Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/acpi/resource.c - ACPI device resources interpretation.
4 *
5 * Copyright (C) 2012, Intel Corp.
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 */
12
13#include <linux/acpi.h>
14#include <linux/device.h>
15#include <linux/export.h>
16#include <linux/ioport.h>
17#include <linux/slab.h>
18#include <linux/irq.h>
19#include <linux/dmi.h>
20
21#ifdef CONFIG_X86
22#define valid_IRQ(i) (((i) != 0) && ((i) != 2))
23static inline bool acpi_iospace_resource_valid(struct resource *res)
24{
25 /* On X86 IO space is limited to the [0 - 64K] IO port range */
26 return res->end < 0x10003;
27}
28#else
29#define valid_IRQ(i) (true)
30/*
31 * ACPI IO descriptors on arches other than X86 contain MMIO CPU physical
32 * addresses mapping IO space in CPU physical address space, IO space
33 * resources can be placed anywhere in the 64-bit physical address space.
34 */
35static inline bool
36acpi_iospace_resource_valid(struct resource *res) { return true; }
37#endif
38
39#if IS_ENABLED(CONFIG_ACPI_GENERIC_GSI)
40static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq)
41{
42 return ext_irq->resource_source.string_length == 0 &&
43 ext_irq->producer_consumer == ACPI_CONSUMER;
44}
45#else
46static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq)
47{
48 return true;
49}
50#endif
51
52static bool acpi_dev_resource_len_valid(u64 start, u64 end, u64 len, bool io)
53{
54 u64 reslen = end - start + 1;
55
56 /*
57 * CHECKME: len might be required to check versus a minimum
58 * length as well. 1 for io is fine, but for memory it does
59 * not make any sense at all.
60 * Note: some BIOSes report incorrect length for ACPI address space
61 * descriptor, so remove check of 'reslen == len' to avoid regression.
62 */
63 if (len && reslen && start <= end)
64 return true;
65
66 pr_debug("ACPI: invalid or unassigned resource %s [%016llx - %016llx] length [%016llx]\n",
67 io ? "io" : "mem", start, end, len);
68
69 return false;
70}
71
72static void acpi_dev_memresource_flags(struct resource *res, u64 len,
73 u8 write_protect)
74{
75 res->flags = IORESOURCE_MEM;
76
77 if (!acpi_dev_resource_len_valid(res->start, res->end, len, false))
78 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET;
79
80 if (write_protect == ACPI_READ_WRITE_MEMORY)
81 res->flags |= IORESOURCE_MEM_WRITEABLE;
82}
83
84static void acpi_dev_get_memresource(struct resource *res, u64 start, u64 len,
85 u8 write_protect)
86{
87 res->start = start;
88 res->end = start + len - 1;
89 acpi_dev_memresource_flags(res, len, write_protect);
90}
91
92/**
93 * acpi_dev_resource_memory - Extract ACPI memory resource information.
94 * @ares: Input ACPI resource object.
95 * @res: Output generic resource object.
96 *
97 * Check if the given ACPI resource object represents a memory resource and
98 * if that's the case, use the information in it to populate the generic
99 * resource object pointed to by @res.
100 *
101 * Return:
102 * 1) false with res->flags setting to zero: not the expected resource type
103 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource
104 * 3) true: valid assigned resource
105 */
106bool acpi_dev_resource_memory(struct acpi_resource *ares, struct resource *res)
107{
108 struct acpi_resource_memory24 *memory24;
109 struct acpi_resource_memory32 *memory32;
110 struct acpi_resource_fixed_memory32 *fixed_memory32;
111
112 switch (ares->type) {
113 case ACPI_RESOURCE_TYPE_MEMORY24:
114 memory24 = &ares->data.memory24;
115 acpi_dev_get_memresource(res, memory24->minimum << 8,
116 memory24->address_length << 8,
117 memory24->write_protect);
118 break;
119 case ACPI_RESOURCE_TYPE_MEMORY32:
120 memory32 = &ares->data.memory32;
121 acpi_dev_get_memresource(res, memory32->minimum,
122 memory32->address_length,
123 memory32->write_protect);
124 break;
125 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
126 fixed_memory32 = &ares->data.fixed_memory32;
127 acpi_dev_get_memresource(res, fixed_memory32->address,
128 fixed_memory32->address_length,
129 fixed_memory32->write_protect);
130 break;
131 default:
132 res->flags = 0;
133 return false;
134 }
135
136 return !(res->flags & IORESOURCE_DISABLED);
137}
138EXPORT_SYMBOL_GPL(acpi_dev_resource_memory);
139
140static void acpi_dev_ioresource_flags(struct resource *res, u64 len,
141 u8 io_decode, u8 translation_type)
142{
143 res->flags = IORESOURCE_IO;
144
145 if (!acpi_dev_resource_len_valid(res->start, res->end, len, true))
146 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET;
147
148 if (!acpi_iospace_resource_valid(res))
149 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET;
150
151 if (io_decode == ACPI_DECODE_16)
152 res->flags |= IORESOURCE_IO_16BIT_ADDR;
153 if (translation_type == ACPI_SPARSE_TRANSLATION)
154 res->flags |= IORESOURCE_IO_SPARSE;
155}
156
157static void acpi_dev_get_ioresource(struct resource *res, u64 start, u64 len,
158 u8 io_decode)
159{
160 res->start = start;
161 res->end = start + len - 1;
162 acpi_dev_ioresource_flags(res, len, io_decode, 0);
163}
164
165/**
166 * acpi_dev_resource_io - Extract ACPI I/O resource information.
167 * @ares: Input ACPI resource object.
168 * @res: Output generic resource object.
169 *
170 * Check if the given ACPI resource object represents an I/O resource and
171 * if that's the case, use the information in it to populate the generic
172 * resource object pointed to by @res.
173 *
174 * Return:
175 * 1) false with res->flags setting to zero: not the expected resource type
176 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource
177 * 3) true: valid assigned resource
178 */
179bool acpi_dev_resource_io(struct acpi_resource *ares, struct resource *res)
180{
181 struct acpi_resource_io *io;
182 struct acpi_resource_fixed_io *fixed_io;
183
184 switch (ares->type) {
185 case ACPI_RESOURCE_TYPE_IO:
186 io = &ares->data.io;
187 acpi_dev_get_ioresource(res, io->minimum,
188 io->address_length,
189 io->io_decode);
190 break;
191 case ACPI_RESOURCE_TYPE_FIXED_IO:
192 fixed_io = &ares->data.fixed_io;
193 acpi_dev_get_ioresource(res, fixed_io->address,
194 fixed_io->address_length,
195 ACPI_DECODE_10);
196 break;
197 default:
198 res->flags = 0;
199 return false;
200 }
201
202 return !(res->flags & IORESOURCE_DISABLED);
203}
204EXPORT_SYMBOL_GPL(acpi_dev_resource_io);
205
206static bool acpi_decode_space(struct resource_win *win,
207 struct acpi_resource_address *addr,
208 struct acpi_address64_attribute *attr)
209{
210 u8 iodec = attr->granularity == 0xfff ? ACPI_DECODE_10 : ACPI_DECODE_16;
211 bool wp = addr->info.mem.write_protect;
212 u64 len = attr->address_length;
213 u64 start, end, offset = 0;
214 struct resource *res = &win->res;
215
216 /*
217 * Filter out invalid descriptor according to ACPI Spec 5.0, section
218 * 6.4.3.5 Address Space Resource Descriptors.
219 */
220 if ((addr->min_address_fixed != addr->max_address_fixed && len) ||
221 (addr->min_address_fixed && addr->max_address_fixed && !len))
222 pr_debug("ACPI: Invalid address space min_addr_fix %d, max_addr_fix %d, len %llx\n",
223 addr->min_address_fixed, addr->max_address_fixed, len);
224
225 /*
226 * For bridges that translate addresses across the bridge,
227 * translation_offset is the offset that must be added to the
228 * address on the secondary side to obtain the address on the
229 * primary side. Non-bridge devices must list 0 for all Address
230 * Translation offset bits.
231 */
232 if (addr->producer_consumer == ACPI_PRODUCER)
233 offset = attr->translation_offset;
234 else if (attr->translation_offset)
235 pr_debug("ACPI: translation_offset(%lld) is invalid for non-bridge device.\n",
236 attr->translation_offset);
237 start = attr->minimum + offset;
238 end = attr->maximum + offset;
239
240 win->offset = offset;
241 res->start = start;
242 res->end = end;
243 if (sizeof(resource_size_t) < sizeof(u64) &&
244 (offset != win->offset || start != res->start || end != res->end)) {
245 pr_warn("acpi resource window ([%#llx-%#llx] ignored, not CPU addressable)\n",
246 attr->minimum, attr->maximum);
247 return false;
248 }
249
250 switch (addr->resource_type) {
251 case ACPI_MEMORY_RANGE:
252 acpi_dev_memresource_flags(res, len, wp);
253
254 if (addr->info.mem.caching == ACPI_PREFETCHABLE_MEMORY)
255 res->flags |= IORESOURCE_PREFETCH;
256 break;
257 case ACPI_IO_RANGE:
258 acpi_dev_ioresource_flags(res, len, iodec,
259 addr->info.io.translation_type);
260 break;
261 case ACPI_BUS_NUMBER_RANGE:
262 res->flags = IORESOURCE_BUS;
263 break;
264 default:
265 return false;
266 }
267
268 if (addr->producer_consumer == ACPI_PRODUCER)
269 res->flags |= IORESOURCE_WINDOW;
270
271 return !(res->flags & IORESOURCE_DISABLED);
272}
273
274/**
275 * acpi_dev_resource_address_space - Extract ACPI address space information.
276 * @ares: Input ACPI resource object.
