Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright 2016 IBM Corporation
  4 *
  5 * Joel Stanley <joel@jms.id.au>
  6 */
  7
  8#include <linux/bits.h>
  9#include <linux/delay.h>
 10#include <linux/interrupt.h>
 11#include <linux/io.h>
 12#include <linux/kernel.h>
 13#include <linux/kstrtox.h>
 14#include <linux/module.h>
 15#include <linux/of.h>
 16#include <linux/of_irq.h>
 17#include <linux/platform_device.h>
 18#include <linux/watchdog.h>
 19
 20static bool nowayout = WATCHDOG_NOWAYOUT;
 21module_param(nowayout, bool, 0);
 22MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
 23				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
 24
 25struct aspeed_wdt_config {
 26	u32 ext_pulse_width_mask;
 27	u32 irq_shift;
 28	u32 irq_mask;
 29};
 30
 31struct aspeed_wdt {
 32	struct watchdog_device	wdd;
 33	void __iomem		*base;
 34	u32			ctrl;
 35	const struct aspeed_wdt_config *cfg;
 36};
 37
 38static const struct aspeed_wdt_config ast2400_config = {
 39	.ext_pulse_width_mask = 0xff,
 40	.irq_shift = 0,
 41	.irq_mask = 0,
 42};
 43
 44static const struct aspeed_wdt_config ast2500_config = {
 45	.ext_pulse_width_mask = 0xfffff,
 46	.irq_shift = 12,
 47	.irq_mask = GENMASK(31, 12),
 48};
 49
 50static const struct aspeed_wdt_config ast2600_config = {
 51	.ext_pulse_width_mask = 0xfffff,
 52	.irq_shift = 0,
 53	.irq_mask = GENMASK(31, 10),
 54};
 55
 56static const struct of_device_id aspeed_wdt_of_table[] = {
 57	{ .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
 58	{ .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
 59	{ .compatible = "aspeed,ast2600-wdt", .data = &ast2600_config },
 60	{ },
 61};
 62MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
 63
 64#define WDT_STATUS		0x00
 65#define WDT_RELOAD_VALUE	0x04
 66#define WDT_RESTART		0x08
 67#define WDT_CTRL		0x0C
 68#define   WDT_CTRL_BOOT_SECONDARY	BIT(7)
 69#define   WDT_CTRL_RESET_MODE_SOC	(0x00 << 5)
 70#define   WDT_CTRL_RESET_MODE_FULL_CHIP	(0x01 << 5)
 71#define   WDT_CTRL_RESET_MODE_ARM_CPU	(0x10 << 5)
 72#define   WDT_CTRL_1MHZ_CLK		BIT(4)
 73#define   WDT_CTRL_WDT_EXT		BIT(3)
 74#define   WDT_CTRL_WDT_INTR		BIT(2)
 75#define   WDT_CTRL_RESET_SYSTEM		BIT(1)
 76#define   WDT_CTRL_ENABLE		BIT(0)
 77#define WDT_TIMEOUT_STATUS	0x10
 78#define   WDT_TIMEOUT_STATUS_IRQ		BIT(2)
 79#define   WDT_TIMEOUT_STATUS_BOOT_SECONDARY	BIT(1)
 80#define WDT_CLEAR_TIMEOUT_STATUS	0x14
 81#define   WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION	BIT(0)
 82#define WDT_RESET_MASK1		0x1c
 83#define WDT_RESET_MASK2		0x20
 84
 85/*
 86 * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
 87 * enabled), specifically:
 88 *
 89 * * Pulse duration
 90 * * Drive mode: push-pull vs open-drain
 91 * * Polarity: Active high or active low
 92 *
 93 * Pulse duration configuration is available on both the AST2400 and AST2500,
 94 * though the field changes between SoCs:
 95 *
 96 * AST2400: Bits 7:0
 97 * AST2500: Bits 19:0
 98 *
 99 * This difference is captured in struct aspeed_wdt_config.
100 *
101 * The AST2500 exposes the drive mode and polarity options, but not in a
102 * regular fashion. For read purposes, bit 31 represents active high or low,
103 * and bit 30 represents push-pull or open-drain. With respect to write, magic
104 * values need to be written to the top byte to change the state of the drive
105 * mode and polarity bits. Any other value written to the top byte has no
106 * effect on the state of the drive mode or polarity bits. However, the pulse
107 * width value must be preserved (as desired) if written.
