Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Digital Audio (PCM) abstract layer
   4 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   5 *                   Abramo Bagnara <abramo@alsa-project.org>
   6 */
   7
   8#include <linux/slab.h>
   9#include <linux/sched/signal.h>
  10#include <linux/time.h>
  11#include <linux/math64.h>
  12#include <linux/export.h>
  13#include <sound/core.h>
  14#include <sound/control.h>
  15#include <sound/tlv.h>
  16#include <sound/info.h>
  17#include <sound/pcm.h>
  18#include <sound/pcm_params.h>
  19#include <sound/timer.h>
  20
  21#include "pcm_local.h"
  22
  23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  24#define CREATE_TRACE_POINTS
  25#include "pcm_trace.h"
  26#else
  27#define trace_hwptr(substream, pos, in_interrupt)
  28#define trace_xrun(substream)
  29#define trace_hw_ptr_error(substream, reason)
  30#define trace_applptr(substream, prev, curr)
  31#endif
  32
  33static int fill_silence_frames(struct snd_pcm_substream *substream,
  34			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
  35
  36
  37static inline void update_silence_vars(struct snd_pcm_runtime *runtime,
  38				       snd_pcm_uframes_t ptr,
  39				       snd_pcm_uframes_t new_ptr)
  40{
  41	snd_pcm_sframes_t delta;
  42
  43	delta = new_ptr - ptr;
  44	if (delta == 0)
  45		return;
  46	if (delta < 0)
  47		delta += runtime->boundary;
  48	if ((snd_pcm_uframes_t)delta < runtime->silence_filled)
  49		runtime->silence_filled -= delta;
  50	else
  51		runtime->silence_filled = 0;
  52	runtime->silence_start = new_ptr;
  53}
  54
  55/*
  56 * fill ring buffer with silence
  57 * runtime->silence_start: starting pointer to silence area
  58 * runtime->silence_filled: size filled with silence
  59 * runtime->silence_threshold: threshold from application
  60 * runtime->silence_size: maximal size from application
  61 *
  62 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  63 */
  64void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  65{
  66	struct snd_pcm_runtime *runtime = substream->runtime;
  67	snd_pcm_uframes_t frames, ofs, transfer;
  68	int err;
  69
  70	if (runtime->silence_size < runtime->boundary) {
  71		snd_pcm_sframes_t noise_dist;
  72		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
  73		update_silence_vars(runtime, runtime->silence_start, appl_ptr);
  74		/* initialization outside pointer updates */
  75		if (new_hw_ptr == ULONG_MAX)
  76			new_hw_ptr = runtime->status->hw_ptr;
  77		/* get hw_avail with the boundary crossing */
  78		noise_dist = appl_ptr - new_hw_ptr;
  79		if (noise_dist < 0)
  80			noise_dist += runtime->boundary;
  81		/* total noise distance */
  82		noise_dist += runtime->silence_filled;
 
 
 
  83		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  84			return;
  85		frames = runtime->silence_threshold - noise_dist;
  86		if (frames > runtime->silence_size)
  87			frames = runtime->silence_size;
  88	} else {
  89		/*
  90		 * This filling mode aims at free-running mode (used for example by dmix),
  91		 * which doesn't update the application pointer.
  92		 */
  93		snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr;
  94		if (new_hw_ptr == ULONG_MAX) {
  95			/*
  96			 * Initialization, fill the whole unused buffer with silence.
  97			 *
  98			 * Usually, this is entered while stopped, before data is queued,
  99			 * so both pointers are expected to be zero.
 100			 */
 101			snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr;
 102			if (avail < 0)
 103				avail += runtime->boundary;
 104			/*
 105			 * In free-running mode, appl_ptr will be zero even while running,
 106			 * so we end up with a huge number. There is no useful way to
 107			 * handle this, so we just clear the whole buffer.
 108			 */
 109			runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail;
 110			runtime->silence_start = hw_ptr;
 111		} else {
 112			/* Silence the just played area immediately */
 113			update_silence_vars(runtime, hw_ptr, new_hw_ptr);
 
 
 
 
 
 
 
 
 