277 * @win: Output generic resource object.
278 *
279 * Check if the given ACPI resource object represents an address space resource
280 * and if that's the case, use the information in it to populate the generic
281 * resource object pointed to by @win.
282 *
283 * Return:
284 * 1) false with win->res.flags setting to zero: not the expected resource type
285 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned
286 * resource
287 * 3) true: valid assigned resource
288 */
289bool acpi_dev_resource_address_space(struct acpi_resource *ares,
290 struct resource_win *win)
291{
292 struct acpi_resource_address64 addr;
293
294 win->res.flags = 0;
295 if (ACPI_FAILURE(acpi_resource_to_address64(ares, &addr)))
296 return false;
297
298 return acpi_decode_space(win, (struct acpi_resource_address *)&addr,
299 &addr.address);
300}
301EXPORT_SYMBOL_GPL(acpi_dev_resource_address_space);
302
303/**
304 * acpi_dev_resource_ext_address_space - Extract ACPI address space information.
305 * @ares: Input ACPI resource object.
306 * @win: Output generic resource object.
307 *
308 * Check if the given ACPI resource object represents an extended address space
309 * resource and if that's the case, use the information in it to populate the
310 * generic resource object pointed to by @win.
311 *
312 * Return:
313 * 1) false with win->res.flags setting to zero: not the expected resource type
314 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned
315 * resource
316 * 3) true: valid assigned resource
317 */
318bool acpi_dev_resource_ext_address_space(struct acpi_resource *ares,
319 struct resource_win *win)
320{
321 struct acpi_resource_extended_address64 *ext_addr;
322
323 win->res.flags = 0;
324 if (ares->type != ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64)
325 return false;
326
327 ext_addr = &ares->data.ext_address64;
328
329 return acpi_decode_space(win, (struct acpi_resource_address *)ext_addr,
330 &ext_addr->address);
331}
332EXPORT_SYMBOL_GPL(acpi_dev_resource_ext_address_space);
333
334/**
335 * acpi_dev_irq_flags - Determine IRQ resource flags.
336 * @triggering: Triggering type as provided by ACPI.
337 * @polarity: Interrupt polarity as provided by ACPI.
338 * @shareable: Whether or not the interrupt is shareable.
339 * @wake_capable: Wake capability as provided by ACPI.
340 */
341unsigned long acpi_dev_irq_flags(u8 triggering, u8 polarity, u8 shareable, u8 wake_capable)
342{
343 unsigned long flags;
344
345 if (triggering == ACPI_LEVEL_SENSITIVE)
346 flags = polarity == ACPI_ACTIVE_LOW ?
347 IORESOURCE_IRQ_LOWLEVEL : IORESOURCE_IRQ_HIGHLEVEL;
348 else
349 flags = polarity == ACPI_ACTIVE_LOW ?
350 IORESOURCE_IRQ_LOWEDGE : IORESOURCE_IRQ_HIGHEDGE;
351
352 if (shareable == ACPI_SHARED)
353 flags |= IORESOURCE_IRQ_SHAREABLE;
354
355 if (wake_capable == ACPI_WAKE_CAPABLE)
356 flags |= IORESOURCE_IRQ_WAKECAPABLE;
357
358 return flags | IORESOURCE_IRQ;
359}
360EXPORT_SYMBOL_GPL(acpi_dev_irq_flags);
361
362/**
363 * acpi_dev_get_irq_type - Determine irq type.
364 * @triggering: Triggering type as provided by ACPI.
365 * @polarity: Interrupt polarity as provided by ACPI.
366 */
367unsigned int acpi_dev_get_irq_type(int triggering, int polarity)
368{
369 switch (polarity) {
370 case ACPI_ACTIVE_LOW:
371 return triggering == ACPI_EDGE_SENSITIVE ?
372 IRQ_TYPE_EDGE_FALLING :
373 IRQ_TYPE_LEVEL_LOW;
374 case ACPI_ACTIVE_HIGH:
375 return triggering == ACPI_EDGE_SENSITIVE ?
376 IRQ_TYPE_EDGE_RISING :
377 IRQ_TYPE_LEVEL_HIGH;
378 case ACPI_ACTIVE_BOTH:
379 if (triggering == ACPI_EDGE_SENSITIVE)
380 return IRQ_TYPE_EDGE_BOTH;
381 fallthrough;
382 default:
383 return IRQ_TYPE_NONE;
384 }
385}
386EXPORT_SYMBOL_GPL(acpi_dev_get_irq_type);
387
388/*
389 * DMI matches for boards where the DSDT specifies the kbd IRQ as
390 * level active-low and using the override changes this to rising edge,
391 * stopping the keyboard from working.
392 */
393static const struct dmi_system_id irq1_level_low_skip_override[] = {
394 {
395 /* MEDION P15651 */
396 .matches = {
397 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"),
398 DMI_MATCH(DMI_BOARD_NAME, "M15T"),
399 },
400 },
401 {
402 /* MEDION S17405 */
403 .matches = {
404 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"),
405 DMI_MATCH(DMI_BOARD_NAME, "M17T"),
406 },
407 },
408 {
409 /* MEDION S17413 */
410 .matches = {
411 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"),
412 DMI_MATCH(DMI_BOARD_NAME, "M1xA"),
413 },
414 },
415 {
416 /* Asus Vivobook K3402ZA */
417 .matches = {
418 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
419 DMI_MATCH(DMI_BOARD_NAME, "K3402ZA"),
420 },
421 },
422 {
423 /* Asus Vivobook K3502ZA */
424 .matches = {
425 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
426 DMI_MATCH(DMI_BOARD_NAME, "K3502ZA"),
427 },
428 },
429 {
430 /* Asus Vivobook S5402ZA */
431 .matches = {
432 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
433 DMI_MATCH(DMI_BOARD_NAME, "S5402ZA"),
434 },
435 },
436 {
437 /* Asus Vivobook S5602ZA */
438 .matches = {
439 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
440 DMI_MATCH(DMI_BOARD_NAME, "S5602ZA"),
441 },
442 },
443 {
444 /* Asus Vivobook X1504VAP */
445 .matches = {
446 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
447 DMI_MATCH(DMI_BOARD_NAME, "X1504VAP"),
448 },
449 },
450 {
451 /* Asus Vivobook X1704VAP */
452 .matches = {
453 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
454 DMI_MATCH(DMI_BOARD_NAME, "X1704VAP"),
455 },
456 },
457 {
458 /* Asus ExpertBook B1402C* */
459 .matches = {
460 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
461 DMI_MATCH(DMI_BOARD_NAME, "B1402C"),
462 },
463 },
464 {
465 /* Asus ExpertBook B1502C* */
466 .matches = {
467 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
468 DMI_MATCH(DMI_BOARD_NAME, "B1502C"),
469 },
470 },
471 {
472 /* Asus ExpertBook B2402 (B2402CBA / B2402FBA / B2402CVA / B2402FVA) */
473 .matches = {
474 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
475 DMI_MATCH(DMI_BOARD_NAME, "B2402"),
476 },
477 },
478 {
479 /* Asus ExpertBook B2502 (B2502CBA / B2502FBA / B2502CVA / B2502FVA) */
480 .matches = {
481 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
482 DMI_MATCH(DMI_BOARD_NAME, "B2502"),
483 },
484 },
485 {
486 /* Asus Vivobook Go E1404GA* */
487 .matches = {
488 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
489 DMI_MATCH(DMI_BOARD_NAME, "E1404GA"),
490 },
491 },
492 {
493 /* Asus Vivobook E1504GA* */
494 .matches = {
495 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
496 DMI_MATCH(DMI_BOARD_NAME, "E1504GA"),
497 },
498 },
499 {
500 /* Asus Vivobook Pro N6506M* */
501 .matches = {
502 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
503 DMI_MATCH(DMI_BOARD_NAME, "N6506M"),
504 },
505 },
506 {
507 /* LG Electronics 17U70P */
508 .matches = {
509 DMI_MATCH(DMI_SYS_VENDOR, "LG Electronics"),
510 DMI_MATCH(DMI_BOARD_NAME, "17U70P"),
511 },
512 },
513 {
514 /* LG Electronics 16T90SP */
515 .matches = {
516 DMI_MATCH(DMI_SYS_VENDOR, "LG Electronics"),
517 DMI_MATCH(DMI_BOARD_NAME, "16T90SP"),
518 },
519 },
520 { }
521};
522
523/*
524 * DMI matches for AMD Zen boards where the DSDT specifies the kbd IRQ
525 * as falling edge and this must be overridden to rising edge,
526 * to have a working keyboard.
