
 171			[DPIO_CH0] = { .port = PORT_B },
 172			[DPIO_CH1] = { .port = PORT_C },
 173		}
 174	},
 175	[DPIO_PHY1] = {
 176		.dual_channel = false,
 177		.rcomp_phy = -1,
 178		.pwron_mask = BIT(1),
 179
 180		.channel = {
 181			[DPIO_CH0] = { .port = PORT_A },
 182		}
 183	},
 184};
 185
 186static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
 187	[DPIO_PHY0] = {
 188		.dual_channel = false,
 189		.rcomp_phy = DPIO_PHY1,
 190		.pwron_mask = BIT(0),
 191		.reset_delay = 20,
 192
 193		.channel = {
 194			[DPIO_CH0] = { .port = PORT_B },
 195		}
 196	},
 197	[DPIO_PHY1] = {
 198		.dual_channel = false,
 199		.rcomp_phy = -1,
 200		.pwron_mask = BIT(3),
 201		.reset_delay = 20,
 202
 203		.channel = {
 204			[DPIO_CH0] = { .port = PORT_A },
 205		}
 206	},
 207	[DPIO_PHY2] = {
 208		.dual_channel = false,
 209		.rcomp_phy = DPIO_PHY1,
 210		.pwron_mask = BIT(1),
 211		.reset_delay = 20,
 212
 213		.channel = {
 214			[DPIO_CH0] = { .port = PORT_C },
 215		}
 216	},
 217};
 218
 219static const struct bxt_ddi_phy_info *
 220bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
 221{
 
 
 222	if (IS_GEMINILAKE(dev_priv)) {
 223		*count =  ARRAY_SIZE(glk_ddi_phy_info);
 224		return glk_ddi_phy_info;
 225	} else {
 226		*count =  ARRAY_SIZE(bxt_ddi_phy_info);
 227		return bxt_ddi_phy_info;
 228	}
 229}
 230
 231static const struct bxt_ddi_phy_info *
 232bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
 233{
 234	int count;
 235	const struct bxt_ddi_phy_info *phy_list =
 236		bxt_get_phy_list(dev_priv, &count);
 237
 238	return &phy_list[phy];
 239}
 240
 241void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
 242			     enum dpio_phy *phy, enum dpio_channel *ch)
 243{
 244	const struct bxt_ddi_phy_info *phy_info, *phys;
 245	int i, count;
 246
 247	phys = bxt_get_phy_list(dev_priv, &count);
 248
 249	for (i = 0; i < count; i++) {
 250		phy_info = &phys[i];
 251
 252		if (port == phy_info->channel[DPIO_CH0].port) {
 253			*phy = i;
 254			*ch = DPIO_CH0;
 255			return;
 256		}
 257
 258		if (phy_info->dual_channel &&
 259		    port == phy_info->channel[DPIO_CH1].port) {
 260			*phy = i;
 261			*ch = DPIO_CH1;
 262			return;
 263		}
 264	}
 265
 266	drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
 267		 port_name(port));
 268	*phy = DPIO_PHY0;
 269	*ch = DPIO_CH0;
 270}
 271
 272void bxt_ddi_phy_set_signal_levels(struct intel_encoder *encoder,
 273				   const struct intel_crtc_state *crtc_state)
 
 
 
 
 
 
 274{
 275	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 276	int level = intel_ddi_level(encoder, crtc_state, 0);
 
 
 
 
 
 
 
 
 
 
 
 277	const struct intel_ddi_buf_trans *trans;
 278	enum dpio_channel ch;
 279	enum dpio_phy phy;
 280	int n_entries;
 281	u32 val;
 282
 283	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
 284	if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans))
 285		return;
 286
 287	bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch);
 288
 289	/*
 290	 * While we write to the group register to program all lanes at once we
 291	 * can read only lane registers and we pick lanes 0/1 for that.
 292	 */
 293	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
 294	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
 295	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
 296
 297	val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch));
 298	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
 299	val |= trans->entries[level].bxt.margin << MARGIN_000_SHIFT |
 300		trans->entries[level].bxt.scale << UNIQ_TRANS_SCALE_SHIFT;
 301	intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val);
 302
 303	val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch));
 304	val &= ~SCALE_DCOMP_METHOD;
 305	if (trans->entries[level].bxt.enable)
 306		val |= SCALE_DCOMP_METHOD;
 