 114		}
 115		/*
 116		 * In this mode, silence_filled actually includes the valid
 117		 * sample data from the user.
 118		 */
 119		frames = runtime->buffer_size - runtime->silence_filled;
 120	}
 121	if (snd_BUG_ON(frames > runtime->buffer_size))
 122		return;
 123	if (frames == 0)
 124		return;
 125	ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
 126	do {
 127		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 128		err = fill_silence_frames(substream, ofs, transfer);
 129		snd_BUG_ON(err < 0);
 130		runtime->silence_filled += transfer;
 131		frames -= transfer;
 132		ofs = 0;
 133	} while (frames > 0);
 134	snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
 135}
 136
 137#ifdef CONFIG_SND_DEBUG
 138void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 139			   char *name, size_t len)
 140{
 141	snprintf(name, len, "pcmC%dD%d%c:%d",
 142		 substream->pcm->card->number,
 143		 substream->pcm->device,
 144		 substream->stream ? 'c' : 'p',
 145		 substream->number);
 146}
 147EXPORT_SYMBOL(snd_pcm_debug_name);
 148#endif
 149
 150#define XRUN_DEBUG_BASIC	(1<<0)
 151#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 152#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 153
 154#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 155
 156#define xrun_debug(substream, mask) \
 157			((substream)->pstr->xrun_debug & (mask))
 158#else
 159#define xrun_debug(substream, mask)	0
 160#endif
 161
 162#define dump_stack_on_xrun(substream) do {			\
 163		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 164			dump_stack();				\
 165	} while (0)
 166
 167/* call with stream lock held */
 168void __snd_pcm_xrun(struct snd_pcm_substream *substream)
 169{
 170	struct snd_pcm_runtime *runtime = substream->runtime;
 171
 172	trace_xrun(substream);
 173	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 174		struct timespec64 tstamp;
 175
 176		snd_pcm_gettime(runtime, &tstamp);
 177		runtime->status->tstamp.tv_sec = tstamp.tv_sec;
 178		runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
 179	}
 180	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 181	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 182		char name[16];
 183		snd_pcm_debug_name(substream, name, sizeof(name));
 184		pcm_warn(substream->pcm, "XRUN: %s\n", name);
 185		dump_stack_on_xrun(substream);
 186	}
 187#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 188	substream->xrun_counter++;
 189#endif
 190}
 191
 192#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 193#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
 194	do {								\
 195		trace_hw_ptr_error(substream, reason);	\
 196		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 197			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 198					   (in_interrupt) ? 'Q' : 'P', ##args);	\
 199			dump_stack_on_xrun(substream);			\
 200		}							\
 201	} while (0)
 202
 203#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 204
 205#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 206
 207#endif
 208
 209int snd_pcm_update_state(struct snd_pcm_substream *substream,
 210			 struct snd_pcm_runtime *runtime)
 211{
 212	snd_pcm_uframes_t avail;
 213
 214	avail = snd_pcm_avail(substream);
 215	if (avail > runtime->avail_max)
 216		runtime->avail_max = avail;
 217	if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
 218		if (avail >= runtime->buffer_size) {
 219			snd_pcm_drain_done(substream);
 220			return -EPIPE;
 221		}
 222	} else {
 223		if (avail >= runtime->stop_threshold) {
 224			__snd_pcm_xrun(substream);
 225			return -EPIPE;
 226		}
 227	}
 228	if (runtime->twake) {
 229		if (avail >= runtime->twake)
 230			wake_up(&runtime->tsleep);
 231	} else if (avail >= runtime->control->avail_min)
 232		wake_up(&runtime->sleep);
 233	return 0;
 234}
 235
 236static void update_audio_tstamp(struct snd_pcm_substream *substream,
 237				struct timespec64 *curr_tstamp,
 238				struct timespec64 *audio_tstamp)
 239{
 240	struct snd_pcm_runtime *runtime = substream->runtime;
 241	u64 audio_frames, audio_nsecs;
 242	struct timespec64 driver_tstamp;
 243
 244	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
 245		return;
 246
 247	if (!(substream->ops->get_time_info) ||
 248		(runtime->audio_tstamp_report.actual_type ==
 249			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 250
 251		/*
 252		 * provide audio timestamp derived from pointer position
 253		 * add delay only if requested
 254		 */
 255
 256		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
 257
 258		if (runtime->audio_tstamp_config.report_delay) {
 259			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 260				audio_frames -=  runtime->delay;
 261			else
 262				audio_frames +=  runtime->delay;
 263		}
 264		audio_nsecs = div_u64(audio_frames * 1000000000LL,
 265				runtime->rate);
 266		*audio_tstamp = ns_to_timespec64(audio_nsecs);
 267	}
 268
 269	if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
 270	    runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
 271		runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
 272		runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
 273		runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
 274		runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
 275	}
 276
 277
 278	/*
 279	 * re-take a driver timestamp to let apps detect if the reference tstamp
 280	 * read by low-level hardware was provided with a delay
 281	 */
 282	snd_pcm_gettime(substream->runtime, &driver_tstamp);
 283	runtime->driver_tstamp = driver_tstamp;
 284}
 285
 286static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 287				  unsigned int in_interrupt)
 288{
 289	struct snd_pcm_runtime *runtime = substream->runtime;
 290	snd_pcm_uframes_t pos;
 291	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 292	snd_pcm_sframes_t hdelta, delta;
 293	unsigned long jdelta;
 294	unsigned long curr_jiffies;
 295	struct timespec64 curr_tstamp;
 296	struct timespec64 audio_tstamp;
 297	int crossed_boundary = 0;
 298
 299	old_hw_ptr = runtime->status->hw_ptr;
 300
 301	/*
 302	 * group pointer, time and jiffies reads to allow for more
 303	 * accurate correlations/corrections.
 304	 * The values are stored at the end of this routine after
 305	 * corrections for hw_ptr position
 306	 */
 307	pos = substream->ops->pointer(substream);
 308	curr_jiffies = jiffies;
 309	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 310		if ((substream->ops->get_time_info) &&
 311			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 312			substream->ops->get_time_info(substream, &curr_tstamp,
 313						&audio_tstamp,
 314						&runtime->audio_tstamp_config,
 315						&runtime->audio_tstamp_report);
 316
 317			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
 318			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
 319				snd_pcm_gettime(runtime, &curr_tstamp);
 320		} else
 321			snd_pcm_gettime(runtime, &curr_tstamp);
 322	}
 323
 324	if (pos == SNDRV_PCM_POS_XRUN) {
 325		__snd_pcm_xrun(substream);
 326		return -EPIPE;
 327	}
 328	if (pos >= runtime->buffer_size) {
 329		if (printk_ratelimit()) {
 330			char name[16];
 331			snd_pcm_debug_name(substream, name, sizeof(name));
 332			pcm_err(substream->pcm,
 333				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 334				name, pos, runtime->buffer_size,
 335				runtime->period_size);
 336		}
 337		pos = 0;
 338	}
 339	pos -= pos % runtime->min_align;
 340	trace_hwptr(substream, pos, in_interrupt);
 341	hw_base = runtime->hw_ptr_base;
 342	new_hw_ptr = hw_base + pos;
 343	if (in_interrupt) {
 344		/* we know that one period was processed */
 345		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 346		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 347		if (delta > new_hw_ptr) {
 348			/* check for double acknowledged interrupts */
 349			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 350			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
 351				hw_base += runtime->buffer_size;
 352				if (hw_base >= runtime->boundary) {
 353					hw_base = 0;
 354					crossed_boundary++;
 355				}
 356				new_hw_ptr = hw_base + pos;
 357				goto __delta;
 358			}
 359		}
 360	}
 361	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 362	/* pointer crosses the end of the ring buffer */
 363	if (new_hw_ptr < old_hw_ptr) {
 364		hw_base += runtime->buffer_size;
 365		if (hw_base >= runtime->boundary) {
 366			hw_base = 0;
 367			crossed_boundary++;
 368		}
 369		new_hw_ptr = hw_base + pos;
 370	}
 371      __delta:
 372	delta = new_hw_ptr - old_hw_ptr;
 373	if (delta < 0)
 374		delta += runtime->boundary;
 375
 376	if (runtime->no_period_wakeup) {
 377		snd_pcm_sframes_t xrun_threshold;
 378		/*
 379		 * Without regular period interrupts, we have to check
 380		 * the elapsed time to detect xruns.
 381		 */
 382		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 383		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 384			goto no_delta_check;
 385		hdelta = jdelta - delta * HZ / runtime->rate;
 386		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 387		while (hdelta > xrun_threshold) {
 388			delta += runtime->buffer_size;
 389			hw_base += runtime->buffer_size;
 390			if (hw_base >= runtime->boundary) {
 391				hw_base = 0;
 392				crossed_boundary++;
 393			}
 394			new_hw_ptr = hw_base + pos;
 395			hdelta -= runtime->hw_ptr_buffer_jiffies;
 396		}
 397		goto no_delta_check;
 398	}
 399
 400	/* something must be really wrong */
 401	if (delta >= runtime->buffer_size + runtime->period_size) {
 402		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 403			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 404			     substream->stream, (long)pos,
 405			     (long)new_hw_ptr, (long)old_hw_ptr);
 406		return 0;
 407	}
 408
 409	/* Do jiffies check only in xrun_debug mode */
 410	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 411		goto no_jiffies_check;
 412
 413	/* Skip the jiffies check for hardwares with BATCH flag.
 414	 * Such hardware usually just increases the position at each IRQ,
 415	 * thus it can't give any strange position.
 416	 */
 417	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 418		goto no_jiffies_check;
 419	hdelta = delta;
 420	if (hdelta < runtime->delay)
 421		goto no_jiffies_check;
 422	hdelta -= runtime->delay;
 423	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 424	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 425		delta = jdelta /
 426			(((runtime->period_size * HZ) / runtime->rate)
 427								+ HZ/100);
 428		/* move new_hw_ptr according jiffies not pos variable */
 429		new_hw_ptr = old_hw_ptr;
 430		hw_base = delta;
 431		/* use loop to avoid checks for delta overflows */
 432		/* the delta value is small or zero in most cases */
 433		while (delta > 0) {
 434			new_hw_ptr += runtime->period_size;
 435			if (new_hw_ptr >= runtime->boundary) {
 436				new_hw_ptr -= runtime->boundary;
 437				crossed_boundary--;
 438			}
 439			delta--;
 440		}
 441		/* align hw_base to buffer_size */
 442		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 443			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 444			     (long)pos, (long)hdelta,
 445			     (long)runtime->period_size, jdelta,
 446			     ((hdelta * HZ) / runtime->rate), hw_base,
 447			     (unsigned long)old_hw_ptr,
 448			     (unsigned long)new_hw_ptr);
 449		/* reset values to proper state */
 450		delta = 0;
 451		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 452	}
 453 no_jiffies_check:
 454	if (delta > runtime->period_size + runtime->period_size / 2) {
 455		hw_ptr_error(substream, in_interrupt,
 456			     "Lost interrupts?",
 457			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 458			     substream->stream, (long)delta,
 459			     (long)new_hw_ptr,
 460			     (long)old_hw_ptr);
 461	}
 462
 463 no_delta_check:
 464	if (runtime->status->hw_ptr == new_hw_ptr) {
 465		runtime->hw_ptr_jiffies = curr_jiffies;
 466		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 467		return 0;
 468	}
 469
 470	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 471	    runtime->silence_size > 0)
 472		snd_pcm_playback_silence(substream, new_hw_ptr);
 473
 474	if (in_interrupt) {
 475		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 476		if (delta < 0)
 477			delta += runtime->boundary;
 478		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 479		runtime->hw_ptr_interrupt += delta;
 480		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 481			runtime->hw_ptr_interrupt -= runtime->boundary;
 482	}
 483	runtime->hw_ptr_base = hw_base;
 484	runtime->status->hw_ptr = new_hw_ptr;
 485	runtime->hw_ptr_jiffies = curr_jiffies;
 486	if (crossed_boundary) {
 487		snd_BUG_ON(crossed_boundary != 1);
 488		runtime->hw_ptr_wrap += runtime->boundary;
 489	}
 490
 491	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 492
 493	return snd_pcm_update_state(substream, runtime);
 494}
 495
 496/* CAUTION: call it with irq disabled */
 497int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 498{
 499	return snd_pcm_update_hw_ptr0(substream, 0);
 500}
 501
 502/**
 503 * snd_pcm_set_ops - set the PCM operators
 504 * @pcm: the pcm instance
 505 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 506 * @ops: the operator table
 507 *
 508 * Sets the given PCM operators to the pcm instance.
 509 */
 510void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 511		     const struct snd_pcm_ops *ops)
 512{
 513	struct snd_pcm_str *stream = &pcm->streams[direction];
 514	struct snd_pcm_substream *substream;
 515	
 516	for (substream = stream->substream; substream != NULL; substream = substream->next)
 517		substream->ops = ops;
 518}
 519EXPORT_SYMBOL(snd_pcm_set_ops);
 520
 521/**
 522 * snd_pcm_set_sync_per_card - set the PCM sync id with card number
 523 * @substream: the pcm substream
 524 * @params: modified hardware parameters
 525 * @id: identifier (max 12 bytes)
 526 * @len: identifier length (max 12 bytes)
 527 *
 528 * Sets the PCM sync identifier for the card with zero padding.
 529 *
 530 * User space or any user should use this 16-byte identifier for a comparison only
 531 * to check if two IDs are similar or different. Special case is the identifier
 532 * containing only zeros. Interpretation for this combination is - empty (not set).
 533 * The contents of the identifier should not be interpreted in any other way.
 534 *
 535 * The synchronization ID must be unique per clock source (usually one sound card,
 536 * but multiple soundcard may use one PCM word clock source which means that they
 537 * are fully synchronized).
 538 *
 539 * This routine composes this ID using card number in first four bytes and
 540 * 12-byte additional ID. When other ID composition is used (e.g. for multiple
 541 * sound cards), make sure that the composition does not clash with this
 542 * composition scheme.
 543 */
 544void snd_pcm_set_sync_per_card(struct snd_pcm_substream *substream,
 545			       struct snd_pcm_hw_params *params,
 546			       const unsigned char *id, unsigned int len)
 547{
 548	*(__u32 *)params->sync = cpu_to_le32(substream->pcm->card->number);
 549	len = min(12, len);
 550	memcpy(params->sync + 4, id, len);
 551	memset(params->sync + 4 + len, 0, 12 - len);
 552}
 553EXPORT_SYMBOL_GPL(snd_pcm_set_sync_per_card);
 554
 555/*
 556 *  Standard ioctl routine
 557 */
 558
 559static inline unsigned int div32(unsigned int a, unsigned int b, 
 560				 unsigned int *r)
 561{
 562	if (b == 0) {
 563		*r = 0;
 564		return UINT_MAX;
 565	}
 566	*r = a % b;
 567	return a / b;
 568}
 569
 570static inline unsigned int div_down(unsigned int a, unsigned int b)
 571{
 572	if (b == 0)
 573		return UINT_MAX;
 574	return a / b;
 575}
 576
 577static inline unsigned int div_up(unsigned int a, unsigned int b)
 578{
 579	unsigned int r;
 580	unsigned int q;
 581	if (b == 0)
 582		return UINT_MAX;
 583	q = div32(a, b, &r);
 584	if (r)
 585		++q;
 586	return q;
 587}
 588
 589static inline unsigned int mul(unsigned int a, unsigned int b)
 590{
 591	if (a == 0)
 592		return 0;
 593	if (div_down(UINT_MAX, a) < b)
 594		return UINT_MAX;
 595	return a * b;
 596}
 597
 598static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 599				    unsigned int c, unsigned int *r)
 600{
 601	u_int64_t n = (u_int64_t) a * b;
 602	if (c == 0) {
 603		*r = 0;
 604		return UINT_MAX;
 605	}
 606	n = div_u64_rem(n, c, r);
 607	if (n >= UINT_MAX) {
 608		*r = 0;
 609		return UINT_MAX;
 610	}
 611	return n;
 612}
 613
 614/**
 615 * snd_interval_refine - refine the interval value of configurator
 616 * @i: the interval value to refine
 617 * @v: the interval value to refer to
 618 *
 619 * Refines the interval value with the reference value.
 620 * The interval is changed to the range satisfying both intervals.
 621 * The interval status (min, max, integer, etc.) are evaluated.
 622 *
 623 * Return: Positive if the value is changed, zero if it's not changed, or a
 624 * negative error code.
 625 */
 626int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 627{
 628	int changed = 0;
 629	if (snd_BUG_ON(snd_interval_empty(i)))
 630		return -EINVAL;
 631	if (i->min < v->min) {
 632		i->min = v->min;
 633		i->openmin = v->openmin;
 634		changed = 1;
 635	} else if (i->min == v->min && !i->openmin && v->openmin) {
 636		i->openmin = 1;
 637		changed = 1;
 638	}
 639	if (i->max > v->max) {
 640		i->max = v->max;
 641		i->openmax = v->openmax;
 642		changed = 1;
 643	} else if (i->max == v->max && !i->openmax && v->openmax) {
 644		i->openmax = 1;
 645		changed = 1;
 646	}
 647	if (!i->integer && v->integer) {
 648		i->integer = 1;
 649		changed = 1;
 650	}
 651	if (i->integer) {
 652		if (i->openmin) {
 653			i->min++;
 654			i->openmin = 0;
 655		}
 656		if (i->openmax) {
 657			i->max--;
 658			i->openmax = 0;
 659		}
 660	} else if (!i->openmin && !i->openmax && i->min == i->max)
 661		i->integer = 1;
 662	if (snd_interval_checkempty(i)) {
 663		snd_interval_none(i);
 664		return -EINVAL;
 665	}
 666	return changed;
 667}
 668EXPORT_SYMBOL(snd_interval_refine);
 669
 670static int snd_interval_refine_first(struct snd_interval *i)
 671{
 672	const unsigned int last_max = i->max;
 673
 674	if (snd_BUG_ON(snd_interval_empty(i)))
 675		return -EINVAL;
 676	if (snd_interval_single(i))
 677		return 0;
 678	i->max = i->min;
 679	if (i->openmin)
 680		i->max++;
 681	/* only exclude max value if also excluded before refine */
 682	i->openmax = (i->openmax && i->max >= last_max);
 683	return 1;
 684}
 685
 686static int snd_interval_refine_last(struct snd_interval *i)
 687{
 688	const unsigned int last_min = i->min;
 689
 690	if (snd_BUG_ON(snd_interval_empty(i)))
 691		return -EINVAL;
 692	if (snd_interval_single(i))
 693		return 0;
 694	i->min = i->max;
 695	if (i->openmax)
 696		i->min--;
 697	/* only exclude min value if also excluded before refine */
 698	i->openmin = (i->openmin && i->min <= last_min);
 699	return 1;
 700}
 701
 702void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 703{
 704	if (a->empty || b->empty) {
 705		snd_interval_none(c);
 706		return;
 707	}
 708	c->empty = 0;
 709	c->min = mul(a->min, b->min);
 710	c->openmin = (a->openmin || b->openmin);
 711	c->max = mul(a->max,  b->max);
 712	c->openmax = (a->openmax || b->openmax);
 713	c->integer = (a->integer && b->integer);
 714}
 715
 716/**
 717 * snd_interval_div - refine the interval value with division
 718 * @a: dividend
 719 * @b: divisor
 720 * @c: quotient
 721 *
 722 * c = a / b
 723 *
 724 * Returns non-zero if the value is changed, zero if not changed.
 725 */
 726void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 727{
 728	unsigned int r;
 729	if (a->empty || b->empty) {
 730		snd_interval_none(c);
 731		return;
 732	}
 733	c->empty = 0;
 734	c->min = div32(a->min, b->max, &r);
 735	c->openmin = (r || a->openmin || b->openmax);
 736	if (b->min > 0) {
 737		c->max = div32(a->max, b->min, &r);
 738		if (r) {
 739			c->max++;
 740			c->openmax = 1;
 741		} else
 742			c->openmax = (a->openmax || b->openmin);
 743	} else {
 744		c->max = UINT_MAX;
 745		c->openmax = 0;
 746	}
 747	c->integer = 0;
 748}
 749
 750/**
 751 * snd_interval_muldivk - refine the interval value
 752 * @a: dividend 1
 753 * @b: dividend 2
 754 * @k: divisor (as integer)
 755 * @c: result
 756  *
 757 * c = a * b / k
 758 *
 759 * Returns non-zero if the value is changed, zero if not changed.
 760 */
 761void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 762		      unsigned int k, struct snd_interval *c)
 763{
 764	unsigned int r;
 765	if (a->empty || b->empty) {
 766		snd_interval_none(c);
 767		return;
 768	}
 769	c->empty = 0;
 770	c->min = muldiv32(a->min, b->min, k, &r);
 771	c->openmin = (r || a->openmin || b->openmin);
 772	c->max = muldiv32(a->max, b->max, k, &r);
 773	if (r) {
 774		c->max++;
 775		c->openmax = 1;
 776	} else
 777		c->openmax = (a->openmax || b->openmax);
 778	c->integer = 0;
 779}
 780
 781/**
 782 * snd_interval_mulkdiv - refine the interval value
 783 * @a: dividend 1
 784 * @k: dividend 2 (as integer)
 785 * @b: divisor
 786 * @c: result
 787 *
 788 * c = a * k / b
 789 *
 790 * Returns non-zero if the value is changed, zero if not changed.
 791 */
 792void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 793		      const struct snd_interval *b, struct snd_interval *c)
 794{
 795	unsigned int r;
 796	if (a->empty || b->empty) {
 797		snd_interval_none(c);
 798		return;
 799	}
 800	c->empty = 0;
 801	c->min = muldiv32(a->min, k, b->max, &r);
 802	c->openmin = (r || a->openmin || b->openmax);
 803	if (b->min > 0) {
 804		c->max = muldiv32(a->max, k, b->min, &r);
 805		if (r) {
 806			c->max++;
 807			c->openmax = 1;
 808		} else
 809			c->openmax = (a->openmax || b->openmin);
 810	} else {
 811		c->max = UINT_MAX;
 812		c->openmax = 0;
 813	}
 814	c->integer = 0;
 815}
 816
 817/* ---- */
 818
 819
 820/**
 821 * snd_interval_ratnum - refine the interval value
 822 * @i: interval to refine
 823 * @rats_count: number of ratnum_t 
 824 * @rats: ratnum_t array
 825 * @nump: pointer to store the resultant numerator
 826 * @denp: pointer to store the resultant denominator
 827 *
 828 * Return: Positive if the value is changed, zero if it's not changed, or a
 829 * negative error code.
 830 */
 831int snd_interval_ratnum(struct snd_interval *i,
 832			unsigned int rats_count, const struct snd_ratnum *rats,
 833			unsigned int *nump, unsigned int *denp)
 834{
 835	unsigned int best_num, best_den;
 836	int best_diff;
 837	unsigned int k;
 838	struct snd_interval t;
 839	int err;
 840	unsigned int result_num, result_den;
 841	int result_diff;
 842
 843	best_num = best_den = best_diff = 0;
 844	for (k = 0; k < rats_count; ++k) {
 845		unsigned int num = rats[k].num;
 846		unsigned int den;
 847		unsigned int q = i->min;
 848		int diff;
 849		if (q == 0)
 850			q = 1;
 851		den = div_up(num, q);
 852		if (den < rats[k].den_min)
 853			continue;
 854		if (den > rats[k].den_max)
 855			den = rats[k].den_max;
 856		else {
 857			unsigned int r;
 858			r = (den - rats[k].den_min) % rats[k].den_step;
 859			if (r != 0)
 860				den -= r;
 861		}
 862		diff = num - q * den;
 863		if (diff < 0)
 864			diff = -diff;
 865		if (best_num == 0 ||
 866		    diff * best_den < best_diff * den) {
 867			best_diff = diff;
 868			best_den = den;
 869			best_num = num;
 870		}
 871	}
 872	if (best_den == 0) {
 873		i->empty = 1;
 874		return -EINVAL;
 875	}
 876	t.min = div_down(best_num, best_den);
 877	t.openmin = !!(best_num % best_den);
 878	
 879	result_num = best_num;
 880	result_diff = best_diff;
 881	result_den = best_den;
 882	best_num = best_den = best_diff = 0;
 883	for (k = 0; k < rats_count; ++k) {
 884		unsigned int num = rats[k].num;
 885		unsigned int den;
 886		unsigned int q = i->max;
 887		int diff;
 888		if (q == 0) {
 889			i->empty = 1;
 890			return -EINVAL;
 891		}
 892		den = div_down(num, q);
 893		if (den > rats[k].den_max)
 894			continue;
 895		if (den < rats[k].den_min)
 896			den = rats[k].den_min;
 897		else {
 898			unsigned int r;
 899			r = (den - rats[k].den_min) % rats[k].den_step;
 900			if (r != 0)
 901				den += rats[k].den_step - r;
 902		}
 903		diff = q * den - num;
 904		if (diff < 0)
 905			diff = -diff;
 906		if (best_num == 0 ||
 907		    diff * best_den < best_diff * den) {
 908			best_diff = diff;
 909			best_den = den;
 910			best_num = num;
 911		}
 912	}
 913	if (best_den == 0) {
 914		i->empty = 1;
 915		return -EINVAL;
 916	}
 917	t.max = div_up(best_num, best_den);
 918	t.openmax = !!(best_num % best_den);
 919	t.integer = 0;
 920	err = snd_interval_refine(i, &t);
 921	if (err < 0)
 922		return err;
 923
 924	if (snd_interval_single(i)) {
 925		if (best_diff * result_den < result_diff * best_den) {
 926			result_num = best_num;
 927			result_den = best_den;
 928		}
 929		if (nump)
 930			*nump = result_num;
 931		if (denp)
 932			*denp = result_den;
 933	}
 934	return err;
 935}
 936EXPORT_SYMBOL(snd_interval_ratnum);
 937
 938/**
 939 * snd_interval_ratden - refine the interval value
 940 * @i: interval to refine
 941 * @rats_count: number of struct ratden
 942 * @rats: struct ratden array
 943 * @nump: pointer to store the resultant numerator
 944 * @denp: pointer to store the resultant denominator
 945 *
 946 * Return: Positive if the value is changed, zero if it's not changed, or a
 947 * negative error code.
 948 */
 949static int snd_interval_ratden(struct snd_interval *i,
 950			       unsigned int rats_count,
 951			       const struct snd_ratden *rats,
 952			       unsigned int *nump, unsigned int *denp)
 953{
 954	unsigned int best_num, best_diff, best_den;
 955	unsigned int k;
 956	struct snd_interval t;
 957	int err;
 958
 959	best_num = best_den = best_diff = 0;
 960	for (k = 0; k < rats_count; ++k) {
 961		unsigned int num;
 962		unsigned int den = rats[k].den;
 963		unsigned int q = i->min;
 964		int diff;
 965		num = mul(q, den);
 966		if (num > rats[k].num_max)
 967			continue;
 968		if (num < rats[k].num_min)
 969			num = rats[k].num_max;
 970		else {
 971			unsigned int r;
 972			r = (num - rats[k].num_min) % rats[k].num_step;
 973			if (r != 0)
 974				num += rats[k].num_step - r;
 975		}
 976		diff = num - q * den;
 977		if (best_num == 0 ||
 978		    diff * best_den < best_diff * den) {
 979			best_diff = diff;
 980			best_den = den;
 981			best_num = num;
 982		}
 983	}
 984	if (best_den == 0) {
 985		i->empty = 1;
 986		return -EINVAL;
 987	}
 988	t.min = div_down(best_num, best_den);
 989	t.openmin = !!(best_num % best_den);
 990	
 991	best_num = best_den = best_diff = 0;
 992	for (k = 0; k < rats_count; ++k) {
 993		unsigned int num;
 994		unsigned int den = rats[k].den;
 995		unsigned int q = i->max;
 996		int diff;
 997		num = mul(q, den);
 998		if (num < rats[k].num_min)
 999			continue;
1000		if (num > rats[k].num_max)
1001			num = rats[k].num_max;
1002		else {
1003			unsigned int r;
1004			r = (num - rats[k].num_min) % rats[k].num_step;
1005			if (r != 0)
1006				num -= r;
1007		}
1008		diff = q * den - num;
1009		if (best_num == 0 ||
1010		    diff * best_den < best_diff * den) {
1011			best_diff = diff;
1012			best_den = den;
1013			best_num = num;
1014		}
1015	}
1016	if (best_den == 0) {
1017		i->empty = 1;
1018		return -EINVAL;
1019	}
1020	t.max = div_up(best_num, best_den);
1021	t.openmax = !!(best_num % best_den);
1022	t.integer = 0;
1023	err = snd_interval_refine(i, &t);
1024	if (err < 0)
1025		return err;
1026
1027	if (snd_interval_single(i)) {
1028		if (nump)
1029			*nump = best_num;
1030		if (denp)
1031			*denp = best_den;
1032	}
1033	return err;
1034}
1035
1036/**
1037 * snd_interval_list - refine the interval value from the list
1038 * @i: the interval value to refine
1039 * @count: the number of elements in the list
1040 * @list: the value list
1041 * @mask: the bit-mask to evaluate
1042 *
1043 * Refines the interval value from the list.
1044 * When mask is non-zero, only the elements corresponding to bit 1 are
1045 * evaluated.
1046 *
1047 * Return: Positive if the value is changed, zero if it's not changed, or a
1048 * negative error code.
1049 */
1050int snd_interval_list(struct snd_interval *i, unsigned int count,
1051		      const unsigned int *list, unsigned int mask)
1052{
1053        unsigned int k;
1054	struct snd_interval list_range;
1055
1056	if (!count) {
1057		i->empty = 1;
1058		return -EINVAL;
1059	}
1060	snd_interval_any(&list_range);
1061	list_range.min = UINT_MAX;
1062	list_range.max = 0;
1063        for (k = 0; k < count; k++) {
1064		if (mask && !(mask & (1 << k)))
1065			continue;
1066		if (!snd_interval_test(i, list[k]))
1067			continue;
1068		list_range.min = min(list_range.min, list[k]);
1069		list_range.max = max(list_range.max, list[k]);
1070        }
1071	return snd_interval_refine(i, &list_range);
1072}
1073EXPORT_SYMBOL(snd_interval_list);
1074
1075/**
1076 * snd_interval_ranges - refine the interval value from the list of ranges
1077 * @i: the interval value to refine
1078 * @count: the number of elements in the list of ranges
1079 * @ranges: the ranges list
1080 * @mask: the bit-mask to evaluate
1081 *
1082 * Refines the interval value from the list of ranges.
1083 * When mask is non-zero, only the elements corresponding to bit 1 are
1084 * evaluated.
1085 *
1086 * Return: Positive if the value is changed, zero if it's not changed, or a
1087 * negative error code.
1088 */
1089int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1090			const struct snd_interval *ranges, unsigned int mask)
1091{
1092	unsigned int k;
1093	struct snd_interval range_union;
1094	struct snd_interval range;
1095
1096	if (!count) {
1097		snd_interval_none(i);
1098		return -EINVAL;
1099	}
1100	snd_interval_any(&range_union);
1101	range_union.min = UINT_MAX;
1102	range_union.max = 0;
1103	for (k = 0; k < count; k++) {
1104		if (mask && !(mask & (1 << k)))
1105			continue;
1106		snd_interval_copy(&range, &ranges[k]);
1107		if (snd_interval_refine(&range, i) < 0)
1108			continue;
1109		if (snd_interval_empty(&range))
1110			continue;
1111
1112		if (range.min < range_union.min) {
1113			range_union.min = range.min;
1114			range_union.openmin = 1;
1115		}
1116		if (range.min == range_union.min && !range.openmin)
1117			range_union.openmin = 0;
1118		if (range.max > range_union.max) {
1119			range_union.max = range.max;
1120			range_union.openmax = 1;
1121		}
1122		if (range.max == range_union.max && !range.openmax)
1123			range_union.openmax = 0;
1124	}
1125	return snd_interval_refine(i, &range_union);
1126}
1127EXPORT_SYMBOL(snd_interval_ranges);
1128
1129static int snd_interval_step(struct snd_interval *i, unsigned int step)
1130{
1131	unsigned int n;
1132	int changed = 0;
1133	n = i->min % step;
1134	if (n != 0 || i->openmin) {
1135		i->min += step - n;
1136		i->openmin = 0;
1137		changed = 1;
1138	}
1139	n = i->max % step;
1140	if (n != 0 || i->openmax) {
1141		i->max -= n;
1142		i->openmax = 0;
1143		changed = 1;
1144	}
1145	if (snd_interval_checkempty(i)) {
1146		i->empty = 1;
1147		return -EINVAL;
1148	}
1149	return changed;
1150}
1151
1152/* Info constraints helpers */
1153
1154/**
1155 * snd_pcm_hw_rule_add - add the hw-constraint rule
1156 * @runtime: the pcm runtime instance
1157 * @cond: condition bits
1158 * @var: the variable to evaluate
1159 * @func: the evaluation function
1160 * @private: the private data pointer passed to function
1161 * @dep: the dependent variables
1162 *
1163 * Return: Zero if successful, or a negative error code on failure.
1164 */
1165int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1166			int var,
1167			snd_pcm_hw_rule_func_t func, void *private,
1168			int dep, ...)
1169{
1170	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1171	struct snd_pcm_hw_rule *c;
1172	unsigned int k;
1173	va_list args;
1174	va_start(args, dep);
1175	if (constrs->rules_num >= constrs->rules_all) {
1176		struct snd_pcm_hw_rule *new;
1177		unsigned int new_rules = constrs->rules_all + 16;
1178		new = krealloc_array(constrs->rules, new_rules,
1179				     sizeof(*c), GFP_KERNEL);
1180		if (!new) {
1181			va_end(args);
1182			return -ENOMEM;
1183		}
1184		constrs->rules = new;
1185		constrs->rules_all = new_rules;
1186	}
1187	c = &constrs->rules[constrs->rules_num];
1188	c->cond = cond;
1189	c->func = func;
1190	c->var = var;
1191	c->private = private;
1192	k = 0;
1193	while (1) {
1194		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1195			va_end(args);
1196			return -EINVAL;
1197		}
1198		c->deps[k++] = dep;
1199		if (dep < 0)
1200			break;
1201		dep = va_arg(args, int);
1202	}
1203	constrs->rules_num++;
1204	va_end(args);
1205	return 0;
1206}
1207EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1208
1209/**
1210 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1211 * @runtime: PCM runtime instance
1212 * @var: hw_params variable to apply the mask
1213 * @mask: the bitmap mask
1214 *
1215 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1216 *
1217 * Return: Zero if successful, or a negative error code on failure.
1218 */
1219int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220			       u_int32_t mask)
1221{
1222	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223	struct snd_mask *maskp = constrs_mask(constrs, var);
1224	*maskp->bits &= mask;
1225	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1226	if (*maskp->bits == 0)
1227		return -EINVAL;
1228	return 0;
1229}
1230
1231/**
1232 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1233 * @runtime: PCM runtime instance
1234 * @var: hw_params variable to apply the mask
1235 * @mask: the 64bit bitmap mask
1236 *
1237 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1238 *
1239 * Return: Zero if successful, or a negative error code on failure.
1240 */
1241int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1242				 u_int64_t mask)
1243{
1244	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1245	struct snd_mask *maskp = constrs_mask(constrs, var);
1246	maskp->bits[0] &= (u_int32_t)mask;
1247	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1248	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1249	if (! maskp->bits[0] && ! maskp->bits[1])
1250		return -EINVAL;
1251	return 0;
1252}
1253EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1254
1255/**
1256 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1257 * @runtime: PCM runtime instance
1258 * @var: hw_params variable to apply the integer constraint
1259 *
1260 * Apply the constraint of integer to an interval parameter.
1261 *
1262 * Return: Positive if the value is changed, zero if it's not changed, or a
1263 * negative error code.
1264 */
1265int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1266{
1267	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268	return snd_interval_setinteger(constrs_interval(constrs, var));
1269}
1270EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1271
1272/**
1273 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1274 * @runtime: PCM runtime instance
1275 * @var: hw_params variable to apply the range
1276 * @min: the minimal value
1277 * @max: the maximal value
1278 * 
1279 * Apply the min/max range constraint to an interval parameter.
1280 *
1281 * Return: Positive if the value is changed, zero if it's not changed, or a
1282 * negative error code.
1283 */
1284int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1285				 unsigned int min, unsigned int max)
1286{
1287	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1288	struct snd_interval t;
1289	t.min = min;
1290	t.max = max;
1291	t.openmin = t.openmax = 0;
1292	t.integer = 0;
1293	return snd_interval_refine(constrs_interval(constrs, var), &t);
1294}
1295EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1296
1297static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1298				struct snd_pcm_hw_rule *rule)
1299{
1300	struct snd_pcm_hw_constraint_list *list = rule->private;
1301	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1302}		
1303
1304
1305/**
1306 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1307 * @runtime: PCM runtime instance
1308 * @cond: condition bits
1309 * @var: hw_params variable to apply the list constraint
1310 * @l: list
1311 * 
1312 * Apply the list of constraints to an interval parameter.
1313 *
1314 * Return: Zero if successful, or a negative error code on failure.
1315 */
1316int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1317			       unsigned int cond,
1318			       snd_pcm_hw_param_t var,
1319			       const struct snd_pcm_hw_constraint_list *l)
1320{
1321	return snd_pcm_hw_rule_add(runtime, cond, var,
1322				   snd_pcm_hw_rule_list, (void *)l,
1323				   var, -1);
1324}
1325EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1326
1327static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1328				  struct snd_pcm_hw_rule *rule)
1329{
1330	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1331	return snd_interval_ranges(hw_param_interval(params, rule->var),
1332				   r->count, r->ranges, r->mask);
1333}
1334
1335
1336/**
1337 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1338 * @runtime: PCM runtime instance
1339 * @cond: condition bits
1340 * @var: hw_params variable to apply the list of range constraints
1341 * @r: ranges
1342 *
1343 * Apply the list of range constraints to an interval parameter.
1344 *
1345 * Return: Zero if successful, or a negative error code on failure.
1346 */
1347int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1348				 unsigned int cond,
1349				 snd_pcm_hw_param_t var,
1350				 const struct snd_pcm_hw_constraint_ranges *r)
1351{
1352	return snd_pcm_hw_rule_add(runtime, cond, var,
1353				   snd_pcm_hw_rule_ranges, (void *)r,
1354				   var, -1);
1355}
1356EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1357
1358static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1359				   struct snd_pcm_hw_rule *rule)
1360{
1361	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1362	unsigned int num = 0, den = 0;
1363	int err;
1364	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1365				  r->nrats, r->rats, &num, &den);
1366	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1367		params->rate_num = num;
1368		params->rate_den = den;
1369	}
1370	return err;
1371}
1372
1373/**
1374 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1375 * @runtime: PCM runtime instance
1376 * @cond: condition bits
1377 * @var: hw_params variable to apply the ratnums constraint
1378 * @r: struct snd_ratnums constriants
1379 *
1380 * Return: Zero if successful, or a negative error code on failure.
1381 */
1382int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1383				  unsigned int cond,
1384				  snd_pcm_hw_param_t var,
1385				  const struct snd_pcm_hw_constraint_ratnums *r)
1386{
1387	return snd_pcm_hw_rule_add(runtime, cond, var,
1388				   snd_pcm_hw_rule_ratnums, (void *)r,
1389				   var, -1);
1390}
1391EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1392
1393static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1394				   struct snd_pcm_hw_rule *rule)
1395{
1396	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1397	unsigned int num = 0, den = 0;
1398	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1399				  r->nrats, r->rats, &num, &den);
1400	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1401		params->rate_num = num;
1402		params->rate_den = den;
1403	}
1404	return err;
1405}
1406
1407/**
1408 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1409 * @runtime: PCM runtime instance
1410 * @cond: condition bits
1411 * @var: hw_params variable to apply the ratdens constraint
1412 * @r: struct snd_ratdens constriants
1413 *
1414 * Return: Zero if successful, or a negative error code on failure.
1415 */
1416int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1417				  unsigned int cond,
1418				  snd_pcm_hw_param_t var,
1419				  const struct snd_pcm_hw_constraint_ratdens *r)
1420{
1421	return snd_pcm_hw_rule_add(runtime, cond, var,
1422				   snd_pcm_hw_rule_ratdens, (void *)r,
1423				   var, -1);
1424}
1425EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1426
1427static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1428				  struct snd_pcm_hw_rule *rule)
1429{
1430	unsigned int l = (unsigned long) rule->private;
1431	int width = l & 0xffff;
1432	unsigned int msbits = l >> 16;
1433	const struct snd_interval *i =
1434		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1435
1436	if (!snd_interval_single(i))
1437		return 0;
1438
1439	if ((snd_interval_value(i) == width) ||
1440	    (width == 0 && snd_interval_value(i) > msbits))
1441		params->msbits = min_not_zero(params->msbits, msbits);
1442
1443	return 0;
1444}
1445
1446/**
1447 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1448 * @runtime: PCM runtime instance
1449 * @cond: condition bits
1450 * @width: sample bits width
1451 * @msbits: msbits width
1452 *
1453 * This constraint will set the number of most significant bits (msbits) if a
1454 * sample format with the specified width has been select. If width is set to 0
1455 * the msbits will be set for any sample format with a width larger than the
1456 * specified msbits.
1457 *
1458 * Return: Zero if successful, or a negative error code on failure.
1459 */
1460int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1461				 unsigned int cond,
1462				 unsigned int width,
1463				 unsigned int msbits)
1464{
1465	unsigned long l = (msbits << 16) | width;
1466	return snd_pcm_hw_rule_add(runtime, cond, -1,
1467				    snd_pcm_hw_rule_msbits,
1468				    (void*) l,
1469				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1470}
1471EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1472
1473static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1474				struct snd_pcm_hw_rule *rule)
1475{
1476	unsigned long step = (unsigned long) rule->private;
1477	return snd_interval_step(hw_param_interval(params, rule->var), step);
1478}
1479
1480/**
1481 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1482 * @runtime: PCM runtime instance
1483 * @cond: condition bits
1484 * @var: hw_params variable to apply the step constraint
1485 * @step: step size
1486 *
1487 * Return: Zero if successful, or a negative error code on failure.
1488 */
1489int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1490			       unsigned int cond,
1491			       snd_pcm_hw_param_t var,
1492			       unsigned long step)
1493{
1494	return snd_pcm_hw_rule_add(runtime, cond, var, 
1495				   snd_pcm_hw_rule_step, (void *) step,
1496				   var, -1);
1497}
1498EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1499
1500static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1501{
1502	static const unsigned int pow2_sizes[] = {
1503		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1504		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1505		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1506		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1507	};
1508	return snd_interval_list(hw_param_interval(params, rule->var),
1509				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1510}		
1511
1512/**
1513 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1514 * @runtime: PCM runtime instance
1515 * @cond: condition bits
1516 * @var: hw_params variable to apply the power-of-2 constraint
1517 *
1518 * Return: Zero if successful, or a negative error code on failure.
1519 */
1520int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1521			       unsigned int cond,
1522			       snd_pcm_hw_param_t var)
1523{
1524	return snd_pcm_hw_rule_add(runtime, cond, var, 
1525				   snd_pcm_hw_rule_pow2, NULL,
1526				   var, -1);
1527}
1528EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1529
1530static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1531					   struct snd_pcm_hw_rule *rule)
1532{
1533	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1534	struct snd_interval *rate;
1535
1536	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1537	return snd_interval_list(rate, 1, &base_rate, 0);
1538}
1539
1540/**
1541 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1542 * @runtime: PCM runtime instance
1543 * @base_rate: the rate at which the hardware does not resample
1544 *
1545 * Return: Zero if successful, or a negative error code on failure.
1546 */
1547int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1548			       unsigned int base_rate)
1549{
1550	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1551				   SNDRV_PCM_HW_PARAM_RATE,
1552				   snd_pcm_hw_rule_noresample_func,
1553				   (void *)(uintptr_t)base_rate,
1554				   SNDRV_PCM_HW_PARAM_RATE, -1);
1555}
1556EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1557
1558static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1559				  snd_pcm_hw_param_t var)
1560{
1561	if (hw_is_mask(var)) {
1562		snd_mask_any(hw_param_mask(params, var));
1563		params->cmask |= 1 << var;
1564		params->rmask |= 1 << var;
1565		return;
1566	}
1567	if (hw_is_interval(var)) {
1568		snd_interval_any(hw_param_interval(params, var));
1569		params->cmask |= 1 << var;
1570		params->rmask |= 1 << var;
1571		return;
1572	}
1573	snd_BUG();
1574}
1575
1576void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1577{
1578	unsigned int k;
1579	memset(params, 0, sizeof(*params));
1580	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1581		_snd_pcm_hw_param_any(params, k);
1582	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1583		_snd_pcm_hw_param_any(params, k);
1584	params->info = ~0U;
1585}
1586EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1587
1588/**
1589 * snd_pcm_hw_param_value - return @params field @var value
1590 * @params: the hw_params instance
1591 * @var: parameter to retrieve
1592 * @dir: pointer to the direction (-1,0,1) or %NULL
1593 *
1594 * Return: The value for field @var if it's fixed in configuration space
1595 * defined by @params. -%EINVAL otherwise.
1596 */
1597int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1598			   snd_pcm_hw_param_t var, int *dir)
1599{
1600	if (hw_is_mask(var)) {
1601		const struct snd_mask *mask = hw_param_mask_c(params, var);
1602		if (!snd_mask_single(mask))
1603			return -EINVAL;
1604		if (dir)
1605			*dir = 0;
1606		return snd_mask_value(mask);
1607	}
1608	if (hw_is_interval(var)) {
1609		const struct snd_interval *i = hw_param_interval_c(params, var);
1610		if (!snd_interval_single(i))
1611			return -EINVAL;
1612		if (dir)
1613			*dir = i->openmin;
1614		return snd_interval_value(i);
1615	}
1616	return -EINVAL;
1617}
1618EXPORT_SYMBOL(snd_pcm_hw_param_value);
1619
1620void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1621				snd_pcm_hw_param_t var)
1622{
1623	if (hw_is_mask(var)) {
1624		snd_mask_none(hw_param_mask(params, var));
1625		params->cmask |= 1 << var;
1626		params->rmask |= 1 << var;
1627	} else if (hw_is_interval(var)) {
1628		snd_interval_none(hw_param_interval(params, var));
1629		params->cmask |= 1 << var;
1630		params->rmask |= 1 << var;
1631	} else {
1632		snd_BUG();
1633	}
1634}
1635EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1636
1637static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1638				   snd_pcm_hw_param_t var)
1639{
1640	int changed;
1641	if (hw_is_mask(var))
1642		changed = snd_mask_refine_first(hw_param_mask(params, var));
1643	else if (hw_is_interval(var))
1644		changed = snd_interval_refine_first(hw_param_interval(params, var));
1645	else
1646		return -EINVAL;
1647	if (changed > 0) {
1648		params->cmask |= 1 << var;
1649		params->rmask |= 1 << var;
1650	}
1651	return changed;
1652}
1653
1654
1655/**
1656 * snd_pcm_hw_param_first - refine config space and return minimum value
1657 * @pcm: PCM instance
1658 * @params: the hw_params instance
1659 * @var: parameter to retrieve
1660 * @dir: pointer to the direction (-1,0,1) or %NULL
1661 *
1662 * Inside configuration space defined by @params remove from @var all
1663 * values > minimum. Reduce configuration space accordingly.
1664 *
1665 * Return: The minimum, or a negative error code on failure.
1666 */
1667int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1668			   struct snd_pcm_hw_params *params, 
1669			   snd_pcm_hw_param_t var, int *dir)
1670{
1671	int changed = _snd_pcm_hw_param_first(params, var);
1672	if (changed < 0)
1673		return changed;
1674	if (params->rmask) {
1675		int err = snd_pcm_hw_refine(pcm, params);
1676		if (err < 0)
1677			return err;
1678	}
1679	return snd_pcm_hw_param_value(params, var, dir);
1680}
1681EXPORT_SYMBOL(snd_pcm_hw_param_first);
1682
1683static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1684				  snd_pcm_hw_param_t var)
1685{
1686	int changed;
1687	if (hw_is_mask(var))
1688		changed = snd_mask_refine_last(hw_param_mask(params, var));
1689	else if (hw_is_interval(var))
1690		changed = snd_interval_refine_last(hw_param_interval(params, var));
1691	else
1692		return -EINVAL;
1693	if (changed > 0) {
1694		params->cmask |= 1 << var;
1695		params->rmask |= 1 << var;
1696	}
1697	return changed;
1698}
1699
1700
1701/**
1702 * snd_pcm_hw_param_last - refine config space and return maximum value
1703 * @pcm: PCM instance
1704 * @params: the hw_params instance
1705 * @var: parameter to retrieve
1706 * @dir: pointer to the direction (-1,0,1) or %NULL
1707 *
1708 * Inside configuration space defined by @params remove from @var all
1709 * values < maximum. Reduce configuration space accordingly.
1710 *
1711 * Return: The maximum, or a negative error code on failure.
1712 */
1713int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1714			  struct snd_pcm_hw_params *params,
1715			  snd_pcm_hw_param_t var, int *dir)
1716{
1717	int changed = _snd_pcm_hw_param_last(params, var);
1718	if (changed < 0)
1719		return changed;
1720	if (params->rmask) {
1721		int err = snd_pcm_hw_refine(pcm, params);
1722		if (err < 0)
1723			return err;
1724	}
1725	return snd_pcm_hw_param_value(params, var, dir);
1726}
1727EXPORT_SYMBOL(snd_pcm_hw_param_last);
1728
1729/**
1730 * snd_pcm_hw_params_bits - Get the number of bits per the sample.
1731 * @p: hardware parameters
1732 *
1733 * Return: The number of bits per sample based on the format,
1734 * subformat and msbits the specified hw params has.
1735 */
1736int snd_pcm_hw_params_bits(const struct snd_pcm_hw_params *p)
1737{
1738	snd_pcm_subformat_t subformat = params_subformat(p);
1739	snd_pcm_format_t format = params_format(p);
1740
1741	switch (format) {
1742	case SNDRV_PCM_FORMAT_S32_LE:
1743	case SNDRV_PCM_FORMAT_U32_LE:
1744	case SNDRV_PCM_FORMAT_S32_BE:
1745	case SNDRV_PCM_FORMAT_U32_BE:
1746		switch (subformat) {
1747		case SNDRV_PCM_SUBFORMAT_MSBITS_20:
1748			return 20;
1749		case SNDRV_PCM_SUBFORMAT_MSBITS_24:
1750			return 24;
1751		case SNDRV_PCM_SUBFORMAT_MSBITS_MAX:
1752		case SNDRV_PCM_SUBFORMAT_STD:
1753		default:
1754			break;
1755		}
1756		fallthrough;
1757	default:
1758		return snd_pcm_format_width(format);
1759	}
1760}
1761EXPORT_SYMBOL(snd_pcm_hw_params_bits);
1762
1763static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1764				   void *arg)
1765{
1766	struct snd_pcm_runtime *runtime = substream->runtime;
1767
1768	guard(pcm_stream_lock_irqsave)(substream);
1769	if (snd_pcm_running(substream) &&
1770	    snd_pcm_update_hw_ptr(substream) >= 0)
1771		runtime->status->hw_ptr %= runtime->buffer_size;
1772	else {
1773		runtime->status->hw_ptr = 0;
1774		runtime->hw_ptr_wrap = 0;
1775	}
 