527 */
528static const struct dmi_system_id irq1_edge_low_force_override[] = {
529 {
530 /* MECHREV Jiaolong17KS Series GM7XG0M */
531 .matches = {
532 DMI_MATCH(DMI_BOARD_NAME, "GM7XG0M"),
533 },
534 },
535 {
536 /* XMG APEX 17 (M23) */
537 .matches = {
538 DMI_MATCH(DMI_BOARD_NAME, "GMxBGxx"),
539 },
540 },
541 {
542 /* TongFang GMxRGxx/XMG CORE 15 (M22)/TUXEDO Stellaris 15 Gen4 AMD */
543 .matches = {
544 DMI_MATCH(DMI_BOARD_NAME, "GMxRGxx"),
545 },
546 },
547 {
548 /* TongFang GMxXGxx/TUXEDO Polaris 15 Gen5 AMD */
549 .matches = {
550 DMI_MATCH(DMI_BOARD_NAME, "GMxXGxx"),
551 },
552 },
553 {
554 /* TongFang GMxXGxX/TUXEDO Polaris 15 Gen5 AMD */
555 .matches = {
556 DMI_MATCH(DMI_BOARD_NAME, "GMxXGxX"),
557 },
558 },
559 {
560 /* TongFang GMxXGxx sold as Eluktronics Inc. RP-15 */
561 .matches = {
562 DMI_MATCH(DMI_SYS_VENDOR, "Eluktronics Inc."),
563 DMI_MATCH(DMI_BOARD_NAME, "RP-15"),
564 },
565 },
566 {
567 /* TongFang GM6XGxX/TUXEDO Stellaris 16 Gen5 AMD */
568 .matches = {
569 DMI_MATCH(DMI_BOARD_NAME, "GM6XGxX"),
570 },
571 },
572 {
573 /* MAINGEAR Vector Pro 2 15 */
574 .matches = {
575 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"),
576 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-15A3070T"),
577 }
578 },
579 {
580 /* MAINGEAR Vector Pro 2 17 */
581 .matches = {
582 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"),
583 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-17A3070T"),
584 },
585 },
586 {
587 /* TongFang GM6BGEQ / PCSpecialist Elimina Pro 16 M, RTX 3050 */
588 .matches = {
589 DMI_MATCH(DMI_BOARD_NAME, "GM6BGEQ"),
590 },
591 },
592 {
593 /* TongFang GM6BG5Q, RTX 4050 */
594 .matches = {
595 DMI_MATCH(DMI_BOARD_NAME, "GM6BG5Q"),
596 },
597 },
598 {
599 /* TongFang GM6BG0Q / PCSpecialist Elimina Pro 16 M, RTX 4060 */
600 .matches = {
601 DMI_MATCH(DMI_BOARD_NAME, "GM6BG0Q"),
602 },
603 },
604 {
605 /* Infinity E15-5A165-BM */
606 .matches = {
607 DMI_MATCH(DMI_BOARD_NAME, "GM5RG1E0009COM"),
608 },
609 },
610 {
611 /* Infinity E15-5A305-1M */
612 .matches = {
613 DMI_MATCH(DMI_BOARD_NAME, "GM5RGEE0016COM"),
614 },
615 },
616 {
617 /* Lunnen Ground 15 / AMD Ryzen 5 5500U */
618 .matches = {
619 DMI_MATCH(DMI_SYS_VENDOR, "Lunnen"),
620 DMI_MATCH(DMI_BOARD_NAME, "LLL5DAW"),
621 },
622 },
623 {
624 /* Lunnen Ground 16 / AMD Ryzen 7 5800U */
625 .matches = {
626 DMI_MATCH(DMI_SYS_VENDOR, "Lunnen"),
627 DMI_MATCH(DMI_BOARD_NAME, "LL6FA"),
628 },
629 },
630 {
631 /* MAIBENBEN X577 */
632 .matches = {
633 DMI_MATCH(DMI_SYS_VENDOR, "MAIBENBEN"),
634 DMI_MATCH(DMI_BOARD_NAME, "X577"),
635 },
636 },
637 {
638 /* Maibenben X565 */
639 .matches = {
640 DMI_MATCH(DMI_SYS_VENDOR, "MAIBENBEN"),
641 DMI_MATCH(DMI_BOARD_NAME, "X565"),
642 },
643 },
644 {
645 /* TongFang GXxHRXx/TUXEDO InfinityBook Pro Gen9 AMD */
646 .matches = {
647 DMI_MATCH(DMI_BOARD_NAME, "GXxHRXx"),
648 },
649 },
650 {
651 /* TongFang GMxHGxx/TUXEDO Stellaris Slim Gen1 AMD */
652 .matches = {
653 DMI_MATCH(DMI_BOARD_NAME, "GMxHGxx"),
654 },
655 },
656 {
657 /*
658 * TongFang GM5HG0A in case of the SKIKK Vanaheim relabel the
659 * board-name is changed, so check OEM strings instead. Note
660 * OEM string matches are always exact matches.
661 * https://bugzilla.kernel.org/show_bug.cgi?id=219614
662 */
663 .matches = {
664 DMI_EXACT_MATCH(DMI_OEM_STRING, "GM5HG0A"),
665 },
666 },
667 { }
668};
669
670struct irq_override_cmp {
671 const struct dmi_system_id *system;
672 unsigned char irq;
673 unsigned char triggering;
674 unsigned char polarity;
675 unsigned char shareable;
676 bool override;
677};
678
679static const struct irq_override_cmp override_table[] = {
680 { irq1_level_low_skip_override, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false },
681 { irq1_edge_low_force_override, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true },
682};
683
684static bool acpi_dev_irq_override(u32 gsi, u8 triggering, u8 polarity,
685 u8 shareable)
686{
687 int i;
688
689 for (i = 0; i < ARRAY_SIZE(override_table); i++) {
690 const struct irq_override_cmp *entry = &override_table[i];
691
692 if (entry->irq == gsi &&
693 entry->triggering == triggering &&
694 entry->polarity == polarity &&
695 entry->shareable == shareable &&
696 dmi_check_system(entry->system))
697 return entry->override;
698 }
699
700#ifdef CONFIG_X86
701 /*
702 * Always use the MADT override info, except for the i8042 PS/2 ctrl
703 * IRQs (1 and 12). For these the DSDT IRQ settings should sometimes
704 * be used otherwise PS/2 keyboards / mice will not work.
705 */
706 if (gsi != 1 && gsi != 12)
707 return true;
708
709 /* If the override comes from an INT_SRC_OVR MADT entry, honor it. */
710 if (acpi_int_src_ovr[gsi])
711 return true;
712
713 /*
714 * IRQ override isn't needed on modern AMD Zen systems and
715 * this override breaks active low IRQs on AMD Ryzen 6000 and
716 * newer systems. Skip it.
717 */
718 if (boot_cpu_has(X86_FEATURE_ZEN))
719 return false;
720#endif
721
722 return true;
723}
724
725static void acpi_dev_get_irqresource(struct resource *res, u32 gsi,
726 u8 triggering, u8 polarity, u8 shareable,
727 u8 wake_capable, bool check_override)
728{
729 int irq, p, t;
730
731 if (!valid_IRQ(gsi)) {
732 irqresource_disabled(res, gsi);
733 return;
734 }
735
736 /*
737 * In IO-APIC mode, use overridden attribute. Two reasons:
738 * 1. BIOS bug in DSDT
739 * 2. BIOS uses IO-APIC mode Interrupt Source Override
740 *
741 * We do this only if we are dealing with IRQ() or IRQNoFlags()
742 * resource (the legacy ISA resources). With modern ACPI 5 devices
743 * using extended IRQ descriptors we take the IRQ configuration
744 * from _CRS directly.
745 */
746 if (check_override &&
747 acpi_dev_irq_override(gsi, triggering, polarity, shareable) &&
748 !acpi_get_override_irq(gsi, &t, &p)) {
749 u8 trig = t ? ACPI_LEVEL_SENSITIVE : ACPI_EDGE_SENSITIVE;
750 u8 pol = p ? ACPI_ACTIVE_LOW : ACPI_ACTIVE_HIGH;
751
752 if (triggering != trig || polarity != pol) {
753 pr_warn("ACPI: IRQ %d override to %s%s, %s%s\n", gsi,
754 t ? "level" : "edge",
755 trig == triggering ? "" : "(!)",
756 p ? "low" : "high",
757 pol == polarity ? "" : "(!)");
758 triggering = trig;
759 polarity = pol;
760 }
761 }
762
763 res->flags = acpi_dev_irq_flags(triggering, polarity, shareable, wake_capable);
764 irq = acpi_register_gsi(NULL, gsi, triggering, polarity);
765 if (irq >= 0) {
766 res->start = irq;
767 res->end = irq;
768 } else {
769 irqresource_disabled(res, gsi);
770 }
771}
772
773/**
774 * acpi_dev_resource_interrupt - Extract ACPI interrupt resource information.
775 * @ares: Input ACPI resource object.
776 * @index: Index into the array of GSIs represented by the resource.
777 * @res: Output generic resource object.
778 *
779 * Check if the given ACPI resource object represents an interrupt resource
780 * and @index does not exceed the resource's interrupt count (true is returned
781 * in that case regardless of the results of the other checks)). If that's the
782 * case, register the GSI corresponding to @index from the array of interrupts
783 * represented by the resource and populate the generic resource object pointed
784 * to by @res accordingly. If the registration of the GSI is not successful,
785 * IORESOURCE_DISABLED will be set it that object's flags.
786 *
787 * Return:
788 * 1) false with res->flags setting to zero: not the expected resource type
789 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource
790 * 3) true: valid assigned resource
791 */
792bool acpi_dev_resource_interrupt(struct acpi_resource *ares, int index,
793 struct resource *res)
794{
795 struct acpi_resource_irq *irq;
796 struct acpi_resource_extended_irq *ext_irq;
797
798 switch (ares->type) {
799 case ACPI_RESOURCE_TYPE_IRQ:
800 /*
801 * Per spec, only one interrupt per descriptor is allowed in
802 * _CRS, but some firmware violates this, so parse them all.
803 */
804 irq = &ares->data.irq;
805 if (index >= irq->interrupt_count) {
806 irqresource_disabled(res, 0);
807 return false;
808 }
809 acpi_dev_get_irqresource(res, irq->interrupts[index],
810 irq->triggering, irq->polarity,
811 irq->shareable, irq->wake_capable,
812 true);
813 break;
814 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
815 ext_irq = &ares->data.extended_irq;
816 if (index >= ext_irq->interrupt_count) {
817 irqresource_disabled(res, 0);
818 return false;
819 }
820 if (is_gsi(ext_irq))
821 acpi_dev_get_irqresource(res, ext_irq->interrupts[index],
822 ext_irq->triggering, ext_irq->polarity,
823 ext_irq->shareable, ext_irq->wake_capable,
824 false);
825 else
826 irqresource_disabled(res, 0);
827 break;
828 default:
829 res->flags = 0;
830 return false;
831 }
832
833 return true;
834}
835EXPORT_SYMBOL_GPL(acpi_dev_resource_interrupt);
836
837/**
838 * acpi_dev_free_resource_list - Free resource from %acpi_dev_get_resources().
