Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
7#include <linux/mm.h>
8#include <linux/memfd.h>
9#include <linux/memremap.h>
10#include <linux/pagemap.h>
11#include <linux/rmap.h>
12#include <linux/swap.h>
13#include <linux/swapops.h>
14#include <linux/secretmem.h>
15
16#include <linux/sched/signal.h>
17#include <linux/rwsem.h>
18#include <linux/hugetlb.h>
19#include <linux/migrate.h>
20#include <linux/mm_inline.h>
21#include <linux/pagevec.h>
22#include <linux/sched/mm.h>
23#include <linux/shmem_fs.h>
24
25#include <asm/mmu_context.h>
26#include <asm/tlbflush.h>
27
28#include "internal.h"
29
30struct follow_page_context {
31 struct dev_pagemap *pgmap;
32 unsigned int page_mask;
33};
34
35static inline void sanity_check_pinned_pages(struct page **pages,
36 unsigned long npages)
37{
38 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 return;
40
41 /*
42 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 * can no longer turn them possibly shared and PageAnonExclusive() will
44 * stick around until the page is freed.
45 *
46 * We'd like to verify that our pinned anonymous pages are still mapped
47 * exclusively. The issue with anon THP is that we don't know how
48 * they are/were mapped when pinning them. However, for anon
49 * THP we can assume that either the given page (PTE-mapped THP) or
50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 * neither is the case, there is certainly something wrong.
52 */
53 for (; npages; npages--, pages++) {
54 struct page *page = *pages;
55 struct folio *folio;
56
57 if (!page)
58 continue;
59
60 folio = page_folio(page);
61
62 if (is_zero_page(page) ||
63 !folio_test_anon(folio))
64 continue;
65 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
66 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
67 else
68 /* Either a PTE-mapped or a PMD-mapped THP. */
69 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
70 !PageAnonExclusive(page), page);
71 }
72}
73
74/*
75 * Return the folio with ref appropriately incremented,
76 * or NULL if that failed.
77 */
78static inline struct folio *try_get_folio(struct page *page, int refs)
79{
80 struct folio *folio;
81
82retry:
83 folio = page_folio(page);
84 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
85 return NULL;
86 if (unlikely(!folio_ref_try_add(folio, refs)))
87 return NULL;
88
89 /*
90 * At this point we have a stable reference to the folio; but it
91 * could be that between calling page_folio() and the refcount
92 * increment, the folio was split, in which case we'd end up
93 * holding a reference on a folio that has nothing to do with the page
94 * we were given anymore.
95 * So now that the folio is stable, recheck that the page still
96 * belongs to this folio.
97 */
98 if (unlikely(page_folio(page) != folio)) {
99 if (!put_devmap_managed_folio_refs(folio, refs))
100 folio_put_refs(folio, refs);
101 goto retry;
102 }
103
104 return folio;
105}
106
107static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
108{
109 if (flags & FOLL_PIN) {
110 if (is_zero_folio(folio))
111 return;
112 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
113 if (folio_test_large(folio))
114 atomic_sub(refs, &folio->_pincount);
115 else
116 refs *= GUP_PIN_COUNTING_BIAS;
117 }
118
119 if (!put_devmap_managed_folio_refs(folio, refs))
120 folio_put_refs(folio, refs);
121}
122
123/**
124 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
125 * @folio: pointer to folio to be grabbed
126 * @refs: the value to (effectively) add to the folio's refcount
127 * @flags: gup flags: these are the FOLL_* flag values
128 *
129 * This might not do anything at all, depending on the flags argument.
130 *
131 * "grab" names in this file mean, "look at flags to decide whether to use
132 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
133 *
134 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
135 * time.
136 *
137 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
138 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
139 *
140 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
141 * be grabbed.
142 *
143 * It is called when we have a stable reference for the folio, typically in
144 * GUP slow path.
145 */
146int __must_check try_grab_folio(struct folio *folio, int refs,
147 unsigned int flags)
148{
149 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
150 return -ENOMEM;
151
152 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
153 return -EREMOTEIO;
154
155 if (flags & FOLL_GET)
156 folio_ref_add(folio, refs);
157 else if (flags & FOLL_PIN) {
158 /*
159 * Don't take a pin on the zero page - it's not going anywhere
160 * and it is used in a *lot* of places.
161 */
162 if (is_zero_folio(folio))
163 return 0;
164
165 /*
166 * Increment the normal page refcount field at least once,
167 * so that the page really is pinned.
168 */
169 if (folio_test_large(folio)) {
170 folio_ref_add(folio, refs);
171 atomic_add(refs, &folio->_pincount);
172 } else {
173 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
174 }
175
176 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
177 }
178
179 return 0;
180}
181
182/**
183 * unpin_user_page() - release a dma-pinned page
184 * @page: pointer to page to be released
185 *
186 * Pages that were pinned via pin_user_pages*() must be released via either
187 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
188 * that such pages can be separately tracked and uniquely handled. In
189 * particular, interactions with RDMA and filesystems need special handling.
190 */
191void unpin_user_page(struct page *page)
192{
193 sanity_check_pinned_pages(&page, 1);
194 gup_put_folio(page_folio(page), 1, FOLL_PIN);
195}
196EXPORT_SYMBOL(unpin_user_page);
197
198/**
199 * unpin_folio() - release a dma-pinned folio
200 * @folio: pointer to folio to be released
201 *
202 * Folios that were pinned via memfd_pin_folios() or other similar routines
203 * must be released either using unpin_folio() or unpin_folios().
204 */
205void unpin_folio(struct folio *folio)
206{
207 gup_put_folio(folio, 1, FOLL_PIN);
208}
209EXPORT_SYMBOL_GPL(unpin_folio);
210
211/**
212 * folio_add_pin - Try to get an additional pin on a pinned folio
213 * @folio: The folio to be pinned
214 *
215 * Get an additional pin on a folio we already have a pin on. Makes no change
216 * if the folio is a zero_page.
217 */
218void folio_add_pin(struct folio *folio)
219{
220 if (is_zero_folio(folio))
221 return;
222
223 /*
224 * Similar to try_grab_folio(): be sure to *also* increment the normal
225 * page refcount field at least once, so that the page really is
226 * pinned.
227 */
228 if (folio_test_large(folio)) {
229 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
230 folio_ref_inc(folio);
231 atomic_inc(&folio->_pincount);
232 } else {
233 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
234 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
235 }
236}
237
238static inline struct folio *gup_folio_range_next(struct page *start,
239 unsigned long npages, unsigned long i, unsigned int *ntails)
240{
241 struct page *next = nth_page(start, i);
242 struct folio *folio = page_folio(next);
243 unsigned int nr = 1;
244
245 if (folio_test_large(folio))
246 nr = min_t(unsigned int, npages - i,
247 folio_nr_pages(folio) - folio_page_idx(folio, next));
248
249 *ntails = nr;
250 return folio;
251}
252
253static inline struct folio *gup_folio_next(struct page **list,
254 unsigned long npages, unsigned long i, unsigned int *ntails)
255{
256 struct folio *folio = page_folio(list[i]);
257 unsigned int nr;
258
259 for (nr = i + 1; nr < npages; nr++) {
260 if (page_folio(list[nr]) != folio)
261 break;
262 }
263
264 *ntails = nr - i;
265 return folio;
266}
267
268/**
269 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
270 * @pages: array of pages to be maybe marked dirty, and definitely released.
271 * @npages: number of pages in the @pages array.
272 * @make_dirty: whether to mark the pages dirty
273 *
274 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
275 * variants called on that page.
276 *
277 * For each page in the @pages array, make that page (or its head page, if a
278 * compound page) dirty, if @make_dirty is true, and if the page was previously
279 * listed as clean. In any case, releases all pages using unpin_user_page(),
280 * possibly via unpin_user_pages(), for the non-dirty case.
281 *
282 * Please see the unpin_user_page() documentation for details.
283 *
284 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
285 * required, then the caller should a) verify that this is really correct,
286 * because _lock() is usually required, and b) hand code it:
287 * set_page_dirty_lock(), unpin_user_page().
288 *
289 */
290void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
291 bool make_dirty)
292{
293 unsigned long i;
294 struct folio *folio;
295 unsigned int nr;
296
297 if (!make_dirty) {
298 unpin_user_pages(pages, npages);
299 return;
300 }
301
302 sanity_check_pinned_pages(pages, npages);
303 for (i = 0; i < npages; i += nr) {
304 folio = gup_folio_next(pages, npages, i, &nr);
305 /*
306 * Checking PageDirty at this point may race with
307 * clear_page_dirty_for_io(), but that's OK. Two key
308 * cases:
309 *
310 * 1) This code sees the page as already dirty, so it
311 * skips the call to set_page_dirty(). That could happen
312 * because clear_page_dirty_for_io() called
313 * folio_mkclean(), followed by set_page_dirty().
314 * However, now the page is going to get written back,
315 * which meets the original intention of setting it
316 * dirty, so all is well: clear_page_dirty_for_io() goes
317 * on to call TestClearPageDirty(), and write the page
318 * back.
319 *
320 * 2) This code sees the page as clean, so it calls
321 * set_page_dirty(). The page stays dirty, despite being
322 * written back, so it gets written back again in the
323 * next writeback cycle. This is harmless.
324 */
325 if (!folio_test_dirty(folio)) {
326 folio_lock(folio);
327 folio_mark_dirty(folio);
328 folio_unlock(folio);
329 }
330 gup_put_folio(folio, nr, FOLL_PIN);
331 }
332}
333EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
334
335/**
336 * unpin_user_page_range_dirty_lock() - release and optionally dirty
337 * gup-pinned page range
338 *
339 * @page: the starting page of a range maybe marked dirty, and definitely released.
340 * @npages: number of consecutive pages to release.
341 * @make_dirty: whether to mark the pages dirty
342 *
343 * "gup-pinned page range" refers to a range of pages that has had one of the
344 * pin_user_pages() variants called on that page.
345 *
346 * For the page ranges defined by [page .. page+npages], make that range (or
347 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
348 * page range was previously listed as clean.
349 *
350 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
351 * required, then the caller should a) verify that this is really correct,
352 * because _lock() is usually required, and b) hand code it:
353 * set_page_dirty_lock(), unpin_user_page().
354 *
355 */
356void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
357 bool make_dirty)
358{
359 unsigned long i;
360 struct folio *folio;
361 unsigned int nr;
362
363 for (i = 0; i < npages; i += nr) {
364 folio = gup_folio_range_next(page, npages, i, &nr);
365 if (make_dirty && !folio_test_dirty(folio)) {
366 folio_lock(folio);
367 folio_mark_dirty(folio);
368 folio_unlock(folio);
369 }
370 gup_put_folio(folio, nr, FOLL_PIN);
371 }
372}
373EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
374
375static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
376{
377 unsigned long i;
378 struct folio *folio;
379 unsigned int nr;
380
381 /*
382 * Don't perform any sanity checks because we might have raced with
383 * fork() and some anonymous pages might now actually be shared --
384 * which is why we're unpinning after all.
385 */
386 for (i = 0; i < npages; i += nr) {
387 folio = gup_folio_next(pages, npages, i, &nr);
388 gup_put_folio(folio, nr, FOLL_PIN);
389 }
390}
391
392/**
393 * unpin_user_pages() - release an array of gup-pinned pages.
394 * @pages: array of pages to be marked dirty and released.
395 * @npages: number of pages in the @pages array.
396 *
397 * For each page in the @pages array, release the page using unpin_user_page().
398 *
399 * Please see the unpin_user_page() documentation for details.
400 */
401void unpin_user_pages(struct page **pages, unsigned long npages)
402{
403 unsigned long i;
404 struct folio *folio;
405 unsigned int nr;
406
407 /*
408 * If this WARN_ON() fires, then the system *might* be leaking pages (by
409 * leaving them pinned), but probably not. More likely, gup/pup returned
410 * a hard -ERRNO error to the caller, who erroneously passed it here.
411 */
412 if (WARN_ON(IS_ERR_VALUE(npages)))
413 return;
414
415 sanity_check_pinned_pages(pages, npages);
416 for (i = 0; i < npages; i += nr) {
417 if (!pages[i]) {
418 nr = 1;
419 continue;
420 }
421 folio = gup_folio_next(pages, npages, i, &nr);
422 gup_put_folio(folio, nr, FOLL_PIN);
423 }
424}
425EXPORT_SYMBOL(unpin_user_pages);
426
427/**
428 * unpin_user_folio() - release pages of a folio
429 * @folio: pointer to folio to be released
430 * @npages: number of pages of same folio
431 *
432 * Release npages of the folio
433 */
434void unpin_user_folio(struct folio *folio, unsigned long npages)
435{
436 gup_put_folio(folio, npages, FOLL_PIN);
437}
438EXPORT_SYMBOL(unpin_user_folio);
439
440/**
441 * unpin_folios() - release an array of gup-pinned folios.
442 * @folios: array of folios to be marked dirty and released.
443 * @nfolios: number of folios in the @folios array.
444 *
445 * For each folio in the @folios array, release the folio using gup_put_folio.
446 *
447 * Please see the unpin_folio() documentation for details.
448 */
449void unpin_folios(struct folio **folios, unsigned long nfolios)
450{
451 unsigned long i = 0, j;
452
453 /*
454 * If this WARN_ON() fires, then the system *might* be leaking folios
455 * (by leaving them pinned), but probably not. More likely, gup/pup
456 * returned a hard -ERRNO error to the caller, who erroneously passed
457 * it here.
458 */
459 if (WARN_ON(IS_ERR_VALUE(nfolios)))
460 return;
461
462 while (i < nfolios) {
463 for (j = i + 1; j < nfolios; j++)
464 if (folios[i] != folios[j])
465 break;
466
467 if (folios[i])
468 gup_put_folio(folios[i], j - i, FOLL_PIN);
469 i = j;
470 }
471}
472EXPORT_SYMBOL_GPL(unpin_folios);
473
474/*
475 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
476 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
477 * cache bouncing on large SMP machines for concurrent pinned gups.
478 */
479static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
480{
481 if (!test_bit(MMF_HAS_PINNED, mm_flags))
482 set_bit(MMF_HAS_PINNED, mm_flags);
483}
484
485#ifdef CONFIG_MMU
486
487#ifdef CONFIG_HAVE_GUP_FAST
488static int record_subpages(struct page *page, unsigned long sz,
489 unsigned long addr, unsigned long end,
490 struct page **pages)
491{
492 struct page *start_page;
493 int nr;
494
495 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
496 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
497 pages[nr] = nth_page(start_page, nr);
498
499 return nr;
500}
501
502/**
503 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
504 * @page: pointer to page to be grabbed
505 * @refs: the value to (effectively) add to the folio's refcount
506 * @flags: gup flags: these are the FOLL_* flag values.
507 *
508 * "grab" names in this file mean, "look at flags to decide whether to use
509 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
510 *
511 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
512 * same time. (That's true throughout the get_user_pages*() and
513 * pin_user_pages*() APIs.) Cases:
514 *
515 * FOLL_GET: folio's refcount will be incremented by @refs.
516 *
517 * FOLL_PIN on large folios: folio's refcount will be incremented by
518 * @refs, and its pincount will be incremented by @refs.
519 *
520 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
521 * @refs * GUP_PIN_COUNTING_BIAS.
522 *
523 * Return: The folio containing @page (with refcount appropriately
524 * incremented) for success, or NULL upon failure. If neither FOLL_GET
525 * nor FOLL_PIN was set, that's considered failure, and furthermore,
526 * a likely bug in the caller, so a warning is also emitted.
527 *
528 * It uses add ref unless zero to elevate the folio refcount and must be called
529 * in fast path only.
530 */
531static struct folio *try_grab_folio_fast(struct page *page, int refs,
532 unsigned int flags)
533{
534 struct folio *folio;
535
536 /* Raise warn if it is not called in fast GUP */
537 VM_WARN_ON_ONCE(!irqs_disabled());
538
539 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
540 return NULL;
541
542 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
543 return NULL;
544
545 if (flags & FOLL_GET)
546 return try_get_folio(page, refs);
547
548 /* FOLL_PIN is set */
549
550 /*
551 * Don't take a pin on the zero page - it's not going anywhere
552 * and it is used in a *lot* of places.
553 */
554 if (is_zero_page(page))
555 return page_folio(page);
556
557 folio = try_get_folio(page, refs);
558 if (!folio)
559 return NULL;
560
561 /*
562 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
563 * right zone, so fail and let the caller fall back to the slow
564 * path.
565 */
566 if (unlikely((flags & FOLL_LONGTERM) &&
567 !folio_is_longterm_pinnable(folio))) {
568 if (!put_devmap_managed_folio_refs(folio, refs))
569 folio_put_refs(folio, refs);
570 return NULL;
571 }
572
573 /*
574 * When pinning a large folio, use an exact count to track it.
575 *
576 * However, be sure to *also* increment the normal folio
577 * refcount field at least once, so that the folio really
578 * is pinned. That's why the refcount from the earlier
579 * try_get_folio() is left intact.
580 */
581 if (folio_test_large(folio))
582 atomic_add(refs, &folio->_pincount);
583 else
584 folio_ref_add(folio,
585 refs * (GUP_PIN_COUNTING_BIAS - 1));
586 /*
587 * Adjust the pincount before re-checking the PTE for changes.
588 * This is essentially a smp_mb() and is paired with a memory
589 * barrier in folio_try_share_anon_rmap_*().
590 */
591 smp_mb__after_atomic();
592
593 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
594
595 return folio;
596}
597#endif /* CONFIG_HAVE_GUP_FAST */
598
599static struct page *no_page_table(struct vm_area_struct *vma,
600 unsigned int flags, unsigned long address)
601{
602 if (!(flags & FOLL_DUMP))
603 return NULL;
604
605 /*
606 * When core dumping, we don't want to allocate unnecessary pages or
607 * page tables. Return error instead of NULL to skip handle_mm_fault,
608 * then get_dump_page() will return NULL to leave a hole in the dump.
609 * But we can only make this optimization where a hole would surely
610 * be zero-filled if handle_mm_fault() actually did handle it.
611 */
612 if (is_vm_hugetlb_page(vma)) {
613 struct hstate *h = hstate_vma(vma);
614
615 if (!hugetlbfs_pagecache_present(h, vma, address))
616 return ERR_PTR(-EFAULT);
617 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
618 return ERR_PTR(-EFAULT);
619 }
620
621 return NULL;
622}
623
624#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
625static struct page *follow_huge_pud(struct vm_area_struct *vma,
626 unsigned long addr, pud_t *pudp,
627 int flags, struct follow_page_context *ctx)
628{
629 struct mm_struct *mm = vma->vm_mm;
630 struct page *page;
631 pud_t pud = *pudp;
632 unsigned long pfn = pud_pfn(pud);
633 int ret;
634
635 assert_spin_locked(pud_lockptr(mm, pudp));
636
637 if ((flags & FOLL_WRITE) && !pud_write(pud))
638 return NULL;
639
640 if (!pud_present(pud))
641 return NULL;
642
643 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
644
645 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
646 pud_devmap(pud)) {
647 /*
648 * device mapped pages can only be returned if the caller
649 * will manage the page reference count.
650 *
651 * At least one of FOLL_GET | FOLL_PIN must be set, so
652 * assert that here:
653 */
654 if (!(flags & (FOLL_GET | FOLL_PIN)))
655 return ERR_PTR(-EEXIST);
656
657 if (flags & FOLL_TOUCH)
658 touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
659
660 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
661 if (!ctx->pgmap)
662 return ERR_PTR(-EFAULT);
663 }
664
665 page = pfn_to_page(pfn);
666
667 if (!pud_devmap(pud) && !pud_write(pud) &&
668 gup_must_unshare(vma, flags, page))
669 return ERR_PTR(-EMLINK);
670
671 ret = try_grab_folio(page_folio(page), 1, flags);
672 if (ret)
673 page = ERR_PTR(ret);
674 else
675 ctx->page_mask = HPAGE_PUD_NR - 1;
676
677 return page;
678}
679
680/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
681static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
682 struct vm_area_struct *vma,
683 unsigned int flags)
684{
685 /* If the pmd is writable, we can write to the page. */
686 if (pmd_write(pmd))
687 return true;
688
689 /* Maybe FOLL_FORCE is set to override it? */
690 if (!(flags & FOLL_FORCE))
691 return false;
692
693 /* But FOLL_FORCE has no effect on shared mappings */
694 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
695 return false;
696
697 /* ... or read-only private ones */
698 if (!(vma->vm_flags & VM_MAYWRITE))
699 return false;
700
701 /* ... or already writable ones that just need to take a write fault */
702 if (vma->vm_flags & VM_WRITE)
703 return false;
704
705 /*
706 * See can_change_pte_writable(): we broke COW and could map the page
707 * writable if we have an exclusive anonymous page ...
708 */
709 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
710 return false;
711
712 /* ... and a write-fault isn't required for other reasons. */
713 if (pmd_needs_soft_dirty_wp(vma, pmd))
714 return false;
715 return !userfaultfd_huge_pmd_wp(vma, pmd);
716}
717
718static struct page *follow_huge_pmd(struct vm_area_struct *vma,
719 unsigned long addr, pmd_t *pmd,
720 unsigned int flags,
721 struct follow_page_context *ctx)
722{
723 struct mm_struct *mm = vma->vm_mm;
724 pmd_t pmdval = *pmd;
725 struct page *page;
726 int ret;
727
728 assert_spin_locked(pmd_lockptr(mm, pmd));
729
730 page = pmd_page(pmdval);
731 if ((flags & FOLL_WRITE) &&
732 !can_follow_write_pmd(pmdval, page, vma, flags))
733 return NULL;
734
735 /* Avoid dumping huge zero page */
736 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
737 return ERR_PTR(-EFAULT);
738
739 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
740 return NULL;
741
742 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
743 return ERR_PTR(-EMLINK);
744
745 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
746 !PageAnonExclusive(page), page);
747
748 ret = try_grab_folio(page_folio(page), 1, flags);
749 if (ret)
750 return ERR_PTR(ret);
751
752#ifdef CONFIG_TRANSPARENT_HUGEPAGE
753 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
754 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
755#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
756
757 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
758 ctx->page_mask = HPAGE_PMD_NR - 1;
759
760 return page;
761}
762
763#else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
764static struct page *follow_huge_pud(struct vm_area_struct *vma,
765 unsigned long addr, pud_t *pudp,
766 int flags, struct follow_page_context *ctx)
767{
768 return NULL;
769}
770
771static struct page *follow_huge_pmd(struct vm_area_struct *vma,
772 unsigned long addr, pmd_t *pmd,
773 unsigned int flags,
774 struct follow_page_context *ctx)
775{
776 return NULL;
777}
778#endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
779
780static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
781 pte_t *pte, unsigned int flags)
782{
783 if (flags & FOLL_TOUCH) {
784 pte_t orig_entry = ptep_get(pte);
785 pte_t entry = orig_entry;
786
787 if (flags & FOLL_WRITE)
788 entry = pte_mkdirty(entry);
789 entry = pte_mkyoung(entry);
790
791 if (!pte_same(orig_entry, entry)) {
792 set_pte_at(vma->vm_mm, address, pte, entry);
793 update_mmu_cache(vma, address, pte);
794 }
795 }
796
797 /* Proper page table entry exists, but no corresponding struct page */
798 return -EEXIST;
799}
800
801/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
802static inline bool can_follow_write_pte(pte_t pte, struct page *page,
803 struct vm_area_struct *vma,
804 unsigned int flags)
805{
806 /* If the pte is writable, we can write to the page. */
807 if (pte_write(pte))
808 return true;
809
810 /* Maybe FOLL_FORCE is set to override it? */
811 if (!(flags & FOLL_FORCE))
812 return false;
813
814 /* But FOLL_FORCE has no effect on shared mappings */
815 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
816 return false;
817
818 /* ... or read-only private ones */
819 if (!(vma->vm_flags & VM_MAYWRITE))
820 return false;
821
822 /* ... or already writable ones that just need to take a write fault */
823 if (vma->vm_flags & VM_WRITE)
824 return false;
825
826 /*
827 * See can_change_pte_writable(): we broke COW and could map the page
828 * writable if we have an exclusive anonymous page ...
829 */
830 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
831 return false;
832
833 /* ... and a write-fault isn't required for other reasons. */
834 if (pte_needs_soft_dirty_wp(vma, pte))
835 return false;
836 return !userfaultfd_pte_wp(vma, pte);
837}
838
839static struct page *follow_page_pte(struct vm_area_struct *vma,
840 unsigned long address, pmd_t *pmd, unsigned int flags,
841 struct dev_pagemap **pgmap)
842{
843 struct mm_struct *mm = vma->vm_mm;
844 struct folio *folio;
845 struct page *page;
846 spinlock_t *ptl;
847 pte_t *ptep, pte;
848 int ret;
849
850 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
851 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
852 (FOLL_PIN | FOLL_GET)))
853 return ERR_PTR(-EINVAL);
854
855 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
856 if (!ptep)
857 return no_page_table(vma, flags, address);
858 pte = ptep_get(ptep);
859 if (!pte_present(pte))
860 goto no_page;
861 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
862 goto no_page;
863
864 page = vm_normal_page(vma, address, pte);
865
866 /*
867 * We only care about anon pages in can_follow_write_pte() and don't
868 * have to worry about pte_devmap() because they are never anon.
869 */
870 if ((flags & FOLL_WRITE) &&
871 !can_follow_write_pte(pte, page, vma, flags)) {
872 page = NULL;
873 goto out;
874 }
875
876 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
877 /*
878 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
879 * case since they are only valid while holding the pgmap
880 * reference.
