Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
   3 *
   4 * Copyright (C) 2004 Sun Microsystems Inc.
   5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
   6 *
   7 * This driver uses the sungem driver (c) David Miller
   8 * (davem@redhat.com) as its basis.
   9 *
  10 * The cassini chip has a number of features that distinguish it from
  11 * the gem chip:
  12 *  4 transmit descriptor rings that are used for either QoS (VLAN) or
  13 *      load balancing (non-VLAN mode)
  14 *  batching of multiple packets
  15 *  multiple CPU dispatching
  16 *  page-based RX descriptor engine with separate completion rings
  17 *  Gigabit support (GMII and PCS interface)
  18 *  MIF link up/down detection works
  19 *
  20 * RX is handled by page sized buffers that are attached as fragments to
  21 * the skb. here's what's done:
  22 *  -- driver allocates pages at a time and keeps reference counts
  23 *     on them.
  24 *  -- the upper protocol layers assume that the header is in the skb
  25 *     itself. as a result, cassini will copy a small amount (64 bytes)
  26 *     to make them happy.
  27 *  -- driver appends the rest of the data pages as frags to skbuffs
  28 *     and increments the reference count
  29 *  -- on page reclamation, the driver swaps the page with a spare page.
  30 *     if that page is still in use, it frees its reference to that page,
  31 *     and allocates a new page for use. otherwise, it just recycles the
  32 *     page.
  33 *
  34 * NOTE: cassini can parse the header. however, it's not worth it
  35 *       as long as the network stack requires a header copy.
  36 *
  37 * TX has 4 queues. currently these queues are used in a round-robin
  38 * fashion for load balancing. They can also be used for QoS. for that
  39 * to work, however, QoS information needs to be exposed down to the driver
  40 * level so that subqueues get targeted to particular transmit rings.
  41 * alternatively, the queues can be configured via use of the all-purpose
  42 * ioctl.
  43 *
  44 * RX DATA: the rx completion ring has all the info, but the rx desc
  45 * ring has all of the data. RX can conceivably come in under multiple
  46 * interrupts, but the INT# assignment needs to be set up properly by
  47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
  48 * that. also, the two descriptor rings are designed to distinguish between
  49 * encrypted and non-encrypted packets, but we use them for buffering
  50 * instead.
  51 *
  52 * by default, the selective clear mask is set up to process rx packets.
  53 */
  54
  55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  56
  57#include <linux/module.h>
  58#include <linux/kernel.h>
  59#include <linux/types.h>
  60#include <linux/compiler.h>
  61#include <linux/slab.h>
  62#include <linux/delay.h>
  63#include <linux/init.h>
  64#include <linux/interrupt.h>
  65#include <linux/vmalloc.h>
  66#include <linux/ioport.h>
  67#include <linux/pci.h>
  68#include <linux/mm.h>
  69#include <linux/highmem.h>
  70#include <linux/list.h>
  71#include <linux/dma-mapping.h>
  72
  73#include <linux/netdevice.h>
  74#include <linux/etherdevice.h>
  75#include <linux/skbuff.h>
  76#include <linux/skbuff_ref.h>
  77#include <linux/ethtool.h>
  78#include <linux/crc32.h>
  79#include <linux/random.h>
  80#include <linux/mii.h>
  81#include <linux/ip.h>
  82#include <linux/tcp.h>
  83#include <linux/mutex.h>
  84#include <linux/firmware.h>
  85
  86#include <net/checksum.h>
  87
  88#include <linux/atomic.h>
  89#include <asm/io.h>
  90#include <asm/byteorder.h>
  91#include <linux/uaccess.h>
  92#include <linux/jiffies.h>
  93
  94#define CAS_NCPUS            num_online_cpus()
  95
  96#define cas_skb_release(x)  netif_rx(x)
  97
  98/* select which firmware to use */
  99#define USE_HP_WORKAROUND
 100#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
 101#define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
 102
 103#include "cassini.h"
 104
 105#define USE_TX_COMPWB      /* use completion writeback registers */
 106#define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
 107#define USE_RX_BLANK       /* hw interrupt mitigation */
 108#undef USE_ENTROPY_DEV     /* don't test for entropy device */
 109
 110/* NOTE: these aren't useable unless PCI interrupts can be assigned.
 111 * also, we need to make cp->lock finer-grained.
 112 */
 113#undef  USE_PCI_INTB
 114#undef  USE_PCI_INTC
 115#undef  USE_PCI_INTD
 116#undef  USE_QOS
 117
 118#undef  USE_VPD_DEBUG       /* debug vpd information if defined */
 119
 120/* rx processing options */
 121#define USE_PAGE_ORDER      /* specify to allocate large rx pages */
 122#define RX_DONT_BATCH  0    /* if 1, don't batch flows */
 123#define RX_COPY_ALWAYS 0    /* if 0, use frags */
 124#define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
 125#undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
 126
 127#define DRV_MODULE_NAME		"cassini"
 128#define DRV_MODULE_VERSION	"1.6"
 129#define DRV_MODULE_RELDATE	"21 May 2008"
 130
 131#define CAS_DEF_MSG_ENABLE	  \
 132	(NETIF_MSG_DRV		| \
 133	 NETIF_MSG_PROBE	| \
 134	 NETIF_MSG_LINK		| \
 135	 NETIF_MSG_TIMER	| \
 136	 NETIF_MSG_IFDOWN	| \
 137	 NETIF_MSG_IFUP		| \
 138	 NETIF_MSG_RX_ERR	| \
 139	 NETIF_MSG_TX_ERR)
 140
 141/* length of time before we decide the hardware is borked,
 142 * and dev->tx_timeout() should be called to fix the problem
 143 */
 144#define CAS_TX_TIMEOUT			(HZ)
 145#define CAS_LINK_TIMEOUT                (22*HZ/10)
 146#define CAS_LINK_FAST_TIMEOUT           (1)
 147
 148/* timeout values for state changing. these specify the number
 149 * of 10us delays to be used before giving up.
 150 */
 151#define STOP_TRIES_PHY 1000
 152#define STOP_TRIES     5000
 153
 154/* specify a minimum frame size to deal with some fifo issues
 155 * max mtu == 2 * page size - ethernet header - 64 - swivel =
 156 *            2 * page_size - 0x50
 157 */
 158#define CAS_MIN_FRAME			97
 159#define CAS_1000MB_MIN_FRAME            255
 160#define CAS_MIN_MTU                     60
 161#define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
 162
 163#if 1
 164/*
 165 * Eliminate these and use separate atomic counters for each, to
 166 * avoid a race condition.
 167 */
 168#else
 169#define CAS_RESET_MTU                   1
 170#define CAS_RESET_ALL                   2
 171#define CAS_RESET_SPARE                 3
 172#endif
 173
 174static char version[] =
 175	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 176
 177static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
 178static int link_mode;
 179
 180MODULE_AUTHOR("Adrian Sun <asun@darksunrising.com>");
 181MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
 182MODULE_LICENSE("GPL");
 183MODULE_FIRMWARE("sun/cassini.bin");
 184module_param(cassini_debug, int, 0);
 185MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
 186module_param(link_mode, int, 0);
 187MODULE_PARM_DESC(link_mode, "default link mode");
 188
 189/*
 190 * Work around for a PCS bug in which the link goes down due to the chip
 191 * being confused and never showing a link status of "up."
 192 */
 193#define DEFAULT_LINKDOWN_TIMEOUT 5
 194/*
 195 * Value in seconds, for user input.
 196 */
 197static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
 198module_param(linkdown_timeout, int, 0);
 199MODULE_PARM_DESC(linkdown_timeout,
 200"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
 201
 202/*
 203 * value in 'ticks' (units used by jiffies). Set when we init the
 204 * module because 'HZ' in actually a function call on some flavors of
 205 * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
 206 */
 207static int link_transition_timeout;
 208
 209
 210
 211static u16 link_modes[] = {
 212	BMCR_ANENABLE,			 /* 0 : autoneg */
 213	0,				 /* 1 : 10bt half duplex */
 214	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
 215	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
 216	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
 217	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
 218};
 219
 220static const struct pci_device_id cas_pci_tbl[] = {
 221	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
 222	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 223	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
 224	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 225	{ 0, }
 226};
 227
 228MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
 229
 230static void cas_set_link_modes(struct cas *cp);
 231
 232static inline void cas_lock_tx(struct cas *cp)
 233{
 234	int i;
 235
 236	for (i = 0; i < N_TX_RINGS; i++)
 237		spin_lock_nested(&cp->tx_lock[i], i);
 238}
 239
 240/* WTZ: QA was finding deadlock problems with the previous
 241 * versions after long test runs with multiple cards per machine.
 242 * See if replacing cas_lock_all with safer versions helps. The
 243 * symptoms QA is reporting match those we'd expect if interrupts
 244 * aren't being properly restored, and we fixed a previous deadlock
 245 * with similar symptoms by using save/restore versions in other
 246 * places.
 247 */
 248#define cas_lock_all_save(cp, flags) \
 249do { \
 250	struct cas *xxxcp = (cp); \
 251	spin_lock_irqsave(&xxxcp->lock, flags); \
 252	cas_lock_tx(xxxcp); \
 253} while (0)
 254
 255static inline void cas_unlock_tx(struct cas *cp)
 256{
 257	int i;
 258
 259	for (i = N_TX_RINGS; i > 0; i--)
 260		spin_unlock(&cp->tx_lock[i - 1]);
 261}
 262
 263#define cas_unlock_all_restore(cp, flags) \
 264do { \
 265	struct cas *xxxcp = (cp); \
 266	cas_unlock_tx(xxxcp); \
 267	spin_unlock_irqrestore(&xxxcp->lock, flags); \
 268} while (0)
 269
 270static void cas_disable_irq(struct cas *cp, const int ring)
 271{
 272	/* Make sure we won't get any more interrupts */
 273	if (ring == 0) {
 274		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
 275		return;
 276	}
 277
 278	/* disable completion interrupts and selectively mask */
 279	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 280		switch (ring) {
 281#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 282#ifdef USE_PCI_INTB
 283		case 1:
 284#endif
 285#ifdef USE_PCI_INTC
 286		case 2:
 287#endif
 288#ifdef USE_PCI_INTD
 289		case 3:
 290#endif
 291			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
 292			       cp->regs + REG_PLUS_INTRN_MASK(ring));
 293			break;
 294#endif
 295		default:
 296			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
 297			       REG_PLUS_INTRN_MASK(ring));
 298			break;
 299		}
 300	}
 301}
 302
 303static inline void cas_mask_intr(struct cas *cp)
 304{
 305	int i;
 306
 307	for (i = 0; i < N_RX_COMP_RINGS; i++)
 308		cas_disable_irq(cp, i);
 309}
 310
 311static void cas_enable_irq(struct cas *cp, const int ring)
 312{
 313	if (ring == 0) { /* all but TX_DONE */
 314		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
 315		return;
 316	}
 317
 318	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 319		switch (ring) {
 320#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 321#ifdef USE_PCI_INTB
 322		case 1:
 323#endif
 324#ifdef USE_PCI_INTC
 325		case 2:
 326#endif
 327#ifdef USE_PCI_INTD
 328		case 3:
 329#endif
 330			writel(INTRN_MASK_RX_EN, cp->regs +
 331			       REG_PLUS_INTRN_MASK(ring));
 332			break;
 333#endif
 334		default:
 335			break;
 336		}
 337	}
 338}
 339
 340static inline void cas_unmask_intr(struct cas *cp)
 341{
 342	int i;
 343
 344	for (i = 0; i < N_RX_COMP_RINGS; i++)
 345		cas_enable_irq(cp, i);
 346}
 347
 348static inline void cas_entropy_gather(struct cas *cp)
 349{
 350#ifdef USE_ENTROPY_DEV
 351	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 352		return;
 353
 354	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
 355			    readl(cp->regs + REG_ENTROPY_IV),
 356			    sizeof(uint64_t)*8);
 357#endif
 358}
 359
 360static inline void cas_entropy_reset(struct cas *cp)
 361{
 362#ifdef USE_ENTROPY_DEV
 363	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 364		return;
 365
 366	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
 367	       cp->regs + REG_BIM_LOCAL_DEV_EN);
 368	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
 369	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
 370
 371	/* if we read back 0x0, we don't have an entropy device */
 372	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
 373		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
 374#endif
 375}
 376
 377/* access to the phy. the following assumes that we've initialized the MIF to
 378 * be in frame rather than bit-bang mode
 379 */
 380static u16 cas_phy_read(struct cas *cp, int reg)
 381{
 382	u32 cmd;
 383	int limit = STOP_TRIES_PHY;
 384
 385	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
 386	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 387	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 388	cmd |= MIF_FRAME_TURN_AROUND_MSB;
 389	writel(cmd, cp->regs + REG_MIF_FRAME);
 390
 391	/* poll for completion */
 392	while (limit-- > 0) {
 393		udelay(10);
 394		cmd = readl(cp->regs + REG_MIF_FRAME);
 395		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 396			return cmd & MIF_FRAME_DATA_MASK;
 397	}
 398	return 0xFFFF; /* -1 */
 399}
 400
 401static int cas_phy_write(struct cas *cp, int reg, u16 val)
 402{
 403	int limit = STOP_TRIES_PHY;
 404	u32 cmd;
 405
 406	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
 407	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 408	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 409	cmd |= MIF_FRAME_TURN_AROUND_MSB;
 410	cmd |= val & MIF_FRAME_DATA_MASK;
 411	writel(cmd, cp->regs + REG_MIF_FRAME);
 412
 413	/* poll for completion */
 414	while (limit-- > 0) {
 415		udelay(10);
 416		cmd = readl(cp->regs + REG_MIF_FRAME);
 417		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 418			return 0;
 419	}
 420	return -1;
 421}
 422
 423static void cas_phy_powerup(struct cas *cp)
 424{
 425	u16 ctl = cas_phy_read(cp, MII_BMCR);
 426
 427	if ((ctl & BMCR_PDOWN) == 0)
 428		return;
 429	ctl &= ~BMCR_PDOWN;
 430	cas_phy_write(cp, MII_BMCR, ctl);
 431}
 432
 433static void cas_phy_powerdown(struct cas *cp)
 434{
 435	u16 ctl = cas_phy_read(cp, MII_BMCR);
 436
 437	if (ctl & BMCR_PDOWN)
 438		return;
 439	ctl |= BMCR_PDOWN;
 440	cas_phy_write(cp, MII_BMCR, ctl);
 441}
 442
 443/* cp->lock held. note: the last put_page will free the buffer */
 444static int cas_page_free(struct cas *cp, cas_page_t *page)
 445{
 446	dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
 447		       DMA_FROM_DEVICE);
 448	__free_pages(page->buffer, cp->page_order);
 449	kfree(page);
 450	return 0;
 451}
 452
 453#ifdef RX_COUNT_BUFFERS
 454#define RX_USED_ADD(x, y)       ((x)->used += (y))
 455#define RX_USED_SET(x, y)       ((x)->used  = (y))
 456#else
 457#define RX_USED_ADD(x, y) do { } while(0)
 458#define RX_USED_SET(x, y) do { } while(0)
 459#endif
 460
 461/* local page allocation routines for the receive buffers. jumbo pages
 462 * require at least 8K contiguous and 8K aligned buffers.
 463 */
 464static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
 465{
 466	cas_page_t *page;
 467
 468	page = kmalloc(sizeof(cas_page_t), flags);
 469	if (!page)
 470		return NULL;
 471
 472	INIT_LIST_HEAD(&page->list);
 473	RX_USED_SET(page, 0);
 474	page->buffer = alloc_pages(flags, cp->page_order);
 475	if (!page->buffer)
 476		goto page_err;
 477	page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
 478				      cp->page_size, DMA_FROM_DEVICE);
 479	return page;
 480
 481page_err:
 482	kfree(page);
 483	return NULL;
 484}
 485
 486/* initialize spare pool of rx buffers, but allocate during the open */
 487static void cas_spare_init(struct cas *cp)
 488{
 489	spin_lock(&cp->rx_inuse_lock);
 490	INIT_LIST_HEAD(&cp->rx_inuse_list);
 491	spin_unlock(&cp->rx_inuse_lock);
 492
 493	spin_lock(&cp->rx_spare_lock);
 494	INIT_LIST_HEAD(&cp->rx_spare_list);
 495	cp->rx_spares_needed = RX_SPARE_COUNT;
 496	spin_unlock(&cp->rx_spare_lock);
 497}
 498
 499/* used on close. free all the spare buffers. */
 500static void cas_spare_free(struct cas *cp)
 501{
 502	struct list_head list, *elem, *tmp;
 503
 504	/* free spare buffers */
 505	INIT_LIST_HEAD(&list);
 506	spin_lock(&cp->rx_spare_lock);
 507	list_splice_init(&cp->rx_spare_list, &list);
 508	spin_unlock(&cp->rx_spare_lock);
 509	list_for_each_safe(elem, tmp, &list) {
 510		cas_page_free(cp, list_entry(elem, cas_page_t, list));
 511	}
 512
 513	INIT_LIST_HEAD(&list);
 514#if 1
 515	/*
 516	 * Looks like Adrian had protected this with a different
 517	 * lock than used everywhere else to manipulate this list.
 518	 */
 519	spin_lock(&cp->rx_inuse_lock);
 520	list_splice_init(&cp->rx_inuse_list, &list);
 521	spin_unlock(&cp->rx_inuse_lock);
 522#else
 523	spin_lock(&cp->rx_spare_lock);
 524	list_splice_init(&cp->rx_inuse_list, &list);
 525	spin_unlock(&cp->rx_spare_lock);
 526#endif
 527	list_for_each_safe(elem, tmp, &list) {
 528		cas_page_free(cp, list_entry(elem, cas_page_t, list));
 529	}
 530}
 531
 532/* replenish spares if needed */
 533static void cas_spare_recover(struct cas *cp, const gfp_t flags)
 534{
 535	struct list_head list, *elem, *tmp;
 536	int needed, i;
 537
 538	/* check inuse list. if we don't need any more free buffers,
 539	 * just free it
 540	 */
 541
 542	/* make a local copy of the list */
 543	INIT_LIST_HEAD(&list);
 544	spin_lock(&cp->rx_inuse_lock);
 545	list_splice_init(&cp->rx_inuse_list, &list);
 546	spin_unlock(&cp->rx_inuse_lock);
 547
 548	list_for_each_safe(elem, tmp, &list) {
 549		cas_page_t *page = list_entry(elem, cas_page_t, list);
 550
 551		/*
 552		 * With the lockless pagecache, cassini buffering scheme gets
 553		 * slightly less accurate: we might find that a page has an
 554		 * elevated reference count here, due to a speculative ref,
 555		 * and skip it as in-use. Ideally we would be able to reclaim
 556		 * it. However this would be such a rare case, it doesn't
 557		 * matter too much as we should pick it up the next time round.
 558		 *
 559		 * Importantly, if we find that the page has a refcount of 1
 560		 * here (our refcount), then we know it is definitely not inuse
 561		 * so we can reuse it.
 562		 */
 563		if (page_count(page->buffer) > 1)
 564			continue;
 565
 566		list_del(elem);
 567		spin_lock(&cp->rx_spare_lock);
 568		if (cp->rx_spares_needed > 0) {
 569			list_add(elem, &cp->rx_spare_list);
 570			cp->rx_spares_needed--;
 571			spin_unlock(&cp->rx_spare_lock);
 572		} else {
 573			spin_unlock(&cp->rx_spare_lock);
 574			cas_page_free(cp, page);
 575		}
 576	}
 577
 578	/* put any inuse buffers back on the list */
 579	if (!list_empty(&list)) {
 580		spin_lock(&cp->rx_inuse_lock);
 581		list_splice(&list, &cp->rx_inuse_list);
 582		spin_unlock(&cp->rx_inuse_lock);
 583	}
 584
 585	spin_lock(&cp->rx_spare_lock);
 586	needed = cp->rx_spares_needed;
 587	spin_unlock(&cp->rx_spare_lock);
 588	if (!needed)
 589		return;
 590
 591	/* we still need spares, so try to allocate some */
 592	INIT_LIST_HEAD(&list);
 593	i = 0;
 594	while (i < needed) {
 595		cas_page_t *spare = cas_page_alloc(cp, flags);
 596		if (!spare)
 597			break;
 598		list_add(&spare->list, &list);
 599		i++;
 600	}
 601
 602	spin_lock(&cp->rx_spare_lock);
 603	list_splice(&list, &cp->rx_spare_list);
 604	cp->rx_spares_needed -= i;
 605	spin_unlock(&cp->rx_spare_lock);
 606}
 607
 608/* pull a page from the list. */
 609static cas_page_t *cas_page_dequeue(struct cas *cp)
 610{
 611	struct list_head *entry;
 612	int recover;
 613
 614	spin_lock(&cp->rx_spare_lock);
 615	if (list_empty(&cp->rx_spare_list)) {
 616		/* try to do a quick recovery */
 617		spin_unlock(&cp->rx_spare_lock);
 618		cas_spare_recover(cp, GFP_ATOMIC);
 619		spin_lock(&cp->rx_spare_lock);
 620		if (list_empty(&cp->rx_spare_list)) {
 621			netif_err(cp, rx_err, cp->dev,
 622				  "no spare buffers available\n");
 623			spin_unlock(&cp->rx_spare_lock);
 624			return NULL;
 625		}
 626	}
 627
 628	entry = cp->rx_spare_list.next;
 629	list_del(entry);
 630	recover = ++cp->rx_spares_needed;
 631	spin_unlock(&cp->rx_spare_lock);
 632
 633	/* trigger the timer to do the recovery */
 634	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
 635#if 1
 636		atomic_inc(&cp->reset_task_pending);
 637		atomic_inc(&cp->reset_task_pending_spare);
 638		schedule_work(&cp->reset_task);
 639#else
 640		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
 641		schedule_work(&cp->reset_task);
 642#endif
 643	}
 644	return list_entry(entry, cas_page_t, list);
 645}
 646
 647
 648static void cas_mif_poll(struct cas *cp, const int enable)
 649{
 650	u32 cfg;
 651
 652	cfg  = readl(cp->regs + REG_MIF_CFG);
 653	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
 654
 655	if (cp->phy_type & CAS_PHY_MII_MDIO1)
 656		cfg |= MIF_CFG_PHY_SELECT;
 657
 658	/* poll and interrupt on link status change. */
 659	if (enable) {
 660		cfg |= MIF_CFG_POLL_EN;
 661		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
 662		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
 663	}
 664	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
 665	       cp->regs + REG_MIF_MASK);
 666	writel(cfg, cp->regs + REG_MIF_CFG);
 667}
 668
 669/* Must be invoked under cp->lock */
 670static void cas_begin_auto_negotiation(struct cas *cp,
 671				       const struct ethtool_link_ksettings *ep)
 672{
 673	u16 ctl;
 674#if 1
 675	int lcntl;
 676	int changed = 0;
 677	int oldstate = cp->lstate;
 678	int link_was_not_down = !(oldstate == link_down);
 679#endif
 680	/* Setup link parameters */
 681	if (!ep)
 682		goto start_aneg;
 683	lcntl = cp->link_cntl;
 684	if (ep->base.autoneg == AUTONEG_ENABLE) {
 685		cp->link_cntl = BMCR_ANENABLE;
 686	} else {
 687		u32 speed = ep->base.speed;
 688		cp->link_cntl = 0;
 689		if (speed == SPEED_100)
 690			cp->link_cntl |= BMCR_SPEED100;
 691		else if (speed == SPEED_1000)
 692			cp->link_cntl |= CAS_BMCR_SPEED1000;
 693		if (ep->base.duplex == DUPLEX_FULL)
 694			cp->link_cntl |= BMCR_FULLDPLX;
 695	}
 696#if 1
 697	changed = (lcntl != cp->link_cntl);
 698#endif
 699start_aneg:
 700	if (cp->lstate == link_up) {
 701		netdev_info(cp->dev, "PCS link down\n");
 702	} else {
 703		if (changed) {
 704			netdev_info(cp->dev, "link configuration changed\n");
 705		}
 706	}
 707	cp->lstate = link_down;
 708	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
 709	if (!cp->hw_running)
 710		return;
 711#if 1
 712	/*
 713	 * WTZ: If the old state was link_up, we turn off the carrier
 714	 * to replicate everything we do elsewhere on a link-down
 715	 * event when we were already in a link-up state..
