Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/pci.h>
  27#include <linux/errno.h>
  28#include <linux/acpi.h>
  29#include <linux/hash.h>
  30#include <linux/cpufreq.h>
  31#include <linux/log2.h>
  32#include <linux/dmi.h>
  33#include <linux/atomic.h>
  34#include <linux/crc16.h>
  35
  36#include "kfd_priv.h"
  37#include "kfd_crat.h"
  38#include "kfd_topology.h"
  39#include "kfd_device_queue_manager.h"
  40#include "kfd_svm.h"
  41#include "kfd_debug.h"
  42#include "amdgpu_amdkfd.h"
  43#include "amdgpu_ras.h"
  44#include "amdgpu.h"
  45
  46/* topology_device_list - Master list of all topology devices */
  47static struct list_head topology_device_list;
  48static struct kfd_system_properties sys_props;
  49
  50static DECLARE_RWSEM(topology_lock);
  51static uint32_t topology_crat_proximity_domain;
  52
  53struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
  54						uint32_t proximity_domain)
  55{
  56	struct kfd_topology_device *top_dev;
  57	struct kfd_topology_device *device = NULL;
  58
  59	list_for_each_entry(top_dev, &topology_device_list, list)
  60		if (top_dev->proximity_domain == proximity_domain) {
  61			device = top_dev;
  62			break;
  63		}
  64
  65	return device;
  66}
  67
  68struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
  69						uint32_t proximity_domain)
  70{
  71	struct kfd_topology_device *device = NULL;
  72
  73	down_read(&topology_lock);
  74
  75	device = kfd_topology_device_by_proximity_domain_no_lock(
  76							proximity_domain);
  77	up_read(&topology_lock);
  78
  79	return device;
  80}
  81
  82struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
  83{
  84	struct kfd_topology_device *top_dev = NULL;
  85	struct kfd_topology_device *ret = NULL;
  86
  87	down_read(&topology_lock);
  88
  89	list_for_each_entry(top_dev, &topology_device_list, list)
  90		if (top_dev->gpu_id == gpu_id) {
  91			ret = top_dev;
  92			break;
  93		}
  94
  95	up_read(&topology_lock);
  96
  97	return ret;
  98}
  99
 100struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
 101{
 102	struct kfd_topology_device *top_dev;
 103
 104	top_dev = kfd_topology_device_by_id(gpu_id);
 105	if (!top_dev)
 106		return NULL;
 107
 108	return top_dev->gpu;
 109}
 110
 111struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
 112{
 113	struct kfd_topology_device *top_dev;
 114	struct kfd_node *device = NULL;
 115
 116	down_read(&topology_lock);
 117
 118	list_for_each_entry(top_dev, &topology_device_list, list)
 119		if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
 120			device = top_dev->gpu;
 121			break;
 122		}
 123
 124	up_read(&topology_lock);
 125
 126	return device;
 127}
 128
 129/* Called with write topology_lock acquired */
 130static void kfd_release_topology_device(struct kfd_topology_device *dev)
 131{
 132	struct kfd_mem_properties *mem;
 133	struct kfd_cache_properties *cache;
 134	struct kfd_iolink_properties *iolink;
 135	struct kfd_iolink_properties *p2plink;
 136	struct kfd_perf_properties *perf;
 137
 138	list_del(&dev->list);
 139
 140	while (dev->mem_props.next != &dev->mem_props) {
 141		mem = container_of(dev->mem_props.next,
 142				struct kfd_mem_properties, list);
 143		list_del(&mem->list);
 144		kfree(mem);
 145	}
 146
 147	while (dev->cache_props.next != &dev->cache_props) {
 148		cache = container_of(dev->cache_props.next,
 149				struct kfd_cache_properties, list);
 150		list_del(&cache->list);
 151		kfree(cache);
 152	}
 153
 154	while (dev->io_link_props.next != &dev->io_link_props) {
 155		iolink = container_of(dev->io_link_props.next,
 156				struct kfd_iolink_properties, list);
 157		list_del(&iolink->list);
 158		kfree(iolink);
 159	}
 160
 161	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
 162		p2plink = container_of(dev->p2p_link_props.next,
 163				struct kfd_iolink_properties, list);
 164		list_del(&p2plink->list);
 165		kfree(p2plink);
 166	}
 167
 168	while (dev->perf_props.next != &dev->perf_props) {
 169		perf = container_of(dev->perf_props.next,
 170				struct kfd_perf_properties, list);
 171		list_del(&perf->list);
 172		kfree(perf);
 173	}
 174
 175	kfree(dev);
 176}
 177
 178void kfd_release_topology_device_list(struct list_head *device_list)
 179{
 180	struct kfd_topology_device *dev;
 181
 182	while (!list_empty(device_list)) {
 183		dev = list_first_entry(device_list,
 184				       struct kfd_topology_device, list);
 185		kfd_release_topology_device(dev);
 186	}
 187}
 188
 189static void kfd_release_live_view(void)
 190{
 191	kfd_release_topology_device_list(&topology_device_list);
 192	memset(&sys_props, 0, sizeof(sys_props));
 193}
 194
 195struct kfd_topology_device *kfd_create_topology_device(
 196				struct list_head *device_list)
 197{
 198	struct kfd_topology_device *dev;
 199
 200	dev = kfd_alloc_struct(dev);
 201	if (!dev) {
 202		pr_err("No memory to allocate a topology device");
 203		return NULL;
 204	}
 205
 206	INIT_LIST_HEAD(&dev->mem_props);
 207	INIT_LIST_HEAD(&dev->cache_props);
 208	INIT_LIST_HEAD(&dev->io_link_props);
 209	INIT_LIST_HEAD(&dev->p2p_link_props);
 210	INIT_LIST_HEAD(&dev->perf_props);
 211
 212	list_add_tail(&dev->list, device_list);
 213
 214	return dev;
 215}
 216
 217
 218#define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
 219		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
 220				  fmt, __VA_ARGS__))
 221#define sysfs_show_32bit_prop(buffer, offs, name, value) \
 222		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
 223#define sysfs_show_64bit_prop(buffer, offs, name, value) \
 224		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
 225#define sysfs_show_32bit_val(buffer, offs, value) \
 226		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
 227#define sysfs_show_str_val(buffer, offs, value) \
 228		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
 229
 230static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
 231		char *buffer)
 232{
 233	int offs = 0;
 234
 235	/* Making sure that the buffer is an empty string */
 236	buffer[0] = 0;
 237
 238	if (attr == &sys_props.attr_genid) {
 239		sysfs_show_32bit_val(buffer, offs,
 240				     sys_props.generation_count);
 241	} else if (attr == &sys_props.attr_props) {
 242		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
 243				      sys_props.platform_oem);
 244		sysfs_show_64bit_prop(buffer, offs, "platform_id",
 245				      sys_props.platform_id);
 246		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
 247				      sys_props.platform_rev);
 248	} else {
 249		offs = -EINVAL;
 250	}
 251
 252	return offs;
 253}
 254
 255static void kfd_topology_kobj_release(struct kobject *kobj)
 256{
 257	kfree(kobj);
 258}
 259
 260static const struct sysfs_ops sysprops_ops = {
 261	.show = sysprops_show,
 262};
 263
 264static const struct kobj_type sysprops_type = {
 265	.release = kfd_topology_kobj_release,
 266	.sysfs_ops = &sysprops_ops,
 267};
 268
 269static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
 270		char *buffer)
 271{
 272	int offs = 0;
 273	struct kfd_iolink_properties *iolink;
 274
 275	/* Making sure that the buffer is an empty string */
 276	buffer[0] = 0;
 277
 278	iolink = container_of(attr, struct kfd_iolink_properties, attr);
 279	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
 280		return -EPERM;
 281	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
 282	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
 283	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
 284	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
 285	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
 286	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
 287	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
 288	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
 289	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
 290			      iolink->min_bandwidth);
 291	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
 292			      iolink->max_bandwidth);
 293	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
 294			      iolink->rec_transfer_size);
 295	sysfs_show_32bit_prop(buffer, offs, "recommended_sdma_engine_id_mask",
 296			      iolink->rec_sdma_eng_id_mask);
 297	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
 298
 299	return offs;
 300}
 301
 302static const struct sysfs_ops iolink_ops = {
 303	.show = iolink_show,
 304};
 305
 306static const struct kobj_type iolink_type = {
 307	.release = kfd_topology_kobj_release,
 308	.sysfs_ops = &iolink_ops,
 309};
 310
 311static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
 312		char *buffer)
 313{
 314	int offs = 0;
 315	struct kfd_mem_properties *mem;
 316
 317	/* Making sure that the buffer is an empty string */
 318	buffer[0] = 0;
 319
 320	mem = container_of(attr, struct kfd_mem_properties, attr);
 321	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
 322		return -EPERM;
 323	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
 324	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
 325			      mem->size_in_bytes);
 326	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
 327	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
 328	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
 329			      mem->mem_clk_max);
 330
 331	return offs;
 332}
 333
 334static const struct sysfs_ops mem_ops = {
 335	.show = mem_show,
 336};
 337
 338static const struct kobj_type mem_type = {
 339	.release = kfd_topology_kobj_release,
 340	.sysfs_ops = &mem_ops,
 341};
 342
 343static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
 344		char *buffer)
 345{
 346	int offs = 0;
 347	uint32_t i, j;
 348	struct kfd_cache_properties *cache;
 349
 350	/* Making sure that the buffer is an empty string */
 351	buffer[0] = 0;
 352	cache = container_of(attr, struct kfd_cache_properties, attr);
 353	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
 354		return -EPERM;
 355	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
 356			cache->processor_id_low);
 357	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
 358	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
 359	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
 360			      cache->cacheline_size);
 361	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
 362			      cache->cachelines_per_tag);
 363	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
 364	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
 365	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
 366
 367	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
 368	for (i = 0; i < cache->sibling_map_size; i++)
 369		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
 370			/* Check each bit */
 371			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
 372						(cache->sibling_map[i] >> j) & 1);
 373
 374	/* Replace the last "," with end of line */
 375	buffer[offs-1] = '\n';
 376	return offs;
 377}
 378
 379static const struct sysfs_ops cache_ops = {
 380	.show = kfd_cache_show,
 381};
 382
 383static const struct kobj_type cache_type = {
 384	.release = kfd_topology_kobj_release,
 385	.sysfs_ops = &cache_ops,
 386};
 387
 388/****** Sysfs of Performance Counters ******/
 389
 390struct kfd_perf_attr {
 391	struct kobj_attribute attr;
 392	uint32_t data;
 393};
 394
 395static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
 396			char *buf)
 397{
 398	int offs = 0;
 399	struct kfd_perf_attr *attr;
 400
 401	buf[0] = 0;
 402	attr = container_of(attrs, struct kfd_perf_attr, attr);
 403	if (!attr->data) /* invalid data for PMC */
 404		return 0;
 405	else
 406		return sysfs_show_32bit_val(buf, offs, attr->data);
 407}
 408
 409#define KFD_PERF_DESC(_name, _data)			\
 410{							\
 411	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
 412	.data = _data,					\
 413}
 414
 415static struct kfd_perf_attr perf_attr_iommu[] = {
 416	KFD_PERF_DESC(max_concurrent, 0),
 417	KFD_PERF_DESC(num_counters, 0),
 418	KFD_PERF_DESC(counter_ids, 0),
 419};
 420/****************************************/
 421
 422static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
 423		char *buffer)
 424{
 425	int offs = 0;
 426	struct kfd_topology_device *dev;
 427	uint32_t log_max_watch_addr;
 428
 429	/* Making sure that the buffer is an empty string */
 430	buffer[0] = 0;
 431
 432	if (strcmp(attr->name, "gpu_id") == 0) {
 433		dev = container_of(attr, struct kfd_topology_device,
 434				attr_gpuid);
 435		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 436			return -EPERM;
 437		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
 438	}
 439
 440	if (strcmp(attr->name, "name") == 0) {
 441		dev = container_of(attr, struct kfd_topology_device,
 442				attr_name);
 443
 444		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 445			return -EPERM;
 446		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
 447	}
 448
 449	dev = container_of(attr, struct kfd_topology_device,
 450			attr_props);
 451	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 452		return -EPERM;
 453	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
 454			      dev->node_props.cpu_cores_count);
 455	sysfs_show_32bit_prop(buffer, offs, "simd_count",
 456			      dev->gpu ? dev->node_props.simd_count : 0);
 457	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
 458			      dev->node_props.mem_banks_count);
 459	sysfs_show_32bit_prop(buffer, offs, "caches_count",
 460			      dev->node_props.caches_count);
 461	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
 462			      dev->node_props.io_links_count);
 463	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
 464			      dev->node_props.p2p_links_count);
 465	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
 466			      dev->node_props.cpu_core_id_base);
 467	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
 468			      dev->node_props.simd_id_base);
 469	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
 470			      dev->node_props.max_waves_per_simd);
 471	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
 472			      dev->node_props.lds_size_in_kb);
 473	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
 474			      dev->node_props.gds_size_in_kb);
 475	sysfs_show_32bit_prop(buffer, offs, "num_gws",
 476			      dev->node_props.num_gws);
 477	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
 478			      dev->node_props.wave_front_size);
 479	sysfs_show_32bit_prop(buffer, offs, "array_count",
 480			      dev->gpu ? (dev->node_props.array_count *
 481					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
 482	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
 483			      dev->node_props.simd_arrays_per_engine);
 484	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
 485			      dev->node_props.cu_per_simd_array);
 486	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
 487			      dev->node_props.simd_per_cu);
 488	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