 
 
 
 
 307
 308	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
 309		drm_err(&dev_priv->drm,
 310			"Disabled scaling while ouniqetrangenmethod was set");
 
 311
 312	intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val);
 
 
 
 
 313
 314	val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch));
 315	val &= ~DE_EMPHASIS;
 316	val |= trans->entries[level].bxt.deemphasis << DEEMPH_SHIFT;
 317	intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val);
 
 
 
 318
 319	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
 320	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
 321	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
 322}
 323
 324bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
 325			    enum dpio_phy phy)
 326{
 327	const struct bxt_ddi_phy_info *phy_info;
 328
 329	phy_info = bxt_get_phy_info(dev_priv, phy);
 330
 331	if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
 332		return false;
 333
 334	if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
 335	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
 336		drm_dbg(&dev_priv->drm,
 337			"DDI PHY %d powered, but power hasn't settled\n", phy);
 338
 339		return false;
 340	}
 341
 342	if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
 343		drm_dbg(&dev_priv->drm,
 344			"DDI PHY %d powered, but still in reset\n", phy);
 345
 346		return false;
 347	}
 348
 349	return true;
 350}
 351
 352static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
 353{
 354	u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));
 355
 356	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
 357}
 358
 359static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
 360				  enum dpio_phy phy)
 361{
 362	if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
 363				  GRC_DONE, 10))
 364		drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
 365			phy);
 366}
 367
 368static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
 369			      enum dpio_phy phy)
 370{
 371	const struct bxt_ddi_phy_info *phy_info;
 372	u32 val;
 373
 374	phy_info = bxt_get_phy_info(dev_priv, phy);
 375
 376	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
 377		/* Still read out the GRC value for state verification */
 378		if (phy_info->rcomp_phy != -1)
 379			dev_priv->display.state.bxt_phy_grc = bxt_get_grc(dev_priv, phy);
 380
 381		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
 382			drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
 383				"won't reprogram it\n", phy);
 384			return;
 385		}
 386
 387		drm_dbg(&dev_priv->drm,
 388			"DDI PHY %d enabled with invalid state, "
 389			"force reprogramming it\n", phy);
 390	}
 391
 392	intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask);
 393
 394	/*
 395	 * The PHY registers start out inaccessible and respond to reads with
 396	 * all 1s.  Eventually they become accessible as they power up, then
 397	 * the reserved bit will give the default 0.  Poll on the reserved bit
 398	 * becoming 0 to find when the PHY is accessible.
 399	 * The flag should get set in 100us according to the HW team, but
 400	 * use 1ms due to occasional timeouts observed with that.
 401	 */
 402	if (intel_wait_for_register_fw(&dev_priv->uncore,
 403				       BXT_PORT_CL1CM_DW0(phy),
 404				       PHY_RESERVED | PHY_POWER_GOOD,
 405				       PHY_POWER_GOOD,
 406				       1))
 407		drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
 408			phy);
 409
 410	/* Program PLL Rcomp code offset */
 411	intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW9(phy), IREF0RC_OFFSET_MASK,
 412		     0xE4 << IREF0RC_OFFSET_SHIFT);
 413
 414	intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW10(phy), IREF1RC_OFFSET_MASK,
 415		     0xE4 << IREF1RC_OFFSET_SHIFT);
 416
 417	/* Program power gating */
 418	intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW28(phy), 0,
 419		     OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG);
 420
 421	if (phy_info->dual_channel)
 422		intel_de_rmw(dev_priv, BXT_PORT_CL2CM_DW6(phy), 0,
 423			     DW6_OLDO_DYN_PWR_DOWN_EN);
 424
 425	if (phy_info->rcomp_phy != -1) {
 426		u32 grc_code;
 427
 428		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
 429
 430		/*
 431		 * PHY0 isn't connected to an RCOMP resistor so copy over
 432		 * the corresponding calibrated value from PHY1, and disable
 433		 * the automatic calibration on PHY0.
 434		 */
 435		val = bxt_get_grc(dev_priv, phy_info->rcomp_phy);
 436		dev_priv->display.state.bxt_phy_grc = val;
 437
 438		grc_code = val << GRC_CODE_FAST_SHIFT |
 439			   val << GRC_CODE_SLOW_SHIFT |
 440			   val;
 441		intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);
 442		intel_de_rmw(dev_priv, BXT_PORT_REF_DW8(phy),
 443			     0, GRC_DIS | GRC_RDY_OVRD);
 444	}
 445
 446	if (phy_info->reset_delay)
 447		udelay(phy_info->reset_delay);
 448
 449	intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS);