1776	return 0;
1777}
1778
1779static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1780					  void *arg)
1781{
1782	struct snd_pcm_channel_info *info = arg;
1783	struct snd_pcm_runtime *runtime = substream->runtime;
1784	int width;
1785	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1786		info->offset = -1;
1787		return 0;
1788	}
1789	width = snd_pcm_format_physical_width(runtime->format);
1790	if (width < 0)
1791		return width;
1792	info->offset = 0;
1793	switch (runtime->access) {
1794	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1795	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1796		info->first = info->channel * width;
1797		info->step = runtime->channels * width;
1798		break;
1799	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1800	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1801	{
1802		size_t size = runtime->dma_bytes / runtime->channels;
1803		info->first = info->channel * size * 8;
1804		info->step = width;
1805		break;
1806	}
1807	default:
1808		snd_BUG();
1809		break;
1810	}
1811	return 0;
1812}
1813
1814static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1815				       void *arg)
1816{
1817	struct snd_pcm_hw_params *params = arg;
1818	snd_pcm_format_t format;
1819	int channels;
1820	ssize_t frame_size;
1821
1822	params->fifo_size = substream->runtime->hw.fifo_size;
1823	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1824		format = params_format(params);
1825		channels = params_channels(params);
1826		frame_size = snd_pcm_format_size(format, channels);
1827		if (frame_size > 0)
1828			params->fifo_size /= frame_size;
1829	}
1830	return 0;
1831}
1832
1833static int snd_pcm_lib_ioctl_sync_id(struct snd_pcm_substream *substream,
1834				     void *arg)
1835{
1836	static const unsigned char id[12] = { 0xff, 0xff, 0xff, 0xff,
1837					      0xff, 0xff, 0xff, 0xff,
1838					      0xff, 0xff, 0xff, 0xff };
1839
1840	if (substream->runtime->std_sync_id)
1841		snd_pcm_set_sync_per_card(substream, arg, id, sizeof(id));
1842	return 0;
1843}
1844
1845/**
1846 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1847 * @substream: the pcm substream instance
1848 * @cmd: ioctl command
1849 * @arg: ioctl argument
1850 *
1851 * Processes the generic ioctl commands for PCM.
1852 * Can be passed as the ioctl callback for PCM ops.
1853 *
1854 * Return: Zero if successful, or a negative error code on failure.
1855 */
1856int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1857		      unsigned int cmd, void *arg)
1858{
1859	switch (cmd) {
1860	case SNDRV_PCM_IOCTL1_RESET:
1861		return snd_pcm_lib_ioctl_reset(substream, arg);
1862	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1863		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1864	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1865		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1866	case SNDRV_PCM_IOCTL1_SYNC_ID:
1867		return snd_pcm_lib_ioctl_sync_id(substream, arg);
1868	}
1869	return -ENXIO;
1870}
1871EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1872
1873/**
1874 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1875 *						under acquired lock of PCM substream.
1876 * @substream: the instance of pcm substream.
1877 *
1878 * This function is called when the batch of audio data frames as the same size as the period of
1879 * buffer is already processed in audio data transmission.
1880 *
1881 * The call of function updates the status of runtime with the latest position of audio data
1882 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1883 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1884 * substream according to configured threshold.
1885 *
1886 * The function is intended to use for the case that PCM driver operates audio data frames under
1887 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1888 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1889 * since lock of PCM substream should be acquired in advance.
1890 *
1891 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1892 * function:
1893 *
1894 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1895 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1896 * - .get_time_info - to retrieve audio time stamp if needed.
1897 *
1898 * Even if more than one periods have elapsed since the last call, you have to call this only once.
1899 */
1900void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1901{
1902	struct snd_pcm_runtime *runtime;
1903
1904	if (PCM_RUNTIME_CHECK(substream))
1905		return;
1906	runtime = substream->runtime;
1907
1908	if (!snd_pcm_running(substream) ||
1909	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1910		goto _end;
1911
1912#ifdef CONFIG_SND_PCM_TIMER
1913	if (substream->timer_running)
1914		snd_timer_interrupt(substream->timer, 1);
1915#endif
1916 _end:
1917	snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1918}
1919EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1920
1921/**
1922 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1923 *			      PCM substream.
1924 * @substream: the instance of PCM substream.
1925 *
1926 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1927 * acquiring lock of PCM substream voluntarily.
1928 *
1929 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1930 * the batch of audio data frames as the same size as the period of buffer is already processed in
1931 * audio data transmission.
1932 */
1933void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1934{
 