108 */
109#define WDT_RESET_WIDTH		0x18
110#define   WDT_RESET_WIDTH_ACTIVE_HIGH	BIT(31)
111#define     WDT_ACTIVE_HIGH_MAGIC	(0xA5 << 24)
112#define     WDT_ACTIVE_LOW_MAGIC	(0x5A << 24)
113#define   WDT_RESET_WIDTH_PUSH_PULL	BIT(30)
114#define     WDT_PUSH_PULL_MAGIC		(0xA8 << 24)
115#define     WDT_OPEN_DRAIN_MAGIC	(0x8A << 24)
116
117#define WDT_RESTART_MAGIC	0x4755
118
119/* 32 bits at 1MHz, in milliseconds */
120#define WDT_MAX_TIMEOUT_MS	4294967
121#define WDT_DEFAULT_TIMEOUT	30
122#define WDT_RATE_1MHZ		1000000
123
124static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
125{
126	return container_of(wdd, struct aspeed_wdt, wdd);
127}
128
129static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
130{
131	wdt->ctrl |= WDT_CTRL_ENABLE;
132
133	writel(0, wdt->base + WDT_CTRL);
134	writel(count, wdt->base + WDT_RELOAD_VALUE);
135	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
136	writel(wdt->ctrl, wdt->base + WDT_CTRL);
137}
138
139static int aspeed_wdt_start(struct watchdog_device *wdd)
140{
141	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
142
143	aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
144
145	return 0;
146}
147
148static int aspeed_wdt_stop(struct watchdog_device *wdd)
149{
150	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
151
152	wdt->ctrl &= ~WDT_CTRL_ENABLE;
153	writel(wdt->ctrl, wdt->base + WDT_CTRL);
154
155	return 0;
156}
157
158static int aspeed_wdt_ping(struct watchdog_device *wdd)
159{
160	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
161
162	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
163
164	return 0;
165}
166
167static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
168				  unsigned int timeout)
169{
170	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
171	u32 actual;
172
173	wdd->timeout = timeout;
174
175	actual = min(timeout, wdd->max_hw_heartbeat_ms / 1000);
176
177	writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
178	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
179
180	return 0;
181}
182
183static int aspeed_wdt_set_pretimeout(struct watchdog_device *wdd,
184				     unsigned int pretimeout)
185{
186	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
187	u32 actual = pretimeout * WDT_RATE_1MHZ;
188	u32 s = wdt->cfg->irq_shift;
189	u32 m = wdt->cfg->irq_mask;
190
191	wdd->pretimeout = pretimeout;
192	wdt->ctrl &= ~m;
193	if (pretimeout)
194		wdt->ctrl |= ((actual << s) & m) | WDT_CTRL_WDT_INTR;
195	else
196		wdt->ctrl &= ~WDT_CTRL_WDT_INTR;
197
198	writel(wdt->ctrl, wdt->base + WDT_CTRL);
199
200	return 0;
201}
202
203static int aspeed_wdt_restart(struct watchdog_device *wdd,
204			      unsigned long action, void *data)
205{
206	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
207
208	wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
209	aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
210
211	mdelay(1000);
212
213	return 0;
214}
215
216/* access_cs0 shows if cs0 is accessible, hence the reverted bit */
217static ssize_t access_cs0_show(struct device *dev,
218			       struct device_attribute *attr, char *buf)
219{
220	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
221	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
222
223	return sysfs_emit(buf, "%u\n",
224			  !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
225}
226
227static ssize_t access_cs0_store(struct device *dev,
228				struct device_attribute *attr, const char *buf,
229				size_t size)
230{
231	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
232	unsigned long val;
233
234	if (kstrtoul(buf, 10, &val))
235		return -EINVAL;
236
237	if (val)
238		writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
239		       wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
240
241	return size;
242}
243
244/*
245 * This attribute exists only if the system has booted from the alternate
246 * flash with 'alt-boot' option.
247 *
248 * At alternate flash the 'access_cs0' sysfs node provides:
249 *   ast2400: a way to get access to the primary SPI flash chip at CS0
250 *            after booting from the alternate chip at CS1.