 489			      dev->node_props.max_slots_scratch_cu);
 490	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
 491			      dev->node_props.gfx_target_version);
 492	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
 493			      dev->node_props.vendor_id);
 494	sysfs_show_32bit_prop(buffer, offs, "device_id",
 495			      dev->node_props.device_id);
 496	sysfs_show_32bit_prop(buffer, offs, "location_id",
 497			      dev->node_props.location_id);
 498	sysfs_show_32bit_prop(buffer, offs, "domain",
 499			      dev->node_props.domain);
 500	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
 501			      dev->node_props.drm_render_minor);
 502	sysfs_show_64bit_prop(buffer, offs, "hive_id",
 503			      dev->node_props.hive_id);
 504	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
 505			      dev->node_props.num_sdma_engines);
 506	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
 507			      dev->node_props.num_sdma_xgmi_engines);
 508	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
 509			      dev->node_props.num_sdma_queues_per_engine);
 510	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
 511			      dev->node_props.num_cp_queues);
 512
 513	if (dev->gpu) {
 514		log_max_watch_addr =
 515			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
 516
 517		if (log_max_watch_addr) {
 518			dev->node_props.capability |=
 519					HSA_CAP_WATCH_POINTS_SUPPORTED;
 520
 521			dev->node_props.capability |=
 522				((log_max_watch_addr <<
 523					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
 524				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
 525		}
 526
 527		if (dev->gpu->adev->asic_type == CHIP_TONGA)
 528			dev->node_props.capability |=
 529					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
 530
 531		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
 532			dev->node_props.max_engine_clk_fcompute);
 533
 534		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
 535
 536		sysfs_show_32bit_prop(buffer, offs, "fw_version",
 537				      dev->gpu->kfd->mec_fw_version);
 538		sysfs_show_32bit_prop(buffer, offs, "capability",
 539				      dev->node_props.capability);
 540		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
 541				      dev->node_props.debug_prop);
 542		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
 543				      dev->gpu->kfd->sdma_fw_version);
 544		sysfs_show_64bit_prop(buffer, offs, "unique_id",
 545				      dev->gpu->adev->unique_id);
 546		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
 547				      NUM_XCC(dev->gpu->xcc_mask));
 548	}
 549
 550	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
 551				     cpufreq_quick_get_max(0)/1000);
 552}
 553
 554static const struct sysfs_ops node_ops = {
 555	.show = node_show,
 556};
 557
 558static const struct kobj_type node_type = {
 559	.release = kfd_topology_kobj_release,
 560	.sysfs_ops = &node_ops,
 561};
 562
 563static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
 564{
 565	sysfs_remove_file(kobj, attr);
 566	kobject_del(kobj);
 567	kobject_put(kobj);
 568}
 569
 570static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
 571{
 572	struct kfd_iolink_properties *p2plink;
 573	struct kfd_iolink_properties *iolink;
 574	struct kfd_cache_properties *cache;
 575	struct kfd_mem_properties *mem;
 576	struct kfd_perf_properties *perf;
 577
 578	if (dev->kobj_iolink) {
 579		list_for_each_entry(iolink, &dev->io_link_props, list)
 580			if (iolink->kobj) {
 581				kfd_remove_sysfs_file(iolink->kobj,
 582							&iolink->attr);
 583				iolink->kobj = NULL;
 584			}
 585		kobject_del(dev->kobj_iolink);
 586		kobject_put(dev->kobj_iolink);
 587		dev->kobj_iolink = NULL;
 588	}
 589
 590	if (dev->kobj_p2plink) {
 591		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
 592			if (p2plink->kobj) {
 593				kfd_remove_sysfs_file(p2plink->kobj,
 594							&p2plink->attr);
 595				p2plink->kobj = NULL;
 596			}
 597		kobject_del(dev->kobj_p2plink);
 598		kobject_put(dev->kobj_p2plink);
 599		dev->kobj_p2plink = NULL;
 600	}
 601
 602	if (dev->kobj_cache) {
 603		list_for_each_entry(cache, &dev->cache_props, list)
 604			if (cache->kobj) {
 605				kfd_remove_sysfs_file(cache->kobj,
 606							&cache->attr);
 607				cache->kobj = NULL;
 608			}
 609		kobject_del(dev->kobj_cache);
 610		kobject_put(dev->kobj_cache);
 611		dev->kobj_cache = NULL;
 612	}
 613
 614	if (dev->kobj_mem) {
 615		list_for_each_entry(mem, &dev->mem_props, list)
 616			if (mem->kobj) {
 617				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
 618				mem->kobj = NULL;
 619			}
 620		kobject_del(dev->kobj_mem);
 621		kobject_put(dev->kobj_mem);
 622		dev->kobj_mem = NULL;
 623	}
 624
 625	if (dev->kobj_perf) {
 626		list_for_each_entry(perf, &dev->perf_props, list) {
 627			kfree(perf->attr_group);
 628			perf->attr_group = NULL;
 629		}
 630		kobject_del(dev->kobj_perf);
 631		kobject_put(dev->kobj_perf);
 632		dev->kobj_perf = NULL;
 633	}
 634
 635	if (dev->kobj_node) {
 636		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
 637		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
 638		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
 639		kobject_del(dev->kobj_node);
 640		kobject_put(dev->kobj_node);
 641		dev->kobj_node = NULL;
 642	}
 643}
 644
 645static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
 646		uint32_t id)
 647{
 648	struct kfd_iolink_properties *p2plink;
 649	struct kfd_iolink_properties *iolink;
 650	struct kfd_cache_properties *cache;
 651	struct kfd_mem_properties *mem;
 652	struct kfd_perf_properties *perf;
 653	int ret;
 654	uint32_t i, num_attrs;
 655	struct attribute **attrs;
 656
 657	if (WARN_ON(dev->kobj_node))
 658		return -EEXIST;
 659
 660	/*
 661	 * Creating the sysfs folders
 662	 */
 663	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
 664	if (!dev->kobj_node)
 665		return -ENOMEM;
 666
 667	ret = kobject_init_and_add(dev->kobj_node, &node_type,
 668			sys_props.kobj_nodes, "%d", id);
 669	if (ret < 0) {
 670		kobject_put(dev->kobj_node);
 671		return ret;
 672	}
 673
 674	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
 675	if (!dev->kobj_mem)
 676		return -ENOMEM;
 677
 678	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
 679	if (!dev->kobj_cache)
 680		return -ENOMEM;
 681
 682	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
 683	if (!dev->kobj_iolink)
 684		return -ENOMEM;
 685
 686	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
 687	if (!dev->kobj_p2plink)
 688		return -ENOMEM;
 689
 690	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
 691	if (!dev->kobj_perf)
 692		return -ENOMEM;
 693
 694	/*
 695	 * Creating sysfs files for node properties
 696	 */
 697	dev->attr_gpuid.name = "gpu_id";
 698	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
 699	sysfs_attr_init(&dev->attr_gpuid);
 700	dev->attr_name.name = "name";
 701	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
 702	sysfs_attr_init(&dev->attr_name);
 703	dev->attr_props.name = "properties";
 704	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
 705	sysfs_attr_init(&dev->attr_props);
 706	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
 707	if (ret < 0)
 708		return ret;
 709	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
 710	if (ret < 0)
 711		return ret;
 712	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
 713	if (ret < 0)
 714		return ret;
 715
 716	i = 0;
 717	list_for_each_entry(mem, &dev->mem_props, list) {
 718		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 719		if (!mem->kobj)
 720			return -ENOMEM;
 721		ret = kobject_init_and_add(mem->kobj, &mem_type,
 722				dev->kobj_mem, "%d", i);
 723		if (ret < 0) {
 724			kobject_put(mem->kobj);
 725			return ret;
 726		}
 727
 728		mem->attr.name = "properties";
 729		mem->attr.mode = KFD_SYSFS_FILE_MODE;
 730		sysfs_attr_init(&mem->attr);
 731		ret = sysfs_create_file(mem->kobj, &mem->attr);
 732		if (ret < 0)
 733			return ret;
 734		i++;
 735	}
 736
 737	i = 0;
 738	list_for_each_entry(cache, &dev->cache_props, list) {
 739		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 740		if (!cache->kobj)
 741			return -ENOMEM;
 742		ret = kobject_init_and_add(cache->kobj, &cache_type,
 743				dev->kobj_cache, "%d", i);
 744		if (ret < 0) {
 745			kobject_put(cache->kobj);
 746			return ret;
 747		}
 748
 749		cache->attr.name = "properties";
 750		cache->attr.mode = KFD_SYSFS_FILE_MODE;
 751		sysfs_attr_init(&cache->attr);
 752		ret = sysfs_create_file(cache->kobj, &cache->attr);
 753		if (ret < 0)
 754			return ret;
 755		i++;
 756	}
 757
 758	i = 0;
 759	list_for_each_entry(iolink, &dev->io_link_props, list) {
 760		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 761		if (!iolink->kobj)
 762			return -ENOMEM;
 763		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
 764				dev->kobj_iolink, "%d", i);
 765		if (ret < 0) {
 766			kobject_put(iolink->kobj);
 767			return ret;
 768		}
 769
 770		iolink->attr.name = "properties";
 771		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
 772		sysfs_attr_init(&iolink->attr);
 773		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
 774		if (ret < 0)
 775			return ret;
 776		i++;
 777	}
 778
 779	i = 0;
 780	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
 781		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 782		if (!p2plink->kobj)
 783			return -ENOMEM;
 784		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
 785				dev->kobj_p2plink, "%d", i);
 786		if (ret < 0) {
 787			kobject_put(p2plink->kobj);
 788			return ret;
 789		}
 790
 791		p2plink->attr.name = "properties";
 792		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
 793		sysfs_attr_init(&p2plink->attr);
 794		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
 795		if (ret < 0)
 796			return ret;
 797		i++;
 798	}
 799
 800	/* All hardware blocks have the same number of attributes. */
 801	num_attrs = ARRAY_SIZE(perf_attr_iommu);
 802	list_for_each_entry(perf, &dev->perf_props, list) {
 803		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
 804			* num_attrs + sizeof(struct attribute_group),
 805			GFP_KERNEL);
 806		if (!perf->attr_group)
 807			return -ENOMEM;
 808
 809		attrs = (struct attribute **)(perf->attr_group + 1);
 810		if (!strcmp(perf->block_name, "iommu")) {
 811		/* Information of IOMMU's num_counters and counter_ids is shown
 812		 * under /sys/bus/event_source/devices/amd_iommu. We don't
 813		 * duplicate here.
 814		 */
 815			perf_attr_iommu[0].data = perf->max_concurrent;
 816			for (i = 0; i < num_attrs; i++)
 817				attrs[i] = &perf_attr_iommu[i].attr.attr;
 818		}
 819		perf->attr_group->name = perf->block_name;
 820		perf->attr_group->attrs = attrs;
 821		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
 822		if (ret < 0)
 823			return ret;
 824	}
 825
 826	return 0;
 827}
 828
 829/* Called with write topology lock acquired */
 830static int kfd_build_sysfs_node_tree(void)
 831{
 832	struct kfd_topology_device *dev;
 833	int ret;
 834	uint32_t i = 0;
 835
 836	list_for_each_entry(dev, &topology_device_list, list) {
 837		ret = kfd_build_sysfs_node_entry(dev, i);
 838		if (ret < 0)
 839			return ret;
 840		i++;
 841	}
 842
 843	return 0;
 844}
 845
 846/* Called with write topology lock acquired */
 847static void kfd_remove_sysfs_node_tree(void)
 848{
 849	struct kfd_topology_device *dev;
 850
 851	list_for_each_entry(dev, &topology_device_list, list)
 852		kfd_remove_sysfs_node_entry(dev);
 853}
 854
 855static int kfd_topology_update_sysfs(void)
 856{
 857	int ret;
 858
 859	if (!sys_props.kobj_topology) {
 860		sys_props.kobj_topology =
 861				kfd_alloc_struct(sys_props.kobj_topology);
 862		if (!sys_props.kobj_topology)
 863			return -ENOMEM;
 864
 865		ret = kobject_init_and_add(sys_props.kobj_topology,
 866				&sysprops_type,  &kfd_device->kobj,
 867				"topology");
 868		if (ret < 0) {
 869			kobject_put(sys_props.kobj_topology);
 870			return ret;
 871		}
 872
 873		sys_props.kobj_nodes = kobject_create_and_add("nodes",
 874				sys_props.kobj_topology);
 875		if (!sys_props.kobj_nodes)
 876			return -ENOMEM;
 877
 878		sys_props.attr_genid.name = "generation_id";
 879		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
 880		sysfs_attr_init(&sys_props.attr_genid);
 881		ret = sysfs_create_file(sys_props.kobj_topology,
 882				&sys_props.attr_genid);
 883		if (ret < 0)
 884			return ret;
 885
 886		sys_props.attr_props.name = "system_properties";
 887		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
 888		sysfs_attr_init(&sys_props.attr_props);
 889		ret = sysfs_create_file(sys_props.kobj_topology,
 890				&sys_props.attr_props);
 891		if (ret < 0)
 892			return ret;
 893	}
 894
 895	kfd_remove_sysfs_node_tree();
 896
 897	return kfd_build_sysfs_node_tree();
 898}
 899
 900static void kfd_topology_release_sysfs(void)
 901{
 902	kfd_remove_sysfs_node_tree();
 903	if (sys_props.kobj_topology) {
 904		sysfs_remove_file(sys_props.kobj_topology,
 905				&sys_props.attr_genid);
 906		sysfs_remove_file(sys_props.kobj_topology,
 907				&sys_props.attr_props);
 908		if (sys_props.kobj_nodes) {
 909			kobject_del(sys_props.kobj_nodes);
 910			kobject_put(sys_props.kobj_nodes);
 911			sys_props.kobj_nodes = NULL;
 912		}
 913		kobject_del(sys_props.kobj_topology);
 914		kobject_put(sys_props.kobj_topology);
 915		sys_props.kobj_topology = NULL;
 916	}
 917}
 918
 919/* Called with write topology_lock acquired */
 920static void kfd_topology_update_device_list(struct list_head *temp_list,
 921					struct list_head *master_list)
 922{
 923	while (!list_empty(temp_list)) {
 924		list_move_tail(temp_list->next, master_list);
 925		sys_props.num_devices++;
 926	}
 927}
 928
 929static void kfd_debug_print_topology(void)
 930{
 931	struct kfd_topology_device *dev;
 932
 933	down_read(&topology_lock);
 934
 935	dev = list_last_entry(&topology_device_list,
 936			struct kfd_topology_device, list);
 937	if (dev) {
 938		if (dev->node_props.cpu_cores_count &&
 939				dev->node_props.simd_count) {
 940			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
 941				dev->node_props.device_id,
 942				dev->node_props.vendor_id);
 943		} else if (dev->node_props.cpu_cores_count)
 944			pr_info("Topology: Add CPU node\n");
 945		else if (dev->node_props.simd_count)
 946			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
 947				dev->node_props.device_id,
 948				dev->node_props.vendor_id);
 949	}
 950	up_read(&topology_lock);
 951}
 952
 953/* Helper function for intializing platform_xx members of
 954 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
 955 */
 956static void kfd_update_system_properties(void)
 957{
 958	struct kfd_topology_device *dev;
 959
 960	down_read(&topology_lock);
 961	dev = list_last_entry(&topology_device_list,
 962			struct kfd_topology_device, list);
 963	if (dev) {
 964		sys_props.platform_id = dev->oem_id64;
 