 450}
 451
 452void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
 453{
 454	const struct bxt_ddi_phy_info *phy_info;
 455
 456	phy_info = bxt_get_phy_info(dev_priv, phy);
 457
 458	intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0);
 459
 460	intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0);
 461}
 462
 463void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
 464{
 465	const struct bxt_ddi_phy_info *phy_info =
 466		bxt_get_phy_info(dev_priv, phy);
 467	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
 468	bool was_enabled;
 469
 470	lockdep_assert_held(&dev_priv->display.power.domains.lock);
 471
 472	was_enabled = true;
 473	if (rcomp_phy != -1)
 474		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
 475
 476	/*
 477	 * We need to copy the GRC calibration value from rcomp_phy,
 478	 * so make sure it's powered up.
 479	 */
 480	if (!was_enabled)
 481		_bxt_ddi_phy_init(dev_priv, rcomp_phy);
 482
 483	_bxt_ddi_phy_init(dev_priv, phy);
 484
 485	if (!was_enabled)
 486		bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
 487}
 488
 489static bool __printf(6, 7)
 490__phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
 491		       i915_reg_t reg, u32 mask, u32 expected,
 492		       const char *reg_fmt, ...)
 493{
 494	struct va_format vaf;
 495	va_list args;
 496	u32 val;
 497
 498	val = intel_de_read(dev_priv, reg);
 499	if ((val & mask) == expected)
 500		return true;
 501
 502	va_start(args, reg_fmt);
 503	vaf.fmt = reg_fmt;
 504	vaf.va = &args;
 505
 506	drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
 507			 "current %08x, expected %08x (mask %08x)\n",
 508			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
 509			 mask);
 510
 511	va_end(args);
 512
 513	return false;
 514}
 515
 516bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
 517			      enum dpio_phy phy)
 518{
 519	const struct bxt_ddi_phy_info *phy_info;
 520	u32 mask;
 521	bool ok;
 522
 523	phy_info = bxt_get_phy_info(dev_priv, phy);
 524
 525#define _CHK(reg, mask, exp, fmt, ...)					\
 526	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
 527			       ## __VA_ARGS__)
 528
 529	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
 530		return false;
 531
 532	ok = true;
 533
 534	/* PLL Rcomp code offset */
 535	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
 536		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
 537		    "BXT_PORT_CL1CM_DW9(%d)", phy);
 538	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
 539		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
 540		    "BXT_PORT_CL1CM_DW10(%d)", phy);
 541
 542	/* Power gating */
 543	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
 544	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
 545		    "BXT_PORT_CL1CM_DW28(%d)", phy);
 546
 547	if (phy_info->dual_channel)
 548		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
 549			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
 550			   "BXT_PORT_CL2CM_DW6(%d)", phy);
 551
 552	if (phy_info->rcomp_phy != -1) {
 553		u32 grc_code = dev_priv->display.state.bxt_phy_grc;
 554
 555		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
 556			   grc_code << GRC_CODE_SLOW_SHIFT |
 557			   grc_code;
 558		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
 559		       GRC_CODE_NOM_MASK;
 560		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
 561			   "BXT_PORT_REF_DW6(%d)", phy);
 562
 563		mask = GRC_DIS | GRC_RDY_OVRD;
 564		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
 565			    "BXT_PORT_REF_DW8(%d)", phy);
 566	}
 567
 568	return ok;
 569#undef _CHK
 570}
 571
 572u8
 573bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
 574{
 575	switch (lane_count) {
 576	case 1:
 577		return 0;
 578	case 2:
 579		return BIT(2) | BIT(0);
 580	case 4:
 581		return BIT(3) | BIT(2) | BIT(0);
 582	default:
 583		MISSING_CASE(lane_count);
 584
 585		return 0;
 586	}
 587}
 588
 589void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
 590				     u8 lane_lat_optim_mask)
 591{
 592	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 593	enum port port = encoder->port;
 594	enum dpio_phy phy;
 595	enum dpio_channel ch;
 596	int lane;
 597
 598	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
 599
 600	for (lane = 0; lane < 4; lane++) {
 601		u32 val = intel_de_read(dev_priv,
 602					BXT_PORT_TX_DW14_LN(phy, ch, lane));
 603
 604		/*
 605		 * Note that on CHV this flag is called UPAR, but has
 606		 * the same function.
 607		 */
 608		val &= ~LATENCY_OPTIM;
 609		if (lane_lat_optim_mask & BIT(lane))
 610			val |= LATENCY_OPTIM;
 611
 612		intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
 613			       val);
 614	}
 615}
 616
 617u8
 618bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
 619{
 620	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 621	enum port port = encoder->port;