251 *   ast2500: a way to restore the normal address mapping from
252 *            (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
253 *
254 * Clearing the boot code selection and timeout counter also resets to the
255 * initial state the chip select line mapping. When the SoC is in normal
256 * mapping state (i.e. booted from CS0), clearing those bits does nothing for
257 * both versions of the SoC. For alternate boot mode (booted from CS1 due to
258 * wdt2 expiration) the behavior differs as described above.
259 *
260 * This option can be used with wdt2 (watchdog1) only.
261 */
262static DEVICE_ATTR_RW(access_cs0);
263
264static struct attribute *bswitch_attrs[] = {
265	&dev_attr_access_cs0.attr,
266	NULL
267};
268ATTRIBUTE_GROUPS(bswitch);
269
270static const struct watchdog_ops aspeed_wdt_ops = {
271	.start		= aspeed_wdt_start,
272	.stop		= aspeed_wdt_stop,
273	.ping		= aspeed_wdt_ping,
274	.set_timeout	= aspeed_wdt_set_timeout,
275	.set_pretimeout = aspeed_wdt_set_pretimeout,
276	.restart	= aspeed_wdt_restart,
277	.owner		= THIS_MODULE,
278};
279
280static const struct watchdog_info aspeed_wdt_info = {
281	.options	= WDIOF_KEEPALIVEPING
282			| WDIOF_MAGICCLOSE
283			| WDIOF_SETTIMEOUT,
284	.identity	= KBUILD_MODNAME,
285};
286
287static const struct watchdog_info aspeed_wdt_pretimeout_info = {
288	.options	= WDIOF_KEEPALIVEPING
289			| WDIOF_PRETIMEOUT
290			| WDIOF_MAGICCLOSE
291			| WDIOF_SETTIMEOUT,
292	.identity	= KBUILD_MODNAME,
293};
294
295static irqreturn_t aspeed_wdt_irq(int irq, void *arg)
296{
297	struct watchdog_device *wdd = arg;
298	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
299	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
300
301	if (status & WDT_TIMEOUT_STATUS_IRQ)
302		watchdog_notify_pretimeout(wdd);
303
304	return IRQ_HANDLED;
305}
306
307static int aspeed_wdt_probe(struct platform_device *pdev)
308{
309	struct device *dev = &pdev->dev;
310	const struct of_device_id *ofdid;
311	struct aspeed_wdt *wdt;
312	struct device_node *np;
313	const char *reset_type;
314	u32 duration;
315	u32 status;
316	int ret;
317
318	wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
319	if (!wdt)
320		return -ENOMEM;
321
322	np = dev->of_node;
323
324	ofdid = of_match_node(aspeed_wdt_of_table, np);
325	if (!ofdid)
326		return -EINVAL;
327	wdt->cfg = ofdid->data;
328
329	wdt->base = devm_platform_ioremap_resource(pdev, 0);
330	if (IS_ERR(wdt->base))
331		return PTR_ERR(wdt->base);
332
333	wdt->wdd.info = &aspeed_wdt_info;
334
335	if (wdt->cfg->irq_mask) {
336		int irq = platform_get_irq_optional(pdev, 0);
337
338		if (irq > 0) {
339			ret = devm_request_irq(dev, irq, aspeed_wdt_irq,
340					       IRQF_SHARED, dev_name(dev),
341					       wdt);
342			if (ret)
343				return ret;
344
345			wdt->wdd.info = &aspeed_wdt_pretimeout_info;
346		}
347	}
348
349	wdt->wdd.ops = &aspeed_wdt_ops;
350	wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
351	wdt->wdd.parent = dev;
352
353	wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
354	watchdog_init_timeout(&wdt->wdd, 0, dev);
355
356	watchdog_set_nowayout(&wdt->wdd, nowayout);
357
358	/*
359	 * On clock rates:
360	 *  - ast2400 wdt can run at PCLK, or 1MHz
361	 *  - ast2500 only runs at 1MHz, hard coding bit 4 to 1
362	 *  - ast2600 always runs at 1MHz
363	 *
364	 * Set the ast2400 to run at 1MHz as it simplifies the driver.