 716	 */
 717	if (oldstate == link_up)
 718		netif_carrier_off(cp->dev);
 719	if (changed  && link_was_not_down) {
 720		/*
 721		 * WTZ: This branch will simply schedule a full reset after
 722		 * we explicitly changed link modes in an ioctl. See if this
 723		 * fixes the link-problems we were having for forced mode.
 724		 */
 725		atomic_inc(&cp->reset_task_pending);
 726		atomic_inc(&cp->reset_task_pending_all);
 727		schedule_work(&cp->reset_task);
 728		cp->timer_ticks = 0;
 729		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 730		return;
 731	}
 732#endif
 733	if (cp->phy_type & CAS_PHY_SERDES) {
 734		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
 735
 736		if (cp->link_cntl & BMCR_ANENABLE) {
 737			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
 738			cp->lstate = link_aneg;
 739		} else {
 740			if (cp->link_cntl & BMCR_FULLDPLX)
 741				val |= PCS_MII_CTRL_DUPLEX;
 742			val &= ~PCS_MII_AUTONEG_EN;
 743			cp->lstate = link_force_ok;
 744		}
 745		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 746		writel(val, cp->regs + REG_PCS_MII_CTRL);
 747
 748	} else {
 749		cas_mif_poll(cp, 0);
 750		ctl = cas_phy_read(cp, MII_BMCR);
 751		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
 752			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
 753		ctl |= cp->link_cntl;
 754		if (ctl & BMCR_ANENABLE) {
 755			ctl |= BMCR_ANRESTART;
 756			cp->lstate = link_aneg;
 757		} else {
 758			cp->lstate = link_force_ok;
 759		}
 760		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 761		cas_phy_write(cp, MII_BMCR, ctl);
 762		cas_mif_poll(cp, 1);
 763	}
 764
 765	cp->timer_ticks = 0;
 766	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 767}
 768
 769/* Must be invoked under cp->lock. */
 770static int cas_reset_mii_phy(struct cas *cp)
 771{
 772	int limit = STOP_TRIES_PHY;
 773	u16 val;
 774
 775	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
 776	udelay(100);
 777	while (--limit) {
 778		val = cas_phy_read(cp, MII_BMCR);
 779		if ((val & BMCR_RESET) == 0)
 780			break;
 781		udelay(10);
 782	}
 783	return limit <= 0;
 784}
 785
 786static void cas_saturn_firmware_init(struct cas *cp)
 787{
 788	const struct firmware *fw;
 789	const char fw_name[] = "sun/cassini.bin";
 790	int err;
 791
 792	if (PHY_NS_DP83065 != cp->phy_id)
 793		return;
 794
 795	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
 796	if (err) {
 797		pr_err("Failed to load firmware \"%s\"\n",
 798		       fw_name);
 799		return;
 800	}
 801	if (fw->size < 2) {
 802		pr_err("bogus length %zu in \"%s\"\n",
 803		       fw->size, fw_name);
 804		goto out;
 805	}
 806	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
 807	cp->fw_size = fw->size - 2;
 808	cp->fw_data = vmalloc(cp->fw_size);
 809	if (!cp->fw_data)
 810		goto out;
 811	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
 812out:
 813	release_firmware(fw);
 814}
 815
 816static void cas_saturn_firmware_load(struct cas *cp)
 817{
 818	int i;
 819
 820	if (!cp->fw_data)
 821		return;
 822
 823	cas_phy_powerdown(cp);
 824
 825	/* expanded memory access mode */
 826	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
 827
 828	/* pointer configuration for new firmware */
 829	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
 830	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
 831	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
 832	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
 833	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
 834	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
 835	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
 836	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
 837
 838	/* download new firmware */
 839	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
 840	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
 841	for (i = 0; i < cp->fw_size; i++)
 842		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
 843
 844	/* enable firmware */
 845	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
 846	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
 847}
 848
 849
 850/* phy initialization */
 851static void cas_phy_init(struct cas *cp)
 852{
 853	u16 val;
 854
 855	/* if we're in MII/GMII mode, set up phy */
 856	if (CAS_PHY_MII(cp->phy_type)) {
 857		writel(PCS_DATAPATH_MODE_MII,
 858		       cp->regs + REG_PCS_DATAPATH_MODE);
 859
 860		cas_mif_poll(cp, 0);
 861		cas_reset_mii_phy(cp); /* take out of isolate mode */
 862
 863		if (PHY_LUCENT_B0 == cp->phy_id) {
 864			/* workaround link up/down issue with lucent */
 865			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
 866			cas_phy_write(cp, MII_BMCR, 0x00f1);
 867			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
 868
 869		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
 870			/* workarounds for broadcom phy */
 871			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
 872			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
 873			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
 874			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
 875			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
 876			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 877			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
 878			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 879			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
 880			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
 881			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
 882
 883		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
 884			val = cas_phy_read(cp, BROADCOM_MII_REG4);
 885			val = cas_phy_read(cp, BROADCOM_MII_REG4);
 886			if (val & 0x0080) {
 887				/* link workaround */
 888				cas_phy_write(cp, BROADCOM_MII_REG4,
 889					      val & ~0x0080);
 890			}
 891
 892		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
 893			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
 894			       SATURN_PCFG_FSI : 0x0,
 895			       cp->regs + REG_SATURN_PCFG);
 896
 897			/* load firmware to address 10Mbps auto-negotiation
 898			 * issue. NOTE: this will need to be changed if the
 899			 * default firmware gets fixed.
 900			 */
 901			if (PHY_NS_DP83065 == cp->phy_id) {
 902				cas_saturn_firmware_load(cp);
 903			}
 904			cas_phy_powerup(cp);
 905		}
 906
 907		/* advertise capabilities */
 908		val = cas_phy_read(cp, MII_BMCR);
 909		val &= ~BMCR_ANENABLE;
 910		cas_phy_write(cp, MII_BMCR, val);
 911		udelay(10);
 912
 913		cas_phy_write(cp, MII_ADVERTISE,
 914			      cas_phy_read(cp, MII_ADVERTISE) |
 915			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
 916			       ADVERTISE_100HALF | ADVERTISE_100FULL |
 917			       CAS_ADVERTISE_PAUSE |
 918			       CAS_ADVERTISE_ASYM_PAUSE));
 919
 920		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
 921			/* make sure that we don't advertise half
 922			 * duplex to avoid a chip issue
 923			 */
 924			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
 925			val &= ~CAS_ADVERTISE_1000HALF;
 926			val |= CAS_ADVERTISE_1000FULL;
 927			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
 928		}
 929
 930	} else {
 931		/* reset pcs for serdes */
 932		u32 val;
 933		int limit;
 934
 935		writel(PCS_DATAPATH_MODE_SERDES,
 936		       cp->regs + REG_PCS_DATAPATH_MODE);
 937
 938		/* enable serdes pins on saturn */
 939		if (cp->cas_flags & CAS_FLAG_SATURN)
 940			writel(0, cp->regs + REG_SATURN_PCFG);
 941
 942		/* Reset PCS unit. */
 943		val = readl(cp->regs + REG_PCS_MII_CTRL);
 944		val |= PCS_MII_RESET;
 945		writel(val, cp->regs + REG_PCS_MII_CTRL);
 946
 947		limit = STOP_TRIES;
 948		while (--limit > 0) {
 949			udelay(10);
 950			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
 951			     PCS_MII_RESET) == 0)
 952				break;
 953		}
 954		if (limit <= 0)
 955			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
 956				    readl(cp->regs + REG_PCS_STATE_MACHINE));
 957
 958		/* Make sure PCS is disabled while changing advertisement
 959		 * configuration.
 960		 */
 961		writel(0x0, cp->regs + REG_PCS_CFG);
 962
 963		/* Advertise all capabilities except half-duplex. */
 964		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
 965		val &= ~PCS_MII_ADVERT_HD;
 966		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
 967			PCS_MII_ADVERT_ASYM_PAUSE);
 968		writel(val, cp->regs + REG_PCS_MII_ADVERT);
 969
 970		/* enable PCS */
 971		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
 972
 973		/* pcs workaround: enable sync detect */
 974		writel(PCS_SERDES_CTRL_SYNCD_EN,
 975		       cp->regs + REG_PCS_SERDES_CTRL);
 976	}
 977}
 978
 979
 980static int cas_pcs_link_check(struct cas *cp)
 981{
 982	u32 stat, state_machine;
 983	int retval = 0;
 984
 985	/* The link status bit latches on zero, so you must
 986	 * read it twice in such a case to see a transition
 987	 * to the link being up.
 988	 */
 989	stat = readl(cp->regs + REG_PCS_MII_STATUS);
 990	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
 991		stat = readl(cp->regs + REG_PCS_MII_STATUS);
 992
 993	/* The remote-fault indication is only valid
 994	 * when autoneg has completed.
 995	 */
 996	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
 997		     PCS_MII_STATUS_REMOTE_FAULT)) ==
 998	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
 999		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1000
1001	/* work around link detection issue by querying the PCS state
1002	 * machine directly.
1003	 */
1004	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1005	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1006		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1007	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1008		stat |= PCS_MII_STATUS_LINK_STATUS;
1009	}
1010
1011	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1012		if (cp->lstate != link_up) {
1013			if (cp->opened) {
1014				cp->lstate = link_up;
1015				cp->link_transition = LINK_TRANSITION_LINK_UP;
1016
1017				cas_set_link_modes(cp);
1018				netif_carrier_on(cp->dev);
1019			}
1020		}
1021	} else if (cp->lstate == link_up) {
1022		cp->lstate = link_down;
1023		if (link_transition_timeout != 0 &&
1024		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1025		    !cp->link_transition_jiffies_valid) {
1026			/*
1027			 * force a reset, as a workaround for the
1028			 * link-failure problem. May want to move this to a
1029			 * point a bit earlier in the sequence. If we had
1030			 * generated a reset a short time ago, we'll wait for
1031			 * the link timer to check the status until a
1032			 * timer expires (link_transistion_jiffies_valid is
1033			 * true when the timer is running.)  Instead of using
1034			 * a system timer, we just do a check whenever the
1035			 * link timer is running - this clears the flag after
1036			 * a suitable delay.
1037			 */
1038			retval = 1;
1039			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1040			cp->link_transition_jiffies = jiffies;
1041			cp->link_transition_jiffies_valid = 1;
1042		} else {
1043			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1044		}
1045		netif_carrier_off(cp->dev);
1046		if (cp->opened)
1047			netif_info(cp, link, cp->dev, "PCS link down\n");
1048
1049		/* Cassini only: if you force a mode, there can be
1050		 * sync problems on link down. to fix that, the following
1051		 * things need to be checked:
1052		 * 1) read serialink state register
1053		 * 2) read pcs status register to verify link down.
1054		 * 3) if link down and serial link == 0x03, then you need
1055		 *    to global reset the chip.
1056		 */
1057		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1058			/* should check to see if we're in a forced mode */
1059			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1060			if (stat == 0x03)
1061				return 1;
1062		}
1063	} else if (cp->lstate == link_down) {
1064		if (link_transition_timeout != 0 &&
1065		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1066		    !cp->link_transition_jiffies_valid) {
1067			/* force a reset, as a workaround for the
1068			 * link-failure problem.  May want to move
1069			 * this to a point a bit earlier in the
1070			 * sequence.
1071			 */
1072			retval = 1;
1073			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1074			cp->link_transition_jiffies = jiffies;
1075			cp->link_transition_jiffies_valid = 1;
1076		} else {
1077			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1078		}
1079	}
1080
1081	return retval;
1082}
1083
1084static int cas_pcs_interrupt(struct net_device *dev,
1085			     struct cas *cp, u32 status)
1086{
1087	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1088
1089	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1090		return 0;
1091	return cas_pcs_link_check(cp);
1092}
1093
1094static int cas_txmac_interrupt(struct net_device *dev,
1095			       struct cas *cp, u32 status)
1096{
1097	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1098
1099	if (!txmac_stat)
1100		return 0;
1101
1102	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1103		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1104
1105	/* Defer timer expiration is quite normal,
1106	 * don't even log the event.
1107	 */
1108	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1109	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1110		return 0;
1111
1112	spin_lock(&cp->stat_lock[0]);
1113	if (txmac_stat & MAC_TX_UNDERRUN) {
1114		netdev_err(dev, "TX MAC xmit underrun\n");
1115		cp->net_stats[0].tx_fifo_errors++;
1116	}
1117
1118	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1119		netdev_err(dev, "TX MAC max packet size error\n");
1120		cp->net_stats[0].tx_errors++;
1121	}
1122
1123	/* The rest are all cases of one of the 16-bit TX
1124	 * counters expiring.
1125	 */
1126	if (txmac_stat & MAC_TX_COLL_NORMAL)
1127		cp->net_stats[0].collisions += 0x10000;
1128
1129	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1130		cp->net_stats[0].tx_aborted_errors += 0x10000;
1131		cp->net_stats[0].collisions += 0x10000;
1132	}
1133
1134	if (txmac_stat & MAC_TX_COLL_LATE) {
1135		cp->net_stats[0].tx_aborted_errors += 0x10000;
1136		cp->net_stats[0].collisions += 0x10000;
1137	}
1138	spin_unlock(&cp->stat_lock[0]);
1139
1140	/* We do not keep track of MAC_TX_COLL_FIRST and
1141	 * MAC_TX_PEAK_ATTEMPTS events.
1142	 */
1143	return 0;
1144}
1145
1146static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1147{
1148	cas_hp_inst_t *inst;
1149	u32 val;
1150	int i;
1151
1152	i = 0;
1153	while ((inst = firmware) && inst->note) {
1154		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1155
1156		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1157		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1158		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1159
1160		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1161		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1162		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1163		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1164		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1165		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1166		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1167		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1168
1169		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1170		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1171		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1172		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1173		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1174		++firmware;
1175		++i;
1176	}
1177}
1178
1179static void cas_init_rx_dma(struct cas *cp)
1180{
1181	u64 desc_dma = cp->block_dvma;
1182	u32 val;
1183	int i, size;
1184
1185	/* rx free descriptors */
1186	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1187	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1188	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1189	if ((N_RX_DESC_RINGS > 1) &&
1190	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1191		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1192	writel(val, cp->regs + REG_RX_CFG);
1193
1194	val = (unsigned long) cp->init_rxds[0] -
1195		(unsigned long) cp->init_block;
1196	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1197	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1198	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1199
1200	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1201		/* rx desc 2 is for IPSEC packets. however,
1202		 * we don't it that for that purpose.
1203		 */
1204		val = (unsigned long) cp->init_rxds[1] -
1205			(unsigned long) cp->init_block;
1206		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1207		writel((desc_dma + val) & 0xffffffff, cp->regs +
1208		       REG_PLUS_RX_DB1_LOW);
1209		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1210		       REG_PLUS_RX_KICK1);
1211	}
1212
1213	/* rx completion registers */
1214	val = (unsigned long) cp->init_rxcs[0] -
1215		(unsigned long) cp->init_block;
1216	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1217	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1218
1219	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1220		/* rx comp 2-4 */
1221		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1222			val = (unsigned long) cp->init_rxcs[i] -
1223				(unsigned long) cp->init_block;
1224			writel((desc_dma + val) >> 32, cp->regs +
1225			       REG_PLUS_RX_CBN_HI(i));
1226			writel((desc_dma + val) & 0xffffffff, cp->regs +
1227			       REG_PLUS_RX_CBN_LOW(i));
1228		}
1229	}
1230
1231	/* read selective clear regs to prevent spurious interrupts
1232	 * on reset because complete == kick.
1233	 * selective clear set up to prevent interrupts on resets
1234	 */
1235	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1236	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1237
1238	/* set up pause thresholds */
1239	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1240			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1241	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1242			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1243	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1244
1245	/* zero out dma reassembly buffers */
1246	for (i = 0; i < 64; i++) {
1247		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1248		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1249		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1250		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1251	}
1252
1253	/* make sure address register is 0 for normal operation */
1254	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1255	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1256
1257	/* interrupt mitigation */
1258#ifdef USE_RX_BLANK
1259	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1260	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1261	writel(val, cp->regs + REG_RX_BLANK);
1262#else
1263	writel(0x0, cp->regs + REG_RX_BLANK);
1264#endif
1265
1266	/* interrupt generation as a function of low water marks for
1267	 * free desc and completion entries. these are used to trigger
1268	 * housekeeping for rx descs. we don't use the free interrupt
1269	 * as it's not very useful
1270	 */
1271	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1272	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1273	writel(val, cp->regs + REG_RX_AE_THRESH);
1274	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1275		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1276		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1277	}
1278
1279	/* Random early detect registers. useful for congestion avoidance.
1280	 * this should be tunable.
1281	 */
1282	writel(0x0, cp->regs + REG_RX_RED);
1283
1284	/* receive page sizes. default == 2K (0x800) */
1285	val = 0;
1286	if (cp->page_size == 0x1000)
1287		val = 0x1;
1288	else if (cp->page_size == 0x2000)
1289		val = 0x2;
1290	else if (cp->page_size == 0x4000)
1291		val = 0x3;
1292
1293	/* round mtu + offset. constrain to page size. */
1294	size = cp->dev->mtu + 64;
1295	if (size > cp->page_size)
1296		size = cp->page_size;
1297
1298	if (size <= 0x400)
1299		i = 0x0;
1300	else if (size <= 0x800)
1301		i = 0x1;
1302	else if (size <= 0x1000)
1303		i = 0x2;
1304	else
1305		i = 0x3;
1306
1307	cp->mtu_stride = 1 << (i + 10);
1308	val  = CAS_BASE(RX_PAGE_SIZE, val);
1309	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1310	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1311	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1312	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1313
1314	/* enable the header parser if desired */
1315	if (&CAS_HP_FIRMWARE[0] == &cas_prog_null[0])
1316		return;
1317
1318	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1319	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1320	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1321	writel(val, cp->regs + REG_HP_CFG);
1322}
1323
1324static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1325{
1326	memset(rxc, 0, sizeof(*rxc));
1327	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1328}
1329
1330/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1331 * flipping is protected by the fact that the chip will not
1332 * hand back the same page index while it's being processed.
1333 */
1334static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1335{
1336	cas_page_t *page = cp->rx_pages[1][index];
1337	cas_page_t *new;
1338
1339	if (page_count(page->buffer) == 1)
1340		return page;
1341
1342	new = cas_page_dequeue(cp);
1343	if (new) {
1344		spin_lock(&cp->rx_inuse_lock);
1345		list_add(&page->list, &cp->rx_inuse_list);
1346		spin_unlock(&cp->rx_inuse_lock);
1347	}
1348	return new;
1349}
1350
1351/* this needs to be changed if we actually use the ENC RX DESC ring */
1352static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1353				 const int index)
1354{
1355	cas_page_t **page0 = cp->rx_pages[0];
1356	cas_page_t **page1 = cp->rx_pages[1];
1357
1358	/* swap if buffer is in use */
1359	if (page_count(page0[index]->buffer) > 1) {
1360		cas_page_t *new = cas_page_spare(cp, index);
1361		if (new) {
1362			page1[index] = page0[index];
1363			page0[index] = new;
1364		}
1365	}
1366	RX_USED_SET(page0[index], 0);
1367	return page0[index];
1368}
1369
1370static void cas_clean_rxds(struct cas *cp)
1371{
1372	/* only clean ring 0 as ring 1 is used for spare buffers */
1373        struct cas_rx_desc *rxd = cp->init_rxds[0];
1374	int i, size;
1375
1376	/* release all rx flows */
1377	for (i = 0; i < N_RX_FLOWS; i++) {
1378		struct sk_buff *skb;
1379		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1380			cas_skb_release(skb);
1381		}
1382	}
1383
1384	/* initialize descriptors */
1385	size = RX_DESC_RINGN_SIZE(0);
1386	for (i = 0; i < size; i++) {
1387		cas_page_t *page = cas_page_swap(cp, 0, i);
1388		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1389		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1390					    CAS_BASE(RX_INDEX_RING, 0));
1391	}
1392
1393	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1394	cp->rx_last[0] = 0;
1395	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1396}
1397
1398static void cas_clean_rxcs(struct cas *cp)
1399{
1400	int i, j;
1401
1402	/* take ownership of rx comp descriptors */
1403	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1404	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1405	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1406		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1407		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1408			cas_rxc_init(rxc + j);
1409		}
1410	}
1411}
1412
1413#if 0
1414/* When we get a RX fifo overflow, the RX unit is probably hung
1415 * so we do the following.
1416 *
1417 * If any part of the reset goes wrong, we return 1 and that causes the
1418 * whole chip to be reset.