881 */
882 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
883 if (*pgmap)
884 page = pte_page(pte);
885 else
886 goto no_page;
887 } else if (unlikely(!page)) {
888 if (flags & FOLL_DUMP) {
889 /* Avoid special (like zero) pages in core dumps */
890 page = ERR_PTR(-EFAULT);
891 goto out;
892 }
893
894 if (is_zero_pfn(pte_pfn(pte))) {
895 page = pte_page(pte);
896 } else {
897 ret = follow_pfn_pte(vma, address, ptep, flags);
898 page = ERR_PTR(ret);
899 goto out;
900 }
901 }
902 folio = page_folio(page);
903
904 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
905 page = ERR_PTR(-EMLINK);
906 goto out;
907 }
908
909 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
910 !PageAnonExclusive(page), page);
911
912 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
913 ret = try_grab_folio(folio, 1, flags);
914 if (unlikely(ret)) {
915 page = ERR_PTR(ret);
916 goto out;
917 }
918
919 /*
920 * We need to make the page accessible if and only if we are going
921 * to access its content (the FOLL_PIN case). Please see
922 * Documentation/core-api/pin_user_pages.rst for details.
923 */
924 if (flags & FOLL_PIN) {
925 ret = arch_make_folio_accessible(folio);
926 if (ret) {
927 unpin_user_page(page);
928 page = ERR_PTR(ret);
929 goto out;
930 }
931 }
932 if (flags & FOLL_TOUCH) {
933 if ((flags & FOLL_WRITE) &&
934 !pte_dirty(pte) && !folio_test_dirty(folio))
935 folio_mark_dirty(folio);
936 /*
937 * pte_mkyoung() would be more correct here, but atomic care
938 * is needed to avoid losing the dirty bit: it is easier to use
939 * folio_mark_accessed().
940 */
941 folio_mark_accessed(folio);
942 }
943out:
944 pte_unmap_unlock(ptep, ptl);
945 return page;
946no_page:
947 pte_unmap_unlock(ptep, ptl);
948 if (!pte_none(pte))
949 return NULL;
950 return no_page_table(vma, flags, address);
951}
952
953static struct page *follow_pmd_mask(struct vm_area_struct *vma,
954 unsigned long address, pud_t *pudp,
955 unsigned int flags,
956 struct follow_page_context *ctx)
957{
958 pmd_t *pmd, pmdval;
959 spinlock_t *ptl;
960 struct page *page;
961 struct mm_struct *mm = vma->vm_mm;
962
963 pmd = pmd_offset(pudp, address);
964 pmdval = pmdp_get_lockless(pmd);
965 if (pmd_none(pmdval))
966 return no_page_table(vma, flags, address);
967 if (!pmd_present(pmdval))
968 return no_page_table(vma, flags, address);
969 if (pmd_devmap(pmdval)) {
970 ptl = pmd_lock(mm, pmd);
971 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
972 spin_unlock(ptl);
973 if (page)
974 return page;
975 return no_page_table(vma, flags, address);
976 }
977 if (likely(!pmd_leaf(pmdval)))
978 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
979
980 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
981 return no_page_table(vma, flags, address);
982
983 ptl = pmd_lock(mm, pmd);
984 pmdval = *pmd;
985 if (unlikely(!pmd_present(pmdval))) {
986 spin_unlock(ptl);
987 return no_page_table(vma, flags, address);
988 }
989 if (unlikely(!pmd_leaf(pmdval))) {
990 spin_unlock(ptl);
991 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
992 }
993 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
994 spin_unlock(ptl);
995 split_huge_pmd(vma, pmd, address);
996 /* If pmd was left empty, stuff a page table in there quickly */
997 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
998 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
999 }
1000 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
1001 spin_unlock(ptl);
1002 return page;
1003}
1004
1005static struct page *follow_pud_mask(struct vm_area_struct *vma,
1006 unsigned long address, p4d_t *p4dp,
1007 unsigned int flags,
1008 struct follow_page_context *ctx)
1009{
1010 pud_t *pudp, pud;
1011 spinlock_t *ptl;
1012 struct page *page;
1013 struct mm_struct *mm = vma->vm_mm;
1014
1015 pudp = pud_offset(p4dp, address);
1016 pud = READ_ONCE(*pudp);
1017 if (!pud_present(pud))
1018 return no_page_table(vma, flags, address);
1019 if (pud_leaf(pud)) {
1020 ptl = pud_lock(mm, pudp);
1021 page = follow_huge_pud(vma, address, pudp, flags, ctx);
1022 spin_unlock(ptl);
1023 if (page)
1024 return page;
1025 return no_page_table(vma, flags, address);
1026 }
1027 if (unlikely(pud_bad(pud)))
1028 return no_page_table(vma, flags, address);
1029
1030 return follow_pmd_mask(vma, address, pudp, flags, ctx);
1031}
1032
1033static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1034 unsigned long address, pgd_t *pgdp,
1035 unsigned int flags,
1036 struct follow_page_context *ctx)
1037{
1038 p4d_t *p4dp, p4d;
1039
1040 p4dp = p4d_offset(pgdp, address);
1041 p4d = READ_ONCE(*p4dp);
1042 BUILD_BUG_ON(p4d_leaf(p4d));
1043
1044 if (!p4d_present(p4d) || p4d_bad(p4d))
1045 return no_page_table(vma, flags, address);
1046
1047 return follow_pud_mask(vma, address, p4dp, flags, ctx);
1048}
1049
1050/**
1051 * follow_page_mask - look up a page descriptor from a user-virtual address
1052 * @vma: vm_area_struct mapping @address
1053 * @address: virtual address to look up
1054 * @flags: flags modifying lookup behaviour
1055 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1056 * pointer to output page_mask
1057 *
1058 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1059 *
1060 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1061 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1062 *
1063 * When getting an anonymous page and the caller has to trigger unsharing
1064 * of a shared anonymous page first, -EMLINK is returned. The caller should
1065 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1066 * relevant with FOLL_PIN and !FOLL_WRITE.
1067 *
1068 * On output, the @ctx->page_mask is set according to the size of the page.
1069 *
1070 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1071 * an error pointer if there is a mapping to something not represented
1072 * by a page descriptor (see also vm_normal_page()).
1073 */
1074static struct page *follow_page_mask(struct vm_area_struct *vma,
1075 unsigned long address, unsigned int flags,
1076 struct follow_page_context *ctx)
1077{
1078 pgd_t *pgd;
1079 struct mm_struct *mm = vma->vm_mm;
1080 struct page *page;
1081
1082 vma_pgtable_walk_begin(vma);
1083
1084 ctx->page_mask = 0;
1085 pgd = pgd_offset(mm, address);
1086
1087 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1088 page = no_page_table(vma, flags, address);
1089 else
1090 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1091
1092 vma_pgtable_walk_end(vma);
1093
1094 return page;
1095}
1096
1097static int get_gate_page(struct mm_struct *mm, unsigned long address,
1098 unsigned int gup_flags, struct vm_area_struct **vma,
1099 struct page **page)
1100{
1101 pgd_t *pgd;
1102 p4d_t *p4d;
1103 pud_t *pud;
1104 pmd_t *pmd;
1105 pte_t *pte;
1106 pte_t entry;
1107 int ret = -EFAULT;
1108
1109 /* user gate pages are read-only */
1110 if (gup_flags & FOLL_WRITE)
1111 return -EFAULT;
1112 if (address > TASK_SIZE)
1113 pgd = pgd_offset_k(address);
1114 else
1115 pgd = pgd_offset_gate(mm, address);
1116 if (pgd_none(*pgd))
1117 return -EFAULT;
1118 p4d = p4d_offset(pgd, address);
1119 if (p4d_none(*p4d))
1120 return -EFAULT;
1121 pud = pud_offset(p4d, address);
1122 if (pud_none(*pud))
1123 return -EFAULT;
1124 pmd = pmd_offset(pud, address);
1125 if (!pmd_present(*pmd))
1126 return -EFAULT;
1127 pte = pte_offset_map(pmd, address);
1128 if (!pte)
1129 return -EFAULT;
1130 entry = ptep_get(pte);
1131 if (pte_none(entry))
1132 goto unmap;
1133 *vma = get_gate_vma(mm);
1134 if (!page)
1135 goto out;
1136 *page = vm_normal_page(*vma, address, entry);
1137 if (!*page) {
1138 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1139 goto unmap;
1140 *page = pte_page(entry);
1141 }
1142 ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1143 if (unlikely(ret))
1144 goto unmap;
1145out:
1146 ret = 0;
1147unmap:
1148 pte_unmap(pte);
1149 return ret;
1150}
1151
1152/*
1153 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1154 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1155 * to 0 and -EBUSY returned.
1156 */
1157static int faultin_page(struct vm_area_struct *vma,
1158 unsigned long address, unsigned int flags, bool unshare,
1159 int *locked)
1160{
1161 unsigned int fault_flags = 0;
1162 vm_fault_t ret;
1163
1164 if (flags & FOLL_NOFAULT)
1165 return -EFAULT;
1166 if (flags & FOLL_WRITE)
1167 fault_flags |= FAULT_FLAG_WRITE;
1168 if (flags & FOLL_REMOTE)
1169 fault_flags |= FAULT_FLAG_REMOTE;
1170 if (flags & FOLL_UNLOCKABLE) {
1171 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1172 /*
1173 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1174 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1175 * That's because some callers may not be prepared to
1176 * handle early exits caused by non-fatal signals.
1177 */
1178 if (flags & FOLL_INTERRUPTIBLE)
1179 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1180 }
1181 if (flags & FOLL_NOWAIT)
1182 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1183 if (flags & FOLL_TRIED) {
1184 /*
1185 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1186 * can co-exist
1187 */
1188 fault_flags |= FAULT_FLAG_TRIED;
1189 }
1190 if (unshare) {
1191 fault_flags |= FAULT_FLAG_UNSHARE;
1192 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1193 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1194 }
1195
1196 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1197
1198 if (ret & VM_FAULT_COMPLETED) {
1199 /*
1200 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1201 * mmap lock in the page fault handler. Sanity check this.
1202 */
1203 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1204 *locked = 0;
1205
1206 /*
1207 * We should do the same as VM_FAULT_RETRY, but let's not
1208 * return -EBUSY since that's not reflecting the reality of
1209 * what has happened - we've just fully completed a page
1210 * fault, with the mmap lock released. Use -EAGAIN to show
1211 * that we want to take the mmap lock _again_.
1212 */
1213 return -EAGAIN;
1214 }
1215
1216 if (ret & VM_FAULT_ERROR) {
1217 int err = vm_fault_to_errno(ret, flags);
1218
1219 if (err)
1220 return err;
1221 BUG();
1222 }
1223
1224 if (ret & VM_FAULT_RETRY) {
1225 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1226 *locked = 0;
1227 return -EBUSY;
1228 }
1229
1230 return 0;
1231}
1232
1233/*
1234 * Writing to file-backed mappings which require folio dirty tracking using GUP
1235 * is a fundamentally broken operation, as kernel write access to GUP mappings
1236 * do not adhere to the semantics expected by a file system.
1237 *
1238 * Consider the following scenario:-
1239 *
1240 * 1. A folio is written to via GUP which write-faults the memory, notifying
1241 * the file system and dirtying the folio.
1242 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1243 * the PTE being marked read-only.
1244 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1245 * direct mapping.
1246 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1247 * (though it does not have to).
1248 *
1249 * This results in both data being written to a folio without writenotify, and
1250 * the folio being dirtied unexpectedly (if the caller decides to do so).
1251 */
1252static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1253 unsigned long gup_flags)
1254{
1255 /*
1256 * If we aren't pinning then no problematic write can occur. A long term
1257 * pin is the most egregious case so this is the case we disallow.
1258 */
1259 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1260 (FOLL_PIN | FOLL_LONGTERM))
1261 return true;
1262
1263 /*
1264 * If the VMA does not require dirty tracking then no problematic write
1265 * can occur either.
1266 */
1267 return !vma_needs_dirty_tracking(vma);
1268}
1269
1270static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1271{
1272 vm_flags_t vm_flags = vma->vm_flags;
1273 int write = (gup_flags & FOLL_WRITE);
1274 int foreign = (gup_flags & FOLL_REMOTE);
1275 bool vma_anon = vma_is_anonymous(vma);
1276
1277 if (vm_flags & (VM_IO | VM_PFNMAP))
1278 return -EFAULT;
1279
1280 if ((gup_flags & FOLL_ANON) && !vma_anon)
1281 return -EFAULT;
1282
1283 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1284 return -EOPNOTSUPP;
1285
1286 if (vma_is_secretmem(vma))
1287 return -EFAULT;
1288
1289 if (write) {
1290 if (!vma_anon &&
1291 !writable_file_mapping_allowed(vma, gup_flags))
1292 return -EFAULT;
1293
1294 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1295 if (!(gup_flags & FOLL_FORCE))
1296 return -EFAULT;
1297 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1298 if (is_vm_hugetlb_page(vma))
1299 return -EFAULT;
1300 /*
1301 * We used to let the write,force case do COW in a
1302 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1303 * set a breakpoint in a read-only mapping of an
1304 * executable, without corrupting the file (yet only
1305 * when that file had been opened for writing!).
1306 * Anon pages in shared mappings are surprising: now
1307 * just reject it.
1308 */
1309 if (!is_cow_mapping(vm_flags))
1310 return -EFAULT;
1311 }
1312 } else if (!(vm_flags & VM_READ)) {
1313 if (!(gup_flags & FOLL_FORCE))
1314 return -EFAULT;
1315 /*
1316 * Is there actually any vma we can reach here which does not
1317 * have VM_MAYREAD set?
1318 */
1319 if (!(vm_flags & VM_MAYREAD))
1320 return -EFAULT;
1321 }
1322 /*
1323 * gups are always data accesses, not instruction
1324 * fetches, so execute=false here
1325 */
1326 if (!arch_vma_access_permitted(vma, write, false, foreign))
1327 return -EFAULT;
1328 return 0;
1329}
1330
1331/*
1332 * This is "vma_lookup()", but with a warning if we would have
1333 * historically expanded the stack in the GUP code.
1334 */
1335static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1336 unsigned long addr)
1337{
1338#ifdef CONFIG_STACK_GROWSUP
1339 return vma_lookup(mm, addr);
1340#else
1341 static volatile unsigned long next_warn;
1342 struct vm_area_struct *vma;
1343 unsigned long now, next;
1344
1345 vma = find_vma(mm, addr);
1346 if (!vma || (addr >= vma->vm_start))
1347 return vma;
1348
1349 /* Only warn for half-way relevant accesses */
1350 if (!(vma->vm_flags & VM_GROWSDOWN))
1351 return NULL;
1352 if (vma->vm_start - addr > 65536)
1353 return NULL;
1354
1355 /* Let's not warn more than once an hour.. */
1356 now = jiffies; next = next_warn;
1357 if (next && time_before(now, next))
1358 return NULL;
1359 next_warn = now + 60*60*HZ;
1360
1361 /* Let people know things may have changed. */
1362 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1363 current->comm, task_pid_nr(current),
1364 vma->vm_start, vma->vm_end, addr);
1365 dump_stack();
1366 return NULL;
1367#endif
1368}
1369
1370/**
1371 * __get_user_pages() - pin user pages in memory
1372 * @mm: mm_struct of target mm
1373 * @start: starting user address
1374 * @nr_pages: number of pages from start to pin
1375 * @gup_flags: flags modifying pin behaviour
1376 * @pages: array that receives pointers to the pages pinned.
1377 * Should be at least nr_pages long. Or NULL, if caller
1378 * only intends to ensure the pages are faulted in.
1379 * @locked: whether we're still with the mmap_lock held
1380 *
1381 * Returns either number of pages pinned (which may be less than the
1382 * number requested), or an error. Details about the return value:
1383 *
1384 * -- If nr_pages is 0, returns 0.
1385 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1386 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1387 * pages pinned. Again, this may be less than nr_pages.
1388 * -- 0 return value is possible when the fault would need to be retried.
1389 *
1390 * The caller is responsible for releasing returned @pages, via put_page().
1391 *
1392 * Must be called with mmap_lock held. It may be released. See below.
1393 *
1394 * __get_user_pages walks a process's page tables and takes a reference to
1395 * each struct page that each user address corresponds to at a given
1396 * instant. That is, it takes the page that would be accessed if a user
1397 * thread accesses the given user virtual address at that instant.
1398 *
1399 * This does not guarantee that the page exists in the user mappings when
1400 * __get_user_pages returns, and there may even be a completely different
1401 * page there in some cases (eg. if mmapped pagecache has been invalidated
1402 * and subsequently re-faulted). However it does guarantee that the page
1403 * won't be freed completely. And mostly callers simply care that the page
1404 * contains data that was valid *at some point in time*. Typically, an IO
1405 * or similar operation cannot guarantee anything stronger anyway because
1406 * locks can't be held over the syscall boundary.
1407 *
1408 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1409 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1410 * appropriate) must be called after the page is finished with, and
1411 * before put_page is called.
1412 *
1413 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1414 * be released. If this happens *@locked will be set to 0 on return.
1415 *
1416 * A caller using such a combination of @gup_flags must therefore hold the
1417 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1418 * it must be held for either reading or writing and will not be released.
1419 *
1420 * In most cases, get_user_pages or get_user_pages_fast should be used
1421 * instead of __get_user_pages. __get_user_pages should be used only if
1422 * you need some special @gup_flags.
1423 */
1424static long __get_user_pages(struct mm_struct *mm,
1425 unsigned long start, unsigned long nr_pages,
1426 unsigned int gup_flags, struct page **pages,
1427 int *locked)
1428{
1429 long ret = 0, i = 0;
1430 struct vm_area_struct *vma = NULL;
1431 struct follow_page_context ctx = { NULL };
1432
1433 if (!nr_pages)
1434 return 0;
1435
1436 start = untagged_addr_remote(mm, start);
1437
1438 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1439
1440 do {
1441 struct page *page;
1442 unsigned int page_increm;
1443
1444 /* first iteration or cross vma bound */
1445 if (!vma || start >= vma->vm_end) {
1446 /*
1447 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1448 * lookups+error reporting differently.
1449 */
1450 if (gup_flags & FOLL_MADV_POPULATE) {
1451 vma = vma_lookup(mm, start);
1452 if (!vma) {
1453 ret = -ENOMEM;
1454 goto out;
1455 }
1456 if (check_vma_flags(vma, gup_flags)) {
1457 ret = -EINVAL;
1458 goto out;
1459 }
1460 goto retry;
1461 }
1462 vma = gup_vma_lookup(mm, start);
1463 if (!vma && in_gate_area(mm, start)) {
1464 ret = get_gate_page(mm, start & PAGE_MASK,
1465 gup_flags, &vma,
1466 pages ? &page : NULL);
1467 if (ret)
1468 goto out;
1469 ctx.page_mask = 0;
1470 goto next_page;
1471 }
1472
1473 if (!vma) {
1474 ret = -EFAULT;
1475 goto out;
1476 }
1477 ret = check_vma_flags(vma, gup_flags);
1478 if (ret)
1479 goto out;
1480 }
1481retry:
1482 /*
1483 * If we have a pending SIGKILL, don't keep faulting pages and
1484 * potentially allocating memory.
1485 */
1486 if (fatal_signal_pending(current)) {
1487 ret = -EINTR;
1488 goto out;
1489 }
1490 cond_resched();
1491
1492 page = follow_page_mask(vma, start, gup_flags, &ctx);
1493 if (!page || PTR_ERR(page) == -EMLINK) {
1494 ret = faultin_page(vma, start, gup_flags,
1495 PTR_ERR(page) == -EMLINK, locked);
1496 switch (ret) {
1497 case 0:
1498 goto retry;
1499 case -EBUSY:
1500 case -EAGAIN:
1501 ret = 0;
1502 fallthrough;
1503 case -EFAULT:
1504 case -ENOMEM:
1505 case -EHWPOISON:
1506 goto out;
1507 }
1508 BUG();
1509 } else if (PTR_ERR(page) == -EEXIST) {
1510 /*
1511 * Proper page table entry exists, but no corresponding
1512 * struct page. If the caller expects **pages to be
1513 * filled in, bail out now, because that can't be done
1514 * for this page.
1515 */
1516 if (pages) {
1517 ret = PTR_ERR(page);
1518 goto out;
1519 }
1520 } else if (IS_ERR(page)) {
1521 ret = PTR_ERR(page);
1522 goto out;
1523 }
1524next_page:
1525 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1526 if (page_increm > nr_pages)
1527 page_increm = nr_pages;
1528
1529 if (pages) {
1530 struct page *subpage;
1531 unsigned int j;
1532
1533 /*
1534 * This must be a large folio (and doesn't need to
1535 * be the whole folio; it can be part of it), do
1536 * the refcount work for all the subpages too.
1537 *
1538 * NOTE: here the page may not be the head page
1539 * e.g. when start addr is not thp-size aligned.
1540 * try_grab_folio() should have taken care of tail
1541 * pages.
1542 */
1543 if (page_increm > 1) {
1544 struct folio *folio = page_folio(page);
1545
1546 /*
1547 * Since we already hold refcount on the
1548 * large folio, this should never fail.
1549 */
1550 if (try_grab_folio(folio, page_increm - 1,
1551 gup_flags)) {
1552 /*
1553 * Release the 1st page ref if the
1554 * folio is problematic, fail hard.
1555 */
1556 gup_put_folio(folio, 1, gup_flags);
1557 ret = -EFAULT;
1558 goto out;
1559 }
1560 }
1561
1562 for (j = 0; j < page_increm; j++) {
1563 subpage = nth_page(page, j);
1564 pages[i + j] = subpage;
1565 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1566 flush_dcache_page(subpage);
1567 }
1568 }
1569
1570 i += page_increm;
1571 start += page_increm * PAGE_SIZE;
1572 nr_pages -= page_increm;
1573 } while (nr_pages);
1574out:
1575 if (ctx.pgmap)
1576 put_dev_pagemap(ctx.pgmap);
1577 return i ? i : ret;
1578}
1579
1580static bool vma_permits_fault(struct vm_area_struct *vma,
1581 unsigned int fault_flags)
1582{
1583 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1584 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1585 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1586
1587 if (!(vm_flags & vma->vm_flags))
1588 return false;
1589
1590 /*
1591 * The architecture might have a hardware protection
1592 * mechanism other than read/write that can deny access.
1593 *
1594 * gup always represents data access, not instruction
1595 * fetches, so execute=false here:
1596 */
1597 if (!arch_vma_access_permitted(vma, write, false, foreign))
1598 return false;
1599
1600 return true;
1601}
1602
1603/**
1604 * fixup_user_fault() - manually resolve a user page fault
1605 * @mm: mm_struct of target mm
1606 * @address: user address
1607 * @fault_flags:flags to pass down to handle_mm_fault()
1608 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1609 * does not allow retry. If NULL, the caller must guarantee
1610 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1611 *
1612 * This is meant to be called in the specific scenario where for locking reasons
1613 * we try to access user memory in atomic context (within a pagefault_disable()
1614 * section), this returns -EFAULT, and we want to resolve the user fault before
1615 * trying again.
1616 *
1617 * Typically this is meant to be used by the futex code.
1618 *
1619 * The main difference with get_user_pages() is that this function will
1620 * unconditionally call handle_mm_fault() which will in turn perform all the
1621 * necessary SW fixup of the dirty and young bits in the PTE, while
1622 * get_user_pages() only guarantees to update these in the struct page.
1623 *
1624 * This is important for some architectures where those bits also gate the
1625 * access permission to the page because they are maintained in software. On
1626 * such architectures, gup() will not be enough to make a subsequent access
1627 * succeed.
1628 *
1629 * This function will not return with an unlocked mmap_lock. So it has not the
1630 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1631 */
1632int fixup_user_fault(struct mm_struct *mm,
1633 unsigned long address, unsigned int fault_flags,
1634 bool *unlocked)
1635{
1636 struct vm_area_struct *vma;
1637 vm_fault_t ret;
1638
1639 address = untagged_addr_remote(mm, address);
1640
1641 if (unlocked)
1642 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1643
1644retry:
1645 vma = gup_vma_lookup(mm, address);
1646 if (!vma)
1647 return -EFAULT;
1648
1649 if (!vma_permits_fault(vma, fault_flags))
1650 return -EFAULT;
1651
1652 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1653 fatal_signal_pending(current))
1654 return -EINTR;
1655
1656 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1657
1658 if (ret & VM_FAULT_COMPLETED) {
1659 /*
1660 * NOTE: it's a pity that we need to retake the lock here
1661 * to pair with the unlock() in the callers. Ideally we
1662 * could tell the callers so they do not need to unlock.
1663 */
1664 mmap_read_lock(mm);
1665 *unlocked = true;
1666 return 0;
1667 }
1668
1669 if (ret & VM_FAULT_ERROR) {
1670 int err = vm_fault_to_errno(ret, 0);
1671
1672 if (err)
1673 return err;
1674 BUG();
1675 }
1676
1677 if (ret & VM_FAULT_RETRY) {
1678 mmap_read_lock(mm);
1679 *unlocked = true;
1680 fault_flags |= FAULT_FLAG_TRIED;
1681 goto retry;
1682 }
1683
1684 return 0;
1685}
1686EXPORT_SYMBOL_GPL(fixup_user_fault);
1687
1688/*
1689 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1690 * specified, it'll also respond to generic signals. The caller of GUP
1691 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1692 */
1693static bool gup_signal_pending(unsigned int flags)
1694{
1695 if (fatal_signal_pending(current))
1696 return true;
1697
1698 if (!(flags & FOLL_INTERRUPTIBLE))
1699 return false;
1700
1701 return signal_pending(current);
1702}
1703
1704/*
1705 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1706 * the caller. This function may drop the mmap_lock. If it does so, then it will
1707 * set (*locked = 0).
1708 *
1709 * (*locked == 0) means that the caller expects this function to acquire and
1710 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1711 * the function returns, even though it may have changed temporarily during
1712 * function execution.