365	 */
366	if (of_device_is_compatible(np, "aspeed,ast2400-wdt"))
367		wdt->ctrl = WDT_CTRL_1MHZ_CLK;
368
369	/*
370	 * Control reset on a per-device basis to ensure the
371	 * host is not affected by a BMC reboot
372	 */
373	ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
374	if (ret) {
375		wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
376	} else {
377		if (!strcmp(reset_type, "cpu"))
378			wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
379				     WDT_CTRL_RESET_SYSTEM;
380		else if (!strcmp(reset_type, "soc"))
381			wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
382				     WDT_CTRL_RESET_SYSTEM;
383		else if (!strcmp(reset_type, "system"))
384			wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
385				     WDT_CTRL_RESET_SYSTEM;
386		else if (strcmp(reset_type, "none"))
387			return -EINVAL;
388	}
389	if (of_property_read_bool(np, "aspeed,external-signal"))
390		wdt->ctrl |= WDT_CTRL_WDT_EXT;
391	if (of_property_read_bool(np, "aspeed,alt-boot"))
392		wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
393
394	if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE)  {
395		/*
396		 * The watchdog is running, but invoke aspeed_wdt_start() to
397		 * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
398		 * configuration conforms to the driver's expectations.
399		 * Primarily, ensure we're using the 1MHz clock source.
400		 */
401		aspeed_wdt_start(&wdt->wdd);
402		set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
403	}
404
405	if ((of_device_is_compatible(np, "aspeed,ast2500-wdt")) ||
406		(of_device_is_compatible(np, "aspeed,ast2600-wdt"))) {
407		u32 reset_mask[2];
408		size_t nrstmask = of_device_is_compatible(np, "aspeed,ast2600-wdt") ? 2 : 1;
409		u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
410
411		reg &= wdt->cfg->ext_pulse_width_mask;
412		if (of_property_read_bool(np, "aspeed,ext-active-high"))
413			reg |= WDT_ACTIVE_HIGH_MAGIC;
414		else
415			reg |= WDT_ACTIVE_LOW_MAGIC;
416
417		writel(reg, wdt->base + WDT_RESET_WIDTH);
418
419		reg &= wdt->cfg->ext_pulse_width_mask;
420		if (of_property_read_bool(np, "aspeed,ext-push-pull"))
421			reg |= WDT_PUSH_PULL_MAGIC;
422		else
423			reg |= WDT_OPEN_DRAIN_MAGIC;
424
425		writel(reg, wdt->base + WDT_RESET_WIDTH);
426
427		ret = of_property_read_u32_array(np, "aspeed,reset-mask", reset_mask, nrstmask);
428		if (!ret) {
429			writel(reset_mask[0], wdt->base + WDT_RESET_MASK1);
430			if (nrstmask > 1)
431				writel(reset_mask[1], wdt->base + WDT_RESET_MASK2);
432		}
433	}
434
435	if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
436		u32 max_duration = wdt->cfg->ext_pulse_width_mask + 1;
437
438		if (duration == 0 || duration > max_duration) {
439			dev_err(dev, "Invalid pulse duration: %uus\n",
440				duration);
441			duration = max(1U, min(max_duration, duration));
442			dev_info(dev, "Pulse duration set to %uus\n",
443				 duration);
444		}
445
446		/*
447		 * The watchdog is always configured with a 1MHz source, so
448		 * there is no need to scale the microsecond value. However we
449		 * need to offset it - from the datasheet:
450		 *
451		 * "This register decides the asserting duration of wdt_ext and
452		 * wdt_rstarm signal. The default value is 0xFF. It means the
453		 * default asserting duration of wdt_ext and wdt_rstarm is
454		 * 256us."
455		 *
456		 * This implies a value of 0 gives a 1us pulse.