1419 */
1420static int cas_rxmac_reset(struct cas *cp)
1421{
1422	struct net_device *dev = cp->dev;
1423	int limit;
1424	u32 val;
1425
1426	/* First, reset MAC RX. */
1427	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1428	for (limit = 0; limit < STOP_TRIES; limit++) {
1429		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1430			break;
1431		udelay(10);
1432	}
1433	if (limit == STOP_TRIES) {
1434		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1435		return 1;
1436	}
1437
1438	/* Second, disable RX DMA. */
1439	writel(0, cp->regs + REG_RX_CFG);
1440	for (limit = 0; limit < STOP_TRIES; limit++) {
1441		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1442			break;
1443		udelay(10);
1444	}
1445	if (limit == STOP_TRIES) {
1446		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1447		return 1;
1448	}
1449
1450	mdelay(5);
1451
1452	/* Execute RX reset command. */
1453	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1454	for (limit = 0; limit < STOP_TRIES; limit++) {
1455		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1456			break;
1457		udelay(10);
1458	}
1459	if (limit == STOP_TRIES) {
1460		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1461		return 1;
1462	}
1463
1464	/* reset driver rx state */
1465	cas_clean_rxds(cp);
1466	cas_clean_rxcs(cp);
1467
1468	/* Now, reprogram the rest of RX unit. */
1469	cas_init_rx_dma(cp);
1470
1471	/* re-enable */
1472	val = readl(cp->regs + REG_RX_CFG);
1473	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1474	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1475	val = readl(cp->regs + REG_MAC_RX_CFG);
1476	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1477	return 0;
1478}
1479#endif
1480
1481static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1482			       u32 status)
1483{
1484	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1485
1486	if (!stat)
1487		return 0;
1488
1489	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1490
1491	/* these are all rollovers */
1492	spin_lock(&cp->stat_lock[0]);
1493	if (stat & MAC_RX_ALIGN_ERR)
1494		cp->net_stats[0].rx_frame_errors += 0x10000;
1495
1496	if (stat & MAC_RX_CRC_ERR)
1497		cp->net_stats[0].rx_crc_errors += 0x10000;
1498
1499	if (stat & MAC_RX_LEN_ERR)
1500		cp->net_stats[0].rx_length_errors += 0x10000;
1501
1502	if (stat & MAC_RX_OVERFLOW) {
1503		cp->net_stats[0].rx_over_errors++;
1504		cp->net_stats[0].rx_fifo_errors++;
1505	}
1506
1507	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1508	 * events.
1509	 */
1510	spin_unlock(&cp->stat_lock[0]);
1511	return 0;
1512}
1513
1514static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1515			     u32 status)
1516{
1517	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1518
1519	if (!stat)
1520		return 0;
1521
1522	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1523		     "mac interrupt, stat: 0x%x\n", stat);
1524
1525	/* This interrupt is just for pause frame and pause
1526	 * tracking.  It is useful for diagnostics and debug
1527	 * but probably by default we will mask these events.
1528	 */
1529	if (stat & MAC_CTRL_PAUSE_STATE)
1530		cp->pause_entered++;
1531
1532	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1533		cp->pause_last_time_recvd = (stat >> 16);
1534
1535	return 0;
1536}
1537
1538
1539/* Must be invoked under cp->lock. */
1540static inline int cas_mdio_link_not_up(struct cas *cp)
1541{
1542	u16 val;
1543
1544	switch (cp->lstate) {
1545	case link_force_ret:
1546		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1547		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1548		cp->timer_ticks = 5;
1549		cp->lstate = link_force_ok;
1550		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1551		break;
1552
1553	case link_aneg:
1554		val = cas_phy_read(cp, MII_BMCR);
1555
1556		/* Try forced modes. we try things in the following order:
1557		 * 1000 full -> 100 full/half -> 10 half
1558		 */
1559		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1560		val |= BMCR_FULLDPLX;
1561		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1562			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1563		cas_phy_write(cp, MII_BMCR, val);
1564		cp->timer_ticks = 5;
1565		cp->lstate = link_force_try;
1566		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1567		break;
1568
1569	case link_force_try:
1570		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1571		val = cas_phy_read(cp, MII_BMCR);
1572		cp->timer_ticks = 5;
1573		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1574			val &= ~CAS_BMCR_SPEED1000;
1575			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1576			cas_phy_write(cp, MII_BMCR, val);
1577			break;
1578		}
1579
1580		if (val & BMCR_SPEED100) {
1581			if (val & BMCR_FULLDPLX) /* fd failed */
1582				val &= ~BMCR_FULLDPLX;
1583			else { /* 100Mbps failed */
1584				val &= ~BMCR_SPEED100;
1585			}
1586			cas_phy_write(cp, MII_BMCR, val);
1587			break;
1588		}
1589		break;
1590	default:
1591		break;
1592	}
1593	return 0;
1594}
1595
1596
1597/* must be invoked with cp->lock held */
1598static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1599{
1600	int restart;
1601
1602	if (bmsr & BMSR_LSTATUS) {
1603		/* Ok, here we got a link. If we had it due to a forced
1604		 * fallback, and we were configured for autoneg, we
1605		 * retry a short autoneg pass. If you know your hub is
1606		 * broken, use ethtool ;)
1607		 */
1608		if ((cp->lstate == link_force_try) &&
1609		    (cp->link_cntl & BMCR_ANENABLE)) {
1610			cp->lstate = link_force_ret;
1611			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1612			cas_mif_poll(cp, 0);
1613			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1614			cp->timer_ticks = 5;
1615			if (cp->opened)
1616				netif_info(cp, link, cp->dev,
1617					   "Got link after fallback, retrying autoneg once...\n");
1618			cas_phy_write(cp, MII_BMCR,
1619				      cp->link_fcntl | BMCR_ANENABLE |
1620				      BMCR_ANRESTART);
1621			cas_mif_poll(cp, 1);
1622
1623		} else if (cp->lstate != link_up) {
1624			cp->lstate = link_up;
1625			cp->link_transition = LINK_TRANSITION_LINK_UP;
1626
1627			if (cp->opened) {
1628				cas_set_link_modes(cp);
1629				netif_carrier_on(cp->dev);
1630			}
1631		}
1632		return 0;
1633	}
1634
1635	/* link not up. if the link was previously up, we restart the
1636	 * whole process
1637	 */
1638	restart = 0;
1639	if (cp->lstate == link_up) {
1640		cp->lstate = link_down;
1641		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1642
1643		netif_carrier_off(cp->dev);
1644		if (cp->opened)
1645			netif_info(cp, link, cp->dev, "Link down\n");
1646		restart = 1;
1647
1648	} else if (++cp->timer_ticks > 10)
1649		cas_mdio_link_not_up(cp);
1650
1651	return restart;
1652}
1653
1654static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1655			     u32 status)
1656{
1657	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1658	u16 bmsr;
1659
1660	/* check for a link change */
1661	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1662		return 0;
1663
1664	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1665	return cas_mii_link_check(cp, bmsr);
1666}
1667
1668static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1669			     u32 status)
1670{
1671	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1672
1673	if (!stat)
1674		return 0;
1675
1676	netdev_err(dev, "PCI error [%04x:%04x]",
1677		   stat, readl(cp->regs + REG_BIM_DIAG));
1678
1679	/* cassini+ has this reserved */
1680	if ((stat & PCI_ERR_BADACK) &&
1681	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1682		pr_cont(" <No ACK64# during ABS64 cycle>");
1683
1684	if (stat & PCI_ERR_DTRTO)
1685		pr_cont(" <Delayed transaction timeout>");
1686	if (stat & PCI_ERR_OTHER)
1687		pr_cont(" <other>");
1688	if (stat & PCI_ERR_BIM_DMA_WRITE)
1689		pr_cont(" <BIM DMA 0 write req>");
1690	if (stat & PCI_ERR_BIM_DMA_READ)
1691		pr_cont(" <BIM DMA 0 read req>");
1692	pr_cont("\n");
1693
1694	if (stat & PCI_ERR_OTHER) {
1695		int pci_errs;
1696
1697		/* Interrogate PCI config space for the
1698		 * true cause.
1699		 */
1700		pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1701
1702		netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1703		if (pci_errs & PCI_STATUS_PARITY)
1704			netdev_err(dev, "PCI parity error detected\n");
1705		if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1706			netdev_err(dev, "PCI target abort\n");
1707		if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1708			netdev_err(dev, "PCI master acks target abort\n");
1709		if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1710			netdev_err(dev, "PCI master abort\n");
1711		if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1712			netdev_err(dev, "PCI system error SERR#\n");
1713		if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1714			netdev_err(dev, "PCI parity error\n");
1715	}
1716
1717	/* For all PCI errors, we should reset the chip. */
1718	return 1;
1719}
1720
1721/* All non-normal interrupt conditions get serviced here.
1722 * Returns non-zero if we should just exit the interrupt
1723 * handler right now (ie. if we reset the card which invalidates
1724 * all of the other original irq status bits).
1725 */
1726static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1727			    u32 status)
1728{
1729	if (status & INTR_RX_TAG_ERROR) {
1730		/* corrupt RX tag framing */
1731		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1732			     "corrupt rx tag framing\n");
1733		spin_lock(&cp->stat_lock[0]);
1734		cp->net_stats[0].rx_errors++;
1735		spin_unlock(&cp->stat_lock[0]);
1736		goto do_reset;
1737	}
1738
1739	if (status & INTR_RX_LEN_MISMATCH) {
1740		/* length mismatch. */
1741		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1742			     "length mismatch for rx frame\n");
1743		spin_lock(&cp->stat_lock[0]);
1744		cp->net_stats[0].rx_errors++;
1745		spin_unlock(&cp->stat_lock[0]);
1746		goto do_reset;
1747	}
1748
1749	if (status & INTR_PCS_STATUS) {
1750		if (cas_pcs_interrupt(dev, cp, status))
1751			goto do_reset;
1752	}
1753
1754	if (status & INTR_TX_MAC_STATUS) {
1755		if (cas_txmac_interrupt(dev, cp, status))
1756			goto do_reset;
1757	}
1758
1759	if (status & INTR_RX_MAC_STATUS) {
1760		if (cas_rxmac_interrupt(dev, cp, status))
1761			goto do_reset;
1762	}
1763
1764	if (status & INTR_MAC_CTRL_STATUS) {
1765		if (cas_mac_interrupt(dev, cp, status))
1766			goto do_reset;
1767	}
1768
1769	if (status & INTR_MIF_STATUS) {
1770		if (cas_mif_interrupt(dev, cp, status))
1771			goto do_reset;
1772	}
1773
1774	if (status & INTR_PCI_ERROR_STATUS) {
1775		if (cas_pci_interrupt(dev, cp, status))
1776			goto do_reset;
1777	}
1778	return 0;
1779
1780do_reset:
1781#if 1
1782	atomic_inc(&cp->reset_task_pending);
1783	atomic_inc(&cp->reset_task_pending_all);
1784	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1785	schedule_work(&cp->reset_task);
1786#else
1787	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1788	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1789	schedule_work(&cp->reset_task);
1790#endif
1791	return 1;
1792}
1793
1794/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1795 *       determining whether to do a netif_stop/wakeup
1796 */
1797#define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1798#define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1799static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1800				  const int len)
1801{
1802	unsigned long off = addr + len;
1803
1804	if (CAS_TABORT(cp) == 1)
1805		return 0;
1806	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1807		return 0;
1808	return TX_TARGET_ABORT_LEN;
1809}
1810
1811static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1812{
1813	struct cas_tx_desc *txds;
1814	struct sk_buff **skbs;
1815	struct net_device *dev = cp->dev;
1816	int entry, count;
1817
1818	spin_lock(&cp->tx_lock[ring]);
1819	txds = cp->init_txds[ring];
1820	skbs = cp->tx_skbs[ring];
1821	entry = cp->tx_old[ring];
1822
1823	count = TX_BUFF_COUNT(ring, entry, limit);
1824	while (entry != limit) {
1825		struct sk_buff *skb = skbs[entry];
1826		dma_addr_t daddr;
1827		u32 dlen;
1828		int frag;
1829
1830		if (!skb) {
1831			/* this should never occur */
1832			entry = TX_DESC_NEXT(ring, entry);
1833			continue;
1834		}
1835
1836		/* however, we might get only a partial skb release. */
1837		count -= skb_shinfo(skb)->nr_frags +
1838			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1839		if (count < 0)
1840			break;
1841
1842		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1843			     "tx[%d] done, slot %d\n", ring, entry);
1844
1845		skbs[entry] = NULL;
1846		cp->tx_tiny_use[ring][entry].nbufs = 0;
1847
1848		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1849			struct cas_tx_desc *txd = txds + entry;
1850
1851			daddr = le64_to_cpu(txd->buffer);
1852			dlen = CAS_VAL(TX_DESC_BUFLEN,
1853				       le64_to_cpu(txd->control));
1854			dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1855				       DMA_TO_DEVICE);
1856			entry = TX_DESC_NEXT(ring, entry);
1857
1858			/* tiny buffer may follow */
1859			if (cp->tx_tiny_use[ring][entry].used) {
1860				cp->tx_tiny_use[ring][entry].used = 0;
1861				entry = TX_DESC_NEXT(ring, entry);
1862			}
1863		}
1864
1865		spin_lock(&cp->stat_lock[ring]);
1866		cp->net_stats[ring].tx_packets++;
1867		cp->net_stats[ring].tx_bytes += skb->len;
1868		spin_unlock(&cp->stat_lock[ring]);
1869		dev_consume_skb_irq(skb);
1870	}
1871	cp->tx_old[ring] = entry;
1872
1873	/* this is wrong for multiple tx rings. the net device needs
1874	 * multiple queues for this to do the right thing.  we wait
1875	 * for 2*packets to be available when using tiny buffers
1876	 */
1877	if (netif_queue_stopped(dev) &&
1878	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1879		netif_wake_queue(dev);
1880	spin_unlock(&cp->tx_lock[ring]);
1881}
1882
1883static void cas_tx(struct net_device *dev, struct cas *cp,
1884		   u32 status)
1885{
1886        int limit, ring;
1887#ifdef USE_TX_COMPWB
1888	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1889#endif
1890	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1891		     "tx interrupt, status: 0x%x, %llx\n",
1892		     status, (unsigned long long)compwb);
1893	/* process all the rings */
1894	for (ring = 0; ring < N_TX_RINGS; ring++) {
1895#ifdef USE_TX_COMPWB
1896		/* use the completion writeback registers */
1897		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1898			CAS_VAL(TX_COMPWB_LSB, compwb);
1899		compwb = TX_COMPWB_NEXT(compwb);
1900#else
1901		limit = readl(cp->regs + REG_TX_COMPN(ring));
1902#endif
1903		if (cp->tx_old[ring] != limit)
1904			cas_tx_ringN(cp, ring, limit);
1905	}
1906}
1907
1908
1909static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1910			      int entry, const u64 *words,
1911			      struct sk_buff **skbref)
1912{
1913	int dlen, hlen, len, i, alloclen;
1914	int off, swivel = RX_SWIVEL_OFF_VAL;
1915	struct cas_page *page;
1916	struct sk_buff *skb;
1917	void *crcaddr;
1918	__sum16 csum;
1919	char *p;
1920
1921	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1922	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1923	len  = hlen + dlen;
1924
1925	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1926		alloclen = len;
1927	else
1928		alloclen = max(hlen, RX_COPY_MIN);
1929
1930	skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1931	if (skb == NULL)
1932		return -1;
1933
1934	*skbref = skb;
1935	skb_reserve(skb, swivel);
1936
1937	p = skb->data;
1938	crcaddr = NULL;
1939	if (hlen) { /* always copy header pages */
1940		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1941		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1942		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1943			swivel;
1944
1945		i = hlen;
1946		if (!dlen) /* attach FCS */
1947			i += cp->crc_size;
1948		dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1949					i, DMA_FROM_DEVICE);
1950		memcpy(p, page_address(page->buffer) + off, i);
1951		dma_sync_single_for_device(&cp->pdev->dev,
1952					   page->dma_addr + off, i,
1953					   DMA_FROM_DEVICE);
1954		RX_USED_ADD(page, 0x100);
1955		p += hlen;
1956		swivel = 0;
1957	}
1958
1959
1960	if (alloclen < (hlen + dlen)) {
1961		skb_frag_t *frag = skb_shinfo(skb)->frags;
1962
1963		/* normal or jumbo packets. we use frags */
1964		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1965		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1966		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1967
1968		hlen = min(cp->page_size - off, dlen);
1969		if (hlen < 0) {
1970			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1971				     "rx page overflow: %d\n", hlen);
1972			dev_kfree_skb_irq(skb);
1973			return -1;
1974		}
1975		i = hlen;
1976		if (i == dlen)  /* attach FCS */
1977			i += cp->crc_size;
1978		dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1979					i, DMA_FROM_DEVICE);
1980
1981		/* make sure we always copy a header */
1982		swivel = 0;
1983		if (p == (char *) skb->data) { /* not split */
1984			memcpy(p, page_address(page->buffer) + off,
1985			       RX_COPY_MIN);
1986			dma_sync_single_for_device(&cp->pdev->dev,
1987						   page->dma_addr + off, i,
1988						   DMA_FROM_DEVICE);
1989			off += RX_COPY_MIN;
1990			swivel = RX_COPY_MIN;
1991			RX_USED_ADD(page, cp->mtu_stride);
1992		} else {
1993			RX_USED_ADD(page, hlen);
1994		}
1995		skb_put(skb, alloclen);
1996
1997		skb_shinfo(skb)->nr_frags++;
1998		skb->data_len += hlen - swivel;
1999		skb->truesize += hlen - swivel;
2000		skb->len      += hlen - swivel;
2001
2002		skb_frag_fill_page_desc(frag, page->buffer, off, hlen - swivel);
2003		__skb_frag_ref(frag);
 
 
2004
2005		/* any more data? */
2006		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2007			hlen = dlen;
2008			off = 0;
2009
2010			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2011			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2012			dma_sync_single_for_cpu(&cp->pdev->dev,
2013						page->dma_addr,
2014						hlen + cp->crc_size,
2015						DMA_FROM_DEVICE);
2016			dma_sync_single_for_device(&cp->pdev->dev,
2017						   page->dma_addr,
2018						   hlen + cp->crc_size,
2019						   DMA_FROM_DEVICE);
2020
2021			skb_shinfo(skb)->nr_frags++;
2022			skb->data_len += hlen;
2023			skb->len      += hlen;
2024			frag++;
2025
2026			skb_frag_fill_page_desc(frag, page->buffer, 0, hlen);
2027			__skb_frag_ref(frag);
 
 
2028			RX_USED_ADD(page, hlen + cp->crc_size);
2029		}
2030
2031		if (cp->crc_size)
2032			crcaddr = page_address(page->buffer) + off + hlen;
2033
2034	} else {
2035		/* copying packet */
2036		if (!dlen)
2037			goto end_copy_pkt;
2038
2039		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2040		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2041		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2042		hlen = min(cp->page_size - off, dlen);
2043		if (hlen < 0) {
2044			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2045				     "rx page overflow: %d\n", hlen);
2046			dev_kfree_skb_irq(skb);
2047			return -1;
2048		}
2049		i = hlen;
2050		if (i == dlen) /* attach FCS */
2051			i += cp->crc_size;
2052		dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2053					i, DMA_FROM_DEVICE);
2054		memcpy(p, page_address(page->buffer) + off, i);
2055		dma_sync_single_for_device(&cp->pdev->dev,
2056					   page->dma_addr + off, i,
2057					   DMA_FROM_DEVICE);
2058		if (p == (char *) skb->data) /* not split */
2059			RX_USED_ADD(page, cp->mtu_stride);
2060		else
2061			RX_USED_ADD(page, i);
2062
2063		/* any more data? */
2064		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2065			p += hlen;
2066			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2067			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2068			dma_sync_single_for_cpu(&cp->pdev->dev,
2069						page->dma_addr,
2070						dlen + cp->crc_size,
2071						DMA_FROM_DEVICE);
2072			memcpy(p, page_address(page->buffer), dlen + cp->crc_size);
2073			dma_sync_single_for_device(&cp->pdev->dev,
2074						   page->dma_addr,
2075						   dlen + cp->crc_size,
2076						   DMA_FROM_DEVICE);
2077			RX_USED_ADD(page, dlen + cp->crc_size);
2078		}
2079end_copy_pkt:
2080		if (cp->crc_size)
2081			crcaddr = skb->data + alloclen;
2082
2083		skb_put(skb, alloclen);
2084	}
2085
2086	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2087	if (cp->crc_size) {
2088		/* checksum includes FCS. strip it out. */
2089		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2090					      csum_unfold(csum)));
2091	}
2092	skb->protocol = eth_type_trans(skb, cp->dev);
2093	if (skb->protocol == htons(ETH_P_IP)) {
2094		skb->csum = csum_unfold(~csum);
2095		skb->ip_summed = CHECKSUM_COMPLETE;
2096	} else
2097		skb_checksum_none_assert(skb);
2098	return len;
2099}
2100
2101
2102/* we can handle up to 64 rx flows at a time. we do the same thing
2103 * as nonreassm except that we batch up the buffers.
2104 * NOTE: we currently just treat each flow as a bunch of packets that
2105 *       we pass up. a better way would be to coalesce the packets
2106 *       into a jumbo packet. to do that, we need to do the following:
2107 *       1) the first packet will have a clean split between header and
2108 *          data. save both.
2109 *       2) each time the next flow packet comes in, extend the
2110 *          data length and merge the checksums.
2111 *       3) on flow release, fix up the header.
2112 *       4) make sure the higher layer doesn't care.
2113 * because packets get coalesced, we shouldn't run into fragment count
2114 * issues.
2115 */
2116static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2117				   struct sk_buff *skb)
2118{
2119	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2120	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2121
2122	/* this is protected at a higher layer, so no need to
2123	 * do any additional locking here. stick the buffer
2124	 * at the end.
2125	 */
2126	__skb_queue_tail(flow, skb);
2127	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2128		while ((skb = __skb_dequeue(flow))) {
2129			cas_skb_release(skb);
2130		}
2131	}
2132}
2133
2134/* put rx descriptor back on ring. if a buffer is in use by a higher
2135 * layer, this will need to put in a replacement.