1713 *
1714 * Please note that this function, unlike __get_user_pages(), will not return 0
1715 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1716 */
1717static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1718 unsigned long start,
1719 unsigned long nr_pages,
1720 struct page **pages,
1721 int *locked,
1722 unsigned int flags)
1723{
1724 long ret, pages_done;
1725 bool must_unlock = false;
1726
1727 if (!nr_pages)
1728 return 0;
1729
1730 /*
1731 * The internal caller expects GUP to manage the lock internally and the
1732 * lock must be released when this returns.
1733 */
1734 if (!*locked) {
1735 if (mmap_read_lock_killable(mm))
1736 return -EAGAIN;
1737 must_unlock = true;
1738 *locked = 1;
1739 }
1740 else
1741 mmap_assert_locked(mm);
1742
1743 if (flags & FOLL_PIN)
1744 mm_set_has_pinned_flag(&mm->flags);
1745
1746 /*
1747 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1748 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1749 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1750 * for FOLL_GET, not for the newer FOLL_PIN.
1751 *
1752 * FOLL_PIN always expects pages to be non-null, but no need to assert
1753 * that here, as any failures will be obvious enough.
1754 */
1755 if (pages && !(flags & FOLL_PIN))
1756 flags |= FOLL_GET;
1757
1758 pages_done = 0;
1759 for (;;) {
1760 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1761 locked);
1762 if (!(flags & FOLL_UNLOCKABLE)) {
1763 /* VM_FAULT_RETRY couldn't trigger, bypass */
1764 pages_done = ret;
1765 break;
1766 }
1767
1768 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1769 if (!*locked) {
1770 BUG_ON(ret < 0);
1771 BUG_ON(ret >= nr_pages);
1772 }
1773
1774 if (ret > 0) {
1775 nr_pages -= ret;
1776 pages_done += ret;
1777 if (!nr_pages)
1778 break;
1779 }
1780 if (*locked) {
1781 /*
1782 * VM_FAULT_RETRY didn't trigger or it was a
1783 * FOLL_NOWAIT.
1784 */
1785 if (!pages_done)
1786 pages_done = ret;
1787 break;
1788 }
1789 /*
1790 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1791 * For the prefault case (!pages) we only update counts.
1792 */
1793 if (likely(pages))
1794 pages += ret;
1795 start += ret << PAGE_SHIFT;
1796
1797 /* The lock was temporarily dropped, so we must unlock later */
1798 must_unlock = true;
1799
1800retry:
1801 /*
1802 * Repeat on the address that fired VM_FAULT_RETRY
1803 * with both FAULT_FLAG_ALLOW_RETRY and
1804 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1805 * by fatal signals of even common signals, depending on
1806 * the caller's request. So we need to check it before we
1807 * start trying again otherwise it can loop forever.
1808 */
1809 if (gup_signal_pending(flags)) {
1810 if (!pages_done)
1811 pages_done = -EINTR;
1812 break;
1813 }
1814
1815 ret = mmap_read_lock_killable(mm);
1816 if (ret) {
1817 BUG_ON(ret > 0);
1818 if (!pages_done)
1819 pages_done = ret;
1820 break;
1821 }
1822
1823 *locked = 1;
1824 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1825 pages, locked);
1826 if (!*locked) {
1827 /* Continue to retry until we succeeded */
1828 BUG_ON(ret != 0);
1829 goto retry;
1830 }
1831 if (ret != 1) {
1832 BUG_ON(ret > 1);
1833 if (!pages_done)
1834 pages_done = ret;
1835 break;
1836 }
1837 nr_pages--;
1838 pages_done++;
1839 if (!nr_pages)
1840 break;
1841 if (likely(pages))
1842 pages++;
1843 start += PAGE_SIZE;
1844 }
1845 if (must_unlock && *locked) {
1846 /*
1847 * We either temporarily dropped the lock, or the caller
1848 * requested that we both acquire and drop the lock. Either way,
1849 * we must now unlock, and notify the caller of that state.
1850 */
1851 mmap_read_unlock(mm);
1852 *locked = 0;
1853 }
1854
1855 /*
1856 * Failing to pin anything implies something has gone wrong (except when
1857 * FOLL_NOWAIT is specified).
1858 */
1859 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1860 return -EFAULT;
1861
1862 return pages_done;
1863}
1864
1865/**
1866 * populate_vma_page_range() - populate a range of pages in the vma.
1867 * @vma: target vma
1868 * @start: start address
1869 * @end: end address
1870 * @locked: whether the mmap_lock is still held
1871 *
1872 * This takes care of mlocking the pages too if VM_LOCKED is set.
1873 *
1874 * Return either number of pages pinned in the vma, or a negative error
1875 * code on error.
1876 *
1877 * vma->vm_mm->mmap_lock must be held.
1878 *
1879 * If @locked is NULL, it may be held for read or write and will
1880 * be unperturbed.
1881 *
1882 * If @locked is non-NULL, it must held for read only and may be
1883 * released. If it's released, *@locked will be set to 0.
1884 */
1885long populate_vma_page_range(struct vm_area_struct *vma,
1886 unsigned long start, unsigned long end, int *locked)
1887{
1888 struct mm_struct *mm = vma->vm_mm;
1889 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1890 int local_locked = 1;
1891 int gup_flags;
1892 long ret;
1893
1894 VM_BUG_ON(!PAGE_ALIGNED(start));
1895 VM_BUG_ON(!PAGE_ALIGNED(end));
1896 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1897 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1898 mmap_assert_locked(mm);
1899
1900 /*
1901 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1902 * faultin_page() to break COW, so it has no work to do here.
1903 */
1904 if (vma->vm_flags & VM_LOCKONFAULT)
1905 return nr_pages;
1906
1907 /* ... similarly, we've never faulted in PROT_NONE pages */
1908 if (!vma_is_accessible(vma))
1909 return -EFAULT;
1910
1911 gup_flags = FOLL_TOUCH;
1912 /*
1913 * We want to touch writable mappings with a write fault in order
1914 * to break COW, except for shared mappings because these don't COW
1915 * and we would not want to dirty them for nothing.
1916 *
1917 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1918 * readable (ie write-only or executable).
1919 */
1920 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1921 gup_flags |= FOLL_WRITE;
1922 else
1923 gup_flags |= FOLL_FORCE;
1924
1925 if (locked)
1926 gup_flags |= FOLL_UNLOCKABLE;
1927
1928 /*
1929 * We made sure addr is within a VMA, so the following will
1930 * not result in a stack expansion that recurses back here.
1931 */
1932 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1933 NULL, locked ? locked : &local_locked);
1934 lru_add_drain();
1935 return ret;
1936}
1937
1938/*
1939 * faultin_page_range() - populate (prefault) page tables inside the
1940 * given range readable/writable
1941 *
1942 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1943 *
1944 * @mm: the mm to populate page tables in
1945 * @start: start address
1946 * @end: end address
1947 * @write: whether to prefault readable or writable
1948 * @locked: whether the mmap_lock is still held
1949 *
1950 * Returns either number of processed pages in the MM, or a negative error
1951 * code on error (see __get_user_pages()). Note that this function reports
1952 * errors related to VMAs, such as incompatible mappings, as expected by
1953 * MADV_POPULATE_(READ|WRITE).
1954 *
1955 * The range must be page-aligned.
1956 *
1957 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1958 */
1959long faultin_page_range(struct mm_struct *mm, unsigned long start,
1960 unsigned long end, bool write, int *locked)
1961{
1962 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1963 int gup_flags;
1964 long ret;
1965
1966 VM_BUG_ON(!PAGE_ALIGNED(start));
1967 VM_BUG_ON(!PAGE_ALIGNED(end));
1968 mmap_assert_locked(mm);
1969
1970 /*
1971 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1972 * the page dirty with FOLL_WRITE -- which doesn't make a
1973 * difference with !FOLL_FORCE, because the page is writable
1974 * in the page table.
1975 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1976 * a poisoned page.
1977 * !FOLL_FORCE: Require proper access permissions.
1978 */
1979 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1980 FOLL_MADV_POPULATE;
1981 if (write)
1982 gup_flags |= FOLL_WRITE;
1983
1984 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1985 gup_flags);
1986 lru_add_drain();
1987 return ret;
1988}
1989
1990/*
1991 * __mm_populate - populate and/or mlock pages within a range of address space.
1992 *
1993 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1994 * flags. VMAs must be already marked with the desired vm_flags, and
1995 * mmap_lock must not be held.
1996 */
1997int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1998{
1999 struct mm_struct *mm = current->mm;
2000 unsigned long end, nstart, nend;
2001 struct vm_area_struct *vma = NULL;
2002 int locked = 0;
2003 long ret = 0;
2004
2005 end = start + len;
2006
2007 for (nstart = start; nstart < end; nstart = nend) {
2008 /*
2009 * We want to fault in pages for [nstart; end) address range.
2010 * Find first corresponding VMA.
2011 */
2012 if (!locked) {
2013 locked = 1;
2014 mmap_read_lock(mm);
2015 vma = find_vma_intersection(mm, nstart, end);
2016 } else if (nstart >= vma->vm_end)
2017 vma = find_vma_intersection(mm, vma->vm_end, end);
2018
2019 if (!vma)
2020 break;
2021 /*
2022 * Set [nstart; nend) to intersection of desired address
2023 * range with the first VMA. Also, skip undesirable VMA types.
2024 */
2025 nend = min(end, vma->vm_end);
2026 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2027 continue;
2028 if (nstart < vma->vm_start)
2029 nstart = vma->vm_start;
2030 /*
2031 * Now fault in a range of pages. populate_vma_page_range()
2032 * double checks the vma flags, so that it won't mlock pages
2033 * if the vma was already munlocked.
2034 */
2035 ret = populate_vma_page_range(vma, nstart, nend, &locked);
2036 if (ret < 0) {
2037 if (ignore_errors) {
2038 ret = 0;
2039 continue; /* continue at next VMA */
2040 }
2041 break;
2042 }
2043 nend = nstart + ret * PAGE_SIZE;
2044 ret = 0;
2045 }
2046 if (locked)
2047 mmap_read_unlock(mm);
2048 return ret; /* 0 or negative error code */
2049}
2050#else /* CONFIG_MMU */
2051static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2052 unsigned long nr_pages, struct page **pages,
2053 int *locked, unsigned int foll_flags)
2054{
2055 struct vm_area_struct *vma;
2056 bool must_unlock = false;
2057 unsigned long vm_flags;
2058 long i;
2059
2060 if (!nr_pages)
2061 return 0;
2062
2063 /*
2064 * The internal caller expects GUP to manage the lock internally and the
2065 * lock must be released when this returns.
2066 */
2067 if (!*locked) {
2068 if (mmap_read_lock_killable(mm))
2069 return -EAGAIN;
2070 must_unlock = true;
2071 *locked = 1;
2072 }
2073
2074 /* calculate required read or write permissions.
2075 * If FOLL_FORCE is set, we only require the "MAY" flags.
2076 */
2077 vm_flags = (foll_flags & FOLL_WRITE) ?
2078 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2079 vm_flags &= (foll_flags & FOLL_FORCE) ?
2080 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2081
2082 for (i = 0; i < nr_pages; i++) {
2083 vma = find_vma(mm, start);
2084 if (!vma)
2085 break;
2086
2087 /* protect what we can, including chardevs */
2088 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2089 !(vm_flags & vma->vm_flags))
2090 break;
2091
2092 if (pages) {
2093 pages[i] = virt_to_page((void *)start);
2094 if (pages[i])
2095 get_page(pages[i]);
2096 }
2097
2098 start = (start + PAGE_SIZE) & PAGE_MASK;
2099 }
2100
2101 if (must_unlock && *locked) {
2102 mmap_read_unlock(mm);
2103 *locked = 0;
2104 }
2105
2106 return i ? : -EFAULT;
2107}
2108#endif /* !CONFIG_MMU */
2109
2110/**
2111 * fault_in_writeable - fault in userspace address range for writing
2112 * @uaddr: start of address range
2113 * @size: size of address range
2114 *
2115 * Returns the number of bytes not faulted in (like copy_to_user() and
2116 * copy_from_user()).
2117 */
2118size_t fault_in_writeable(char __user *uaddr, size_t size)
2119{
2120 char __user *start = uaddr, *end;
2121
2122 if (unlikely(size == 0))
2123 return 0;
2124 if (!user_write_access_begin(uaddr, size))
2125 return size;
2126 if (!PAGE_ALIGNED(uaddr)) {
2127 unsafe_put_user(0, uaddr, out);
2128 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2129 }
2130 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2131 if (unlikely(end < start))
2132 end = NULL;
2133 while (uaddr != end) {
2134 unsafe_put_user(0, uaddr, out);
2135 uaddr += PAGE_SIZE;
2136 }
2137
2138out:
2139 user_write_access_end();
2140 if (size > uaddr - start)
2141 return size - (uaddr - start);
2142 return 0;
2143}
2144EXPORT_SYMBOL(fault_in_writeable);
2145
2146/**
2147 * fault_in_subpage_writeable - fault in an address range for writing
2148 * @uaddr: start of address range
2149 * @size: size of address range
2150 *
2151 * Fault in a user address range for writing while checking for permissions at
2152 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2153 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2154 *
2155 * Returns the number of bytes not faulted in (like copy_to_user() and
2156 * copy_from_user()).
2157 */
2158size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2159{
2160 size_t faulted_in;
2161
2162 /*
2163 * Attempt faulting in at page granularity first for page table
2164 * permission checking. The arch-specific probe_subpage_writeable()
2165 * functions may not check for this.
2166 */
2167 faulted_in = size - fault_in_writeable(uaddr, size);
2168 if (faulted_in)
2169 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2170
2171 return size - faulted_in;
2172}
2173EXPORT_SYMBOL(fault_in_subpage_writeable);
2174
2175/*
2176 * fault_in_safe_writeable - fault in an address range for writing
2177 * @uaddr: start of address range
2178 * @size: length of address range
2179 *
2180 * Faults in an address range for writing. This is primarily useful when we
2181 * already know that some or all of the pages in the address range aren't in
2182 * memory.
2183 *
2184 * Unlike fault_in_writeable(), this function is non-destructive.
2185 *
2186 * Note that we don't pin or otherwise hold the pages referenced that we fault
2187 * in. There's no guarantee that they'll stay in memory for any duration of
2188 * time.
2189 *
2190 * Returns the number of bytes not faulted in, like copy_to_user() and
2191 * copy_from_user().
2192 */
2193size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2194{
2195 unsigned long start = (unsigned long)uaddr, end;
2196 struct mm_struct *mm = current->mm;
2197 bool unlocked = false;
2198
2199 if (unlikely(size == 0))
2200 return 0;
2201 end = PAGE_ALIGN(start + size);
2202 if (end < start)
2203 end = 0;
2204
2205 mmap_read_lock(mm);
2206 do {
2207 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2208 break;
2209 start = (start + PAGE_SIZE) & PAGE_MASK;
2210 } while (start != end);
2211 mmap_read_unlock(mm);
2212
2213 if (size > (unsigned long)uaddr - start)
2214 return size - ((unsigned long)uaddr - start);
2215 return 0;
2216}
2217EXPORT_SYMBOL(fault_in_safe_writeable);
2218
2219/**
2220 * fault_in_readable - fault in userspace address range for reading
2221 * @uaddr: start of user address range
2222 * @size: size of user address range
2223 *
2224 * Returns the number of bytes not faulted in (like copy_to_user() and
2225 * copy_from_user()).
2226 */
2227size_t fault_in_readable(const char __user *uaddr, size_t size)
2228{
2229 const char __user *start = uaddr, *end;
2230 volatile char c;
2231
2232 if (unlikely(size == 0))
2233 return 0;
2234 if (!user_read_access_begin(uaddr, size))
2235 return size;
2236 if (!PAGE_ALIGNED(uaddr)) {
2237 unsafe_get_user(c, uaddr, out);
2238 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2239 }
2240 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2241 if (unlikely(end < start))
2242 end = NULL;
2243 while (uaddr != end) {
2244 unsafe_get_user(c, uaddr, out);
2245 uaddr += PAGE_SIZE;
2246 }
2247
2248out:
2249 user_read_access_end();
2250 (void)c;
2251 if (size > uaddr - start)
2252 return size - (uaddr - start);
2253 return 0;
2254}
2255EXPORT_SYMBOL(fault_in_readable);
2256
2257/**
2258 * get_dump_page() - pin user page in memory while writing it to core dump
2259 * @addr: user address
2260 *
2261 * Returns struct page pointer of user page pinned for dump,
2262 * to be freed afterwards by put_page().
2263 *
2264 * Returns NULL on any kind of failure - a hole must then be inserted into
2265 * the corefile, to preserve alignment with its headers; and also returns
2266 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2267 * allowing a hole to be left in the corefile to save disk space.
2268 *
2269 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2270 */
2271#ifdef CONFIG_ELF_CORE
2272struct page *get_dump_page(unsigned long addr)
2273{
2274 struct page *page;
2275 int locked = 0;
2276 int ret;
2277
2278 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2279 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2280 return (ret == 1) ? page : NULL;
2281}
2282#endif /* CONFIG_ELF_CORE */
2283
2284#ifdef CONFIG_MIGRATION
2285
2286/*
2287 * An array of either pages or folios ("pofs"). Although it may seem tempting to
2288 * avoid this complication, by simply interpreting a list of folios as a list of
2289 * pages, that approach won't work in the longer term, because eventually the
2290 * layouts of struct page and struct folio will become completely different.
2291 * Furthermore, this pof approach avoids excessive page_folio() calls.
2292 */
2293struct pages_or_folios {
2294 union {
2295 struct page **pages;
2296 struct folio **folios;
2297 void **entries;
2298 };
2299 bool has_folios;
2300 long nr_entries;
2301};
2302
2303static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2304{
2305 if (pofs->has_folios)
2306 return pofs->folios[i];
2307 return page_folio(pofs->pages[i]);
2308}
2309
2310static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2311{
2312 pofs->entries[i] = NULL;
2313}
2314
2315static void pofs_unpin(struct pages_or_folios *pofs)
2316{
2317 if (pofs->has_folios)
2318 unpin_folios(pofs->folios, pofs->nr_entries);
2319 else
2320 unpin_user_pages(pofs->pages, pofs->nr_entries);
2321}
2322
2323/*
2324 * Returns the number of collected folios. Return value is always >= 0.
2325 */
2326static void collect_longterm_unpinnable_folios(
2327 struct list_head *movable_folio_list,
2328 struct pages_or_folios *pofs)
2329{
2330 struct folio *prev_folio = NULL;
2331 bool drain_allow = true;
2332 unsigned long i;
2333
2334 for (i = 0; i < pofs->nr_entries; i++) {
2335 struct folio *folio = pofs_get_folio(pofs, i);
2336
2337 if (folio == prev_folio)
2338 continue;
2339 prev_folio = folio;
2340
2341 if (folio_is_longterm_pinnable(folio))
2342 continue;
2343
2344 if (folio_is_device_coherent(folio))
2345 continue;
2346
2347 if (folio_test_hugetlb(folio)) {
2348 isolate_hugetlb(folio, movable_folio_list);
2349 continue;
2350 }
2351
2352 if (!folio_test_lru(folio) && drain_allow) {
2353 lru_add_drain_all();
2354 drain_allow = false;
2355 }
2356
2357 if (!folio_isolate_lru(folio))
2358 continue;
2359
2360 list_add_tail(&folio->lru, movable_folio_list);
2361 node_stat_mod_folio(folio,
2362 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2363 folio_nr_pages(folio));
2364 }
2365}
2366
2367/*
2368 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2369 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2370 * failure (or partial success).
2371 */
2372static int
2373migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2374 struct pages_or_folios *pofs)
2375{
2376 int ret;
2377 unsigned long i;
2378
2379 for (i = 0; i < pofs->nr_entries; i++) {
2380 struct folio *folio = pofs_get_folio(pofs, i);
2381
2382 if (folio_is_device_coherent(folio)) {
2383 /*
2384 * Migration will fail if the folio is pinned, so
2385 * convert the pin on the source folio to a normal
2386 * reference.
2387 */
2388 pofs_clear_entry(pofs, i);
2389 folio_get(folio);
2390 gup_put_folio(folio, 1, FOLL_PIN);
2391
2392 if (migrate_device_coherent_folio(folio)) {
2393 ret = -EBUSY;
2394 goto err;
2395 }
2396
2397 continue;
2398 }
2399
2400 /*
2401 * We can't migrate folios with unexpected references, so drop
2402 * the reference obtained by __get_user_pages_locked().
2403 * Migrating folios have been added to movable_folio_list after
2404 * calling folio_isolate_lru() which takes a reference so the
2405 * folio won't be freed if it's migrating.
2406 */
2407 unpin_folio(folio);
2408 pofs_clear_entry(pofs, i);
2409 }
2410
2411 if (!list_empty(movable_folio_list)) {
2412 struct migration_target_control mtc = {
2413 .nid = NUMA_NO_NODE,
2414 .gfp_mask = GFP_USER | __GFP_NOWARN,
2415 .reason = MR_LONGTERM_PIN,
2416 };
2417
2418 if (migrate_pages(movable_folio_list, alloc_migration_target,
2419 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2420 MR_LONGTERM_PIN, NULL)) {
2421 ret = -ENOMEM;
2422 goto err;
2423 }
2424 }
2425
2426 putback_movable_pages(movable_folio_list);
2427
2428 return -EAGAIN;
2429
2430err:
2431 pofs_unpin(pofs);
2432 putback_movable_pages(movable_folio_list);
2433
2434 return ret;
2435}
2436
2437static long
2438check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2439{
2440 LIST_HEAD(movable_folio_list);
2441
2442 collect_longterm_unpinnable_folios(&movable_folio_list, pofs);
2443 if (list_empty(&movable_folio_list))
2444 return 0;
2445
2446 return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2447}
2448
2449/*
2450 * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2451 * Rather confusingly, all folios in the range are required to be pinned via
2452 * FOLL_PIN, before calling this routine.
2453 *
2454 * Return values:
2455 *
2456 * 0: if everything is OK and all folios in the range are allowed to be pinned,
2457 * then this routine leaves all folios pinned and returns zero for success.
2458 *
2459 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2460 * routine will migrate those folios away, unpin all the folios in the range. If
2461 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2462 * caller should re-pin the entire range with FOLL_PIN and then call this
2463 * routine again.
2464 *
2465 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2466 * indicates a migration failure. The caller should give up, and propagate the
2467 * error back up the call stack. The caller does not need to unpin any folios in
2468 * that case, because this routine will do the unpinning.
2469 */
2470static long check_and_migrate_movable_folios(unsigned long nr_folios,
2471 struct folio **folios)
2472{
2473 struct pages_or_folios pofs = {
2474 .folios = folios,
2475 .has_folios = true,
2476 .nr_entries = nr_folios,
2477 };
2478
2479 return check_and_migrate_movable_pages_or_folios(&pofs);
2480}
2481
2482/*
2483 * Return values and behavior are the same as those for
2484 * check_and_migrate_movable_folios().
2485 */
2486static long check_and_migrate_movable_pages(unsigned long nr_pages,
2487 struct page **pages)
2488{
2489 struct pages_or_folios pofs = {
2490 .pages = pages,
2491 .has_folios = false,
2492 .nr_entries = nr_pages,
2493 };
2494
2495 return check_and_migrate_movable_pages_or_folios(&pofs);
2496}
2497#else
2498static long check_and_migrate_movable_pages(unsigned long nr_pages,
2499 struct page **pages)
2500{
2501 return 0;
2502}
2503
2504static long check_and_migrate_movable_folios(unsigned long nr_folios,
2505 struct folio **folios)
2506{
2507 return 0;
2508}
2509#endif /* CONFIG_MIGRATION */
2510
2511/*
2512 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2513 * allows us to process the FOLL_LONGTERM flag.
2514 */
2515static long __gup_longterm_locked(struct mm_struct *mm,
2516 unsigned long start,
2517 unsigned long nr_pages,
2518 struct page **pages,
2519 int *locked,
2520 unsigned int gup_flags)
2521{
2522 unsigned int flags;
2523 long rc, nr_pinned_pages;
2524
2525 if (!(gup_flags & FOLL_LONGTERM))
2526 return __get_user_pages_locked(mm, start, nr_pages, pages,
2527 locked, gup_flags);
2528
2529 flags = memalloc_pin_save();
2530 do {
2531 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2532 pages, locked,
2533 gup_flags);
2534 if (nr_pinned_pages <= 0) {
2535 rc = nr_pinned_pages;
2536 break;
2537 }
2538
2539 /* FOLL_LONGTERM implies FOLL_PIN */
2540 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2541 } while (rc == -EAGAIN);
2542 memalloc_pin_restore(flags);
2543 return rc ? rc : nr_pinned_pages;
2544}
2545
2546/*
2547 * Check that the given flags are valid for the exported gup/pup interface, and
2548 * update them with the required flags that the caller must have set.
2549 */
2550static bool is_valid_gup_args(struct page **pages, int *locked,
2551 unsigned int *gup_flags_p, unsigned int to_set)
2552{
2553 unsigned int gup_flags = *gup_flags_p;
2554
2555 /*
2556 * These flags not allowed to be specified externally to the gup
2557 * interfaces:
2558 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2559 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2560 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2561 */
2562 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2563 return false;
2564
2565 gup_flags |= to_set;
2566 if (locked) {
2567 /* At the external interface locked must be set */
2568 if (WARN_ON_ONCE(*locked != 1))
2569 return false;
2570
2571 gup_flags |= FOLL_UNLOCKABLE;
2572 }
2573
2574 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2575 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2576 (FOLL_PIN | FOLL_GET)))
2577 return false;
2578
2579 /* LONGTERM can only be specified when pinning */
2580 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2581 return false;
2582
2583 /* Pages input must be given if using GET/PIN */
2584 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2585 return false;
2586
2587 /* We want to allow the pgmap to be hot-unplugged at all times */
2588 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2589 (gup_flags & FOLL_PCI_P2PDMA)))
2590 return false;
2591
2592 *gup_flags_p = gup_flags;
2593 return true;
2594}
2595
2596#ifdef CONFIG_MMU
2597/**
2598 * get_user_pages_remote() - pin user pages in memory
2599 * @mm: mm_struct of target mm
2600 * @start: starting user address
2601 * @nr_pages: number of pages from start to pin
2602 * @gup_flags: flags modifying lookup behaviour
2603 * @pages: array that receives pointers to the pages pinned.