457		 */
458		writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
459	}
460
461	status = readl(wdt->base + WDT_TIMEOUT_STATUS);
462	if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
463		wdt->wdd.bootstatus = WDIOF_CARDRESET;
464
465		if (of_device_is_compatible(np, "aspeed,ast2400-wdt") ||
466		    of_device_is_compatible(np, "aspeed,ast2500-wdt"))
467			wdt->wdd.groups = bswitch_groups;
468	}
469
470	dev_set_drvdata(dev, wdt);
471
472	return devm_watchdog_register_device(dev, &wdt->wdd);
473}
474
475static struct platform_driver aspeed_watchdog_driver = {
476	.probe = aspeed_wdt_probe,
477	.driver = {
478		.name = KBUILD_MODNAME,
479		.of_match_table = aspeed_wdt_of_table,
480	},
481};
482
483static int __init aspeed_wdt_init(void)
484{
485	return platform_driver_register(&aspeed_watchdog_driver);
486}
487arch_initcall(aspeed_wdt_init);
488
489static void __exit aspeed_wdt_exit(void)
490{
491	platform_driver_unregister(&aspeed_watchdog_driver);
492}
493module_exit(aspeed_wdt_exit);
494
495MODULE_DESCRIPTION("Aspeed Watchdog Driver");
496MODULE_LICENSE("GPL");
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright 2016 IBM Corporation
  4 *
  5 * Joel Stanley <joel@jms.id.au>
  6 */
  7
  8#include <linux/bits.h>
  9#include <linux/delay.h>
 10#include <linux/interrupt.h>
 11#include <linux/io.h>
 12#include <linux/kernel.h>
 
 13#include <linux/module.h>
 14#include <linux/of.h>
 15#include <linux/of_irq.h>
 16#include <linux/platform_device.h>
 17#include <linux/watchdog.h>
 18
 19static bool nowayout = WATCHDOG_NOWAYOUT;
 20module_param(nowayout, bool, 0);
 21MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
 22				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
 23
 24struct aspeed_wdt_config {
 25	u32 ext_pulse_width_mask;
 26	u32 irq_shift;
 27	u32 irq_mask;
 28};
 29
 30struct aspeed_wdt {
 31	struct watchdog_device	wdd;
 32	void __iomem		*base;
 33	u32			ctrl;
 34	const struct aspeed_wdt_config *cfg;
 35};
 36
 37static const struct aspeed_wdt_config ast2400_config = {
 38	.ext_pulse_width_mask = 0xff,
 39	.irq_shift = 0,
 40	.irq_mask = 0,
 41};
 42
 43static const struct aspeed_wdt_config ast2500_config = {
 44	.ext_pulse_width_mask = 0xfffff,
 45	.irq_shift = 12,
 46	.irq_mask = GENMASK(31, 12),
 47};
 48
 49static const struct aspeed_wdt_config ast2600_config = {
 50	.ext_pulse_width_mask = 0xfffff,
 51	.irq_shift = 0,
 52	.irq_mask = GENMASK(31, 10),
 53};
 54
 55static const struct of_device_id aspeed_wdt_of_table[] = {
 56	{ .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
 57	{ .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
 58	{ .compatible = "aspeed,ast2600-wdt", .data = &ast2600_config },
 59	{ },
 60};
 61MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
 62
 63#define WDT_STATUS		0x00
 64#define WDT_RELOAD_VALUE	0x04
 65#define WDT_RESTART		0x08
 66#define WDT_CTRL		0x0C
 67#define   WDT_CTRL_BOOT_SECONDARY	BIT(7)
 68#define   WDT_CTRL_RESET_MODE_SOC	(0x00 << 5)
 69#define   WDT_CTRL_RESET_MODE_FULL_CHIP	(0x01 << 5)
 70#define   WDT_CTRL_RESET_MODE_ARM_CPU	(0x10 << 5)
 71#define   WDT_CTRL_1MHZ_CLK		BIT(4)
 72#define   WDT_CTRL_WDT_EXT		BIT(3)
 73#define   WDT_CTRL_WDT_INTR		BIT(2)
 74#define   WDT_CTRL_RESET_SYSTEM		BIT(1)
 75#define   WDT_CTRL_ENABLE		BIT(0)
 76#define WDT_TIMEOUT_STATUS	0x10
 77#define   WDT_TIMEOUT_STATUS_IRQ		BIT(2)
 78#define   WDT_TIMEOUT_STATUS_BOOT_SECONDARY	BIT(1)
 79#define WDT_CLEAR_TIMEOUT_STATUS	0x14
 80#define   WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION	BIT(0)
 
 
 81
 82/*
 83 * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
 84 * enabled), specifically:
 85 *
 86 * * Pulse duration
 87 * * Drive mode: push-pull vs open-drain
 88 * * Polarity: Active high or active low
 89 *
 90 * Pulse duration configuration is available on both the AST2400 and AST2500,
 91 * though the field changes between SoCs:
 92 *
 93 * AST2400: Bits 7:0
 94 * AST2500: Bits 19:0
 95 *
 96 * This difference is captured in struct aspeed_wdt_config.
 97 *
 98 * The AST2500 exposes the drive mode and polarity options, but not in a
 99 * regular fashion. For read purposes, bit 31 represents active high or low,
100 * and bit 30 represents push-pull or open-drain. With respect to write, magic
101 * values need to be written to the top byte to change the state of the drive
102 * mode and polarity bits. Any other value written to the top byte has no
103 * effect on the state of the drive mode or polarity bits. However, the pulse
104 * width value must be preserved (as desired) if written.