 622	enum dpio_phy phy;
 623	enum dpio_channel ch;
 624	int lane;
 625	u8 mask;
 626
 627	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
 628
 629	mask = 0;
 630	for (lane = 0; lane < 4; lane++) {
 631		u32 val = intel_de_read(dev_priv,
 632					BXT_PORT_TX_DW14_LN(phy, ch, lane));
 633
 634		if (val & LATENCY_OPTIM)
 635			mask |= BIT(lane);
 636	}
 637
 638	return mask;
 639}
 640
 641enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
 642{
 643	switch (dig_port->base.port) {
 644	default:
 645		MISSING_CASE(dig_port->base.port);
 646		fallthrough;
 647	case PORT_B:
 648	case PORT_D:
 649		return DPIO_CH0;
 650	case PORT_C:
 651		return DPIO_CH1;
 652	}
 653}
 654
 655enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
 656{
 657	switch (dig_port->base.port) {
 658	default:
 659		MISSING_CASE(dig_port->base.port);
 660		fallthrough;
 661	case PORT_B:
 662	case PORT_C:
 663		return DPIO_PHY0;
 664	case PORT_D:
 665		return DPIO_PHY1;
 666	}
 667}
 668
 669enum dpio_phy vlv_pipe_to_phy(enum pipe pipe)
 670{
 671	switch (pipe) {
 672	default:
 673		MISSING_CASE(pipe);
 674		fallthrough;
 675	case PIPE_A:
 676	case PIPE_B:
 677		return DPIO_PHY0;
 678	case PIPE_C:
 679		return DPIO_PHY1;
 680	}
 681}
 682
 683enum dpio_channel vlv_pipe_to_channel(enum pipe pipe)
 684{
 685	switch (pipe) {
 686	default:
 687		MISSING_CASE(pipe);
 688		fallthrough;
 689	case PIPE_A:
 690	case PIPE_C:
 691		return DPIO_CH0;
 692	case PIPE_B:
 693		return DPIO_CH1;
 694	}
 695}
 696
 697void chv_set_phy_signal_level(struct intel_encoder *encoder,
 698			      const struct intel_crtc_state *crtc_state,
 699			      u32 deemph_reg_value, u32 margin_reg_value,
 700			      bool uniq_trans_scale)
 701{
 702	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 703	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 704	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 705	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 706	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
 707	u32 val;
 708	int i;
 709
 710	vlv_dpio_get(dev_priv);
 711
 712	/* Clear calc init */
 713	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
 714	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
 715	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
 716	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
 717	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
 718
 719	if (crtc_state->lane_count > 2) {
 720		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
 721		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
 722		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
 723		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
 724		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
 725	}
 726
 727	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW9(ch));
 728	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
 729	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
 730	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW9(ch), val);
 731
 732	if (crtc_state->lane_count > 2) {
 733		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW9(ch));
 734		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
 735		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
 736		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW9(ch), val);
 737	}
 738
 739	/* Program swing deemph */
 740	for (i = 0; i < crtc_state->lane_count; i++) {
 741		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW4(ch, i));
 742		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
 743		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
 744		vlv_dpio_write(dev_priv, phy, CHV_TX_DW4(ch, i), val);
 745	}
 746
 747	/* Program swing margin */
 748	for (i = 0; i < crtc_state->lane_count; i++) {
 749		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW2(ch, i));
 750
 751		val &= ~DPIO_SWING_MARGIN000_MASK;
 752		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
 753
 754		/*
 755		 * Supposedly this value shouldn't matter when unique transition
 756		 * scale is disabled, but in fact it does matter. Let's just
 757		 * always program the same value and hope it's OK.
 758		 */
 759		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
 760		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
 761
 762		vlv_dpio_write(dev_priv, phy, CHV_TX_DW2(ch, i), val);
 763	}
 764
 765	/*
 766	 * The document said it needs to set bit 27 for ch0 and bit 26
 767	 * for ch1. Might be a typo in the doc.
 768	 * For now, for this unique transition scale selection, set bit
 769	 * 27 for ch0 and ch1.
 770	 */
 771	for (i = 0; i < crtc_state->lane_count; i++) {
 772		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW3(ch, i));
 773		if (uniq_trans_scale)
 774			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
 775		else
 776			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