 
1935	if (snd_BUG_ON(!substream))
1936		return;
1937
1938	guard(pcm_stream_lock_irqsave)(substream);
1939	snd_pcm_period_elapsed_under_stream_lock(substream);
 
1940}
1941EXPORT_SYMBOL(snd_pcm_period_elapsed);
1942
1943/*
1944 * Wait until avail_min data becomes available
1945 * Returns a negative error code if any error occurs during operation.
1946 * The available space is stored on availp.  When err = 0 and avail = 0
1947 * on the capture stream, it indicates the stream is in DRAINING state.
1948 */
1949static int wait_for_avail(struct snd_pcm_substream *substream,
1950			      snd_pcm_uframes_t *availp)
1951{
1952	struct snd_pcm_runtime *runtime = substream->runtime;
1953	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1954	wait_queue_entry_t wait;
1955	int err = 0;
1956	snd_pcm_uframes_t avail = 0;
1957	long wait_time, tout;
1958
1959	init_waitqueue_entry(&wait, current);
1960	set_current_state(TASK_INTERRUPTIBLE);
1961	add_wait_queue(&runtime->tsleep, &wait);
1962
1963	if (runtime->no_period_wakeup)
1964		wait_time = MAX_SCHEDULE_TIMEOUT;
1965	else {
1966		/* use wait time from substream if available */
1967		if (substream->wait_time) {
1968			wait_time = substream->wait_time;
1969		} else {
1970			wait_time = 100;
1971
1972			if (runtime->rate) {
1973				long t = runtime->buffer_size * 1100 / runtime->rate;
 
1974				wait_time = max(t, wait_time);
1975			}
 
1976		}
1977		wait_time = msecs_to_jiffies(wait_time);
1978	}
1979
1980	for (;;) {
1981		if (signal_pending(current)) {
1982			err = -ERESTARTSYS;
1983			break;
1984		}
1985
1986		/*
1987		 * We need to check if space became available already
1988		 * (and thus the wakeup happened already) first to close
1989		 * the race of space already having become available.
1990		 * This check must happen after been added to the waitqueue
1991		 * and having current state be INTERRUPTIBLE.
1992		 */
1993		avail = snd_pcm_avail(substream);
1994		if (avail >= runtime->twake)
1995			break;
1996		snd_pcm_stream_unlock_irq(substream);
1997
1998		tout = schedule_timeout(wait_time);
1999
2000		snd_pcm_stream_lock_irq(substream);
2001		set_current_state(TASK_INTERRUPTIBLE);
2002		switch (runtime->state) {
2003		case SNDRV_PCM_STATE_SUSPENDED:
2004			err = -ESTRPIPE;
2005			goto _endloop;
2006		case SNDRV_PCM_STATE_XRUN:
2007			err = -EPIPE;
2008			goto _endloop;
2009		case SNDRV_PCM_STATE_DRAINING:
2010			if (is_playback)
2011				err = -EPIPE;
2012			else 
2013				avail = 0; /* indicate draining */
2014			goto _endloop;
2015		case SNDRV_PCM_STATE_OPEN:
2016		case SNDRV_PCM_STATE_SETUP:
2017		case SNDRV_PCM_STATE_DISCONNECTED:
2018			err = -EBADFD;
2019			goto _endloop;
2020		case SNDRV_PCM_STATE_PAUSED:
2021			continue;
2022		}
2023		if (!tout) {
2024			pcm_dbg(substream->pcm,
2025				"%s timeout (DMA or IRQ trouble?)\n",
2026				is_playback ? "playback write" : "capture read");
2027			err = -EIO;
2028			break;
2029		}
2030	}
2031 _endloop:
2032	set_current_state(TASK_RUNNING);
2033	remove_wait_queue(&runtime->tsleep, &wait);
2034	*availp = avail;
2035	return err;
2036}
2037	
2038typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
2039			      int channel, unsigned long hwoff,
2040			      struct iov_iter *iter, unsigned long bytes);
2041
2042typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
2043			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f,
2044			  bool);
2045
2046/* calculate the target DMA-buffer position to be written/read */
2047static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
2048			   int channel, unsigned long hwoff)
2049{
2050	return runtime->dma_area + hwoff +
2051		channel * (runtime->dma_bytes / runtime->channels);
2052}
2053
2054/* default copy ops for write; used for both interleaved and non- modes */
2055static int default_write_copy(struct snd_pcm_substream *substream,
2056			      int channel, unsigned long hwoff,
2057			      struct iov_iter *iter, unsigned long bytes)
2058{
2059	if (copy_from_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2060			   bytes, iter) != bytes)
2061		return -EFAULT;
2062	return 0;
2063}
2064
 
 
 
 
 
 
 
 
 
2065/* fill silence instead of copy data; called as a transfer helper
2066 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2067 * a NULL buffer is passed
2068 */
2069static int fill_silence(struct snd_pcm_substream *substream, int channel,
2070			unsigned long hwoff, struct iov_iter *iter,
2071			unsigned long bytes)
2072{
2073	struct snd_pcm_runtime *runtime = substream->runtime;
2074
2075	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2076		return 0;
2077	if (substream->ops->fill_silence)
2078		return substream->ops->fill_silence(substream, channel,
2079						    hwoff, bytes);
2080
2081	snd_pcm_format_set_silence(runtime->format,
2082				   get_dma_ptr(runtime, channel, hwoff),
2083				   bytes_to_samples(runtime, bytes));
2084	return 0;
2085}
2086
2087/* default copy ops for read; used for both interleaved and non- modes */
2088static int default_read_copy(struct snd_pcm_substream *substream,
2089			     int channel, unsigned long hwoff,
2090			     struct iov_iter *iter, unsigned long bytes)
2091{
2092	if (copy_to_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2093			 bytes, iter) != bytes)
 
2094		return -EFAULT;
2095	return 0;
2096}
2097
2098/* call transfer with the filled iov_iter */
2099static int do_transfer(struct snd_pcm_substream *substream, int c,
2100		       unsigned long hwoff, void *data, unsigned long bytes,
2101		       pcm_transfer_f transfer, bool in_kernel)
2102{
2103	struct iov_iter iter;
2104	int err, type;
2105
2106	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
2107		type = ITER_SOURCE;
2108	else
2109		type = ITER_DEST;
2110
2111	if (in_kernel) {
2112		struct kvec kvec = { data, bytes };
2113
2114		iov_iter_kvec(&iter, type, &kvec, 1, bytes);
2115		return transfer(substream, c, hwoff, &iter, bytes);
2116	}
2117
2118	err = import_ubuf(type, (__force void __user *)data, bytes, &iter);
2119	if (err)
2120		return err;
2121	return transfer(substream, c, hwoff, &iter, bytes);
2122}
2123
2124/* call transfer function with the converted pointers and sizes;
2125 * for interleaved mode, it's one shot for all samples
2126 */
2127static int interleaved_copy(struct snd_pcm_substream *substream,
2128			    snd_pcm_uframes_t hwoff, void *data,
2129			    snd_pcm_uframes_t off,
2130			    snd_pcm_uframes_t frames,
2131			    pcm_transfer_f transfer,
2132			    bool in_kernel)
2133{
2134	struct snd_pcm_runtime *runtime = substream->runtime;
2135
2136	/* convert to bytes */
2137	hwoff = frames_to_bytes(runtime, hwoff);
2138	off = frames_to_bytes(runtime, off);
2139	frames = frames_to_bytes(runtime, frames);
2140
2141	return do_transfer(substream, 0, hwoff, data + off, frames, transfer,
2142			   in_kernel);
2143}
2144
2145/* call transfer function with the converted pointers and sizes for each
2146 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2147 */
2148static int noninterleaved_copy(struct snd_pcm_substream *substream,
2149			       snd_pcm_uframes_t hwoff, void *data,
2150			       snd_pcm_uframes_t off,
2151			       snd_pcm_uframes_t frames,
2152			       pcm_transfer_f transfer,
2153			       bool in_kernel)
2154{
2155	struct snd_pcm_runtime *runtime = substream->runtime;
2156	int channels = runtime->channels;
2157	void **bufs = data;
2158	int c, err;
2159
2160	/* convert to bytes; note that it's not frames_to_bytes() here.
2161	 * in non-interleaved mode, we copy for each channel, thus
2162	 * each copy is n_samples bytes x channels = whole frames.
2163	 */
2164	off = samples_to_bytes(runtime, off);
2165	frames = samples_to_bytes(runtime, frames);
2166	hwoff = samples_to_bytes(runtime, hwoff);
2167	for (c = 0; c < channels; ++c, ++bufs) {
2168		if (!data || !*bufs)
2169			err = fill_silence(substream, c, hwoff, NULL, frames);
2170		else
2171			err = do_transfer(substream, c, hwoff, *bufs + off,
2172					  frames, transfer, in_kernel);
2173		if (err < 0)
2174			return err;
2175	}
2176	return 0;
2177}
2178
2179/* fill silence on the given buffer position;
2180 * called from snd_pcm_playback_silence()
2181 */
2182static int fill_silence_frames(struct snd_pcm_substream *substream,
2183			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2184{
2185	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2186	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2187		return interleaved_copy(substream, off, NULL, 0, frames,
2188					fill_silence, true);
2189	else
2190		return noninterleaved_copy(substream, off, NULL, 0, frames,
2191					   fill_silence, true);
2192}
2193
2194/* sanity-check for read/write methods */
2195static int pcm_sanity_check(struct snd_pcm_substream *substream)
2196{
2197	struct snd_pcm_runtime *runtime;
2198	if (PCM_RUNTIME_CHECK(substream))
2199		return -ENXIO;
2200	runtime = substream->runtime;
2201	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2202		return -EINVAL;
2203	if (runtime->state == SNDRV_PCM_STATE_OPEN)
2204		return -EBADFD;
2205	return 0;
2206}
2207
2208static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2209{
2210	switch (runtime->state) {
2211	case SNDRV_PCM_STATE_PREPARED:
2212	case SNDRV_PCM_STATE_RUNNING:
2213	case SNDRV_PCM_STATE_PAUSED:
2214		return 0;
2215	case SNDRV_PCM_STATE_XRUN:
2216		return -EPIPE;
2217	case SNDRV_PCM_STATE_SUSPENDED:
2218		return -ESTRPIPE;
2219	default:
2220		return -EBADFD;
2221	}
2222}
2223
2224/* update to the given appl_ptr and call ack callback if needed;
2225 * when an error is returned, take back to the original value
2226 */
2227int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2228			   snd_pcm_uframes_t appl_ptr)
2229{
2230	struct snd_pcm_runtime *runtime = substream->runtime;
2231	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2232	snd_pcm_sframes_t diff;
2233	int ret;
2234
2235	if (old_appl_ptr == appl_ptr)
2236		return 0;
2237
2238	if (appl_ptr >= runtime->boundary)
2239		return -EINVAL;
2240	/*
2241	 * check if a rewind is requested by the application
2242	 */
2243	if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2244		diff = appl_ptr - old_appl_ptr;
2245		if (diff >= 0) {
2246			if (diff > runtime->buffer_size)
2247				return -EINVAL;
2248		} else {
2249			if (runtime->boundary + diff > runtime->buffer_size)
2250				return -EINVAL;
2251		}
2252	}
2253
2254	runtime->control->appl_ptr = appl_ptr;
2255	if (substream->ops->ack) {
2256		ret = substream->ops->ack(substream);
2257		if (ret < 0) {
2258			runtime->control->appl_ptr = old_appl_ptr;
2259			if (ret == -EPIPE)
2260				__snd_pcm_xrun(substream);
2261			return ret;
2262		}
2263	}
2264
2265	trace_applptr(substream, old_appl_ptr, appl_ptr);
2266
2267	return 0;
2268}
2269
2270/* the common loop for read/write data */
2271snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2272				     void *data, bool interleaved,
2273				     snd_pcm_uframes_t size, bool in_kernel)
2274{
2275	struct snd_pcm_runtime *runtime = substream->runtime;
2276	snd_pcm_uframes_t xfer = 0;
2277	snd_pcm_uframes_t offset = 0;
2278	snd_pcm_uframes_t avail;
2279	pcm_copy_f writer;
2280	pcm_transfer_f transfer;
2281	bool nonblock;
2282	bool is_playback;
2283	int err;
2284
2285	err = pcm_sanity_check(substream);
2286	if (err < 0)
2287		return err;
2288
2289	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2290	if (interleaved) {
2291		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2292		    runtime->channels > 1)
2293			return -EINVAL;
2294		writer = interleaved_copy;
2295	} else {
2296		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2297			return -EINVAL;
2298		writer = noninterleaved_copy;
2299	}
2300
2301	if (!data) {
2302		if (is_playback)
2303			transfer = fill_silence;
2304		else
2305			return -EINVAL;
 
 
 
 
 
 
2306	} else {
2307		if (substream->ops->copy)
2308			transfer = substream->ops->copy;
2309		else
2310			transfer = is_playback ?
2311				default_write_copy : default_read_copy;
2312	}
2313
2314	if (size == 0)
2315		return 0;
2316
2317	nonblock = !!(substream->f_flags & O_NONBLOCK);
2318
2319	snd_pcm_stream_lock_irq(substream);
2320	err = pcm_accessible_state(runtime);
2321	if (err < 0)
2322		goto _end_unlock;
2323
2324	runtime->twake = runtime->control->avail_min ? : 1;
2325	if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2326		snd_pcm_update_hw_ptr(substream);
2327
2328	/*
2329	 * If size < start_threshold, wait indefinitely. Another
2330	 * thread may start capture
2331	 */
2332	if (!is_playback &&
2333	    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2334	    size >= runtime->start_threshold) {
2335		err = snd_pcm_start(substream);
2336		if (err < 0)
2337			goto _end_unlock;
2338	}
2339
2340	avail = snd_pcm_avail(substream);
2341
2342	while (size > 0) {
2343		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2344		snd_pcm_uframes_t cont;
2345		if (!avail) {
2346			if (!is_playback &&
2347			    runtime->state == SNDRV_PCM_STATE_DRAINING) {
2348				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2349				goto _end_unlock;
2350			}
2351			if (nonblock) {
2352				err = -EAGAIN;
2353				goto _end_unlock;
2354			}
2355			runtime->twake = min_t(snd_pcm_uframes_t, size,
2356					runtime->control->avail_min ? : 1);
2357			err = wait_for_avail(substream, &avail);
2358			if (err < 0)
2359				goto _end_unlock;
2360			if (!avail)
2361				continue; /* draining */
2362		}
2363		frames = size > avail ? avail : size;
2364		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2365		appl_ofs = appl_ptr % runtime->buffer_size;
2366		cont = runtime->buffer_size - appl_ofs;
2367		if (frames > cont)
2368			frames = cont;
2369		if (snd_BUG_ON(!frames)) {
2370			err = -EINVAL;
2371			goto _end_unlock;
2372		}
2373		if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2374			err = -EBUSY;
2375			goto _end_unlock;
2376		}
2377		snd_pcm_stream_unlock_irq(substream);
2378		if (!is_playback)
2379			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2380		err = writer(substream, appl_ofs, data, offset, frames,
2381			     transfer, in_kernel);
2382		if (is_playback)
2383			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2384		snd_pcm_stream_lock_irq(substream);
2385		atomic_dec(&runtime->buffer_accessing);
2386		if (err < 0)
2387			goto _end_unlock;
2388		err = pcm_accessible_state(runtime);
2389		if (err < 0)
2390			goto _end_unlock;
2391		appl_ptr += frames;
2392		if (appl_ptr >= runtime->boundary)
2393			appl_ptr -= runtime->boundary;
2394		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2395		if (err < 0)
2396			goto _end_unlock;
2397
2398		offset += frames;
2399		size -= frames;
2400		xfer += frames;
2401		avail -= frames;
2402		if (is_playback &&
2403		    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2404		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2405			err = snd_pcm_start(substream);
2406			if (err < 0)
2407				goto _end_unlock;
2408		}
2409	}
2410 _end_unlock:
2411	runtime->twake = 0;
2412	if (xfer > 0 && err >= 0)
2413		snd_pcm_update_state(substream, runtime);
2414	snd_pcm_stream_unlock_irq(substream);
2415	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2416}
2417EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2418
2419/*
2420 * standard channel mapping helpers
2421 */
2422
2423/* default channel maps for multi-channel playbacks, up to 8 channels */
2424const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2425	{ .channels = 1,
2426	  .map = { SNDRV_CHMAP_MONO } },
2427	{ .channels = 2,
2428	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2429	{ .channels = 4,
2430	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2431		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2432	{ .channels = 6,
2433	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2434		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2435		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2436	{ .channels = 8,
2437	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2438		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2439		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2440		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2441	{ }
2442};
2443EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2444
2445/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2446const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2447	{ .channels = 1,
2448	  .map = { SNDRV_CHMAP_MONO } },
2449	{ .channels = 2,
2450	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2451	{ .channels = 4,
2452	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2453		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2454	{ .channels = 6,
2455	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2456		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2457		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2458	{ .channels = 8,
2459	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2460		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2461		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2462		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2463	{ }
2464};
2465EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2466
2467static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2468{
2469	if (ch > info->max_channels)
2470		return false;
2471	return !info->channel_mask || (info->channel_mask & (1U << ch));
2472}
2473
2474static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2475			      struct snd_ctl_elem_info *uinfo)
2476{
2477	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2478
2479	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2480	uinfo->count = info->max_channels;
2481	uinfo->value.integer.min = 0;
2482	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2483	return 0;
2484}
2485
2486/* get callback for channel map ctl element
2487 * stores the channel position firstly matching with the current channels
2488 */
2489static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2490			     struct snd_ctl_elem_value *ucontrol)
2491{
2492	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2493	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2494	struct snd_pcm_substream *substream;
2495	const struct snd_pcm_chmap_elem *map;
2496
2497	if (!info->chmap)
2498		return -EINVAL;
2499	substream = snd_pcm_chmap_substream(info, idx);
2500	if (!substream)
2501		return -ENODEV;
2502	memset(ucontrol->value.integer.value, 0,
2503	       sizeof(long) * info->max_channels);
2504	if (!substream->runtime)
2505		return 0; /* no channels set */
2506	for (map = info->chmap; map->channels; map++) {
2507		int i;
2508		if (map->channels == substream->runtime->channels &&
2509		    valid_chmap_channels(info, map->channels)) {
2510			for (i = 0; i < map->channels; i++)
2511				ucontrol->value.integer.value[i] = map->map[i];
2512			return 0;
2513		}
2514	}
2515	return -EINVAL;
2516}
2517
2518/* tlv callback for channel map ctl element
2519 * expands the pre-defined channel maps in a form of TLV
2520 */
2521static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2522			     unsigned int size, unsigned int __user *tlv)
2523{
2524	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2525	const struct snd_pcm_chmap_elem *map;
2526	unsigned int __user *dst;
2527	int c, count = 0;
2528
2529	if (!info->chmap)
2530		return -EINVAL;
2531	if (size < 8)
2532		return -ENOMEM;
2533	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2534		return -EFAULT;
2535	size -= 8;
2536	dst = tlv + 2;
2537	for (map = info->chmap; map->channels; map++) {
2538		int chs_bytes = map->channels * 4;
2539		if (!valid_chmap_channels(info, map->channels))
2540			continue;
2541		if (size < 8)
2542			return -ENOMEM;
2543		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2544		    put_user(chs_bytes, dst + 1))
2545			return -EFAULT;
2546		dst += 2;
2547		size -= 8;
2548		count += 8;
2549		if (size < chs_bytes)
2550			return -ENOMEM;
2551		size -= chs_bytes;
2552		count += chs_bytes;
2553		for (c = 0; c < map->channels; c++) {
2554			if (put_user(map->map[c], dst))
2555				return -EFAULT;
2556			dst++;
2557		}
2558	}
2559	if (put_user(count, tlv + 1))
2560		return -EFAULT;
2561	return 0;
2562}
2563
2564static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2565{
2566	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2567	info->pcm->streams[info->stream].chmap_kctl = NULL;
2568	kfree(info);
2569}
2570
2571/**
2572 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2573 * @pcm: the assigned PCM instance
2574 * @stream: stream direction
2575 * @chmap: channel map elements (for query)
2576 * @max_channels: the max number of channels for the stream
2577 * @private_value: the value passed to each kcontrol's private_value field
2578 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2579 *
2580 * Create channel-mapping control elements assigned to the given PCM stream(s).
2581 * Return: Zero if successful, or a negative error value.
2582 */
2583int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2584			   const struct snd_pcm_chmap_elem *chmap,
2585			   int max_channels,
2586			   unsigned long private_value,
2587			   struct snd_pcm_chmap **info_ret)
2588{
2589	struct snd_pcm_chmap *info;
2590	struct snd_kcontrol_new knew = {
2591		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2592		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2593			SNDRV_CTL_ELEM_ACCESS_VOLATILE |
2594			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2595			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2596		.info = pcm_chmap_ctl_info,
2597		.get = pcm_chmap_ctl_get,
2598		.tlv.c = pcm_chmap_ctl_tlv,
2599	};
2600	int err;
2601
2602	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2603		return -EBUSY;
2604	info = kzalloc(sizeof(*info), GFP_KERNEL);
2605	if (!info)
2606		return -ENOMEM;
2607	info->pcm = pcm;
2608	info->stream = stream;
2609	info->chmap = chmap;
2610	info->max_channels = max_channels;
2611	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2612		knew.name = "Playback Channel Map";
2613	else
2614		knew.name = "Capture Channel Map";
2615	knew.device = pcm->device;
2616	knew.count = pcm->streams[stream].substream_count;
2617	knew.private_value = private_value;
2618	info->kctl = snd_ctl_new1(&knew, info);
2619	if (!info->kctl) {
2620		kfree(info);
2621		return -ENOMEM;
2622	}
2623	info->kctl->private_free = pcm_chmap_ctl_private_free;
2624	err = snd_ctl_add(pcm->card, info->kctl);
2625	if (err < 0)
2626		return err;
2627	pcm->streams[stream].chmap_kctl = info->kctl;
2628	if (info_ret)
2629		*info_ret = info;
2630	return 0;
2631}
2632EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Digital Audio (PCM) abstract layer
   4 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   5 *                   Abramo Bagnara <abramo@alsa-project.org>
   6 */
   7
   8#include <linux/slab.h>
   9#include <linux/sched/signal.h>
  10#include <linux/time.h>
  11#include <linux/math64.h>
  12#include <linux/export.h>
  13#include <sound/core.h>
  14#include <sound/control.h>
  15#include <sound/tlv.h>
  16#include <sound/info.h>
  17#include <sound/pcm.h>
  18#include <sound/pcm_params.h>
  19#include <sound/timer.h>
  20
  21#include "pcm_local.h"
  22
  23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  24#define CREATE_TRACE_POINTS
  25#include "pcm_trace.h"
  26#else
  27#define trace_hwptr(substream, pos, in_interrupt)
  28#define trace_xrun(substream)
  29#define trace_hw_ptr_error(substream, reason)
  30#define trace_applptr(substream, prev, curr)
  31#endif
  32
  33static int fill_silence_frames(struct snd_pcm_substream *substream,
  34			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
  35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36/*
  37 * fill ring buffer with silence
  38 * runtime->silence_start: starting pointer to silence area
  39 * runtime->silence_filled: size filled with silence
  40 * runtime->silence_threshold: threshold from application
  41 * runtime->silence_size: maximal size from application
  42 *
  43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  44 */
  45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  46{
  47	struct snd_pcm_runtime *runtime = substream->runtime;
  48	snd_pcm_uframes_t frames, ofs, transfer;
  49	int err;
  50
  51	if (runtime->silence_size < runtime->boundary) {
  52		snd_pcm_sframes_t noise_dist, n;
  53		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
  54		if (runtime->silence_start != appl_ptr) {
  55			n = appl_ptr - runtime->silence_start;
  56			if (n < 0)
  57				n += runtime->boundary;
  58			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  59				runtime->silence_filled -= n;
  60			else
  61				runtime->silence_filled = 0;
  62			runtime->silence_start = appl_ptr;
  63		}
  64		if (runtime->silence_filled >= runtime->buffer_size)
  65			return;
  66		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  67		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  68			return;
  69		frames = runtime->silence_threshold - noise_dist;
  70		if (frames > runtime->silence_size)
  71			frames = runtime->silence_size;
  72	} else {
  73		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  74			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  75			if (avail > runtime->buffer_size)
  76				avail = runtime->buffer_size;
  77			runtime->silence_filled = avail > 0 ? avail : 0;
  78			runtime->silence_start = (runtime->status->hw_ptr +
  79						  runtime->silence_filled) %
  80						 runtime->boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81		} else {
  82			ofs = runtime->status->hw_ptr;
  83			frames = new_hw_ptr - ofs;
  84			if ((snd_pcm_sframes_t)frames < 0)
  85				frames += runtime->boundary;
  86			runtime->silence_filled -= frames;
  87			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  88				runtime->silence_filled = 0;
  89				runtime->silence_start = new_hw_ptr;
  90			} else {
  91				runtime->silence_start = ofs;
  92			}
  93		}
 