105 */
106#define WDT_RESET_WIDTH		0x18
107#define   WDT_RESET_WIDTH_ACTIVE_HIGH	BIT(31)
108#define     WDT_ACTIVE_HIGH_MAGIC	(0xA5 << 24)
109#define     WDT_ACTIVE_LOW_MAGIC	(0x5A << 24)
110#define   WDT_RESET_WIDTH_PUSH_PULL	BIT(30)
111#define     WDT_PUSH_PULL_MAGIC		(0xA8 << 24)
112#define     WDT_OPEN_DRAIN_MAGIC	(0x8A << 24)
113
114#define WDT_RESTART_MAGIC	0x4755
115
116/* 32 bits at 1MHz, in milliseconds */
117#define WDT_MAX_TIMEOUT_MS	4294967
118#define WDT_DEFAULT_TIMEOUT	30
119#define WDT_RATE_1MHZ		1000000
120
121static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
122{
123	return container_of(wdd, struct aspeed_wdt, wdd);
124}
125
126static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
127{
128	wdt->ctrl |= WDT_CTRL_ENABLE;
129
130	writel(0, wdt->base + WDT_CTRL);
131	writel(count, wdt->base + WDT_RELOAD_VALUE);
132	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
133	writel(wdt->ctrl, wdt->base + WDT_CTRL);
134}
135
136static int aspeed_wdt_start(struct watchdog_device *wdd)
137{
138	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
139
140	aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
141
142	return 0;
143}
144
145static int aspeed_wdt_stop(struct watchdog_device *wdd)
146{
147	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
148
149	wdt->ctrl &= ~WDT_CTRL_ENABLE;
150	writel(wdt->ctrl, wdt->base + WDT_CTRL);
151
152	return 0;
153}
154
155static int aspeed_wdt_ping(struct watchdog_device *wdd)
156{
157	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
158
159	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
160
161	return 0;
162}
163
164static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
165				  unsigned int timeout)
166{
167	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
168	u32 actual;
169
170	wdd->timeout = timeout;
171
172	actual = min(timeout, wdd->max_hw_heartbeat_ms / 1000);
173
174	writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
175	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
176
177	return 0;
178}
179
180static int aspeed_wdt_set_pretimeout(struct watchdog_device *wdd,
181				     unsigned int pretimeout)
182{
183	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
184	u32 actual = pretimeout * WDT_RATE_1MHZ;
185	u32 s = wdt->cfg->irq_shift;
186	u32 m = wdt->cfg->irq_mask;
187
188	wdd->pretimeout = pretimeout;
189	wdt->ctrl &= ~m;
190	if (pretimeout)
191		wdt->ctrl |= ((actual << s) & m) | WDT_CTRL_WDT_INTR;
192	else
193		wdt->ctrl &= ~WDT_CTRL_WDT_INTR;
194
195	writel(wdt->ctrl, wdt->base + WDT_CTRL);
196
197	return 0;
198}
199
200static int aspeed_wdt_restart(struct watchdog_device *wdd,
201			      unsigned long action, void *data)
202{
203	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
204
205	wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
206	aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
207
208	mdelay(1000);
209
210	return 0;
211}
212
213/* access_cs0 shows if cs0 is accessible, hence the reverted bit */
214static ssize_t access_cs0_show(struct device *dev,
215			       struct device_attribute *attr, char *buf)
216{
217	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
218	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
219
220	return sysfs_emit(buf, "%u\n",
221			  !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
222}
223
224static ssize_t access_cs0_store(struct device *dev,
225				struct device_attribute *attr, const char *buf,
226				size_t size)
227{
228	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
229	unsigned long val;
230
231	if (kstrtoul(buf, 10, &val))
232		return -EINVAL;
233
234	if (val)
235		writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
236		       wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
237
238	return size;
239}
240
241/*
242 * This attribute exists only if the system has booted from the alternate
243 * flash with 'alt-boot' option.
244 *
245 * At alternate flash the 'access_cs0' sysfs node provides:
246 *   ast2400: a way to get access to the primary SPI flash chip at CS0
247 *            after booting from the alternate chip at CS1.