2136 */
2137static void cas_post_page(struct cas *cp, const int ring, const int index)
2138{
2139	cas_page_t *new;
2140	int entry;
2141
2142	entry = cp->rx_old[ring];
2143
2144	new = cas_page_swap(cp, ring, index);
2145	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2146	cp->init_rxds[ring][entry].index  =
2147		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2148			    CAS_BASE(RX_INDEX_RING, ring));
2149
2150	entry = RX_DESC_ENTRY(ring, entry + 1);
2151	cp->rx_old[ring] = entry;
2152
2153	if (entry % 4)
2154		return;
2155
2156	if (ring == 0)
2157		writel(entry, cp->regs + REG_RX_KICK);
2158	else if ((N_RX_DESC_RINGS > 1) &&
2159		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2160		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2161}
2162
2163
2164/* only when things are bad */
2165static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2166{
2167	unsigned int entry, last, count, released;
2168	int cluster;
2169	cas_page_t **page = cp->rx_pages[ring];
2170
2171	entry = cp->rx_old[ring];
2172
2173	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2174		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2175
2176	cluster = -1;
2177	count = entry & 0x3;
2178	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2179	released = 0;
2180	while (entry != last) {
2181		/* make a new buffer if it's still in use */
2182		if (page_count(page[entry]->buffer) > 1) {
2183			cas_page_t *new = cas_page_dequeue(cp);
2184			if (!new) {
2185				/* let the timer know that we need to
2186				 * do this again
2187				 */
2188				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2189				if (!timer_pending(&cp->link_timer))
2190					mod_timer(&cp->link_timer, jiffies +
2191						  CAS_LINK_FAST_TIMEOUT);
2192				cp->rx_old[ring]  = entry;
2193				cp->rx_last[ring] = num ? num - released : 0;
2194				return -ENOMEM;
2195			}
2196			spin_lock(&cp->rx_inuse_lock);
2197			list_add(&page[entry]->list, &cp->rx_inuse_list);
2198			spin_unlock(&cp->rx_inuse_lock);
2199			cp->init_rxds[ring][entry].buffer =
2200				cpu_to_le64(new->dma_addr);
2201			page[entry] = new;
2202
2203		}
2204
2205		if (++count == 4) {
2206			cluster = entry;
2207			count = 0;
2208		}
2209		released++;
2210		entry = RX_DESC_ENTRY(ring, entry + 1);
2211	}
2212	cp->rx_old[ring] = entry;
2213
2214	if (cluster < 0)
2215		return 0;
2216
2217	if (ring == 0)
2218		writel(cluster, cp->regs + REG_RX_KICK);
2219	else if ((N_RX_DESC_RINGS > 1) &&
2220		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2221		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2222	return 0;
2223}
2224
2225
2226/* process a completion ring. packets are set up in three basic ways:
2227 * small packets: should be copied header + data in single buffer.
2228 * large packets: header and data in a single buffer.
2229 * split packets: header in a separate buffer from data.
2230 *                data may be in multiple pages. data may be > 256
2231 *                bytes but in a single page.
2232 *
2233 * NOTE: RX page posting is done in this routine as well. while there's
2234 *       the capability of using multiple RX completion rings, it isn't
2235 *       really worthwhile due to the fact that the page posting will
2236 *       force serialization on the single descriptor ring.
2237 */
2238static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2239{
2240	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2241	int entry, drops;
2242	int npackets = 0;
2243
2244	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2245		     "rx[%d] interrupt, done: %d/%d\n",
2246		     ring,
2247		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2248
2249	entry = cp->rx_new[ring];
2250	drops = 0;
2251	while (1) {
2252		struct cas_rx_comp *rxc = rxcs + entry;
2253		struct sk_buff *skb;
2254		int type, len;
2255		u64 words[4];
2256		int i, dring;
2257
2258		words[0] = le64_to_cpu(rxc->word1);
2259		words[1] = le64_to_cpu(rxc->word2);
2260		words[2] = le64_to_cpu(rxc->word3);
2261		words[3] = le64_to_cpu(rxc->word4);
2262
2263		/* don't touch if still owned by hw */
2264		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2265		if (type == 0)
2266			break;
2267
2268		/* hw hasn't cleared the zero bit yet */
2269		if (words[3] & RX_COMP4_ZERO) {
2270			break;
2271		}
2272
2273		/* get info on the packet */
2274		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2275			spin_lock(&cp->stat_lock[ring]);
2276			cp->net_stats[ring].rx_errors++;
2277			if (words[3] & RX_COMP4_LEN_MISMATCH)
2278				cp->net_stats[ring].rx_length_errors++;
2279			if (words[3] & RX_COMP4_BAD)
2280				cp->net_stats[ring].rx_crc_errors++;
2281			spin_unlock(&cp->stat_lock[ring]);
2282
2283			/* We'll just return it to Cassini. */
2284		drop_it:
2285			spin_lock(&cp->stat_lock[ring]);
2286			++cp->net_stats[ring].rx_dropped;
2287			spin_unlock(&cp->stat_lock[ring]);
2288			goto next;
2289		}
2290
2291		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2292		if (len < 0) {
2293			++drops;
2294			goto drop_it;
2295		}
2296
2297		/* see if it's a flow re-assembly or not. the driver
2298		 * itself handles release back up.
2299		 */
2300		if (RX_DONT_BATCH || (type == 0x2)) {
2301			/* non-reassm: these always get released */
2302			cas_skb_release(skb);
2303		} else {
2304			cas_rx_flow_pkt(cp, words, skb);
2305		}
2306
2307		spin_lock(&cp->stat_lock[ring]);
2308		cp->net_stats[ring].rx_packets++;
2309		cp->net_stats[ring].rx_bytes += len;
2310		spin_unlock(&cp->stat_lock[ring]);
2311
2312	next:
2313		npackets++;
2314
2315		/* should it be released? */
2316		if (words[0] & RX_COMP1_RELEASE_HDR) {
2317			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2318			dring = CAS_VAL(RX_INDEX_RING, i);
2319			i = CAS_VAL(RX_INDEX_NUM, i);
2320			cas_post_page(cp, dring, i);
2321		}
2322
2323		if (words[0] & RX_COMP1_RELEASE_DATA) {
2324			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2325			dring = CAS_VAL(RX_INDEX_RING, i);
2326			i = CAS_VAL(RX_INDEX_NUM, i);
2327			cas_post_page(cp, dring, i);
2328		}
2329
2330		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2331			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2332			dring = CAS_VAL(RX_INDEX_RING, i);
2333			i = CAS_VAL(RX_INDEX_NUM, i);
2334			cas_post_page(cp, dring, i);
2335		}
2336
2337		/* skip to the next entry */
2338		entry = RX_COMP_ENTRY(ring, entry + 1 +
2339				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2340#ifdef USE_NAPI
2341		if (budget && (npackets >= budget))
2342			break;
2343#endif
2344	}
2345	cp->rx_new[ring] = entry;
2346
2347	if (drops)
2348		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2349	return npackets;
2350}
2351
2352
2353/* put completion entries back on the ring */
2354static void cas_post_rxcs_ringN(struct net_device *dev,
2355				struct cas *cp, int ring)
2356{
2357	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2358	int last, entry;
2359
2360	last = cp->rx_cur[ring];
2361	entry = cp->rx_new[ring];
2362	netif_printk(cp, intr, KERN_DEBUG, dev,
2363		     "rxc[%d] interrupt, done: %d/%d\n",
2364		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2365
2366	/* zero and re-mark descriptors */
2367	while (last != entry) {
2368		cas_rxc_init(rxc + last);
2369		last = RX_COMP_ENTRY(ring, last + 1);
2370	}
2371	cp->rx_cur[ring] = last;
2372
2373	if (ring == 0)
2374		writel(last, cp->regs + REG_RX_COMP_TAIL);
2375	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2376		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2377}
2378
2379
2380
2381/* cassini can use all four PCI interrupts for the completion ring.
2382 * rings 3 and 4 are identical
2383 */
2384#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2385static inline void cas_handle_irqN(struct net_device *dev,
2386				   struct cas *cp, const u32 status,
2387				   const int ring)
2388{
2389	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2390		cas_post_rxcs_ringN(dev, cp, ring);
2391}
2392
2393static irqreturn_t cas_interruptN(int irq, void *dev_id)
2394{
2395	struct net_device *dev = dev_id;
2396	struct cas *cp = netdev_priv(dev);
2397	unsigned long flags;
2398	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2399	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2400
2401	/* check for shared irq */
2402	if (status == 0)
2403		return IRQ_NONE;
2404
2405	spin_lock_irqsave(&cp->lock, flags);
2406	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2407#ifdef USE_NAPI
2408		cas_mask_intr(cp);
2409		napi_schedule(&cp->napi);
2410#else
2411		cas_rx_ringN(cp, ring, 0);
2412#endif
2413		status &= ~INTR_RX_DONE_ALT;
2414	}
2415
2416	if (status)
2417		cas_handle_irqN(dev, cp, status, ring);
2418	spin_unlock_irqrestore(&cp->lock, flags);
2419	return IRQ_HANDLED;
2420}
2421#endif
2422
2423#ifdef USE_PCI_INTB
2424/* everything but rx packets */
2425static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2426{
2427	if (status & INTR_RX_BUF_UNAVAIL_1) {
2428		/* Frame arrived, no free RX buffers available.
2429		 * NOTE: we can get this on a link transition. */
2430		cas_post_rxds_ringN(cp, 1, 0);
2431		spin_lock(&cp->stat_lock[1]);
2432		cp->net_stats[1].rx_dropped++;
2433		spin_unlock(&cp->stat_lock[1]);
2434	}
2435
2436	if (status & INTR_RX_BUF_AE_1)
2437		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2438				    RX_AE_FREEN_VAL(1));
2439
2440	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2441		cas_post_rxcs_ringN(cp, 1);
2442}
2443
2444/* ring 2 handles a few more events than 3 and 4 */
2445static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2446{
2447	struct net_device *dev = dev_id;
2448	struct cas *cp = netdev_priv(dev);
2449	unsigned long flags;
2450	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2451
2452	/* check for shared interrupt */
2453	if (status == 0)
2454		return IRQ_NONE;
2455
2456	spin_lock_irqsave(&cp->lock, flags);
2457	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2458#ifdef USE_NAPI
2459		cas_mask_intr(cp);
2460		napi_schedule(&cp->napi);
2461#else
2462		cas_rx_ringN(cp, 1, 0);
2463#endif
2464		status &= ~INTR_RX_DONE_ALT;
2465	}
2466	if (status)
2467		cas_handle_irq1(cp, status);
2468	spin_unlock_irqrestore(&cp->lock, flags);
2469	return IRQ_HANDLED;
2470}
2471#endif
2472
2473static inline void cas_handle_irq(struct net_device *dev,
2474				  struct cas *cp, const u32 status)
2475{
2476	/* housekeeping interrupts */
2477	if (status & INTR_ERROR_MASK)
2478		cas_abnormal_irq(dev, cp, status);
2479
2480	if (status & INTR_RX_BUF_UNAVAIL) {
2481		/* Frame arrived, no free RX buffers available.
2482		 * NOTE: we can get this on a link transition.
2483		 */
2484		cas_post_rxds_ringN(cp, 0, 0);
2485		spin_lock(&cp->stat_lock[0]);
2486		cp->net_stats[0].rx_dropped++;
2487		spin_unlock(&cp->stat_lock[0]);
2488	} else if (status & INTR_RX_BUF_AE) {
2489		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2490				    RX_AE_FREEN_VAL(0));
2491	}
2492
2493	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2494		cas_post_rxcs_ringN(dev, cp, 0);
2495}
2496
2497static irqreturn_t cas_interrupt(int irq, void *dev_id)
2498{
2499	struct net_device *dev = dev_id;
2500	struct cas *cp = netdev_priv(dev);
2501	unsigned long flags;
2502	u32 status = readl(cp->regs + REG_INTR_STATUS);
2503
2504	if (status == 0)
2505		return IRQ_NONE;
2506
2507	spin_lock_irqsave(&cp->lock, flags);
2508	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2509		cas_tx(dev, cp, status);
2510		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2511	}
2512
2513	if (status & INTR_RX_DONE) {
2514#ifdef USE_NAPI
2515		cas_mask_intr(cp);
2516		napi_schedule(&cp->napi);
2517#else
2518		cas_rx_ringN(cp, 0, 0);
2519#endif
2520		status &= ~INTR_RX_DONE;
2521	}
2522
2523	if (status)
2524		cas_handle_irq(dev, cp, status);
2525	spin_unlock_irqrestore(&cp->lock, flags);
2526	return IRQ_HANDLED;
2527}
2528
2529
2530#ifdef USE_NAPI
2531static int cas_poll(struct napi_struct *napi, int budget)
2532{
2533	struct cas *cp = container_of(napi, struct cas, napi);
2534	struct net_device *dev = cp->dev;
2535	int i, enable_intr, credits;
2536	u32 status = readl(cp->regs + REG_INTR_STATUS);
2537	unsigned long flags;
2538
2539	spin_lock_irqsave(&cp->lock, flags);
2540	cas_tx(dev, cp, status);
2541	spin_unlock_irqrestore(&cp->lock, flags);
2542
2543	/* NAPI rx packets. we spread the credits across all of the
2544	 * rxc rings
2545	 *
2546	 * to make sure we're fair with the work we loop through each
2547	 * ring N_RX_COMP_RING times with a request of
2548	 * budget / N_RX_COMP_RINGS
2549	 */
2550	enable_intr = 1;
2551	credits = 0;
2552	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2553		int j;
2554		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2555			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2556			if (credits >= budget) {
2557				enable_intr = 0;
2558				goto rx_comp;
2559			}
2560		}
2561	}
2562
2563rx_comp:
2564	/* final rx completion */
2565	spin_lock_irqsave(&cp->lock, flags);
2566	if (status)
2567		cas_handle_irq(dev, cp, status);
2568
2569#ifdef USE_PCI_INTB
2570	if (N_RX_COMP_RINGS > 1) {
2571		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2572		if (status)
2573			cas_handle_irq1(dev, cp, status);
2574	}
2575#endif
2576
2577#ifdef USE_PCI_INTC
2578	if (N_RX_COMP_RINGS > 2) {
2579		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2580		if (status)
2581			cas_handle_irqN(dev, cp, status, 2);
2582	}
2583#endif
2584
2585#ifdef USE_PCI_INTD
2586	if (N_RX_COMP_RINGS > 3) {
2587		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2588		if (status)
2589			cas_handle_irqN(dev, cp, status, 3);
2590	}
2591#endif
2592	spin_unlock_irqrestore(&cp->lock, flags);
2593	if (enable_intr) {
2594		napi_complete(napi);
2595		cas_unmask_intr(cp);
2596	}
2597	return credits;
2598}
2599#endif
2600
2601#ifdef CONFIG_NET_POLL_CONTROLLER
2602static void cas_netpoll(struct net_device *dev)
2603{
2604	struct cas *cp = netdev_priv(dev);
2605
2606	cas_disable_irq(cp, 0);
2607	cas_interrupt(cp->pdev->irq, dev);
2608	cas_enable_irq(cp, 0);
2609
2610#ifdef USE_PCI_INTB
2611	if (N_RX_COMP_RINGS > 1) {
2612		/* cas_interrupt1(); */
2613	}
2614#endif
2615#ifdef USE_PCI_INTC
2616	if (N_RX_COMP_RINGS > 2) {
2617		/* cas_interruptN(); */
2618	}
2619#endif
2620#ifdef USE_PCI_INTD
2621	if (N_RX_COMP_RINGS > 3) {
2622		/* cas_interruptN(); */
2623	}
2624#endif
2625}
2626#endif
2627
2628static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2629{
2630	struct cas *cp = netdev_priv(dev);
2631
2632	netdev_err(dev, "transmit timed out, resetting\n");
2633	if (!cp->hw_running) {
2634		netdev_err(dev, "hrm.. hw not running!\n");
2635		return;
2636	}
2637
2638	netdev_err(dev, "MIF_STATE[%08x]\n",
2639		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2640
2641	netdev_err(dev, "MAC_STATE[%08x]\n",
2642		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2643
2644	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2645		   readl(cp->regs + REG_TX_CFG),
2646		   readl(cp->regs + REG_MAC_TX_STATUS),
2647		   readl(cp->regs + REG_MAC_TX_CFG),
2648		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2649		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2650		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2651		   readl(cp->regs + REG_TX_SM_1),
2652		   readl(cp->regs + REG_TX_SM_2));
2653
2654	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2655		   readl(cp->regs + REG_RX_CFG),
2656		   readl(cp->regs + REG_MAC_RX_STATUS),
2657		   readl(cp->regs + REG_MAC_RX_CFG));
2658
2659	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2660		   readl(cp->regs + REG_HP_STATE_MACHINE),
2661		   readl(cp->regs + REG_HP_STATUS0),
2662		   readl(cp->regs + REG_HP_STATUS1),
2663		   readl(cp->regs + REG_HP_STATUS2));
2664
2665#if 1
2666	atomic_inc(&cp->reset_task_pending);
2667	atomic_inc(&cp->reset_task_pending_all);
2668	schedule_work(&cp->reset_task);
2669#else
2670	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2671	schedule_work(&cp->reset_task);
2672#endif
2673}
2674
2675static inline int cas_intme(int ring, int entry)
2676{
2677	/* Algorithm: IRQ every 1/2 of descriptors. */
2678	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2679		return 1;
2680	return 0;
2681}
2682
2683
2684static void cas_write_txd(struct cas *cp, int ring, int entry,
2685			  dma_addr_t mapping, int len, u64 ctrl, int last)
2686{
2687	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2688
2689	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2690	if (cas_intme(ring, entry))
2691		ctrl |= TX_DESC_INTME;
2692	if (last)
2693		ctrl |= TX_DESC_EOF;
2694	txd->control = cpu_to_le64(ctrl);
2695	txd->buffer = cpu_to_le64(mapping);
2696}
2697
2698static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2699				const int entry)
2700{
2701	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2702}
2703
2704static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2705				     const int entry, const int tentry)
2706{
2707	cp->tx_tiny_use[ring][tentry].nbufs++;
2708	cp->tx_tiny_use[ring][entry].used = 1;
2709	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2710}
2711
2712static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2713				    struct sk_buff *skb)
2714{
2715	struct net_device *dev = cp->dev;
2716	int entry, nr_frags, frag, tabort, tentry;
2717	dma_addr_t mapping;
2718	unsigned long flags;
2719	u64 ctrl;
2720	u32 len;
2721
2722	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2723
2724	/* This is a hard error, log it. */
2725	if (TX_BUFFS_AVAIL(cp, ring) <=
2726	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2727		netif_stop_queue(dev);
2728		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2729		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2730		return 1;
2731	}
2732
2733	ctrl = 0;
2734	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2735		const u64 csum_start_off = skb_checksum_start_offset(skb);
2736		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2737
2738		ctrl =  TX_DESC_CSUM_EN |
2739			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2740			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2741	}
2742
2743	entry = cp->tx_new[ring];
2744	cp->tx_skbs[ring][entry] = skb;
2745
2746	nr_frags = skb_shinfo(skb)->nr_frags;
2747	len = skb_headlen(skb);
2748	mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2749			       offset_in_page(skb->data), len, DMA_TO_DEVICE);
2750
2751	tentry = entry;
2752	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2753	if (unlikely(tabort)) {
2754		/* NOTE: len is always >  tabort */
2755		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2756			      ctrl | TX_DESC_SOF, 0);
2757		entry = TX_DESC_NEXT(ring, entry);
2758
2759		skb_copy_from_linear_data_offset(skb, len - tabort,
2760			      tx_tiny_buf(cp, ring, entry), tabort);
2761		mapping = tx_tiny_map(cp, ring, entry, tentry);
2762		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2763			      (nr_frags == 0));
2764	} else {
2765		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2766			      TX_DESC_SOF, (nr_frags == 0));
2767	}
2768	entry = TX_DESC_NEXT(ring, entry);
2769
2770	for (frag = 0; frag < nr_frags; frag++) {
2771		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2772
2773		len = skb_frag_size(fragp);
2774		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2775					   DMA_TO_DEVICE);
2776
2777		tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2778		if (unlikely(tabort)) {
2779			/* NOTE: len is always > tabort */
2780			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2781				      ctrl, 0);
2782			entry = TX_DESC_NEXT(ring, entry);
2783			memcpy_from_page(tx_tiny_buf(cp, ring, entry),
2784					 skb_frag_page(fragp),
2785					 skb_frag_off(fragp) + len - tabort,
2786					 tabort);
2787			mapping = tx_tiny_map(cp, ring, entry, tentry);
2788			len     = tabort;
2789		}
2790
2791		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2792			      (frag + 1 == nr_frags));
2793		entry = TX_DESC_NEXT(ring, entry);
2794	}
2795
2796	cp->tx_new[ring] = entry;
2797	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2798		netif_stop_queue(dev);
2799
2800	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2801		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2802		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2803	writel(entry, cp->regs + REG_TX_KICKN(ring));
2804	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2805	return 0;
2806}
2807
2808static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2809{
2810	struct cas *cp = netdev_priv(dev);
2811
2812	/* this is only used as a load-balancing hint, so it doesn't
2813	 * need to be SMP safe
2814	 */
2815	static int ring;
2816
2817	if (skb_padto(skb, cp->min_frame_size))
2818		return NETDEV_TX_OK;
2819
2820	/* XXX: we need some higher-level QoS hooks to steer packets to
2821	 *      individual queues.
2822	 */
2823	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2824		return NETDEV_TX_BUSY;
2825	return NETDEV_TX_OK;
2826}
2827
2828static void cas_init_tx_dma(struct cas *cp)
2829{
2830	u64 desc_dma = cp->block_dvma;
2831	unsigned long off;
2832	u32 val;
2833	int i;
2834
2835	/* set up tx completion writeback registers. must be 8-byte aligned */
2836#ifdef USE_TX_COMPWB
2837	off = offsetof(struct cas_init_block, tx_compwb);
2838	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2839	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2840#endif
2841
2842	/* enable completion writebacks, enable paced mode,
2843	 * disable read pipe, and disable pre-interrupt compwbs
2844	 */
2845	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2846		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2847		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2848		TX_CFG_INTR_COMPWB_DIS;
2849
2850	/* write out tx ring info and tx desc bases */
2851	for (i = 0; i < MAX_TX_RINGS; i++) {
2852		off = (unsigned long) cp->init_txds[i] -
2853			(unsigned long) cp->init_block;
2854
2855		val |= CAS_TX_RINGN_BASE(i);
2856		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2857		writel((desc_dma + off) & 0xffffffff, cp->regs +
2858		       REG_TX_DBN_LOW(i));
2859		/* don't zero out the kick register here as the system
2860		 * will wedge
2861		 */
2862	}
2863	writel(val, cp->regs + REG_TX_CFG);
2864
2865	/* program max burst sizes. these numbers should be different
2866	 * if doing QoS.