2604 * Should be at least nr_pages long. Or NULL, if caller
2605 * only intends to ensure the pages are faulted in.
2606 * @locked: pointer to lock flag indicating whether lock is held and
2607 * subsequently whether VM_FAULT_RETRY functionality can be
2608 * utilised. Lock must initially be held.
2609 *
2610 * Returns either number of pages pinned (which may be less than the
2611 * number requested), or an error. Details about the return value:
2612 *
2613 * -- If nr_pages is 0, returns 0.
2614 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2615 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2616 * pages pinned. Again, this may be less than nr_pages.
2617 *
2618 * The caller is responsible for releasing returned @pages, via put_page().
2619 *
2620 * Must be called with mmap_lock held for read or write.
2621 *
2622 * get_user_pages_remote walks a process's page tables and takes a reference
2623 * to each struct page that each user address corresponds to at a given
2624 * instant. That is, it takes the page that would be accessed if a user
2625 * thread accesses the given user virtual address at that instant.
2626 *
2627 * This does not guarantee that the page exists in the user mappings when
2628 * get_user_pages_remote returns, and there may even be a completely different
2629 * page there in some cases (eg. if mmapped pagecache has been invalidated
2630 * and subsequently re-faulted). However it does guarantee that the page
2631 * won't be freed completely. And mostly callers simply care that the page
2632 * contains data that was valid *at some point in time*. Typically, an IO
2633 * or similar operation cannot guarantee anything stronger anyway because
2634 * locks can't be held over the syscall boundary.
2635 *
2636 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2637 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2638 * be called after the page is finished with, and before put_page is called.
2639 *
2640 * get_user_pages_remote is typically used for fewer-copy IO operations,
2641 * to get a handle on the memory by some means other than accesses
2642 * via the user virtual addresses. The pages may be submitted for
2643 * DMA to devices or accessed via their kernel linear mapping (via the
2644 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2645 *
2646 * See also get_user_pages_fast, for performance critical applications.
2647 *
2648 * get_user_pages_remote should be phased out in favor of
2649 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2650 * should use get_user_pages_remote because it cannot pass
2651 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2652 */
2653long get_user_pages_remote(struct mm_struct *mm,
2654 unsigned long start, unsigned long nr_pages,
2655 unsigned int gup_flags, struct page **pages,
2656 int *locked)
2657{
2658 int local_locked = 1;
2659
2660 if (!is_valid_gup_args(pages, locked, &gup_flags,
2661 FOLL_TOUCH | FOLL_REMOTE))
2662 return -EINVAL;
2663
2664 return __get_user_pages_locked(mm, start, nr_pages, pages,
2665 locked ? locked : &local_locked,
2666 gup_flags);
2667}
2668EXPORT_SYMBOL(get_user_pages_remote);
2669
2670#else /* CONFIG_MMU */
2671long get_user_pages_remote(struct mm_struct *mm,
2672 unsigned long start, unsigned long nr_pages,
2673 unsigned int gup_flags, struct page **pages,
2674 int *locked)
2675{
2676 return 0;
2677}
2678#endif /* !CONFIG_MMU */
2679
2680/**
2681 * get_user_pages() - pin user pages in memory
2682 * @start: starting user address
2683 * @nr_pages: number of pages from start to pin
2684 * @gup_flags: flags modifying lookup behaviour
2685 * @pages: array that receives pointers to the pages pinned.
2686 * Should be at least nr_pages long. Or NULL, if caller
2687 * only intends to ensure the pages are faulted in.
2688 *
2689 * This is the same as get_user_pages_remote(), just with a less-flexible
2690 * calling convention where we assume that the mm being operated on belongs to
2691 * the current task, and doesn't allow passing of a locked parameter. We also
2692 * obviously don't pass FOLL_REMOTE in here.
2693 */
2694long get_user_pages(unsigned long start, unsigned long nr_pages,
2695 unsigned int gup_flags, struct page **pages)
2696{
2697 int locked = 1;
2698
2699 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2700 return -EINVAL;
2701
2702 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2703 &locked, gup_flags);
2704}
2705EXPORT_SYMBOL(get_user_pages);
2706
2707/*
2708 * get_user_pages_unlocked() is suitable to replace the form:
2709 *
2710 * mmap_read_lock(mm);
2711 * get_user_pages(mm, ..., pages, NULL);
2712 * mmap_read_unlock(mm);
2713 *
2714 * with:
2715 *
2716 * get_user_pages_unlocked(mm, ..., pages);
2717 *
2718 * It is functionally equivalent to get_user_pages_fast so
2719 * get_user_pages_fast should be used instead if specific gup_flags
2720 * (e.g. FOLL_FORCE) are not required.
2721 */
2722long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2723 struct page **pages, unsigned int gup_flags)
2724{
2725 int locked = 0;
2726
2727 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2728 FOLL_TOUCH | FOLL_UNLOCKABLE))
2729 return -EINVAL;
2730
2731 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2732 &locked, gup_flags);
2733}
2734EXPORT_SYMBOL(get_user_pages_unlocked);
2735
2736/*
2737 * GUP-fast
2738 *
2739 * get_user_pages_fast attempts to pin user pages by walking the page
2740 * tables directly and avoids taking locks. Thus the walker needs to be
2741 * protected from page table pages being freed from under it, and should
2742 * block any THP splits.
2743 *
2744 * One way to achieve this is to have the walker disable interrupts, and
2745 * rely on IPIs from the TLB flushing code blocking before the page table
2746 * pages are freed. This is unsuitable for architectures that do not need
2747 * to broadcast an IPI when invalidating TLBs.
2748 *
2749 * Another way to achieve this is to batch up page table containing pages
2750 * belonging to more than one mm_user, then rcu_sched a callback to free those
2751 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2752 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2753 * (which is a relatively rare event). The code below adopts this strategy.
2754 *
2755 * Before activating this code, please be aware that the following assumptions
2756 * are currently made:
2757 *
2758 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2759 * free pages containing page tables or TLB flushing requires IPI broadcast.
2760 *
2761 * *) ptes can be read atomically by the architecture.
2762 *
2763 * *) access_ok is sufficient to validate userspace address ranges.
2764 *
2765 * The last two assumptions can be relaxed by the addition of helper functions.
2766 *
2767 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2768 */
2769#ifdef CONFIG_HAVE_GUP_FAST
2770/*
2771 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2772 * a specific folio.
2773 *
2774 * This call assumes the caller has pinned the folio, that the lowest page table
2775 * level still points to this folio, and that interrupts have been disabled.
2776 *
2777 * GUP-fast must reject all secretmem folios.
2778 *
2779 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2780 * (see comment describing the writable_file_mapping_allowed() function). We
2781 * therefore try to avoid the most egregious case of a long-term mapping doing
2782 * so.
2783 *
2784 * This function cannot be as thorough as that one as the VMA is not available
2785 * in the fast path, so instead we whitelist known good cases and if in doubt,
2786 * fall back to the slow path.
2787 */
2788static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2789{
2790 bool reject_file_backed = false;
2791 struct address_space *mapping;
2792 bool check_secretmem = false;
2793 unsigned long mapping_flags;
2794
2795 /*
2796 * If we aren't pinning then no problematic write can occur. A long term
2797 * pin is the most egregious case so this is the one we disallow.
2798 */
2799 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2800 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2801 reject_file_backed = true;
2802
2803 /* We hold a folio reference, so we can safely access folio fields. */
2804
2805 /* secretmem folios are always order-0 folios. */
2806 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2807 check_secretmem = true;
2808
2809 if (!reject_file_backed && !check_secretmem)
2810 return true;
2811
2812 if (WARN_ON_ONCE(folio_test_slab(folio)))
2813 return false;
2814
2815 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2816 if (folio_test_hugetlb(folio))
2817 return true;
2818
2819 /*
2820 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2821 * cannot proceed, which means no actions performed under RCU can
2822 * proceed either.
2823 *
2824 * inodes and thus their mappings are freed under RCU, which means the
2825 * mapping cannot be freed beneath us and thus we can safely dereference
2826 * it.
2827 */
2828 lockdep_assert_irqs_disabled();
2829
2830 /*
2831 * However, there may be operations which _alter_ the mapping, so ensure
2832 * we read it once and only once.
2833 */
2834 mapping = READ_ONCE(folio->mapping);
2835
2836 /*
2837 * The mapping may have been truncated, in any case we cannot determine
2838 * if this mapping is safe - fall back to slow path to determine how to
2839 * proceed.
2840 */
2841 if (!mapping)
2842 return false;
2843
2844 /* Anonymous folios pose no problem. */
2845 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2846 if (mapping_flags)
2847 return mapping_flags & PAGE_MAPPING_ANON;
2848
2849 /*
2850 * At this point, we know the mapping is non-null and points to an
2851 * address_space object.
2852 */
2853 if (check_secretmem && secretmem_mapping(mapping))
2854 return false;
2855 /* The only remaining allowed file system is shmem. */
2856 return !reject_file_backed || shmem_mapping(mapping);
2857}
2858
2859static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2860 unsigned int flags, struct page **pages)
2861{
2862 while ((*nr) - nr_start) {
2863 struct folio *folio = page_folio(pages[--(*nr)]);
2864
2865 folio_clear_referenced(folio);
2866 gup_put_folio(folio, 1, flags);
2867 }
2868}
2869
2870#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2871/*
2872 * GUP-fast relies on pte change detection to avoid concurrent pgtable
2873 * operations.
2874 *
2875 * To pin the page, GUP-fast needs to do below in order:
2876 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2877 *
2878 * For the rest of pgtable operations where pgtable updates can be racy
2879 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2880 * is pinned.
2881 *
2882 * Above will work for all pte-level operations, including THP split.
2883 *
2884 * For THP collapse, it's a bit more complicated because GUP-fast may be
2885 * walking a pgtable page that is being freed (pte is still valid but pmd
2886 * can be cleared already). To avoid race in such condition, we need to
2887 * also check pmd here to make sure pmd doesn't change (corresponds to
2888 * pmdp_collapse_flush() in the THP collapse code path).
2889 */
2890static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2891 unsigned long end, unsigned int flags, struct page **pages,
2892 int *nr)
2893{
2894 struct dev_pagemap *pgmap = NULL;
2895 int nr_start = *nr, ret = 0;
2896 pte_t *ptep, *ptem;
2897
2898 ptem = ptep = pte_offset_map(&pmd, addr);
2899 if (!ptep)
2900 return 0;
2901 do {
2902 pte_t pte = ptep_get_lockless(ptep);
2903 struct page *page;
2904 struct folio *folio;
2905
2906 /*
2907 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2908 * pte_access_permitted() better should reject these pages
2909 * either way: otherwise, GUP-fast might succeed in
2910 * cases where ordinary GUP would fail due to VMA access
2911 * permissions.
2912 */
2913 if (pte_protnone(pte))
2914 goto pte_unmap;
2915
2916 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2917 goto pte_unmap;
2918
2919 if (pte_devmap(pte)) {
2920 if (unlikely(flags & FOLL_LONGTERM))
2921 goto pte_unmap;
2922
2923 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2924 if (unlikely(!pgmap)) {
2925 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2926 goto pte_unmap;
2927 }
2928 } else if (pte_special(pte))
2929 goto pte_unmap;
2930
2931 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2932 page = pte_page(pte);
2933
2934 folio = try_grab_folio_fast(page, 1, flags);
2935 if (!folio)
2936 goto pte_unmap;
2937
2938 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2939 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2940 gup_put_folio(folio, 1, flags);
2941 goto pte_unmap;
2942 }
2943
2944 if (!gup_fast_folio_allowed(folio, flags)) {
2945 gup_put_folio(folio, 1, flags);
2946 goto pte_unmap;
2947 }
2948
2949 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2950 gup_put_folio(folio, 1, flags);
2951 goto pte_unmap;
2952 }
2953
2954 /*
2955 * We need to make the page accessible if and only if we are
2956 * going to access its content (the FOLL_PIN case). Please
2957 * see Documentation/core-api/pin_user_pages.rst for
2958 * details.
2959 */
2960 if (flags & FOLL_PIN) {
2961 ret = arch_make_folio_accessible(folio);
2962 if (ret) {
2963 gup_put_folio(folio, 1, flags);
2964 goto pte_unmap;
2965 }
2966 }
2967 folio_set_referenced(folio);
2968 pages[*nr] = page;
2969 (*nr)++;
2970 } while (ptep++, addr += PAGE_SIZE, addr != end);
2971
2972 ret = 1;
2973
2974pte_unmap:
2975 if (pgmap)
2976 put_dev_pagemap(pgmap);
2977 pte_unmap(ptem);
2978 return ret;
2979}
2980#else
2981
2982/*
2983 * If we can't determine whether or not a pte is special, then fail immediately
2984 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2985 * to be special.
2986 *
2987 * For a futex to be placed on a THP tail page, get_futex_key requires a
2988 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2989 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2990 */
2991static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2992 unsigned long end, unsigned int flags, struct page **pages,
2993 int *nr)
2994{
2995 return 0;
2996}
2997#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2998
2999#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
3000static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
3001 unsigned long end, unsigned int flags, struct page **pages, int *nr)
3002{
3003 int nr_start = *nr;
3004 struct dev_pagemap *pgmap = NULL;
3005
3006 do {
3007 struct folio *folio;
3008 struct page *page = pfn_to_page(pfn);
3009
3010 pgmap = get_dev_pagemap(pfn, pgmap);
3011 if (unlikely(!pgmap)) {
3012 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3013 break;
3014 }
3015
3016 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
3017 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3018 break;
3019 }
3020
3021 folio = try_grab_folio_fast(page, 1, flags);
3022 if (!folio) {
3023 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3024 break;
3025 }
3026 folio_set_referenced(folio);
3027 pages[*nr] = page;
3028 (*nr)++;
3029 pfn++;
3030 } while (addr += PAGE_SIZE, addr != end);
3031
3032 put_dev_pagemap(pgmap);
3033 return addr == end;
3034}
3035
3036static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3037 unsigned long end, unsigned int flags, struct page **pages,
3038 int *nr)
3039{
3040 unsigned long fault_pfn;
3041 int nr_start = *nr;
3042
3043 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3044 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3045 return 0;
3046
3047 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3048 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3049 return 0;
3050 }
3051 return 1;
3052}
3053
3054static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3055 unsigned long end, unsigned int flags, struct page **pages,
3056 int *nr)
3057{
3058 unsigned long fault_pfn;
3059 int nr_start = *nr;
3060
3061 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3062 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3063 return 0;
3064
3065 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3066 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3067 return 0;
3068 }
3069 return 1;
3070}
3071#else
3072static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3073 unsigned long end, unsigned int flags, struct page **pages,
3074 int *nr)
3075{
3076 BUILD_BUG();
3077 return 0;
3078}
3079
3080static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3081 unsigned long end, unsigned int flags, struct page **pages,
3082 int *nr)
3083{
3084 BUILD_BUG();
3085 return 0;
3086}
3087#endif
3088
3089static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3090 unsigned long end, unsigned int flags, struct page **pages,
3091 int *nr)
3092{
3093 struct page *page;
3094 struct folio *folio;
3095 int refs;
3096
3097 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3098 return 0;
3099
3100 if (pmd_special(orig))
3101 return 0;
3102
3103 if (pmd_devmap(orig)) {
3104 if (unlikely(flags & FOLL_LONGTERM))
3105 return 0;
3106 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3107 pages, nr);
3108 }
3109
3110 page = pmd_page(orig);
3111 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3112
3113 folio = try_grab_folio_fast(page, refs, flags);
3114 if (!folio)
3115 return 0;
3116
3117 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3118 gup_put_folio(folio, refs, flags);
3119 return 0;
3120 }
3121
3122 if (!gup_fast_folio_allowed(folio, flags)) {
3123 gup_put_folio(folio, refs, flags);
3124 return 0;
3125 }
3126 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3127 gup_put_folio(folio, refs, flags);
3128 return 0;
3129 }
3130
3131 *nr += refs;
3132 folio_set_referenced(folio);
3133 return 1;
3134}
3135
3136static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3137 unsigned long end, unsigned int flags, struct page **pages,
3138 int *nr)
3139{
3140 struct page *page;
3141 struct folio *folio;
3142 int refs;
3143
3144 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3145 return 0;
3146
3147 if (pud_special(orig))
3148 return 0;
3149
3150 if (pud_devmap(orig)) {
3151 if (unlikely(flags & FOLL_LONGTERM))
3152 return 0;
3153 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3154 pages, nr);
3155 }
3156
3157 page = pud_page(orig);
3158 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3159
3160 folio = try_grab_folio_fast(page, refs, flags);
3161 if (!folio)
3162 return 0;
3163
3164 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3165 gup_put_folio(folio, refs, flags);
3166 return 0;
3167 }
3168
3169 if (!gup_fast_folio_allowed(folio, flags)) {
3170 gup_put_folio(folio, refs, flags);
3171 return 0;
3172 }
3173
3174 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3175 gup_put_folio(folio, refs, flags);
3176 return 0;
3177 }
3178
3179 *nr += refs;
3180 folio_set_referenced(folio);
3181 return 1;
3182}
3183
3184static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3185 unsigned long end, unsigned int flags, struct page **pages,
3186 int *nr)
3187{
3188 int refs;
3189 struct page *page;
3190 struct folio *folio;
3191
3192 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3193 return 0;
3194
3195 BUILD_BUG_ON(pgd_devmap(orig));
3196
3197 page = pgd_page(orig);
3198 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3199
3200 folio = try_grab_folio_fast(page, refs, flags);
3201 if (!folio)
3202 return 0;
3203
3204 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3205 gup_put_folio(folio, refs, flags);
3206 return 0;
3207 }
3208
3209 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3210 gup_put_folio(folio, refs, flags);
3211 return 0;
3212 }
3213
3214 if (!gup_fast_folio_allowed(folio, flags)) {
3215 gup_put_folio(folio, refs, flags);
3216 return 0;
3217 }
3218
3219 *nr += refs;
3220 folio_set_referenced(folio);
3221 return 1;
3222}
3223
3224static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3225 unsigned long end, unsigned int flags, struct page **pages,
3226 int *nr)
3227{
3228 unsigned long next;
3229 pmd_t *pmdp;
3230
3231 pmdp = pmd_offset_lockless(pudp, pud, addr);
3232 do {
3233 pmd_t pmd = pmdp_get_lockless(pmdp);
3234
3235 next = pmd_addr_end(addr, end);
3236 if (!pmd_present(pmd))
3237 return 0;
3238
3239 if (unlikely(pmd_leaf(pmd))) {
3240 /* See gup_fast_pte_range() */
3241 if (pmd_protnone(pmd))
3242 return 0;
3243
3244 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3245 pages, nr))
3246 return 0;
3247
3248 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3249 pages, nr))
3250 return 0;
3251 } while (pmdp++, addr = next, addr != end);
3252
3253 return 1;
3254}
3255
3256static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3257 unsigned long end, unsigned int flags, struct page **pages,
3258 int *nr)
3259{
3260 unsigned long next;
3261 pud_t *pudp;
3262
3263 pudp = pud_offset_lockless(p4dp, p4d, addr);
3264 do {
3265 pud_t pud = READ_ONCE(*pudp);
3266
3267 next = pud_addr_end(addr, end);
3268 if (unlikely(!pud_present(pud)))
3269 return 0;
3270 if (unlikely(pud_leaf(pud))) {
3271 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3272 pages, nr))
3273 return 0;
3274 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3275 pages, nr))
3276 return 0;
3277 } while (pudp++, addr = next, addr != end);
3278
3279 return 1;
3280}
3281
3282static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3283 unsigned long end, unsigned int flags, struct page **pages,
3284 int *nr)
3285{
3286 unsigned long next;
3287 p4d_t *p4dp;
3288
3289 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3290 do {
3291 p4d_t p4d = READ_ONCE(*p4dp);
3292
3293 next = p4d_addr_end(addr, end);
3294 if (!p4d_present(p4d))
3295 return 0;
3296 BUILD_BUG_ON(p4d_leaf(p4d));
3297 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3298 pages, nr))
3299 return 0;
3300 } while (p4dp++, addr = next, addr != end);
3301
3302 return 1;
3303}
3304
3305static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3306 unsigned int flags, struct page **pages, int *nr)
3307{
3308 unsigned long next;
3309 pgd_t *pgdp;
3310
3311 pgdp = pgd_offset(current->mm, addr);
3312 do {
3313 pgd_t pgd = READ_ONCE(*pgdp);
3314
3315 next = pgd_addr_end(addr, end);
3316 if (pgd_none(pgd))
3317 return;
3318 if (unlikely(pgd_leaf(pgd))) {
3319 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3320 pages, nr))
3321 return;
3322 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3323 pages, nr))
3324 return;
3325 } while (pgdp++, addr = next, addr != end);
3326}
3327#else
3328static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3329 unsigned int flags, struct page **pages, int *nr)
3330{
3331}
3332#endif /* CONFIG_HAVE_GUP_FAST */
3333
3334#ifndef gup_fast_permitted
3335/*
3336 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3337 * we need to fall back to the slow version:
3338 */
3339static bool gup_fast_permitted(unsigned long start, unsigned long end)
3340{
3341 return true;
3342}
3343#endif
3344
3345static unsigned long gup_fast(unsigned long start, unsigned long end,
3346 unsigned int gup_flags, struct page **pages)
3347{
3348 unsigned long flags;
3349 int nr_pinned = 0;
3350 unsigned seq;
3351
3352 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3353 !gup_fast_permitted(start, end))
3354 return 0;
3355
3356 if (gup_flags & FOLL_PIN) {
3357 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
3358 if (seq & 1)
3359 return 0;
3360 }
3361
3362 /*
3363 * Disable interrupts. The nested form is used, in order to allow full,
3364 * general purpose use of this routine.
3365 *
3366 * With interrupts disabled, we block page table pages from being freed
3367 * from under us. See struct mmu_table_batch comments in
3368 * include/asm-generic/tlb.h for more details.
3369 *
3370 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3371 * that come from THPs splitting.
3372 */
3373 local_irq_save(flags);
3374 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3375 local_irq_restore(flags);
3376
3377 /*
3378 * When pinning pages for DMA there could be a concurrent write protect
3379 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3380 */
3381 if (gup_flags & FOLL_PIN) {
3382 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3383 gup_fast_unpin_user_pages(pages, nr_pinned);
3384 return 0;
3385 } else {
3386 sanity_check_pinned_pages(pages, nr_pinned);
3387 }
3388 }
3389 return nr_pinned;
3390}
3391
3392static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3393 unsigned int gup_flags, struct page **pages)
3394{
3395 unsigned long len, end;
3396 unsigned long nr_pinned;
3397 int locked = 0;
3398 int ret;
3399
3400 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3401 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3402 FOLL_FAST_ONLY | FOLL_NOFAULT |
3403 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3404 return -EINVAL;
3405
3406 if (gup_flags & FOLL_PIN)
3407 mm_set_has_pinned_flag(¤t->mm->flags);
3408
3409 if (!(gup_flags & FOLL_FAST_ONLY))
3410 might_lock_read(¤t->mm->mmap_lock);
3411
3412 start = untagged_addr(start) & PAGE_MASK;
3413 len = nr_pages << PAGE_SHIFT;
3414 if (check_add_overflow(start, len, &end))
3415 return -EOVERFLOW;
3416 if (end > TASK_SIZE_MAX)
3417 return -EFAULT;
3418 if (unlikely(!access_ok((void __user *)start, len)))
3419 return -EFAULT;
3420
3421 nr_pinned = gup_fast(start, end, gup_flags, pages);
3422 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3423 return nr_pinned;
3424
3425 /* Slow path: try to get the remaining pages with get_user_pages */
3426 start += nr_pinned << PAGE_SHIFT;
3427 pages += nr_pinned;
3428 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3429 pages, &locked,
3430 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3431 if (ret < 0) {
3432 /*
3433 * The caller has to unpin the pages we already pinned so
3434 * returning -errno is not an option
3435 */
3436 if (nr_pinned)
3437 return nr_pinned;
3438 return ret;
3439 }
3440 return ret + nr_pinned;
3441}
3442
3443/**
3444 * get_user_pages_fast_only() - pin user pages in memory
3445 * @start: starting user address
3446 * @nr_pages: number of pages from start to pin
3447 * @gup_flags: flags modifying pin behaviour
3448 * @pages: array that receives pointers to the pages pinned.
3449 * Should be at least nr_pages long.
3450 *
3451 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3452 * the regular GUP.
3453 *
3454 * If the architecture does not support this function, simply return with no
3455 * pages pinned.
3456 *
3457 * Careful, careful! COW breaking can go either way, so a non-write
3458 * access can get ambiguous page results. If you call this function without
3459 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3460 */
3461int get_user_pages_fast_only(unsigned long start, int nr_pages,
3462 unsigned int gup_flags, struct page **pages)
3463{
3464 /*
3465 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3466 * because gup fast is always a "pin with a +1 page refcount" request.
3467 *
3468 * FOLL_FAST_ONLY is required in order to match the API description of
3469 * this routine: no fall back to regular ("slow") GUP.
3470 */
3471 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3472 FOLL_GET | FOLL_FAST_ONLY))
3473 return -EINVAL;
3474
3475 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3476}
3477EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3478
3479/**
3480 * get_user_pages_fast() - pin user pages in memory
3481 * @start: starting user address
3482 * @nr_pages: number of pages from start to pin
3483 * @gup_flags: flags modifying pin behaviour
3484 * @pages: array that receives pointers to the pages pinned.