839 * @list: The head of the resource list to free.
840 */
841void acpi_dev_free_resource_list(struct list_head *list)
842{
843 resource_list_free(list);
844}
845EXPORT_SYMBOL_GPL(acpi_dev_free_resource_list);
846
847struct res_proc_context {
848 struct list_head *list;
849 int (*preproc)(struct acpi_resource *, void *);
850 void *preproc_data;
851 int count;
852 int error;
853};
854
855static acpi_status acpi_dev_new_resource_entry(struct resource_win *win,
856 struct res_proc_context *c)
857{
858 struct resource_entry *rentry;
859
860 rentry = resource_list_create_entry(NULL, 0);
861 if (!rentry) {
862 c->error = -ENOMEM;
863 return AE_NO_MEMORY;
864 }
865 *rentry->res = win->res;
866 rentry->offset = win->offset;
867 resource_list_add_tail(rentry, c->list);
868 c->count++;
869 return AE_OK;
870}
871
872static acpi_status acpi_dev_process_resource(struct acpi_resource *ares,
873 void *context)
874{
875 struct res_proc_context *c = context;
876 struct resource_win win;
877 struct resource *res = &win.res;
878 int i;
879
880 if (c->preproc) {
881 int ret;
882
883 ret = c->preproc(ares, c->preproc_data);
884 if (ret < 0) {
885 c->error = ret;
886 return AE_ABORT_METHOD;
887 } else if (ret > 0) {
888 return AE_OK;
889 }
890 }
891
892 memset(&win, 0, sizeof(win));
893
894 if (acpi_dev_resource_memory(ares, res)
895 || acpi_dev_resource_io(ares, res)
896 || acpi_dev_resource_address_space(ares, &win)
897 || acpi_dev_resource_ext_address_space(ares, &win))
898 return acpi_dev_new_resource_entry(&win, c);
899
900 for (i = 0; acpi_dev_resource_interrupt(ares, i, res); i++) {
901 acpi_status status;
902
903 status = acpi_dev_new_resource_entry(&win, c);
904 if (ACPI_FAILURE(status))
905 return status;
906 }
907
908 return AE_OK;
909}
910
911static int __acpi_dev_get_resources(struct acpi_device *adev,
912 struct list_head *list,
913 int (*preproc)(struct acpi_resource *, void *),
914 void *preproc_data, char *method)
915{
916 struct res_proc_context c;
917 acpi_status status;
918
919 if (!adev || !adev->handle || !list_empty(list))
920 return -EINVAL;
921
922 if (!acpi_has_method(adev->handle, method))
923 return 0;
924
925 c.list = list;
926 c.preproc = preproc;
927 c.preproc_data = preproc_data;
928 c.count = 0;
929 c.error = 0;
930 status = acpi_walk_resources(adev->handle, method,
931 acpi_dev_process_resource, &c);
932 if (ACPI_FAILURE(status)) {
933 acpi_dev_free_resource_list(list);
934 return c.error ? c.error : -EIO;
935 }
936
937 return c.count;
938}
939
940/**
941 * acpi_dev_get_resources - Get current resources of a device.
942 * @adev: ACPI device node to get the resources for.
943 * @list: Head of the resultant list of resources (must be empty).
944 * @preproc: The caller's preprocessing routine.
945 * @preproc_data: Pointer passed to the caller's preprocessing routine.
946 *
947 * Evaluate the _CRS method for the given device node and process its output by
948 * (1) executing the @preproc() routine provided by the caller, passing the
949 * resource pointer and @preproc_data to it as arguments, for each ACPI resource
950 * returned and (2) converting all of the returned ACPI resources into struct
951 * resource objects if possible. If the return value of @preproc() in step (1)
952 * is different from 0, step (2) is not applied to the given ACPI resource and
953 * if that value is negative, the whole processing is aborted and that value is
954 * returned as the final error code.
955 *
956 * The resultant struct resource objects are put on the list pointed to by
957 * @list, that must be empty initially, as members of struct resource_entry
958 * objects. Callers of this routine should use %acpi_dev_free_resource_list() to
959 * free that list.
960 *
961 * The number of resources in the output list is returned on success, an error
962 * code reflecting the error condition is returned otherwise.
963 */
964int acpi_dev_get_resources(struct acpi_device *adev, struct list_head *list,
965 int (*preproc)(struct acpi_resource *, void *),
966 void *preproc_data)
967{
968 return __acpi_dev_get_resources(adev, list, preproc, preproc_data,
969 METHOD_NAME__CRS);
970}
971EXPORT_SYMBOL_GPL(acpi_dev_get_resources);
972
973static int is_memory(struct acpi_resource *ares, void *not_used)
974{
975 struct resource_win win;
976 struct resource *res = &win.res;
977
978 memset(&win, 0, sizeof(win));
979
980 if (acpi_dev_filter_resource_type(ares, IORESOURCE_MEM))
981 return 1;
982
983 return !(acpi_dev_resource_memory(ares, res)
984 || acpi_dev_resource_address_space(ares, &win)
985 || acpi_dev_resource_ext_address_space(ares, &win));
986}
987
988/**
989 * acpi_dev_get_dma_resources - Get current DMA resources of a device.
990 * @adev: ACPI device node to get the resources for.
991 * @list: Head of the resultant list of resources (must be empty).
992 *
993 * Evaluate the _DMA method for the given device node and process its
994 * output.
995 *
996 * The resultant struct resource objects are put on the list pointed to
997 * by @list, that must be empty initially, as members of struct
998 * resource_entry objects. Callers of this routine should use
999 * %acpi_dev_free_resource_list() to free that list.
1000 *
1001 * The number of resources in the output list is returned on success,
1002 * an error code reflecting the error condition is returned otherwise.
1003 */
1004int acpi_dev_get_dma_resources(struct acpi_device *adev, struct list_head *list)
1005{
1006 return __acpi_dev_get_resources(adev, list, is_memory, NULL,
1007 METHOD_NAME__DMA);
1008}
1009EXPORT_SYMBOL_GPL(acpi_dev_get_dma_resources);
1010
1011/**
1012 * acpi_dev_get_memory_resources - Get current memory resources of a device.
1013 * @adev: ACPI device node to get the resources for.
1014 * @list: Head of the resultant list of resources (must be empty).
1015 *
1016 * This is a helper function that locates all memory type resources of @adev
1017 * with acpi_dev_get_resources().
1018 *
1019 * The number of resources in the output list is returned on success, an error
1020 * code reflecting the error condition is returned otherwise.
1021 */
1022int acpi_dev_get_memory_resources(struct acpi_device *adev, struct list_head *list)
1023{
1024 return acpi_dev_get_resources(adev, list, is_memory, NULL);
1025}
1026EXPORT_SYMBOL_GPL(acpi_dev_get_memory_resources);
1027
1028/**
1029 * acpi_dev_filter_resource_type - Filter ACPI resource according to resource
1030 * types
1031 * @ares: Input ACPI resource object.
1032 * @types: Valid resource types of IORESOURCE_XXX
1033 *
1034 * This is a helper function to support acpi_dev_get_resources(), which filters
1035 * ACPI resource objects according to resource types.
1036 */
1037int acpi_dev_filter_resource_type(struct acpi_resource *ares,
1038 unsigned long types)
1039{
1040 unsigned long type = 0;
1041
1042 switch (ares->type) {
1043 case ACPI_RESOURCE_TYPE_MEMORY24:
1044 case ACPI_RESOURCE_TYPE_MEMORY32:
1045 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
1046 type = IORESOURCE_MEM;
1047 break;
1048 case ACPI_RESOURCE_TYPE_IO:
1049 case ACPI_RESOURCE_TYPE_FIXED_IO:
1050 type = IORESOURCE_IO;
1051 break;
1052 case ACPI_RESOURCE_TYPE_IRQ:
1053 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
1054 type = IORESOURCE_IRQ;
1055 break;
1056 case ACPI_RESOURCE_TYPE_DMA:
1057 case ACPI_RESOURCE_TYPE_FIXED_DMA:
1058 type = IORESOURCE_DMA;
1059 break;
1060 case ACPI_RESOURCE_TYPE_GENERIC_REGISTER:
1061 type = IORESOURCE_REG;
1062 break;
1063 case ACPI_RESOURCE_TYPE_ADDRESS16:
1064 case ACPI_RESOURCE_TYPE_ADDRESS32:
1065 case ACPI_RESOURCE_TYPE_ADDRESS64:
1066 case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:
1067 if (ares->data.address.resource_type == ACPI_MEMORY_RANGE)
1068 type = IORESOURCE_MEM;
1069 else if (ares->data.address.resource_type == ACPI_IO_RANGE)
1070 type = IORESOURCE_IO;
1071 else if (ares->data.address.resource_type ==
1072 ACPI_BUS_NUMBER_RANGE)
1073 type = IORESOURCE_BUS;
1074 break;
1075 default:
1076 break;
1077 }
1078
1079 return (type & types) ? 0 : 1;
1080}
1081EXPORT_SYMBOL_GPL(acpi_dev_filter_resource_type);
1082
1083static int acpi_dev_consumes_res(struct acpi_device *adev, struct resource *res)
1084{
1085 struct list_head resource_list;
1086 struct resource_entry *rentry;
1087 int ret, found = 0;
1088
1089 INIT_LIST_HEAD(&resource_list);
1090 ret = acpi_dev_get_resources(adev, &resource_list, NULL, NULL);
1091 if (ret < 0)
1092 return 0;
1093
1094 list_for_each_entry(rentry, &resource_list, node) {
1095 if (resource_contains(rentry->res, res)) {
1096 found = 1;
1097 break;
1098 }
1099
1100 }
1101
1102 acpi_dev_free_resource_list(&resource_list);
1103 return found;
1104}
1105
1106static acpi_status acpi_res_consumer_cb(acpi_handle handle, u32 depth,
1107 void *context, void **ret)
1108{
1109 struct resource *res = context;
1110 struct acpi_device **consumer = (struct acpi_device **) ret;
1111 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
1112
1113 if (!adev)
1114 return AE_OK;
1115
1116 if (acpi_dev_consumes_res(adev, res)) {
1117 *consumer = adev;
1118 return AE_CTRL_TERMINATE;
1119 }
1120
1121 return AE_OK;
1122}
1123
1124/**
1125 * acpi_resource_consumer - Find the ACPI device that consumes @res.