 965		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
 966		sys_props.platform_rev = dev->oem_revision;
 967	}
 968	up_read(&topology_lock);
 969}
 970
 971static void find_system_memory(const struct dmi_header *dm,
 972	void *private)
 973{
 974	struct kfd_mem_properties *mem;
 975	u16 mem_width, mem_clock;
 976	struct kfd_topology_device *kdev =
 977		(struct kfd_topology_device *)private;
 978	const u8 *dmi_data = (const u8 *)(dm + 1);
 979
 980	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
 981		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
 982		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
 983		list_for_each_entry(mem, &kdev->mem_props, list) {
 984			if (mem_width != 0xFFFF && mem_width != 0)
 985				mem->width = mem_width;
 986			if (mem_clock != 0)
 987				mem->mem_clk_max = mem_clock;
 988		}
 989	}
 990}
 991
 992/* kfd_add_non_crat_information - Add information that is not currently
 993 *	defined in CRAT but is necessary for KFD topology
 994 * @dev - topology device to which addition info is added
 995 */
 996static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
 997{
 998	/* Check if CPU only node. */
 999	if (!kdev->gpu) {
1000		/* Add system memory information */
1001		dmi_walk(find_system_memory, kdev);
1002	}
1003	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1004}
1005
1006int kfd_topology_init(void)
1007{
1008	void *crat_image = NULL;
1009	size_t image_size = 0;
1010	int ret;
1011	struct list_head temp_topology_device_list;
1012	int cpu_only_node = 0;
1013	struct kfd_topology_device *kdev;
1014	int proximity_domain;
1015
1016	/* topology_device_list - Master list of all topology devices
1017	 * temp_topology_device_list - temporary list created while parsing CRAT
1018	 * or VCRAT. Once parsing is complete the contents of list is moved to
1019	 * topology_device_list
1020	 */
1021
1022	/* Initialize the head for the both the lists */
1023	INIT_LIST_HEAD(&topology_device_list);
1024	INIT_LIST_HEAD(&temp_topology_device_list);
1025	init_rwsem(&topology_lock);
1026
1027	memset(&sys_props, 0, sizeof(sys_props));
1028
1029	/* Proximity domains in ACPI CRAT tables start counting at
1030	 * 0. The same should be true for virtual CRAT tables created
1031	 * at this stage. GPUs added later in kfd_topology_add_device
1032	 * use a counter.
1033	 */
1034	proximity_domain = 0;
1035
1036	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1037					    COMPUTE_UNIT_CPU, NULL,
1038					    proximity_domain);
1039	cpu_only_node = 1;
1040	if (ret) {
1041		pr_err("Error creating VCRAT table for CPU\n");
1042		return ret;
1043	}
1044
1045	ret = kfd_parse_crat_table(crat_image,
1046				   &temp_topology_device_list,
1047				   proximity_domain);
1048	if (ret) {
1049		pr_err("Error parsing VCRAT table for CPU\n");
1050		goto err;
1051	}
1052
1053	kdev = list_first_entry(&temp_topology_device_list,
1054				struct kfd_topology_device, list);
1055
1056	down_write(&topology_lock);
1057	kfd_topology_update_device_list(&temp_topology_device_list,
1058					&topology_device_list);
1059	topology_crat_proximity_domain = sys_props.num_devices-1;
1060	ret = kfd_topology_update_sysfs();
1061	up_write(&topology_lock);
1062
1063	if (!ret) {
1064		sys_props.generation_count++;
1065		kfd_update_system_properties();
1066		kfd_debug_print_topology();
1067	} else
1068		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1069
1070	/* For nodes with GPU, this information gets added
1071	 * when GPU is detected (kfd_topology_add_device).
1072	 */
1073	if (cpu_only_node) {
1074		/* Add additional information to CPU only node created above */
1075		down_write(&topology_lock);
1076		kdev = list_first_entry(&topology_device_list,
1077				struct kfd_topology_device, list);
1078		up_write(&topology_lock);
1079		kfd_add_non_crat_information(kdev);
1080	}
1081
1082err:
1083	kfd_destroy_crat_image(crat_image);
1084	return ret;
1085}
1086
1087void kfd_topology_shutdown(void)
1088{
1089	down_write(&topology_lock);
1090	kfd_topology_release_sysfs();
1091	kfd_release_live_view();
1092	up_write(&topology_lock);
1093}
1094
1095static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1096{
1097	uint32_t gpu_id;
1098	uint32_t buf[8];
1099	uint64_t local_mem_size;
1100	struct kfd_topology_device *dev;
1101	bool is_unique;
1102	uint8_t *crc_buf;
1103
1104	if (!gpu)
1105		return 0;
1106
1107	crc_buf = (uint8_t *)&buf;
1108	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1109			gpu->local_mem_info.local_mem_size_public;
1110	buf[0] = gpu->adev->pdev->devfn;
1111	buf[1] = gpu->adev->pdev->subsystem_vendor |
1112		(gpu->adev->pdev->subsystem_device << 16);
1113	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1114	buf[3] = gpu->adev->pdev->device;
1115	buf[4] = gpu->adev->pdev->bus->number;
1116	buf[5] = lower_32_bits(local_mem_size);
1117	buf[6] = upper_32_bits(local_mem_size);
1118	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1119
1120	gpu_id = crc16(0, crc_buf, sizeof(buf)) &
1121		 ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1122
1123	/* There is a very small possibility when generating a
1124	 * 16 (KFD_GPU_ID_HASH_WIDTH) bit value from 8 word buffer
1125	 * that the value could be 0 or non-unique. So, check if
1126	 * it is unique and non-zero. If not unique increment till
1127	 * unique one is found. In case of overflow, restart from 1
1128	 */
1129
1130	down_read(&topology_lock);
1131	do {
1132		is_unique = true;
1133		if (!gpu_id)
1134			gpu_id = 1;
1135		list_for_each_entry(dev, &topology_device_list, list) {
1136			if (dev->gpu && dev->gpu_id == gpu_id) {
1137				is_unique = false;
1138				break;
1139			}
1140		}
1141		if (unlikely(!is_unique))
1142			gpu_id = (gpu_id + 1) &
1143				  ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1144	} while (!is_unique);
1145	up_read(&topology_lock);
1146
1147	return gpu_id;
1148}
1149/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1150 *		the GPU device is not already present in the topology device
1151 *		list then return NULL. This means a new topology device has to
1152 *		be created for this GPU.
1153 */
1154static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1155{
1156	struct kfd_topology_device *dev;
1157	struct kfd_topology_device *out_dev = NULL;
1158	struct kfd_mem_properties *mem;
1159	struct kfd_cache_properties *cache;
1160	struct kfd_iolink_properties *iolink;
1161	struct kfd_iolink_properties *p2plink;
1162
1163	list_for_each_entry(dev, &topology_device_list, list) {
1164		/* Discrete GPUs need their own topology device list
1165		 * entries. Don't assign them to CPU/APU nodes.
1166		 */
1167		if (dev->node_props.cpu_cores_count)
1168			continue;
1169
1170		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1171			dev->gpu = gpu;
1172			out_dev = dev;
1173
1174			list_for_each_entry(mem, &dev->mem_props, list)
1175				mem->gpu = dev->gpu;
1176			list_for_each_entry(cache, &dev->cache_props, list)
1177				cache->gpu = dev->gpu;
1178			list_for_each_entry(iolink, &dev->io_link_props, list)
1179				iolink->gpu = dev->gpu;
1180			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1181				p2plink->gpu = dev->gpu;
1182			break;
1183		}
1184	}
1185	return out_dev;
1186}
1187
1188static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1189{
1190	/*
1191	 * TODO: Generate an event for thunk about the arrival/removal
1192	 * of the GPU
1193	 */
1194}
1195
1196/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1197 *		patch this after CRAT parsing.
1198 */
1199static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1200{
1201	struct kfd_mem_properties *mem;
1202	struct kfd_local_mem_info local_mem_info;
1203
1204	if (!dev)
1205		return;
1206
1207	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1208	 * single bank of VRAM local memory.
1209	 * for dGPUs - VCRAT reports only one bank of Local Memory
1210	 * for APUs - If CRAT from ACPI reports more than one bank, then
1211	 *	all the banks will report the same mem_clk_max information
1212	 */
1213	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1214					 dev->gpu->xcp);
1215
1216	list_for_each_entry(mem, &dev->mem_props, list)
1217		mem->mem_clk_max = local_mem_info.mem_clk_max;
1218}
1219
1220static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1221					struct kfd_topology_device *target_gpu_dev,
1222					struct kfd_iolink_properties *link)
1223{
1224	/* xgmi always supports atomics between links. */
1225	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1226		return;
1227
1228	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1229	if (target_gpu_dev) {
1230		uint32_t cap;
1231
1232		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1233				PCI_EXP_DEVCAP2, &cap);
1234
1235		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1236			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1237			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1238				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1239	/* set gpu (dev) flags. */
1240	} else {
1241		if (!dev->gpu->kfd->pci_atomic_requested ||
1242				dev->gpu->adev->asic_type == CHIP_HAWAII)
1243			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1244				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1245	}
1246}
1247
1248static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1249		struct kfd_iolink_properties *outbound_link,
1250		struct kfd_iolink_properties *inbound_link)
1251{
1252	/* CPU -> GPU with PCIe */
1253	if (!to_dev->gpu &&
1254	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1255		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1256
1257	if (to_dev->gpu) {
1258		/* GPU <-> GPU with PCIe and
1259		 * Vega20 with XGMI
1260		 */
1261		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1262		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1263		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1264			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1265			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1266		}
1267	}
1268}
1269
1270#define REC_SDMA_NUM_GPU	8
1271static const int rec_sdma_eng_map[REC_SDMA_NUM_GPU][REC_SDMA_NUM_GPU] = {
1272							{ -1, 14, 12, 2, 4, 8, 10, 6 },
1273							{ 14, -1, 2, 10, 8, 4, 6, 12 },
1274							{ 10, 2, -1, 12, 14, 6, 4, 8 },
1275							{ 2, 12, 10, -1, 6, 14, 8, 4 },
1276							{ 4, 8, 14, 6, -1, 10, 12, 2 },
1277							{ 8, 4, 6, 14, 12, -1, 2, 10 },
1278							{ 10, 6, 4, 8, 12, 2, -1, 14 },
1279							{ 6, 12, 8, 4, 2, 10, 14, -1 }};
1280
1281static void kfd_set_recommended_sdma_engines(struct kfd_topology_device *to_dev,
1282					     struct kfd_iolink_properties *outbound_link,
1283					     struct kfd_iolink_properties *inbound_link)
1284{
1285	struct kfd_node *gpu = outbound_link->gpu;
1286	struct amdgpu_device *adev = gpu->adev;
1287	int num_xgmi_nodes = adev->gmc.xgmi.num_physical_nodes;
1288	bool support_rec_eng = !amdgpu_sriov_vf(adev) && to_dev->gpu &&
1289		adev->aid_mask && num_xgmi_nodes && gpu->kfd->num_nodes == 1 &&
1290		kfd_get_num_xgmi_sdma_engines(gpu) >= 14 &&
1291		(!(adev->flags & AMD_IS_APU) && num_xgmi_nodes == 8);
1292
1293	if (support_rec_eng) {
1294		int src_socket_id = adev->gmc.xgmi.physical_node_id;
1295		int dst_socket_id = to_dev->gpu->adev->gmc.xgmi.physical_node_id;
1296
1297		outbound_link->rec_sdma_eng_id_mask =
1298			1 << rec_sdma_eng_map[src_socket_id][dst_socket_id];
1299		inbound_link->rec_sdma_eng_id_mask =
1300			1 << rec_sdma_eng_map[dst_socket_id][src_socket_id];
1301	} else {
1302		int num_sdma_eng = kfd_get_num_sdma_engines(gpu);
1303		int i, eng_offset = 0;
1304
1305		if (outbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1306		    kfd_get_num_xgmi_sdma_engines(gpu) && to_dev->gpu) {
1307			eng_offset = num_sdma_eng;
1308			num_sdma_eng = kfd_get_num_xgmi_sdma_engines(gpu);
1309		}
1310
1311		for (i = 0; i < num_sdma_eng; i++) {
1312			outbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset));
1313			inbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset));
1314		}
1315	}
1316}
1317
1318static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1319{
1320	struct kfd_iolink_properties *link, *inbound_link;
1321	struct kfd_topology_device *peer_dev;
1322
1323	if (!dev || !dev->gpu)
1324		return;
1325
1326	/* GPU only creates direct links so apply flags setting to all */
1327	list_for_each_entry(link, &dev->io_link_props, list) {
1328		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1329		kfd_set_iolink_no_atomics(dev, NULL, link);
1330		peer_dev = kfd_topology_device_by_proximity_domain(
1331				link->node_to);
1332
1333		if (!peer_dev)
1334			continue;
1335
1336		/* Include the CPU peer in GPU hive if connected over xGMI. */
1337		if (!peer_dev->gpu &&
1338		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1339			/*
1340			 * If the GPU is not part of a GPU hive, use its pci
1341			 * device location as the hive ID to bind with the CPU.
1342			 */
1343			if (!dev->node_props.hive_id)
1344				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1345			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1346		}
1347
1348		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1349									list) {
1350			if (inbound_link->node_to != link->node_from)
1351				continue;
1352
1353			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1354			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1355			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1356			kfd_set_recommended_sdma_engines(peer_dev, link, inbound_link);
1357		}
1358	}
1359
1360	/* Create indirect links so apply flags setting to all */
1361	list_for_each_entry(link, &dev->p2p_link_props, list) {
1362		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1363		kfd_set_iolink_no_atomics(dev, NULL, link);
1364		peer_dev = kfd_topology_device_by_proximity_domain(
1365				link->node_to);
1366
1367		if (!peer_dev)
1368			continue;
1369
1370		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1371									list) {
1372			if (inbound_link->node_to != link->node_from)
1373				continue;
1374
1375			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1376			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1377			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1378		}
1379	}
1380}
1381
1382static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1383				struct kfd_iolink_properties *p2plink)
1384{
1385	int ret;
1386
1387	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1388	if (!p2plink->kobj)
1389		return -ENOMEM;
1390
1391	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1392			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1393	if (ret < 0) {
1394		kobject_put(p2plink->kobj);
1395		return ret;
1396	}
1397
1398	p2plink->attr.name = "properties";
1399	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1400	sysfs_attr_init(&p2plink->attr);
1401	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1402	if (ret < 0)
1403		return ret;
1404
1405	return 0;
1406}
1407
1408static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1409{
1410	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1411	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1412	struct kfd_topology_device *cpu_dev;
1413	int ret = 0;
1414	int i, num_cpu;
1415
1416	num_cpu = 0;
1417	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1418		if (cpu_dev->gpu)
1419			break;
1420		num_cpu++;
1421	}
1422
1423	if (list_empty(&kdev->io_link_props))
1424		return -ENODATA;
1425
1426	gpu_link = list_first_entry(&kdev->io_link_props,
1427				    struct kfd_iolink_properties, list);
1428
1429	for (i = 0; i < num_cpu; i++) {
1430		/* CPU <--> GPU */
1431		if (gpu_link->node_to == i)
1432			continue;
1433
1434		/* find CPU <-->  CPU links */
1435		cpu_link = NULL;
1436		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1437		if (cpu_dev) {
1438			list_for_each_entry(tmp_link,
1439					&cpu_dev->io_link_props, list) {
1440				if (tmp_link->node_to == gpu_link->node_to) {
1441					cpu_link = tmp_link;
1442					break;
1443				}
1444			}
1445		}
1446
1447		if (!cpu_link)
1448			return -ENOMEM;
1449
1450		/* CPU <--> CPU <--> GPU, GPU node*/
1451		props = kfd_alloc_struct(props);
1452		if (!props)
1453			return -ENOMEM;
1454
1455		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1456		props->weight = gpu_link->weight + cpu_link->weight;
1457		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1458		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1459		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1460		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1461
1462		props->node_from = gpu_node;
1463		props->node_to = i;
1464		kdev->node_props.p2p_links_count++;
1465		list_add_tail(&props->list, &kdev->p2p_link_props);
1466		ret = kfd_build_p2p_node_entry(kdev, props);
1467		if (ret < 0)
1468			return ret;
1469
1470		/* for small Bar, no CPU --> GPU in-direct links */
1471		if (kfd_dev_is_large_bar(kdev->gpu)) {
1472			/* CPU <--> CPU <--> GPU, CPU node*/
1473			props2 = kfd_alloc_struct(props2);
1474			if (!props2)
1475				return -ENOMEM;
1476
1477			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1478			props2->node_from = i;
1479			props2->node_to = gpu_node;
1480			props2->kobj = NULL;
1481			cpu_dev->node_props.p2p_links_count++;
1482			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1483			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1484			if (ret < 0)
1485				return ret;
1486		}
1487	}
1488	return ret;
1489}
1490
1491#if defined(CONFIG_HSA_AMD_P2P)
1492static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1493		struct kfd_topology_device *peer, int from, int to)
1494{
1495	struct kfd_iolink_properties *props = NULL;
1496	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1497	struct kfd_topology_device *cpu_dev;
1498	int ret = 0;
1499
1500	if (!amdgpu_device_is_peer_accessible(
1501				kdev->gpu->adev,
1502				peer->gpu->adev))
1503		return ret;
1504
1505	if (list_empty(&kdev->io_link_props))
1506		return -ENODATA;
1507
1508	iolink1 = list_first_entry(&kdev->io_link_props,
1509				   struct kfd_iolink_properties, list);
1510
1511	if (list_empty(&peer->io_link_props))
1512		return -ENODATA;
1513
1514	iolink2 = list_first_entry(&peer->io_link_props,
1515				   struct kfd_iolink_properties, list);
1516
1517	props = kfd_alloc_struct(props);
1518	if (!props)
1519		return -ENOMEM;
1520
1521	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1522
1523	props->weight = iolink1->weight + iolink2->weight;
1524	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1525	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1526	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1527	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1528
1529	if (iolink1->node_to != iolink2->node_to) {
1530		/* CPU->CPU  link*/
1531		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1532		if (cpu_dev) {
1533			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1534				if (iolink3->node_to != iolink2->node_to)
1535					continue;
1536
1537				props->weight += iolink3->weight;
1538				props->min_latency += iolink3->min_latency;
1539				props->max_latency += iolink3->max_latency;
1540				props->min_bandwidth = min(props->min_bandwidth,
1541							   iolink3->min_bandwidth);
1542				props->max_bandwidth = min(props->max_bandwidth,
1543							   iolink3->max_bandwidth);
1544				break;
1545			}
1546		} else {
1547			WARN(1, "CPU node not found");
1548		}
1549	}
1550
1551	props->node_from = from;
1552	props->node_to = to;
1553	peer->node_props.p2p_links_count++;
1554	list_add_tail(&props->list, &peer->p2p_link_props);
1555	ret = kfd_build_p2p_node_entry(peer, props);
1556
1557	return ret;
1558}
1559#endif
1560
1561static int kfd_dev_create_p2p_links(void)
1562{
1563	struct kfd_topology_device *dev;
1564	struct kfd_topology_device *new_dev;
1565#if defined(CONFIG_HSA_AMD_P2P)
1566	uint32_t i;
1567#endif
1568	uint32_t k;
1569	int ret = 0;
1570
1571	k = 0;
1572	list_for_each_entry(dev, &topology_device_list, list)
1573		k++;
1574	if (k < 2)
1575		return 0;
1576
1577	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1578	if (WARN_ON(!new_dev->gpu))
1579		return 0;
1580
1581	k--;
1582
1583	/* create in-direct links */
1584	ret = kfd_create_indirect_link_prop(new_dev, k);
1585	if (ret < 0)
1586		goto out;
1587
1588	/* create p2p links */
1589#if defined(CONFIG_HSA_AMD_P2P)
1590	i = 0;
1591	list_for_each_entry(dev, &topology_device_list, list) {
1592		if (dev == new_dev)
1593			break;
1594		if (!dev->gpu || !dev->gpu->adev ||
1595		    (dev->gpu->kfd->hive_id &&
1596		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1597			goto next;
1598
1599		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1600		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1601		if (ret < 0)
1602			goto out;
1603
1604		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1605		if (ret < 0)
1606			goto out;
1607next:
1608		i++;
1609	}
1610#endif
1611
1612out:
1613	return ret;
1614}
1615
1616/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1617static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1618				struct kfd_gpu_cache_info *pcache_info,
1619				int cu_bitmask,
1620				int cache_type, unsigned int cu_processor_id,
1621				int cu_block)
1622{
1623	unsigned int cu_sibling_map_mask;
1624	int first_active_cu;
1625	struct kfd_cache_properties *pcache = NULL;
1626
1627	cu_sibling_map_mask = cu_bitmask;
1628	cu_sibling_map_mask >>= cu_block;
1629	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1630	first_active_cu = ffs(cu_sibling_map_mask);
1631
1632	/* CU could be inactive. In case of shared cache find the first active
1633	 * CU. and incase of non-shared cache check if the CU is inactive. If
1634	 * inactive active skip it
1635	 */
1636	if (first_active_cu) {
1637		pcache = kfd_alloc_struct(pcache);
1638		if (!pcache)
1639			return -ENOMEM;
1640
1641		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1642		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1643		pcache->cache_level = pcache_info[cache_type].cache_level;
1644		pcache->cache_size = pcache_info[cache_type].cache_size;
1645		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1646
1647		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1648			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1649		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1650			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1651		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1652			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1653		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1654			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1655
1656		/* Sibling map is w.r.t processor_id_low, so shift out
1657		 * inactive CU
1658		 */
1659		cu_sibling_map_mask =
1660			cu_sibling_map_mask >> (first_active_cu - 1);
1661
1662		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1663		pcache->sibling_map[1] =
1664				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1665		pcache->sibling_map[2] =
1666				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1667		pcache->sibling_map[3] =
1668				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1669
1670		pcache->sibling_map_size = 4;
1671		*props_ext = pcache;
1672
1673		return 0;
1674	}
1675	return 1;
1676}
1677
1678/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1679static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1680				struct kfd_gpu_cache_info *pcache_info,
1681				struct amdgpu_cu_info *cu_info,
1682				struct amdgpu_gfx_config *gfx_info,
1683				int cache_type, unsigned int cu_processor_id,
1684				struct kfd_node *knode)
1685{
1686	unsigned int cu_sibling_map_mask;
1687	int first_active_cu;
1688	int i, j, k, xcc, start, end;
1689	int num_xcc = NUM_XCC(knode->xcc_mask);
1690	struct kfd_cache_properties *pcache = NULL;
1691	enum amdgpu_memory_partition mode;
1692	struct amdgpu_device *adev = knode->adev;
1693
1694	start = ffs(knode->xcc_mask) - 1;
1695	end = start + num_xcc;
1696	cu_sibling_map_mask = cu_info->bitmap[start][0][0];
1697	cu_sibling_map_mask &=
1698		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1699	first_active_cu = ffs(cu_sibling_map_mask);
1700
1701	/* CU could be inactive. In case of shared cache find the first active
1702	 * CU. and incase of non-shared cache check if the CU is inactive. If
1703	 * inactive active skip it
1704	 */
1705	if (first_active_cu) {
1706		pcache = kfd_alloc_struct(pcache);
1707		if (!pcache)
1708			return -ENOMEM;
1709
1710		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1711		pcache->processor_id_low = cu_processor_id
1712					+ (first_active_cu - 1);
1713		pcache->cache_level = pcache_info[cache_type].cache_level;
1714		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1715
1716		if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3) ||
1717		    KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 4))
1718			mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1719		else
1720			mode = UNKNOWN_MEMORY_PARTITION_MODE;
1721
1722		pcache->cache_size = pcache_info[cache_type].cache_size;
1723		/* Partition mode only affects L3 cache size */
1724		if (mode && pcache->cache_level == 3)
1725			pcache->cache_size /= mode;
1726
1727		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1728			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1729		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1730			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1731		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1732			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1733		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1734			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1735
1736		/* Sibling map is w.r.t processor_id_low, so shift out
1737		 * inactive CU
1738		 */
1739		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1740		k = 0;
1741
1742		for (xcc = start; xcc < end; xcc++) {
1743			for (i = 0; i < gfx_info->max_shader_engines; i++) {
1744				for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1745					pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1746					pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1747					pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1748					pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1749					k += 4;
1750
1751					cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1752					cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1753				}
1754			}
1755		}
1756		pcache->sibling_map_size = k;
1757		*props_ext = pcache;
1758		return 0;
1759	}
1760	return 1;
1761}
1762
1763#define KFD_MAX_CACHE_TYPES 6
1764
1765/* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1766 * tables
1767 */
1768static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1769{
1770	struct kfd_gpu_cache_info *pcache_info = NULL;
1771	int i, j, k, xcc, start, end;
1772	int ct = 0;
1773	unsigned int cu_processor_id;
1774	int ret;
1775	unsigned int num_cu_shared;
1776	struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1777	struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1778	int gpu_processor_id;
1779	struct kfd_cache_properties *props_ext;
1780	int num_of_entries = 0;
1781	int num_of_cache_types = 0;
1782	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1783
1784
1785	gpu_processor_id = dev->node_props.simd_id_base;
1786
1787	memset(cache_info, 0, sizeof(cache_info));
1788	pcache_info = cache_info;
1789	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1790	if (!num_of_cache_types) {
1791		pr_warn("no cache info found\n");
1792		return;
1793	}
1794
1795	/* For each type of cache listed in the kfd_gpu_cache_info table,
1796	 * go through all available Compute Units.
1797	 * The [i,j,k] loop will
1798	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1799	 *			will parse through all available CU
1800	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1801	 *			then it will consider only one CU from
1802	 *			the shared unit
1803	 */
1804	start = ffs(kdev->xcc_mask) - 1;
1805	end = start + NUM_XCC(kdev->xcc_mask);
1806
1807	for (ct = 0; ct < num_of_cache_types; ct++) {
1808		cu_processor_id = gpu_processor_id;
1809		if (pcache_info[ct].cache_level == 1) {
1810			for (xcc = start; xcc < end; xcc++) {
1811				for (i = 0; i < gfx_info->max_shader_engines; i++) {
1812					for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1813						for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1814
1815							ret = fill_in_l1_pcache(&props_ext, pcache_info,
1816										cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1817										cu_processor_id, k);
1818
1819							if (ret < 0)
1820								break;
1821
1822							if (!ret) {
1823								num_of_entries++;
1824								list_add_tail(&props_ext->list, &dev->cache_props);
1825							}
1826
1827							/* Move to next CU block */
1828							num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1829								gfx_info->max_cu_per_sh) ?
1830								pcache_info[ct].num_cu_shared :
1831								(gfx_info->max_cu_per_sh - k);
1832							cu_processor_id += num_cu_shared;
1833						}
1834					}
1835				}
1836			}
1837		} else {
1838			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1839						   cu_info, gfx_info, ct, cu_processor_id, kdev);
1840
1841			if (ret < 0)
1842				break;
1843
1844			if (!ret) {
1845				num_of_entries++;
1846				list_add_tail(&props_ext->list, &dev->cache_props);
1847			}
1848		}
1849	}
1850	dev->node_props.caches_count += num_of_entries;
1851	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1852}
1853
1854static int kfd_topology_add_device_locked(struct kfd_node *gpu,
1855					  struct kfd_topology_device **dev)
1856{
1857	int proximity_domain = ++topology_crat_proximity_domain;
1858	struct list_head temp_topology_device_list;
1859	void *crat_image = NULL;
1860	size_t image_size = 0;
1861	int res;
1862
1863	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1864					    COMPUTE_UNIT_GPU, gpu,
1865					    proximity_domain);
1866	if (res) {
1867		dev_err(gpu->adev->dev, "Error creating VCRAT\n");
 