3485 * Should be at least nr_pages long.
3486 *
3487 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3488 * If not successful, it will fall back to taking the lock and
3489 * calling get_user_pages().
3490 *
3491 * Returns number of pages pinned. This may be fewer than the number requested.
3492 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3493 * -errno.
3494 */
3495int get_user_pages_fast(unsigned long start, int nr_pages,
3496 unsigned int gup_flags, struct page **pages)
3497{
3498 /*
3499 * The caller may or may not have explicitly set FOLL_GET; either way is
3500 * OK. However, internally (within mm/gup.c), gup fast variants must set
3501 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3502 * request.
3503 */
3504 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3505 return -EINVAL;
3506 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3507}
3508EXPORT_SYMBOL_GPL(get_user_pages_fast);
3509
3510/**
3511 * pin_user_pages_fast() - pin user pages in memory without taking locks
3512 *
3513 * @start: starting user address
3514 * @nr_pages: number of pages from start to pin
3515 * @gup_flags: flags modifying pin behaviour
3516 * @pages: array that receives pointers to the pages pinned.
3517 * Should be at least nr_pages long.
3518 *
3519 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3520 * get_user_pages_fast() for documentation on the function arguments, because
3521 * the arguments here are identical.
3522 *
3523 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3524 * see Documentation/core-api/pin_user_pages.rst for further details.
3525 *
3526 * Note that if a zero_page is amongst the returned pages, it will not have
3527 * pins in it and unpin_user_page() will not remove pins from it.
3528 */
3529int pin_user_pages_fast(unsigned long start, int nr_pages,
3530 unsigned int gup_flags, struct page **pages)
3531{
3532 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3533 return -EINVAL;
3534 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3535}
3536EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3537
3538/**
3539 * pin_user_pages_remote() - pin pages of a remote process
3540 *
3541 * @mm: mm_struct of target mm
3542 * @start: starting user address
3543 * @nr_pages: number of pages from start to pin
3544 * @gup_flags: flags modifying lookup behaviour
3545 * @pages: array that receives pointers to the pages pinned.
3546 * Should be at least nr_pages long.
3547 * @locked: pointer to lock flag indicating whether lock is held and
3548 * subsequently whether VM_FAULT_RETRY functionality can be
3549 * utilised. Lock must initially be held.
3550 *
3551 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3552 * get_user_pages_remote() for documentation on the function arguments, because
3553 * the arguments here are identical.
3554 *
3555 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3556 * see Documentation/core-api/pin_user_pages.rst for details.
3557 *
3558 * Note that if a zero_page is amongst the returned pages, it will not have
3559 * pins in it and unpin_user_page*() will not remove pins from it.
3560 */
3561long pin_user_pages_remote(struct mm_struct *mm,
3562 unsigned long start, unsigned long nr_pages,
3563 unsigned int gup_flags, struct page **pages,
3564 int *locked)
3565{
3566 int local_locked = 1;
3567
3568 if (!is_valid_gup_args(pages, locked, &gup_flags,
3569 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3570 return 0;
3571 return __gup_longterm_locked(mm, start, nr_pages, pages,
3572 locked ? locked : &local_locked,
3573 gup_flags);
3574}
3575EXPORT_SYMBOL(pin_user_pages_remote);
3576
3577/**
3578 * pin_user_pages() - pin user pages in memory for use by other devices
3579 *
3580 * @start: starting user address
3581 * @nr_pages: number of pages from start to pin
3582 * @gup_flags: flags modifying lookup behaviour
3583 * @pages: array that receives pointers to the pages pinned.
3584 * Should be at least nr_pages long.
3585 *
3586 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3587 * FOLL_PIN is set.
3588 *
3589 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3590 * see Documentation/core-api/pin_user_pages.rst for details.
3591 *
3592 * Note that if a zero_page is amongst the returned pages, it will not have
3593 * pins in it and unpin_user_page*() will not remove pins from it.
3594 */
3595long pin_user_pages(unsigned long start, unsigned long nr_pages,
3596 unsigned int gup_flags, struct page **pages)
3597{
3598 int locked = 1;
3599
3600 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3601 return 0;
3602 return __gup_longterm_locked(current->mm, start, nr_pages,
3603 pages, &locked, gup_flags);
3604}
3605EXPORT_SYMBOL(pin_user_pages);
3606
3607/*
3608 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3609 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3610 * FOLL_PIN and rejects FOLL_GET.
3611 *
3612 * Note that if a zero_page is amongst the returned pages, it will not have
3613 * pins in it and unpin_user_page*() will not remove pins from it.
3614 */
3615long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3616 struct page **pages, unsigned int gup_flags)
3617{
3618 int locked = 0;
3619
3620 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3621 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3622 return 0;
3623
3624 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3625 &locked, gup_flags);
3626}
3627EXPORT_SYMBOL(pin_user_pages_unlocked);
3628
3629/**
3630 * memfd_pin_folios() - pin folios associated with a memfd
3631 * @memfd: the memfd whose folios are to be pinned
3632 * @start: the first memfd offset
3633 * @end: the last memfd offset (inclusive)
3634 * @folios: array that receives pointers to the folios pinned
3635 * @max_folios: maximum number of entries in @folios
3636 * @offset: the offset into the first folio
3637 *
3638 * Attempt to pin folios associated with a memfd in the contiguous range
3639 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3640 * the folios can either be found in the page cache or need to be allocated
3641 * if necessary. Once the folios are located, they are all pinned via
3642 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3643 * And, eventually, these pinned folios must be released either using
3644 * unpin_folios() or unpin_folio().
3645 *
3646 * It must be noted that the folios may be pinned for an indefinite amount
3647 * of time. And, in most cases, the duration of time they may stay pinned
3648 * would be controlled by the userspace. This behavior is effectively the
3649 * same as using FOLL_LONGTERM with other GUP APIs.
3650 *
3651 * Returns number of folios pinned, which could be less than @max_folios
3652 * as it depends on the folio sizes that cover the range [start, end].
3653 * If no folios were pinned, it returns -errno.
3654 */
3655long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3656 struct folio **folios, unsigned int max_folios,
3657 pgoff_t *offset)
3658{
3659 unsigned int flags, nr_folios, nr_found;
3660 unsigned int i, pgshift = PAGE_SHIFT;
3661 pgoff_t start_idx, end_idx, next_idx;
3662 struct folio *folio = NULL;
3663 struct folio_batch fbatch;
3664 struct hstate *h;
3665 long ret = -EINVAL;
3666
3667 if (start < 0 || start > end || !max_folios)
3668 return -EINVAL;
3669
3670 if (!memfd)
3671 return -EINVAL;
3672
3673 if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3674 return -EINVAL;
3675
3676 if (end >= i_size_read(file_inode(memfd)))
3677 return -EINVAL;
3678
3679 if (is_file_hugepages(memfd)) {
3680 h = hstate_file(memfd);
3681 pgshift = huge_page_shift(h);
3682 }
3683
3684 flags = memalloc_pin_save();
3685 do {
3686 nr_folios = 0;
3687 start_idx = start >> pgshift;
3688 end_idx = end >> pgshift;
3689 if (is_file_hugepages(memfd)) {
3690 start_idx <<= huge_page_order(h);
3691 end_idx <<= huge_page_order(h);
3692 }
3693
3694 folio_batch_init(&fbatch);
3695 while (start_idx <= end_idx && nr_folios < max_folios) {
3696 /*
3697 * In most cases, we should be able to find the folios
3698 * in the page cache. If we cannot find them for some
3699 * reason, we try to allocate them and add them to the
3700 * page cache.
3701 */
3702 nr_found = filemap_get_folios_contig(memfd->f_mapping,
3703 &start_idx,
3704 end_idx,
3705 &fbatch);
3706 if (folio) {
3707 folio_put(folio);
3708 folio = NULL;
3709 }
3710
3711 next_idx = 0;
3712 for (i = 0; i < nr_found; i++) {
3713 /*
3714 * As there can be multiple entries for a
3715 * given folio in the batch returned by
3716 * filemap_get_folios_contig(), the below
3717 * check is to ensure that we pin and return a
3718 * unique set of folios between start and end.
3719 */
3720 if (next_idx &&
3721 next_idx != folio_index(fbatch.folios[i]))
3722 continue;
3723
3724 folio = page_folio(&fbatch.folios[i]->page);
3725
3726 if (try_grab_folio(folio, 1, FOLL_PIN)) {
3727 folio_batch_release(&fbatch);
3728 ret = -EINVAL;
3729 goto err;
3730 }
3731
3732 if (nr_folios == 0)
3733 *offset = offset_in_folio(folio, start);
3734
3735 folios[nr_folios] = folio;
3736 next_idx = folio_next_index(folio);
3737 if (++nr_folios == max_folios)
3738 break;
3739 }
3740
3741 folio = NULL;
3742 folio_batch_release(&fbatch);
3743 if (!nr_found) {
3744 folio = memfd_alloc_folio(memfd, start_idx);
3745 if (IS_ERR(folio)) {
3746 ret = PTR_ERR(folio);
3747 if (ret != -EEXIST)
3748 goto err;
3749 folio = NULL;
3750 }
3751 }
3752 }
3753
3754 ret = check_and_migrate_movable_folios(nr_folios, folios);
3755 } while (ret == -EAGAIN);
3756
3757 memalloc_pin_restore(flags);
3758 return ret ? ret : nr_folios;
3759err:
3760 memalloc_pin_restore(flags);
3761 unpin_folios(folios, nr_folios);
3762
3763 return ret;
3764}
3765EXPORT_SYMBOL_GPL(memfd_pin_folios);
3766
3767/**
3768 * folio_add_pins() - add pins to an already-pinned folio
3769 * @folio: the folio to add more pins to
3770 * @pins: number of pins to add
3771 *
3772 * Try to add more pins to an already-pinned folio. The semantics
3773 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3774 * be changed.
3775 *
3776 * This function is helpful when having obtained a pin on a large folio
3777 * using memfd_pin_folios(), but wanting to logically unpin parts
3778 * (e.g., individual pages) of the folio later, for example, using
3779 * unpin_user_page_range_dirty_lock().
3780 *
3781 * This is not the right interface to initially pin a folio.
3782 */
3783int folio_add_pins(struct folio *folio, unsigned int pins)
3784{
3785 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3786
3787 return try_grab_folio(folio, pins, FOLL_PIN);
3788}
3789EXPORT_SYMBOL_GPL(folio_add_pins);
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
7#include <linux/mm.h>
8#include <linux/memremap.h>
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/secretmem.h>
14
15#include <linux/sched/signal.h>
16#include <linux/rwsem.h>
17#include <linux/hugetlb.h>
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
21
22#include <asm/mmu_context.h>
23#include <asm/tlbflush.h>
24
25#include "internal.h"
26
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
32static inline void sanity_check_pinned_pages(struct page **pages,
33 unsigned long npages)
34{
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 return;
37
38 /*
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
42 *
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
49 */
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
53
54 if (!folio_test_anon(folio))
55 continue;
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 else
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
62 }
63}
64
65/*
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
68 */
69static inline struct folio *try_get_folio(struct page *page, int refs)
70{
71 struct folio *folio;
72
73retry:
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 return NULL;
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 return NULL;
79
80 /*
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
88 */
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
92 goto retry;
93 }
94
95 return folio;
96}
97
98/**
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
103 *
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106 *
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
110 *
111 * FOLL_GET: folio's refcount will be incremented by @refs.
112 *
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
115 *
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
118 *
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
123 */
124struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125{
126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
127 return NULL;
128
129 if (flags & FOLL_GET)
130 return try_get_folio(page, refs);
131 else if (flags & FOLL_PIN) {
132 struct folio *folio;
133
134 /*
135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
136 * right zone, so fail and let the caller fall back to the slow
137 * path.
138 */
139 if (unlikely((flags & FOLL_LONGTERM) &&
140 !is_longterm_pinnable_page(page)))
141 return NULL;
142
143 /*
144 * CAUTION: Don't use compound_head() on the page before this
145 * point, the result won't be stable.
146 */
147 folio = try_get_folio(page, refs);
148 if (!folio)
149 return NULL;
150
151 /*
152 * When pinning a large folio, use an exact count to track it.
153 *
154 * However, be sure to *also* increment the normal folio
155 * refcount field at least once, so that the folio really
156 * is pinned. That's why the refcount from the earlier
157 * try_get_folio() is left intact.
158 */
159 if (folio_test_large(folio))
160 atomic_add(refs, folio_pincount_ptr(folio));
161 else
162 folio_ref_add(folio,
163 refs * (GUP_PIN_COUNTING_BIAS - 1));
164 /*
165 * Adjust the pincount before re-checking the PTE for changes.
166 * This is essentially a smp_mb() and is paired with a memory
167 * barrier in page_try_share_anon_rmap().
168 */
169 smp_mb__after_atomic();
170
171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
172
173 return folio;
174 }
175
176 WARN_ON_ONCE(1);
177 return NULL;
178}
179
180static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
181{
182 if (flags & FOLL_PIN) {
183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
184 if (folio_test_large(folio))
185 atomic_sub(refs, folio_pincount_ptr(folio));
186 else
187 refs *= GUP_PIN_COUNTING_BIAS;
188 }
189
190 if (!put_devmap_managed_page_refs(&folio->page, refs))
191 folio_put_refs(folio, refs);
192}
193
194/**
195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
196 * @page: pointer to page to be grabbed
197 * @flags: gup flags: these are the FOLL_* flag values.
198 *
199 * This might not do anything at all, depending on the flags argument.
200 *
201 * "grab" names in this file mean, "look at flags to decide whether to use
202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
203 *
204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
205 * time. Cases: please see the try_grab_folio() documentation, with
206 * "refs=1".
207 *
208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
209 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
210 *
211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
212 * be grabbed.
213 */
214int __must_check try_grab_page(struct page *page, unsigned int flags)
215{
216 struct folio *folio = page_folio(page);
217
218 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
219 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
220 return -ENOMEM;
221
222 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
223 return -EREMOTEIO;
224
225 if (flags & FOLL_GET)
226 folio_ref_inc(folio);
227 else if (flags & FOLL_PIN) {
228 /*
229 * Similar to try_grab_folio(): be sure to *also*
230 * increment the normal page refcount field at least once,
231 * so that the page really is pinned.
232 */
233 if (folio_test_large(folio)) {
234 folio_ref_add(folio, 1);
235 atomic_add(1, folio_pincount_ptr(folio));
236 } else {
237 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
238 }
239
240 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
241 }
242
243 return 0;
244}
245
246/**
247 * unpin_user_page() - release a dma-pinned page
248 * @page: pointer to page to be released
249 *
250 * Pages that were pinned via pin_user_pages*() must be released via either
251 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
252 * that such pages can be separately tracked and uniquely handled. In
253 * particular, interactions with RDMA and filesystems need special handling.
254 */
255void unpin_user_page(struct page *page)
256{
257 sanity_check_pinned_pages(&page, 1);
258 gup_put_folio(page_folio(page), 1, FOLL_PIN);
259}
260EXPORT_SYMBOL(unpin_user_page);
261
262static inline struct folio *gup_folio_range_next(struct page *start,
263 unsigned long npages, unsigned long i, unsigned int *ntails)
264{
265 struct page *next = nth_page(start, i);
266 struct folio *folio = page_folio(next);
267 unsigned int nr = 1;
268
269 if (folio_test_large(folio))
270 nr = min_t(unsigned int, npages - i,
271 folio_nr_pages(folio) - folio_page_idx(folio, next));
272
273 *ntails = nr;
274 return folio;
275}
276
277static inline struct folio *gup_folio_next(struct page **list,
278 unsigned long npages, unsigned long i, unsigned int *ntails)
279{
280 struct folio *folio = page_folio(list[i]);
281 unsigned int nr;
282
283 for (nr = i + 1; nr < npages; nr++) {
284 if (page_folio(list[nr]) != folio)
285 break;
286 }
287
288 *ntails = nr - i;
289 return folio;
290}
291
292/**
293 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
294 * @pages: array of pages to be maybe marked dirty, and definitely released.
295 * @npages: number of pages in the @pages array.
296 * @make_dirty: whether to mark the pages dirty
297 *
298 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
299 * variants called on that page.
300 *
301 * For each page in the @pages array, make that page (or its head page, if a
302 * compound page) dirty, if @make_dirty is true, and if the page was previously
303 * listed as clean. In any case, releases all pages using unpin_user_page(),
304 * possibly via unpin_user_pages(), for the non-dirty case.
305 *
306 * Please see the unpin_user_page() documentation for details.
307 *
308 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
309 * required, then the caller should a) verify that this is really correct,
310 * because _lock() is usually required, and b) hand code it:
311 * set_page_dirty_lock(), unpin_user_page().
312 *
313 */
314void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
315 bool make_dirty)
316{
317 unsigned long i;
318 struct folio *folio;
319 unsigned int nr;
320
321 if (!make_dirty) {
322 unpin_user_pages(pages, npages);
323 return;
324 }
325
326 sanity_check_pinned_pages(pages, npages);
327 for (i = 0; i < npages; i += nr) {
328 folio = gup_folio_next(pages, npages, i, &nr);
329 /*
330 * Checking PageDirty at this point may race with
331 * clear_page_dirty_for_io(), but that's OK. Two key
332 * cases:
333 *
334 * 1) This code sees the page as already dirty, so it
335 * skips the call to set_page_dirty(). That could happen
336 * because clear_page_dirty_for_io() called
337 * page_mkclean(), followed by set_page_dirty().
338 * However, now the page is going to get written back,
339 * which meets the original intention of setting it
340 * dirty, so all is well: clear_page_dirty_for_io() goes
341 * on to call TestClearPageDirty(), and write the page
342 * back.
343 *
344 * 2) This code sees the page as clean, so it calls
345 * set_page_dirty(). The page stays dirty, despite being
346 * written back, so it gets written back again in the
347 * next writeback cycle. This is harmless.
348 */
349 if (!folio_test_dirty(folio)) {
350 folio_lock(folio);
351 folio_mark_dirty(folio);
352 folio_unlock(folio);
353 }
354 gup_put_folio(folio, nr, FOLL_PIN);
355 }
356}
357EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
358
359/**
360 * unpin_user_page_range_dirty_lock() - release and optionally dirty
361 * gup-pinned page range
362 *
363 * @page: the starting page of a range maybe marked dirty, and definitely released.
364 * @npages: number of consecutive pages to release.
365 * @make_dirty: whether to mark the pages dirty
366 *
367 * "gup-pinned page range" refers to a range of pages that has had one of the
368 * pin_user_pages() variants called on that page.
369 *
370 * For the page ranges defined by [page .. page+npages], make that range (or
371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
372 * page range was previously listed as clean.
373 *
374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
375 * required, then the caller should a) verify that this is really correct,
376 * because _lock() is usually required, and b) hand code it:
377 * set_page_dirty_lock(), unpin_user_page().
378 *
379 */
380void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
381 bool make_dirty)
382{
383 unsigned long i;
384 struct folio *folio;
385 unsigned int nr;
386
387 for (i = 0; i < npages; i += nr) {
388 folio = gup_folio_range_next(page, npages, i, &nr);
389 if (make_dirty && !folio_test_dirty(folio)) {
390 folio_lock(folio);
391 folio_mark_dirty(folio);
392 folio_unlock(folio);
393 }
394 gup_put_folio(folio, nr, FOLL_PIN);
395 }
396}
397EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
398
399static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
400{
401 unsigned long i;
402 struct folio *folio;
403 unsigned int nr;
404
405 /*
406 * Don't perform any sanity checks because we might have raced with
407 * fork() and some anonymous pages might now actually be shared --
408 * which is why we're unpinning after all.
409 */
410 for (i = 0; i < npages; i += nr) {
411 folio = gup_folio_next(pages, npages, i, &nr);
412 gup_put_folio(folio, nr, FOLL_PIN);
413 }
414}
415
416/**
417 * unpin_user_pages() - release an array of gup-pinned pages.
418 * @pages: array of pages to be marked dirty and released.
419 * @npages: number of pages in the @pages array.
420 *
421 * For each page in the @pages array, release the page using unpin_user_page().
422 *
423 * Please see the unpin_user_page() documentation for details.
424 */
425void unpin_user_pages(struct page **pages, unsigned long npages)
426{
427 unsigned long i;
428 struct folio *folio;
429 unsigned int nr;
430
431 /*
432 * If this WARN_ON() fires, then the system *might* be leaking pages (by
433 * leaving them pinned), but probably not. More likely, gup/pup returned
434 * a hard -ERRNO error to the caller, who erroneously passed it here.
435 */
436 if (WARN_ON(IS_ERR_VALUE(npages)))
437 return;
438
439 sanity_check_pinned_pages(pages, npages);
440 for (i = 0; i < npages; i += nr) {
441 folio = gup_folio_next(pages, npages, i, &nr);
442 gup_put_folio(folio, nr, FOLL_PIN);
443 }
444}
445EXPORT_SYMBOL(unpin_user_pages);
446
447/*
448 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
449 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
450 * cache bouncing on large SMP machines for concurrent pinned gups.
451 */
452static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
453{
454 if (!test_bit(MMF_HAS_PINNED, mm_flags))
455 set_bit(MMF_HAS_PINNED, mm_flags);
456}
457
458#ifdef CONFIG_MMU
459static struct page *no_page_table(struct vm_area_struct *vma,
460 unsigned int flags)
461{
462 /*
463 * When core dumping an enormous anonymous area that nobody
464 * has touched so far, we don't want to allocate unnecessary pages or
465 * page tables. Return error instead of NULL to skip handle_mm_fault,
466 * then get_dump_page() will return NULL to leave a hole in the dump.
467 * But we can only make this optimization where a hole would surely
468 * be zero-filled if handle_mm_fault() actually did handle it.
469 */
470 if ((flags & FOLL_DUMP) &&
471 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
472 return ERR_PTR(-EFAULT);
473 return NULL;
474}
475
476static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
477 pte_t *pte, unsigned int flags)
478{
479 if (flags & FOLL_TOUCH) {
480 pte_t entry = *pte;
481
482 if (flags & FOLL_WRITE)
483 entry = pte_mkdirty(entry);
484 entry = pte_mkyoung(entry);
485
486 if (!pte_same(*pte, entry)) {
487 set_pte_at(vma->vm_mm, address, pte, entry);
488 update_mmu_cache(vma, address, pte);
489 }
490 }
491
492 /* Proper page table entry exists, but no corresponding struct page */
493 return -EEXIST;
494}
495
496/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
497static inline bool can_follow_write_pte(pte_t pte, struct page *page,
498 struct vm_area_struct *vma,
499 unsigned int flags)
500{
501 /* If the pte is writable, we can write to the page. */
502 if (pte_write(pte))
503 return true;
504
505 /* Maybe FOLL_FORCE is set to override it? */
506 if (!(flags & FOLL_FORCE))
507 return false;
508
509 /* But FOLL_FORCE has no effect on shared mappings */
510 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
511 return false;
512
513 /* ... or read-only private ones */
514 if (!(vma->vm_flags & VM_MAYWRITE))
515 return false;
516
517 /* ... or already writable ones that just need to take a write fault */
518 if (vma->vm_flags & VM_WRITE)
519 return false;
520
521 /*
522 * See can_change_pte_writable(): we broke COW and could map the page
523 * writable if we have an exclusive anonymous page ...
524 */
525 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
526 return false;
527
528 /* ... and a write-fault isn't required for other reasons. */
529 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
530 return false;
531 return !userfaultfd_pte_wp(vma, pte);
532}
533
534static struct page *follow_page_pte(struct vm_area_struct *vma,
535 unsigned long address, pmd_t *pmd, unsigned int flags,
536 struct dev_pagemap **pgmap)
537{
538 struct mm_struct *mm = vma->vm_mm;
539 struct page *page;
540 spinlock_t *ptl;
541 pte_t *ptep, pte;
542 int ret;
543
544 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
545 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
546 (FOLL_PIN | FOLL_GET)))
547 return ERR_PTR(-EINVAL);
548 if (unlikely(pmd_bad(*pmd)))
549 return no_page_table(vma, flags);
550
551 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
552 pte = *ptep;
553 if (!pte_present(pte))
554 goto no_page;
555 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
556 goto no_page;
557
558 page = vm_normal_page(vma, address, pte);
559
560 /*
561 * We only care about anon pages in can_follow_write_pte() and don't
562 * have to worry about pte_devmap() because they are never anon.
563 */
564 if ((flags & FOLL_WRITE) &&
565 !can_follow_write_pte(pte, page, vma, flags)) {
566 page = NULL;
567 goto out;
568 }
569
570 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
571 /*
572 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
573 * case since they are only valid while holding the pgmap
574 * reference.
575 */
576 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
577 if (*pgmap)
578 page = pte_page(pte);
579 else
580 goto no_page;
581 } else if (unlikely(!page)) {
582 if (flags & FOLL_DUMP) {
583 /* Avoid special (like zero) pages in core dumps */
584 page = ERR_PTR(-EFAULT);
585 goto out;
586 }
587
588 if (is_zero_pfn(pte_pfn(pte))) {
589 page = pte_page(pte);
590 } else {
591 ret = follow_pfn_pte(vma, address, ptep, flags);
592 page = ERR_PTR(ret);
593 goto out;
594 }
595 }
596
597 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
598 page = ERR_PTR(-EMLINK);
599 goto out;
600 }
601
602 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
603 !PageAnonExclusive(page), page);
604
605 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
606 ret = try_grab_page(page, flags);
607 if (unlikely(ret)) {
608 page = ERR_PTR(ret);
609 goto out;
610 }
611
612 /*
613 * We need to make the page accessible if and only if we are going
614 * to access its content (the FOLL_PIN case). Please see
615 * Documentation/core-api/pin_user_pages.rst for details.