1126 * @res: Resource to search for.
1127 *
1128 * Search the current resource settings (_CRS) of every ACPI device node
1129 * for @res. If we find an ACPI device whose _CRS includes @res, return
1130 * it. Otherwise, return NULL.
1131 */
1132struct acpi_device *acpi_resource_consumer(struct resource *res)
1133{
1134 struct acpi_device *consumer = NULL;
1135
1136 acpi_get_devices(NULL, acpi_res_consumer_cb, res, (void **) &consumer);
1137 return consumer;
1138}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/acpi/resource.c - ACPI device resources interpretation.
4 *
5 * Copyright (C) 2012, Intel Corp.
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 */
12
13#include <linux/acpi.h>
14#include <linux/device.h>
15#include <linux/export.h>
16#include <linux/ioport.h>
17#include <linux/slab.h>
18#include <linux/irq.h>
19#include <linux/dmi.h>
20
21#ifdef CONFIG_X86
22#define valid_IRQ(i) (((i) != 0) && ((i) != 2))
23static inline bool acpi_iospace_resource_valid(struct resource *res)
24{
25 /* On X86 IO space is limited to the [0 - 64K] IO port range */
26 return res->end < 0x10003;
27}
28#else
29#define valid_IRQ(i) (true)
30/*
31 * ACPI IO descriptors on arches other than X86 contain MMIO CPU physical
32 * addresses mapping IO space in CPU physical address space, IO space
33 * resources can be placed anywhere in the 64-bit physical address space.
34 */
35static inline bool
36acpi_iospace_resource_valid(struct resource *res) { return true; }
37#endif
38
39#if IS_ENABLED(CONFIG_ACPI_GENERIC_GSI)
40static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq)
41{
42 return ext_irq->resource_source.string_length == 0 &&
43 ext_irq->producer_consumer == ACPI_CONSUMER;
44}
45#else
46static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq)
47{
48 return true;
49}
50#endif
51
52static bool acpi_dev_resource_len_valid(u64 start, u64 end, u64 len, bool io)
53{
54 u64 reslen = end - start + 1;
55
56 /*
57 * CHECKME: len might be required to check versus a minimum
58 * length as well. 1 for io is fine, but for memory it does
59 * not make any sense at all.
60 * Note: some BIOSes report incorrect length for ACPI address space
61 * descriptor, so remove check of 'reslen == len' to avoid regression.
62 */
63 if (len && reslen && start <= end)
64 return true;
65
66 pr_debug("ACPI: invalid or unassigned resource %s [%016llx - %016llx] length [%016llx]\n",
67 io ? "io" : "mem", start, end, len);
68
69 return false;
70}
71
72static void acpi_dev_memresource_flags(struct resource *res, u64 len,
73 u8 write_protect)
74{
75 res->flags = IORESOURCE_MEM;
76
77 if (!acpi_dev_resource_len_valid(res->start, res->end, len, false))
78 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET;
79
80 if (write_protect == ACPI_READ_WRITE_MEMORY)
81 res->flags |= IORESOURCE_MEM_WRITEABLE;
82}
83
84static void acpi_dev_get_memresource(struct resource *res, u64 start, u64 len,
85 u8 write_protect)
86{
87 res->start = start;
88 res->end = start + len - 1;
89 acpi_dev_memresource_flags(res, len, write_protect);
90}
91
92/**
93 * acpi_dev_resource_memory - Extract ACPI memory resource information.
94 * @ares: Input ACPI resource object.
95 * @res: Output generic resource object.
96 *
97 * Check if the given ACPI resource object represents a memory resource and
98 * if that's the case, use the information in it to populate the generic
99 * resource object pointed to by @res.
100 *
101 * Return:
102 * 1) false with res->flags setting to zero: not the expected resource type
103 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource
104 * 3) true: valid assigned resource
105 */
106bool acpi_dev_resource_memory(struct acpi_resource *ares, struct resource *res)
107{
108 struct acpi_resource_memory24 *memory24;
109 struct acpi_resource_memory32 *memory32;
110 struct acpi_resource_fixed_memory32 *fixed_memory32;
111
112 switch (ares->type) {
113 case ACPI_RESOURCE_TYPE_MEMORY24:
114 memory24 = &ares->data.memory24;
115 acpi_dev_get_memresource(res, memory24->minimum << 8,
116 memory24->address_length << 8,
117 memory24->write_protect);
118 break;
119 case ACPI_RESOURCE_TYPE_MEMORY32:
120 memory32 = &ares->data.memory32;
121 acpi_dev_get_memresource(res, memory32->minimum,
122 memory32->address_length,
123 memory32->write_protect);
124 break;
125 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
126 fixed_memory32 = &ares->data.fixed_memory32;
127 acpi_dev_get_memresource(res, fixed_memory32->address,
128 fixed_memory32->address_length,
129 fixed_memory32->write_protect);
130 break;
131 default:
132 res->flags = 0;
133 return false;
134 }
135
136 return !(res->flags & IORESOURCE_DISABLED);
137}
138EXPORT_SYMBOL_GPL(acpi_dev_resource_memory);
139
140static void acpi_dev_ioresource_flags(struct resource *res, u64 len,
141 u8 io_decode, u8 translation_type)
142{
143 res->flags = IORESOURCE_IO;
144
145 if (!acpi_dev_resource_len_valid(res->start, res->end, len, true))
146 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET;
147
148 if (!acpi_iospace_resource_valid(res))
149 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET;
150
151 if (io_decode == ACPI_DECODE_16)
152 res->flags |= IORESOURCE_IO_16BIT_ADDR;
153 if (translation_type == ACPI_SPARSE_TRANSLATION)
154 res->flags |= IORESOURCE_IO_SPARSE;
155}
156
157static void acpi_dev_get_ioresource(struct resource *res, u64 start, u64 len,
158 u8 io_decode)
159{
160 res->start = start;
161 res->end = start + len - 1;
162 acpi_dev_ioresource_flags(res, len, io_decode, 0);
163}
164
165/**
166 * acpi_dev_resource_io - Extract ACPI I/O resource information.
167 * @ares: Input ACPI resource object.
168 * @res: Output generic resource object.
169 *
170 * Check if the given ACPI resource object represents an I/O resource and
171 * if that's the case, use the information in it to populate the generic
172 * resource object pointed to by @res.
173 *
174 * Return:
175 * 1) false with res->flags setting to zero: not the expected resource type
176 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource
177 * 3) true: valid assigned resource
178 */
179bool acpi_dev_resource_io(struct acpi_resource *ares, struct resource *res)
180{
181 struct acpi_resource_io *io;
182 struct acpi_resource_fixed_io *fixed_io;
183
184 switch (ares->type) {
185 case ACPI_RESOURCE_TYPE_IO:
186 io = &ares->data.io;
187 acpi_dev_get_ioresource(res, io->minimum,
188 io->address_length,
189 io->io_decode);
190 break;
191 case ACPI_RESOURCE_TYPE_FIXED_IO:
192 fixed_io = &ares->data.fixed_io;
193 acpi_dev_get_ioresource(res, fixed_io->address,
194 fixed_io->address_length,
195 ACPI_DECODE_10);
196 break;
197 default:
198 res->flags = 0;
199 return false;
200 }
201
202 return !(res->flags & IORESOURCE_DISABLED);
203}
204EXPORT_SYMBOL_GPL(acpi_dev_resource_io);
205
206static bool acpi_decode_space(struct resource_win *win,
207 struct acpi_resource_address *addr,
208 struct acpi_address64_attribute *attr)
209{
210 u8 iodec = attr->granularity == 0xfff ? ACPI_DECODE_10 : ACPI_DECODE_16;
211 bool wp = addr->info.mem.write_protect;
212 u64 len = attr->address_length;
213 u64 start, end, offset = 0;
214 struct resource *res = &win->res;
215
216 /*
217 * Filter out invalid descriptor according to ACPI Spec 5.0, section
218 * 6.4.3.5 Address Space Resource Descriptors.
219 */
220 if ((addr->min_address_fixed != addr->max_address_fixed && len) ||
221 (addr->min_address_fixed && addr->max_address_fixed && !len))
222 pr_debug("ACPI: Invalid address space min_addr_fix %d, max_addr_fix %d, len %llx\n",
223 addr->min_address_fixed, addr->max_address_fixed, len);
224
225 /*
226 * For bridges that translate addresses across the bridge,
227 * translation_offset is the offset that must be added to the
228 * address on the secondary side to obtain the address on the
229 * primary side. Non-bridge devices must list 0 for all Address
230 * Translation offset bits.