248 *   ast2500: a way to restore the normal address mapping from
249 *            (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
250 *
251 * Clearing the boot code selection and timeout counter also resets to the
252 * initial state the chip select line mapping. When the SoC is in normal
253 * mapping state (i.e. booted from CS0), clearing those bits does nothing for
254 * both versions of the SoC. For alternate boot mode (booted from CS1 due to
255 * wdt2 expiration) the behavior differs as described above.
256 *
257 * This option can be used with wdt2 (watchdog1) only.
258 */
259static DEVICE_ATTR_RW(access_cs0);
260
261static struct attribute *bswitch_attrs[] = {
262	&dev_attr_access_cs0.attr,
263	NULL
264};
265ATTRIBUTE_GROUPS(bswitch);
266
267static const struct watchdog_ops aspeed_wdt_ops = {
268	.start		= aspeed_wdt_start,
269	.stop		= aspeed_wdt_stop,
270	.ping		= aspeed_wdt_ping,
271	.set_timeout	= aspeed_wdt_set_timeout,
272	.set_pretimeout = aspeed_wdt_set_pretimeout,
273	.restart	= aspeed_wdt_restart,
274	.owner		= THIS_MODULE,
275};
276
277static const struct watchdog_info aspeed_wdt_info = {
278	.options	= WDIOF_KEEPALIVEPING
279			| WDIOF_MAGICCLOSE
280			| WDIOF_SETTIMEOUT,
281	.identity	= KBUILD_MODNAME,
282};
283
284static const struct watchdog_info aspeed_wdt_pretimeout_info = {
285	.options	= WDIOF_KEEPALIVEPING
286			| WDIOF_PRETIMEOUT
287			| WDIOF_MAGICCLOSE
288			| WDIOF_SETTIMEOUT,
289	.identity	= KBUILD_MODNAME,
290};
291
292static irqreturn_t aspeed_wdt_irq(int irq, void *arg)
293{
294	struct watchdog_device *wdd = arg;
295	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
296	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
297
298	if (status & WDT_TIMEOUT_STATUS_IRQ)
299		watchdog_notify_pretimeout(wdd);
300
301	return IRQ_HANDLED;
302}
303
304static int aspeed_wdt_probe(struct platform_device *pdev)
305{
306	struct device *dev = &pdev->dev;
307	const struct of_device_id *ofdid;
308	struct aspeed_wdt *wdt;
309	struct device_node *np;
310	const char *reset_type;
311	u32 duration;
312	u32 status;
313	int ret;
314
315	wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
316	if (!wdt)
317		return -ENOMEM;
318
319	np = dev->of_node;
320
321	ofdid = of_match_node(aspeed_wdt_of_table, np);
322	if (!ofdid)
323		return -EINVAL;
324	wdt->cfg = ofdid->data;
325
326	wdt->base = devm_platform_ioremap_resource(pdev, 0);
327	if (IS_ERR(wdt->base))
328		return PTR_ERR(wdt->base);
329
330	wdt->wdd.info = &aspeed_wdt_info;
331
332	if (wdt->cfg->irq_mask) {
333		int irq = platform_get_irq_optional(pdev, 0);
334
335		if (irq > 0) {
336			ret = devm_request_irq(dev, irq, aspeed_wdt_irq,
337					       IRQF_SHARED, dev_name(dev),
338					       wdt);
339			if (ret)
340				return ret;
341
342			wdt->wdd.info = &aspeed_wdt_pretimeout_info;
343		}
344	}
345
346	wdt->wdd.ops = &aspeed_wdt_ops;
347	wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
348	wdt->wdd.parent = dev;
349
350	wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
351	watchdog_init_timeout(&wdt->wdd, 0, dev);
352
353	watchdog_set_nowayout(&wdt->wdd, nowayout);
354
355	/*
356	 * On clock rates:
357	 *  - ast2400 wdt can run at PCLK, or 1MHz
358	 *  - ast2500 only runs at 1MHz, hard coding bit 4 to 1
359	 *  - ast2600 always runs at 1MHz
360	 *
361	 * Set the ast2400 to run at 1MHz as it simplifies the driver.