616 */
617 if (flags & FOLL_PIN) {
618 ret = arch_make_page_accessible(page);
619 if (ret) {
620 unpin_user_page(page);
621 page = ERR_PTR(ret);
622 goto out;
623 }
624 }
625 if (flags & FOLL_TOUCH) {
626 if ((flags & FOLL_WRITE) &&
627 !pte_dirty(pte) && !PageDirty(page))
628 set_page_dirty(page);
629 /*
630 * pte_mkyoung() would be more correct here, but atomic care
631 * is needed to avoid losing the dirty bit: it is easier to use
632 * mark_page_accessed().
633 */
634 mark_page_accessed(page);
635 }
636out:
637 pte_unmap_unlock(ptep, ptl);
638 return page;
639no_page:
640 pte_unmap_unlock(ptep, ptl);
641 if (!pte_none(pte))
642 return NULL;
643 return no_page_table(vma, flags);
644}
645
646static struct page *follow_pmd_mask(struct vm_area_struct *vma,
647 unsigned long address, pud_t *pudp,
648 unsigned int flags,
649 struct follow_page_context *ctx)
650{
651 pmd_t *pmd, pmdval;
652 spinlock_t *ptl;
653 struct page *page;
654 struct mm_struct *mm = vma->vm_mm;
655
656 pmd = pmd_offset(pudp, address);
657 /*
658 * The READ_ONCE() will stabilize the pmdval in a register or
659 * on the stack so that it will stop changing under the code.
660 */
661 pmdval = READ_ONCE(*pmd);
662 if (pmd_none(pmdval))
663 return no_page_table(vma, flags);
664 if (!pmd_present(pmdval))
665 return no_page_table(vma, flags);
666 if (pmd_devmap(pmdval)) {
667 ptl = pmd_lock(mm, pmd);
668 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
669 spin_unlock(ptl);
670 if (page)
671 return page;
672 }
673 if (likely(!pmd_trans_huge(pmdval)))
674 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
675
676 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
677 return no_page_table(vma, flags);
678
679 ptl = pmd_lock(mm, pmd);
680 if (unlikely(!pmd_present(*pmd))) {
681 spin_unlock(ptl);
682 return no_page_table(vma, flags);
683 }
684 if (unlikely(!pmd_trans_huge(*pmd))) {
685 spin_unlock(ptl);
686 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
687 }
688 if (flags & FOLL_SPLIT_PMD) {
689 int ret;
690 page = pmd_page(*pmd);
691 if (is_huge_zero_page(page)) {
692 spin_unlock(ptl);
693 ret = 0;
694 split_huge_pmd(vma, pmd, address);
695 if (pmd_trans_unstable(pmd))
696 ret = -EBUSY;
697 } else {
698 spin_unlock(ptl);
699 split_huge_pmd(vma, pmd, address);
700 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
701 }
702
703 return ret ? ERR_PTR(ret) :
704 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
705 }
706 page = follow_trans_huge_pmd(vma, address, pmd, flags);
707 spin_unlock(ptl);
708 ctx->page_mask = HPAGE_PMD_NR - 1;
709 return page;
710}
711
712static struct page *follow_pud_mask(struct vm_area_struct *vma,
713 unsigned long address, p4d_t *p4dp,
714 unsigned int flags,
715 struct follow_page_context *ctx)
716{
717 pud_t *pud;
718 spinlock_t *ptl;
719 struct page *page;
720 struct mm_struct *mm = vma->vm_mm;
721
722 pud = pud_offset(p4dp, address);
723 if (pud_none(*pud))
724 return no_page_table(vma, flags);
725 if (pud_devmap(*pud)) {
726 ptl = pud_lock(mm, pud);
727 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
728 spin_unlock(ptl);
729 if (page)
730 return page;
731 }
732 if (unlikely(pud_bad(*pud)))
733 return no_page_table(vma, flags);
734
735 return follow_pmd_mask(vma, address, pud, flags, ctx);
736}
737
738static struct page *follow_p4d_mask(struct vm_area_struct *vma,
739 unsigned long address, pgd_t *pgdp,
740 unsigned int flags,
741 struct follow_page_context *ctx)
742{
743 p4d_t *p4d;
744
745 p4d = p4d_offset(pgdp, address);
746 if (p4d_none(*p4d))
747 return no_page_table(vma, flags);
748 BUILD_BUG_ON(p4d_huge(*p4d));
749 if (unlikely(p4d_bad(*p4d)))
750 return no_page_table(vma, flags);
751
752 return follow_pud_mask(vma, address, p4d, flags, ctx);
753}
754
755/**
756 * follow_page_mask - look up a page descriptor from a user-virtual address
757 * @vma: vm_area_struct mapping @address
758 * @address: virtual address to look up
759 * @flags: flags modifying lookup behaviour
760 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
761 * pointer to output page_mask
762 *
763 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
764 *
765 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
766 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
767 *
768 * When getting an anonymous page and the caller has to trigger unsharing
769 * of a shared anonymous page first, -EMLINK is returned. The caller should
770 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
771 * relevant with FOLL_PIN and !FOLL_WRITE.
772 *
773 * On output, the @ctx->page_mask is set according to the size of the page.
774 *
775 * Return: the mapped (struct page *), %NULL if no mapping exists, or
776 * an error pointer if there is a mapping to something not represented
777 * by a page descriptor (see also vm_normal_page()).
778 */
779static struct page *follow_page_mask(struct vm_area_struct *vma,
780 unsigned long address, unsigned int flags,
781 struct follow_page_context *ctx)
782{
783 pgd_t *pgd;
784 struct page *page;
785 struct mm_struct *mm = vma->vm_mm;
786
787 ctx->page_mask = 0;
788
789 /*
790 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
791 * special hugetlb page table walking code. This eliminates the
792 * need to check for hugetlb entries in the general walking code.
793 *
794 * hugetlb_follow_page_mask is only for follow_page() handling here.
795 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
796 */
797 if (is_vm_hugetlb_page(vma)) {
798 page = hugetlb_follow_page_mask(vma, address, flags);
799 if (!page)
800 page = no_page_table(vma, flags);
801 return page;
802 }
803
804 pgd = pgd_offset(mm, address);
805
806 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
807 return no_page_table(vma, flags);
808
809 return follow_p4d_mask(vma, address, pgd, flags, ctx);
810}
811
812struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
813 unsigned int foll_flags)
814{
815 struct follow_page_context ctx = { NULL };
816 struct page *page;
817
818 if (vma_is_secretmem(vma))
819 return NULL;
820
821 if (foll_flags & FOLL_PIN)
822 return NULL;
823
824 page = follow_page_mask(vma, address, foll_flags, &ctx);
825 if (ctx.pgmap)
826 put_dev_pagemap(ctx.pgmap);
827 return page;
828}
829
830static int get_gate_page(struct mm_struct *mm, unsigned long address,
831 unsigned int gup_flags, struct vm_area_struct **vma,
832 struct page **page)
833{
834 pgd_t *pgd;
835 p4d_t *p4d;
836 pud_t *pud;
837 pmd_t *pmd;
838 pte_t *pte;
839 int ret = -EFAULT;
840
841 /* user gate pages are read-only */
842 if (gup_flags & FOLL_WRITE)
843 return -EFAULT;
844 if (address > TASK_SIZE)
845 pgd = pgd_offset_k(address);
846 else
847 pgd = pgd_offset_gate(mm, address);
848 if (pgd_none(*pgd))
849 return -EFAULT;
850 p4d = p4d_offset(pgd, address);
851 if (p4d_none(*p4d))
852 return -EFAULT;
853 pud = pud_offset(p4d, address);
854 if (pud_none(*pud))
855 return -EFAULT;
856 pmd = pmd_offset(pud, address);
857 if (!pmd_present(*pmd))
858 return -EFAULT;
859 VM_BUG_ON(pmd_trans_huge(*pmd));
860 pte = pte_offset_map(pmd, address);
861 if (pte_none(*pte))
862 goto unmap;
863 *vma = get_gate_vma(mm);
864 if (!page)
865 goto out;
866 *page = vm_normal_page(*vma, address, *pte);
867 if (!*page) {
868 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
869 goto unmap;
870 *page = pte_page(*pte);
871 }
872 ret = try_grab_page(*page, gup_flags);
873 if (unlikely(ret))
874 goto unmap;
875out:
876 ret = 0;
877unmap:
878 pte_unmap(pte);
879 return ret;
880}
881
882/*
883 * mmap_lock must be held on entry. If @locked != NULL and *@flags
884 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
885 * is, *@locked will be set to 0 and -EBUSY returned.
886 */
887static int faultin_page(struct vm_area_struct *vma,
888 unsigned long address, unsigned int *flags, bool unshare,
889 int *locked)
890{
891 unsigned int fault_flags = 0;
892 vm_fault_t ret;
893
894 if (*flags & FOLL_NOFAULT)
895 return -EFAULT;
896 if (*flags & FOLL_WRITE)
897 fault_flags |= FAULT_FLAG_WRITE;
898 if (*flags & FOLL_REMOTE)
899 fault_flags |= FAULT_FLAG_REMOTE;
900 if (locked) {
901 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
902 /*
903 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
904 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
905 * That's because some callers may not be prepared to
906 * handle early exits caused by non-fatal signals.
907 */
908 if (*flags & FOLL_INTERRUPTIBLE)
909 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
910 }
911 if (*flags & FOLL_NOWAIT)
912 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
913 if (*flags & FOLL_TRIED) {
914 /*
915 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
916 * can co-exist
917 */
918 fault_flags |= FAULT_FLAG_TRIED;
919 }
920 if (unshare) {
921 fault_flags |= FAULT_FLAG_UNSHARE;
922 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
923 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
924 }
925
926 ret = handle_mm_fault(vma, address, fault_flags, NULL);
927
928 if (ret & VM_FAULT_COMPLETED) {
929 /*
930 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
931 * mmap lock in the page fault handler. Sanity check this.
932 */
933 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
934 if (locked)
935 *locked = 0;
936 /*
937 * We should do the same as VM_FAULT_RETRY, but let's not
938 * return -EBUSY since that's not reflecting the reality of
939 * what has happened - we've just fully completed a page
940 * fault, with the mmap lock released. Use -EAGAIN to show
941 * that we want to take the mmap lock _again_.
942 */
943 return -EAGAIN;
944 }
945
946 if (ret & VM_FAULT_ERROR) {
947 int err = vm_fault_to_errno(ret, *flags);
948
949 if (err)
950 return err;
951 BUG();
952 }
953
954 if (ret & VM_FAULT_RETRY) {
955 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
956 *locked = 0;
957 return -EBUSY;
958 }
959
960 return 0;
961}
962
963static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
964{
965 vm_flags_t vm_flags = vma->vm_flags;
966 int write = (gup_flags & FOLL_WRITE);
967 int foreign = (gup_flags & FOLL_REMOTE);
968
969 if (vm_flags & (VM_IO | VM_PFNMAP))
970 return -EFAULT;
971
972 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
973 return -EFAULT;
974
975 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
976 return -EOPNOTSUPP;
977
978 if ((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA))
979 return -EOPNOTSUPP;
980
981 if (vma_is_secretmem(vma))
982 return -EFAULT;
983
984 if (write) {
985 if (!(vm_flags & VM_WRITE)) {
986 if (!(gup_flags & FOLL_FORCE))
987 return -EFAULT;
988 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
989 if (is_vm_hugetlb_page(vma))
990 return -EFAULT;
991 /*
992 * We used to let the write,force case do COW in a
993 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
994 * set a breakpoint in a read-only mapping of an
995 * executable, without corrupting the file (yet only
996 * when that file had been opened for writing!).
997 * Anon pages in shared mappings are surprising: now
998 * just reject it.
999 */
1000 if (!is_cow_mapping(vm_flags))
1001 return -EFAULT;
1002 }
1003 } else if (!(vm_flags & VM_READ)) {
1004 if (!(gup_flags & FOLL_FORCE))
1005 return -EFAULT;
1006 /*
1007 * Is there actually any vma we can reach here which does not
1008 * have VM_MAYREAD set?
1009 */
1010 if (!(vm_flags & VM_MAYREAD))
1011 return -EFAULT;
1012 }
1013 /*
1014 * gups are always data accesses, not instruction
1015 * fetches, so execute=false here
1016 */
1017 if (!arch_vma_access_permitted(vma, write, false, foreign))
1018 return -EFAULT;
1019 return 0;
1020}
1021
1022/**
1023 * __get_user_pages() - pin user pages in memory
1024 * @mm: mm_struct of target mm
1025 * @start: starting user address
1026 * @nr_pages: number of pages from start to pin
1027 * @gup_flags: flags modifying pin behaviour
1028 * @pages: array that receives pointers to the pages pinned.
1029 * Should be at least nr_pages long. Or NULL, if caller
1030 * only intends to ensure the pages are faulted in.
1031 * @vmas: array of pointers to vmas corresponding to each page.
1032 * Or NULL if the caller does not require them.
1033 * @locked: whether we're still with the mmap_lock held
1034 *
1035 * Returns either number of pages pinned (which may be less than the
1036 * number requested), or an error. Details about the return value:
1037 *
1038 * -- If nr_pages is 0, returns 0.
1039 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1040 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1041 * pages pinned. Again, this may be less than nr_pages.
1042 * -- 0 return value is possible when the fault would need to be retried.
1043 *
1044 * The caller is responsible for releasing returned @pages, via put_page().
1045 *
1046 * @vmas are valid only as long as mmap_lock is held.
1047 *
1048 * Must be called with mmap_lock held. It may be released. See below.
1049 *
1050 * __get_user_pages walks a process's page tables and takes a reference to
1051 * each struct page that each user address corresponds to at a given
1052 * instant. That is, it takes the page that would be accessed if a user
1053 * thread accesses the given user virtual address at that instant.
1054 *
1055 * This does not guarantee that the page exists in the user mappings when
1056 * __get_user_pages returns, and there may even be a completely different
1057 * page there in some cases (eg. if mmapped pagecache has been invalidated
1058 * and subsequently re faulted). However it does guarantee that the page
1059 * won't be freed completely. And mostly callers simply care that the page
1060 * contains data that was valid *at some point in time*. Typically, an IO
1061 * or similar operation cannot guarantee anything stronger anyway because
1062 * locks can't be held over the syscall boundary.
1063 *
1064 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1065 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1066 * appropriate) must be called after the page is finished with, and
1067 * before put_page is called.
1068 *
1069 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1070 * released by an up_read(). That can happen if @gup_flags does not
1071 * have FOLL_NOWAIT.
1072 *
1073 * A caller using such a combination of @locked and @gup_flags
1074 * must therefore hold the mmap_lock for reading only, and recognize
1075 * when it's been released. Otherwise, it must be held for either
1076 * reading or writing and will not be released.
1077 *
1078 * In most cases, get_user_pages or get_user_pages_fast should be used
1079 * instead of __get_user_pages. __get_user_pages should be used only if
1080 * you need some special @gup_flags.
1081 */
1082static long __get_user_pages(struct mm_struct *mm,
1083 unsigned long start, unsigned long nr_pages,
1084 unsigned int gup_flags, struct page **pages,
1085 struct vm_area_struct **vmas, int *locked)
1086{
1087 long ret = 0, i = 0;
1088 struct vm_area_struct *vma = NULL;
1089 struct follow_page_context ctx = { NULL };
1090
1091 if (!nr_pages)
1092 return 0;
1093
1094 start = untagged_addr(start);
1095
1096 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1097
1098 do {
1099 struct page *page;
1100 unsigned int foll_flags = gup_flags;
1101 unsigned int page_increm;
1102
1103 /* first iteration or cross vma bound */
1104 if (!vma || start >= vma->vm_end) {
1105 vma = find_extend_vma(mm, start);
1106 if (!vma && in_gate_area(mm, start)) {
1107 ret = get_gate_page(mm, start & PAGE_MASK,
1108 gup_flags, &vma,
1109 pages ? &pages[i] : NULL);
1110 if (ret)
1111 goto out;
1112 ctx.page_mask = 0;
1113 goto next_page;
1114 }
1115
1116 if (!vma) {
1117 ret = -EFAULT;
1118 goto out;
1119 }
1120 ret = check_vma_flags(vma, gup_flags);
1121 if (ret)
1122 goto out;
1123
1124 if (is_vm_hugetlb_page(vma)) {
1125 i = follow_hugetlb_page(mm, vma, pages, vmas,
1126 &start, &nr_pages, i,
1127 gup_flags, locked);
1128 if (locked && *locked == 0) {
1129 /*
1130 * We've got a VM_FAULT_RETRY
1131 * and we've lost mmap_lock.
1132 * We must stop here.
1133 */
1134 BUG_ON(gup_flags & FOLL_NOWAIT);
1135 goto out;
1136 }
1137 continue;
1138 }
1139 }
1140retry:
1141 /*
1142 * If we have a pending SIGKILL, don't keep faulting pages and
1143 * potentially allocating memory.
1144 */
1145 if (fatal_signal_pending(current)) {
1146 ret = -EINTR;
1147 goto out;
1148 }
1149 cond_resched();
1150
1151 page = follow_page_mask(vma, start, foll_flags, &ctx);
1152 if (!page || PTR_ERR(page) == -EMLINK) {
1153 ret = faultin_page(vma, start, &foll_flags,
1154 PTR_ERR(page) == -EMLINK, locked);
1155 switch (ret) {
1156 case 0:
1157 goto retry;
1158 case -EBUSY:
1159 case -EAGAIN:
1160 ret = 0;
1161 fallthrough;
1162 case -EFAULT:
1163 case -ENOMEM:
1164 case -EHWPOISON:
1165 goto out;
1166 }
1167 BUG();
1168 } else if (PTR_ERR(page) == -EEXIST) {
1169 /*
1170 * Proper page table entry exists, but no corresponding
1171 * struct page. If the caller expects **pages to be
1172 * filled in, bail out now, because that can't be done
1173 * for this page.
1174 */
1175 if (pages) {
1176 ret = PTR_ERR(page);
1177 goto out;
1178 }
1179
1180 goto next_page;
1181 } else if (IS_ERR(page)) {
1182 ret = PTR_ERR(page);
1183 goto out;
1184 }
1185 if (pages) {
1186 pages[i] = page;
1187 flush_anon_page(vma, page, start);
1188 flush_dcache_page(page);
1189 ctx.page_mask = 0;
1190 }
1191next_page:
1192 if (vmas) {
1193 vmas[i] = vma;
1194 ctx.page_mask = 0;
1195 }
1196 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1197 if (page_increm > nr_pages)
1198 page_increm = nr_pages;
1199 i += page_increm;
1200 start += page_increm * PAGE_SIZE;
1201 nr_pages -= page_increm;
1202 } while (nr_pages);
1203out:
1204 if (ctx.pgmap)
1205 put_dev_pagemap(ctx.pgmap);
1206 return i ? i : ret;
1207}
1208
1209static bool vma_permits_fault(struct vm_area_struct *vma,
1210 unsigned int fault_flags)
1211{
1212 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1213 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1214 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1215
1216 if (!(vm_flags & vma->vm_flags))
1217 return false;
1218
1219 /*
1220 * The architecture might have a hardware protection
1221 * mechanism other than read/write that can deny access.
1222 *
1223 * gup always represents data access, not instruction
1224 * fetches, so execute=false here:
1225 */
1226 if (!arch_vma_access_permitted(vma, write, false, foreign))
1227 return false;
1228
1229 return true;
1230}
1231
1232/**
1233 * fixup_user_fault() - manually resolve a user page fault
1234 * @mm: mm_struct of target mm
1235 * @address: user address
1236 * @fault_flags:flags to pass down to handle_mm_fault()
1237 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1238 * does not allow retry. If NULL, the caller must guarantee
1239 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1240 *
1241 * This is meant to be called in the specific scenario where for locking reasons
1242 * we try to access user memory in atomic context (within a pagefault_disable()
1243 * section), this returns -EFAULT, and we want to resolve the user fault before
1244 * trying again.
1245 *
1246 * Typically this is meant to be used by the futex code.
1247 *
1248 * The main difference with get_user_pages() is that this function will
1249 * unconditionally call handle_mm_fault() which will in turn perform all the
1250 * necessary SW fixup of the dirty and young bits in the PTE, while
1251 * get_user_pages() only guarantees to update these in the struct page.
1252 *
1253 * This is important for some architectures where those bits also gate the
1254 * access permission to the page because they are maintained in software. On
1255 * such architectures, gup() will not be enough to make a subsequent access
1256 * succeed.
1257 *
1258 * This function will not return with an unlocked mmap_lock. So it has not the
1259 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1260 */
1261int fixup_user_fault(struct mm_struct *mm,
1262 unsigned long address, unsigned int fault_flags,
1263 bool *unlocked)
1264{
1265 struct vm_area_struct *vma;
1266 vm_fault_t ret;
1267
1268 address = untagged_addr(address);
1269
1270 if (unlocked)
1271 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1272
1273retry:
1274 vma = find_extend_vma(mm, address);
1275 if (!vma || address < vma->vm_start)
1276 return -EFAULT;
1277
1278 if (!vma_permits_fault(vma, fault_flags))
1279 return -EFAULT;
1280
1281 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1282 fatal_signal_pending(current))
1283 return -EINTR;
1284
1285 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1286
1287 if (ret & VM_FAULT_COMPLETED) {
1288 /*
1289 * NOTE: it's a pity that we need to retake the lock here
1290 * to pair with the unlock() in the callers. Ideally we
1291 * could tell the callers so they do not need to unlock.
1292 */
1293 mmap_read_lock(mm);
1294 *unlocked = true;
1295 return 0;
1296 }
1297
1298 if (ret & VM_FAULT_ERROR) {
1299 int err = vm_fault_to_errno(ret, 0);
1300
1301 if (err)
1302 return err;
1303 BUG();
1304 }
1305
1306 if (ret & VM_FAULT_RETRY) {
1307 mmap_read_lock(mm);
1308 *unlocked = true;
1309 fault_flags |= FAULT_FLAG_TRIED;
1310 goto retry;
1311 }
1312
1313 return 0;
1314}
1315EXPORT_SYMBOL_GPL(fixup_user_fault);
1316
1317/*
1318 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1319 * specified, it'll also respond to generic signals. The caller of GUP
1320 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1321 */
1322static bool gup_signal_pending(unsigned int flags)
1323{
1324 if (fatal_signal_pending(current))
1325 return true;
1326
1327 if (!(flags & FOLL_INTERRUPTIBLE))
1328 return false;
1329
1330 return signal_pending(current);
1331}
1332
1333/*
1334 * Please note that this function, unlike __get_user_pages will not
1335 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1336 */
1337static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1338 unsigned long start,
1339 unsigned long nr_pages,
1340 struct page **pages,
1341 struct vm_area_struct **vmas,
1342 int *locked,
1343 unsigned int flags)
1344{
1345 long ret, pages_done;
1346 bool lock_dropped;
1347
1348 if (locked) {
1349 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1350 BUG_ON(vmas);
1351 /* check caller initialized locked */
1352 BUG_ON(*locked != 1);
1353 }
1354
1355 if (flags & FOLL_PIN)
1356 mm_set_has_pinned_flag(&mm->flags);
1357
1358 /*
1359 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1360 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1361 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1362 * for FOLL_GET, not for the newer FOLL_PIN.
1363 *
1364 * FOLL_PIN always expects pages to be non-null, but no need to assert
1365 * that here, as any failures will be obvious enough.
1366 */
1367 if (pages && !(flags & FOLL_PIN))
1368 flags |= FOLL_GET;
1369
1370 pages_done = 0;
1371 lock_dropped = false;
1372 for (;;) {
1373 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1374 vmas, locked);
1375 if (!locked)
1376 /* VM_FAULT_RETRY couldn't trigger, bypass */
1377 return ret;
1378
1379 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1380 if (!*locked) {
1381 BUG_ON(ret < 0);
1382 BUG_ON(ret >= nr_pages);
1383 }
1384
1385 if (ret > 0) {
1386 nr_pages -= ret;
1387 pages_done += ret;
1388 if (!nr_pages)
1389 break;
1390 }
1391 if (*locked) {
1392 /*
1393 * VM_FAULT_RETRY didn't trigger or it was a
1394 * FOLL_NOWAIT.
1395 */
1396 if (!pages_done)
1397 pages_done = ret;
1398 break;
1399 }
1400 /*
1401 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1402 * For the prefault case (!pages) we only update counts.
1403 */
1404 if (likely(pages))
1405 pages += ret;
1406 start += ret << PAGE_SHIFT;
1407 lock_dropped = true;
1408
1409retry:
1410 /*
1411 * Repeat on the address that fired VM_FAULT_RETRY
1412 * with both FAULT_FLAG_ALLOW_RETRY and
1413 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1414 * by fatal signals of even common signals, depending on
1415 * the caller's request. So we need to check it before we
1416 * start trying again otherwise it can loop forever.
1417 */
1418 if (gup_signal_pending(flags)) {
1419 if (!pages_done)
1420 pages_done = -EINTR;
1421 break;
1422 }
1423
1424 ret = mmap_read_lock_killable(mm);
1425 if (ret) {
1426 BUG_ON(ret > 0);
1427 if (!pages_done)
1428 pages_done = ret;
1429 break;
1430 }
1431
1432 *locked = 1;
1433 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1434 pages, NULL, locked);
1435 if (!*locked) {
1436 /* Continue to retry until we succeeded */
1437 BUG_ON(ret != 0);
1438 goto retry;
1439 }
1440 if (ret != 1) {
1441 BUG_ON(ret > 1);
1442 if (!pages_done)
1443 pages_done = ret;
1444 break;
1445 }
1446 nr_pages--;
1447 pages_done++;
1448 if (!nr_pages)
1449 break;
1450 if (likely(pages))
1451 pages++;
1452 start += PAGE_SIZE;
1453 }
1454 if (lock_dropped && *locked) {
1455 /*
1456 * We must let the caller know we temporarily dropped the lock
1457 * and so the critical section protected by it was lost.