1868		topology_crat_proximity_domain--;
1869		goto err;
1870	}
1871
1872	INIT_LIST_HEAD(&temp_topology_device_list);
1873
1874	res = kfd_parse_crat_table(crat_image,
1875				   &temp_topology_device_list,
1876				   proximity_domain);
1877	if (res) {
1878		dev_err(gpu->adev->dev, "Error parsing VCRAT\n");
 
1879		topology_crat_proximity_domain--;
1880		goto err;
1881	}
1882
1883	kfd_topology_update_device_list(&temp_topology_device_list,
1884					&topology_device_list);
1885
1886	*dev = kfd_assign_gpu(gpu);
1887	if (WARN_ON(!*dev)) {
1888		res = -ENODEV;
1889		goto err;
1890	}
1891
1892	/* Fill the cache affinity information here for the GPUs
1893	 * using VCRAT
1894	 */
1895	kfd_fill_cache_non_crat_info(*dev, gpu);
1896
1897	/* Update the SYSFS tree, since we added another topology
1898	 * device
1899	 */
1900	res = kfd_topology_update_sysfs();
1901	if (!res)
1902		sys_props.generation_count++;
1903	else
1904		dev_err(gpu->adev->dev, "Failed to update GPU to sysfs topology. res=%d\n",
1905			res);
1906
1907err:
1908	kfd_destroy_crat_image(crat_image);
1909	return res;
1910}
1911
1912static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1913{
1914	bool firmware_supported = true;
1915
1916	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1917			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1918		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1919						AMDGPU_MES_API_VERSION_MASK) >>
1920						AMDGPU_MES_API_VERSION_SHIFT;
1921		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1922						AMDGPU_MES_VERSION_MASK;
1923
1924		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1925		goto out;
1926	}
1927
1928	/*
1929	 * Note: Any unlisted devices here are assumed to support exception handling.
1930	 * Add additional checks here as needed.
1931	 */
1932	switch (KFD_GC_VERSION(dev->gpu)) {
1933	case IP_VERSION(9, 0, 1):
1934		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1935		break;
1936	case IP_VERSION(9, 1, 0):
1937	case IP_VERSION(9, 2, 1):
1938	case IP_VERSION(9, 2, 2):
1939	case IP_VERSION(9, 3, 0):
1940	case IP_VERSION(9, 4, 0):
1941		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1942		break;
1943	case IP_VERSION(9, 4, 1):
1944		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1945		break;
1946	case IP_VERSION(9, 4, 2):
1947		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1948		break;
1949	case IP_VERSION(10, 1, 10):
1950	case IP_VERSION(10, 1, 2):
1951	case IP_VERSION(10, 1, 1):
1952		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1953		break;
1954	case IP_VERSION(10, 3, 0):
1955	case IP_VERSION(10, 3, 2):
1956	case IP_VERSION(10, 3, 1):
1957	case IP_VERSION(10, 3, 4):
1958	case IP_VERSION(10, 3, 5):
1959		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1960		break;
1961	case IP_VERSION(10, 1, 3):
1962	case IP_VERSION(10, 3, 3):
1963		firmware_supported = false;
1964		break;
1965	default:
1966		break;
1967	}
1968
1969out:
1970	if (firmware_supported)
1971		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1972}
1973
1974static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1975{
1976	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1977				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1978				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1979
1980	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1981			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1982			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1983
1984	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1985		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1986
1987	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1988		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3) ||
1989		    KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 4))
1990			dev->node_props.debug_prop |=
1991				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1992				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1993		else
1994			dev->node_props.debug_prop |=
1995				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1996				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1997
1998		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
1999			dev->node_props.capability |=
2000				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2001
2002		dev->node_props.capability |= HSA_CAP_PER_QUEUE_RESET_SUPPORTED;
2003	} else {
2004		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
2005					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2006
2007		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
2008			dev->node_props.capability |=
2009				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2010
2011		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 0, 0))
2012			dev->node_props.capability |=
2013				HSA_CAP_TRAP_DEBUG_PRECISE_ALU_OPERATIONS_SUPPORTED;
2014	}
2015
2016	kfd_topology_set_dbg_firmware_support(dev);
2017}
2018
2019int kfd_topology_add_device(struct kfd_node *gpu)
2020{
2021	uint32_t gpu_id;
2022	struct kfd_topology_device *dev;
2023	int res = 0;
2024	int i;
2025	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
2026	struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
2027	struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
2028
 
2029	if (gpu->xcp && !gpu->xcp->ddev) {
2030		dev_warn(gpu->adev->dev,
2031			 "Won't add GPU to topology since it has no drm node assigned.");
 
2032		return 0;
2033	} else {
2034		dev_dbg(gpu->adev->dev, "Adding new GPU to topology\n");
2035	}
2036
2037	/* Check to see if this gpu device exists in the topology_device_list.
2038	 * If so, assign the gpu to that device,
2039	 * else create a Virtual CRAT for this gpu device and then parse that
2040	 * CRAT to create a new topology device. Once created assign the gpu to
2041	 * that topology device
2042	 */
2043	down_write(&topology_lock);
2044	dev = kfd_assign_gpu(gpu);
2045	if (!dev)
2046		res = kfd_topology_add_device_locked(gpu, &dev);
2047	up_write(&topology_lock);
2048	if (res)
2049		return res;
2050
2051	gpu_id = kfd_generate_gpu_id(gpu);
2052	dev->gpu_id = gpu_id;
2053	gpu->id = gpu_id;
2054
2055	kfd_dev_create_p2p_links();
2056
2057	/* TODO: Move the following lines to function
2058	 *	kfd_add_non_crat_information
2059	 */
2060
2061	/* Fill-in additional information that is not available in CRAT but
2062	 * needed for the topology
2063	 */
2064	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
2065		dev->node_props.name[i] = __tolower(asic_name[i]);
2066		if (asic_name[i] == '\0')
2067			break;
2068	}
2069	dev->node_props.name[i] = '\0';
2070
2071	dev->node_props.simd_arrays_per_engine =
2072		gfx_info->max_sh_per_se;
2073
2074	dev->node_props.gfx_target_version =
2075				gpu->kfd->device_info.gfx_target_version;
2076	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
2077	dev->node_props.device_id = gpu->adev->pdev->device;
2078	dev->node_props.capability |=
2079		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
2080			HSA_CAP_ASIC_REVISION_MASK);
2081
2082	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2083	if (gpu->kfd->num_nodes > 1)
2084		dev->node_props.location_id |= dev->gpu->node_id;
2085
2086	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2087	dev->node_props.max_engine_clk_fcompute =
2088		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2089	dev->node_props.max_engine_clk_ccompute =
2090		cpufreq_quick_get_max(0) / 1000;
2091
2092	if (gpu->xcp)
2093		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2094	else
2095		dev->node_props.drm_render_minor =
2096				gpu->kfd->shared_resources.drm_render_minor;
2097
2098	dev->node_props.hive_id = gpu->kfd->hive_id;
2099	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2100	dev->node_props.num_sdma_xgmi_engines =
2101					kfd_get_num_xgmi_sdma_engines(gpu);
2102	dev->node_props.num_sdma_queues_per_engine =
2103				gpu->kfd->device_info.num_sdma_queues_per_engine -
2104				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2105	dev->node_props.num_gws = (dev->gpu->gws &&
2106		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2107		dev->gpu->adev->gds.gws_size : 0;
2108	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2109
2110	kfd_fill_mem_clk_max_info(dev);
2111	kfd_fill_iolink_non_crat_info(dev);
2112
2113	switch (dev->gpu->adev->asic_type) {
2114	case CHIP_KAVERI:
2115	case CHIP_HAWAII:
2116	case CHIP_TONGA:
2117		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2118			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2119			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2120		break;
2121	case CHIP_CARRIZO:
2122	case CHIP_FIJI:
2123	case CHIP_POLARIS10:
2124	case CHIP_POLARIS11:
2125	case CHIP_POLARIS12:
2126	case CHIP_VEGAM:
2127		pr_debug("Adding doorbell packet type capability\n");
2128		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2129			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2130			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2131		break;
2132	default:
2133		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2134			WARN(1, "Unexpected ASIC family %u",
2135			     dev->gpu->adev->asic_type);
2136		else
2137			kfd_topology_set_capabilities(dev);
2138	}
2139
2140	/*
2141	 * Overwrite ATS capability according to needs_iommu_device to fix
2142	 * potential missing corresponding bit in CRAT of BIOS.
2143	 */
2144	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2145
2146	/* Fix errors in CZ CRAT.
2147	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2148	 *		because it doesn't consider masked out CUs
2149	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2150	 */
2151	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2152		dev->node_props.simd_count =
2153			cu_info->simd_per_cu * cu_info->number;
2154		dev->node_props.max_waves_per_simd = 10;
2155	}
2156
2157	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2158	dev->node_props.capability |=
2159		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2160		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2161	dev->node_props.capability |=
2162		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2163		HSA_CAP_MEM_EDCSUPPORTED : 0;
2164
2165	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2166		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2167			HSA_CAP_RASEVENTNOTIFY : 0;
2168
2169	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2170		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2171
2172	if (dev->gpu->adev->gmc.is_app_apu ||
2173		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2174		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2175
2176	kfd_queue_ctx_save_restore_size(dev);
2177
2178	kfd_debug_print_topology();
2179
2180	kfd_notify_gpu_change(gpu_id, 1);
2181
2182	return 0;
2183}
2184
2185/**
2186 * kfd_topology_update_io_links() - Update IO links after device removal.
2187 * @proximity_domain: Proximity domain value of the dev being removed.
2188 *
2189 * The topology list currently is arranged in increasing order of
2190 * proximity domain.
2191 *
2192 * Two things need to be done when a device is removed:
2193 * 1. All the IO links to this device need to be removed.
2194 * 2. All nodes after the current device node need to move
2195 *    up once this device node is removed from the topology
2196 *    list. As a result, the proximity domain values for
2197 *    all nodes after the node being deleted reduce by 1.
2198 *    This would also cause the proximity domain values for
2199 *    io links to be updated based on new proximity domain
2200 *    values.
2201 *
2202 * Context: The caller must hold write topology_lock.
2203 */
2204static void kfd_topology_update_io_links(int proximity_domain)
2205{
2206	struct kfd_topology_device *dev;
2207	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2208
2209	list_for_each_entry(dev, &topology_device_list, list) {
2210		if (dev->proximity_domain > proximity_domain)
2211			dev->proximity_domain--;
2212
2213		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2214			/*
2215			 * If there is an io link to the dev being deleted
2216			 * then remove that IO link also.
2217			 */
2218			if (iolink->node_to == proximity_domain) {
2219				list_del(&iolink->list);
2220				dev->node_props.io_links_count--;
2221			} else {
2222				if (iolink->node_from > proximity_domain)
2223					iolink->node_from--;
2224				if (iolink->node_to > proximity_domain)
2225					iolink->node_to--;
2226			}
2227		}
2228
2229		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2230			/*
2231			 * If there is a p2p link to the dev being deleted
2232			 * then remove that p2p link also.
2233			 */
2234			if (p2plink->node_to == proximity_domain) {
2235				list_del(&p2plink->list);
2236				dev->node_props.p2p_links_count--;
2237			} else {
2238				if (p2plink->node_from > proximity_domain)
2239					p2plink->node_from--;
2240				if (p2plink->node_to > proximity_domain)
2241					p2plink->node_to--;
2242			}
2243		}
2244	}
2245}
2246
2247int kfd_topology_remove_device(struct kfd_node *gpu)
2248{
2249	struct kfd_topology_device *dev, *tmp;
2250	uint32_t gpu_id;
2251	int res = -ENODEV;
2252	int i = 0;
2253
2254	down_write(&topology_lock);
2255
2256	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2257		if (dev->gpu == gpu) {
2258			gpu_id = dev->gpu_id;
2259			kfd_remove_sysfs_node_entry(dev);
2260			kfd_release_topology_device(dev);
2261			sys_props.num_devices--;
2262			kfd_topology_update_io_links(i);
2263			topology_crat_proximity_domain = sys_props.num_devices-1;
2264			sys_props.generation_count++;
2265			res = 0;
2266			if (kfd_topology_update_sysfs() < 0)
2267				kfd_topology_release_sysfs();
2268			break;
2269		}
2270		i++;
2271	}
2272
2273	up_write(&topology_lock);
2274
2275	if (!res)
2276		kfd_notify_gpu_change(gpu_id, 0);
2277
2278	return res;
2279}
2280
2281/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2282 *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2283 *	returned through @kdev
2284 * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2285 *		-1: If end of list
2286 */
2287int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2288{
2289
2290	struct kfd_topology_device *top_dev;
2291	uint8_t device_idx = 0;
2292
2293	*kdev = NULL;
2294	down_read(&topology_lock);
2295
2296	list_for_each_entry(top_dev, &topology_device_list, list) {
2297		if (device_idx == idx) {
2298			*kdev = top_dev->gpu;
2299			up_read(&topology_lock);
2300			return 0;
2301		}
2302
2303		device_idx++;
2304	}
2305
2306	up_read(&topology_lock);
2307
2308	return -1;
2309
2310}
2311
2312static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2313{
2314	int first_cpu_of_numa_node;
2315
2316	if (!cpumask || cpumask == cpu_none_mask)
2317		return -1;
2318	first_cpu_of_numa_node = cpumask_first(cpumask);
2319	if (first_cpu_of_numa_node >= nr_cpu_ids)
2320		return -1;
2321#ifdef CONFIG_X86_64
2322	return cpu_data(first_cpu_of_numa_node).topo.apicid;
2323#else
2324	return first_cpu_of_numa_node;
2325#endif
2326}
2327
2328/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2329 *	of the given NUMA node (numa_node_id)
2330 * Return -1 on failure
2331 */
2332int kfd_numa_node_to_apic_id(int numa_node_id)
2333{
2334	if (numa_node_id == -1) {
2335		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2336		return kfd_cpumask_to_apic_id(cpu_online_mask);
2337	}
2338	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2339}
2340
2341#if defined(CONFIG_DEBUG_FS)
2342
2343int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2344{
2345	struct kfd_topology_device *dev;
2346	unsigned int i = 0;
2347	int r = 0;
2348
2349	down_read(&topology_lock);
2350
2351	list_for_each_entry(dev, &topology_device_list, list) {
2352		if (!dev->gpu) {
2353			i++;
2354			continue;
2355		}
2356
2357		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2358		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2359		if (r)
2360			break;
2361	}
2362
2363	up_read(&topology_lock);
2364
2365	return r;
2366}
2367
2368int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2369{
2370	struct kfd_topology_device *dev;
2371	unsigned int i = 0;
2372	int r = 0;
2373
2374	down_read(&topology_lock);
2375
2376	list_for_each_entry(dev, &topology_device_list, list) {
2377		if (!dev->gpu) {
2378			i++;
2379			continue;
2380		}
2381
2382		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2383		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2384		if (r)
2385			break;
2386	}
2387
2388	up_read(&topology_lock);
2389
2390	return r;
2391}
2392
2393#endif
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/pci.h>
  27#include <linux/errno.h>
  28#include <linux/acpi.h>
  29#include <linux/hash.h>
  30#include <linux/cpufreq.h>
  31#include <linux/log2.h>
  32#include <linux/dmi.h>
  33#include <linux/atomic.h>
 