231 */
232 if (addr->producer_consumer == ACPI_PRODUCER)
233 offset = attr->translation_offset;
234 else if (attr->translation_offset)
235 pr_debug("ACPI: translation_offset(%lld) is invalid for non-bridge device.\n",
236 attr->translation_offset);
237 start = attr->minimum + offset;
238 end = attr->maximum + offset;
239
240 win->offset = offset;
241 res->start = start;
242 res->end = end;
243 if (sizeof(resource_size_t) < sizeof(u64) &&
244 (offset != win->offset || start != res->start || end != res->end)) {
245 pr_warn("acpi resource window ([%#llx-%#llx] ignored, not CPU addressable)\n",
246 attr->minimum, attr->maximum);
247 return false;
248 }
249
250 switch (addr->resource_type) {
251 case ACPI_MEMORY_RANGE:
252 acpi_dev_memresource_flags(res, len, wp);
253 break;
254 case ACPI_IO_RANGE:
255 acpi_dev_ioresource_flags(res, len, iodec,
256 addr->info.io.translation_type);
257 break;
258 case ACPI_BUS_NUMBER_RANGE:
259 res->flags = IORESOURCE_BUS;
260 break;
261 default:
262 return false;
263 }
264
265 if (addr->producer_consumer == ACPI_PRODUCER)
266 res->flags |= IORESOURCE_WINDOW;
267
268 if (addr->info.mem.caching == ACPI_PREFETCHABLE_MEMORY)
269 res->flags |= IORESOURCE_PREFETCH;
270
271 return !(res->flags & IORESOURCE_DISABLED);
272}
273
274/**
275 * acpi_dev_resource_address_space - Extract ACPI address space information.
276 * @ares: Input ACPI resource object.
277 * @win: Output generic resource object.
278 *
279 * Check if the given ACPI resource object represents an address space resource
280 * and if that's the case, use the information in it to populate the generic
281 * resource object pointed to by @win.
282 *
283 * Return:
284 * 1) false with win->res.flags setting to zero: not the expected resource type
285 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned
286 * resource
287 * 3) true: valid assigned resource
288 */
289bool acpi_dev_resource_address_space(struct acpi_resource *ares,
290 struct resource_win *win)
291{
292 struct acpi_resource_address64 addr;
293
294 win->res.flags = 0;
295 if (ACPI_FAILURE(acpi_resource_to_address64(ares, &addr)))
296 return false;
297
298 return acpi_decode_space(win, (struct acpi_resource_address *)&addr,
299 &addr.address);
300}
301EXPORT_SYMBOL_GPL(acpi_dev_resource_address_space);
302
303/**
304 * acpi_dev_resource_ext_address_space - Extract ACPI address space information.
305 * @ares: Input ACPI resource object.
306 * @win: Output generic resource object.
307 *
308 * Check if the given ACPI resource object represents an extended address space
309 * resource and if that's the case, use the information in it to populate the
310 * generic resource object pointed to by @win.
311 *
312 * Return:
313 * 1) false with win->res.flags setting to zero: not the expected resource type
314 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned
315 * resource
316 * 3) true: valid assigned resource
317 */
318bool acpi_dev_resource_ext_address_space(struct acpi_resource *ares,
319 struct resource_win *win)
320{
321 struct acpi_resource_extended_address64 *ext_addr;
322
323 win->res.flags = 0;
324 if (ares->type != ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64)
325 return false;
326
327 ext_addr = &ares->data.ext_address64;
328
329 return acpi_decode_space(win, (struct acpi_resource_address *)ext_addr,
330 &ext_addr->address);
331}
332EXPORT_SYMBOL_GPL(acpi_dev_resource_ext_address_space);
333
334/**
335 * acpi_dev_irq_flags - Determine IRQ resource flags.
336 * @triggering: Triggering type as provided by ACPI.
337 * @polarity: Interrupt polarity as provided by ACPI.
338 * @shareable: Whether or not the interrupt is shareable.
339 * @wake_capable: Wake capability as provided by ACPI.
340 */
341unsigned long acpi_dev_irq_flags(u8 triggering, u8 polarity, u8 shareable, u8 wake_capable)
342{
343 unsigned long flags;
344
345 if (triggering == ACPI_LEVEL_SENSITIVE)
346 flags = polarity == ACPI_ACTIVE_LOW ?
347 IORESOURCE_IRQ_LOWLEVEL : IORESOURCE_IRQ_HIGHLEVEL;
348 else
349 flags = polarity == ACPI_ACTIVE_LOW ?
350 IORESOURCE_IRQ_LOWEDGE : IORESOURCE_IRQ_HIGHEDGE;
351
352 if (shareable == ACPI_SHARED)
353 flags |= IORESOURCE_IRQ_SHAREABLE;
354
355 if (wake_capable == ACPI_WAKE_CAPABLE)
356 flags |= IORESOURCE_IRQ_WAKECAPABLE;
357
358 return flags | IORESOURCE_IRQ;
359}
360EXPORT_SYMBOL_GPL(acpi_dev_irq_flags);
361
362/**
363 * acpi_dev_get_irq_type - Determine irq type.
364 * @triggering: Triggering type as provided by ACPI.
365 * @polarity: Interrupt polarity as provided by ACPI.
366 */
367unsigned int acpi_dev_get_irq_type(int triggering, int polarity)
368{
369 switch (polarity) {
370 case ACPI_ACTIVE_LOW:
371 return triggering == ACPI_EDGE_SENSITIVE ?
372 IRQ_TYPE_EDGE_FALLING :
373 IRQ_TYPE_LEVEL_LOW;
374 case ACPI_ACTIVE_HIGH:
375 return triggering == ACPI_EDGE_SENSITIVE ?
376 IRQ_TYPE_EDGE_RISING :
377 IRQ_TYPE_LEVEL_HIGH;
378 case ACPI_ACTIVE_BOTH:
379 if (triggering == ACPI_EDGE_SENSITIVE)
380 return IRQ_TYPE_EDGE_BOTH;
381 fallthrough;
382 default:
383 return IRQ_TYPE_NONE;
384 }
385}
386EXPORT_SYMBOL_GPL(acpi_dev_get_irq_type);
387
388/*
389 * DMI matches for boards where the DSDT specifies the kbd IRQ as
390 * level active-low and using the override changes this to rising edge,
391 * stopping the keyboard from working.
392 */
393static const struct dmi_system_id irq1_level_low_skip_override[] = {
394 {
395 /* MEDION P15651 */
396 .matches = {
397 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"),
398 DMI_MATCH(DMI_BOARD_NAME, "M15T"),
399 },
400 },
401 {
402 /* MEDION S17405 */
403 .matches = {
404 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"),
405 DMI_MATCH(DMI_BOARD_NAME, "M17T"),
406 },
407 },
408 {
409 /* MEDION S17413 */
410 .matches = {
411 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"),
412 DMI_MATCH(DMI_BOARD_NAME, "M1xA"),
413 },
414 },
415 {
416 /* Asus Vivobook K3402ZA */
417 .matches = {
418 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
419 DMI_MATCH(DMI_BOARD_NAME, "K3402ZA"),
420 },
421 },
422 {
423 /* Asus Vivobook K3502ZA */
424 .matches = {
425 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
426 DMI_MATCH(DMI_BOARD_NAME, "K3502ZA"),
427 },
428 },
429 {
430 /* Asus Vivobook S5402ZA */
431 .matches = {
432 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
433 DMI_MATCH(DMI_BOARD_NAME, "S5402ZA"),
434 },
435 },
436 {
437 /* Asus Vivobook S5602ZA */
438 .matches = {
439 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
440 DMI_MATCH(DMI_BOARD_NAME, "S5602ZA"),
441 },
442 },
443 {
444 /* Asus ExpertBook B1402CBA */
445 .matches = {
446 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
447 DMI_MATCH(DMI_BOARD_NAME, "B1402CBA"),
448 },
449 },
450 {
451 /* Asus ExpertBook B1402CVA */
452 .matches = {
453 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
454 DMI_MATCH(DMI_BOARD_NAME, "B1402CVA"),
455 },
456 },
457 {
458 /* Asus ExpertBook B1502CBA */
459 .matches = {
460 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
461 DMI_MATCH(DMI_BOARD_NAME, "B1502CBA"),
462 },
463 },
464 {
465 /* Asus ExpertBook B1502CGA */
466 .matches = {
467 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
468 DMI_MATCH(DMI_BOARD_NAME, "B1502CGA"),
469 },
470 },
471 {
472 /* Asus ExpertBook B2402CBA */
473 .matches = {
474 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
475 DMI_MATCH(DMI_BOARD_NAME, "B2402CBA"),
476 },
477 },
478 {
479 /* Asus ExpertBook B2402FBA */
480 .matches = {
481 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
482 DMI_MATCH(DMI_BOARD_NAME, "B2402FBA"),
483 },
484 },
485 {
486 /* Asus ExpertBook B2502 */
487 .matches = {
488 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
489 DMI_MATCH(DMI_BOARD_NAME, "B2502CBA"),
490 },
491 },
492 {
493 /* Asus Vivobook E1504GA */
494 .matches = {
495 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
496 DMI_MATCH(DMI_BOARD_NAME, "E1504GA"),
497 },
498 },
499 {
500 /* Asus Vivobook E1504GAB */
501 .matches = {
502 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
503 DMI_MATCH(DMI_BOARD_NAME, "E1504GAB"),
504 },
505 },
506 {
507 /* LG Electronics 17U70P */
508 .matches = {
509 DMI_MATCH(DMI_SYS_VENDOR, "LG Electronics"),
510 DMI_MATCH(DMI_BOARD_NAME, "17U70P"),
511 },
512 },
513 { }
514};
515
516/*
517 * DMI matches for AMD Zen boards where the DSDT specifies the kbd IRQ
518 * as falling edge and this must be overridden to rising edge,
519 * to have a working keyboard.