 
 
 
  94		frames = runtime->buffer_size - runtime->silence_filled;
  95	}
  96	if (snd_BUG_ON(frames > runtime->buffer_size))
  97		return;
  98	if (frames == 0)
  99		return;
 100	ofs = runtime->silence_start % runtime->buffer_size;
 101	while (frames > 0) {
 102		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 103		err = fill_silence_frames(substream, ofs, transfer);
 104		snd_BUG_ON(err < 0);
 105		runtime->silence_filled += transfer;
 106		frames -= transfer;
 107		ofs = 0;
 108	}
 109	snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
 110}
 111
 112#ifdef CONFIG_SND_DEBUG
 113void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 114			   char *name, size_t len)
 115{
 116	snprintf(name, len, "pcmC%dD%d%c:%d",
 117		 substream->pcm->card->number,
 118		 substream->pcm->device,
 119		 substream->stream ? 'c' : 'p',
 120		 substream->number);
 121}
 122EXPORT_SYMBOL(snd_pcm_debug_name);
 123#endif
 124
 125#define XRUN_DEBUG_BASIC	(1<<0)
 126#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 127#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 128
 129#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 130
 131#define xrun_debug(substream, mask) \
 132			((substream)->pstr->xrun_debug & (mask))
 133#else
 134#define xrun_debug(substream, mask)	0
 135#endif
 136
 137#define dump_stack_on_xrun(substream) do {			\
 138		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 139			dump_stack();				\
 140	} while (0)
 141
 142/* call with stream lock held */
 143void __snd_pcm_xrun(struct snd_pcm_substream *substream)
 144{
 145	struct snd_pcm_runtime *runtime = substream->runtime;
 146
 147	trace_xrun(substream);
 148	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 149		struct timespec64 tstamp;
 150
 151		snd_pcm_gettime(runtime, &tstamp);
 152		runtime->status->tstamp.tv_sec = tstamp.tv_sec;
 153		runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
 154	}
 155	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 156	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 157		char name[16];
 158		snd_pcm_debug_name(substream, name, sizeof(name));
 159		pcm_warn(substream->pcm, "XRUN: %s\n", name);
 160		dump_stack_on_xrun(substream);
 161	}
 
 
 