  34
  35#include "kfd_priv.h"
  36#include "kfd_crat.h"
  37#include "kfd_topology.h"
  38#include "kfd_device_queue_manager.h"
  39#include "kfd_svm.h"
  40#include "kfd_debug.h"
  41#include "amdgpu_amdkfd.h"
  42#include "amdgpu_ras.h"
  43#include "amdgpu.h"
  44
  45/* topology_device_list - Master list of all topology devices */
  46static struct list_head topology_device_list;
  47static struct kfd_system_properties sys_props;
  48
  49static DECLARE_RWSEM(topology_lock);
  50static uint32_t topology_crat_proximity_domain;
  51
  52struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
  53						uint32_t proximity_domain)
  54{
  55	struct kfd_topology_device *top_dev;
  56	struct kfd_topology_device *device = NULL;
  57
  58	list_for_each_entry(top_dev, &topology_device_list, list)
  59		if (top_dev->proximity_domain == proximity_domain) {
  60			device = top_dev;
  61			break;
  62		}
  63
  64	return device;
  65}
  66
  67struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
  68						uint32_t proximity_domain)
  69{
  70	struct kfd_topology_device *device = NULL;
  71
  72	down_read(&topology_lock);
  73
  74	device = kfd_topology_device_by_proximity_domain_no_lock(
  75							proximity_domain);
  76	up_read(&topology_lock);
  77
  78	return device;
  79}
  80
  81struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
  82{
  83	struct kfd_topology_device *top_dev = NULL;
  84	struct kfd_topology_device *ret = NULL;
  85
  86	down_read(&topology_lock);
  87
  88	list_for_each_entry(top_dev, &topology_device_list, list)
  89		if (top_dev->gpu_id == gpu_id) {
  90			ret = top_dev;
  91			break;
  92		}
  93
  94	up_read(&topology_lock);
  95
  96	return ret;
  97}
  98
  99struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
 100{
 101	struct kfd_topology_device *top_dev;
 102
 103	top_dev = kfd_topology_device_by_id(gpu_id);
 104	if (!top_dev)
 105		return NULL;
 106
 107	return top_dev->gpu;
 108}
 109
 110struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
 111{
 112	struct kfd_topology_device *top_dev;
 113	struct kfd_node *device = NULL;
 114
 115	down_read(&topology_lock);
 116
 117	list_for_each_entry(top_dev, &topology_device_list, list)
 118		if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
 119			device = top_dev->gpu;
 120			break;
 121		}
 122
 123	up_read(&topology_lock);
 124
 125	return device;
 126}
 127
 128/* Called with write topology_lock acquired */
 129static void kfd_release_topology_device(struct kfd_topology_device *dev)
 130{
 131	struct kfd_mem_properties *mem;
 132	struct kfd_cache_properties *cache;
 133	struct kfd_iolink_properties *iolink;
 134	struct kfd_iolink_properties *p2plink;
 135	struct kfd_perf_properties *perf;
 136
 137	list_del(&dev->list);
 138
 139	while (dev->mem_props.next != &dev->mem_props) {
 140		mem = container_of(dev->mem_props.next,
 141				struct kfd_mem_properties, list);
 142		list_del(&mem->list);
 143		kfree(mem);
 144	}
 145
 146	while (dev->cache_props.next != &dev->cache_props) {
 147		cache = container_of(dev->cache_props.next,
 148				struct kfd_cache_properties, list);
 149		list_del(&cache->list);
 150		kfree(cache);
 151	}
 152
 153	while (dev->io_link_props.next != &dev->io_link_props) {
 154		iolink = container_of(dev->io_link_props.next,
 155				struct kfd_iolink_properties, list);
 156		list_del(&iolink->list);
 157		kfree(iolink);
 158	}
 159
 160	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
 161		p2plink = container_of(dev->p2p_link_props.next,
 162				struct kfd_iolink_properties, list);
 163		list_del(&p2plink->list);
 164		kfree(p2plink);
 165	}
 166
 167	while (dev->perf_props.next != &dev->perf_props) {
 168		perf = container_of(dev->perf_props.next,
 169				struct kfd_perf_properties, list);
 170		list_del(&perf->list);
 171		kfree(perf);
 172	}
 173
 174	kfree(dev);
 175}
 176
 177void kfd_release_topology_device_list(struct list_head *device_list)
 178{
 179	struct kfd_topology_device *dev;
 180
 181	while (!list_empty(device_list)) {
 182		dev = list_first_entry(device_list,
 183				       struct kfd_topology_device, list);
 184		kfd_release_topology_device(dev);
 185	}
 186}
 187
 188static void kfd_release_live_view(void)
 189{
 190	kfd_release_topology_device_list(&topology_device_list);
 191	memset(&sys_props, 0, sizeof(sys_props));
 192}
 193
 194struct kfd_topology_device *kfd_create_topology_device(
 195				struct list_head *device_list)
 196{
 197	struct kfd_topology_device *dev;
 198
 199	dev = kfd_alloc_struct(dev);
 200	if (!dev) {
 201		pr_err("No memory to allocate a topology device");
 202		return NULL;
 203	}
 204
 205	INIT_LIST_HEAD(&dev->mem_props);
 206	INIT_LIST_HEAD(&dev->cache_props);
 207	INIT_LIST_HEAD(&dev->io_link_props);
 208	INIT_LIST_HEAD(&dev->p2p_link_props);
 209	INIT_LIST_HEAD(&dev->perf_props);
 210
 211	list_add_tail(&dev->list, device_list);
 212
 213	return dev;
 214}
 215
 216
 217#define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
 218		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
 219				  fmt, __VA_ARGS__))
 220#define sysfs_show_32bit_prop(buffer, offs, name, value) \
 221		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
 222#define sysfs_show_64bit_prop(buffer, offs, name, value) \
 223		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
 224#define sysfs_show_32bit_val(buffer, offs, value) \
 225		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
 226#define sysfs_show_str_val(buffer, offs, value) \
 227		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
 228
 229static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
 230		char *buffer)
 231{
 232	int offs = 0;
 233
 234	/* Making sure that the buffer is an empty string */
 235	buffer[0] = 0;
 236
 237	if (attr == &sys_props.attr_genid) {
 238		sysfs_show_32bit_val(buffer, offs,
 239				     sys_props.generation_count);
 240	} else if (attr == &sys_props.attr_props) {
 241		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
 242				      sys_props.platform_oem);
 243		sysfs_show_64bit_prop(buffer, offs, "platform_id",
 244				      sys_props.platform_id);
 245		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
 246				      sys_props.platform_rev);
 247	} else {
 248		offs = -EINVAL;
 249	}
 250
 251	return offs;
 252}
 253
 254static void kfd_topology_kobj_release(struct kobject *kobj)
 255{
 256	kfree(kobj);
 257}
 258
 259static const struct sysfs_ops sysprops_ops = {
 260	.show = sysprops_show,
 261};
 262
 263static const struct kobj_type sysprops_type = {
 264	.release = kfd_topology_kobj_release,
 265	.sysfs_ops = &sysprops_ops,
 266};
 267
 268static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
 269		char *buffer)
 270{
 271	int offs = 0;
 272	struct kfd_iolink_properties *iolink;
 273
 274	/* Making sure that the buffer is an empty string */
 275	buffer[0] = 0;
 276
 277	iolink = container_of(attr, struct kfd_iolink_properties, attr);
 278	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
 279		return -EPERM;
 280	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
 281	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
 282	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
 283	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
 284	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
 285	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
 286	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
 287	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
 288	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
 289			      iolink->min_bandwidth);
 290	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
 291			      iolink->max_bandwidth);
 292	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
 293			      iolink->rec_transfer_size);
 