520 */
521static const struct dmi_system_id irq1_edge_low_force_override[] = {
522 {
523 /* TongFang GMxRGxx/XMG CORE 15 (M22)/TUXEDO Stellaris 15 Gen4 AMD */
524 .matches = {
525 DMI_MATCH(DMI_BOARD_NAME, "GMxRGxx"),
526 },
527 },
528 {
529 /* TongFang GMxXGxx/TUXEDO Polaris 15 Gen5 AMD */
530 .matches = {
531 DMI_MATCH(DMI_BOARD_NAME, "GMxXGxx"),
532 },
533 },
534 {
535 /* TongFang GMxXGxx sold as Eluktronics Inc. RP-15 */
536 .matches = {
537 DMI_MATCH(DMI_SYS_VENDOR, "Eluktronics Inc."),
538 DMI_MATCH(DMI_BOARD_NAME, "RP-15"),
539 },
540 },
541 {
542 /* TongFang GM6XGxX/TUXEDO Stellaris 16 Gen5 AMD */
543 .matches = {
544 DMI_MATCH(DMI_BOARD_NAME, "GM6XGxX"),
545 },
546 },
547 {
548 /* MAINGEAR Vector Pro 2 15 */
549 .matches = {
550 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"),
551 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-15A3070T"),
552 }
553 },
554 {
555 /* MAINGEAR Vector Pro 2 17 */
556 .matches = {
557 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"),
558 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-17A3070T"),
559 },
560 },
561 {
562 /* TongFang GM6BGEQ / PCSpecialist Elimina Pro 16 M, RTX 3050 */
563 .matches = {
564 DMI_MATCH(DMI_BOARD_NAME, "GM6BGEQ"),
565 },
566 },
567 {
568 /* TongFang GM6BG5Q, RTX 4050 */
569 .matches = {
570 DMI_MATCH(DMI_BOARD_NAME, "GM6BG5Q"),
571 },
572 },
573 {
574 /* TongFang GM6BG0Q / PCSpecialist Elimina Pro 16 M, RTX 4060 */
575 .matches = {
576 DMI_MATCH(DMI_BOARD_NAME, "GM6BG0Q"),
577 },
578 },
579 {
580 /* Infinity E15-5A165-BM */
581 .matches = {
582 DMI_MATCH(DMI_BOARD_NAME, "GM5RG1E0009COM"),
583 },
584 },
585 {
586 /* Infinity E15-5A305-1M */
587 .matches = {
588 DMI_MATCH(DMI_BOARD_NAME, "GM5RGEE0016COM"),
589 },
590 },
591 { }
592};
593
594struct irq_override_cmp {
595 const struct dmi_system_id *system;
596 unsigned char irq;
597 unsigned char triggering;
598 unsigned char polarity;
599 unsigned char shareable;
600 bool override;
601};
602
603static const struct irq_override_cmp override_table[] = {
604 { irq1_level_low_skip_override, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false },
605 { irq1_edge_low_force_override, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true },
606};
607
608static bool acpi_dev_irq_override(u32 gsi, u8 triggering, u8 polarity,
609 u8 shareable)
610{
611 int i;
612
613 for (i = 0; i < ARRAY_SIZE(override_table); i++) {
614 const struct irq_override_cmp *entry = &override_table[i];
615
616 if (dmi_check_system(entry->system) &&
617 entry->irq == gsi &&
618 entry->triggering == triggering &&
619 entry->polarity == polarity &&
620 entry->shareable == shareable)
621 return entry->override;
622 }
623
624#ifdef CONFIG_X86
625 /*
626 * Always use the MADT override info, except for the i8042 PS/2 ctrl
627 * IRQs (1 and 12). For these the DSDT IRQ settings should sometimes
628 * be used otherwise PS/2 keyboards / mice will not work.
629 */
630 if (gsi != 1 && gsi != 12)
631 return true;
632
633 /* If the override comes from an INT_SRC_OVR MADT entry, honor it. */
634 if (acpi_int_src_ovr[gsi])
635 return true;
636
637 /*
638 * IRQ override isn't needed on modern AMD Zen systems and
639 * this override breaks active low IRQs on AMD Ryzen 6000 and
640 * newer systems. Skip it.
641 */
642 if (boot_cpu_has(X86_FEATURE_ZEN))
643 return false;
644#endif
645
646 return true;
647}
648
649static void acpi_dev_get_irqresource(struct resource *res, u32 gsi,
650 u8 triggering, u8 polarity, u8 shareable,
651 u8 wake_capable, bool check_override)
652{
653 int irq, p, t;
654
655 if (!valid_IRQ(gsi)) {
656 irqresource_disabled(res, gsi);
657 return;
658 }
659
660 /*
661 * In IO-APIC mode, use overridden attribute. Two reasons:
662 * 1. BIOS bug in DSDT
663 * 2. BIOS uses IO-APIC mode Interrupt Source Override
664 *
665 * We do this only if we are dealing with IRQ() or IRQNoFlags()
666 * resource (the legacy ISA resources). With modern ACPI 5 devices
667 * using extended IRQ descriptors we take the IRQ configuration
668 * from _CRS directly.
669 */
670 if (check_override &&
671 acpi_dev_irq_override(gsi, triggering, polarity, shareable) &&
672 !acpi_get_override_irq(gsi, &t, &p)) {
673 u8 trig = t ? ACPI_LEVEL_SENSITIVE : ACPI_EDGE_SENSITIVE;
674 u8 pol = p ? ACPI_ACTIVE_LOW : ACPI_ACTIVE_HIGH;
675
676 if (triggering != trig || polarity != pol) {
677 pr_warn("ACPI: IRQ %d override to %s%s, %s%s\n", gsi,
678 t ? "level" : "edge",
679 trig == triggering ? "" : "(!)",
680 p ? "low" : "high",
681 pol == polarity ? "" : "(!)");
682 triggering = trig;
683 polarity = pol;
684 }
685 }
686
687 res->flags = acpi_dev_irq_flags(triggering, polarity, shareable, wake_capable);
688 irq = acpi_register_gsi(NULL, gsi, triggering, polarity);
689 if (irq >= 0) {
690 res->start = irq;
691 res->end = irq;
692 } else {
693 irqresource_disabled(res, gsi);
694 }
695}
696
697/**
698 * acpi_dev_resource_interrupt - Extract ACPI interrupt resource information.
699 * @ares: Input ACPI resource object.
700 * @index: Index into the array of GSIs represented by the resource.
701 * @res: Output generic resource object.
702 *
703 * Check if the given ACPI resource object represents an interrupt resource
704 * and @index does not exceed the resource's interrupt count (true is returned
705 * in that case regardless of the results of the other checks)). If that's the
706 * case, register the GSI corresponding to @index from the array of interrupts
707 * represented by the resource and populate the generic resource object pointed
708 * to by @res accordingly. If the registration of the GSI is not successful,
709 * IORESOURCE_DISABLED will be set it that object's flags.
710 *
711 * Return:
712 * 1) false with res->flags setting to zero: not the expected resource type
713 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource
714 * 3) true: valid assigned resource
715 */
716bool acpi_dev_resource_interrupt(struct acpi_resource *ares, int index,
717 struct resource *res)
718{
719 struct acpi_resource_irq *irq;
720 struct acpi_resource_extended_irq *ext_irq;
721
722 switch (ares->type) {
723 case ACPI_RESOURCE_TYPE_IRQ:
724 /*
725 * Per spec, only one interrupt per descriptor is allowed in
726 * _CRS, but some firmware violates this, so parse them all.
727 */
728 irq = &ares->data.irq;
729 if (index >= irq->interrupt_count) {
730 irqresource_disabled(res, 0);
731 return false;
732 }
733 acpi_dev_get_irqresource(res, irq->interrupts[index],
734 irq->triggering, irq->polarity,
735 irq->shareable, irq->wake_capable,
736 true);
737 break;
738 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
739 ext_irq = &ares->data.extended_irq;
740 if (index >= ext_irq->interrupt_count) {
741 irqresource_disabled(res, 0);
742 return false;
743 }
744 if (is_gsi(ext_irq))
745 acpi_dev_get_irqresource(res, ext_irq->interrupts[index],
746 ext_irq->triggering, ext_irq->polarity,
747 ext_irq->shareable, ext_irq->wake_capable,
748 false);
749 else
750 irqresource_disabled(res, 0);
751 break;
752 default:
753 res->flags = 0;
754 return false;
755 }
756
757 return true;
758}
759EXPORT_SYMBOL_GPL(acpi_dev_resource_interrupt);
760
761/**
762 * acpi_dev_free_resource_list - Free resource from %acpi_dev_get_resources().
763 * @list: The head of the resource list to free.