2867	 */
2868#ifdef USE_QOS
2869	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2870	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2871	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2872	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2873#else
2874	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2875	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2876	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2877	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2878#endif
2879}
2880
2881/* Must be invoked under cp->lock. */
2882static inline void cas_init_dma(struct cas *cp)
2883{
2884	cas_init_tx_dma(cp);
2885	cas_init_rx_dma(cp);
2886}
2887
2888static void cas_process_mc_list(struct cas *cp)
2889{
2890	u16 hash_table[16];
2891	u32 crc;
2892	struct netdev_hw_addr *ha;
2893	int i = 1;
2894
2895	memset(hash_table, 0, sizeof(hash_table));
2896	netdev_for_each_mc_addr(ha, cp->dev) {
2897		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2898			/* use the alternate mac address registers for the
2899			 * first 15 multicast addresses
2900			 */
2901			writel((ha->addr[4] << 8) | ha->addr[5],
2902			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2903			writel((ha->addr[2] << 8) | ha->addr[3],
2904			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2905			writel((ha->addr[0] << 8) | ha->addr[1],
2906			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2907			i++;
2908		}
2909		else {
2910			/* use hw hash table for the next series of
2911			 * multicast addresses
2912			 */
2913			crc = ether_crc_le(ETH_ALEN, ha->addr);
2914			crc >>= 24;
2915			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2916		}
2917	}
2918	for (i = 0; i < 16; i++)
2919		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2920}
2921
2922/* Must be invoked under cp->lock. */
2923static u32 cas_setup_multicast(struct cas *cp)
2924{
2925	u32 rxcfg = 0;
2926	int i;
2927
2928	if (cp->dev->flags & IFF_PROMISC) {
2929		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2930
2931	} else if (cp->dev->flags & IFF_ALLMULTI) {
2932	    	for (i=0; i < 16; i++)
2933			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2934		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2935
2936	} else {
2937		cas_process_mc_list(cp);
2938		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2939	}
2940
2941	return rxcfg;
2942}
2943
2944/* must be invoked under cp->stat_lock[N_TX_RINGS] */
2945static void cas_clear_mac_err(struct cas *cp)
2946{
2947	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2948	writel(0, cp->regs + REG_MAC_COLL_FIRST);
2949	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2950	writel(0, cp->regs + REG_MAC_COLL_LATE);
2951	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2952	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2953	writel(0, cp->regs + REG_MAC_RECV_FRAME);
2954	writel(0, cp->regs + REG_MAC_LEN_ERR);
2955	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2956	writel(0, cp->regs + REG_MAC_FCS_ERR);
2957	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2958}
2959
2960
2961static void cas_mac_reset(struct cas *cp)
2962{
2963	int i;
2964
2965	/* do both TX and RX reset */
2966	writel(0x1, cp->regs + REG_MAC_TX_RESET);
2967	writel(0x1, cp->regs + REG_MAC_RX_RESET);
2968
2969	/* wait for TX */
2970	i = STOP_TRIES;
2971	while (i-- > 0) {
2972		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
2973			break;
2974		udelay(10);
2975	}
2976
2977	/* wait for RX */
2978	i = STOP_TRIES;
2979	while (i-- > 0) {
2980		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
2981			break;
2982		udelay(10);
2983	}
2984
2985	if (readl(cp->regs + REG_MAC_TX_RESET) |
2986	    readl(cp->regs + REG_MAC_RX_RESET))
2987		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
2988			   readl(cp->regs + REG_MAC_TX_RESET),
2989			   readl(cp->regs + REG_MAC_RX_RESET),
2990			   readl(cp->regs + REG_MAC_STATE_MACHINE));
2991}
2992
2993
2994/* Must be invoked under cp->lock. */
2995static void cas_init_mac(struct cas *cp)
2996{
2997	const unsigned char *e = &cp->dev->dev_addr[0];
2998	int i;
2999	cas_mac_reset(cp);
3000
3001	/* setup core arbitration weight register */
3002	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3003
3004#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3005	/* set the infinite burst register for chips that don't have
3006	 * pci issues.
3007	 */
3008	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3009		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3010#endif
3011
3012	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3013
3014	writel(0x00, cp->regs + REG_MAC_IPG0);
3015	writel(0x08, cp->regs + REG_MAC_IPG1);
3016	writel(0x04, cp->regs + REG_MAC_IPG2);
3017
3018	/* change later for 802.3z */
3019	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3020
3021	/* min frame + FCS */
3022	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3023
3024	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3025	 * specify the maximum frame size to prevent RX tag errors on
3026	 * oversized frames.
3027	 */
3028	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3029	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3030			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3031	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3032
3033	/* NOTE: crc_size is used as a surrogate for half-duplex.
3034	 * workaround saturn half-duplex issue by increasing preamble
3035	 * size to 65 bytes.
3036	 */
3037	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3038		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3039	else
3040		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3041	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3042	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3043	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3044
3045	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3046
3047	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3048	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3049	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3050	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3051	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3052
3053	/* setup mac address in perfect filter array */
3054	for (i = 0; i < 45; i++)
3055		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3056
3057	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3058	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3059	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3060
3061	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3062	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3063	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3064
3065	cp->mac_rx_cfg = cas_setup_multicast(cp);
3066
3067	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3068	cas_clear_mac_err(cp);
3069	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3070
3071	/* Setup MAC interrupts.  We want to get all of the interesting
3072	 * counter expiration events, but we do not want to hear about
3073	 * normal rx/tx as the DMA engine tells us that.
3074	 */
3075	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3076	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3077
3078	/* Don't enable even the PAUSE interrupts for now, we
3079	 * make no use of those events other than to record them.
3080	 */
3081	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3082}
3083
3084/* Must be invoked under cp->lock. */
3085static void cas_init_pause_thresholds(struct cas *cp)
3086{
3087	/* Calculate pause thresholds.  Setting the OFF threshold to the
3088	 * full RX fifo size effectively disables PAUSE generation
3089	 */
3090	if (cp->rx_fifo_size <= (2 * 1024)) {
3091		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3092	} else {
3093		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3094		if (max_frame * 3 > cp->rx_fifo_size) {
3095			cp->rx_pause_off = 7104;
3096			cp->rx_pause_on  = 960;
3097		} else {
3098			int off = (cp->rx_fifo_size - (max_frame * 2));
3099			int on = off - max_frame;
3100			cp->rx_pause_off = off;
3101			cp->rx_pause_on = on;
3102		}
3103	}
3104}
3105
3106static int cas_vpd_match(const void __iomem *p, const char *str)
3107{
3108	int len = strlen(str) + 1;
3109	int i;
3110
3111	for (i = 0; i < len; i++) {
3112		if (readb(p + i) != str[i])
3113			return 0;
3114	}
3115	return 1;
3116}
3117
3118
3119/* get the mac address by reading the vpd information in the rom.
3120 * also get the phy type and determine if there's an entropy generator.
3121 * NOTE: this is a bit convoluted for the following reasons:
3122 *  1) vpd info has order-dependent mac addresses for multinic cards
3123 *  2) the only way to determine the nic order is to use the slot
3124 *     number.
3125 *  3) fiber cards don't have bridges, so their slot numbers don't
3126 *     mean anything.
3127 *  4) we don't actually know we have a fiber card until after
3128 *     the mac addresses are parsed.
3129 */
3130static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3131			    const int offset)
3132{
3133	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3134	void __iomem *base, *kstart;
3135	int i, len;
3136	int found = 0;
3137#define VPD_FOUND_MAC        0x01
3138#define VPD_FOUND_PHY        0x02
3139
3140	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3141	int mac_off  = 0;
3142
3143#if defined(CONFIG_SPARC)
3144	const unsigned char *addr;
3145#endif
3146
3147	/* give us access to the PROM */
3148	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3149	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3150
3151	/* check for an expansion rom */
3152	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3153		goto use_random_mac_addr;
3154
3155	/* search for beginning of vpd */
3156	base = NULL;
3157	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3158		/* check for PCIR */
3159		if ((readb(p + i + 0) == 0x50) &&
3160		    (readb(p + i + 1) == 0x43) &&
3161		    (readb(p + i + 2) == 0x49) &&
3162		    (readb(p + i + 3) == 0x52)) {
3163			base = p + (readb(p + i + 8) |
3164				    (readb(p + i + 9) << 8));
3165			break;
3166		}
3167	}
3168
3169	if (!base || (readb(base) != 0x82))
3170		goto use_random_mac_addr;
3171
3172	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3173	while (i < EXPANSION_ROM_SIZE) {
3174		if (readb(base + i) != 0x90) /* no vpd found */
3175			goto use_random_mac_addr;
3176
3177		/* found a vpd field */
3178		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3179
3180		/* extract keywords */
3181		kstart = base + i + 3;
3182		p = kstart;
3183		while ((p - kstart) < len) {
3184			int klen = readb(p + 2);
3185			int j;
3186			char type;
3187
3188			p += 3;
3189
3190			/* look for the following things:
3191			 * -- correct length == 29
3192			 * 3 (type) + 2 (size) +
3193			 * 18 (strlen("local-mac-address") + 1) +
3194			 * 6 (mac addr)
3195			 * -- VPD Instance 'I'
3196			 * -- VPD Type Bytes 'B'
3197			 * -- VPD data length == 6
3198			 * -- property string == local-mac-address
3199			 *
3200			 * -- correct length == 24
3201			 * 3 (type) + 2 (size) +
3202			 * 12 (strlen("entropy-dev") + 1) +
3203			 * 7 (strlen("vms110") + 1)
3204			 * -- VPD Instance 'I'
3205			 * -- VPD Type String 'B'
3206			 * -- VPD data length == 7
3207			 * -- property string == entropy-dev
3208			 *
3209			 * -- correct length == 18
3210			 * 3 (type) + 2 (size) +
3211			 * 9 (strlen("phy-type") + 1) +
3212			 * 4 (strlen("pcs") + 1)
3213			 * -- VPD Instance 'I'
3214			 * -- VPD Type String 'S'
3215			 * -- VPD data length == 4
3216			 * -- property string == phy-type
3217			 *
3218			 * -- correct length == 23
3219			 * 3 (type) + 2 (size) +
3220			 * 14 (strlen("phy-interface") + 1) +
3221			 * 4 (strlen("pcs") + 1)
3222			 * -- VPD Instance 'I'
3223			 * -- VPD Type String 'S'
3224			 * -- VPD data length == 4
3225			 * -- property string == phy-interface
3226			 */
3227			if (readb(p) != 'I')
3228				goto next;
3229
3230			/* finally, check string and length */
3231			type = readb(p + 3);
3232			if (type == 'B') {
3233				if ((klen == 29) && readb(p + 4) == 6 &&
3234				    cas_vpd_match(p + 5,
3235						  "local-mac-address")) {
3236					if (mac_off++ > offset)
3237						goto next;
3238
3239					/* set mac address */
3240					for (j = 0; j < 6; j++)
3241						dev_addr[j] =
3242							readb(p + 23 + j);
3243					goto found_mac;
3244				}
3245			}
3246
3247			if (type != 'S')
3248				goto next;
3249
3250#ifdef USE_ENTROPY_DEV
3251			if ((klen == 24) &&
3252			    cas_vpd_match(p + 5, "entropy-dev") &&
3253			    cas_vpd_match(p + 17, "vms110")) {
3254				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3255				goto next;
3256			}
3257#endif
3258
3259			if (found & VPD_FOUND_PHY)
3260				goto next;
3261
3262			if ((klen == 18) && readb(p + 4) == 4 &&
3263			    cas_vpd_match(p + 5, "phy-type")) {
3264				if (cas_vpd_match(p + 14, "pcs")) {
3265					phy_type = CAS_PHY_SERDES;
3266					goto found_phy;
3267				}
3268			}
3269
3270			if ((klen == 23) && readb(p + 4) == 4 &&
3271			    cas_vpd_match(p + 5, "phy-interface")) {
3272				if (cas_vpd_match(p + 19, "pcs")) {
3273					phy_type = CAS_PHY_SERDES;
3274					goto found_phy;
3275				}
3276			}
3277found_mac:
3278			found |= VPD_FOUND_MAC;
3279			goto next;
3280
3281found_phy:
3282			found |= VPD_FOUND_PHY;
3283
3284next:
3285			p += klen;
3286		}
3287		i += len + 3;
3288	}
3289
3290use_random_mac_addr:
3291	if (found & VPD_FOUND_MAC)
3292		goto done;
3293
3294#if defined(CONFIG_SPARC)
3295	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3296	if (addr != NULL) {
3297		memcpy(dev_addr, addr, ETH_ALEN);
3298		goto done;
3299	}
3300#endif
3301
3302	/* Sun MAC prefix then 3 random bytes. */
3303	pr_info("MAC address not found in ROM VPD\n");
3304	dev_addr[0] = 0x08;
3305	dev_addr[1] = 0x00;
3306	dev_addr[2] = 0x20;
3307	get_random_bytes(dev_addr + 3, 3);
3308
3309done:
3310	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3311	return phy_type;
3312}
3313
3314/* check pci invariants */
3315static void cas_check_pci_invariants(struct cas *cp)
3316{
3317	struct pci_dev *pdev = cp->pdev;
3318
3319	cp->cas_flags = 0;
3320	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3321	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3322		if (pdev->revision >= CAS_ID_REVPLUS)
3323			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3324		if (pdev->revision < CAS_ID_REVPLUS02u)
3325			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3326
3327		/* Original Cassini supports HW CSUM, but it's not
3328		 * enabled by default as it can trigger TX hangs.
3329		 */
3330		if (pdev->revision < CAS_ID_REV2)
3331			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3332	} else {
3333		/* Only sun has original cassini chips.  */
3334		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3335
3336		/* We use a flag because the same phy might be externally
3337		 * connected.
3338		 */
3339		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3340		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3341			cp->cas_flags |= CAS_FLAG_SATURN;
3342	}
3343}
3344
3345
3346static int cas_check_invariants(struct cas *cp)
3347{
3348	struct pci_dev *pdev = cp->pdev;
3349	u8 addr[ETH_ALEN];
3350	u32 cfg;
3351	int i;
3352
3353	/* get page size for rx buffers. */
3354	cp->page_order = 0;
3355#ifdef USE_PAGE_ORDER
3356	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3357		/* see if we can allocate larger pages */
3358		struct page *page = alloc_pages(GFP_ATOMIC,
3359						CAS_JUMBO_PAGE_SHIFT -
3360						PAGE_SHIFT);
3361		if (page) {
3362			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3363			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3364		} else {
3365			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3366		}
3367	}
3368#endif
3369	cp->page_size = (PAGE_SIZE << cp->page_order);
3370
3371	/* Fetch the FIFO configurations. */
3372	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3373	cp->rx_fifo_size = RX_FIFO_SIZE;
3374
3375	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3376	 * they're both connected.
3377	 */
3378	cp->phy_type = cas_get_vpd_info(cp, addr, PCI_SLOT(pdev->devfn));
3379	eth_hw_addr_set(cp->dev, addr);
3380	if (cp->phy_type & CAS_PHY_SERDES) {
3381		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3382		return 0; /* no more checking needed */
3383	}
3384
3385	/* MII */
3386	cfg = readl(cp->regs + REG_MIF_CFG);
3387	if (cfg & MIF_CFG_MDIO_1) {
3388		cp->phy_type = CAS_PHY_MII_MDIO1;
3389	} else if (cfg & MIF_CFG_MDIO_0) {
3390		cp->phy_type = CAS_PHY_MII_MDIO0;
3391	}
3392
3393	cas_mif_poll(cp, 0);
3394	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3395
3396	for (i = 0; i < 32; i++) {
3397		u32 phy_id;
3398		int j;
3399
3400		for (j = 0; j < 3; j++) {
3401			cp->phy_addr = i;
3402			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3403			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3404			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3405				cp->phy_id = phy_id;
3406				goto done;
3407			}
3408		}
3409	}
3410	pr_err("MII phy did not respond [%08x]\n",
3411	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3412	return -1;
3413
3414done:
3415	/* see if we can do gigabit */
3416	cfg = cas_phy_read(cp, MII_BMSR);
3417	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3418	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3419		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3420	return 0;
3421}
3422
3423/* Must be invoked under cp->lock. */
3424static inline void cas_start_dma(struct cas *cp)
3425{
3426	int i;
3427	u32 val;
3428	int txfailed = 0;
3429
3430	/* enable dma */
3431	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3432	writel(val, cp->regs + REG_TX_CFG);
3433	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3434	writel(val, cp->regs + REG_RX_CFG);
3435
3436	/* enable the mac */
3437	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3438	writel(val, cp->regs + REG_MAC_TX_CFG);
3439	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3440	writel(val, cp->regs + REG_MAC_RX_CFG);
3441
3442	i = STOP_TRIES;
3443	while (i-- > 0) {
3444		val = readl(cp->regs + REG_MAC_TX_CFG);
3445		if ((val & MAC_TX_CFG_EN))
3446			break;
3447		udelay(10);
3448	}
3449	if (i < 0) txfailed = 1;
3450	i = STOP_TRIES;
3451	while (i-- > 0) {
3452		val = readl(cp->regs + REG_MAC_RX_CFG);
3453		if ((val & MAC_RX_CFG_EN)) {
3454			if (txfailed) {
3455				netdev_err(cp->dev,
3456					   "enabling mac failed [tx:%08x:%08x]\n",
3457					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3458					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3459			}
3460			goto enable_rx_done;
3461		}
3462		udelay(10);
3463	}
3464	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3465		   (txfailed ? "tx,rx" : "rx"),
3466		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3467		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3468
3469enable_rx_done:
3470	cas_unmask_intr(cp); /* enable interrupts */
3471	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3472	writel(0, cp->regs + REG_RX_COMP_TAIL);
3473
3474	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3475		if (N_RX_DESC_RINGS > 1)
3476			writel(RX_DESC_RINGN_SIZE(1) - 4,
3477			       cp->regs + REG_PLUS_RX_KICK1);
3478	}
3479}
3480
3481/* Must be invoked under cp->lock. */
3482static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3483				   int *pause)
3484{
3485	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3486	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3487	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3488	if (val & PCS_MII_LPA_ASYM_PAUSE)
3489		*pause |= 0x10;
3490	*spd = 1000;
3491}
3492
3493/* Must be invoked under cp->lock. */
3494static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3495				   int *pause)
3496{
3497	u32 val;
3498
3499	*fd = 0;
3500	*spd = 10;
3501	*pause = 0;
3502
3503	/* use GMII registers */
3504	val = cas_phy_read(cp, MII_LPA);
3505	if (val & CAS_LPA_PAUSE)
3506		*pause = 0x01;
3507
3508	if (val & CAS_LPA_ASYM_PAUSE)
3509		*pause |= 0x10;
3510
3511	if (val & LPA_DUPLEX)
3512		*fd = 1;
3513	if (val & LPA_100)
3514		*spd = 100;
3515
3516	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3517		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3518		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3519			*spd = 1000;
3520		if (val & CAS_LPA_1000FULL)
3521			*fd = 1;
3522	}
3523}
3524
3525/* A link-up condition has occurred, initialize and enable the
3526 * rest of the chip.
3527 *
3528 * Must be invoked under cp->lock.
3529 */
3530static void cas_set_link_modes(struct cas *cp)
3531{
3532	u32 val;
3533	int full_duplex, speed, pause;
3534
3535	full_duplex = 0;
3536	speed = 10;
3537	pause = 0;
3538
3539	if (CAS_PHY_MII(cp->phy_type)) {
3540		cas_mif_poll(cp, 0);
3541		val = cas_phy_read(cp, MII_BMCR);
3542		if (val & BMCR_ANENABLE) {
3543			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3544					       &pause);
3545		} else {
3546			if (val & BMCR_FULLDPLX)
3547				full_duplex = 1;
3548
3549			if (val & BMCR_SPEED100)
3550				speed = 100;
3551			else if (val & CAS_BMCR_SPEED1000)
3552				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3553					1000 : 100;
3554		}
3555		cas_mif_poll(cp, 1);
3556
3557	} else {
3558		val = readl(cp->regs + REG_PCS_MII_CTRL);
3559		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3560		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3561			if (val & PCS_MII_CTRL_DUPLEX)
3562				full_duplex = 1;
3563		}
3564	}
3565
3566	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3567		   speed, full_duplex ? "full" : "half");
3568
3569	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3570	if (CAS_PHY_MII(cp->phy_type)) {
3571		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3572		if (!full_duplex)
3573			val |= MAC_XIF_DISABLE_ECHO;
3574	}
3575	if (full_duplex)
3576		val |= MAC_XIF_FDPLX_LED;
3577	if (speed == 1000)
3578		val |= MAC_XIF_GMII_MODE;
3579	writel(val, cp->regs + REG_MAC_XIF_CFG);
3580
3581	/* deal with carrier and collision detect. */
3582	val = MAC_TX_CFG_IPG_EN;
3583	if (full_duplex) {
3584		val |= MAC_TX_CFG_IGNORE_CARRIER;
3585		val |= MAC_TX_CFG_IGNORE_COLL;
3586	} else {
3587#ifndef USE_CSMA_CD_PROTO
3588		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3589		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3590#endif
3591	}
3592	/* val now set up for REG_MAC_TX_CFG */
3593
3594	/* If gigabit and half-duplex, enable carrier extension
3595	 * mode.  increase slot time to 512 bytes as well.
3596	 * else, disable it and make sure slot time is 64 bytes.