 
 294	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
 295
 296	return offs;
 297}
 298
 299static const struct sysfs_ops iolink_ops = {
 300	.show = iolink_show,
 301};
 302
 303static const struct kobj_type iolink_type = {
 304	.release = kfd_topology_kobj_release,
 305	.sysfs_ops = &iolink_ops,
 306};
 307
 308static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
 309		char *buffer)
 310{
 311	int offs = 0;
 312	struct kfd_mem_properties *mem;
 313
 314	/* Making sure that the buffer is an empty string */
 315	buffer[0] = 0;
 316
 317	mem = container_of(attr, struct kfd_mem_properties, attr);
 318	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
 319		return -EPERM;
 320	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
 321	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
 322			      mem->size_in_bytes);
 323	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
 324	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
 325	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
 326			      mem->mem_clk_max);
 327
 328	return offs;
 329}
 330
 331static const struct sysfs_ops mem_ops = {
 332	.show = mem_show,
 333};
 334
 335static const struct kobj_type mem_type = {
 336	.release = kfd_topology_kobj_release,
 337	.sysfs_ops = &mem_ops,
 338};
 339
 340static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
 341		char *buffer)
 342{
 343	int offs = 0;
 344	uint32_t i, j;
 345	struct kfd_cache_properties *cache;
 346
 347	/* Making sure that the buffer is an empty string */
 348	buffer[0] = 0;
 349	cache = container_of(attr, struct kfd_cache_properties, attr);
 350	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
 351		return -EPERM;
 352	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
 353			cache->processor_id_low);
 354	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
 355	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
 356	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
 357			      cache->cacheline_size);
 358	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
 359			      cache->cachelines_per_tag);
 360	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
 361	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
 362	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
 363
 364	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
 365	for (i = 0; i < cache->sibling_map_size; i++)
 366		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
 367			/* Check each bit */
 368			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
 369						(cache->sibling_map[i] >> j) & 1);
 370
 371	/* Replace the last "," with end of line */
 372	buffer[offs-1] = '\n';
 373	return offs;
 374}
 375
 376static const struct sysfs_ops cache_ops = {
 377	.show = kfd_cache_show,
 378};
 379
 380static const struct kobj_type cache_type = {
 381	.release = kfd_topology_kobj_release,
 382	.sysfs_ops = &cache_ops,
 383};
 384
 385/****** Sysfs of Performance Counters ******/
 386
 387struct kfd_perf_attr {
 388	struct kobj_attribute attr;
 389	uint32_t data;
 390};
 391
 392static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
 393			char *buf)
 394{
 395	int offs = 0;
 396	struct kfd_perf_attr *attr;
 397
 398	buf[0] = 0;
 399	attr = container_of(attrs, struct kfd_perf_attr, attr);
 400	if (!attr->data) /* invalid data for PMC */
 401		return 0;
 402	else
 403		return sysfs_show_32bit_val(buf, offs, attr->data);
 404}
 405
 406#define KFD_PERF_DESC(_name, _data)			\
 407{							\
 408	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
 409	.data = _data,					\
 410}
 411
 412static struct kfd_perf_attr perf_attr_iommu[] = {
 413	KFD_PERF_DESC(max_concurrent, 0),
 414	KFD_PERF_DESC(num_counters, 0),
 415	KFD_PERF_DESC(counter_ids, 0),
 416};
 417/****************************************/
 418
 419static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
 420		char *buffer)
 421{
 422	int offs = 0;
 423	struct kfd_topology_device *dev;
 424	uint32_t log_max_watch_addr;
 425
 426	/* Making sure that the buffer is an empty string */
 427	buffer[0] = 0;
 428
 429	if (strcmp(attr->name, "gpu_id") == 0) {
 430		dev = container_of(attr, struct kfd_topology_device,
 431				attr_gpuid);
 432		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 433			return -EPERM;
 434		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
 435	}
 436
 437	if (strcmp(attr->name, "name") == 0) {
 438		dev = container_of(attr, struct kfd_topology_device,
 439				attr_name);
 440
 441		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 442			return -EPERM;
 443		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
 444	}
 445
 446	dev = container_of(attr, struct kfd_topology_device,
 447			attr_props);
 448	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 449		return -EPERM;
 450	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
 451			      dev->node_props.cpu_cores_count);
 452	sysfs_show_32bit_prop(buffer, offs, "simd_count",
 453			      dev->gpu ? dev->node_props.simd_count : 0);
 454	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
 455			      dev->node_props.mem_banks_count);
 456	sysfs_show_32bit_prop(buffer, offs, "caches_count",
 457			      dev->node_props.caches_count);
 458	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
 459			      dev->node_props.io_links_count);
 460	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
 461			      dev->node_props.p2p_links_count);
 462	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
 463			      dev->node_props.cpu_core_id_base);
 464	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
 465			      dev->node_props.simd_id_base);
 466	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
 467			      dev->node_props.max_waves_per_simd);
 468	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
 469			      dev->node_props.lds_size_in_kb);
 470	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
 471			      dev->node_props.gds_size_in_kb);
 472	sysfs_show_32bit_prop(buffer, offs, "num_gws",
 473			      dev->node_props.num_gws);
 474	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
 475			      dev->node_props.wave_front_size);
 476	sysfs_show_32bit_prop(buffer, offs, "array_count",
 477			      dev->gpu ? (dev->node_props.array_count *
 478					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
 479	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
 480			      dev->node_props.simd_arrays_per_engine);
 481	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
 482			      dev->node_props.cu_per_simd_array);
 483	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
 484			      dev->node_props.simd_per_cu);
 485	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
 486			      dev->node_props.max_slots_scratch_cu);
 487	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
 488			      dev->node_props.gfx_target_version);
 489	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
 490			      dev->node_props.vendor_id);
 491	sysfs_show_32bit_prop(buffer, offs, "device_id",
 492			      dev->node_props.device_id);
 493	sysfs_show_32bit_prop(buffer, offs, "location_id",
 494			      dev->node_props.location_id);
 495	sysfs_show_32bit_prop(buffer, offs, "domain",
 496			      dev->node_props.domain);
 497	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
 498			      dev->node_props.drm_render_minor);
 499	sysfs_show_64bit_prop(buffer, offs, "hive_id",
 500			      dev->node_props.hive_id);
 501	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
 502			      dev->node_props.num_sdma_engines);
 503	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
 504			      dev->node_props.num_sdma_xgmi_engines);
 505	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
 506			      dev->node_props.num_sdma_queues_per_engine);
 507	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
 508			      dev->node_props.num_cp_queues);
 509
 510	if (dev->gpu) {
 511		log_max_watch_addr =
 512			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
 513
 514		if (log_max_watch_addr) {
 515			dev->node_props.capability |=
 516					HSA_CAP_WATCH_POINTS_SUPPORTED;
 517
 518			dev->node_props.capability |=
 519				((log_max_watch_addr <<
 520					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
 521				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
 522		}
 523
 524		if (dev->gpu->adev->asic_type == CHIP_TONGA)
 525			dev->node_props.capability |=
 526					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
 527
 528		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
 529			dev->node_props.max_engine_clk_fcompute);
 530
 531		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
 532
 533		sysfs_show_32bit_prop(buffer, offs, "fw_version",
 534				      dev->gpu->kfd->mec_fw_version);
 535		sysfs_show_32bit_prop(buffer, offs, "capability",
 536				      dev->node_props.capability);
 537		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
 538				      dev->node_props.debug_prop);
 539		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
 540				      dev->gpu->kfd->sdma_fw_version);
 541		sysfs_show_64bit_prop(buffer, offs, "unique_id",
 542				      dev->gpu->adev->unique_id);
 543		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
 544				      NUM_XCC(dev->gpu->xcc_mask));
 545	}
 546
 547	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
 548				     cpufreq_quick_get_max(0)/1000);
 549}
 550
 551static const struct sysfs_ops node_ops = {
 552	.show = node_show,
 553};
 554
 555static const struct kobj_type node_type = {
 556	.release = kfd_topology_kobj_release,
 557	.sysfs_ops = &node_ops,
 558};
 559
 560static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
 561{
 562	sysfs_remove_file(kobj, attr);
 563	kobject_del(kobj);
 564	kobject_put(kobj);
 565}
 566
 567static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
 568{
 569	struct kfd_iolink_properties *p2plink;
 570	struct kfd_iolink_properties *iolink;
 571	struct kfd_cache_properties *cache;
 572	struct kfd_mem_properties *mem;
 573	struct kfd_perf_properties *perf;
 574
 575	if (dev->kobj_iolink) {
 576		list_for_each_entry(iolink, &dev->io_link_props, list)
 577			if (iolink->kobj) {
 578				kfd_remove_sysfs_file(iolink->kobj,
 579							&iolink->attr);
 580				iolink->kobj = NULL;
 581			}
 582		kobject_del(dev->kobj_iolink);
 583		kobject_put(dev->kobj_iolink);
 584		dev->kobj_iolink = NULL;
 585	}
 586
 587	if (dev->kobj_p2plink) {
 588		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
 589			if (p2plink->kobj) {
 590				kfd_remove_sysfs_file(p2plink->kobj,
 591							&p2plink->attr);
 592				p2plink->kobj = NULL;
 593			}
 594		kobject_del(dev->kobj_p2plink);
 595		kobject_put(dev->kobj_p2plink);
 596		dev->kobj_p2plink = NULL;
 597	}
 598
 599	if (dev->kobj_cache) {
 600		list_for_each_entry(cache, &dev->cache_props, list)
 601			if (cache->kobj) {
 602				kfd_remove_sysfs_file(cache->kobj,
 603							&cache->attr);
 604				cache->kobj = NULL;
 605			}
 606		kobject_del(dev->kobj_cache);
 607		kobject_put(dev->kobj_cache);
 608		dev->kobj_cache = NULL;
 609	}
 610
 611	if (dev->kobj_mem) {
 612		list_for_each_entry(mem, &dev->mem_props, list)
 613			if (mem->kobj) {
 614				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
 615				mem->kobj = NULL;
 616			}
 617		kobject_del(dev->kobj_mem);
 618		kobject_put(dev->kobj_mem);
 619		dev->kobj_mem = NULL;
 620	}
 621
 622	if (dev->kobj_perf) {
 623		list_for_each_entry(perf, &dev->perf_props, list) {
 624			kfree(perf->attr_group);
 625			perf->attr_group = NULL;
 626		}
 627		kobject_del(dev->kobj_perf);
 628		kobject_put(dev->kobj_perf);
 629		dev->kobj_perf = NULL;
 630	}
 631
 632	if (dev->kobj_node) {
 633		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
 634		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
 635		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
 636		kobject_del(dev->kobj_node);
 637		kobject_put(dev->kobj_node);
 638		dev->kobj_node = NULL;
 639	}
 640}
 641
 642static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
 643		uint32_t id)
 644{
 645	struct kfd_iolink_properties *p2plink;
 646	struct kfd_iolink_properties *iolink;
 647	struct kfd_cache_properties *cache;
 648	struct kfd_mem_properties *mem;
 649	struct kfd_perf_properties *perf;
 650	int ret;
 651	uint32_t i, num_attrs;
 652	struct attribute **attrs;
 653
 654	if (WARN_ON(dev->kobj_node))
 655		return -EEXIST;
 656
 657	/*
 658	 * Creating the sysfs folders
 659	 */
 660	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
 661	if (!dev->kobj_node)
 662		return -ENOMEM;
 663
 664	ret = kobject_init_and_add(dev->kobj_node, &node_type,
 665			sys_props.kobj_nodes, "%d", id);
 666	if (ret < 0) {
 667		kobject_put(dev->kobj_node);
 668		return ret;
 669	}
 670
 671	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
 672	if (!dev->kobj_mem)
 673		return -ENOMEM;
 674
 675	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
 676	if (!dev->kobj_cache)
 677		return -ENOMEM;
 678
 679	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
 680	if (!dev->kobj_iolink)
 681		return -ENOMEM;
 682
 683	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
 684	if (!dev->kobj_p2plink)
 685		return -ENOMEM;
 686
 687	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
 688	if (!dev->kobj_perf)
 689		return -ENOMEM;
 690
 691	/*
 692	 * Creating sysfs files for node properties
 693	 */
 694	dev->attr_gpuid.name = "gpu_id";
 695	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
 696	sysfs_attr_init(&dev->attr_gpuid);
 697	dev->attr_name.name = "name";
 698	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
 699	sysfs_attr_init(&dev->attr_name);
 700	dev->attr_props.name = "properties";
 701	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
 702	sysfs_attr_init(&dev->attr_props);
 703	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
 704	if (ret < 0)
 705		return ret;
 706	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
 707	if (ret < 0)
 708		return ret;
 709	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
 710	if (ret < 0)
 711		return ret;
 712
 713	i = 0;
 714	list_for_each_entry(mem, &dev->mem_props, list) {
 715		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 716		if (!mem->kobj)
 717			return -ENOMEM;
 718		ret = kobject_init_and_add(mem->kobj, &mem_type,
 719				dev->kobj_mem, "%d", i);
 720		if (ret < 0) {
 721			kobject_put(mem->kobj);
 722			return ret;
 723		}
 724
 725		mem->attr.name = "properties";
 726		mem->attr.mode = KFD_SYSFS_FILE_MODE;
 727		sysfs_attr_init(&mem->attr);
 728		ret = sysfs_create_file(mem->kobj, &mem->attr);
 729		if (ret < 0)
 730			return ret;
 731		i++;
 732	}
 733
 734	i = 0;
 735	list_for_each_entry(cache, &dev->cache_props, list) {
 736		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 737		if (!cache->kobj)
 738			return -ENOMEM;
 739		ret = kobject_init_and_add(cache->kobj, &cache_type,
 740				dev->kobj_cache, "%d", i);
 741		if (ret < 0) {
 742			kobject_put(cache->kobj);
 743			return ret;
 744		}
 745
 746		cache->attr.name = "properties";
 747		cache->attr.mode = KFD_SYSFS_FILE_MODE;
 748		sysfs_attr_init(&cache->attr);
 749		ret = sysfs_create_file(cache->kobj, &cache->attr);
 750		if (ret < 0)
 751			return ret;
 752		i++;
 753	}
 754
 755	i = 0;
 756	list_for_each_entry(iolink, &dev->io_link_props, list) {
 757		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 758		if (!iolink->kobj)
 759			return -ENOMEM;
 760		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
 761				dev->kobj_iolink, "%d", i);
 762		if (ret < 0) {
 763			kobject_put(iolink->kobj);
 764			return ret;
 765		}
 766
 767		iolink->attr.name = "properties";
 768		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
 769		sysfs_attr_init(&iolink->attr);
 770		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
 771		if (ret < 0)
 772			return ret;
 773		i++;
 774	}
 775
 776	i = 0;
 777	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
 778		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 779		if (!p2plink->kobj)
 780			return -ENOMEM;
 781		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
 782				dev->kobj_p2plink, "%d", i);
 783		if (ret < 0) {
 784			kobject_put(p2plink->kobj);
 785			return ret;
 786		}
 787
 788		p2plink->attr.name = "properties";
 789		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
 790		sysfs_attr_init(&p2plink->attr);
 791		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
 792		if (ret < 0)
 793			return ret;
 794		i++;
 795	}
 796
 797	/* All hardware blocks have the same number of attributes. */
 798	num_attrs = ARRAY_SIZE(perf_attr_iommu);
 799	list_for_each_entry(perf, &dev->perf_props, list) {
 800		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
 801			* num_attrs + sizeof(struct attribute_group),
 802			GFP_KERNEL);
 803		if (!perf->attr_group)
 804			return -ENOMEM;
 805
 806		attrs = (struct attribute **)(perf->attr_group + 1);
 807		if (!strcmp(perf->block_name, "iommu")) {
 808		/* Information of IOMMU's num_counters and counter_ids is shown
 809		 * under /sys/bus/event_source/devices/amd_iommu. We don't
 810		 * duplicate here.
 811		 */
 812			perf_attr_iommu[0].data = perf->max_concurrent;
 813			for (i = 0; i < num_attrs; i++)
 814				attrs[i] = &perf_attr_iommu[i].attr.attr;
 815		}
 816		perf->attr_group->name = perf->block_name;
 817		perf->attr_group->attrs = attrs;
 818		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
 819		if (ret < 0)
 820			return ret;
 821	}
 822
 823	return 0;
 824}
 825
 826/* Called with write topology lock acquired */
 827static int kfd_build_sysfs_node_tree(void)
 828{
 829	struct kfd_topology_device *dev;
 830	int ret;
 831	uint32_t i = 0;
 832
 833	list_for_each_entry(dev, &topology_device_list, list) {
 834		ret = kfd_build_sysfs_node_entry(dev, i);
 835		if (ret < 0)
 836			return ret;
 837		i++;
 838	}
 839
 840	return 0;
 841}
 842
 843/* Called with write topology lock acquired */
 844static void kfd_remove_sysfs_node_tree(void)
 845{
 846	struct kfd_topology_device *dev;
 847
 848	list_for_each_entry(dev, &topology_device_list, list)
 849		kfd_remove_sysfs_node_entry(dev);
 850}
 851
 852static int kfd_topology_update_sysfs(void)
 853{
 854	int ret;
 855
 856	if (!sys_props.kobj_topology) {
 857		sys_props.kobj_topology =
 858				kfd_alloc_struct(sys_props.kobj_topology);
 859		if (!sys_props.kobj_topology)
 860			return -ENOMEM;
 861
 862		ret = kobject_init_and_add(sys_props.kobj_topology,
 863				&sysprops_type,  &kfd_device->kobj,
 864				"topology");
 865		if (ret < 0) {
 866			kobject_put(sys_props.kobj_topology);
 867			return ret;
 868		}
 869
 870		sys_props.kobj_nodes = kobject_create_and_add("nodes",
 871				sys_props.kobj_topology);
 872		if (!sys_props.kobj_nodes)
 873			return -ENOMEM;
 874
 875		sys_props.attr_genid.name = "generation_id";
 876		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
 877		sysfs_attr_init(&sys_props.attr_genid);
 878		ret = sysfs_create_file(sys_props.kobj_topology,
 879				&sys_props.attr_genid);
 880		if (ret < 0)
 881			return ret;
 882
 883		sys_props.attr_props.name = "system_properties";
 884		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
 885		sysfs_attr_init(&sys_props.attr_props);
 886		ret = sysfs_create_file(sys_props.kobj_topology,
 887				&sys_props.attr_props);
 888		if (ret < 0)
 889			return ret;
 890	}
 891
 892	kfd_remove_sysfs_node_tree();
 893
 894	return kfd_build_sysfs_node_tree();
 895}
 896
 897static void kfd_topology_release_sysfs(void)
 898{
 899	kfd_remove_sysfs_node_tree();
 900	if (sys_props.kobj_topology) {
 901		sysfs_remove_file(sys_props.kobj_topology,
 902				&sys_props.attr_genid);
 903		sysfs_remove_file(sys_props.kobj_topology,
 904				&sys_props.attr_props);
 905		if (sys_props.kobj_nodes) {
 906			kobject_del(sys_props.kobj_nodes);
 907			kobject_put(sys_props.kobj_nodes);
 908			sys_props.kobj_nodes = NULL;
 909		}
 910		kobject_del(sys_props.kobj_topology);
 911		kobject_put(sys_props.kobj_topology);
 912		sys_props.kobj_topology = NULL;
 913	}
 914}
 915
 916/* Called with write topology_lock acquired */
 917static void kfd_topology_update_device_list(struct list_head *temp_list,
 918					struct list_head *master_list)
 919{
 920	while (!list_empty(temp_list)) {
 921		list_move_tail(temp_list->next, master_list);
 922		sys_props.num_devices++;
 923	}
 924}
 925
 926static void kfd_debug_print_topology(void)
 927{
 928	struct kfd_topology_device *dev;
 929
 930	down_read(&topology_lock);
 931
 932	dev = list_last_entry(&topology_device_list,
 933			struct kfd_topology_device, list);
 934	if (dev) {
 935		if (dev->node_props.cpu_cores_count &&
 936				dev->node_props.simd_count) {
 937			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
 938				dev->node_props.device_id,
 939				dev->node_props.vendor_id);
 940		} else if (dev->node_props.cpu_cores_count)
 941			pr_info("Topology: Add CPU node\n");
 942		else if (dev->node_props.simd_count)
 943			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
 944				dev->node_props.device_id,
 945				dev->node_props.vendor_id);
 946	}
 947	up_read(&topology_lock);
 948}
 949
 950/* Helper function for intializing platform_xx members of
 951 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
 952 */
 953static void kfd_update_system_properties(void)
 954{
 955	struct kfd_topology_device *dev;
 956
 957	down_read(&topology_lock);
 958	dev = list_last_entry(&topology_device_list,
 959			struct kfd_topology_device, list);
 960	if (dev) {
 961		sys_props.platform_id =
 962			(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
 963		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
 964		sys_props.platform_rev = dev->oem_revision;
 965	}
 966	up_read(&topology_lock);
 967}
 968
 969static void find_system_memory(const struct dmi_header *dm,
 970	void *private)
 971{
 972	struct kfd_mem_properties *mem;
 973	u16 mem_width, mem_clock;
 974	struct kfd_topology_device *kdev =
 975		(struct kfd_topology_device *)private;
 976	const u8 *dmi_data = (const u8 *)(dm + 1);
 977
 978	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
 979		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
 980		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
 981		list_for_each_entry(mem, &kdev->mem_props, list) {
 982			if (mem_width != 0xFFFF && mem_width != 0)
 983				mem->width = mem_width;
 984			if (mem_clock != 0)
 985				mem->mem_clk_max = mem_clock;
 986		}
 987	}
 988}
 989
 990/* kfd_add_non_crat_information - Add information that is not currently
 991 *	defined in CRAT but is necessary for KFD topology
 992 * @dev - topology device to which addition info is added
 993 */
 994static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
 995{
 996	/* Check if CPU only node. */
 997	if (!kdev->gpu) {
 998		/* Add system memory information */
 999		dmi_walk(find_system_memory, kdev);
1000	}
1001	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1002}
1003
1004int kfd_topology_init(void)
1005{
1006	void *crat_image = NULL;
1007	size_t image_size = 0;
1008	int ret;
1009	struct list_head temp_topology_device_list;
1010	int cpu_only_node = 0;
1011	struct kfd_topology_device *kdev;
1012	int proximity_domain;
1013
1014	/* topology_device_list - Master list of all topology devices
1015	 * temp_topology_device_list - temporary list created while parsing CRAT
1016	 * or VCRAT. Once parsing is complete the contents of list is moved to
1017	 * topology_device_list
1018	 */
1019
1020	/* Initialize the head for the both the lists */
1021	INIT_LIST_HEAD(&topology_device_list);
1022	INIT_LIST_HEAD(&temp_topology_device_list);
1023	init_rwsem(&topology_lock);
1024
1025	memset(&sys_props, 0, sizeof(sys_props));
1026
1027	/* Proximity domains in ACPI CRAT tables start counting at
1028	 * 0. The same should be true for virtual CRAT tables created
1029	 * at this stage. GPUs added later in kfd_topology_add_device
1030	 * use a counter.
1031	 */
1032	proximity_domain = 0;
1033
1034	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1035					    COMPUTE_UNIT_CPU, NULL,
1036					    proximity_domain);
1037	cpu_only_node = 1;
1038	if (ret) {
1039		pr_err("Error creating VCRAT table for CPU\n");
1040		return ret;
1041	}
1042
1043	ret = kfd_parse_crat_table(crat_image,
1044				   &temp_topology_device_list,
1045				   proximity_domain);
1046	if (ret) {
1047		pr_err("Error parsing VCRAT table for CPU\n");
1048		goto err;
1049	}
1050
1051	kdev = list_first_entry(&temp_topology_device_list,
1052				struct kfd_topology_device, list);
1053
1054	down_write(&topology_lock);
1055	kfd_topology_update_device_list(&temp_topology_device_list,
1056					&topology_device_list);
1057	topology_crat_proximity_domain = sys_props.num_devices-1;
1058	ret = kfd_topology_update_sysfs();
1059	up_write(&topology_lock);
1060
1061	if (!ret) {
1062		sys_props.generation_count++;
1063		kfd_update_system_properties();
1064		kfd_debug_print_topology();
1065	} else
1066		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1067
1068	/* For nodes with GPU, this information gets added
1069	 * when GPU is detected (kfd_topology_add_device).
1070	 */
1071	if (cpu_only_node) {
1072		/* Add additional information to CPU only node created above */
1073		down_write(&topology_lock);
1074		kdev = list_first_entry(&topology_device_list,
1075				struct kfd_topology_device, list);
1076		up_write(&topology_lock);
1077		kfd_add_non_crat_information(kdev);
1078	}
1079
1080err:
1081	kfd_destroy_crat_image(crat_image);
1082	return ret;
1083}
1084
1085void kfd_topology_shutdown(void)
1086{
1087	down_write(&topology_lock);
1088	kfd_topology_release_sysfs();
1089	kfd_release_live_view();
1090	up_write(&topology_lock);
1091}
1092
1093static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1094{
1095	uint32_t hashout;
1096	uint32_t buf[8];
1097	uint64_t local_mem_size;
1098	int i;
 