362	 */
363	if (of_device_is_compatible(np, "aspeed,ast2400-wdt"))
364		wdt->ctrl = WDT_CTRL_1MHZ_CLK;
365
366	/*
367	 * Control reset on a per-device basis to ensure the
368	 * host is not affected by a BMC reboot
369	 */
370	ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
371	if (ret) {
372		wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
373	} else {
374		if (!strcmp(reset_type, "cpu"))
375			wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
376				     WDT_CTRL_RESET_SYSTEM;
377		else if (!strcmp(reset_type, "soc"))
378			wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
379				     WDT_CTRL_RESET_SYSTEM;
380		else if (!strcmp(reset_type, "system"))
381			wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
382				     WDT_CTRL_RESET_SYSTEM;
383		else if (strcmp(reset_type, "none"))
384			return -EINVAL;
385	}
386	if (of_property_read_bool(np, "aspeed,external-signal"))
387		wdt->ctrl |= WDT_CTRL_WDT_EXT;
388	if (of_property_read_bool(np, "aspeed,alt-boot"))
389		wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
390
391	if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE)  {
392		/*
393		 * The watchdog is running, but invoke aspeed_wdt_start() to
394		 * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
395		 * configuration conforms to the driver's expectations.
396		 * Primarily, ensure we're using the 1MHz clock source.
397		 */
398		aspeed_wdt_start(&wdt->wdd);
399		set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
400	}
401
402	if ((of_device_is_compatible(np, "aspeed,ast2500-wdt")) ||
403		(of_device_is_compatible(np, "aspeed,ast2600-wdt"))) {
 
 
404		u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
405
406		reg &= wdt->cfg->ext_pulse_width_mask;
407		if (of_property_read_bool(np, "aspeed,ext-active-high"))
408			reg |= WDT_ACTIVE_HIGH_MAGIC;
409		else
410			reg |= WDT_ACTIVE_LOW_MAGIC;
411
412		writel(reg, wdt->base + WDT_RESET_WIDTH);
413
414		reg &= wdt->cfg->ext_pulse_width_mask;
415		if (of_property_read_bool(np, "aspeed,ext-push-pull"))
416			reg |= WDT_PUSH_PULL_MAGIC;
417		else
418			reg |= WDT_OPEN_DRAIN_MAGIC;
419
420		writel(reg, wdt->base + WDT_RESET_WIDTH);
 
 
 
 
 
 
 
421	}
422
423	if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
424		u32 max_duration = wdt->cfg->ext_pulse_width_mask + 1;
425
426		if (duration == 0 || duration > max_duration) {
427			dev_err(dev, "Invalid pulse duration: %uus\n",
428				duration);
429			duration = max(1U, min(max_duration, duration));
430			dev_info(dev, "Pulse duration set to %uus\n",
431				 duration);
432		}
433
434		/*
435		 * The watchdog is always configured with a 1MHz source, so
436		 * there is no need to scale the microsecond value. However we
437		 * need to offset it - from the datasheet:
438		 *
439		 * "This register decides the asserting duration of wdt_ext and
440		 * wdt_rstarm signal. The default value is 0xFF. It means the
441		 * default asserting duration of wdt_ext and wdt_rstarm is
442		 * 256us."
443		 *
444		 * This implies a value of 0 gives a 1us pulse.
445		 */
446		writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
447	}
448
449	status = readl(wdt->base + WDT_TIMEOUT_STATUS);
450	if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
451		wdt->wdd.bootstatus = WDIOF_CARDRESET;
452
453		if (of_device_is_compatible(np, "aspeed,ast2400-wdt") ||
454		    of_device_is_compatible(np, "aspeed,ast2500-wdt"))
455			wdt->wdd.groups = bswitch_groups;
456	}
457
458	dev_set_drvdata(dev, wdt);
459
460	return devm_watchdog_register_device(dev, &wdt->wdd);
461}
462
463static struct platform_driver aspeed_watchdog_driver = {
464	.probe = aspeed_wdt_probe,
465	.driver = {
466		.name = KBUILD_MODNAME,
467		.of_match_table = of_match_ptr(aspeed_wdt_of_table),
468	},
469};
470
471static int __init aspeed_wdt_init(void)
472{
473	return platform_driver_register(&aspeed_watchdog_driver);
474}
475arch_initcall(aspeed_wdt_init);
476
477static void __exit aspeed_wdt_exit(void)
478{
479	platform_driver_unregister(&aspeed_watchdog_driver);
480}
481module_exit(aspeed_wdt_exit);
482
483MODULE_DESCRIPTION("Aspeed Watchdog Driver");
484MODULE_LICENSE("GPL");