 162}
 163
 164#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 165#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
 166	do {								\
 167		trace_hw_ptr_error(substream, reason);	\
 168		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 169			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 170					   (in_interrupt) ? 'Q' : 'P', ##args);	\
 171			dump_stack_on_xrun(substream);			\
 172		}							\
 173	} while (0)
 174
 175#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 176
 177#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 178
 179#endif
 180
 181int snd_pcm_update_state(struct snd_pcm_substream *substream,
 182			 struct snd_pcm_runtime *runtime)
 183{
 184	snd_pcm_uframes_t avail;
 185
 186	avail = snd_pcm_avail(substream);
 187	if (avail > runtime->avail_max)
 188		runtime->avail_max = avail;
 189	if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
 190		if (avail >= runtime->buffer_size) {
 191			snd_pcm_drain_done(substream);
 192			return -EPIPE;
 193		}
 194	} else {
 195		if (avail >= runtime->stop_threshold) {
 196			__snd_pcm_xrun(substream);
 197			return -EPIPE;
 198		}
 199	}
 200	if (runtime->twake) {
 201		if (avail >= runtime->twake)
 202			wake_up(&runtime->tsleep);
 203	} else if (avail >= runtime->control->avail_min)
 204		wake_up(&runtime->sleep);
 205	return 0;
 206}
 207
 208static void update_audio_tstamp(struct snd_pcm_substream *substream,
 209				struct timespec64 *curr_tstamp,
 210				struct timespec64 *audio_tstamp)
 211{
 212	struct snd_pcm_runtime *runtime = substream->runtime;
 213	u64 audio_frames, audio_nsecs;
 214	struct timespec64 driver_tstamp;
 215
 216	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
 217		return;
 218
 219	if (!(substream->ops->get_time_info) ||
 220		(runtime->audio_tstamp_report.actual_type ==
 221			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 222
 223		/*
 224		 * provide audio timestamp derived from pointer position
 225		 * add delay only if requested
 226		 */
 227
 228		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
 229
 230		if (runtime->audio_tstamp_config.report_delay) {
 231			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 232				audio_frames -=  runtime->delay;
 233			else
 234				audio_frames +=  runtime->delay;
 235		}
 236		audio_nsecs = div_u64(audio_frames * 1000000000LL,
 237				runtime->rate);
 238		*audio_tstamp = ns_to_timespec64(audio_nsecs);
 239	}
 240
 241	if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
 242	    runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
 243		runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
 244		runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
 245		runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
 246		runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
 247	}
 248
 249
 250	/*
 251	 * re-take a driver timestamp to let apps detect if the reference tstamp
 252	 * read by low-level hardware was provided with a delay
 253	 */
 254	snd_pcm_gettime(substream->runtime, &driver_tstamp);
 255	runtime->driver_tstamp = driver_tstamp;
 256}
 257
 258static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 259				  unsigned int in_interrupt)
 260{
 261	struct snd_pcm_runtime *runtime = substream->runtime;
 262	snd_pcm_uframes_t pos;
 263	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 264	snd_pcm_sframes_t hdelta, delta;
 265	unsigned long jdelta;
 266	unsigned long curr_jiffies;
 267	struct timespec64 curr_tstamp;
 268	struct timespec64 audio_tstamp;
 269	int crossed_boundary = 0;
 270
 271	old_hw_ptr = runtime->status->hw_ptr;
 272
 273	/*
 274	 * group pointer, time and jiffies reads to allow for more
 275	 * accurate correlations/corrections.
 276	 * The values are stored at the end of this routine after
 277	 * corrections for hw_ptr position
 278	 */
 279	pos = substream->ops->pointer(substream);
 280	curr_jiffies = jiffies;
 281	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 282		if ((substream->ops->get_time_info) &&
 283			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 284			substream->ops->get_time_info(substream, &curr_tstamp,
 285						&audio_tstamp,
 286						&runtime->audio_tstamp_config,
 287						&runtime->audio_tstamp_report);
 288
 289			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
 290			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
 291				snd_pcm_gettime(runtime, &curr_tstamp);
 292		} else
 293			snd_pcm_gettime(runtime, &curr_tstamp);
 294	}
 295
 296	if (pos == SNDRV_PCM_POS_XRUN) {
 297		__snd_pcm_xrun(substream);
 298		return -EPIPE;
 299	}
 300	if (pos >= runtime->buffer_size) {
 301		if (printk_ratelimit()) {
 302			char name[16];
 303			snd_pcm_debug_name(substream, name, sizeof(name));
 304			pcm_err(substream->pcm,
 305				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 306				name, pos, runtime->buffer_size,
 307				runtime->period_size);
 308		}
 309		pos = 0;
 310	}
 311	pos -= pos % runtime->min_align;
 312	trace_hwptr(substream, pos, in_interrupt);
 313	hw_base = runtime->hw_ptr_base;
 314	new_hw_ptr = hw_base + pos;
 315	if (in_interrupt) {
 316		/* we know that one period was processed */
 317		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 318		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 319		if (delta > new_hw_ptr) {
 320			/* check for double acknowledged interrupts */
 321			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 322			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
 323				hw_base += runtime->buffer_size;
 324				if (hw_base >= runtime->boundary) {
 325					hw_base = 0;
 326					crossed_boundary++;
 327				}
 328				new_hw_ptr = hw_base + pos;
 329				goto __delta;
 330			}
 331		}
 332	}
 333	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 334	/* pointer crosses the end of the ring buffer */
 335	if (new_hw_ptr < old_hw_ptr) {
 336		hw_base += runtime->buffer_size;
 337		if (hw_base >= runtime->boundary) {
 338			hw_base = 0;
 339			crossed_boundary++;
 340		}
 341		new_hw_ptr = hw_base + pos;
 342	}
 343      __delta:
 344	delta = new_hw_ptr - old_hw_ptr;
 345	if (delta < 0)
 346		delta += runtime->boundary;
 347
 348	if (runtime->no_period_wakeup) {
 349		snd_pcm_sframes_t xrun_threshold;
 350		/*
 351		 * Without regular period interrupts, we have to check
 352		 * the elapsed time to detect xruns.
 353		 */
 354		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 355		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 356			goto no_delta_check;
 357		hdelta = jdelta - delta * HZ / runtime->rate;
 358		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 359		while (hdelta > xrun_threshold) {
 360			delta += runtime->buffer_size;
 361			hw_base += runtime->buffer_size;
 362			if (hw_base >= runtime->boundary) {
 363				hw_base = 0;
 364				crossed_boundary++;
 365			}
 366			new_hw_ptr = hw_base + pos;
 367			hdelta -= runtime->hw_ptr_buffer_jiffies;
 368		}
 369		goto no_delta_check;
 370	}
 371
 372	/* something must be really wrong */
 373	if (delta >= runtime->buffer_size + runtime->period_size) {
 374		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 375			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 376			     substream->stream, (long)pos,
 377			     (long)new_hw_ptr, (long)old_hw_ptr);
 378		return 0;
 379	}
 380
 381	/* Do jiffies check only in xrun_debug mode */
 382	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 383		goto no_jiffies_check;
 384
 385	/* Skip the jiffies check for hardwares with BATCH flag.
 386	 * Such hardware usually just increases the position at each IRQ,
 387	 * thus it can't give any strange position.
 388	 */
 389	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 390		goto no_jiffies_check;
 391	hdelta = delta;
 392	if (hdelta < runtime->delay)
 393		goto no_jiffies_check;
 394	hdelta -= runtime->delay;
 395	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 396	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 397		delta = jdelta /
 398			(((runtime->period_size * HZ) / runtime->rate)
 399								+ HZ/100);
 400		/* move new_hw_ptr according jiffies not pos variable */
 401		new_hw_ptr = old_hw_ptr;
 402		hw_base = delta;
 403		/* use loop to avoid checks for delta overflows */
 404		/* the delta value is small or zero in most cases */
 405		while (delta > 0) {
 406			new_hw_ptr += runtime->period_size;
 407			if (new_hw_ptr >= runtime->boundary) {
 408				new_hw_ptr -= runtime->boundary;
 409				crossed_boundary--;
 410			}
 411			delta--;
 412		}
 413		/* align hw_base to buffer_size */
 414		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 415			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 416			     (long)pos, (long)hdelta,
 417			     (long)runtime->period_size, jdelta,
 418			     ((hdelta * HZ) / runtime->rate), hw_base,
 419			     (unsigned long)old_hw_ptr,
 420			     (unsigned long)new_hw_ptr);
 421		/* reset values to proper state */
 422		delta = 0;
 423		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 424	}
 425 no_jiffies_check:
 426	if (delta > runtime->period_size + runtime->period_size / 2) {
 427		hw_ptr_error(substream, in_interrupt,
 428			     "Lost interrupts?",
 429			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 430			     substream->stream, (long)delta,
 431			     (long)new_hw_ptr,
 432			     (long)old_hw_ptr);
 433	}
 434
 435 no_delta_check:
 436	if (runtime->status->hw_ptr == new_hw_ptr) {
 437		runtime->hw_ptr_jiffies = curr_jiffies;
 438		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 439		return 0;
 440	}
 441
 442	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 443	    runtime->silence_size > 0)
 444		snd_pcm_playback_silence(substream, new_hw_ptr);
 445
 446	if (in_interrupt) {
 447		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 448		if (delta < 0)
 449			delta += runtime->boundary;
 450		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 451		runtime->hw_ptr_interrupt += delta;
 452		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 453			runtime->hw_ptr_interrupt -= runtime->boundary;
 454	}
 455	runtime->hw_ptr_base = hw_base;
 456	runtime->status->hw_ptr = new_hw_ptr;
 457	runtime->hw_ptr_jiffies = curr_jiffies;
 458	if (crossed_boundary) {
 459		snd_BUG_ON(crossed_boundary != 1);
 460		runtime->hw_ptr_wrap += runtime->boundary;
 461	}
 462
 463	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 464
 465	return snd_pcm_update_state(substream, runtime);
 466}
 467
 468/* CAUTION: call it with irq disabled */
 469int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 470{
 471	return snd_pcm_update_hw_ptr0(substream, 0);
 472}
 473
 474/**
 475 * snd_pcm_set_ops - set the PCM operators
 476 * @pcm: the pcm instance
 477 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 478 * @ops: the operator table
 479 *
 480 * Sets the given PCM operators to the pcm instance.
 481 */
 482void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 483		     const struct snd_pcm_ops *ops)
 484{
 485	struct snd_pcm_str *stream = &pcm->streams[direction];
 486	struct snd_pcm_substream *substream;
 487	
 488	for (substream = stream->substream; substream != NULL; substream = substream->next)
 489		substream->ops = ops;
 490}
 491EXPORT_SYMBOL(snd_pcm_set_ops);
 492
 493/**
 494 * snd_pcm_set_sync - set the PCM sync id
 495 * @substream: the pcm substream
 496 *
 497 * Sets the PCM sync identifier for the card.
 498 */
 499void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 500{
 501	struct snd_pcm_runtime *runtime = substream->runtime;
 502	
 503	runtime->sync.id32[0] = substream->pcm->card->number;
 504	runtime->sync.id32[1] = -1;
 505	runtime->sync.id32[2] = -1;
 506	runtime->sync.id32[3] = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507}
 508EXPORT_SYMBOL(snd_pcm_set_sync);
 509
 510/*
 511 *  Standard ioctl routine
 512 */
 513
 514static inline unsigned int div32(unsigned int a, unsigned int b, 
 515				 unsigned int *r)
 516{
 517	if (b == 0) {
 518		*r = 0;
 519		return UINT_MAX;
 520	}
 521	*r = a % b;
 522	return a / b;
 523}
 524
 525static inline unsigned int div_down(unsigned int a, unsigned int b)
 526{
 527	if (b == 0)
 528		return UINT_MAX;
 529	return a / b;
 530}
 531
 532static inline unsigned int div_up(unsigned int a, unsigned int b)
 533{
 534	unsigned int r;
 535	unsigned int q;
 536	if (b == 0)
 537		return UINT_MAX;
 538	q = div32(a, b, &r);
 539	if (r)
 540		++q;
 541	return q;
 542}
 543
 544static inline unsigned int mul(unsigned int a, unsigned int b)
 545{
 546	if (a == 0)
 547		return 0;
 548	if (div_down(UINT_MAX, a) < b)
 549		return UINT_MAX;
 550	return a * b;
 551}
 552
 553static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 554				    unsigned int c, unsigned int *r)
 555{
 556	u_int64_t n = (u_int64_t) a * b;
 557	if (c == 0) {
 558		*r = 0;
 559		return UINT_MAX;
 560	}
 561	n = div_u64_rem(n, c, r);
 562	if (n >= UINT_MAX) {
 563		*r = 0;
 564		return UINT_MAX;
 565	}
 566	return n;
 567}
 568
 569/**
 570 * snd_interval_refine - refine the interval value of configurator
 571 * @i: the interval value to refine
 572 * @v: the interval value to refer to
 573 *
 574 * Refines the interval value with the reference value.
 575 * The interval is changed to the range satisfying both intervals.
 576 * The interval status (min, max, integer, etc.) are evaluated.
 577 *
 578 * Return: Positive if the value is changed, zero if it's not changed, or a
 579 * negative error code.
 580 */
 581int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 582{
 583	int changed = 0;
 584	if (snd_BUG_ON(snd_interval_empty(i)))
 585		return -EINVAL;
 586	if (i->min < v->min) {
 587		i->min = v->min;
 588		i->openmin = v->openmin;
 589		changed = 1;
 590	} else if (i->min == v->min && !i->openmin && v->openmin) {
 591		i->openmin = 1;
 592		changed = 1;
 593	}
 594	if (i->max > v->max) {
 595		i->max = v->max;
 596		i->openmax = v->openmax;
 597		changed = 1;
 598	} else if (i->max == v->max && !i->openmax && v->openmax) {
 599		i->openmax = 1;
 600		changed = 1;
 601	}
 602	if (!i->integer && v->integer) {
 603		i->integer = 1;
 604		changed = 1;
 605	}
 606	if (i->integer) {
 607		if (i->openmin) {
 608			i->min++;
 609			i->openmin = 0;
 610		}
 611		if (i->openmax) {
 612			i->max--;
 613			i->openmax = 0;
 614		}
 615	} else if (!i->openmin && !i->openmax && i->min == i->max)
 616		i->integer = 1;
 617	if (snd_interval_checkempty(i)) {
 618		snd_interval_none(i);
 619		return -EINVAL;
 620	}
 621	return changed;
 622}
 623EXPORT_SYMBOL(snd_interval_refine);
 624
 625static int snd_interval_refine_first(struct snd_interval *i)
 626{
 627	const unsigned int last_max = i->max;
 628
 629	if (snd_BUG_ON(snd_interval_empty(i)))
 630		return -EINVAL;
 631	if (snd_interval_single(i))
 632		return 0;
 633	i->max = i->min;
 634	if (i->openmin)
 635		i->max++;
 636	/* only exclude max value if also excluded before refine */
 637	i->openmax = (i->openmax && i->max >= last_max);
 638	return 1;
 639}
 640
 641static int snd_interval_refine_last(struct snd_interval *i)
 642{
 643	const unsigned int last_min = i->min;
 644
 645	if (snd_BUG_ON(snd_interval_empty(i)))
 646		return -EINVAL;
 647	if (snd_interval_single(i))
 648		return 0;
 649	i->min = i->max;
 650	if (i->openmax)
 651		i->min--;
 652	/* only exclude min value if also excluded before refine */
 653	i->openmin = (i->openmin && i->min <= last_min);
 654	return 1;
 655}
 656
 657void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 658{
 659	if (a->empty || b->empty) {
 660		snd_interval_none(c);
 661		return;
 662	}
 663	c->empty = 0;
 664	c->min = mul(a->min, b->min);
 665	c->openmin = (a->openmin || b->openmin);
 666	c->max = mul(a->max,  b->max);
 667	c->openmax = (a->openmax || b->openmax);
 668	c->integer = (a->integer && b->integer);
 669}
 670
 671/**
 672 * snd_interval_div - refine the interval value with division
 673 * @a: dividend
 674 * @b: divisor
 675 * @c: quotient
 676 *
 677 * c = a / b
 678 *
 679 * Returns non-zero if the value is changed, zero if not changed.
 680 */
 681void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 682{
 683	unsigned int r;
 684	if (a->empty || b->empty) {
 685		snd_interval_none(c);
 686		return;
 687	}
 688	c->empty = 0;
 689	c->min = div32(a->min, b->max, &r);
 690	c->openmin = (r || a->openmin || b->openmax);
 691	if (b->min > 0) {
 692		c->max = div32(a->max, b->min, &r);
 693		if (r) {
 694			c->max++;
 695			c->openmax = 1;
 696		} else
 697			c->openmax = (a->openmax || b->openmin);
 698	} else {
 699		c->max = UINT_MAX;
 700		c->openmax = 0;
 701	}
 702	c->integer = 0;
 703}
 704
 705/**
 706 * snd_interval_muldivk - refine the interval value
 707 * @a: dividend 1
 708 * @b: dividend 2
 709 * @k: divisor (as integer)
 710 * @c: result
 711  *
 712 * c = a * b / k
 713 *
 714 * Returns non-zero if the value is changed, zero if not changed.
 715 */
 716void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 717		      unsigned int k, struct snd_interval *c)
 718{
 719	unsigned int r;
 720	if (a->empty || b->empty) {
 721		snd_interval_none(c);
 722		return;
 723	}
 724	c->empty = 0;
 725	c->min = muldiv32(a->min, b->min, k, &r);
 726	c->openmin = (r || a->openmin || b->openmin);
 727	c->max = muldiv32(a->max, b->max, k, &r);
 728	if (r) {
 729		c->max++;
 730		c->openmax = 1;
 731	} else
 732		c->openmax = (a->openmax || b->openmax);
 733	c->integer = 0;
 734}
 735
 736/**
 737 * snd_interval_mulkdiv - refine the interval value
 738 * @a: dividend 1
 739 * @k: dividend 2 (as integer)
 740 * @b: divisor
 741 * @c: result
 742 *
 743 * c = a * k / b
 744 *
 745 * Returns non-zero if the value is changed, zero if not changed.
 746 */
 747void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 748		      const struct snd_interval *b, struct snd_interval *c)
 749{
 750	unsigned int r;
 751	if (a->empty || b->empty) {
 752		snd_interval_none(c);
 753		return;
 754	}
 755	c->empty = 0;
 756	c->min = muldiv32(a->min, k, b->max, &r);
 757	c->openmin = (r || a->openmin || b->openmax);
 758	if (b->min > 0) {
 759		c->max = muldiv32(a->max, k, b->min, &r);
 760		if (r) {
 761			c->max++;
 762			c->openmax = 1;
 763		} else
 764			c->openmax = (a->openmax || b->openmin);
 765	} else {
 766		c->max = UINT_MAX;
 767		c->openmax = 0;
 768	}
 769	c->integer = 0;
 770}
 771
 772/* ---- */
 773
 774
 775/**
 776 * snd_interval_ratnum - refine the interval value
 777 * @i: interval to refine
 778 * @rats_count: number of ratnum_t 
 779 * @rats: ratnum_t array
 780 * @nump: pointer to store the resultant numerator
 781 * @denp: pointer to store the resultant denominator
 782 *
 783 * Return: Positive if the value is changed, zero if it's not changed, or a
 784 * negative error code.
 785 */
 786int snd_interval_ratnum(struct snd_interval *i,
 787			unsigned int rats_count, const struct snd_ratnum *rats,
 788			unsigned int *nump, unsigned int *denp)
 789{
 790	unsigned int best_num, best_den;
 791	int best_diff;
 792	unsigned int k;
 793	struct snd_interval t;
 794	int err;
 795	unsigned int result_num, result_den;
 796	int result_diff;
 797
 798	best_num = best_den = best_diff = 0;
 799	for (k = 0; k < rats_count; ++k) {
 800		unsigned int num = rats[k].num;
 801		unsigned int den;
 802		unsigned int q = i->min;
 803		int diff;
 804		if (q == 0)
 805			q = 1;
 806		den = div_up(num, q);
 807		if (den < rats[k].den_min)
 808			continue;
 809		if (den > rats[k].den_max)
 810			den = rats[k].den_max;
 811		else {
 812			unsigned int r;
 813			r = (den - rats[k].den_min) % rats[k].den_step;
 814			if (r != 0)
 815				den -= r;
 816		}
 817		diff = num - q * den;
 818		if (diff < 0)
 819			diff = -diff;
 820		if (best_num == 0 ||
 821		    diff * best_den < best_diff * den) {
 822			best_diff = diff;
 823			best_den = den;
 824			best_num = num;
 825		}
 826	}
 827	if (best_den == 0) {
 828		i->empty = 1;
 829		return -EINVAL;
 830	}
 831	t.min = div_down(best_num, best_den);
 832	t.openmin = !!(best_num % best_den);
 833	
 834	result_num = best_num;
 835	result_diff = best_diff;
 836	result_den = best_den;
 837	best_num = best_den = best_diff = 0;
 838	for (k = 0; k < rats_count; ++k) {
 839		unsigned int num = rats[k].num;
 840		unsigned int den;
 841		unsigned int q = i->max;
 842		int diff;
 843		if (q == 0) {
 844			i->empty = 1;
 845			return -EINVAL;
 846		}
 847		den = div_down(num, q);
 848		if (den > rats[k].den_max)
 849			continue;
 850		if (den < rats[k].den_min)
 851			den = rats[k].den_min;
 852		else {
 853			unsigned int r;
 854			r = (den - rats[k].den_min) % rats[k].den_step;
 855			if (r != 0)
 856				den += rats[k].den_step - r;
 857		}
 858		diff = q * den - num;
 859		if (diff < 0)
 860			diff = -diff;
 861		if (best_num == 0 ||
 862		    diff * best_den < best_diff * den) {
 863			best_diff = diff;
 864			best_den = den;
 865			best_num = num;
 866		}
 867	}
 868	if (best_den == 0) {
 869		i->empty = 1;
 870		return -EINVAL;
 871	}
 872	t.max = div_up(best_num, best_den);
 873	t.openmax = !!(best_num % best_den);
 874	t.integer = 0;
 875	err = snd_interval_refine(i, &t);
 876	if (err < 0)
 877		return err;
 878
 879	if (snd_interval_single(i)) {
 880		if (best_diff * result_den < result_diff * best_den) {
 881			result_num = best_num;
 882			result_den = best_den;
 883		}
 884		if (nump)
 885			*nump = result_num;
 886		if (denp)
 887			*denp = result_den;
 888	}
 889	return err;
 890}
 891EXPORT_SYMBOL(snd_interval_ratnum);
 892
 893/**
 894 * snd_interval_ratden - refine the interval value
 895 * @i: interval to refine
 896 * @rats_count: number of struct ratden
 897 * @rats: struct ratden array
 898 * @nump: pointer to store the resultant numerator
 899 * @denp: pointer to store the resultant denominator
 900 *
 901 * Return: Positive if the value is changed, zero if it's not changed, or a
 902 * negative error code.
 903 */
 904static int snd_interval_ratden(struct snd_interval *i,
 905			       unsigned int rats_count,
 906			       const struct snd_ratden *rats,
 907			       unsigned int *nump, unsigned int *denp)
 908{
 909	unsigned int best_num, best_diff, best_den;
 910	unsigned int k;
 911	struct snd_interval t;
 912	int err;
 913
 914	best_num = best_den = best_diff = 0;
 915	for (k = 0; k < rats_count; ++k) {
 916		unsigned int num;
 917		unsigned int den = rats[k].den;
 918		unsigned int q = i->min;
 919		int diff;
 920		num = mul(q, den);
 921		if (num > rats[k].num_max)
 922			continue;
 923		if (num < rats[k].num_min)
 924			num = rats[k].num_max;
 925		else {
 926			unsigned int r;
 927			r = (num - rats[k].num_min) % rats[k].num_step;
 928			if (r != 0)
 929				num += rats[k].num_step - r;
 930		}
 931		diff = num - q * den;
 932		if (best_num == 0 ||
 933		    diff * best_den < best_diff * den) {
 934			best_diff = diff;
 935			best_den = den;
 936			best_num = num;
 937		}
 938	}
 939	if (best_den == 0) {
 940		i->empty = 1;
 941		return -EINVAL;
 942	}
 943	t.min = div_down(best_num, best_den);
 944	t.openmin = !!(best_num % best_den);
 945	
 946	best_num = best_den = best_diff = 0;
 947	for (k = 0; k < rats_count; ++k) {
 948		unsigned int num;
 949		unsigned int den = rats[k].den;
 950		unsigned int q = i->max;
 951		int diff;
 952		num = mul(q, den);
 953		if (num < rats[k].num_min)
 954			continue;
 955		if (num > rats[k].num_max)
 956			num = rats[k].num_max;
 957		else {
 958			unsigned int r;
 959			r = (num - rats[k].num_min) % rats[k].num_step;
 960			if (r != 0)
 961				num -= r;
 962		}
 963		diff = q * den - num;
 964		if (best_num == 0 ||
 965		    diff * best_den < best_diff * den) {
 966			best_diff = diff;
 967			best_den = den;
 968			best_num = num;
 969		}
 970	}
 971	if (best_den == 0) {
 972		i->empty = 1;
 973		return -EINVAL;
 974	}
 975	t.max = div_up(best_num, best_den);
 976	t.openmax = !!(best_num % best_den);
 977	t.integer = 0;
 978	err = snd_interval_refine(i, &t);
 979	if (err < 0)
 980		return err;
 981
 982	if (snd_interval_single(i)) {
 983		if (nump)
 984			*nump = best_num;
 985		if (denp)
 986			*denp = best_den;
 987	}
 988	return err;
 989}
 990
 991/**
 992 * snd_interval_list - refine the interval value from the list
 993 * @i: the interval value to refine
 994 * @count: the number of elements in the list
 995 * @list: the value list
 996 * @mask: the bit-mask to evaluate
 997 *
 998 * Refines the interval value from the list.
 999 * When mask is non-zero, only the elements corresponding to bit 1 are
1000 * evaluated.
1001 *
1002 * Return: Positive if the value is changed, zero if it's not changed, or a
1003 * negative error code.
1004 */
1005int snd_interval_list(struct snd_interval *i, unsigned int count,
1006		      const unsigned int *list, unsigned int mask)
1007{
1008        unsigned int k;
1009	struct snd_interval list_range;
1010
1011	if (!count) {
1012		i->empty = 1;
1013		return -EINVAL;
1014	}
1015	snd_interval_any(&list_range);
1016	list_range.min = UINT_MAX;
1017	list_range.max = 0;
1018        for (k = 0; k < count; k++) {
1019		if (mask && !(mask & (1 << k)))
1020			continue;
1021		if (!snd_interval_test(i, list[k]))
1022			continue;
1023		list_range.min = min(list_range.min, list[k]);
1024		list_range.max = max(list_range.max, list[k]);
1025        }
1026	return snd_interval_refine(i, &list_range);
1027}
1028EXPORT_SYMBOL(snd_interval_list);
1029
1030/**
1031 * snd_interval_ranges - refine the interval value from the list of ranges
1032 * @i: the interval value to refine
1033 * @count: the number of elements in the list of ranges
1034 * @ranges: the ranges list
1035 * @mask: the bit-mask to evaluate
1036 *
1037 * Refines the interval value from the list of ranges.
1038 * When mask is non-zero, only the elements corresponding to bit 1 are
1039 * evaluated.
1040 *
1041 * Return: Positive if the value is changed, zero if it's not changed, or a
1042 * negative error code.
1043 */
1044int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1045			const struct snd_interval *ranges, unsigned int mask)
1046{
1047	unsigned int k;
1048	struct snd_interval range_union;
1049	struct snd_interval range;
1050
1051	if (!count) {
1052		snd_interval_none(i);
1053		return -EINVAL;
1054	}
1055	snd_interval_any(&range_union);
1056	range_union.min = UINT_MAX;
1057	range_union.max = 0;
1058	for (k = 0; k < count; k++) {
1059		if (mask && !(mask & (1 << k)))
1060			continue;
1061		snd_interval_copy(&range, &ranges[k]);
1062		if (snd_interval_refine(&range, i) < 0)
1063			continue;
1064		if (snd_interval_empty(&range))
1065			continue;
1066
1067		if (range.min < range_union.min) {
1068			range_union.min = range.min;
1069			range_union.openmin = 1;
1070		}
1071		if (range.min == range_union.min && !range.openmin)
1072			range_union.openmin = 0;
1073		if (range.max > range_union.max) {
1074			range_union.max = range.max;
1075			range_union.openmax = 1;
1076		}
1077		if (range.max == range_union.max && !range.openmax)
1078			range_union.openmax = 0;
1079	}
1080	return snd_interval_refine(i, &range_union);
1081}
1082EXPORT_SYMBOL(snd_interval_ranges);
1083
1084static int snd_interval_step(struct snd_interval *i, unsigned int step)
1085{
1086	unsigned int n;
1087	int changed = 0;
1088	n = i->min % step;
1089	if (n != 0 || i->openmin) {
1090		i->min += step - n;
1091		i->openmin = 0;
1092		changed = 1;
1093	}
1094	n = i->max % step;
1095	if (n != 0 || i->openmax) {
1096		i->max -= n;
1097		i->openmax = 0;
1098		changed = 1;
1099	}
1100	if (snd_interval_checkempty(i)) {
1101		i->empty = 1;
1102		return -EINVAL;
1103	}
1104	return changed;
1105}
1106
1107/* Info constraints helpers */
1108
1109/**
1110 * snd_pcm_hw_rule_add - add the hw-constraint rule
1111 * @runtime: the pcm runtime instance
1112 * @cond: condition bits
1113 * @var: the variable to evaluate
1114 * @func: the evaluation function
1115 * @private: the private data pointer passed to function
1116 * @dep: the dependent variables
1117 *
1118 * Return: Zero if successful, or a negative error code on failure.
1119 */
1120int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1121			int var,
1122			snd_pcm_hw_rule_func_t func, void *private,
1123			int dep, ...)
1124{
1125	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1126	struct snd_pcm_hw_rule *c;
1127	unsigned int k;
1128	va_list args;
1129	va_start(args, dep);
1130	if (constrs->rules_num >= constrs->rules_all) {
1131		struct snd_pcm_hw_rule *new;
1132		unsigned int new_rules = constrs->rules_all + 16;
1133		new = krealloc_array(constrs->rules, new_rules,
1134				     sizeof(*c), GFP_KERNEL);
1135		if (!new) {
1136			va_end(args);
1137			return -ENOMEM;
1138		}
1139		constrs->rules = new;
1140		constrs->rules_all = new_rules;
1141	}
1142	c = &constrs->rules[constrs->rules_num];
1143	c->cond = cond;
1144	c->func = func;
1145	c->var = var;
1146	c->private = private;
1147	k = 0;
1148	while (1) {
1149		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1150			va_end(args);
1151			return -EINVAL;
1152		}
1153		c->deps[k++] = dep;
1154		if (dep < 0)
1155			break;
1156		dep = va_arg(args, int);
1157	}
1158	constrs->rules_num++;
1159	va_end(args);
1160	return 0;
1161}
1162EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1163
1164/**
1165 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1166 * @runtime: PCM runtime instance
1167 * @var: hw_params variable to apply the mask
1168 * @mask: the bitmap mask
1169 *
1170 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1171 *
1172 * Return: Zero if successful, or a negative error code on failure.
1173 */
1174int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1175			       u_int32_t mask)
1176{
1177	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1178	struct snd_mask *maskp = constrs_mask(constrs, var);
1179	*maskp->bits &= mask;
1180	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1181	if (*maskp->bits == 0)
1182		return -EINVAL;
1183	return 0;
1184}
1185
1186/**
1187 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1188 * @runtime: PCM runtime instance
1189 * @var: hw_params variable to apply the mask
1190 * @mask: the 64bit bitmap mask
1191 *
1192 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1193 *
1194 * Return: Zero if successful, or a negative error code on failure.
1195 */
1196int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1197				 u_int64_t mask)
1198{
1199	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1200	struct snd_mask *maskp = constrs_mask(constrs, var);
1201	maskp->bits[0] &= (u_int32_t)mask;
1202	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1203	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1204	if (! maskp->bits[0] && ! maskp->bits[1])
1205		return -EINVAL;
1206	return 0;
1207}
1208EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1209
1210/**
1211 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the integer constraint
1214 *
1215 * Apply the constraint of integer to an interval parameter.
1216 *
1217 * Return: Positive if the value is changed, zero if it's not changed, or a
1218 * negative error code.
1219 */
1220int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1221{
1222	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223	return snd_interval_setinteger(constrs_interval(constrs, var));
1224}
1225EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1226
1227/**
1228 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1229 * @runtime: PCM runtime instance
1230 * @var: hw_params variable to apply the range
1231 * @min: the minimal value
1232 * @max: the maximal value
1233 * 
1234 * Apply the min/max range constraint to an interval parameter.
1235 *
1236 * Return: Positive if the value is changed, zero if it's not changed, or a
1237 * negative error code.
1238 */
1239int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1240				 unsigned int min, unsigned int max)
1241{
1242	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1243	struct snd_interval t;
1244	t.min = min;
1245	t.max = max;
1246	t.openmin = t.openmax = 0;
1247	t.integer = 0;
1248	return snd_interval_refine(constrs_interval(constrs, var), &t);
1249}
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1251
1252static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1253				struct snd_pcm_hw_rule *rule)
1254{
1255	struct snd_pcm_hw_constraint_list *list = rule->private;
1256	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1257}		
1258
1259
1260/**
1261 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1262 * @runtime: PCM runtime instance
1263 * @cond: condition bits
1264 * @var: hw_params variable to apply the list constraint
1265 * @l: list
1266 * 
1267 * Apply the list of constraints to an interval parameter.
1268 *
1269 * Return: Zero if successful, or a negative error code on failure.
1270 */
1271int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1272			       unsigned int cond,
1273			       snd_pcm_hw_param_t var,
1274			       const struct snd_pcm_hw_constraint_list *l)
1275{
1276	return snd_pcm_hw_rule_add(runtime, cond, var,
1277				   snd_pcm_hw_rule_list, (void *)l,
1278				   var, -1);
1279}
1280EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1281
1282static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1283				  struct snd_pcm_hw_rule *rule)
1284{
1285	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1286	return snd_interval_ranges(hw_param_interval(params, rule->var),
1287				   r->count, r->ranges, r->mask);
1288}
1289
1290
1291/**
1292 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1293 * @runtime: PCM runtime instance
1294 * @cond: condition bits
1295 * @var: hw_params variable to apply the list of range constraints
1296 * @r: ranges
1297 *
1298 * Apply the list of range constraints to an interval parameter.
1299 *
1300 * Return: Zero if successful, or a negative error code on failure.
1301 */
1302int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1303				 unsigned int cond,
1304				 snd_pcm_hw_param_t var,
1305				 const struct snd_pcm_hw_constraint_ranges *r)
1306{
1307	return snd_pcm_hw_rule_add(runtime, cond, var,
1308				   snd_pcm_hw_rule_ranges, (void *)r,
1309				   var, -1);
1310}
1311EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1312
1313static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1314				   struct snd_pcm_hw_rule *rule)
1315{
1316	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1317	unsigned int num = 0, den = 0;
1318	int err;
1319	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1320				  r->nrats, r->rats, &num, &den);
1321	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1322		params->rate_num = num;
1323		params->rate_den = den;
1324	}
1325	return err;
1326}
1327
1328/**
1329 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1330 * @runtime: PCM runtime instance
1331 * @cond: condition bits
1332 * @var: hw_params variable to apply the ratnums constraint
1333 * @r: struct snd_ratnums constriants
1334 *
1335 * Return: Zero if successful, or a negative error code on failure.
1336 */
1337int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1338				  unsigned int cond,
1339				  snd_pcm_hw_param_t var,
1340				  const struct snd_pcm_hw_constraint_ratnums *r)
1341{
1342	return snd_pcm_hw_rule_add(runtime, cond, var,
1343				   snd_pcm_hw_rule_ratnums, (void *)r,
1344				   var, -1);
1345}
1346EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1347
1348static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1349				   struct snd_pcm_hw_rule *rule)
1350{
1351	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1352	unsigned int num = 0, den = 0;
1353	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1354				  r->nrats, r->rats, &num, &den);
1355	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1356		params->rate_num = num;
1357		params->rate_den = den;
1358	}
1359	return err;
1360}
1361
1362/**
1363 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1364 * @runtime: PCM runtime instance
1365 * @cond: condition bits
1366 * @var: hw_params variable to apply the ratdens constraint
1367 * @r: struct snd_ratdens constriants
1368 *
1369 * Return: Zero if successful, or a negative error code on failure.
1370 */
1371int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1372				  unsigned int cond,
1373				  snd_pcm_hw_param_t var,
1374				  const struct snd_pcm_hw_constraint_ratdens *r)
1375{
1376	return snd_pcm_hw_rule_add(runtime, cond, var,
1377				   snd_pcm_hw_rule_ratdens, (void *)r,
1378				   var, -1);
1379}
1380EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1381
1382static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1383				  struct snd_pcm_hw_rule *rule)
1384{
1385	unsigned int l = (unsigned long) rule->private;
1386	int width = l & 0xffff;
1387	unsigned int msbits = l >> 16;
1388	const struct snd_interval *i =
1389		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1390
1391	if (!snd_interval_single(i))
1392		return 0;
1393
1394	if ((snd_interval_value(i) == width) ||
1395	    (width == 0 && snd_interval_value(i) > msbits))
1396		params->msbits = min_not_zero(params->msbits, msbits);
1397
1398	return 0;
1399}
1400
1401/**
1402 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1403 * @runtime: PCM runtime instance
1404 * @cond: condition bits
1405 * @width: sample bits width
1406 * @msbits: msbits width
1407 *
1408 * This constraint will set the number of most significant bits (msbits) if a
1409 * sample format with the specified width has been select. If width is set to 0
1410 * the msbits will be set for any sample format with a width larger than the
1411 * specified msbits.
1412 *
1413 * Return: Zero if successful, or a negative error code on failure.
1414 */
1415int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1416				 unsigned int cond,
1417				 unsigned int width,
1418				 unsigned int msbits)
1419{
1420	unsigned long l = (msbits << 16) | width;
1421	return snd_pcm_hw_rule_add(runtime, cond, -1,
1422				    snd_pcm_hw_rule_msbits,
1423				    (void*) l,
1424				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1425}
1426EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1427
1428static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1429				struct snd_pcm_hw_rule *rule)
1430{
1431	unsigned long step = (unsigned long) rule->private;
1432	return snd_interval_step(hw_param_interval(params, rule->var), step);
1433}
1434
1435/**
1436 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1437 * @runtime: PCM runtime instance
1438 * @cond: condition bits
1439 * @var: hw_params variable to apply the step constraint
1440 * @step: step size
1441 *
1442 * Return: Zero if successful, or a negative error code on failure.
1443 */
1444int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1445			       unsigned int cond,
1446			       snd_pcm_hw_param_t var,
1447			       unsigned long step)
1448{
1449	return snd_pcm_hw_rule_add(runtime, cond, var, 
1450				   snd_pcm_hw_rule_step, (void *) step,
1451				   var, -1);
1452}
1453EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1454
1455static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1456{
1457	static const unsigned int pow2_sizes[] = {
1458		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1459		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1460		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1461		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462	};
1463	return snd_interval_list(hw_param_interval(params, rule->var),
1464				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1465}		
1466
1467/**
1468 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1469 * @runtime: PCM runtime instance
1470 * @cond: condition bits
1471 * @var: hw_params variable to apply the power-of-2 constraint
1472 *
1473 * Return: Zero if successful, or a negative error code on failure.
1474 */
1475int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1476			       unsigned int cond,
1477			       snd_pcm_hw_param_t var)
1478{
1479	return snd_pcm_hw_rule_add(runtime, cond, var, 
1480				   snd_pcm_hw_rule_pow2, NULL,
1481				   var, -1);
1482}
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486					   struct snd_pcm_hw_rule *rule)
1487{
1488	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489	struct snd_interval *rate;
1490
1491	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492	return snd_interval_list(rate, 1, &base_rate, 0);
1493}
1494
1495/**
1496 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497 * @runtime: PCM runtime instance
1498 * @base_rate: the rate at which the hardware does not resample
1499 *
1500 * Return: Zero if successful, or a negative error code on failure.
1501 */
1502int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503			       unsigned int base_rate)
1504{
1505	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506				   SNDRV_PCM_HW_PARAM_RATE,
1507				   snd_pcm_hw_rule_noresample_func,
1508				   (void *)(uintptr_t)base_rate,
1509				   SNDRV_PCM_HW_PARAM_RATE, -1);
1510}
1511EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514				  snd_pcm_hw_param_t var)
1515{
1516	if (hw_is_mask(var)) {
1517		snd_mask_any(hw_param_mask(params, var));
1518		params->cmask |= 1 << var;
1519		params->rmask |= 1 << var;
1520		return;
1521	}
1522	if (hw_is_interval(var)) {
1523		snd_interval_any(hw_param_interval(params, var));
1524		params->cmask |= 1 << var;
1525		params->rmask |= 1 << var;
1526		return;
1527	}
1528	snd_BUG();
1529}
1530
1531void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532{
1533	unsigned int k;
1534	memset(params, 0, sizeof(*params));
1535	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536		_snd_pcm_hw_param_any(params, k);
1537	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538		_snd_pcm_hw_param_any(params, k);
1539	params->info = ~0U;
1540}
1541EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1542
1543/**
1544 * snd_pcm_hw_param_value - return @params field @var value
1545 * @params: the hw_params instance
1546 * @var: parameter to retrieve
1547 * @dir: pointer to the direction (-1,0,1) or %NULL
1548 *
1549 * Return: The value for field @var if it's fixed in configuration space
1550 * defined by @params. -%EINVAL otherwise.
1551 */
1552int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1553			   snd_pcm_hw_param_t var, int *dir)
1554{
1555	if (hw_is_mask(var)) {
1556		const struct snd_mask *mask = hw_param_mask_c(params, var);
1557		if (!snd_mask_single(mask))
1558			return -EINVAL;
1559		if (dir)
1560			*dir = 0;
1561		return snd_mask_value(mask);
1562	}
1563	if (hw_is_interval(var)) {
1564		const struct snd_interval *i = hw_param_interval_c(params, var);
1565		if (!snd_interval_single(i))
1566			return -EINVAL;
1567		if (dir)
1568			*dir = i->openmin;
1569		return snd_interval_value(i);
1570	}
1571	return -EINVAL;
1572}
1573EXPORT_SYMBOL(snd_pcm_hw_param_value);
1574
1575void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1576				snd_pcm_hw_param_t var)
1577{
1578	if (hw_is_mask(var)) {
1579		snd_mask_none(hw_param_mask(params, var));
1580		params->cmask |= 1 << var;
1581		params->rmask |= 1 << var;
1582	} else if (hw_is_interval(var)) {
1583		snd_interval_none(hw_param_interval(params, var));
1584		params->cmask |= 1 << var;
1585		params->rmask |= 1 << var;
1586	} else {
1587		snd_BUG();
1588	}
1589}
1590EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1591
1592static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1593				   snd_pcm_hw_param_t var)
1594{
1595	int changed;
1596	if (hw_is_mask(var))
1597		changed = snd_mask_refine_first(hw_param_mask(params, var));
1598	else if (hw_is_interval(var))
1599		changed = snd_interval_refine_first(hw_param_interval(params, var));
1600	else
1601		return -EINVAL;
1602	if (changed > 0) {
1603		params->cmask |= 1 << var;
1604		params->rmask |= 1 << var;
1605	}
1606	return changed;
1607}
1608
1609
1610/**
1611 * snd_pcm_hw_param_first - refine config space and return minimum value
1612 * @pcm: PCM instance
1613 * @params: the hw_params instance
1614 * @var: parameter to retrieve
1615 * @dir: pointer to the direction (-1,0,1) or %NULL
1616 *
1617 * Inside configuration space defined by @params remove from @var all
1618 * values > minimum. Reduce configuration space accordingly.
1619 *
1620 * Return: The minimum, or a negative error code on failure.
1621 */
1622int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1623			   struct snd_pcm_hw_params *params, 
1624			   snd_pcm_hw_param_t var, int *dir)
1625{
1626	int changed = _snd_pcm_hw_param_first(params, var);
1627	if (changed < 0)
1628		return changed;
1629	if (params->rmask) {
1630		int err = snd_pcm_hw_refine(pcm, params);
1631		if (err < 0)
1632			return err;
1633	}
1634	return snd_pcm_hw_param_value(params, var, dir);
1635}
1636EXPORT_SYMBOL(snd_pcm_hw_param_first);
1637
1638static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1639				  snd_pcm_hw_param_t var)
1640{
1641	int changed;
1642	if (hw_is_mask(var))
1643		changed = snd_mask_refine_last(hw_param_mask(params, var));
1644	else if (hw_is_interval(var))
1645		changed = snd_interval_refine_last(hw_param_interval(params, var));
1646	else
1647		return -EINVAL;
1648	if (changed > 0) {
1649		params->cmask |= 1 << var;
1650		params->rmask |= 1 << var;
1651	}
1652	return changed;
1653}
1654
1655
1656/**
1657 * snd_pcm_hw_param_last - refine config space and return maximum value
1658 * @pcm: PCM instance
1659 * @params: the hw_params instance
1660 * @var: parameter to retrieve
1661 * @dir: pointer to the direction (-1,0,1) or %NULL
1662 *
1663 * Inside configuration space defined by @params remove from @var all
1664 * values < maximum. Reduce configuration space accordingly.
1665 *
1666 * Return: The maximum, or a negative error code on failure.
1667 */
1668int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1669			  struct snd_pcm_hw_params *params,
1670			  snd_pcm_hw_param_t var, int *dir)
1671{
1672	int changed = _snd_pcm_hw_param_last(params, var);
1673	if (changed < 0)
1674		return changed;
1675	if (params->rmask) {
1676		int err = snd_pcm_hw_refine(pcm, params);
1677		if (err < 0)
1678			return err;
1679	}
1680	return snd_pcm_hw_param_value(params, var, dir);
1681}
1682EXPORT_SYMBOL(snd_pcm_hw_param_last);
1683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1685				   void *arg)
1686{
1687	struct snd_pcm_runtime *runtime = substream->runtime;
1688	unsigned long flags;
1689	snd_pcm_stream_lock_irqsave(substream, flags);
1690	if (snd_pcm_running(substream) &&
1691	    snd_pcm_update_hw_ptr(substream) >= 0)
1692		runtime->status->hw_ptr %= runtime->buffer_size;
1693	else {
1694		runtime->status->hw_ptr = 0;
1695		runtime->hw_ptr_wrap = 0;
1696	}
1697	snd_pcm_stream_unlock_irqrestore(substream, flags);
1698	return 0;
1699}
1700
1701static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1702					  void *arg)
1703{
1704	struct snd_pcm_channel_info *info = arg;
1705	struct snd_pcm_runtime *runtime = substream->runtime;
1706	int width;
1707	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1708		info->offset = -1;
1709		return 0;
1710	}
1711	width = snd_pcm_format_physical_width(runtime->format);
1712	if (width < 0)
1713		return width;
1714	info->offset = 0;
1715	switch (runtime->access) {
1716	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1717	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1718		info->first = info->channel * width;
1719		info->step = runtime->channels * width;
1720		break;
1721	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1722	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1723	{
1724		size_t size = runtime->dma_bytes / runtime->channels;
1725		info->first = info->channel * size * 8;
1726		info->step = width;
1727		break;
1728	}
1729	default:
1730		snd_BUG();
1731		break;
1732	}
1733	return 0;
1734}
1735
1736static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1737				       void *arg)
1738{
1739	struct snd_pcm_hw_params *params = arg;
1740	snd_pcm_format_t format;
1741	int channels;
1742	ssize_t frame_size;
1743
1744	params->fifo_size = substream->runtime->hw.fifo_size;
1745	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1746		format = params_format(params);
1747		channels = params_channels(params);
1748		frame_size = snd_pcm_format_size(format, channels);
1749		if (frame_size > 0)
1750			params->fifo_size /= frame_size;
1751	}
1752	return 0;
1753}
1754
 