 
1099
1100	if (!gpu)
1101		return 0;
1102
 
1103	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1104			gpu->local_mem_info.local_mem_size_public;
1105	buf[0] = gpu->adev->pdev->devfn;
1106	buf[1] = gpu->adev->pdev->subsystem_vendor |
1107		(gpu->adev->pdev->subsystem_device << 16);
1108	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1109	buf[3] = gpu->adev->pdev->device;
1110	buf[4] = gpu->adev->pdev->bus->number;
1111	buf[5] = lower_32_bits(local_mem_size);
1112	buf[6] = upper_32_bits(local_mem_size);
1113	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1114
1115	for (i = 0, hashout = 0; i < 8; i++)
1116		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1117
1118	return hashout;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1119}
1120/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1121 *		the GPU device is not already present in the topology device
1122 *		list then return NULL. This means a new topology device has to
1123 *		be created for this GPU.
1124 */
1125static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1126{
1127	struct kfd_topology_device *dev;
1128	struct kfd_topology_device *out_dev = NULL;
1129	struct kfd_mem_properties *mem;
1130	struct kfd_cache_properties *cache;
1131	struct kfd_iolink_properties *iolink;
1132	struct kfd_iolink_properties *p2plink;
1133
1134	list_for_each_entry(dev, &topology_device_list, list) {
1135		/* Discrete GPUs need their own topology device list
1136		 * entries. Don't assign them to CPU/APU nodes.
1137		 */
1138		if (dev->node_props.cpu_cores_count)
1139			continue;
1140
1141		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1142			dev->gpu = gpu;
1143			out_dev = dev;
1144
1145			list_for_each_entry(mem, &dev->mem_props, list)
1146				mem->gpu = dev->gpu;
1147			list_for_each_entry(cache, &dev->cache_props, list)
1148				cache->gpu = dev->gpu;
1149			list_for_each_entry(iolink, &dev->io_link_props, list)
1150				iolink->gpu = dev->gpu;
1151			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1152				p2plink->gpu = dev->gpu;
1153			break;
1154		}
1155	}
1156	return out_dev;
1157}
1158
1159static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1160{
1161	/*
1162	 * TODO: Generate an event for thunk about the arrival/removal
1163	 * of the GPU
1164	 */
1165}
1166
1167/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1168 *		patch this after CRAT parsing.
1169 */
1170static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1171{
1172	struct kfd_mem_properties *mem;
1173	struct kfd_local_mem_info local_mem_info;
1174
1175	if (!dev)
1176		return;
1177
1178	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1179	 * single bank of VRAM local memory.
1180	 * for dGPUs - VCRAT reports only one bank of Local Memory
1181	 * for APUs - If CRAT from ACPI reports more than one bank, then
1182	 *	all the banks will report the same mem_clk_max information
1183	 */
1184	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1185					 dev->gpu->xcp);
1186
1187	list_for_each_entry(mem, &dev->mem_props, list)
1188		mem->mem_clk_max = local_mem_info.mem_clk_max;
1189}
1190
1191static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1192					struct kfd_topology_device *target_gpu_dev,
1193					struct kfd_iolink_properties *link)
1194{
1195	/* xgmi always supports atomics between links. */
1196	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1197		return;
1198
1199	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1200	if (target_gpu_dev) {
1201		uint32_t cap;
1202
1203		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1204				PCI_EXP_DEVCAP2, &cap);
1205
1206		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1207			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1208			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1209				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1210	/* set gpu (dev) flags. */
1211	} else {
1212		if (!dev->gpu->kfd->pci_atomic_requested ||
1213				dev->gpu->adev->asic_type == CHIP_HAWAII)
1214			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1215				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1216	}
1217}
1218
1219static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1220		struct kfd_iolink_properties *outbound_link,
1221		struct kfd_iolink_properties *inbound_link)
1222{
1223	/* CPU -> GPU with PCIe */
1224	if (!to_dev->gpu &&
1225	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1226		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1227
1228	if (to_dev->gpu) {
1229		/* GPU <-> GPU with PCIe and
1230		 * Vega20 with XGMI
1231		 */
1232		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1233		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1234		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1235			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1236			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1237		}
1238	}
1239}
1240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1242{
1243	struct kfd_iolink_properties *link, *inbound_link;
1244	struct kfd_topology_device *peer_dev;
1245
1246	if (!dev || !dev->gpu)
1247		return;
1248
1249	/* GPU only creates direct links so apply flags setting to all */
1250	list_for_each_entry(link, &dev->io_link_props, list) {
1251		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1252		kfd_set_iolink_no_atomics(dev, NULL, link);
1253		peer_dev = kfd_topology_device_by_proximity_domain(
1254				link->node_to);
1255
1256		if (!peer_dev)
1257			continue;
1258
1259		/* Include the CPU peer in GPU hive if connected over xGMI. */
1260		if (!peer_dev->gpu &&
1261		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1262			/*
1263			 * If the GPU is not part of a GPU hive, use its pci
1264			 * device location as the hive ID to bind with the CPU.
1265			 */
1266			if (!dev->node_props.hive_id)
1267				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1268			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1269		}
1270
1271		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1272									list) {
1273			if (inbound_link->node_to != link->node_from)
1274				continue;
1275
1276			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1277			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1278			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
 
1279		}
1280	}
1281
1282	/* Create indirect links so apply flags setting to all */
1283	list_for_each_entry(link, &dev->p2p_link_props, list) {
1284		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1285		kfd_set_iolink_no_atomics(dev, NULL, link);
1286		peer_dev = kfd_topology_device_by_proximity_domain(
1287				link->node_to);
1288
1289		if (!peer_dev)
1290			continue;
1291
1292		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1293									list) {
1294			if (inbound_link->node_to != link->node_from)
1295				continue;
1296
1297			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1298			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1299			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1300		}
1301	}
1302}
1303
1304static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1305				struct kfd_iolink_properties *p2plink)
1306{
1307	int ret;
1308
1309	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1310	if (!p2plink->kobj)
1311		return -ENOMEM;
1312
1313	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1314			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1315	if (ret < 0) {
1316		kobject_put(p2plink->kobj);
1317		return ret;
1318	}
1319
1320	p2plink->attr.name = "properties";
1321	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1322	sysfs_attr_init(&p2plink->attr);
1323	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1324	if (ret < 0)
1325		return ret;
1326
1327	return 0;
1328}
1329
1330static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1331{
1332	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1333	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1334	struct kfd_topology_device *cpu_dev;
1335	int ret = 0;
1336	int i, num_cpu;
1337
1338	num_cpu = 0;
1339	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1340		if (cpu_dev->gpu)
1341			break;
1342		num_cpu++;
1343	}
1344
1345	if (list_empty(&kdev->io_link_props))
1346		return -ENODATA;
1347
1348	gpu_link = list_first_entry(&kdev->io_link_props,
1349				    struct kfd_iolink_properties, list);
1350
1351	for (i = 0; i < num_cpu; i++) {
1352		/* CPU <--> GPU */
1353		if (gpu_link->node_to == i)
1354			continue;
1355
1356		/* find CPU <-->  CPU links */
1357		cpu_link = NULL;
1358		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1359		if (cpu_dev) {
1360			list_for_each_entry(tmp_link,
1361					&cpu_dev->io_link_props, list) {
1362				if (tmp_link->node_to == gpu_link->node_to) {
1363					cpu_link = tmp_link;
1364					break;
1365				}
1366			}
1367		}
1368
1369		if (!cpu_link)
1370			return -ENOMEM;
1371
1372		/* CPU <--> CPU <--> GPU, GPU node*/
1373		props = kfd_alloc_struct(props);
1374		if (!props)
1375			return -ENOMEM;
1376
1377		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1378		props->weight = gpu_link->weight + cpu_link->weight;
1379		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1380		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1381		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1382		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1383
1384		props->node_from = gpu_node;
1385		props->node_to = i;
1386		kdev->node_props.p2p_links_count++;
1387		list_add_tail(&props->list, &kdev->p2p_link_props);
1388		ret = kfd_build_p2p_node_entry(kdev, props);
1389		if (ret < 0)
1390			return ret;
1391
1392		/* for small Bar, no CPU --> GPU in-direct links */
1393		if (kfd_dev_is_large_bar(kdev->gpu)) {
1394			/* CPU <--> CPU <--> GPU, CPU node*/
1395			props2 = kfd_alloc_struct(props2);
1396			if (!props2)
1397				return -ENOMEM;
1398
1399			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1400			props2->node_from = i;
1401			props2->node_to = gpu_node;
1402			props2->kobj = NULL;
1403			cpu_dev->node_props.p2p_links_count++;
1404			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1405			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1406			if (ret < 0)
1407				return ret;
1408		}
1409	}
1410	return ret;
1411}
1412
1413#if defined(CONFIG_HSA_AMD_P2P)
1414static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1415		struct kfd_topology_device *peer, int from, int to)
1416{
1417	struct kfd_iolink_properties *props = NULL;
1418	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1419	struct kfd_topology_device *cpu_dev;
1420	int ret = 0;
1421
1422	if (!amdgpu_device_is_peer_accessible(
1423				kdev->gpu->adev,
1424				peer->gpu->adev))
1425		return ret;
1426
1427	if (list_empty(&kdev->io_link_props))
1428		return -ENODATA;
1429
1430	iolink1 = list_first_entry(&kdev->io_link_props,
1431				   struct kfd_iolink_properties, list);
1432
1433	if (list_empty(&peer->io_link_props))
1434		return -ENODATA;
1435
1436	iolink2 = list_first_entry(&peer->io_link_props,
1437				   struct kfd_iolink_properties, list);
1438
1439	props = kfd_alloc_struct(props);
1440	if (!props)
1441		return -ENOMEM;
1442
1443	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1444
1445	props->weight = iolink1->weight + iolink2->weight;
1446	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1447	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1448	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1449	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1450
1451	if (iolink1->node_to != iolink2->node_to) {
1452		/* CPU->CPU  link*/
1453		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1454		if (cpu_dev) {
1455			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1456				if (iolink3->node_to != iolink2->node_to)
1457					continue;
1458
1459				props->weight += iolink3->weight;
1460				props->min_latency += iolink3->min_latency;
1461				props->max_latency += iolink3->max_latency;
1462				props->min_bandwidth = min(props->min_bandwidth,
1463							   iolink3->min_bandwidth);
1464				props->max_bandwidth = min(props->max_bandwidth,
1465							   iolink3->max_bandwidth);
1466				break;
1467			}
1468		} else {
1469			WARN(1, "CPU node not found");
1470		}
1471	}
1472
1473	props->node_from = from;
1474	props->node_to = to;
1475	peer->node_props.p2p_links_count++;
1476	list_add_tail(&props->list, &peer->p2p_link_props);
1477	ret = kfd_build_p2p_node_entry(peer, props);
1478
1479	return ret;
1480}
1481#endif
1482
1483static int kfd_dev_create_p2p_links(void)
1484{
1485	struct kfd_topology_device *dev;
1486	struct kfd_topology_device *new_dev;
1487#if defined(CONFIG_HSA_AMD_P2P)
1488	uint32_t i;
1489#endif
1490	uint32_t k;
1491	int ret = 0;
1492
1493	k = 0;
1494	list_for_each_entry(dev, &topology_device_list, list)
1495		k++;
1496	if (k < 2)
1497		return 0;
1498
1499	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1500	if (WARN_ON(!new_dev->gpu))
1501		return 0;
1502
1503	k--;
1504
1505	/* create in-direct links */
1506	ret = kfd_create_indirect_link_prop(new_dev, k);
1507	if (ret < 0)
1508		goto out;
1509
1510	/* create p2p links */
1511#if defined(CONFIG_HSA_AMD_P2P)
1512	i = 0;
1513	list_for_each_entry(dev, &topology_device_list, list) {
1514		if (dev == new_dev)
1515			break;
1516		if (!dev->gpu || !dev->gpu->adev ||
1517		    (dev->gpu->kfd->hive_id &&
1518		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1519			goto next;
1520
1521		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1522		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1523		if (ret < 0)
1524			goto out;
1525
1526		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1527		if (ret < 0)
1528			goto out;
1529next:
1530		i++;
1531	}
1532#endif
1533
1534out:
1535	return ret;
1536}
1537
1538/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1539static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1540				struct kfd_gpu_cache_info *pcache_info,
1541				int cu_bitmask,
1542				int cache_type, unsigned int cu_processor_id,
1543				int cu_block)
1544{
1545	unsigned int cu_sibling_map_mask;
1546	int first_active_cu;
1547	struct kfd_cache_properties *pcache = NULL;
1548
1549	cu_sibling_map_mask = cu_bitmask;
1550	cu_sibling_map_mask >>= cu_block;
1551	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1552	first_active_cu = ffs(cu_sibling_map_mask);
1553
1554	/* CU could be inactive. In case of shared cache find the first active
1555	 * CU. and incase of non-shared cache check if the CU is inactive. If
1556	 * inactive active skip it
1557	 */
1558	if (first_active_cu) {
1559		pcache = kfd_alloc_struct(pcache);
1560		if (!pcache)
1561			return -ENOMEM;
1562
1563		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1564		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1565		pcache->cache_level = pcache_info[cache_type].cache_level;
1566		pcache->cache_size = pcache_info[cache_type].cache_size;
 
1567
1568		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1569			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1570		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1571			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1572		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1573			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1574		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1575			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1576
1577		/* Sibling map is w.r.t processor_id_low, so shift out
1578		 * inactive CU
1579		 */
1580		cu_sibling_map_mask =
1581			cu_sibling_map_mask >> (first_active_cu - 1);
1582
1583		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1584		pcache->sibling_map[1] =
1585				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1586		pcache->sibling_map[2] =
1587				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1588		pcache->sibling_map[3] =
1589				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1590
1591		pcache->sibling_map_size = 4;
1592		*props_ext = pcache;
1593
1594		return 0;
1595	}
1596	return 1;
1597}
1598
1599/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1600static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1601				struct kfd_gpu_cache_info *pcache_info,
1602				struct amdgpu_cu_info *cu_info,
1603				struct amdgpu_gfx_config *gfx_info,
1604				int cache_type, unsigned int cu_processor_id,
1605				struct kfd_node *knode)
1606{
1607	unsigned int cu_sibling_map_mask;
1608	int first_active_cu;
1609	int i, j, k, xcc, start, end;
1610	int num_xcc = NUM_XCC(knode->xcc_mask);
1611	struct kfd_cache_properties *pcache = NULL;
1612	enum amdgpu_memory_partition mode;
1613	struct amdgpu_device *adev = knode->adev;
1614
1615	start = ffs(knode->xcc_mask) - 1;
1616	end = start + num_xcc;
1617	cu_sibling_map_mask = cu_info->bitmap[start][0][0];
1618	cu_sibling_map_mask &=
1619		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1620	first_active_cu = ffs(cu_sibling_map_mask);
1621
1622	/* CU could be inactive. In case of shared cache find the first active
1623	 * CU. and incase of non-shared cache check if the CU is inactive. If
1624	 * inactive active skip it
1625	 */
1626	if (first_active_cu) {
1627		pcache = kfd_alloc_struct(pcache);
1628		if (!pcache)
1629			return -ENOMEM;
1630
1631		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1632		pcache->processor_id_low = cu_processor_id
1633					+ (first_active_cu - 1);
1634		pcache->cache_level = pcache_info[cache_type].cache_level;
 
1635
1636		if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3))
 
1637			mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1638		else
1639			mode = UNKNOWN_MEMORY_PARTITION_MODE;
1640
1641		pcache->cache_size = pcache_info[cache_type].cache_size;
1642		/* Partition mode only affects L3 cache size */
1643		if (mode && pcache->cache_level == 3)
1644			pcache->cache_size /= mode;
1645
1646		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1647			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1648		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1649			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1650		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1651			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1652		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1653			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1654
1655		/* Sibling map is w.r.t processor_id_low, so shift out
1656		 * inactive CU
1657		 */
1658		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1659		k = 0;
1660
1661		for (xcc = start; xcc < end; xcc++) {
1662			for (i = 0; i < gfx_info->max_shader_engines; i++) {
1663				for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1664					pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1665					pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1666					pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1667					pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1668					k += 4;
1669
1670					cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1671					cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1672				}
1673			}
1674		}
1675		pcache->sibling_map_size = k;
1676		*props_ext = pcache;
1677		return 0;
1678	}
1679	return 1;
1680}
1681
1682#define KFD_MAX_CACHE_TYPES 6
1683
1684/* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1685 * tables
1686 */
1687static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1688{
1689	struct kfd_gpu_cache_info *pcache_info = NULL;
1690	int i, j, k, xcc, start, end;
1691	int ct = 0;
1692	unsigned int cu_processor_id;
1693	int ret;
1694	unsigned int num_cu_shared;
1695	struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1696	struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1697	int gpu_processor_id;
1698	struct kfd_cache_properties *props_ext;
1699	int num_of_entries = 0;
1700	int num_of_cache_types = 0;
1701	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1702
1703
1704	gpu_processor_id = dev->node_props.simd_id_base;
1705
 