 777		vlv_dpio_write(dev_priv, phy, CHV_TX_DW3(ch, i), val);
 778	}
 779
 780	/* Start swing calculation */
 781	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
 782	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
 783	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
 784
 785	if (crtc_state->lane_count > 2) {
 786		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
 787		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
 788		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
 789	}
 790
 791	vlv_dpio_put(dev_priv);
 792}
 793
 794void chv_data_lane_soft_reset(struct intel_encoder *encoder,
 795			      const struct intel_crtc_state *crtc_state,
 796			      bool reset)
 797{
 798	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 799	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 800	enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder));
 801	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
 802	u32 val;
 803
 804	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW0(ch));
 805	if (reset)
 806		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
 807	else
 808		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
 809	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW0(ch), val);
 810
 811	if (crtc_state->lane_count > 2) {
 812		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW0(ch));
 813		if (reset)
 814			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
 815		else
 816			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
 817		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW0(ch), val);
 818	}
 819
 820	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW1(ch));
 821	val |= CHV_PCS_REQ_SOFTRESET_EN;
 822	if (reset)
 823		val &= ~DPIO_PCS_CLK_SOFT_RESET;
 824	else
 825		val |= DPIO_PCS_CLK_SOFT_RESET;
 826	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW1(ch), val);
 827
 828	if (crtc_state->lane_count > 2) {
 829		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW1(ch));
 830		val |= CHV_PCS_REQ_SOFTRESET_EN;
 831		if (reset)
 832			val &= ~DPIO_PCS_CLK_SOFT_RESET;
 833		else
 834			val |= DPIO_PCS_CLK_SOFT_RESET;
 835		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW1(ch), val);
 836	}
 837}
 838
 839void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
 840			    const struct intel_crtc_state *crtc_state)
 841{
 842	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 843	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 844	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 845	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 846	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
 847	enum pipe pipe = crtc->pipe;
 848	unsigned int lane_mask =
 849		intel_dp_unused_lane_mask(crtc_state->lane_count);
 850	u32 val;
 851
 852	/*
 853	 * Must trick the second common lane into life.
 854	 * Otherwise we can't even access the PLL.
 855	 */
 856	if (ch == DPIO_CH0 && pipe == PIPE_B)
 857		dig_port->release_cl2_override =
 858			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
 859
 860	chv_phy_powergate_lanes(encoder, true, lane_mask);
 861
 862	vlv_dpio_get(dev_priv);
 863
 864	/* Assert data lane reset */
 865	chv_data_lane_soft_reset(encoder, crtc_state, true);
 866
 867	/* program left/right clock distribution */
 868	if (pipe != PIPE_B) {
 869		val = vlv_dpio_read(dev_priv, phy, _CHV_CMN_DW5_CH0);
 870		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
 871		if (ch == DPIO_CH0)
 872			val |= CHV_BUFLEFTENA1_FORCE;
 873		if (ch == DPIO_CH1)
 874			val |= CHV_BUFRIGHTENA1_FORCE;
 875		vlv_dpio_write(dev_priv, phy, _CHV_CMN_DW5_CH0, val);
 876	} else {
 877		val = vlv_dpio_read(dev_priv, phy, _CHV_CMN_DW1_CH1);
 878		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
 879		if (ch == DPIO_CH0)
 880			val |= CHV_BUFLEFTENA2_FORCE;
 881		if (ch == DPIO_CH1)
 882			val |= CHV_BUFRIGHTENA2_FORCE;
 883		vlv_dpio_write(dev_priv, phy, _CHV_CMN_DW1_CH1, val);
 884	}
 885
 886	/* program clock channel usage */
 887	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(ch));
 888	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
 889	if (pipe != PIPE_B)
 890		val &= ~CHV_PCS_USEDCLKCHANNEL;
 891	else
 892		val |= CHV_PCS_USEDCLKCHANNEL;
 893	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW8(ch), val);
 894
 895	if (crtc_state->lane_count > 2) {
 896		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW8(ch));
 897		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
 898		if (pipe != PIPE_B)
 899			val &= ~CHV_PCS_USEDCLKCHANNEL;
 900		else
 901			val |= CHV_PCS_USEDCLKCHANNEL;
 902		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW8(ch), val);
 903	}
 904
 905	/*
 906	 * This a a bit weird since generally CL
 907	 * matches the pipe, but here we need to
 908	 * pick the CL based on the port.
 909	 */
 910	val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW19(ch));
 911	if (pipe != PIPE_B)
 