3597	 * also activate checksum bug workaround
3598	 */
3599	if ((speed == 1000) && !full_duplex) {
3600		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3601		       cp->regs + REG_MAC_TX_CFG);
3602
3603		val = readl(cp->regs + REG_MAC_RX_CFG);
3604		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3605		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3606		       cp->regs + REG_MAC_RX_CFG);
3607
3608		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3609
3610		cp->crc_size = 4;
3611		/* minimum size gigabit frame at half duplex */
3612		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3613
3614	} else {
3615		writel(val, cp->regs + REG_MAC_TX_CFG);
3616
3617		/* checksum bug workaround. don't strip FCS when in
3618		 * half-duplex mode
3619		 */
3620		val = readl(cp->regs + REG_MAC_RX_CFG);
3621		if (full_duplex) {
3622			val |= MAC_RX_CFG_STRIP_FCS;
3623			cp->crc_size = 0;
3624			cp->min_frame_size = CAS_MIN_MTU;
3625		} else {
3626			val &= ~MAC_RX_CFG_STRIP_FCS;
3627			cp->crc_size = 4;
3628			cp->min_frame_size = CAS_MIN_FRAME;
3629		}
3630		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3631		       cp->regs + REG_MAC_RX_CFG);
3632		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3633	}
3634
3635	if (netif_msg_link(cp)) {
3636		if (pause & 0x01) {
3637			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3638				    cp->rx_fifo_size,
3639				    cp->rx_pause_off,
3640				    cp->rx_pause_on);
3641		} else if (pause & 0x10) {
3642			netdev_info(cp->dev, "TX pause enabled\n");
3643		} else {
3644			netdev_info(cp->dev, "Pause is disabled\n");
3645		}
3646	}
3647
3648	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3649	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3650	if (pause) { /* symmetric or asymmetric pause */
3651		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3652		if (pause & 0x01) { /* symmetric pause */
3653			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3654		}
3655	}
3656	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3657	cas_start_dma(cp);
3658}
3659
3660/* Must be invoked under cp->lock. */
3661static void cas_init_hw(struct cas *cp, int restart_link)
3662{
3663	if (restart_link)
3664		cas_phy_init(cp);
3665
3666	cas_init_pause_thresholds(cp);
3667	cas_init_mac(cp);
3668	cas_init_dma(cp);
3669
3670	if (restart_link) {
3671		/* Default aneg parameters */
3672		cp->timer_ticks = 0;
3673		cas_begin_auto_negotiation(cp, NULL);
3674	} else if (cp->lstate == link_up) {
3675		cas_set_link_modes(cp);
3676		netif_carrier_on(cp->dev);
3677	}
3678}
3679
3680/* Must be invoked under cp->lock. on earlier cassini boards,
3681 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3682 * let it settle out, and then restore pci state.
3683 */
3684static void cas_hard_reset(struct cas *cp)
3685{
3686	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3687	udelay(20);
3688	pci_restore_state(cp->pdev);
3689}
3690
3691
3692static void cas_global_reset(struct cas *cp, int blkflag)
3693{
3694	int limit;
3695
3696	/* issue a global reset. don't use RSTOUT. */
3697	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3698		/* For PCS, when the blkflag is set, we should set the
3699		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3700		 * the last autonegotiation from being cleared.  We'll
3701		 * need some special handling if the chip is set into a
3702		 * loopback mode.
3703		 */
3704		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3705		       cp->regs + REG_SW_RESET);
3706	} else {
3707		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3708	}
3709
3710	/* need to wait at least 3ms before polling register */
3711	mdelay(3);
3712
3713	limit = STOP_TRIES;
3714	while (limit-- > 0) {
3715		u32 val = readl(cp->regs + REG_SW_RESET);
3716		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3717			goto done;
3718		udelay(10);
3719	}
3720	netdev_err(cp->dev, "sw reset failed\n");
3721
3722done:
3723	/* enable various BIM interrupts */
3724	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3725	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3726
3727	/* clear out pci error status mask for handled errors.
3728	 * we don't deal with DMA counter overflows as they happen
3729	 * all the time.
3730	 */
3731	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3732			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3733			       PCI_ERR_BIM_DMA_READ), cp->regs +
3734	       REG_PCI_ERR_STATUS_MASK);
3735
3736	/* set up for MII by default to address mac rx reset timeout
3737	 * issue
3738	 */
3739	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3740}
3741
3742static void cas_reset(struct cas *cp, int blkflag)
3743{
3744	u32 val;
3745
3746	cas_mask_intr(cp);
3747	cas_global_reset(cp, blkflag);
3748	cas_mac_reset(cp);
3749	cas_entropy_reset(cp);
3750
3751	/* disable dma engines. */
3752	val = readl(cp->regs + REG_TX_CFG);
3753	val &= ~TX_CFG_DMA_EN;
3754	writel(val, cp->regs + REG_TX_CFG);
3755
3756	val = readl(cp->regs + REG_RX_CFG);
3757	val &= ~RX_CFG_DMA_EN;
3758	writel(val, cp->regs + REG_RX_CFG);
3759
3760	/* program header parser */
3761	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3762	    (&CAS_HP_ALT_FIRMWARE[0] == &cas_prog_null[0])) {
3763		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3764	} else {
3765		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3766	}
3767
3768	/* clear out error registers */
3769	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3770	cas_clear_mac_err(cp);
3771	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3772}
3773
3774/* Shut down the chip, must be called with pm_mutex held.  */
3775static void cas_shutdown(struct cas *cp)
3776{
3777	unsigned long flags;
3778
3779	/* Make us not-running to avoid timers respawning */
3780	cp->hw_running = 0;
3781
3782	del_timer_sync(&cp->link_timer);
3783
3784	/* Stop the reset task */
3785#if 0
3786	while (atomic_read(&cp->reset_task_pending_mtu) ||
3787	       atomic_read(&cp->reset_task_pending_spare) ||
3788	       atomic_read(&cp->reset_task_pending_all))
3789		schedule();
3790
3791#else
3792	while (atomic_read(&cp->reset_task_pending))
3793		schedule();
3794#endif
3795	/* Actually stop the chip */
3796	cas_lock_all_save(cp, flags);
3797	cas_reset(cp, 0);
3798	if (cp->cas_flags & CAS_FLAG_SATURN)
3799		cas_phy_powerdown(cp);
3800	cas_unlock_all_restore(cp, flags);
3801}
3802
3803static int cas_change_mtu(struct net_device *dev, int new_mtu)
3804{
3805	struct cas *cp = netdev_priv(dev);
3806
3807	WRITE_ONCE(dev->mtu, new_mtu);
3808	if (!netif_running(dev) || !netif_device_present(dev))
3809		return 0;
3810
3811	/* let the reset task handle it */
3812#if 1
3813	atomic_inc(&cp->reset_task_pending);
3814	if ((cp->phy_type & CAS_PHY_SERDES)) {
3815		atomic_inc(&cp->reset_task_pending_all);
3816	} else {
3817		atomic_inc(&cp->reset_task_pending_mtu);
3818	}
3819	schedule_work(&cp->reset_task);
3820#else
3821	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3822		   CAS_RESET_ALL : CAS_RESET_MTU);
3823	pr_err("reset called in cas_change_mtu\n");
3824	schedule_work(&cp->reset_task);
3825#endif
3826
3827	flush_work(&cp->reset_task);
3828	return 0;
3829}
3830
3831static void cas_clean_txd(struct cas *cp, int ring)
3832{
3833	struct cas_tx_desc *txd = cp->init_txds[ring];
3834	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3835	u64 daddr, dlen;
3836	int i, size;
3837
3838	size = TX_DESC_RINGN_SIZE(ring);
3839	for (i = 0; i < size; i++) {
3840		int frag;
3841
3842		if (skbs[i] == NULL)
3843			continue;
3844
3845		skb = skbs[i];
3846		skbs[i] = NULL;
3847
3848		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3849			int ent = i & (size - 1);
3850
3851			/* first buffer is never a tiny buffer and so
3852			 * needs to be unmapped.
3853			 */
3854			daddr = le64_to_cpu(txd[ent].buffer);
3855			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3856					 le64_to_cpu(txd[ent].control));
3857			dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3858				       DMA_TO_DEVICE);
3859
3860			if (frag != skb_shinfo(skb)->nr_frags) {
3861				i++;
3862
3863				/* next buffer might by a tiny buffer.
3864				 * skip past it.
3865				 */
3866				ent = i & (size - 1);
3867				if (cp->tx_tiny_use[ring][ent].used)
3868					i++;
3869			}
3870		}
3871		dev_kfree_skb_any(skb);
3872	}
3873
3874	/* zero out tiny buf usage */
3875	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3876}
3877
3878/* freed on close */
3879static inline void cas_free_rx_desc(struct cas *cp, int ring)
3880{
3881	cas_page_t **page = cp->rx_pages[ring];
3882	int i, size;
3883
3884	size = RX_DESC_RINGN_SIZE(ring);
3885	for (i = 0; i < size; i++) {
3886		if (page[i]) {
3887			cas_page_free(cp, page[i]);
3888			page[i] = NULL;
3889		}
3890	}
3891}
3892
3893static void cas_free_rxds(struct cas *cp)
3894{
3895	int i;
3896
3897	for (i = 0; i < N_RX_DESC_RINGS; i++)
3898		cas_free_rx_desc(cp, i);
3899}
3900
3901/* Must be invoked under cp->lock. */
3902static void cas_clean_rings(struct cas *cp)
3903{
3904	int i;
3905
3906	/* need to clean all tx rings */
3907	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3908	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3909	for (i = 0; i < N_TX_RINGS; i++)
3910		cas_clean_txd(cp, i);
3911
3912	/* zero out init block */
3913	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3914	cas_clean_rxds(cp);
3915	cas_clean_rxcs(cp);
3916}
3917
3918/* allocated on open */
3919static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3920{
3921	cas_page_t **page = cp->rx_pages[ring];
3922	int size, i = 0;
3923
3924	size = RX_DESC_RINGN_SIZE(ring);
3925	for (i = 0; i < size; i++) {
3926		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3927			return -1;
3928	}
3929	return 0;
3930}
3931
3932static int cas_alloc_rxds(struct cas *cp)
3933{
3934	int i;
3935
3936	for (i = 0; i < N_RX_DESC_RINGS; i++) {
3937		if (cas_alloc_rx_desc(cp, i) < 0) {
3938			cas_free_rxds(cp);
3939			return -1;
3940		}
3941	}
3942	return 0;
3943}
3944
3945static void cas_reset_task(struct work_struct *work)
3946{
3947	struct cas *cp = container_of(work, struct cas, reset_task);
3948#if 0
3949	int pending = atomic_read(&cp->reset_task_pending);
3950#else
3951	int pending_all = atomic_read(&cp->reset_task_pending_all);
3952	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3953	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3954
3955	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3956		/* We can have more tasks scheduled than actually
3957		 * needed.
3958		 */
3959		atomic_dec(&cp->reset_task_pending);
3960		return;
3961	}
3962#endif
3963	/* The link went down, we reset the ring, but keep
3964	 * DMA stopped. Use this function for reset
3965	 * on error as well.
3966	 */
3967	if (cp->hw_running) {
3968		unsigned long flags;
3969
3970		/* Make sure we don't get interrupts or tx packets */
3971		netif_device_detach(cp->dev);
3972		cas_lock_all_save(cp, flags);
3973
3974		if (cp->opened) {
3975			/* We call cas_spare_recover when we call cas_open.
3976			 * but we do not initialize the lists cas_spare_recover
3977			 * uses until cas_open is called.
3978			 */
3979			cas_spare_recover(cp, GFP_ATOMIC);
3980		}
3981#if 1
3982		/* test => only pending_spare set */
3983		if (!pending_all && !pending_mtu)
3984			goto done;
3985#else
3986		if (pending == CAS_RESET_SPARE)
3987			goto done;
3988#endif
3989		/* when pending == CAS_RESET_ALL, the following
3990		 * call to cas_init_hw will restart auto negotiation.
3991		 * Setting the second argument of cas_reset to
3992		 * !(pending == CAS_RESET_ALL) will set this argument
3993		 * to 1 (avoiding reinitializing the PHY for the normal
3994		 * PCS case) when auto negotiation is not restarted.
3995		 */
3996#if 1
3997		cas_reset(cp, !(pending_all > 0));
3998		if (cp->opened)
3999			cas_clean_rings(cp);
4000		cas_init_hw(cp, (pending_all > 0));
4001#else
4002		cas_reset(cp, !(pending == CAS_RESET_ALL));
4003		if (cp->opened)
4004			cas_clean_rings(cp);
4005		cas_init_hw(cp, pending == CAS_RESET_ALL);
4006#endif
4007
4008done:
4009		cas_unlock_all_restore(cp, flags);
4010		netif_device_attach(cp->dev);
4011	}
4012#if 1
4013	atomic_sub(pending_all, &cp->reset_task_pending_all);
4014	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4015	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4016	atomic_dec(&cp->reset_task_pending);
4017#else
4018	atomic_set(&cp->reset_task_pending, 0);
4019#endif
4020}
4021
4022static void cas_link_timer(struct timer_list *t)
4023{
4024	struct cas *cp = from_timer(cp, t, link_timer);
4025	int mask, pending = 0, reset = 0;
4026	unsigned long flags;
4027
4028	if (link_transition_timeout != 0 &&
4029	    cp->link_transition_jiffies_valid &&
4030	    time_is_before_jiffies(cp->link_transition_jiffies +
4031	      link_transition_timeout)) {
4032		/* One-second counter so link-down workaround doesn't
4033		 * cause resets to occur so fast as to fool the switch
4034		 * into thinking the link is down.
4035		 */
4036		cp->link_transition_jiffies_valid = 0;
4037	}
4038
4039	if (!cp->hw_running)
4040		return;
4041
4042	spin_lock_irqsave(&cp->lock, flags);
4043	cas_lock_tx(cp);
4044	cas_entropy_gather(cp);
4045
4046	/* If the link task is still pending, we just
4047	 * reschedule the link timer
4048	 */
4049#if 1
4050	if (atomic_read(&cp->reset_task_pending_all) ||
4051	    atomic_read(&cp->reset_task_pending_spare) ||
4052	    atomic_read(&cp->reset_task_pending_mtu))
4053		goto done;
4054#else
4055	if (atomic_read(&cp->reset_task_pending))
4056		goto done;
4057#endif
4058
4059	/* check for rx cleaning */
4060	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4061		int i, rmask;
4062
4063		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4064			rmask = CAS_FLAG_RXD_POST(i);
4065			if ((mask & rmask) == 0)
4066				continue;
4067
4068			/* post_rxds will do a mod_timer */
4069			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4070				pending = 1;
4071				continue;
4072			}
4073			cp->cas_flags &= ~rmask;
4074		}
4075	}
4076
4077	if (CAS_PHY_MII(cp->phy_type)) {
4078		u16 bmsr;
4079		cas_mif_poll(cp, 0);
4080		bmsr = cas_phy_read(cp, MII_BMSR);
4081		/* WTZ: Solaris driver reads this twice, but that
4082		 * may be due to the PCS case and the use of a
4083		 * common implementation. Read it twice here to be
4084		 * safe.
4085		 */
4086		bmsr = cas_phy_read(cp, MII_BMSR);
4087		cas_mif_poll(cp, 1);
4088		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4089		reset = cas_mii_link_check(cp, bmsr);
4090	} else {
4091		reset = cas_pcs_link_check(cp);
4092	}
4093
4094	if (reset)
4095		goto done;
4096
4097	/* check for tx state machine confusion */
4098	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4099		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4100		u32 wptr, rptr;
4101		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4102
4103		if (((tlm == 0x5) || (tlm == 0x3)) &&
4104		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4105			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4106				     "tx err: MAC_STATE[%08x]\n", val);
4107			reset = 1;
4108			goto done;
4109		}
4110
4111		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4112		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4113		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4114		if ((val == 0) && (wptr != rptr)) {
4115			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4116				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4117				     val, wptr, rptr);
4118			reset = 1;
4119		}
4120
4121		if (reset)
4122			cas_hard_reset(cp);
4123	}
4124
4125done:
4126	if (reset) {
4127#if 1
4128		atomic_inc(&cp->reset_task_pending);
4129		atomic_inc(&cp->reset_task_pending_all);
4130		schedule_work(&cp->reset_task);
4131#else
4132		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4133		pr_err("reset called in cas_link_timer\n");
4134		schedule_work(&cp->reset_task);
4135#endif
4136	}
4137
4138	if (!pending)
4139		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4140	cas_unlock_tx(cp);
4141	spin_unlock_irqrestore(&cp->lock, flags);
4142}
4143
4144/* tiny buffers are used to avoid target abort issues with
4145 * older cassini's
4146 */
4147static void cas_tx_tiny_free(struct cas *cp)
4148{
4149	struct pci_dev *pdev = cp->pdev;
4150	int i;
4151
4152	for (i = 0; i < N_TX_RINGS; i++) {
4153		if (!cp->tx_tiny_bufs[i])
4154			continue;
4155
4156		dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4157				  cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
4158		cp->tx_tiny_bufs[i] = NULL;
4159	}
4160}
4161
4162static int cas_tx_tiny_alloc(struct cas *cp)
4163{
4164	struct pci_dev *pdev = cp->pdev;
4165	int i;
4166
4167	for (i = 0; i < N_TX_RINGS; i++) {
4168		cp->tx_tiny_bufs[i] =
4169			dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4170					   &cp->tx_tiny_dvma[i], GFP_KERNEL);
4171		if (!cp->tx_tiny_bufs[i]) {
4172			cas_tx_tiny_free(cp);
4173			return -1;
4174		}
4175	}
4176	return 0;
4177}
4178
4179
4180static int cas_open(struct net_device *dev)
4181{
4182	struct cas *cp = netdev_priv(dev);
4183	int hw_was_up, err;
4184	unsigned long flags;
4185
4186	mutex_lock(&cp->pm_mutex);
4187
4188	hw_was_up = cp->hw_running;
4189
4190	/* The power-management mutex protects the hw_running
4191	 * etc. state so it is safe to do this bit without cp->lock
4192	 */
4193	if (!cp->hw_running) {
4194		/* Reset the chip */
4195		cas_lock_all_save(cp, flags);
4196		/* We set the second arg to cas_reset to zero
4197		 * because cas_init_hw below will have its second
4198		 * argument set to non-zero, which will force
4199		 * autonegotiation to start.
4200		 */
4201		cas_reset(cp, 0);
4202		cp->hw_running = 1;
4203		cas_unlock_all_restore(cp, flags);
4204	}
4205
4206	err = -ENOMEM;
4207	if (cas_tx_tiny_alloc(cp) < 0)
4208		goto err_unlock;
4209
4210	/* alloc rx descriptors */
4211	if (cas_alloc_rxds(cp) < 0)
4212		goto err_tx_tiny;
4213
4214	/* allocate spares */
4215	cas_spare_init(cp);
4216	cas_spare_recover(cp, GFP_KERNEL);
4217
4218	/* We can now request the interrupt as we know it's masked
4219	 * on the controller. cassini+ has up to 4 interrupts
4220	 * that can be used, but you need to do explicit pci interrupt
4221	 * mapping to expose them
4222	 */
4223	if (request_irq(cp->pdev->irq, cas_interrupt,
4224			IRQF_SHARED, dev->name, (void *) dev)) {
4225		netdev_err(cp->dev, "failed to request irq !\n");
4226		err = -EAGAIN;
4227		goto err_spare;
4228	}
4229
4230#ifdef USE_NAPI
4231	napi_enable(&cp->napi);
4232#endif
4233	/* init hw */
4234	cas_lock_all_save(cp, flags);
4235	cas_clean_rings(cp);
4236	cas_init_hw(cp, !hw_was_up);
4237	cp->opened = 1;
4238	cas_unlock_all_restore(cp, flags);
4239
4240	netif_start_queue(dev);
4241	mutex_unlock(&cp->pm_mutex);
4242	return 0;
4243
4244err_spare:
4245	cas_spare_free(cp);
4246	cas_free_rxds(cp);
4247err_tx_tiny:
4248	cas_tx_tiny_free(cp);
4249err_unlock:
4250	mutex_unlock(&cp->pm_mutex);
4251	return err;
4252}
4253
4254static int cas_close(struct net_device *dev)
4255{
4256	unsigned long flags;
4257	struct cas *cp = netdev_priv(dev);
4258
4259#ifdef USE_NAPI
4260	napi_disable(&cp->napi);
4261#endif
4262	/* Make sure we don't get distracted by suspend/resume */
4263	mutex_lock(&cp->pm_mutex);
4264
4265	netif_stop_queue(dev);
4266
4267	/* Stop traffic, mark us closed */
4268	cas_lock_all_save(cp, flags);
4269	cp->opened = 0;
4270	cas_reset(cp, 0);
4271	cas_phy_init(cp);
4272	cas_begin_auto_negotiation(cp, NULL);
4273	cas_clean_rings(cp);
4274	cas_unlock_all_restore(cp, flags);
4275
4276	free_irq(cp->pdev->irq, (void *) dev);
4277	cas_spare_free(cp);
4278	cas_free_rxds(cp);
4279	cas_tx_tiny_free(cp);
4280	mutex_unlock(&cp->pm_mutex);
4281	return 0;
4282}
4283
4284static struct {
4285	const char name[ETH_GSTRING_LEN];
4286} ethtool_cassini_statnames[] = {
4287	{"collisions"},
4288	{"rx_bytes"},
4289	{"rx_crc_errors"},
4290	{"rx_dropped"},
4291	{"rx_errors"},
4292	{"rx_fifo_errors"},
4293	{"rx_frame_errors"},
4294	{"rx_length_errors"},
4295	{"rx_over_errors"},
4296	{"rx_packets"},
4297	{"tx_aborted_errors"},
4298	{"tx_bytes"},
4299	{"tx_dropped"},
4300	{"tx_errors"},
4301	{"tx_fifo_errors"},
4302	{"tx_packets"}
4303};
4304#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4305
4306static struct {
4307	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4308} ethtool_register_table[] = {
4309	{-MII_BMSR},
4310	{-MII_BMCR},
4311	{REG_CAWR},
4312	{REG_INF_BURST},
4313	{REG_BIM_CFG},
4314	{REG_RX_CFG},
4315	{REG_HP_CFG},
4316	{REG_MAC_TX_CFG},
4317	{REG_MAC_RX_CFG},
4318	{REG_MAC_CTRL_CFG},
4319	{REG_MAC_XIF_CFG},
4320	{REG_MIF_CFG},
4321	{REG_PCS_CFG},
4322	{REG_SATURN_PCFG},
4323	{REG_PCS_MII_STATUS},
4324	{REG_PCS_STATE_MACHINE},
4325	{REG_MAC_COLL_EXCESS},
4326	{REG_MAC_COLL_LATE}
4327};
4328#define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4329#define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4330
4331static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4332{
4333	u8 *p;
4334	int i;
4335	unsigned long flags;
4336
4337	spin_lock_irqsave(&cp->lock, flags);
4338	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4339		u16 hval;
4340		u32 val;
4341		if (ethtool_register_table[i].offsets < 0) {
4342			hval = cas_phy_read(cp,
4343				    -ethtool_register_table[i].offsets);
4344			val = hval;
4345		} else {
4346			val= readl(cp->regs+ethtool_register_table[i].offsets);
4347		}
4348		memcpy(p, (u8 *)&val, sizeof(u32));
4349	}
4350	spin_unlock_irqrestore(&cp->lock, flags);
4351}
4352
4353static struct net_device_stats *cas_get_stats(struct net_device *dev)
4354{
4355	struct cas *cp = netdev_priv(dev);
4356	struct net_device_stats *stats = cp->net_stats;
4357	unsigned long flags;
4358	int i;
4359	unsigned long tmp;
4360
4361	/* we collate all of the stats into net_stats[N_TX_RING] */
4362	if (!cp->hw_running)
4363		return stats + N_TX_RINGS;
4364
4365	/* collect outstanding stats */
4366	/* WTZ: the Cassini spec gives these as 16 bit counters but
4367	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4368	 * in case the chip somehow puts any garbage in the other bits.