764 */
765void acpi_dev_free_resource_list(struct list_head *list)
766{
767 resource_list_free(list);
768}
769EXPORT_SYMBOL_GPL(acpi_dev_free_resource_list);
770
771struct res_proc_context {
772 struct list_head *list;
773 int (*preproc)(struct acpi_resource *, void *);
774 void *preproc_data;
775 int count;
776 int error;
777};
778
779static acpi_status acpi_dev_new_resource_entry(struct resource_win *win,
780 struct res_proc_context *c)
781{
782 struct resource_entry *rentry;
783
784 rentry = resource_list_create_entry(NULL, 0);
785 if (!rentry) {
786 c->error = -ENOMEM;
787 return AE_NO_MEMORY;
788 }
789 *rentry->res = win->res;
790 rentry->offset = win->offset;
791 resource_list_add_tail(rentry, c->list);
792 c->count++;
793 return AE_OK;
794}
795
796static acpi_status acpi_dev_process_resource(struct acpi_resource *ares,
797 void *context)
798{
799 struct res_proc_context *c = context;
800 struct resource_win win;
801 struct resource *res = &win.res;
802 int i;
803
804 if (c->preproc) {
805 int ret;
806
807 ret = c->preproc(ares, c->preproc_data);
808 if (ret < 0) {
809 c->error = ret;
810 return AE_ABORT_METHOD;
811 } else if (ret > 0) {
812 return AE_OK;
813 }
814 }
815
816 memset(&win, 0, sizeof(win));
817
818 if (acpi_dev_resource_memory(ares, res)
819 || acpi_dev_resource_io(ares, res)
820 || acpi_dev_resource_address_space(ares, &win)
821 || acpi_dev_resource_ext_address_space(ares, &win))
822 return acpi_dev_new_resource_entry(&win, c);
823
824 for (i = 0; acpi_dev_resource_interrupt(ares, i, res); i++) {
825 acpi_status status;
826
827 status = acpi_dev_new_resource_entry(&win, c);
828 if (ACPI_FAILURE(status))
829 return status;
830 }
831
832 return AE_OK;
833}
834
835static int __acpi_dev_get_resources(struct acpi_device *adev,
836 struct list_head *list,
837 int (*preproc)(struct acpi_resource *, void *),
838 void *preproc_data, char *method)
839{
840 struct res_proc_context c;
841 acpi_status status;
842
843 if (!adev || !adev->handle || !list_empty(list))
844 return -EINVAL;
845
846 if (!acpi_has_method(adev->handle, method))
847 return 0;
848
849 c.list = list;
850 c.preproc = preproc;
851 c.preproc_data = preproc_data;
852 c.count = 0;
853 c.error = 0;
854 status = acpi_walk_resources(adev->handle, method,
855 acpi_dev_process_resource, &c);
856 if (ACPI_FAILURE(status)) {
857 acpi_dev_free_resource_list(list);
858 return c.error ? c.error : -EIO;
859 }
860
861 return c.count;
862}
863
864/**
865 * acpi_dev_get_resources - Get current resources of a device.
866 * @adev: ACPI device node to get the resources for.
867 * @list: Head of the resultant list of resources (must be empty).
868 * @preproc: The caller's preprocessing routine.
869 * @preproc_data: Pointer passed to the caller's preprocessing routine.
870 *
871 * Evaluate the _CRS method for the given device node and process its output by
872 * (1) executing the @preproc() routine provided by the caller, passing the
873 * resource pointer and @preproc_data to it as arguments, for each ACPI resource
874 * returned and (2) converting all of the returned ACPI resources into struct
875 * resource objects if possible. If the return value of @preproc() in step (1)
876 * is different from 0, step (2) is not applied to the given ACPI resource and
877 * if that value is negative, the whole processing is aborted and that value is
878 * returned as the final error code.
879 *
880 * The resultant struct resource objects are put on the list pointed to by
881 * @list, that must be empty initially, as members of struct resource_entry
882 * objects. Callers of this routine should use %acpi_dev_free_resource_list() to
883 * free that list.
884 *
885 * The number of resources in the output list is returned on success, an error
886 * code reflecting the error condition is returned otherwise.
887 */
888int acpi_dev_get_resources(struct acpi_device *adev, struct list_head *list,
889 int (*preproc)(struct acpi_resource *, void *),
890 void *preproc_data)
891{
892 return __acpi_dev_get_resources(adev, list, preproc, preproc_data,
893 METHOD_NAME__CRS);
894}
895EXPORT_SYMBOL_GPL(acpi_dev_get_resources);
896
897static int is_memory(struct acpi_resource *ares, void *not_used)
898{
899 struct resource_win win;
900 struct resource *res = &win.res;
901
902 memset(&win, 0, sizeof(win));
903
904 if (acpi_dev_filter_resource_type(ares, IORESOURCE_MEM))
905 return 1;
906
907 return !(acpi_dev_resource_memory(ares, res)
908 || acpi_dev_resource_address_space(ares, &win)
909 || acpi_dev_resource_ext_address_space(ares, &win));
910}
911
912/**
913 * acpi_dev_get_dma_resources - Get current DMA resources of a device.
914 * @adev: ACPI device node to get the resources for.
915 * @list: Head of the resultant list of resources (must be empty).
916 *
917 * Evaluate the _DMA method for the given device node and process its
918 * output.
919 *
920 * The resultant struct resource objects are put on the list pointed to
921 * by @list, that must be empty initially, as members of struct
922 * resource_entry objects. Callers of this routine should use
923 * %acpi_dev_free_resource_list() to free that list.
924 *
925 * The number of resources in the output list is returned on success,
926 * an error code reflecting the error condition is returned otherwise.
927 */
928int acpi_dev_get_dma_resources(struct acpi_device *adev, struct list_head *list)
929{
930 return __acpi_dev_get_resources(adev, list, is_memory, NULL,
931 METHOD_NAME__DMA);
932}
933EXPORT_SYMBOL_GPL(acpi_dev_get_dma_resources);
934
935/**
936 * acpi_dev_get_memory_resources - Get current memory resources of a device.
937 * @adev: ACPI device node to get the resources for.
938 * @list: Head of the resultant list of resources (must be empty).
939 *
940 * This is a helper function that locates all memory type resources of @adev
941 * with acpi_dev_get_resources().
942 *
943 * The number of resources in the output list is returned on success, an error
944 * code reflecting the error condition is returned otherwise.
945 */
946int acpi_dev_get_memory_resources(struct acpi_device *adev, struct list_head *list)
947{
948 return acpi_dev_get_resources(adev, list, is_memory, NULL);
949}
950EXPORT_SYMBOL_GPL(acpi_dev_get_memory_resources);
951
952/**
953 * acpi_dev_filter_resource_type - Filter ACPI resource according to resource
954 * types
955 * @ares: Input ACPI resource object.
956 * @types: Valid resource types of IORESOURCE_XXX
957 *
958 * This is a helper function to support acpi_dev_get_resources(), which filters
959 * ACPI resource objects according to resource types.
960 */
961int acpi_dev_filter_resource_type(struct acpi_resource *ares,
962 unsigned long types)
963{
964 unsigned long type = 0;
965
966 switch (ares->type) {
967 case ACPI_RESOURCE_TYPE_MEMORY24:
968 case ACPI_RESOURCE_TYPE_MEMORY32:
969 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
970 type = IORESOURCE_MEM;
971 break;
972 case ACPI_RESOURCE_TYPE_IO:
973 case ACPI_RESOURCE_TYPE_FIXED_IO:
974 type = IORESOURCE_IO;
975 break;
976 case ACPI_RESOURCE_TYPE_IRQ:
977 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
978 type = IORESOURCE_IRQ;
979 break;
980 case ACPI_RESOURCE_TYPE_DMA:
981 case ACPI_RESOURCE_TYPE_FIXED_DMA:
982 type = IORESOURCE_DMA;
983 break;
984 case ACPI_RESOURCE_TYPE_GENERIC_REGISTER:
985 type = IORESOURCE_REG;
986 break;
987 case ACPI_RESOURCE_TYPE_ADDRESS16:
988 case ACPI_RESOURCE_TYPE_ADDRESS32:
989 case ACPI_RESOURCE_TYPE_ADDRESS64:
990 case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:
991 if (ares->data.address.resource_type == ACPI_MEMORY_RANGE)
992 type = IORESOURCE_MEM;
993 else if (ares->data.address.resource_type == ACPI_IO_RANGE)
994 type = IORESOURCE_IO;
995 else if (ares->data.address.resource_type ==
996 ACPI_BUS_NUMBER_RANGE)
997 type = IORESOURCE_BUS;
998 break;
999 default:
1000 break;
1001 }
1002
1003 return (type & types) ? 0 : 1;
1004}
1005EXPORT_SYMBOL_GPL(acpi_dev_filter_resource_type);
1006
1007static int acpi_dev_consumes_res(struct acpi_device *adev, struct resource *res)
1008{
1009 struct list_head resource_list;
1010 struct resource_entry *rentry;
1011 int ret, found = 0;
1012
1013 INIT_LIST_HEAD(&resource_list);
1014 ret = acpi_dev_get_resources(adev, &resource_list, NULL, NULL);
1015 if (ret < 0)
1016 return 0;
1017
1018 list_for_each_entry(rentry, &resource_list, node) {
1019 if (resource_contains(rentry->res, res)) {
1020 found = 1;
1021 break;
1022 }
1023
1024 }
1025
1026 acpi_dev_free_resource_list(&resource_list);
1027 return found;
1028}
1029
1030static acpi_status acpi_res_consumer_cb(acpi_handle handle, u32 depth,
1031 void *context, void **ret)
1032{
1033 struct resource *res = context;
1034 struct acpi_device **consumer = (struct acpi_device **) ret;
1035 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
1036
1037 if (!adev)
1038 return AE_OK;
1039
1040 if (acpi_dev_consumes_res(adev, res)) {
1041 *consumer = adev;
1042 return AE_CTRL_TERMINATE;
1043 }
1044
1045 return AE_OK;
1046}
1047
1048/**
1049 * acpi_resource_consumer - Find the ACPI device that consumes @res.
1050 * @res: Resource to search for.
1051 *
1052 * Search the current resource settings (_CRS) of every ACPI device node
1053 * for @res. If we find an ACPI device whose _CRS includes @res, return
1054 * it. Otherwise, return NULL.
1055 */
1056struct acpi_device *acpi_resource_consumer(struct resource *res)
1057{
1058 struct acpi_device *consumer = NULL;
1059
1060 acpi_get_devices(NULL, acpi_res_consumer_cb, res, (void **) &consumer);
1061 return consumer;
1062}