 
 
 
 
 
 
 
 
 
 
 
1755/**
1756 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1757 * @substream: the pcm substream instance
1758 * @cmd: ioctl command
1759 * @arg: ioctl argument
1760 *
1761 * Processes the generic ioctl commands for PCM.
1762 * Can be passed as the ioctl callback for PCM ops.
1763 *
1764 * Return: Zero if successful, or a negative error code on failure.
1765 */
1766int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1767		      unsigned int cmd, void *arg)
1768{
1769	switch (cmd) {
1770	case SNDRV_PCM_IOCTL1_RESET:
1771		return snd_pcm_lib_ioctl_reset(substream, arg);
1772	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1773		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1774	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1775		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
 
 
1776	}
1777	return -ENXIO;
1778}
1779EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1780
1781/**
1782 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1783 *						under acquired lock of PCM substream.
1784 * @substream: the instance of pcm substream.
1785 *
1786 * This function is called when the batch of audio data frames as the same size as the period of
1787 * buffer is already processed in audio data transmission.
1788 *
1789 * The call of function updates the status of runtime with the latest position of audio data
1790 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1791 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1792 * substream according to configured threshold.
1793 *
1794 * The function is intended to use for the case that PCM driver operates audio data frames under
1795 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1796 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1797 * since lock of PCM substream should be acquired in advance.
1798 *
1799 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1800 * function:
1801 *
1802 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1803 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1804 * - .get_time_info - to retrieve audio time stamp if needed.
1805 *
1806 * Even if more than one periods have elapsed since the last call, you have to call this only once.
1807 */
1808void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1809{
1810	struct snd_pcm_runtime *runtime;
1811
1812	if (PCM_RUNTIME_CHECK(substream))
1813		return;
1814	runtime = substream->runtime;
1815
1816	if (!snd_pcm_running(substream) ||
1817	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1818		goto _end;
1819
1820#ifdef CONFIG_SND_PCM_TIMER
1821	if (substream->timer_running)
1822		snd_timer_interrupt(substream->timer, 1);
1823#endif
1824 _end:
1825	snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1826}
1827EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1828
1829/**
1830 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1831 *			      PCM substream.
1832 * @substream: the instance of PCM substream.
1833 *
1834 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1835 * acquiring lock of PCM substream voluntarily.
1836 *
1837 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1838 * the batch of audio data frames as the same size as the period of buffer is already processed in
1839 * audio data transmission.
1840 */
1841void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1842{
1843	unsigned long flags;
1844
1845	if (snd_BUG_ON(!substream))
1846		return;
1847
1848	snd_pcm_stream_lock_irqsave(substream, flags);
1849	snd_pcm_period_elapsed_under_stream_lock(substream);
1850	snd_pcm_stream_unlock_irqrestore(substream, flags);
1851}
1852EXPORT_SYMBOL(snd_pcm_period_elapsed);
1853
1854/*
1855 * Wait until avail_min data becomes available
1856 * Returns a negative error code if any error occurs during operation.
1857 * The available space is stored on availp.  When err = 0 and avail = 0
1858 * on the capture stream, it indicates the stream is in DRAINING state.
1859 */
1860static int wait_for_avail(struct snd_pcm_substream *substream,
1861			      snd_pcm_uframes_t *availp)
1862{
1863	struct snd_pcm_runtime *runtime = substream->runtime;
1864	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1865	wait_queue_entry_t wait;
1866	int err = 0;
1867	snd_pcm_uframes_t avail = 0;
1868	long wait_time, tout;
1869
1870	init_waitqueue_entry(&wait, current);
1871	set_current_state(TASK_INTERRUPTIBLE);
1872	add_wait_queue(&runtime->tsleep, &wait);
1873
1874	if (runtime->no_period_wakeup)
1875		wait_time = MAX_SCHEDULE_TIMEOUT;
1876	else {
1877		/* use wait time from substream if available */
1878		if (substream->wait_time) {
1879			wait_time = substream->wait_time;
1880		} else {
1881			wait_time = 10;
1882
1883			if (runtime->rate) {
1884				long t = runtime->period_size * 2 /
1885					 runtime->rate;
1886				wait_time = max(t, wait_time);
1887			}
1888			wait_time = msecs_to_jiffies(wait_time * 1000);
1889		}
 