1458 */
1459 mmap_read_unlock(mm);
1460 *locked = 0;
1461 }
1462 return pages_done;
1463}
1464
1465/**
1466 * populate_vma_page_range() - populate a range of pages in the vma.
1467 * @vma: target vma
1468 * @start: start address
1469 * @end: end address
1470 * @locked: whether the mmap_lock is still held
1471 *
1472 * This takes care of mlocking the pages too if VM_LOCKED is set.
1473 *
1474 * Return either number of pages pinned in the vma, or a negative error
1475 * code on error.
1476 *
1477 * vma->vm_mm->mmap_lock must be held.
1478 *
1479 * If @locked is NULL, it may be held for read or write and will
1480 * be unperturbed.
1481 *
1482 * If @locked is non-NULL, it must held for read only and may be
1483 * released. If it's released, *@locked will be set to 0.
1484 */
1485long populate_vma_page_range(struct vm_area_struct *vma,
1486 unsigned long start, unsigned long end, int *locked)
1487{
1488 struct mm_struct *mm = vma->vm_mm;
1489 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1490 int gup_flags;
1491 long ret;
1492
1493 VM_BUG_ON(!PAGE_ALIGNED(start));
1494 VM_BUG_ON(!PAGE_ALIGNED(end));
1495 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1496 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1497 mmap_assert_locked(mm);
1498
1499 /*
1500 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1501 * faultin_page() to break COW, so it has no work to do here.
1502 */
1503 if (vma->vm_flags & VM_LOCKONFAULT)
1504 return nr_pages;
1505
1506 gup_flags = FOLL_TOUCH;
1507 /*
1508 * We want to touch writable mappings with a write fault in order
1509 * to break COW, except for shared mappings because these don't COW
1510 * and we would not want to dirty them for nothing.
1511 */
1512 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1513 gup_flags |= FOLL_WRITE;
1514
1515 /*
1516 * We want mlock to succeed for regions that have any permissions
1517 * other than PROT_NONE.
1518 */
1519 if (vma_is_accessible(vma))
1520 gup_flags |= FOLL_FORCE;
1521
1522 /*
1523 * We made sure addr is within a VMA, so the following will
1524 * not result in a stack expansion that recurses back here.
1525 */
1526 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1527 NULL, NULL, locked);
1528 lru_add_drain();
1529 return ret;
1530}
1531
1532/*
1533 * faultin_vma_page_range() - populate (prefault) page tables inside the
1534 * given VMA range readable/writable
1535 *
1536 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1537 *
1538 * @vma: target vma
1539 * @start: start address
1540 * @end: end address
1541 * @write: whether to prefault readable or writable
1542 * @locked: whether the mmap_lock is still held
1543 *
1544 * Returns either number of processed pages in the vma, or a negative error
1545 * code on error (see __get_user_pages()).
1546 *
1547 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1548 * covered by the VMA.
1549 *
1550 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1551 *
1552 * If @locked is non-NULL, it must held for read only and may be released. If
1553 * it's released, *@locked will be set to 0.
1554 */
1555long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1556 unsigned long end, bool write, int *locked)
1557{
1558 struct mm_struct *mm = vma->vm_mm;
1559 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1560 int gup_flags;
1561 long ret;
1562
1563 VM_BUG_ON(!PAGE_ALIGNED(start));
1564 VM_BUG_ON(!PAGE_ALIGNED(end));
1565 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1566 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1567 mmap_assert_locked(mm);
1568
1569 /*
1570 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1571 * the page dirty with FOLL_WRITE -- which doesn't make a
1572 * difference with !FOLL_FORCE, because the page is writable
1573 * in the page table.
1574 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1575 * a poisoned page.
1576 * !FOLL_FORCE: Require proper access permissions.
1577 */
1578 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1579 if (write)
1580 gup_flags |= FOLL_WRITE;
1581
1582 /*
1583 * We want to report -EINVAL instead of -EFAULT for any permission
1584 * problems or incompatible mappings.
1585 */
1586 if (check_vma_flags(vma, gup_flags))
1587 return -EINVAL;
1588
1589 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1590 NULL, NULL, locked);
1591 lru_add_drain();
1592 return ret;
1593}
1594
1595/*
1596 * __mm_populate - populate and/or mlock pages within a range of address space.
1597 *
1598 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1599 * flags. VMAs must be already marked with the desired vm_flags, and
1600 * mmap_lock must not be held.
1601 */
1602int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1603{
1604 struct mm_struct *mm = current->mm;
1605 unsigned long end, nstart, nend;
1606 struct vm_area_struct *vma = NULL;
1607 int locked = 0;
1608 long ret = 0;
1609
1610 end = start + len;
1611
1612 for (nstart = start; nstart < end; nstart = nend) {
1613 /*
1614 * We want to fault in pages for [nstart; end) address range.
1615 * Find first corresponding VMA.
1616 */
1617 if (!locked) {
1618 locked = 1;
1619 mmap_read_lock(mm);
1620 vma = find_vma_intersection(mm, nstart, end);
1621 } else if (nstart >= vma->vm_end)
1622 vma = find_vma_intersection(mm, vma->vm_end, end);
1623
1624 if (!vma)
1625 break;
1626 /*
1627 * Set [nstart; nend) to intersection of desired address
1628 * range with the first VMA. Also, skip undesirable VMA types.
1629 */
1630 nend = min(end, vma->vm_end);
1631 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1632 continue;
1633 if (nstart < vma->vm_start)
1634 nstart = vma->vm_start;
1635 /*
1636 * Now fault in a range of pages. populate_vma_page_range()
1637 * double checks the vma flags, so that it won't mlock pages
1638 * if the vma was already munlocked.
1639 */
1640 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1641 if (ret < 0) {
1642 if (ignore_errors) {
1643 ret = 0;
1644 continue; /* continue at next VMA */
1645 }
1646 break;
1647 }
1648 nend = nstart + ret * PAGE_SIZE;
1649 ret = 0;
1650 }
1651 if (locked)
1652 mmap_read_unlock(mm);
1653 return ret; /* 0 or negative error code */
1654}
1655#else /* CONFIG_MMU */
1656static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1657 unsigned long nr_pages, struct page **pages,
1658 struct vm_area_struct **vmas, int *locked,
1659 unsigned int foll_flags)
1660{
1661 struct vm_area_struct *vma;
1662 unsigned long vm_flags;
1663 long i;
1664
1665 /* calculate required read or write permissions.
1666 * If FOLL_FORCE is set, we only require the "MAY" flags.
1667 */
1668 vm_flags = (foll_flags & FOLL_WRITE) ?
1669 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1670 vm_flags &= (foll_flags & FOLL_FORCE) ?
1671 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1672
1673 for (i = 0; i < nr_pages; i++) {
1674 vma = find_vma(mm, start);
1675 if (!vma)
1676 goto finish_or_fault;
1677
1678 /* protect what we can, including chardevs */
1679 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1680 !(vm_flags & vma->vm_flags))
1681 goto finish_or_fault;
1682
1683 if (pages) {
1684 pages[i] = virt_to_page((void *)start);
1685 if (pages[i])
1686 get_page(pages[i]);
1687 }
1688 if (vmas)
1689 vmas[i] = vma;
1690 start = (start + PAGE_SIZE) & PAGE_MASK;
1691 }
1692
1693 return i;
1694
1695finish_or_fault:
1696 return i ? : -EFAULT;
1697}
1698#endif /* !CONFIG_MMU */
1699
1700/**
1701 * fault_in_writeable - fault in userspace address range for writing
1702 * @uaddr: start of address range
1703 * @size: size of address range
1704 *
1705 * Returns the number of bytes not faulted in (like copy_to_user() and
1706 * copy_from_user()).
1707 */
1708size_t fault_in_writeable(char __user *uaddr, size_t size)
1709{
1710 char __user *start = uaddr, *end;
1711
1712 if (unlikely(size == 0))
1713 return 0;
1714 if (!user_write_access_begin(uaddr, size))
1715 return size;
1716 if (!PAGE_ALIGNED(uaddr)) {
1717 unsafe_put_user(0, uaddr, out);
1718 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1719 }
1720 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1721 if (unlikely(end < start))
1722 end = NULL;
1723 while (uaddr != end) {
1724 unsafe_put_user(0, uaddr, out);
1725 uaddr += PAGE_SIZE;
1726 }
1727
1728out:
1729 user_write_access_end();
1730 if (size > uaddr - start)
1731 return size - (uaddr - start);
1732 return 0;
1733}
1734EXPORT_SYMBOL(fault_in_writeable);
1735
1736/**
1737 * fault_in_subpage_writeable - fault in an address range for writing
1738 * @uaddr: start of address range
1739 * @size: size of address range
1740 *
1741 * Fault in a user address range for writing while checking for permissions at
1742 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1743 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1744 *
1745 * Returns the number of bytes not faulted in (like copy_to_user() and
1746 * copy_from_user()).
1747 */
1748size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1749{
1750 size_t faulted_in;
1751
1752 /*
1753 * Attempt faulting in at page granularity first for page table
1754 * permission checking. The arch-specific probe_subpage_writeable()
1755 * functions may not check for this.
1756 */
1757 faulted_in = size - fault_in_writeable(uaddr, size);
1758 if (faulted_in)
1759 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1760
1761 return size - faulted_in;
1762}
1763EXPORT_SYMBOL(fault_in_subpage_writeable);
1764
1765/*
1766 * fault_in_safe_writeable - fault in an address range for writing
1767 * @uaddr: start of address range
1768 * @size: length of address range
1769 *
1770 * Faults in an address range for writing. This is primarily useful when we
1771 * already know that some or all of the pages in the address range aren't in
1772 * memory.
1773 *
1774 * Unlike fault_in_writeable(), this function is non-destructive.
1775 *
1776 * Note that we don't pin or otherwise hold the pages referenced that we fault
1777 * in. There's no guarantee that they'll stay in memory for any duration of
1778 * time.
1779 *
1780 * Returns the number of bytes not faulted in, like copy_to_user() and
1781 * copy_from_user().
1782 */
1783size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1784{
1785 unsigned long start = (unsigned long)uaddr, end;
1786 struct mm_struct *mm = current->mm;
1787 bool unlocked = false;
1788
1789 if (unlikely(size == 0))
1790 return 0;
1791 end = PAGE_ALIGN(start + size);
1792 if (end < start)
1793 end = 0;
1794
1795 mmap_read_lock(mm);
1796 do {
1797 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1798 break;
1799 start = (start + PAGE_SIZE) & PAGE_MASK;
1800 } while (start != end);
1801 mmap_read_unlock(mm);
1802
1803 if (size > (unsigned long)uaddr - start)
1804 return size - ((unsigned long)uaddr - start);
1805 return 0;
1806}
1807EXPORT_SYMBOL(fault_in_safe_writeable);
1808
1809/**
1810 * fault_in_readable - fault in userspace address range for reading
1811 * @uaddr: start of user address range
1812 * @size: size of user address range
1813 *
1814 * Returns the number of bytes not faulted in (like copy_to_user() and
1815 * copy_from_user()).
1816 */
1817size_t fault_in_readable(const char __user *uaddr, size_t size)
1818{
1819 const char __user *start = uaddr, *end;
1820 volatile char c;
1821
1822 if (unlikely(size == 0))
1823 return 0;
1824 if (!user_read_access_begin(uaddr, size))
1825 return size;
1826 if (!PAGE_ALIGNED(uaddr)) {
1827 unsafe_get_user(c, uaddr, out);
1828 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1829 }
1830 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1831 if (unlikely(end < start))
1832 end = NULL;
1833 while (uaddr != end) {
1834 unsafe_get_user(c, uaddr, out);
1835 uaddr += PAGE_SIZE;
1836 }
1837
1838out:
1839 user_read_access_end();
1840 (void)c;
1841 if (size > uaddr - start)
1842 return size - (uaddr - start);
1843 return 0;
1844}
1845EXPORT_SYMBOL(fault_in_readable);
1846
1847/**
1848 * get_dump_page() - pin user page in memory while writing it to core dump
1849 * @addr: user address
1850 *
1851 * Returns struct page pointer of user page pinned for dump,
1852 * to be freed afterwards by put_page().
1853 *
1854 * Returns NULL on any kind of failure - a hole must then be inserted into
1855 * the corefile, to preserve alignment with its headers; and also returns
1856 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1857 * allowing a hole to be left in the corefile to save disk space.
1858 *
1859 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1860 */
1861#ifdef CONFIG_ELF_CORE
1862struct page *get_dump_page(unsigned long addr)
1863{
1864 struct mm_struct *mm = current->mm;
1865 struct page *page;
1866 int locked = 1;
1867 int ret;
1868
1869 if (mmap_read_lock_killable(mm))
1870 return NULL;
1871 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1872 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1873 if (locked)
1874 mmap_read_unlock(mm);
1875 return (ret == 1) ? page : NULL;
1876}
1877#endif /* CONFIG_ELF_CORE */
1878
1879#ifdef CONFIG_MIGRATION
1880/*
1881 * Returns the number of collected pages. Return value is always >= 0.
1882 */
1883static unsigned long collect_longterm_unpinnable_pages(
1884 struct list_head *movable_page_list,
1885 unsigned long nr_pages,
1886 struct page **pages)
1887{
1888 unsigned long i, collected = 0;
1889 struct folio *prev_folio = NULL;
1890 bool drain_allow = true;
1891
1892 for (i = 0; i < nr_pages; i++) {
1893 struct folio *folio = page_folio(pages[i]);
1894
1895 if (folio == prev_folio)
1896 continue;
1897 prev_folio = folio;
1898
1899 if (folio_is_longterm_pinnable(folio))
1900 continue;
1901
1902 collected++;
1903
1904 if (folio_is_device_coherent(folio))
1905 continue;
1906
1907 if (folio_test_hugetlb(folio)) {
1908 isolate_hugetlb(&folio->page, movable_page_list);
1909 continue;
1910 }
1911
1912 if (!folio_test_lru(folio) && drain_allow) {
1913 lru_add_drain_all();
1914 drain_allow = false;
1915 }
1916
1917 if (folio_isolate_lru(folio))
1918 continue;
1919
1920 list_add_tail(&folio->lru, movable_page_list);
1921 node_stat_mod_folio(folio,
1922 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1923 folio_nr_pages(folio));
1924 }
1925
1926 return collected;
1927}
1928
1929/*
1930 * Unpins all pages and migrates device coherent pages and movable_page_list.
1931 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1932 * (or partial success).
1933 */
1934static int migrate_longterm_unpinnable_pages(
1935 struct list_head *movable_page_list,
1936 unsigned long nr_pages,
1937 struct page **pages)
1938{
1939 int ret;
1940 unsigned long i;
1941
1942 for (i = 0; i < nr_pages; i++) {
1943 struct folio *folio = page_folio(pages[i]);
1944
1945 if (folio_is_device_coherent(folio)) {
1946 /*
1947 * Migration will fail if the page is pinned, so convert
1948 * the pin on the source page to a normal reference.
1949 */
1950 pages[i] = NULL;
1951 folio_get(folio);
1952 gup_put_folio(folio, 1, FOLL_PIN);
1953
1954 if (migrate_device_coherent_page(&folio->page)) {
1955 ret = -EBUSY;
1956 goto err;
1957 }
1958
1959 continue;
1960 }
1961
1962 /*
1963 * We can't migrate pages with unexpected references, so drop
1964 * the reference obtained by __get_user_pages_locked().
1965 * Migrating pages have been added to movable_page_list after
1966 * calling folio_isolate_lru() which takes a reference so the
1967 * page won't be freed if it's migrating.
1968 */
1969 unpin_user_page(pages[i]);
1970 pages[i] = NULL;
1971 }
1972
1973 if (!list_empty(movable_page_list)) {
1974 struct migration_target_control mtc = {
1975 .nid = NUMA_NO_NODE,
1976 .gfp_mask = GFP_USER | __GFP_NOWARN,
1977 };
1978
1979 if (migrate_pages(movable_page_list, alloc_migration_target,
1980 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1981 MR_LONGTERM_PIN, NULL)) {
1982 ret = -ENOMEM;
1983 goto err;
1984 }
1985 }
1986
1987 putback_movable_pages(movable_page_list);
1988
1989 return -EAGAIN;
1990
1991err:
1992 for (i = 0; i < nr_pages; i++)
1993 if (pages[i])
1994 unpin_user_page(pages[i]);
1995 putback_movable_pages(movable_page_list);
1996
1997 return ret;
1998}
1999
2000/*
2001 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2002 * pages in the range are required to be pinned via FOLL_PIN, before calling
2003 * this routine.
2004 *
2005 * If any pages in the range are not allowed to be pinned, then this routine
2006 * will migrate those pages away, unpin all the pages in the range and return
2007 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2008 * call this routine again.
2009 *
2010 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2011 * The caller should give up, and propagate the error back up the call stack.
2012 *
2013 * If everything is OK and all pages in the range are allowed to be pinned, then
2014 * this routine leaves all pages pinned and returns zero for success.
2015 */
2016static long check_and_migrate_movable_pages(unsigned long nr_pages,
2017 struct page **pages)
2018{
2019 unsigned long collected;
2020 LIST_HEAD(movable_page_list);
2021
2022 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2023 nr_pages, pages);
2024 if (!collected)
2025 return 0;
2026
2027 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2028 pages);
2029}
2030#else
2031static long check_and_migrate_movable_pages(unsigned long nr_pages,
2032 struct page **pages)
2033{
2034 return 0;
2035}
2036#endif /* CONFIG_MIGRATION */
2037
2038/*
2039 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2040 * allows us to process the FOLL_LONGTERM flag.
2041 */
2042static long __gup_longterm_locked(struct mm_struct *mm,
2043 unsigned long start,
2044 unsigned long nr_pages,
2045 struct page **pages,
2046 struct vm_area_struct **vmas,
2047 int *locked,
2048 unsigned int gup_flags)
2049{
2050 bool must_unlock = false;
2051 unsigned int flags;
2052 long rc, nr_pinned_pages;
2053
2054 if (locked && WARN_ON_ONCE(!*locked))
2055 return -EINVAL;
2056
2057 if (!(gup_flags & FOLL_LONGTERM))
2058 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2059 locked, gup_flags);
2060
2061 /*
2062 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2063 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2064 * correct to unconditionally call check_and_migrate_movable_pages()
2065 * which assumes pages have been pinned via FOLL_PIN.
2066 *
2067 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2068 */
2069 if (WARN_ON(!(gup_flags & FOLL_PIN)))
2070 return -EINVAL;
2071 flags = memalloc_pin_save();
2072 do {
2073 if (locked && !*locked) {
2074 mmap_read_lock(mm);
2075 must_unlock = true;
2076 *locked = 1;
2077 }
2078 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2079 pages, vmas, locked,
2080 gup_flags);
2081 if (nr_pinned_pages <= 0) {
2082 rc = nr_pinned_pages;
2083 break;
2084 }
2085 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2086 } while (rc == -EAGAIN);
2087 memalloc_pin_restore(flags);
2088
2089 if (locked && *locked && must_unlock) {
2090 mmap_read_unlock(mm);
2091 *locked = 0;
2092 }
2093 return rc ? rc : nr_pinned_pages;
2094}
2095
2096static bool is_valid_gup_flags(unsigned int gup_flags)
2097{
2098 /*
2099 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2100 * never directly by the caller, so enforce that with an assertion:
2101 */
2102 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2103 return false;
2104 /*
2105 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2106 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2107 * FOLL_PIN.
2108 */
2109 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2110 return false;
2111
2112 return true;
2113}
2114
2115#ifdef CONFIG_MMU
2116/**
2117 * get_user_pages_remote() - pin user pages in memory
2118 * @mm: mm_struct of target mm
2119 * @start: starting user address
2120 * @nr_pages: number of pages from start to pin
2121 * @gup_flags: flags modifying lookup behaviour
2122 * @pages: array that receives pointers to the pages pinned.
2123 * Should be at least nr_pages long. Or NULL, if caller
2124 * only intends to ensure the pages are faulted in.
2125 * @vmas: array of pointers to vmas corresponding to each page.
2126 * Or NULL if the caller does not require them.
2127 * @locked: pointer to lock flag indicating whether lock is held and
2128 * subsequently whether VM_FAULT_RETRY functionality can be
2129 * utilised. Lock must initially be held.
2130 *
2131 * Returns either number of pages pinned (which may be less than the
2132 * number requested), or an error. Details about the return value:
2133 *
2134 * -- If nr_pages is 0, returns 0.
2135 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2136 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2137 * pages pinned. Again, this may be less than nr_pages.
2138 *
2139 * The caller is responsible for releasing returned @pages, via put_page().
2140 *
2141 * @vmas are valid only as long as mmap_lock is held.
2142 *
2143 * Must be called with mmap_lock held for read or write.
2144 *
2145 * get_user_pages_remote walks a process's page tables and takes a reference
2146 * to each struct page that each user address corresponds to at a given
2147 * instant. That is, it takes the page that would be accessed if a user
2148 * thread accesses the given user virtual address at that instant.
2149 *
2150 * This does not guarantee that the page exists in the user mappings when
2151 * get_user_pages_remote returns, and there may even be a completely different
2152 * page there in some cases (eg. if mmapped pagecache has been invalidated
2153 * and subsequently re faulted). However it does guarantee that the page
2154 * won't be freed completely. And mostly callers simply care that the page
2155 * contains data that was valid *at some point in time*. Typically, an IO
2156 * or similar operation cannot guarantee anything stronger anyway because
2157 * locks can't be held over the syscall boundary.
2158 *
2159 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2160 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2161 * be called after the page is finished with, and before put_page is called.
2162 *
2163 * get_user_pages_remote is typically used for fewer-copy IO operations,
2164 * to get a handle on the memory by some means other than accesses
2165 * via the user virtual addresses. The pages may be submitted for
2166 * DMA to devices or accessed via their kernel linear mapping (via the
2167 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2168 *
2169 * See also get_user_pages_fast, for performance critical applications.
2170 *
2171 * get_user_pages_remote should be phased out in favor of
2172 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2173 * should use get_user_pages_remote because it cannot pass
2174 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2175 */
2176long get_user_pages_remote(struct mm_struct *mm,
2177 unsigned long start, unsigned long nr_pages,
2178 unsigned int gup_flags, struct page **pages,
2179 struct vm_area_struct **vmas, int *locked)
2180{
2181 if (!is_valid_gup_flags(gup_flags))
2182 return -EINVAL;
2183
2184 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
2185 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2186}
2187EXPORT_SYMBOL(get_user_pages_remote);
2188
2189#else /* CONFIG_MMU */
2190long get_user_pages_remote(struct mm_struct *mm,
2191 unsigned long start, unsigned long nr_pages,
2192 unsigned int gup_flags, struct page **pages,
2193 struct vm_area_struct **vmas, int *locked)
2194{
2195 return 0;
2196}
2197#endif /* !CONFIG_MMU */
2198
2199/**
2200 * get_user_pages() - pin user pages in memory
2201 * @start: starting user address
2202 * @nr_pages: number of pages from start to pin
2203 * @gup_flags: flags modifying lookup behaviour
2204 * @pages: array that receives pointers to the pages pinned.
2205 * Should be at least nr_pages long. Or NULL, if caller
2206 * only intends to ensure the pages are faulted in.
2207 * @vmas: array of pointers to vmas corresponding to each page.
2208 * Or NULL if the caller does not require them.
2209 *
2210 * This is the same as get_user_pages_remote(), just with a less-flexible
2211 * calling convention where we assume that the mm being operated on belongs to
2212 * the current task, and doesn't allow passing of a locked parameter. We also
2213 * obviously don't pass FOLL_REMOTE in here.
2214 */
2215long get_user_pages(unsigned long start, unsigned long nr_pages,
2216 unsigned int gup_flags, struct page **pages,
2217 struct vm_area_struct **vmas)
2218{
2219 if (!is_valid_gup_flags(gup_flags))
2220 return -EINVAL;
2221
2222 return __gup_longterm_locked(current->mm, start, nr_pages,
2223 pages, vmas, NULL, gup_flags | FOLL_TOUCH);
2224}
2225EXPORT_SYMBOL(get_user_pages);
2226
2227/*
2228 * get_user_pages_unlocked() is suitable to replace the form:
2229 *
2230 * mmap_read_lock(mm);
2231 * get_user_pages(mm, ..., pages, NULL);
2232 * mmap_read_unlock(mm);
2233 *
2234 * with:
2235 *
2236 * get_user_pages_unlocked(mm, ..., pages);
2237 *
2238 * It is functionally equivalent to get_user_pages_fast so
2239 * get_user_pages_fast should be used instead if specific gup_flags
2240 * (e.g. FOLL_FORCE) are not required.
2241 */
2242long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2243 struct page **pages, unsigned int gup_flags)
2244{
2245 struct mm_struct *mm = current->mm;
2246 int locked = 1;
2247 long ret;
2248
2249 mmap_read_lock(mm);
2250 ret = __gup_longterm_locked(mm, start, nr_pages, pages, NULL, &locked,
2251 gup_flags | FOLL_TOUCH);
2252 if (locked)
2253 mmap_read_unlock(mm);
2254 return ret;
2255}
2256EXPORT_SYMBOL(get_user_pages_unlocked);
2257
2258/*
2259 * Fast GUP
2260 *
2261 * get_user_pages_fast attempts to pin user pages by walking the page
2262 * tables directly and avoids taking locks. Thus the walker needs to be
2263 * protected from page table pages being freed from under it, and should
2264 * block any THP splits.
2265 *
2266 * One way to achieve this is to have the walker disable interrupts, and
2267 * rely on IPIs from the TLB flushing code blocking before the page table
2268 * pages are freed. This is unsuitable for architectures that do not need
2269 * to broadcast an IPI when invalidating TLBs.