 
 912		val &= ~CHV_CMN_USEDCLKCHANNEL;
 913	else
 914		val |= CHV_CMN_USEDCLKCHANNEL;
 915	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW19(ch), val);
 916
 917	vlv_dpio_put(dev_priv);
 918}
 919
 920void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
 921				const struct intel_crtc_state *crtc_state)
 922{
 923	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 924	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
 925	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 926	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 927	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 928	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
 929	int data, i, stagger;
 930	u32 val;
 931
 932	vlv_dpio_get(dev_priv);
 933
 934	/* allow hardware to manage TX FIFO reset source */
 935	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
 936	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
 937	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
 938
 939	if (crtc_state->lane_count > 2) {
 940		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
 941		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
 942		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
 943	}
 944
 945	/* Program Tx lane latency optimal setting*/
 946	for (i = 0; i < crtc_state->lane_count; i++) {
 947		/* Set the upar bit */
 948		if (crtc_state->lane_count == 1)
 949			data = 0x0;
 950		else
 951			data = (i == 1) ? 0x0 : 0x1;
 952		vlv_dpio_write(dev_priv, phy, CHV_TX_DW14(ch, i),
 953				data << DPIO_UPAR_SHIFT);
 954	}
 955
 956	/* Data lane stagger programming */
 957	if (crtc_state->port_clock > 270000)
 958		stagger = 0x18;
 959	else if (crtc_state->port_clock > 135000)
 960		stagger = 0xd;
 961	else if (crtc_state->port_clock > 67500)
 962		stagger = 0x7;
 963	else if (crtc_state->port_clock > 33750)
 964		stagger = 0x4;
 965	else
 966		stagger = 0x2;
 967
 968	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
 969	val |= DPIO_TX2_STAGGER_MASK(0x1f);
 970	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
 971
 972	if (crtc_state->lane_count > 2) {
 973		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
 974		val |= DPIO_TX2_STAGGER_MASK(0x1f);
 975		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
 976	}
 977
 978	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW12(ch),
 979		       DPIO_LANESTAGGER_STRAP(stagger) |
 980		       DPIO_LANESTAGGER_STRAP_OVRD |
 981		       DPIO_TX1_STAGGER_MASK(0x1f) |
 982		       DPIO_TX1_STAGGER_MULT(6) |
 983		       DPIO_TX2_STAGGER_MULT(0));
 984
 985	if (crtc_state->lane_count > 2) {
 986		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW12(ch),
 987			       DPIO_LANESTAGGER_STRAP(stagger) |
 988			       DPIO_LANESTAGGER_STRAP_OVRD |
 989			       DPIO_TX1_STAGGER_MASK(0x1f) |
 990			       DPIO_TX1_STAGGER_MULT(7) |
 991			       DPIO_TX2_STAGGER_MULT(5));
 992	}
 993
 994	/* Deassert data lane reset */
 995	chv_data_lane_soft_reset(encoder, crtc_state, false);
 996
 997	vlv_dpio_put(dev_priv);
 998}
 999
1000void chv_phy_release_cl2_override(struct intel_encoder *encoder)
1001{
1002	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1003	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1004
1005	if (dig_port->release_cl2_override) {
1006		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
1007		dig_port->release_cl2_override = false;
1008	}
1009}
1010
1011void chv_phy_post_pll_disable(struct intel_encoder *encoder,
1012			      const struct intel_crtc_state *old_crtc_state)
1013{
1014	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 
1015	enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
1016	enum dpio_phy phy = vlv_pipe_to_phy(pipe);
1017	u32 val;
1018
1019	vlv_dpio_get(dev_priv);
1020
1021	/* disable left/right clock distribution */
1022	if (pipe != PIPE_B) {
1023		val = vlv_dpio_read(dev_priv, phy, _CHV_CMN_DW5_CH0);
1024		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1025		vlv_dpio_write(dev_priv, phy, _CHV_CMN_DW5_CH0, val);
1026	} else {
1027		val = vlv_dpio_read(dev_priv, phy, _CHV_CMN_DW1_CH1);
1028		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1029		vlv_dpio_write(dev_priv, phy, _CHV_CMN_DW1_CH1, val);
1030	}
1031
1032	vlv_dpio_put(dev_priv);
1033
1034	/*
1035	 * Leave the power down bit cleared for at least one
1036	 * lane so that chv_powergate_phy_ch() will power
1037	 * on something when the channel is otherwise unused.