4369	 * Also, counter usage didn't seem to mach what Adrian did
4370	 * in the parts of the code that set these quantities. Made
4371	 * that consistent.
4372	 */
4373	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4374	stats[N_TX_RINGS].rx_crc_errors +=
4375	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4376	stats[N_TX_RINGS].rx_frame_errors +=
4377		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4378	stats[N_TX_RINGS].rx_length_errors +=
4379		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4380#if 1
4381	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4382		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4383	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4384	stats[N_TX_RINGS].collisions +=
4385	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4386#else
4387	stats[N_TX_RINGS].tx_aborted_errors +=
4388		readl(cp->regs + REG_MAC_COLL_EXCESS);
4389	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4390		readl(cp->regs + REG_MAC_COLL_LATE);
4391#endif
4392	cas_clear_mac_err(cp);
4393
4394	/* saved bits that are unique to ring 0 */
4395	spin_lock(&cp->stat_lock[0]);
4396	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4397	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4398	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4399	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4400	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4401	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4402	spin_unlock(&cp->stat_lock[0]);
4403
4404	for (i = 0; i < N_TX_RINGS; i++) {
4405		spin_lock(&cp->stat_lock[i]);
4406		stats[N_TX_RINGS].rx_length_errors +=
4407			stats[i].rx_length_errors;
4408		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4409		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4410		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4411		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4412		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4413		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4414		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4415		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4416		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4417		memset(stats + i, 0, sizeof(struct net_device_stats));
4418		spin_unlock(&cp->stat_lock[i]);
4419	}
4420	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4421	return stats + N_TX_RINGS;
4422}
4423
4424
4425static void cas_set_multicast(struct net_device *dev)
4426{
4427	struct cas *cp = netdev_priv(dev);
4428	u32 rxcfg, rxcfg_new;
4429	unsigned long flags;
4430	int limit = STOP_TRIES;
4431
4432	if (!cp->hw_running)
4433		return;
4434
4435	spin_lock_irqsave(&cp->lock, flags);
4436	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4437
4438	/* disable RX MAC and wait for completion */
4439	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4440	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4441		if (!limit--)
4442			break;
4443		udelay(10);
4444	}
4445
4446	/* disable hash filter and wait for completion */
4447	limit = STOP_TRIES;
4448	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4449	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4450	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4451		if (!limit--)
4452			break;
4453		udelay(10);
4454	}
4455
4456	/* program hash filters */
4457	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4458	rxcfg |= rxcfg_new;
4459	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4460	spin_unlock_irqrestore(&cp->lock, flags);
4461}
4462
4463static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4464{
4465	struct cas *cp = netdev_priv(dev);
4466	strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4467	strscpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4468	strscpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4469}
4470
4471static int cas_get_link_ksettings(struct net_device *dev,
4472				  struct ethtool_link_ksettings *cmd)
4473{
4474	struct cas *cp = netdev_priv(dev);
4475	u16 bmcr;
4476	int full_duplex, speed, pause;
4477	unsigned long flags;
4478	enum link_state linkstate = link_up;
4479	u32 supported, advertising;
4480
4481	advertising = 0;
4482	supported = SUPPORTED_Autoneg;
4483	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4484		supported |= SUPPORTED_1000baseT_Full;
4485		advertising |= ADVERTISED_1000baseT_Full;
4486	}
4487
4488	/* Record PHY settings if HW is on. */
4489	spin_lock_irqsave(&cp->lock, flags);
4490	bmcr = 0;
4491	linkstate = cp->lstate;
4492	if (CAS_PHY_MII(cp->phy_type)) {
4493		cmd->base.port = PORT_MII;
4494		cmd->base.phy_address = cp->phy_addr;
4495		advertising |= ADVERTISED_TP | ADVERTISED_MII |
4496			ADVERTISED_10baseT_Half |
4497			ADVERTISED_10baseT_Full |
4498			ADVERTISED_100baseT_Half |
4499			ADVERTISED_100baseT_Full;
4500
4501		supported |=
4502			(SUPPORTED_10baseT_Half |
4503			 SUPPORTED_10baseT_Full |
4504			 SUPPORTED_100baseT_Half |
4505			 SUPPORTED_100baseT_Full |
4506			 SUPPORTED_TP | SUPPORTED_MII);
4507
4508		if (cp->hw_running) {
4509			cas_mif_poll(cp, 0);
4510			bmcr = cas_phy_read(cp, MII_BMCR);
4511			cas_read_mii_link_mode(cp, &full_duplex,
4512					       &speed, &pause);
4513			cas_mif_poll(cp, 1);
4514		}
4515
4516	} else {
4517		cmd->base.port = PORT_FIBRE;
4518		cmd->base.phy_address = 0;
4519		supported   |= SUPPORTED_FIBRE;
4520		advertising |= ADVERTISED_FIBRE;
4521
4522		if (cp->hw_running) {
4523			/* pcs uses the same bits as mii */
4524			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4525			cas_read_pcs_link_mode(cp, &full_duplex,
4526					       &speed, &pause);
4527		}
4528	}
4529	spin_unlock_irqrestore(&cp->lock, flags);
4530
4531	if (bmcr & BMCR_ANENABLE) {
4532		advertising |= ADVERTISED_Autoneg;
4533		cmd->base.autoneg = AUTONEG_ENABLE;
4534		cmd->base.speed =  ((speed == 10) ?
4535					    SPEED_10 :
4536					    ((speed == 1000) ?
4537					     SPEED_1000 : SPEED_100));
4538		cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4539	} else {
4540		cmd->base.autoneg = AUTONEG_DISABLE;
4541		cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4542					    SPEED_1000 :
4543					    ((bmcr & BMCR_SPEED100) ?
4544					     SPEED_100 : SPEED_10));
4545		cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4546			DUPLEX_FULL : DUPLEX_HALF;
4547	}
4548	if (linkstate != link_up) {
4549		/* Force these to "unknown" if the link is not up and
4550		 * autonogotiation in enabled. We can set the link
4551		 * speed to 0, but not cmd->duplex,
4552		 * because its legal values are 0 and 1.  Ethtool will
4553		 * print the value reported in parentheses after the
4554		 * word "Unknown" for unrecognized values.
4555		 *
4556		 * If in forced mode, we report the speed and duplex
4557		 * settings that we configured.
4558		 */
4559		if (cp->link_cntl & BMCR_ANENABLE) {
4560			cmd->base.speed = 0;
4561			cmd->base.duplex = 0xff;
4562		} else {
4563			cmd->base.speed = SPEED_10;
4564			if (cp->link_cntl & BMCR_SPEED100) {
4565				cmd->base.speed = SPEED_100;
4566			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4567				cmd->base.speed = SPEED_1000;
4568			}
4569			cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4570				DUPLEX_FULL : DUPLEX_HALF;
4571		}
4572	}
4573
4574	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4575						supported);
4576	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4577						advertising);
4578
4579	return 0;
4580}
4581
4582static int cas_set_link_ksettings(struct net_device *dev,
4583				  const struct ethtool_link_ksettings *cmd)
4584{
4585	struct cas *cp = netdev_priv(dev);
4586	unsigned long flags;
4587	u32 speed = cmd->base.speed;
4588
4589	/* Verify the settings we care about. */
4590	if (cmd->base.autoneg != AUTONEG_ENABLE &&
4591	    cmd->base.autoneg != AUTONEG_DISABLE)
4592		return -EINVAL;
4593
4594	if (cmd->base.autoneg == AUTONEG_DISABLE &&
4595	    ((speed != SPEED_1000 &&
4596	      speed != SPEED_100 &&
4597	      speed != SPEED_10) ||
4598	     (cmd->base.duplex != DUPLEX_HALF &&
4599	      cmd->base.duplex != DUPLEX_FULL)))
4600		return -EINVAL;
4601
4602	/* Apply settings and restart link process. */
4603	spin_lock_irqsave(&cp->lock, flags);
4604	cas_begin_auto_negotiation(cp, cmd);
4605	spin_unlock_irqrestore(&cp->lock, flags);
4606	return 0;
4607}
4608
4609static int cas_nway_reset(struct net_device *dev)
4610{
4611	struct cas *cp = netdev_priv(dev);
4612	unsigned long flags;
4613
4614	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4615		return -EINVAL;
4616
4617	/* Restart link process. */
4618	spin_lock_irqsave(&cp->lock, flags);
4619	cas_begin_auto_negotiation(cp, NULL);
4620	spin_unlock_irqrestore(&cp->lock, flags);
4621
4622	return 0;
4623}
4624
4625static u32 cas_get_link(struct net_device *dev)
4626{
4627	struct cas *cp = netdev_priv(dev);
4628	return cp->lstate == link_up;
4629}
4630
4631static u32 cas_get_msglevel(struct net_device *dev)
4632{
4633	struct cas *cp = netdev_priv(dev);
4634	return cp->msg_enable;
4635}
4636
4637static void cas_set_msglevel(struct net_device *dev, u32 value)
4638{
4639	struct cas *cp = netdev_priv(dev);
4640	cp->msg_enable = value;
4641}
4642
4643static int cas_get_regs_len(struct net_device *dev)
4644{
4645	struct cas *cp = netdev_priv(dev);
4646	return min_t(int, cp->casreg_len, CAS_MAX_REGS);
4647}
4648
4649static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4650			     void *p)
4651{
4652	struct cas *cp = netdev_priv(dev);
4653	regs->version = 0;
4654	/* cas_read_regs handles locks (cp->lock).  */
4655	cas_read_regs(cp, p, regs->len / sizeof(u32));
4656}
4657
4658static int cas_get_sset_count(struct net_device *dev, int sset)
4659{
4660	switch (sset) {
4661	case ETH_SS_STATS:
4662		return CAS_NUM_STAT_KEYS;
4663	default:
4664		return -EOPNOTSUPP;
4665	}
4666}
4667
4668static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4669{
4670	 memcpy(data, &ethtool_cassini_statnames,
4671					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4672}
4673
4674static void cas_get_ethtool_stats(struct net_device *dev,
4675				      struct ethtool_stats *estats, u64 *data)
4676{
4677	struct cas *cp = netdev_priv(dev);
4678	struct net_device_stats *stats = cas_get_stats(cp->dev);
4679	int i = 0;
4680	data[i++] = stats->collisions;
4681	data[i++] = stats->rx_bytes;
4682	data[i++] = stats->rx_crc_errors;
4683	data[i++] = stats->rx_dropped;
4684	data[i++] = stats->rx_errors;
4685	data[i++] = stats->rx_fifo_errors;
4686	data[i++] = stats->rx_frame_errors;
4687	data[i++] = stats->rx_length_errors;
4688	data[i++] = stats->rx_over_errors;
4689	data[i++] = stats->rx_packets;
4690	data[i++] = stats->tx_aborted_errors;
4691	data[i++] = stats->tx_bytes;
4692	data[i++] = stats->tx_dropped;
4693	data[i++] = stats->tx_errors;
4694	data[i++] = stats->tx_fifo_errors;
4695	data[i++] = stats->tx_packets;
4696	BUG_ON(i != CAS_NUM_STAT_KEYS);
4697}
4698
4699static const struct ethtool_ops cas_ethtool_ops = {
4700	.get_drvinfo		= cas_get_drvinfo,
4701	.nway_reset		= cas_nway_reset,
4702	.get_link		= cas_get_link,
4703	.get_msglevel		= cas_get_msglevel,
4704	.set_msglevel		= cas_set_msglevel,
4705	.get_regs_len		= cas_get_regs_len,
4706	.get_regs		= cas_get_regs,
4707	.get_sset_count		= cas_get_sset_count,
4708	.get_strings		= cas_get_strings,
4709	.get_ethtool_stats	= cas_get_ethtool_stats,
4710	.get_link_ksettings	= cas_get_link_ksettings,
4711	.set_link_ksettings	= cas_set_link_ksettings,
4712};
4713
4714static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4715{
4716	struct cas *cp = netdev_priv(dev);
4717	struct mii_ioctl_data *data = if_mii(ifr);
4718	unsigned long flags;
4719	int rc = -EOPNOTSUPP;
4720
4721	/* Hold the PM mutex while doing ioctl's or we may collide
4722	 * with open/close and power management and oops.
4723	 */
4724	mutex_lock(&cp->pm_mutex);
4725	switch (cmd) {
4726	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4727		data->phy_id = cp->phy_addr;
4728		fallthrough;
4729
4730	case SIOCGMIIREG:		/* Read MII PHY register. */
4731		spin_lock_irqsave(&cp->lock, flags);
4732		cas_mif_poll(cp, 0);
4733		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4734		cas_mif_poll(cp, 1);
4735		spin_unlock_irqrestore(&cp->lock, flags);
4736		rc = 0;
4737		break;
4738
4739	case SIOCSMIIREG:		/* Write MII PHY register. */
4740		spin_lock_irqsave(&cp->lock, flags);
4741		cas_mif_poll(cp, 0);
4742		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4743		cas_mif_poll(cp, 1);
4744		spin_unlock_irqrestore(&cp->lock, flags);
4745		break;
4746	default:
4747		break;
4748	}
4749
4750	mutex_unlock(&cp->pm_mutex);
4751	return rc;
4752}
4753
4754/* When this chip sits underneath an Intel 31154 bridge, it is the
4755 * only subordinate device and we can tweak the bridge settings to
4756 * reflect that fact.
4757 */
4758static void cas_program_bridge(struct pci_dev *cas_pdev)
4759{
4760	struct pci_dev *pdev = cas_pdev->bus->self;
4761	u32 val;
4762
4763	if (!pdev)
4764		return;
4765
4766	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4767		return;
4768
4769	/* Clear bit 10 (Bus Parking Control) in the Secondary
4770	 * Arbiter Control/Status Register which lives at offset
4771	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4772	 * is much simpler so that's how we do this.
4773	 */
4774	pci_read_config_dword(pdev, 0x40, &val);
4775	val &= ~0x00040000;
4776	pci_write_config_dword(pdev, 0x40, val);
4777
4778	/* Max out the Multi-Transaction Timer settings since
4779	 * Cassini is the only device present.
4780	 *
4781	 * The register is 16-bit and lives at 0x50.  When the
4782	 * settings are enabled, it extends the GRANT# signal
4783	 * for a requestor after a transaction is complete.  This
4784	 * allows the next request to run without first needing
4785	 * to negotiate the GRANT# signal back.
4786	 *
4787	 * Bits 12:10 define the grant duration:
4788	 *
4789	 *	1	--	16 clocks
4790	 *	2	--	32 clocks
4791	 *	3	--	64 clocks
4792	 *	4	--	128 clocks
4793	 *	5	--	256 clocks
4794	 *
4795	 * All other values are illegal.
4796	 *
4797	 * Bits 09:00 define which REQ/GNT signal pairs get the
4798	 * GRANT# signal treatment.  We set them all.
4799	 */
4800	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4801
4802	/* The Read Prefecth Policy register is 16-bit and sits at
4803	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4804	 * enable it and max out all of the settings since only one
4805	 * device is sitting underneath and thus bandwidth sharing is
4806	 * not an issue.
4807	 *
4808	 * The register has several 3 bit fields, which indicates a
4809	 * multiplier applied to the base amount of prefetching the
4810	 * chip would do.  These fields are at:
4811	 *
4812	 *	15:13	---	ReRead Primary Bus
4813	 *	12:10	---	FirstRead Primary Bus
4814	 *	09:07	---	ReRead Secondary Bus
4815	 *	06:04	---	FirstRead Secondary Bus
4816	 *
4817	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4818	 * get enabled on.  Bit 3 is a grouped enabler which controls
4819	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4820	 * the individual REQ/GNT pairs [2:0].
4821	 */
4822	pci_write_config_word(pdev, 0x52,
4823			      (0x7 << 13) |
4824			      (0x7 << 10) |
4825			      (0x7 <<  7) |
4826			      (0x7 <<  4) |
4827			      (0xf <<  0));
4828
4829	/* Force cacheline size to 0x8 */
4830	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4831
4832	/* Force latency timer to maximum setting so Cassini can
4833	 * sit on the bus as long as it likes.
4834	 */
4835	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4836}
4837
4838static const struct net_device_ops cas_netdev_ops = {
4839	.ndo_open		= cas_open,
4840	.ndo_stop		= cas_close,
4841	.ndo_start_xmit		= cas_start_xmit,
4842	.ndo_get_stats 		= cas_get_stats,
4843	.ndo_set_rx_mode	= cas_set_multicast,
4844	.ndo_eth_ioctl		= cas_ioctl,
4845	.ndo_tx_timeout		= cas_tx_timeout,
4846	.ndo_change_mtu		= cas_change_mtu,
4847	.ndo_set_mac_address	= eth_mac_addr,
4848	.ndo_validate_addr	= eth_validate_addr,
4849#ifdef CONFIG_NET_POLL_CONTROLLER
4850	.ndo_poll_controller	= cas_netpoll,
4851#endif
4852};
4853
4854static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4855{
4856	static int cas_version_printed = 0;
4857	unsigned long casreg_len;
4858	struct net_device *dev;
4859	struct cas *cp;
4860	u16 pci_cmd;
4861	int i, err;
4862	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4863
4864	if (cas_version_printed++ == 0)
4865		pr_info("%s", version);
4866
4867	err = pci_enable_device(pdev);
4868	if (err) {
4869		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4870		return err;
4871	}
4872
4873	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4874		dev_err(&pdev->dev, "Cannot find proper PCI device "
4875		       "base address, aborting\n");
4876		err = -ENODEV;
4877		goto err_out_disable_pdev;
4878	}
4879
4880	dev = alloc_etherdev(sizeof(*cp));
4881	if (!dev) {
4882		err = -ENOMEM;
4883		goto err_out_disable_pdev;
4884	}
4885	SET_NETDEV_DEV(dev, &pdev->dev);
4886
4887	err = pci_request_regions(pdev, dev->name);
4888	if (err) {
4889		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4890		goto err_out_free_netdev;
4891	}
4892	pci_set_master(pdev);
4893
4894	/* we must always turn on parity response or else parity
4895	 * doesn't get generated properly. disable SERR/PERR as well.
4896	 * in addition, we want to turn MWI on.
4897	 */
4898	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4899	pci_cmd &= ~PCI_COMMAND_SERR;
4900	pci_cmd |= PCI_COMMAND_PARITY;
4901	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4902	if (pci_try_set_mwi(pdev))
4903		pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4904
4905	cas_program_bridge(pdev);
4906
4907	/*
4908	 * On some architectures, the default cache line size set
4909	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4910	 * it for this case.  To start, we'll print some configuration
4911	 * data.
4912	 */
4913#if 1
4914	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4915			     &orig_cacheline_size);
4916	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4917		cas_cacheline_size =
4918			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4919			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4920		if (pci_write_config_byte(pdev,
4921					  PCI_CACHE_LINE_SIZE,
4922					  cas_cacheline_size)) {
4923			dev_err(&pdev->dev, "Could not set PCI cache "
4924			       "line size\n");
4925			goto err_out_free_res;
4926		}
4927	}
4928#endif
4929
4930
4931	/* Configure DMA attributes. */
4932	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4933	if (err) {
4934		dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4935		goto err_out_free_res;
4936	}
4937
4938	casreg_len = pci_resource_len(pdev, 0);
4939
4940	cp = netdev_priv(dev);
4941	cp->pdev = pdev;
4942#if 1
4943	/* A value of 0 indicates we never explicitly set it */
4944	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4945#endif
4946	cp->dev = dev;
4947	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4948	  cassini_debug;
4949
4950#if defined(CONFIG_SPARC)
4951	cp->of_node = pci_device_to_OF_node(pdev);
4952#endif
4953
4954	cp->link_transition = LINK_TRANSITION_UNKNOWN;
4955	cp->link_transition_jiffies_valid = 0;
4956
4957	spin_lock_init(&cp->lock);
4958	spin_lock_init(&cp->rx_inuse_lock);
4959	spin_lock_init(&cp->rx_spare_lock);
4960	for (i = 0; i < N_TX_RINGS; i++) {
4961		spin_lock_init(&cp->stat_lock[i]);
4962		spin_lock_init(&cp->tx_lock[i]);
4963	}
4964	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4965	mutex_init(&cp->pm_mutex);
4966
4967	timer_setup(&cp->link_timer, cas_link_timer, 0);
4968
4969#if 1
4970	/* Just in case the implementation of atomic operations
4971	 * change so that an explicit initialization is necessary.