1706	pcache_info = cache_info;
1707	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1708	if (!num_of_cache_types) {
1709		pr_warn("no cache info found\n");
1710		return;
1711	}
1712
1713	/* For each type of cache listed in the kfd_gpu_cache_info table,
1714	 * go through all available Compute Units.
1715	 * The [i,j,k] loop will
1716	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1717	 *			will parse through all available CU
1718	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1719	 *			then it will consider only one CU from
1720	 *			the shared unit
1721	 */
1722	start = ffs(kdev->xcc_mask) - 1;
1723	end = start + NUM_XCC(kdev->xcc_mask);
1724
1725	for (ct = 0; ct < num_of_cache_types; ct++) {
1726		cu_processor_id = gpu_processor_id;
1727		if (pcache_info[ct].cache_level == 1) {
1728			for (xcc = start; xcc < end; xcc++) {
1729				for (i = 0; i < gfx_info->max_shader_engines; i++) {
1730					for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1731						for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1732
1733							ret = fill_in_l1_pcache(&props_ext, pcache_info,
1734										cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1735										cu_processor_id, k);
1736
1737							if (ret < 0)
1738								break;
1739
1740							if (!ret) {
1741								num_of_entries++;
1742								list_add_tail(&props_ext->list, &dev->cache_props);
1743							}
1744
1745							/* Move to next CU block */
1746							num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1747								gfx_info->max_cu_per_sh) ?
1748								pcache_info[ct].num_cu_shared :
1749								(gfx_info->max_cu_per_sh - k);
1750							cu_processor_id += num_cu_shared;
1751						}
1752					}
1753				}
1754			}
1755		} else {
1756			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1757						   cu_info, gfx_info, ct, cu_processor_id, kdev);
1758
1759			if (ret < 0)
1760				break;
1761
1762			if (!ret) {
1763				num_of_entries++;
1764				list_add_tail(&props_ext->list, &dev->cache_props);
1765			}
1766		}
1767	}
1768	dev->node_props.caches_count += num_of_entries;
1769	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1770}
1771
1772static int kfd_topology_add_device_locked(struct kfd_node *gpu, uint32_t gpu_id,
1773					  struct kfd_topology_device **dev)
1774{
1775	int proximity_domain = ++topology_crat_proximity_domain;
1776	struct list_head temp_topology_device_list;
1777	void *crat_image = NULL;
1778	size_t image_size = 0;
1779	int res;
1780
1781	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1782					    COMPUTE_UNIT_GPU, gpu,
1783					    proximity_domain);
1784	if (res) {
1785		pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1786		       gpu_id);
1787		topology_crat_proximity_domain--;
1788		goto err;
1789	}
1790
1791	INIT_LIST_HEAD(&temp_topology_device_list);
1792
1793	res = kfd_parse_crat_table(crat_image,
1794				   &temp_topology_device_list,
1795				   proximity_domain);
1796	if (res) {
1797		pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1798		       gpu_id);
1799		topology_crat_proximity_domain--;
1800		goto err;
1801	}
1802
1803	kfd_topology_update_device_list(&temp_topology_device_list,
1804					&topology_device_list);
1805
1806	*dev = kfd_assign_gpu(gpu);
1807	if (WARN_ON(!*dev)) {
1808		res = -ENODEV;
1809		goto err;
1810	}
1811
1812	/* Fill the cache affinity information here for the GPUs
1813	 * using VCRAT
1814	 */
1815	kfd_fill_cache_non_crat_info(*dev, gpu);
1816
1817	/* Update the SYSFS tree, since we added another topology
1818	 * device
1819	 */
1820	res = kfd_topology_update_sysfs();
1821	if (!res)
1822		sys_props.generation_count++;
1823	else
1824		pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1825		       gpu_id, res);
1826
1827err:
1828	kfd_destroy_crat_image(crat_image);
1829	return res;
1830}
1831
1832static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1833{
1834	bool firmware_supported = true;
1835
1836	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1837			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1838		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1839						AMDGPU_MES_API_VERSION_MASK) >>
1840						AMDGPU_MES_API_VERSION_SHIFT;
1841		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1842						AMDGPU_MES_VERSION_MASK;
1843
1844		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1845		goto out;
1846	}
1847
1848	/*
1849	 * Note: Any unlisted devices here are assumed to support exception handling.
1850	 * Add additional checks here as needed.
1851	 */
1852	switch (KFD_GC_VERSION(dev->gpu)) {
1853	case IP_VERSION(9, 0, 1):
1854		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1855		break;
1856	case IP_VERSION(9, 1, 0):
1857	case IP_VERSION(9, 2, 1):
1858	case IP_VERSION(9, 2, 2):
1859	case IP_VERSION(9, 3, 0):
1860	case IP_VERSION(9, 4, 0):
1861		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1862		break;
1863	case IP_VERSION(9, 4, 1):
1864		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1865		break;
1866	case IP_VERSION(9, 4, 2):
1867		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1868		break;
1869	case IP_VERSION(10, 1, 10):
1870	case IP_VERSION(10, 1, 2):
1871	case IP_VERSION(10, 1, 1):
1872		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1873		break;
1874	case IP_VERSION(10, 3, 0):
1875	case IP_VERSION(10, 3, 2):
1876	case IP_VERSION(10, 3, 1):
1877	case IP_VERSION(10, 3, 4):
1878	case IP_VERSION(10, 3, 5):
1879		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1880		break;
1881	case IP_VERSION(10, 1, 3):
1882	case IP_VERSION(10, 3, 3):
1883		firmware_supported = false;
1884		break;
1885	default:
1886		break;
1887	}
1888
1889out:
1890	if (firmware_supported)
1891		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1892}
1893
1894static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1895{
1896	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1897				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1898				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1899
1900	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1901			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1902			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1903
1904	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1905		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1906
1907	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1908		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3))
 
1909			dev->node_props.debug_prop |=
1910				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1911				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1912		else
1913			dev->node_props.debug_prop |=
1914				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1915				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1916
1917		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
1918			dev->node_props.capability |=
1919				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
 
 
1920	} else {
1921		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
1922					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1923
1924		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
1925			dev->node_props.capability |=
1926				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
 
 
 
 
1927	}
1928
1929	kfd_topology_set_dbg_firmware_support(dev);
1930}
1931
1932int kfd_topology_add_device(struct kfd_node *gpu)
1933{
1934	uint32_t gpu_id;
1935	struct kfd_topology_device *dev;
1936	int res = 0;
1937	int i;
1938	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
1939	struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
1940	struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
1941
1942	gpu_id = kfd_generate_gpu_id(gpu);
1943	if (gpu->xcp && !gpu->xcp->ddev) {
1944		dev_warn(gpu->adev->dev,
1945		"Won't add GPU (ID: 0x%x) to topology since it has no drm node assigned.",
1946		gpu_id);
1947		return 0;
1948	} else {
1949		pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1950	}
1951
1952	/* Check to see if this gpu device exists in the topology_device_list.
1953	 * If so, assign the gpu to that device,
1954	 * else create a Virtual CRAT for this gpu device and then parse that
1955	 * CRAT to create a new topology device. Once created assign the gpu to
1956	 * that topology device
1957	 */
1958	down_write(&topology_lock);
1959	dev = kfd_assign_gpu(gpu);
1960	if (!dev)
1961		res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
1962	up_write(&topology_lock);
1963	if (res)
1964		return res;
1965
 
1966	dev->gpu_id = gpu_id;
1967	gpu->id = gpu_id;
1968
1969	kfd_dev_create_p2p_links();
1970
1971	/* TODO: Move the following lines to function
1972	 *	kfd_add_non_crat_information
1973	 */
1974
1975	/* Fill-in additional information that is not available in CRAT but
1976	 * needed for the topology
1977	 */
1978	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
1979		dev->node_props.name[i] = __tolower(asic_name[i]);
1980		if (asic_name[i] == '\0')
1981			break;
1982	}
1983	dev->node_props.name[i] = '\0';
1984
1985	dev->node_props.simd_arrays_per_engine =
1986		gfx_info->max_sh_per_se;
1987
1988	dev->node_props.gfx_target_version =
1989				gpu->kfd->device_info.gfx_target_version;
1990	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
1991	dev->node_props.device_id = gpu->adev->pdev->device;
1992	dev->node_props.capability |=
1993		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
1994			HSA_CAP_ASIC_REVISION_MASK);
1995
1996	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
1997	if (KFD_GC_VERSION(dev->gpu->kfd) == IP_VERSION(9, 4, 3))
1998		dev->node_props.location_id |= dev->gpu->node_id;
1999
2000	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2001	dev->node_props.max_engine_clk_fcompute =
2002		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2003	dev->node_props.max_engine_clk_ccompute =
2004		cpufreq_quick_get_max(0) / 1000;
2005
2006	if (gpu->xcp)
2007		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2008	else
2009		dev->node_props.drm_render_minor =
2010				gpu->kfd->shared_resources.drm_render_minor;
2011
2012	dev->node_props.hive_id = gpu->kfd->hive_id;
2013	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2014	dev->node_props.num_sdma_xgmi_engines =
2015					kfd_get_num_xgmi_sdma_engines(gpu);
2016	dev->node_props.num_sdma_queues_per_engine =
2017				gpu->kfd->device_info.num_sdma_queues_per_engine -
2018				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2019	dev->node_props.num_gws = (dev->gpu->gws &&
2020		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2021		dev->gpu->adev->gds.gws_size : 0;
2022	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2023
2024	kfd_fill_mem_clk_max_info(dev);
2025	kfd_fill_iolink_non_crat_info(dev);
2026
2027	switch (dev->gpu->adev->asic_type) {
2028	case CHIP_KAVERI:
2029	case CHIP_HAWAII:
2030	case CHIP_TONGA:
2031		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2032			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2033			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2034		break;
2035	case CHIP_CARRIZO:
2036	case CHIP_FIJI:
2037	case CHIP_POLARIS10:
2038	case CHIP_POLARIS11:
2039	case CHIP_POLARIS12:
2040	case CHIP_VEGAM:
2041		pr_debug("Adding doorbell packet type capability\n");
2042		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2043			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2044			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2045		break;
2046	default:
2047		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2048			WARN(1, "Unexpected ASIC family %u",
2049			     dev->gpu->adev->asic_type);
2050		else
2051			kfd_topology_set_capabilities(dev);
2052	}
2053
2054	/*
2055	 * Overwrite ATS capability according to needs_iommu_device to fix
2056	 * potential missing corresponding bit in CRAT of BIOS.
2057	 */
2058	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2059
2060	/* Fix errors in CZ CRAT.
2061	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2062	 *		because it doesn't consider masked out CUs
2063	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2064	 */
2065	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2066		dev->node_props.simd_count =
2067			cu_info->simd_per_cu * cu_info->number;
2068		dev->node_props.max_waves_per_simd = 10;
2069	}
2070
2071	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2072	dev->node_props.capability |=
2073		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2074		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2075	dev->node_props.capability |=
2076		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2077		HSA_CAP_MEM_EDCSUPPORTED : 0;
2078
2079	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2080		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2081			HSA_CAP_RASEVENTNOTIFY : 0;
2082
2083	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2084		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2085
2086	if (dev->gpu->adev->gmc.is_app_apu ||
2087		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2088		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
 
 
2089
2090	kfd_debug_print_topology();
2091
2092	kfd_notify_gpu_change(gpu_id, 1);
2093
2094	return 0;
2095}
2096
2097/**
2098 * kfd_topology_update_io_links() - Update IO links after device removal.
2099 * @proximity_domain: Proximity domain value of the dev being removed.
2100 *
2101 * The topology list currently is arranged in increasing order of
2102 * proximity domain.
2103 *
2104 * Two things need to be done when a device is removed:
2105 * 1. All the IO links to this device need to be removed.
2106 * 2. All nodes after the current device node need to move
2107 *    up once this device node is removed from the topology
2108 *    list. As a result, the proximity domain values for
2109 *    all nodes after the node being deleted reduce by 1.
2110 *    This would also cause the proximity domain values for
2111 *    io links to be updated based on new proximity domain
2112 *    values.
2113 *
2114 * Context: The caller must hold write topology_lock.
2115 */
2116static void kfd_topology_update_io_links(int proximity_domain)
2117{
2118	struct kfd_topology_device *dev;
2119	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2120
2121	list_for_each_entry(dev, &topology_device_list, list) {
2122		if (dev->proximity_domain > proximity_domain)
2123			dev->proximity_domain--;
2124
2125		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2126			/*
2127			 * If there is an io link to the dev being deleted
2128			 * then remove that IO link also.
2129			 */
2130			if (iolink->node_to == proximity_domain) {
2131				list_del(&iolink->list);
2132				dev->node_props.io_links_count--;
2133			} else {
2134				if (iolink->node_from > proximity_domain)
2135					iolink->node_from--;
2136				if (iolink->node_to > proximity_domain)
2137					iolink->node_to--;
2138			}
2139		}
2140
2141		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2142			/*
2143			 * If there is a p2p link to the dev being deleted
2144			 * then remove that p2p link also.
2145			 */
2146			if (p2plink->node_to == proximity_domain) {
2147				list_del(&p2plink->list);
2148				dev->node_props.p2p_links_count--;
2149			} else {
2150				if (p2plink->node_from > proximity_domain)
2151					p2plink->node_from--;
2152				if (p2plink->node_to > proximity_domain)
2153					p2plink->node_to--;
2154			}
2155		}
2156	}
2157}
2158
2159int kfd_topology_remove_device(struct kfd_node *gpu)
2160{
2161	struct kfd_topology_device *dev, *tmp;
2162	uint32_t gpu_id;
2163	int res = -ENODEV;
2164	int i = 0;
2165
2166	down_write(&topology_lock);
2167
2168	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2169		if (dev->gpu == gpu) {
2170			gpu_id = dev->gpu_id;
2171			kfd_remove_sysfs_node_entry(dev);
2172			kfd_release_topology_device(dev);
2173			sys_props.num_devices--;
2174			kfd_topology_update_io_links(i);
2175			topology_crat_proximity_domain = sys_props.num_devices-1;
2176			sys_props.generation_count++;
2177			res = 0;
2178			if (kfd_topology_update_sysfs() < 0)
2179				kfd_topology_release_sysfs();
2180			break;
2181		}
2182		i++;
2183	}
2184
2185	up_write(&topology_lock);
2186
2187	if (!res)
2188		kfd_notify_gpu_change(gpu_id, 0);
2189
2190	return res;
2191}
2192
2193/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2194 *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2195 *	returned through @kdev
2196 * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2197 *		-1: If end of list
2198 */
2199int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2200{
2201
2202	struct kfd_topology_device *top_dev;
2203	uint8_t device_idx = 0;
2204
2205	*kdev = NULL;
2206	down_read(&topology_lock);
2207
2208	list_for_each_entry(top_dev, &topology_device_list, list) {
2209		if (device_idx == idx) {
2210			*kdev = top_dev->gpu;
2211			up_read(&topology_lock);
2212			return 0;
2213		}
2214
2215		device_idx++;
2216	}
2217
2218	up_read(&topology_lock);
2219
2220	return -1;
2221
2222}
2223
2224static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2225{
2226	int first_cpu_of_numa_node;
2227
2228	if (!cpumask || cpumask == cpu_none_mask)
2229		return -1;
2230	first_cpu_of_numa_node = cpumask_first(cpumask);
2231	if (first_cpu_of_numa_node >= nr_cpu_ids)
2232		return -1;
2233#ifdef CONFIG_X86_64
2234	return cpu_data(first_cpu_of_numa_node).topo.apicid;
2235#else
2236	return first_cpu_of_numa_node;
2237#endif
2238}
2239
2240/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2241 *	of the given NUMA node (numa_node_id)
2242 * Return -1 on failure
2243 */
2244int kfd_numa_node_to_apic_id(int numa_node_id)
2245{
2246	if (numa_node_id == -1) {
2247		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2248		return kfd_cpumask_to_apic_id(cpu_online_mask);
2249	}
2250	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2251}
2252
2253#if defined(CONFIG_DEBUG_FS)
2254
2255int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2256{
2257	struct kfd_topology_device *dev;
2258	unsigned int i = 0;
2259	int r = 0;
2260
2261	down_read(&topology_lock);
2262
2263	list_for_each_entry(dev, &topology_device_list, list) {
2264		if (!dev->gpu) {
2265			i++;
2266			continue;
2267		}
2268
2269		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2270		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2271		if (r)
2272			break;
2273	}
2274
2275	up_read(&topology_lock);
2276
2277	return r;
2278}
2279
2280int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2281{
2282	struct kfd_topology_device *dev;
2283	unsigned int i = 0;
2284	int r = 0;
2285
2286	down_read(&topology_lock);
2287
2288	list_for_each_entry(dev, &topology_device_list, list) {
2289		if (!dev->gpu) {
2290			i++;
2291			continue;
2292		}
2293
2294		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2295		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2296		if (r)
2297			break;
2298	}
2299
2300	up_read(&topology_lock);
2301
2302	return r;
2303}
2304
2305#endif