2270 *
2271 * Another way to achieve this is to batch up page table containing pages
2272 * belonging to more than one mm_user, then rcu_sched a callback to free those
2273 * pages. Disabling interrupts will allow the fast_gup walker to both block
2274 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2275 * (which is a relatively rare event). The code below adopts this strategy.
2276 *
2277 * Before activating this code, please be aware that the following assumptions
2278 * are currently made:
2279 *
2280 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2281 * free pages containing page tables or TLB flushing requires IPI broadcast.
2282 *
2283 * *) ptes can be read atomically by the architecture.
2284 *
2285 * *) access_ok is sufficient to validate userspace address ranges.
2286 *
2287 * The last two assumptions can be relaxed by the addition of helper functions.
2288 *
2289 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2290 */
2291#ifdef CONFIG_HAVE_FAST_GUP
2292
2293static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2294 unsigned int flags,
2295 struct page **pages)
2296{
2297 while ((*nr) - nr_start) {
2298 struct page *page = pages[--(*nr)];
2299
2300 ClearPageReferenced(page);
2301 if (flags & FOLL_PIN)
2302 unpin_user_page(page);
2303 else
2304 put_page(page);
2305 }
2306}
2307
2308#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2309/*
2310 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2311 * operations.
2312 *
2313 * To pin the page, fast-gup needs to do below in order:
2314 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2315 *
2316 * For the rest of pgtable operations where pgtable updates can be racy
2317 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2318 * is pinned.
2319 *
2320 * Above will work for all pte-level operations, including THP split.
2321 *
2322 * For THP collapse, it's a bit more complicated because fast-gup may be
2323 * walking a pgtable page that is being freed (pte is still valid but pmd
2324 * can be cleared already). To avoid race in such condition, we need to
2325 * also check pmd here to make sure pmd doesn't change (corresponds to
2326 * pmdp_collapse_flush() in the THP collapse code path).
2327 */
2328static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2329 unsigned long end, unsigned int flags,
2330 struct page **pages, int *nr)
2331{
2332 struct dev_pagemap *pgmap = NULL;
2333 int nr_start = *nr, ret = 0;
2334 pte_t *ptep, *ptem;
2335
2336 ptem = ptep = pte_offset_map(&pmd, addr);
2337 do {
2338 pte_t pte = ptep_get_lockless(ptep);
2339 struct page *page;
2340 struct folio *folio;
2341
2342 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2343 goto pte_unmap;
2344
2345 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2346 goto pte_unmap;
2347
2348 if (pte_devmap(pte)) {
2349 if (unlikely(flags & FOLL_LONGTERM))
2350 goto pte_unmap;
2351
2352 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2353 if (unlikely(!pgmap)) {
2354 undo_dev_pagemap(nr, nr_start, flags, pages);
2355 goto pte_unmap;
2356 }
2357 } else if (pte_special(pte))
2358 goto pte_unmap;
2359
2360 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2361 page = pte_page(pte);
2362
2363 folio = try_grab_folio(page, 1, flags);
2364 if (!folio)
2365 goto pte_unmap;
2366
2367 if (unlikely(page_is_secretmem(page))) {
2368 gup_put_folio(folio, 1, flags);
2369 goto pte_unmap;
2370 }
2371
2372 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2373 unlikely(pte_val(pte) != pte_val(*ptep))) {
2374 gup_put_folio(folio, 1, flags);
2375 goto pte_unmap;
2376 }
2377
2378 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2379 gup_put_folio(folio, 1, flags);
2380 goto pte_unmap;
2381 }
2382
2383 /*
2384 * We need to make the page accessible if and only if we are
2385 * going to access its content (the FOLL_PIN case). Please
2386 * see Documentation/core-api/pin_user_pages.rst for
2387 * details.
2388 */
2389 if (flags & FOLL_PIN) {
2390 ret = arch_make_page_accessible(page);
2391 if (ret) {
2392 gup_put_folio(folio, 1, flags);
2393 goto pte_unmap;
2394 }
2395 }
2396 folio_set_referenced(folio);
2397 pages[*nr] = page;
2398 (*nr)++;
2399 } while (ptep++, addr += PAGE_SIZE, addr != end);
2400
2401 ret = 1;
2402
2403pte_unmap:
2404 if (pgmap)
2405 put_dev_pagemap(pgmap);
2406 pte_unmap(ptem);
2407 return ret;
2408}
2409#else
2410
2411/*
2412 * If we can't determine whether or not a pte is special, then fail immediately
2413 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2414 * to be special.
2415 *
2416 * For a futex to be placed on a THP tail page, get_futex_key requires a
2417 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2418 * useful to have gup_huge_pmd even if we can't operate on ptes.
2419 */
2420static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2421 unsigned long end, unsigned int flags,
2422 struct page **pages, int *nr)
2423{
2424 return 0;
2425}
2426#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2427
2428#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2429static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2430 unsigned long end, unsigned int flags,
2431 struct page **pages, int *nr)
2432{
2433 int nr_start = *nr;
2434 struct dev_pagemap *pgmap = NULL;
2435
2436 do {
2437 struct page *page = pfn_to_page(pfn);
2438
2439 pgmap = get_dev_pagemap(pfn, pgmap);
2440 if (unlikely(!pgmap)) {
2441 undo_dev_pagemap(nr, nr_start, flags, pages);
2442 break;
2443 }
2444
2445 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2446 undo_dev_pagemap(nr, nr_start, flags, pages);
2447 break;
2448 }
2449
2450 SetPageReferenced(page);
2451 pages[*nr] = page;
2452 if (unlikely(try_grab_page(page, flags))) {
2453 undo_dev_pagemap(nr, nr_start, flags, pages);
2454 break;
2455 }
2456 (*nr)++;
2457 pfn++;
2458 } while (addr += PAGE_SIZE, addr != end);
2459
2460 put_dev_pagemap(pgmap);
2461 return addr == end;
2462}
2463
2464static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2465 unsigned long end, unsigned int flags,
2466 struct page **pages, int *nr)
2467{
2468 unsigned long fault_pfn;
2469 int nr_start = *nr;
2470
2471 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2472 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2473 return 0;
2474
2475 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2476 undo_dev_pagemap(nr, nr_start, flags, pages);
2477 return 0;
2478 }
2479 return 1;
2480}
2481
2482static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2483 unsigned long end, unsigned int flags,
2484 struct page **pages, int *nr)
2485{
2486 unsigned long fault_pfn;
2487 int nr_start = *nr;
2488
2489 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2490 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2491 return 0;
2492
2493 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2494 undo_dev_pagemap(nr, nr_start, flags, pages);
2495 return 0;
2496 }
2497 return 1;
2498}
2499#else
2500static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2501 unsigned long end, unsigned int flags,
2502 struct page **pages, int *nr)
2503{
2504 BUILD_BUG();
2505 return 0;
2506}
2507
2508static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2509 unsigned long end, unsigned int flags,
2510 struct page **pages, int *nr)
2511{
2512 BUILD_BUG();
2513 return 0;
2514}
2515#endif
2516
2517static int record_subpages(struct page *page, unsigned long addr,
2518 unsigned long end, struct page **pages)
2519{
2520 int nr;
2521
2522 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2523 pages[nr] = nth_page(page, nr);
2524
2525 return nr;
2526}
2527
2528#ifdef CONFIG_ARCH_HAS_HUGEPD
2529static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2530 unsigned long sz)
2531{
2532 unsigned long __boundary = (addr + sz) & ~(sz-1);
2533 return (__boundary - 1 < end - 1) ? __boundary : end;
2534}
2535
2536static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2537 unsigned long end, unsigned int flags,
2538 struct page **pages, int *nr)
2539{
2540 unsigned long pte_end;
2541 struct page *page;
2542 struct folio *folio;
2543 pte_t pte;
2544 int refs;
2545
2546 pte_end = (addr + sz) & ~(sz-1);
2547 if (pte_end < end)
2548 end = pte_end;
2549
2550 pte = huge_ptep_get(ptep);
2551
2552 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2553 return 0;
2554
2555 /* hugepages are never "special" */
2556 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2557
2558 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2559 refs = record_subpages(page, addr, end, pages + *nr);
2560
2561 folio = try_grab_folio(page, refs, flags);
2562 if (!folio)
2563 return 0;
2564
2565 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2566 gup_put_folio(folio, refs, flags);
2567 return 0;
2568 }
2569
2570 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2571 gup_put_folio(folio, refs, flags);
2572 return 0;
2573 }
2574
2575 *nr += refs;
2576 folio_set_referenced(folio);
2577 return 1;
2578}
2579
2580static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2581 unsigned int pdshift, unsigned long end, unsigned int flags,
2582 struct page **pages, int *nr)
2583{
2584 pte_t *ptep;
2585 unsigned long sz = 1UL << hugepd_shift(hugepd);
2586 unsigned long next;
2587
2588 ptep = hugepte_offset(hugepd, addr, pdshift);
2589 do {
2590 next = hugepte_addr_end(addr, end, sz);
2591 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2592 return 0;
2593 } while (ptep++, addr = next, addr != end);
2594
2595 return 1;
2596}
2597#else
2598static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2599 unsigned int pdshift, unsigned long end, unsigned int flags,
2600 struct page **pages, int *nr)
2601{
2602 return 0;
2603}
2604#endif /* CONFIG_ARCH_HAS_HUGEPD */
2605
2606static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2607 unsigned long end, unsigned int flags,
2608 struct page **pages, int *nr)
2609{
2610 struct page *page;
2611 struct folio *folio;
2612 int refs;
2613
2614 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2615 return 0;
2616
2617 if (pmd_devmap(orig)) {
2618 if (unlikely(flags & FOLL_LONGTERM))
2619 return 0;
2620 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2621 pages, nr);
2622 }
2623
2624 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2625 refs = record_subpages(page, addr, end, pages + *nr);
2626
2627 folio = try_grab_folio(page, refs, flags);
2628 if (!folio)
2629 return 0;
2630
2631 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2632 gup_put_folio(folio, refs, flags);
2633 return 0;
2634 }
2635
2636 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2637 gup_put_folio(folio, refs, flags);
2638 return 0;
2639 }
2640
2641 *nr += refs;
2642 folio_set_referenced(folio);
2643 return 1;
2644}
2645
2646static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2647 unsigned long end, unsigned int flags,
2648 struct page **pages, int *nr)
2649{
2650 struct page *page;
2651 struct folio *folio;
2652 int refs;
2653
2654 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2655 return 0;
2656
2657 if (pud_devmap(orig)) {
2658 if (unlikely(flags & FOLL_LONGTERM))
2659 return 0;
2660 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2661 pages, nr);
2662 }
2663
2664 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2665 refs = record_subpages(page, addr, end, pages + *nr);
2666
2667 folio = try_grab_folio(page, refs, flags);
2668 if (!folio)
2669 return 0;
2670
2671 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2672 gup_put_folio(folio, refs, flags);
2673 return 0;
2674 }
2675
2676 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2677 gup_put_folio(folio, refs, flags);
2678 return 0;
2679 }
2680
2681 *nr += refs;
2682 folio_set_referenced(folio);
2683 return 1;
2684}
2685
2686static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2687 unsigned long end, unsigned int flags,
2688 struct page **pages, int *nr)
2689{
2690 int refs;
2691 struct page *page;
2692 struct folio *folio;
2693
2694 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2695 return 0;
2696
2697 BUILD_BUG_ON(pgd_devmap(orig));
2698
2699 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2700 refs = record_subpages(page, addr, end, pages + *nr);
2701
2702 folio = try_grab_folio(page, refs, flags);
2703 if (!folio)
2704 return 0;
2705
2706 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2707 gup_put_folio(folio, refs, flags);
2708 return 0;
2709 }
2710
2711 *nr += refs;
2712 folio_set_referenced(folio);
2713 return 1;
2714}
2715
2716static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2717 unsigned int flags, struct page **pages, int *nr)
2718{
2719 unsigned long next;
2720 pmd_t *pmdp;
2721
2722 pmdp = pmd_offset_lockless(pudp, pud, addr);
2723 do {
2724 pmd_t pmd = pmdp_get_lockless(pmdp);
2725
2726 next = pmd_addr_end(addr, end);
2727 if (!pmd_present(pmd))
2728 return 0;
2729
2730 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2731 pmd_devmap(pmd))) {
2732 if (pmd_protnone(pmd) &&
2733 !gup_can_follow_protnone(flags))
2734 return 0;
2735
2736 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2737 pages, nr))
2738 return 0;
2739
2740 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2741 /*
2742 * architecture have different format for hugetlbfs
2743 * pmd format and THP pmd format
2744 */
2745 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2746 PMD_SHIFT, next, flags, pages, nr))
2747 return 0;
2748 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2749 return 0;
2750 } while (pmdp++, addr = next, addr != end);
2751
2752 return 1;
2753}
2754
2755static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2756 unsigned int flags, struct page **pages, int *nr)
2757{
2758 unsigned long next;
2759 pud_t *pudp;
2760
2761 pudp = pud_offset_lockless(p4dp, p4d, addr);
2762 do {
2763 pud_t pud = READ_ONCE(*pudp);
2764
2765 next = pud_addr_end(addr, end);
2766 if (unlikely(!pud_present(pud)))
2767 return 0;
2768 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2769 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2770 pages, nr))
2771 return 0;
2772 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2773 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2774 PUD_SHIFT, next, flags, pages, nr))
2775 return 0;
2776 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2777 return 0;
2778 } while (pudp++, addr = next, addr != end);
2779
2780 return 1;
2781}
2782
2783static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2784 unsigned int flags, struct page **pages, int *nr)
2785{
2786 unsigned long next;
2787 p4d_t *p4dp;
2788
2789 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2790 do {
2791 p4d_t p4d = READ_ONCE(*p4dp);
2792
2793 next = p4d_addr_end(addr, end);
2794 if (p4d_none(p4d))
2795 return 0;
2796 BUILD_BUG_ON(p4d_huge(p4d));
2797 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2798 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2799 P4D_SHIFT, next, flags, pages, nr))
2800 return 0;
2801 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2802 return 0;
2803 } while (p4dp++, addr = next, addr != end);
2804
2805 return 1;
2806}
2807
2808static void gup_pgd_range(unsigned long addr, unsigned long end,
2809 unsigned int flags, struct page **pages, int *nr)
2810{
2811 unsigned long next;
2812 pgd_t *pgdp;
2813
2814 pgdp = pgd_offset(current->mm, addr);
2815 do {
2816 pgd_t pgd = READ_ONCE(*pgdp);
2817
2818 next = pgd_addr_end(addr, end);
2819 if (pgd_none(pgd))
2820 return;
2821 if (unlikely(pgd_huge(pgd))) {
2822 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2823 pages, nr))
2824 return;
2825 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2826 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2827 PGDIR_SHIFT, next, flags, pages, nr))
2828 return;
2829 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2830 return;
2831 } while (pgdp++, addr = next, addr != end);
2832}
2833#else
2834static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2835 unsigned int flags, struct page **pages, int *nr)
2836{
2837}
2838#endif /* CONFIG_HAVE_FAST_GUP */
2839
2840#ifndef gup_fast_permitted
2841/*
2842 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2843 * we need to fall back to the slow version:
2844 */
2845static bool gup_fast_permitted(unsigned long start, unsigned long end)
2846{
2847 return true;
2848}
2849#endif
2850
2851static unsigned long lockless_pages_from_mm(unsigned long start,
2852 unsigned long end,
2853 unsigned int gup_flags,
2854 struct page **pages)
2855{
2856 unsigned long flags;
2857 int nr_pinned = 0;
2858 unsigned seq;
2859
2860 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2861 !gup_fast_permitted(start, end))
2862 return 0;
2863
2864 if (gup_flags & FOLL_PIN) {
2865 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2866 if (seq & 1)
2867 return 0;
2868 }
2869
2870 /*
2871 * Disable interrupts. The nested form is used, in order to allow full,
2872 * general purpose use of this routine.
2873 *
2874 * With interrupts disabled, we block page table pages from being freed
2875 * from under us. See struct mmu_table_batch comments in
2876 * include/asm-generic/tlb.h for more details.
2877 *
2878 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2879 * that come from THPs splitting.
2880 */
2881 local_irq_save(flags);
2882 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2883 local_irq_restore(flags);
2884
2885 /*
2886 * When pinning pages for DMA there could be a concurrent write protect
2887 * from fork() via copy_page_range(), in this case always fail fast GUP.
2888 */
2889 if (gup_flags & FOLL_PIN) {
2890 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2891 unpin_user_pages_lockless(pages, nr_pinned);
2892 return 0;
2893 } else {
2894 sanity_check_pinned_pages(pages, nr_pinned);
2895 }
2896 }
2897 return nr_pinned;
2898}
2899
2900static int internal_get_user_pages_fast(unsigned long start,
2901 unsigned long nr_pages,
2902 unsigned int gup_flags,
2903 struct page **pages)
2904{
2905 unsigned long len, end;
2906 unsigned long nr_pinned;
2907 int ret;
2908
2909 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2910 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2911 FOLL_FAST_ONLY | FOLL_NOFAULT |
2912 FOLL_PCI_P2PDMA)))
2913 return -EINVAL;
2914
2915 if (gup_flags & FOLL_PIN)
2916 mm_set_has_pinned_flag(¤t->mm->flags);
2917
2918 if (!(gup_flags & FOLL_FAST_ONLY))
2919 might_lock_read(¤t->mm->mmap_lock);
2920
2921 start = untagged_addr(start) & PAGE_MASK;
2922 len = nr_pages << PAGE_SHIFT;
2923 if (check_add_overflow(start, len, &end))
2924 return 0;
2925 if (unlikely(!access_ok((void __user *)start, len)))
2926 return -EFAULT;
2927
2928 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2929 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2930 return nr_pinned;
2931
2932 /* Slow path: try to get the remaining pages with get_user_pages */
2933 start += nr_pinned << PAGE_SHIFT;
2934 pages += nr_pinned;
2935 ret = get_user_pages_unlocked(start, nr_pages - nr_pinned, pages,
2936 gup_flags);
2937 if (ret < 0) {
2938 /*
2939 * The caller has to unpin the pages we already pinned so
2940 * returning -errno is not an option
2941 */
2942 if (nr_pinned)
2943 return nr_pinned;
2944 return ret;
2945 }
2946 return ret + nr_pinned;
2947}
2948
2949/**
2950 * get_user_pages_fast_only() - pin user pages in memory
2951 * @start: starting user address
2952 * @nr_pages: number of pages from start to pin
2953 * @gup_flags: flags modifying pin behaviour
2954 * @pages: array that receives pointers to the pages pinned.
2955 * Should be at least nr_pages long.
2956 *
2957 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2958 * the regular GUP.
2959 * Note a difference with get_user_pages_fast: this always returns the
2960 * number of pages pinned, 0 if no pages were pinned.
2961 *
2962 * If the architecture does not support this function, simply return with no
2963 * pages pinned.
2964 *
2965 * Careful, careful! COW breaking can go either way, so a non-write
2966 * access can get ambiguous page results. If you call this function without
2967 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2968 */
2969int get_user_pages_fast_only(unsigned long start, int nr_pages,
2970 unsigned int gup_flags, struct page **pages)
2971{
2972 int nr_pinned;
2973 /*
2974 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2975 * because gup fast is always a "pin with a +1 page refcount" request.
2976 *
2977 * FOLL_FAST_ONLY is required in order to match the API description of
2978 * this routine: no fall back to regular ("slow") GUP.
2979 */
2980 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2981
2982 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2983 pages);
2984
2985 /*
2986 * As specified in the API description above, this routine is not
2987 * allowed to return negative values. However, the common core
2988 * routine internal_get_user_pages_fast() *can* return -errno.
2989 * Therefore, correct for that here:
2990 */
2991 if (nr_pinned < 0)
2992 nr_pinned = 0;
2993
2994 return nr_pinned;
2995}
2996EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2997
2998/**
2999 * get_user_pages_fast() - pin user pages in memory
3000 * @start: starting user address
3001 * @nr_pages: number of pages from start to pin
3002 * @gup_flags: flags modifying pin behaviour
3003 * @pages: array that receives pointers to the pages pinned.
3004 * Should be at least nr_pages long.
3005 *
3006 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3007 * If not successful, it will fall back to taking the lock and
3008 * calling get_user_pages().
3009 *
3010 * Returns number of pages pinned. This may be fewer than the number requested.
3011 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3012 * -errno.
3013 */
3014int get_user_pages_fast(unsigned long start, int nr_pages,
3015 unsigned int gup_flags, struct page **pages)
3016{
3017 if (!is_valid_gup_flags(gup_flags))
3018 return -EINVAL;
3019
3020 /*
3021 * The caller may or may not have explicitly set FOLL_GET; either way is
3022 * OK. However, internally (within mm/gup.c), gup fast variants must set
3023 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3024 * request.
3025 */
3026 gup_flags |= FOLL_GET;
3027 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3028}
3029EXPORT_SYMBOL_GPL(get_user_pages_fast);
3030
3031/**
3032 * pin_user_pages_fast() - pin user pages in memory without taking locks
3033 *
3034 * @start: starting user address
3035 * @nr_pages: number of pages from start to pin
3036 * @gup_flags: flags modifying pin behaviour
3037 * @pages: array that receives pointers to the pages pinned.
3038 * Should be at least nr_pages long.
3039 *
3040 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3041 * get_user_pages_fast() for documentation on the function arguments, because
3042 * the arguments here are identical.
3043 *
3044 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3045 * see Documentation/core-api/pin_user_pages.rst for further details.
3046 */
3047int pin_user_pages_fast(unsigned long start, int nr_pages,
3048 unsigned int gup_flags, struct page **pages)
3049{
3050 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3051 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3052 return -EINVAL;
3053
3054 if (WARN_ON_ONCE(!pages))
3055 return -EINVAL;
3056
3057 gup_flags |= FOLL_PIN;
3058 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3059}
3060EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3061
3062/*
3063 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3064 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3065 *
3066 * The API rules are the same, too: no negative values may be returned.
3067 */
3068int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3069 unsigned int gup_flags, struct page **pages)
3070{
3071 int nr_pinned;
3072
3073 /*
3074 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3075 * rules require returning 0, rather than -errno:
3076 */
3077 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3078 return 0;
3079
3080 if (WARN_ON_ONCE(!pages))
3081 return 0;
3082 /*
3083 * FOLL_FAST_ONLY is required in order to match the API description of
3084 * this routine: no fall back to regular ("slow") GUP.
3085 */
3086 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3087 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3088 pages);
3089 /*
3090 * This routine is not allowed to return negative values. However,
3091 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3092 * correct for that here:
3093 */
3094 if (nr_pinned < 0)
3095 nr_pinned = 0;
3096
3097 return nr_pinned;
3098}
3099EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3100
3101/**
3102 * pin_user_pages_remote() - pin pages of a remote process
3103 *
3104 * @mm: mm_struct of target mm
3105 * @start: starting user address
3106 * @nr_pages: number of pages from start to pin
3107 * @gup_flags: flags modifying lookup behaviour
3108 * @pages: array that receives pointers to the pages pinned.
3109 * Should be at least nr_pages long.
3110 * @vmas: array of pointers to vmas corresponding to each page.
3111 * Or NULL if the caller does not require them.
3112 * @locked: pointer to lock flag indicating whether lock is held and
3113 * subsequently whether VM_FAULT_RETRY functionality can be
3114 * utilised. Lock must initially be held.
3115 *
3116 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3117 * get_user_pages_remote() for documentation on the function arguments, because
3118 * the arguments here are identical.
3119 *
3120 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3121 * see Documentation/core-api/pin_user_pages.rst for details.
3122 */
3123long pin_user_pages_remote(struct mm_struct *mm,
3124 unsigned long start, unsigned long nr_pages,
3125 unsigned int gup_flags, struct page **pages,
3126 struct vm_area_struct **vmas, int *locked)
3127{
3128 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3129 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3130 return -EINVAL;
3131
3132 if (WARN_ON_ONCE(!pages))
3133 return -EINVAL;
3134
3135 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
3136 gup_flags | FOLL_PIN | FOLL_TOUCH |
3137 FOLL_REMOTE);
3138}
3139EXPORT_SYMBOL(pin_user_pages_remote);
3140
3141/**
3142 * pin_user_pages() - pin user pages in memory for use by other devices
3143 *
3144 * @start: starting user address
3145 * @nr_pages: number of pages from start to pin
3146 * @gup_flags: flags modifying lookup behaviour
3147 * @pages: array that receives pointers to the pages pinned.
3148 * Should be at least nr_pages long.
3149 * @vmas: array of pointers to vmas corresponding to each page.
3150 * Or NULL if the caller does not require them.
3151 *
3152 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3153 * FOLL_PIN is set.
3154 *
3155 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3156 * see Documentation/core-api/pin_user_pages.rst for details.
3157 */
3158long pin_user_pages(unsigned long start, unsigned long nr_pages,
3159 unsigned int gup_flags, struct page **pages,
3160 struct vm_area_struct **vmas)
3161{
3162 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3163 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3164 return -EINVAL;
3165
3166 if (WARN_ON_ONCE(!pages))
3167 return -EINVAL;
3168
3169 gup_flags |= FOLL_PIN;
3170 return __gup_longterm_locked(current->mm, start, nr_pages,
3171 pages, vmas, NULL, gup_flags);
3172}
3173EXPORT_SYMBOL(pin_user_pages);
3174
3175/*
3176 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3177 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3178 * FOLL_PIN and rejects FOLL_GET.
3179 */
3180long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3181 struct page **pages, unsigned int gup_flags)
3182{
3183 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3184 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3185 return -EINVAL;
3186
3187 if (WARN_ON_ONCE(!pages))
3188 return -EINVAL;
3189
3190 gup_flags |= FOLL_PIN;
3191 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3192}
3193EXPORT_SYMBOL(pin_user_pages_unlocked);