1890	}
1891
1892	for (;;) {
1893		if (signal_pending(current)) {
1894			err = -ERESTARTSYS;
1895			break;
1896		}
1897
1898		/*
1899		 * We need to check if space became available already
1900		 * (and thus the wakeup happened already) first to close
1901		 * the race of space already having become available.
1902		 * This check must happen after been added to the waitqueue
1903		 * and having current state be INTERRUPTIBLE.
1904		 */
1905		avail = snd_pcm_avail(substream);
1906		if (avail >= runtime->twake)
1907			break;
1908		snd_pcm_stream_unlock_irq(substream);
1909
1910		tout = schedule_timeout(wait_time);
1911
1912		snd_pcm_stream_lock_irq(substream);
1913		set_current_state(TASK_INTERRUPTIBLE);
1914		switch (runtime->state) {
1915		case SNDRV_PCM_STATE_SUSPENDED:
1916			err = -ESTRPIPE;
1917			goto _endloop;
1918		case SNDRV_PCM_STATE_XRUN:
1919			err = -EPIPE;
1920			goto _endloop;
1921		case SNDRV_PCM_STATE_DRAINING:
1922			if (is_playback)
1923				err = -EPIPE;
1924			else 
1925				avail = 0; /* indicate draining */
1926			goto _endloop;
1927		case SNDRV_PCM_STATE_OPEN:
1928		case SNDRV_PCM_STATE_SETUP:
1929		case SNDRV_PCM_STATE_DISCONNECTED:
1930			err = -EBADFD;
1931			goto _endloop;
1932		case SNDRV_PCM_STATE_PAUSED:
1933			continue;
1934		}
1935		if (!tout) {
1936			pcm_dbg(substream->pcm,
1937				"%s write error (DMA or IRQ trouble?)\n",
1938				is_playback ? "playback" : "capture");
1939			err = -EIO;
1940			break;
1941		}
1942	}
1943 _endloop:
1944	set_current_state(TASK_RUNNING);
1945	remove_wait_queue(&runtime->tsleep, &wait);
1946	*availp = avail;
1947	return err;
1948}
1949	
1950typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1951			      int channel, unsigned long hwoff,
1952			      void *buf, unsigned long bytes);
1953
1954typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1955			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
 
1956
1957/* calculate the target DMA-buffer position to be written/read */
1958static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1959			   int channel, unsigned long hwoff)
1960{
1961	return runtime->dma_area + hwoff +
1962		channel * (runtime->dma_bytes / runtime->channels);
1963}
1964
1965/* default copy_user ops for write; used for both interleaved and non- modes */
1966static int default_write_copy(struct snd_pcm_substream *substream,
1967			      int channel, unsigned long hwoff,
1968			      void *buf, unsigned long bytes)
1969{
1970	if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1971			   (void __user *)buf, bytes))
1972		return -EFAULT;
1973	return 0;
1974}
1975
1976/* default copy_kernel ops for write */
1977static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1978				     int channel, unsigned long hwoff,
1979				     void *buf, unsigned long bytes)
1980{
1981	memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1982	return 0;
1983}
1984
1985/* fill silence instead of copy data; called as a transfer helper
1986 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1987 * a NULL buffer is passed
1988 */
1989static int fill_silence(struct snd_pcm_substream *substream, int channel,
1990			unsigned long hwoff, void *buf, unsigned long bytes)
 
1991{
1992	struct snd_pcm_runtime *runtime = substream->runtime;
1993
1994	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1995		return 0;
1996	if (substream->ops->fill_silence)
1997		return substream->ops->fill_silence(substream, channel,
1998						    hwoff, bytes);
1999
2000	snd_pcm_format_set_silence(runtime->format,
2001				   get_dma_ptr(runtime, channel, hwoff),
2002				   bytes_to_samples(runtime, bytes));
2003	return 0;
2004}
2005
2006/* default copy_user ops for read; used for both interleaved and non- modes */
2007static int default_read_copy(struct snd_pcm_substream *substream,
2008			     int channel, unsigned long hwoff,
2009			     void *buf, unsigned long bytes)
2010{
2011	if (copy_to_user((void __user *)buf,
2012			 get_dma_ptr(substream->runtime, channel, hwoff),
2013			 bytes))
2014		return -EFAULT;
2015	return 0;
2016}
2017
2018/* default copy_kernel ops for read */
2019static int default_read_copy_kernel(struct snd_pcm_substream *substream,
2020				    int channel, unsigned long hwoff,
2021				    void *buf, unsigned long bytes)
2022{
2023	memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
2024	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2025}
2026
2027/* call transfer function with the converted pointers and sizes;
2028 * for interleaved mode, it's one shot for all samples
2029 */
2030static int interleaved_copy(struct snd_pcm_substream *substream,
2031			    snd_pcm_uframes_t hwoff, void *data,
2032			    snd_pcm_uframes_t off,
2033			    snd_pcm_uframes_t frames,
2034			    pcm_transfer_f transfer)
 
2035{
2036	struct snd_pcm_runtime *runtime = substream->runtime;
2037
2038	/* convert to bytes */
2039	hwoff = frames_to_bytes(runtime, hwoff);
2040	off = frames_to_bytes(runtime, off);
2041	frames = frames_to_bytes(runtime, frames);
2042	return transfer(substream, 0, hwoff, data + off, frames);
 
 
2043}
2044
2045/* call transfer function with the converted pointers and sizes for each
2046 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2047 */
2048static int noninterleaved_copy(struct snd_pcm_substream *substream,
2049			       snd_pcm_uframes_t hwoff, void *data,
2050			       snd_pcm_uframes_t off,
2051			       snd_pcm_uframes_t frames,
2052			       pcm_transfer_f transfer)
 
2053{
2054	struct snd_pcm_runtime *runtime = substream->runtime;
2055	int channels = runtime->channels;
2056	void **bufs = data;
2057	int c, err;
2058
2059	/* convert to bytes; note that it's not frames_to_bytes() here.
2060	 * in non-interleaved mode, we copy for each channel, thus
2061	 * each copy is n_samples bytes x channels = whole frames.
2062	 */
2063	off = samples_to_bytes(runtime, off);
2064	frames = samples_to_bytes(runtime, frames);
2065	hwoff = samples_to_bytes(runtime, hwoff);
2066	for (c = 0; c < channels; ++c, ++bufs) {
2067		if (!data || !*bufs)
2068			err = fill_silence(substream, c, hwoff, NULL, frames);
2069		else
2070			err = transfer(substream, c, hwoff, *bufs + off,
2071				       frames);
2072		if (err < 0)
2073			return err;
2074	}
2075	return 0;
2076}
2077
2078/* fill silence on the given buffer position;
2079 * called from snd_pcm_playback_silence()
2080 */
2081static int fill_silence_frames(struct snd_pcm_substream *substream,
2082			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2083{
2084	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2085	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2086		return interleaved_copy(substream, off, NULL, 0, frames,
2087					fill_silence);
2088	else
2089		return noninterleaved_copy(substream, off, NULL, 0, frames,
2090					   fill_silence);
2091}
2092
2093/* sanity-check for read/write methods */
2094static int pcm_sanity_check(struct snd_pcm_substream *substream)
2095{
2096	struct snd_pcm_runtime *runtime;
2097	if (PCM_RUNTIME_CHECK(substream))
2098		return -ENXIO;
2099	runtime = substream->runtime;
2100	if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2101		return -EINVAL;
2102	if (runtime->state == SNDRV_PCM_STATE_OPEN)
2103		return -EBADFD;
2104	return 0;
2105}
2106
2107static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2108{
2109	switch (runtime->state) {
2110	case SNDRV_PCM_STATE_PREPARED:
2111	case SNDRV_PCM_STATE_RUNNING:
2112	case SNDRV_PCM_STATE_PAUSED:
2113		return 0;
2114	case SNDRV_PCM_STATE_XRUN:
2115		return -EPIPE;
2116	case SNDRV_PCM_STATE_SUSPENDED:
2117		return -ESTRPIPE;
2118	default:
2119		return -EBADFD;
2120	}
2121}
2122
2123/* update to the given appl_ptr and call ack callback if needed;
2124 * when an error is returned, take back to the original value
2125 */
2126int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2127			   snd_pcm_uframes_t appl_ptr)
2128{
2129	struct snd_pcm_runtime *runtime = substream->runtime;
2130	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2131	snd_pcm_sframes_t diff;
2132	int ret;
2133
2134	if (old_appl_ptr == appl_ptr)
2135		return 0;
2136
2137	if (appl_ptr >= runtime->boundary)
2138		return -EINVAL;
2139	/*
2140	 * check if a rewind is requested by the application
2141	 */
2142	if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2143		diff = appl_ptr - old_appl_ptr;
2144		if (diff >= 0) {
2145			if (diff > runtime->buffer_size)
2146				return -EINVAL;
2147		} else {
2148			if (runtime->boundary + diff > runtime->buffer_size)
2149				return -EINVAL;
2150		}
2151	}
2152
2153	runtime->control->appl_ptr = appl_ptr;
2154	if (substream->ops->ack) {
2155		ret = substream->ops->ack(substream);
2156		if (ret < 0) {
2157			runtime->control->appl_ptr = old_appl_ptr;
 
 
2158			return ret;
2159		}
2160	}
2161
2162	trace_applptr(substream, old_appl_ptr, appl_ptr);
2163
2164	return 0;
2165}
2166
2167/* the common loop for read/write data */
2168snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2169				     void *data, bool interleaved,
2170				     snd_pcm_uframes_t size, bool in_kernel)
2171{
2172	struct snd_pcm_runtime *runtime = substream->runtime;
2173	snd_pcm_uframes_t xfer = 0;
2174	snd_pcm_uframes_t offset = 0;
2175	snd_pcm_uframes_t avail;
2176	pcm_copy_f writer;
2177	pcm_transfer_f transfer;
2178	bool nonblock;
2179	bool is_playback;
2180	int err;
2181
2182	err = pcm_sanity_check(substream);
2183	if (err < 0)
2184		return err;
2185
2186	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2187	if (interleaved) {
2188		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2189		    runtime->channels > 1)
2190			return -EINVAL;
2191		writer = interleaved_copy;
2192	} else {
2193		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2194			return -EINVAL;
2195		writer = noninterleaved_copy;
2196	}
2197
2198	if (!data) {
2199		if (is_playback)
2200			transfer = fill_silence;
2201		else
2202			return -EINVAL;
2203	} else if (in_kernel) {
2204		if (substream->ops->copy_kernel)
2205			transfer = substream->ops->copy_kernel;
2206		else
2207			transfer = is_playback ?
2208				default_write_copy_kernel : default_read_copy_kernel;
2209	} else {
2210		if (substream->ops->copy_user)
2211			transfer = (pcm_transfer_f)substream->ops->copy_user;
2212		else
2213			transfer = is_playback ?
2214				default_write_copy : default_read_copy;
2215	}
2216
2217	if (size == 0)
2218		return 0;
2219
2220	nonblock = !!(substream->f_flags & O_NONBLOCK);
2221
2222	snd_pcm_stream_lock_irq(substream);
2223	err = pcm_accessible_state(runtime);
2224	if (err < 0)
2225		goto _end_unlock;
2226
2227	runtime->twake = runtime->control->avail_min ? : 1;
2228	if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2229		snd_pcm_update_hw_ptr(substream);
2230
2231	/*
2232	 * If size < start_threshold, wait indefinitely. Another
2233	 * thread may start capture
2234	 */
2235	if (!is_playback &&
2236	    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2237	    size >= runtime->start_threshold) {
2238		err = snd_pcm_start(substream);
2239		if (err < 0)
2240			goto _end_unlock;
2241	}
2242
2243	avail = snd_pcm_avail(substream);
2244
2245	while (size > 0) {
2246		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2247		snd_pcm_uframes_t cont;
2248		if (!avail) {
2249			if (!is_playback &&
2250			    runtime->state == SNDRV_PCM_STATE_DRAINING) {
2251				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2252				goto _end_unlock;
2253			}
2254			if (nonblock) {
2255				err = -EAGAIN;
2256				goto _end_unlock;
2257			}
2258			runtime->twake = min_t(snd_pcm_uframes_t, size,
2259					runtime->control->avail_min ? : 1);
2260			err = wait_for_avail(substream, &avail);
2261			if (err < 0)
2262				goto _end_unlock;
2263			if (!avail)
2264				continue; /* draining */
2265		}
2266		frames = size > avail ? avail : size;
2267		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2268		appl_ofs = appl_ptr % runtime->buffer_size;
2269		cont = runtime->buffer_size - appl_ofs;
2270		if (frames > cont)
2271			frames = cont;
2272		if (snd_BUG_ON(!frames)) {
2273			err = -EINVAL;
2274			goto _end_unlock;
2275		}
2276		if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2277			err = -EBUSY;
2278			goto _end_unlock;
2279		}
2280		snd_pcm_stream_unlock_irq(substream);
2281		if (!is_playback)
2282			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2283		err = writer(substream, appl_ofs, data, offset, frames,
2284			     transfer);
2285		if (is_playback)
2286			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2287		snd_pcm_stream_lock_irq(substream);
2288		atomic_dec(&runtime->buffer_accessing);
2289		if (err < 0)
2290			goto _end_unlock;
2291		err = pcm_accessible_state(runtime);
2292		if (err < 0)
2293			goto _end_unlock;
2294		appl_ptr += frames;
2295		if (appl_ptr >= runtime->boundary)
2296			appl_ptr -= runtime->boundary;
2297		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2298		if (err < 0)
2299			goto _end_unlock;
2300
2301		offset += frames;
2302		size -= frames;
2303		xfer += frames;
2304		avail -= frames;
2305		if (is_playback &&
2306		    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2307		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2308			err = snd_pcm_start(substream);
2309			if (err < 0)
2310				goto _end_unlock;
2311		}
2312	}
2313 _end_unlock:
2314	runtime->twake = 0;
2315	if (xfer > 0 && err >= 0)
2316		snd_pcm_update_state(substream, runtime);
2317	snd_pcm_stream_unlock_irq(substream);
2318	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2319}
2320EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2321
2322/*
2323 * standard channel mapping helpers
2324 */
2325
2326/* default channel maps for multi-channel playbacks, up to 8 channels */
2327const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2328	{ .channels = 1,
2329	  .map = { SNDRV_CHMAP_MONO } },
2330	{ .channels = 2,
2331	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2332	{ .channels = 4,
2333	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2334		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2335	{ .channels = 6,
2336	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2337		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2338		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2339	{ .channels = 8,
2340	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2341		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2342		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2343		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2344	{ }
2345};
2346EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2347
2348/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2349const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2350	{ .channels = 1,
2351	  .map = { SNDRV_CHMAP_MONO } },
2352	{ .channels = 2,
2353	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2354	{ .channels = 4,
2355	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2356		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2357	{ .channels = 6,
2358	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2359		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2360		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2361	{ .channels = 8,
2362	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2363		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2364		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2365		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2366	{ }
2367};
2368EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2369
2370static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2371{
2372	if (ch > info->max_channels)
2373		return false;
2374	return !info->channel_mask || (info->channel_mask & (1U << ch));
2375}
2376
2377static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2378			      struct snd_ctl_elem_info *uinfo)
2379{
2380	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2381
2382	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2383	uinfo->count = info->max_channels;
2384	uinfo->value.integer.min = 0;
2385	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2386	return 0;
2387}
2388
2389/* get callback for channel map ctl element
2390 * stores the channel position firstly matching with the current channels
2391 */
2392static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2393			     struct snd_ctl_elem_value *ucontrol)
2394{
2395	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2396	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2397	struct snd_pcm_substream *substream;
2398	const struct snd_pcm_chmap_elem *map;
2399
2400	if (!info->chmap)
2401		return -EINVAL;
2402	substream = snd_pcm_chmap_substream(info, idx);
2403	if (!substream)
2404		return -ENODEV;
2405	memset(ucontrol->value.integer.value, 0,
2406	       sizeof(long) * info->max_channels);
2407	if (!substream->runtime)
2408		return 0; /* no channels set */
2409	for (map = info->chmap; map->channels; map++) {
2410		int i;
2411		if (map->channels == substream->runtime->channels &&
2412		    valid_chmap_channels(info, map->channels)) {
2413			for (i = 0; i < map->channels; i++)
2414				ucontrol->value.integer.value[i] = map->map[i];
2415			return 0;
2416		}
2417	}
2418	return -EINVAL;
2419}
2420
2421/* tlv callback for channel map ctl element
2422 * expands the pre-defined channel maps in a form of TLV
2423 */
2424static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2425			     unsigned int size, unsigned int __user *tlv)
2426{
2427	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2428	const struct snd_pcm_chmap_elem *map;
2429	unsigned int __user *dst;
2430	int c, count = 0;
2431
2432	if (!info->chmap)
2433		return -EINVAL;
2434	if (size < 8)
2435		return -ENOMEM;
2436	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2437		return -EFAULT;
2438	size -= 8;
2439	dst = tlv + 2;
2440	for (map = info->chmap; map->channels; map++) {
2441		int chs_bytes = map->channels * 4;
2442		if (!valid_chmap_channels(info, map->channels))
2443			continue;
2444		if (size < 8)
2445			return -ENOMEM;
2446		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2447		    put_user(chs_bytes, dst + 1))
2448			return -EFAULT;
2449		dst += 2;
2450		size -= 8;
2451		count += 8;
2452		if (size < chs_bytes)
2453			return -ENOMEM;
2454		size -= chs_bytes;
2455		count += chs_bytes;
2456		for (c = 0; c < map->channels; c++) {
2457			if (put_user(map->map[c], dst))
2458				return -EFAULT;
2459			dst++;
2460		}
2461	}
2462	if (put_user(count, tlv + 1))
2463		return -EFAULT;
2464	return 0;
2465}
2466
2467static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2468{
2469	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2470	info->pcm->streams[info->stream].chmap_kctl = NULL;
2471	kfree(info);
2472}
2473
2474/**
2475 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2476 * @pcm: the assigned PCM instance
2477 * @stream: stream direction
2478 * @chmap: channel map elements (for query)
2479 * @max_channels: the max number of channels for the stream
2480 * @private_value: the value passed to each kcontrol's private_value field
2481 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2482 *
2483 * Create channel-mapping control elements assigned to the given PCM stream(s).
2484 * Return: Zero if successful, or a negative error value.
2485 */
2486int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2487			   const struct snd_pcm_chmap_elem *chmap,
2488			   int max_channels,
2489			   unsigned long private_value,
2490			   struct snd_pcm_chmap **info_ret)
2491{
2492	struct snd_pcm_chmap *info;
2493	struct snd_kcontrol_new knew = {
2494		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2495		.access = SNDRV_CTL_ELEM_ACCESS_READ |
 
2496			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2497			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2498		.info = pcm_chmap_ctl_info,
2499		.get = pcm_chmap_ctl_get,
2500		.tlv.c = pcm_chmap_ctl_tlv,
2501	};
2502	int err;
2503
2504	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2505		return -EBUSY;
2506	info = kzalloc(sizeof(*info), GFP_KERNEL);
2507	if (!info)
2508		return -ENOMEM;
2509	info->pcm = pcm;
2510	info->stream = stream;
2511	info->chmap = chmap;
2512	info->max_channels = max_channels;
2513	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2514		knew.name = "Playback Channel Map";
2515	else
2516		knew.name = "Capture Channel Map";
2517	knew.device = pcm->device;
2518	knew.count = pcm->streams[stream].substream_count;
2519	knew.private_value = private_value;
2520	info->kctl = snd_ctl_new1(&knew, info);
2521	if (!info->kctl) {
2522		kfree(info);
2523		return -ENOMEM;
2524	}
2525	info->kctl->private_free = pcm_chmap_ctl_private_free;
2526	err = snd_ctl_add(pcm->card, info->kctl);
2527	if (err < 0)
2528		return err;
2529	pcm->streams[stream].chmap_kctl = info->kctl;
2530	if (info_ret)
2531		*info_ret = info;
2532	return 0;
2533}
2534EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);