1038	 * When the port is off and the override is removed
1039	 * the lanes power down anyway, so otherwise it doesn't
1040	 * really matter what the state of power down bits is
1041	 * after this.
1042	 */
1043	chv_phy_powergate_lanes(encoder, false, 0x0);
1044}
1045
1046void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1047			      const struct intel_crtc_state *crtc_state,
1048			      u32 demph_reg_value, u32 preemph_reg_value,
1049			      u32 uniqtranscale_reg_value, u32 tx3_demph)
1050{
1051	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1052	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1053	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1054	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1055	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1056
1057	vlv_dpio_get(dev_priv);
1058
1059	vlv_dpio_write(dev_priv, phy, VLV_TX_DW5(port), 0x00000000);
1060	vlv_dpio_write(dev_priv, phy, VLV_TX_DW4(port), demph_reg_value);
1061	vlv_dpio_write(dev_priv, phy, VLV_TX_DW2(port),
1062			 uniqtranscale_reg_value);
1063	vlv_dpio_write(dev_priv, phy, VLV_TX_DW3(port), 0x0C782040);
1064
1065	if (tx3_demph)
1066		vlv_dpio_write(dev_priv, phy, VLV_TX3_DW4(port), tx3_demph);
1067
1068	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW11(port), 0x00030000);
1069	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW9(port), preemph_reg_value);
1070	vlv_dpio_write(dev_priv, phy, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1071
1072	vlv_dpio_put(dev_priv);
1073}
1074
1075void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1076			    const struct intel_crtc_state *crtc_state)
1077{
1078	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1079	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1080	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1081	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1082	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1083
1084	/* Program Tx lane resets to default */
1085	vlv_dpio_get(dev_priv);
1086
1087	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0(port),
1088			 DPIO_PCS_TX_LANE2_RESET |
1089			 DPIO_PCS_TX_LANE1_RESET);
1090	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1(port),
1091			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1092			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1093			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1094				 DPIO_PCS_CLK_SOFT_RESET);
1095
1096	/* Fix up inter-pair skew failure */
1097	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW12(port), 0x00750f00);
1098	vlv_dpio_write(dev_priv, phy, VLV_TX_DW11(port), 0x00001500);
1099	vlv_dpio_write(dev_priv, phy, VLV_TX_DW14(port), 0x40400000);
1100
1101	vlv_dpio_put(dev_priv);
1102}
1103
1104void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1105				const struct intel_crtc_state *crtc_state)
1106{
1107	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1108	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1109	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1110	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1111	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
 
1112	enum pipe pipe = crtc->pipe;
1113	enum dpio_phy phy = vlv_pipe_to_phy(pipe);
1114	u32 val;
1115
1116	vlv_dpio_get(dev_priv);
1117
1118	/* Enable clock channels for this port */
1119	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(port));
1120	val = 0;
1121	if (pipe)
1122		val |= (1<<21);
1123	else
1124		val &= ~(1<<21);
1125	val |= 0x001000c4;
1126	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW8(port), val);
1127
1128	/* Program lane clock */
1129	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW14(port), 0x00760018);
1130	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW23(port), 0x00400888);
1131
1132	vlv_dpio_put(dev_priv);
1133}
1134
1135void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1136			 const struct intel_crtc_state *old_crtc_state)
1137{
1138	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1139	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1140	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1141	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1142	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1143
1144	vlv_dpio_get(dev_priv);
1145	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0(port), 0x00000000);
1146	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1(port), 0x00e00060);
1147	vlv_dpio_put(dev_priv);
1148}