4972	 */
4973	atomic_set(&cp->reset_task_pending, 0);
4974	atomic_set(&cp->reset_task_pending_all, 0);
4975	atomic_set(&cp->reset_task_pending_spare, 0);
4976	atomic_set(&cp->reset_task_pending_mtu, 0);
4977#endif
4978	INIT_WORK(&cp->reset_task, cas_reset_task);
4979
4980	/* Default link parameters */
4981	if (link_mode >= 0 && link_mode < 6)
4982		cp->link_cntl = link_modes[link_mode];
4983	else
4984		cp->link_cntl = BMCR_ANENABLE;
4985	cp->lstate = link_down;
4986	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
4987	netif_carrier_off(cp->dev);
4988	cp->timer_ticks = 0;
4989
4990	/* give us access to cassini registers */
4991	cp->regs = pci_iomap(pdev, 0, casreg_len);
4992	if (!cp->regs) {
4993		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
4994		goto err_out_free_res;
4995	}
4996	cp->casreg_len = casreg_len;
4997
4998	pci_save_state(pdev);
4999	cas_check_pci_invariants(cp);
5000	cas_hard_reset(cp);
5001	cas_reset(cp, 0);
5002	if (cas_check_invariants(cp))
5003		goto err_out_iounmap;
5004	if (cp->cas_flags & CAS_FLAG_SATURN)
5005		cas_saturn_firmware_init(cp);
5006
5007	cp->init_block =
5008		dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
5009				   &cp->block_dvma, GFP_KERNEL);
5010	if (!cp->init_block) {
5011		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5012		goto err_out_iounmap;
5013	}
5014
5015	for (i = 0; i < N_TX_RINGS; i++)
5016		cp->init_txds[i] = cp->init_block->txds[i];
5017
5018	for (i = 0; i < N_RX_DESC_RINGS; i++)
5019		cp->init_rxds[i] = cp->init_block->rxds[i];
5020
5021	for (i = 0; i < N_RX_COMP_RINGS; i++)
5022		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5023
5024	for (i = 0; i < N_RX_FLOWS; i++)
5025		skb_queue_head_init(&cp->rx_flows[i]);
5026
5027	dev->netdev_ops = &cas_netdev_ops;
5028	dev->ethtool_ops = &cas_ethtool_ops;
5029	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5030
5031#ifdef USE_NAPI
5032	netif_napi_add(dev, &cp->napi, cas_poll);
5033#endif
5034	dev->irq = pdev->irq;
5035	dev->dma = 0;
5036
5037	/* Cassini features. */
5038	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5039		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5040
5041	dev->features |= NETIF_F_HIGHDMA;
5042
5043	/* MTU range: 60 - varies or 9000 */
5044	dev->min_mtu = CAS_MIN_MTU;
5045	dev->max_mtu = CAS_MAX_MTU;
5046
5047	if (register_netdev(dev)) {
5048		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5049		goto err_out_free_consistent;
5050	}
5051
5052	i = readl(cp->regs + REG_BIM_CFG);
5053	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5054		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5055		    (i & BIM_CFG_32BIT) ? "32" : "64",
5056		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5057		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5058		    dev->dev_addr);
5059
5060	pci_set_drvdata(pdev, dev);
5061	cp->hw_running = 1;
5062	cas_entropy_reset(cp);
5063	cas_phy_init(cp);
5064	cas_begin_auto_negotiation(cp, NULL);
5065	return 0;
5066
5067err_out_free_consistent:
5068	dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5069			  cp->init_block, cp->block_dvma);
5070
5071err_out_iounmap:
5072	mutex_lock(&cp->pm_mutex);
5073	if (cp->hw_running)
5074		cas_shutdown(cp);
5075	mutex_unlock(&cp->pm_mutex);
5076
5077	vfree(cp->fw_data);
5078
5079	pci_iounmap(pdev, cp->regs);
5080
5081
5082err_out_free_res:
5083	pci_release_regions(pdev);
5084
5085	/* Try to restore it in case the error occurred after we
5086	 * set it.
5087	 */
5088	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5089
5090err_out_free_netdev:
5091	free_netdev(dev);
5092
5093err_out_disable_pdev:
5094	pci_disable_device(pdev);
5095	return -ENODEV;
5096}
5097
5098static void cas_remove_one(struct pci_dev *pdev)
5099{
5100	struct net_device *dev = pci_get_drvdata(pdev);
5101	struct cas *cp;
5102	if (!dev)
5103		return;
5104
5105	cp = netdev_priv(dev);
5106	unregister_netdev(dev);
5107
5108	vfree(cp->fw_data);
5109
5110	mutex_lock(&cp->pm_mutex);
5111	cancel_work_sync(&cp->reset_task);
5112	if (cp->hw_running)
5113		cas_shutdown(cp);
5114	mutex_unlock(&cp->pm_mutex);
5115
5116#if 1
5117	if (cp->orig_cacheline_size) {
5118		/* Restore the cache line size if we had modified
5119		 * it.
5120		 */
5121		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5122				      cp->orig_cacheline_size);
5123	}
5124#endif
5125	dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5126			  cp->init_block, cp->block_dvma);
5127	pci_iounmap(pdev, cp->regs);
5128	free_netdev(dev);
5129	pci_release_regions(pdev);
5130	pci_disable_device(pdev);
5131}
5132
5133static int __maybe_unused cas_suspend(struct device *dev_d)
5134{
5135	struct net_device *dev = dev_get_drvdata(dev_d);
5136	struct cas *cp = netdev_priv(dev);
5137	unsigned long flags;
5138
5139	mutex_lock(&cp->pm_mutex);
5140
5141	/* If the driver is opened, we stop the DMA */
5142	if (cp->opened) {
5143		netif_device_detach(dev);
5144
5145		cas_lock_all_save(cp, flags);
5146
5147		/* We can set the second arg of cas_reset to 0
5148		 * because on resume, we'll call cas_init_hw with
5149		 * its second arg set so that autonegotiation is
5150		 * restarted.
5151		 */
5152		cas_reset(cp, 0);
5153		cas_clean_rings(cp);
5154		cas_unlock_all_restore(cp, flags);
5155	}
5156
5157	if (cp->hw_running)
5158		cas_shutdown(cp);
5159	mutex_unlock(&cp->pm_mutex);
5160
5161	return 0;
5162}
5163
5164static int __maybe_unused cas_resume(struct device *dev_d)
5165{
5166	struct net_device *dev = dev_get_drvdata(dev_d);
5167	struct cas *cp = netdev_priv(dev);
5168
5169	netdev_info(dev, "resuming\n");
5170
5171	mutex_lock(&cp->pm_mutex);
5172	cas_hard_reset(cp);
5173	if (cp->opened) {
5174		unsigned long flags;
5175		cas_lock_all_save(cp, flags);
5176		cas_reset(cp, 0);
5177		cp->hw_running = 1;
5178		cas_clean_rings(cp);
5179		cas_init_hw(cp, 1);
5180		cas_unlock_all_restore(cp, flags);
5181
5182		netif_device_attach(dev);
5183	}
5184	mutex_unlock(&cp->pm_mutex);
5185	return 0;
5186}
5187
5188static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
5189
5190static struct pci_driver cas_driver = {
5191	.name		= DRV_MODULE_NAME,
5192	.id_table	= cas_pci_tbl,
5193	.probe		= cas_init_one,
5194	.remove		= cas_remove_one,
5195	.driver.pm	= &cas_pm_ops,
5196};
5197
5198static int __init cas_init(void)
5199{
5200	if (linkdown_timeout > 0)
5201		link_transition_timeout = linkdown_timeout * HZ;
5202	else
5203		link_transition_timeout = 0;
5204
5205	return pci_register_driver(&cas_driver);
5206}
5207
5208static void __exit cas_cleanup(void)
5209{
5210	pci_unregister_driver(&cas_driver);
5211}
5212
5213module_init(cas_init);
5214module_exit(cas_cleanup);
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
   3 *
   4 * Copyright (C) 2004 Sun Microsystems Inc.
   5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
   6 *
   7 * This driver uses the sungem driver (c) David Miller
   8 * (davem@redhat.com) as its basis.
   9 *
  10 * The cassini chip has a number of features that distinguish it from
  11 * the gem chip:
  12 *  4 transmit descriptor rings that are used for either QoS (VLAN) or
  13 *      load balancing (non-VLAN mode)
  14 *  batching of multiple packets
  15 *  multiple CPU dispatching
  16 *  page-based RX descriptor engine with separate completion rings
  17 *  Gigabit support (GMII and PCS interface)
  18 *  MIF link up/down detection works
  19 *
  20 * RX is handled by page sized buffers that are attached as fragments to
  21 * the skb. here's what's done:
  22 *  -- driver allocates pages at a time and keeps reference counts
  23 *     on them.
  24 *  -- the upper protocol layers assume that the header is in the skb
  25 *     itself. as a result, cassini will copy a small amount (64 bytes)
  26 *     to make them happy.
  27 *  -- driver appends the rest of the data pages as frags to skbuffs
  28 *     and increments the reference count
  29 *  -- on page reclamation, the driver swaps the page with a spare page.
  30 *     if that page is still in use, it frees its reference to that page,
  31 *     and allocates a new page for use. otherwise, it just recycles the
  32 *     page.
  33 *
  34 * NOTE: cassini can parse the header. however, it's not worth it
  35 *       as long as the network stack requires a header copy.
  36 *
  37 * TX has 4 queues. currently these queues are used in a round-robin
  38 * fashion for load balancing. They can also be used for QoS. for that
  39 * to work, however, QoS information needs to be exposed down to the driver
  40 * level so that subqueues get targeted to particular transmit rings.
  41 * alternatively, the queues can be configured via use of the all-purpose
  42 * ioctl.
  43 *
  44 * RX DATA: the rx completion ring has all the info, but the rx desc
  45 * ring has all of the data. RX can conceivably come in under multiple
  46 * interrupts, but the INT# assignment needs to be set up properly by
  47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
  48 * that. also, the two descriptor rings are designed to distinguish between
  49 * encrypted and non-encrypted packets, but we use them for buffering
  50 * instead.
  51 *
  52 * by default, the selective clear mask is set up to process rx packets.
  53 */
  54
  55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  56
  57#include <linux/module.h>
  58#include <linux/kernel.h>
  59#include <linux/types.h>
  60#include <linux/compiler.h>
  61#include <linux/slab.h>
  62#include <linux/delay.h>
  63#include <linux/init.h>
  64#include <linux/interrupt.h>
  65#include <linux/vmalloc.h>
  66#include <linux/ioport.h>
  67#include <linux/pci.h>
  68#include <linux/mm.h>
  69#include <linux/highmem.h>
  70#include <linux/list.h>
  71#include <linux/dma-mapping.h>
  72
  73#include <linux/netdevice.h>
  74#include <linux/etherdevice.h>
  75#include <linux/skbuff.h>
 
  76#include <linux/ethtool.h>
  77#include <linux/crc32.h>
  78#include <linux/random.h>
  79#include <linux/mii.h>
  80#include <linux/ip.h>
  81#include <linux/tcp.h>
  82#include <linux/mutex.h>
  83#include <linux/firmware.h>
  84
  85#include <net/checksum.h>
  86
  87#include <linux/atomic.h>
  88#include <asm/io.h>
  89#include <asm/byteorder.h>
  90#include <linux/uaccess.h>
  91#include <linux/jiffies.h>
  92
  93#define CAS_NCPUS            num_online_cpus()
  94
  95#define cas_skb_release(x)  netif_rx(x)
  96
  97/* select which firmware to use */
  98#define USE_HP_WORKAROUND
  99#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
 100#define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
 101
 102#include "cassini.h"
 103
 104#define USE_TX_COMPWB      /* use completion writeback registers */
 105#define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
 106#define USE_RX_BLANK       /* hw interrupt mitigation */
 107#undef USE_ENTROPY_DEV     /* don't test for entropy device */
 108
 109/* NOTE: these aren't useable unless PCI interrupts can be assigned.
 110 * also, we need to make cp->lock finer-grained.
 111 */
 112#undef  USE_PCI_INTB
 113#undef  USE_PCI_INTC
 114#undef  USE_PCI_INTD
 115#undef  USE_QOS
 116
 117#undef  USE_VPD_DEBUG       /* debug vpd information if defined */
 118
 119/* rx processing options */
 120#define USE_PAGE_ORDER      /* specify to allocate large rx pages */
 121#define RX_DONT_BATCH  0    /* if 1, don't batch flows */
 122#define RX_COPY_ALWAYS 0    /* if 0, use frags */
 123#define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
 124#undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
 125
 126#define DRV_MODULE_NAME		"cassini"
 127#define DRV_MODULE_VERSION	"1.6"
 128#define DRV_MODULE_RELDATE	"21 May 2008"
 129
 130#define CAS_DEF_MSG_ENABLE	  \
 131	(NETIF_MSG_DRV		| \
 132	 NETIF_MSG_PROBE	| \
 133	 NETIF_MSG_LINK		| \
 134	 NETIF_MSG_TIMER	| \
 135	 NETIF_MSG_IFDOWN	| \
 136	 NETIF_MSG_IFUP		| \
 137	 NETIF_MSG_RX_ERR	| \
 138	 NETIF_MSG_TX_ERR)
 139
 140/* length of time before we decide the hardware is borked,
 141 * and dev->tx_timeout() should be called to fix the problem
 142 */
 143#define CAS_TX_TIMEOUT			(HZ)
 144#define CAS_LINK_TIMEOUT                (22*HZ/10)
 145#define CAS_LINK_FAST_TIMEOUT           (1)
 146
 147/* timeout values for state changing. these specify the number
 148 * of 10us delays to be used before giving up.
 149 */
 150#define STOP_TRIES_PHY 1000
 151#define STOP_TRIES     5000
 152
 153/* specify a minimum frame size to deal with some fifo issues
 154 * max mtu == 2 * page size - ethernet header - 64 - swivel =
 155 *            2 * page_size - 0x50
 156 */
 157#define CAS_MIN_FRAME			97
 158#define CAS_1000MB_MIN_FRAME            255
 159#define CAS_MIN_MTU                     60
 160#define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
 161
 162#if 1
 163/*
 164 * Eliminate these and use separate atomic counters for each, to
 165 * avoid a race condition.
 166 */
 167#else
 168#define CAS_RESET_MTU                   1
 169#define CAS_RESET_ALL                   2
 170#define CAS_RESET_SPARE                 3
 171#endif
 172
 173static char version[] =
 174	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 175
 176static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
 177static int link_mode;
 178
 179MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
 180MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
 181MODULE_LICENSE("GPL");
 182MODULE_FIRMWARE("sun/cassini.bin");
 183module_param(cassini_debug, int, 0);
 184MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
 185module_param(link_mode, int, 0);
 186MODULE_PARM_DESC(link_mode, "default link mode");
 187
 188/*
 189 * Work around for a PCS bug in which the link goes down due to the chip
 190 * being confused and never showing a link status of "up."
 191 */
 192#define DEFAULT_LINKDOWN_TIMEOUT 5
 193/*
 194 * Value in seconds, for user input.
 195 */
 196static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
 197module_param(linkdown_timeout, int, 0);
 198MODULE_PARM_DESC(linkdown_timeout,
 199"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
 200
 201/*
 202 * value in 'ticks' (units used by jiffies). Set when we init the
 203 * module because 'HZ' in actually a function call on some flavors of
 204 * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
 205 */
 206static int link_transition_timeout;
 207
 208
 209
 210static u16 link_modes[] = {
 211	BMCR_ANENABLE,			 /* 0 : autoneg */
 212	0,				 /* 1 : 10bt half duplex */
 213	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
 214	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
 215	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
 216	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
 217};
 218
 219static const struct pci_device_id cas_pci_tbl[] = {
 220	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
 221	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 222	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
 223	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 224	{ 0, }
 225};
 226
 227MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
 228
 229static void cas_set_link_modes(struct cas *cp);
 230
 231static inline void cas_lock_tx(struct cas *cp)
 232{
 233	int i;
 234
 235	for (i = 0; i < N_TX_RINGS; i++)
 236		spin_lock_nested(&cp->tx_lock[i], i);
 237}
 238
 239/* WTZ: QA was finding deadlock problems with the previous
 240 * versions after long test runs with multiple cards per machine.
 241 * See if replacing cas_lock_all with safer versions helps. The
 242 * symptoms QA is reporting match those we'd expect if interrupts
 243 * aren't being properly restored, and we fixed a previous deadlock
 244 * with similar symptoms by using save/restore versions in other
 245 * places.
 246 */
 247#define cas_lock_all_save(cp, flags) \
 248do { \
 249	struct cas *xxxcp = (cp); \
 250	spin_lock_irqsave(&xxxcp->lock, flags); \
 251	cas_lock_tx(xxxcp); \
 252} while (0)
 253
 254static inline void cas_unlock_tx(struct cas *cp)
 255{
 256	int i;
 257
 258	for (i = N_TX_RINGS; i > 0; i--)
 259		spin_unlock(&cp->tx_lock[i - 1]);
 260}
 261
 262#define cas_unlock_all_restore(cp, flags) \
 263do { \
 264	struct cas *xxxcp = (cp); \
 265	cas_unlock_tx(xxxcp); \
 266	spin_unlock_irqrestore(&xxxcp->lock, flags); \
 267} while (0)
 268
 269static void cas_disable_irq(struct cas *cp, const int ring)
 270{
 271	/* Make sure we won't get any more interrupts */
 272	if (ring == 0) {
 273		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
 274		return;
 275	}
 276
 277	/* disable completion interrupts and selectively mask */
 278	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 279		switch (ring) {
 280#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 281#ifdef USE_PCI_INTB
 282		case 1:
 283#endif
 284#ifdef USE_PCI_INTC
 285		case 2:
 286#endif
 287#ifdef USE_PCI_INTD
 288		case 3:
 289#endif
 290			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
 291			       cp->regs + REG_PLUS_INTRN_MASK(ring));
 292			break;
 293#endif
 294		default:
 295			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
 296			       REG_PLUS_INTRN_MASK(ring));
 297			break;
 298		}
 299	}
 300}
 301
 302static inline void cas_mask_intr(struct cas *cp)
 303{
 304	int i;
 305
 306	for (i = 0; i < N_RX_COMP_RINGS; i++)
 307		cas_disable_irq(cp, i);
 308}
 309
 310static void cas_enable_irq(struct cas *cp, const int ring)
 311{
 312	if (ring == 0) { /* all but TX_DONE */
 313		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
 314		return;
 315	}
 316
 317	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 318		switch (ring) {
 319#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 320#ifdef USE_PCI_INTB
 321		case 1:
 322#endif
 323#ifdef USE_PCI_INTC
 324		case 2:
 325#endif
 326#ifdef USE_PCI_INTD
 327		case 3:
 328#endif
 329			writel(INTRN_MASK_RX_EN, cp->regs +
 330			       REG_PLUS_INTRN_MASK(ring));
 331			break;
 332#endif
 333		default:
 334			break;
 335		}
 336	}
 337}
 338
 339static inline void cas_unmask_intr(struct cas *cp)
 340{
 341	int i;
 342
 343	for (i = 0; i < N_RX_COMP_RINGS; i++)
 344		cas_enable_irq(cp, i);
 345}
 346
 347static inline void cas_entropy_gather(struct cas *cp)
 348{
 349#ifdef USE_ENTROPY_DEV
 350	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 351		return;
 352
 353	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
 354			    readl(cp->regs + REG_ENTROPY_IV),
 355			    sizeof(uint64_t)*8);
 356#endif
 357}
 358
 359static inline void cas_entropy_reset(struct cas *cp)
 360{
 361#ifdef USE_ENTROPY_DEV
 362	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 363		return;
 364
 365	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
 366	       cp->regs + REG_BIM_LOCAL_DEV_EN);
 367	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
 368	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
 369
 370	/* if we read back 0x0, we don't have an entropy device */
 371	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
 372		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
 373#endif
 374}
 375
 376/* access to the phy. the following assumes that we've initialized the MIF to
 377 * be in frame rather than bit-bang mode
 378 */
 379static u16 cas_phy_read(struct cas *cp, int reg)
 380{
 381	u32 cmd;
 382	int limit = STOP_TRIES_PHY;
 383
 384	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
 385	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 386	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 387	cmd |= MIF_FRAME_TURN_AROUND_MSB;
 388	writel(cmd, cp->regs + REG_MIF_FRAME);
 389
 390	/* poll for completion */
 391	while (limit-- > 0) {
 392		udelay(10);
 393		cmd = readl(cp->regs + REG_MIF_FRAME);
 394		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 395			return cmd & MIF_FRAME_DATA_MASK;
 396	}
 397	return 0xFFFF; /* -1 */
 398}
 399
 400static int cas_phy_write(struct cas *cp, int reg, u16 val)
 401{
 402	int limit = STOP_TRIES_PHY;
 403	u32 cmd;
 404
 405	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
 406	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 407	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 408	cmd |= MIF_FRAME_TURN_AROUND_MSB;
 409	cmd |= val & MIF_FRAME_DATA_MASK;
 410	writel(cmd, cp->regs + REG_MIF_FRAME);
 411
 412	/* poll for completion */
 413	while (limit-- > 0) {
 414		udelay(10);
 415		cmd = readl(cp->regs + REG_MIF_FRAME);
 416		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 417			return 0;
 418	}
 419	return -1;
 420}
 421
 422static void cas_phy_powerup(struct cas *cp)
 423{
 424	u16 ctl = cas_phy_read(cp, MII_BMCR);
 425
 426	if ((ctl & BMCR_PDOWN) == 0)
 427		return;
 428	ctl &= ~BMCR_PDOWN;
 429	cas_phy_write(cp, MII_BMCR, ctl);
 430}
 431
 432static void cas_phy_powerdown(struct cas *cp)
 433{
 434	u16 ctl = cas_phy_read(cp, MII_BMCR);
 435
 436	if (ctl & BMCR_PDOWN)
 437		return;
 438	ctl |= BMCR_PDOWN;
 439	cas_phy_write(cp, MII_BMCR, ctl);
 440}
 441
 442/* cp->lock held. note: the last put_page will free the buffer */
 443static int cas_page_free(struct cas *cp, cas_page_t *page)
 444{
 445	dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
 446		       DMA_FROM_DEVICE);
 447	__free_pages(page->buffer, cp->page_order);
 448	kfree(page);
 449	return 0;
 450}
 451
 452#ifdef RX_COUNT_BUFFERS
 453#define RX_USED_ADD(x, y)       ((x)->used += (y))
 454#define RX_USED_SET(x, y)       ((x)->used  = (y))
 455#else
 456#define RX_USED_ADD(x, y) do { } while(0)
 457#define RX_USED_SET(x, y) do { } while(0)
 458#endif
 459
 460/* local page allocation routines for the receive buffers. jumbo pages
 461 * require at least 8K contiguous and 8K aligned buffers.
 462 */
 463static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
 464{
 465	cas_page_t *page;
 466
 467	page = kmalloc(sizeof(cas_page_t), flags);
 468	if (!page)
 469		return NULL;
 470
 471	INIT_LIST_HEAD(&page->list);
 472	RX_USED_SET(page, 0);
 473	page->buffer = alloc_pages(flags, cp->page_order);
 474	if (!page->buffer)
 475		goto page_err;
 476	page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
 477				      cp->page_size, DMA_FROM_DEVICE);
 478	return page;
 479
 480page_err:
 481	kfree(page);
 482	return NULL;
 483}
 484
 485/* initialize spare pool of rx buffers, but allocate during the open */
 486static void cas_spare_init(struct cas *cp)
 487{
 488	spin_lock(&cp->rx_inuse_lock);
 489	INIT_LIST_HEAD(&cp->rx_inuse_list);
 490	spin_unlock(&cp->rx_inuse_lock);
 491
 492	spin_lock(&cp->rx_spare_lock);
 493	INIT_LIST_HEAD(&cp->rx_spare_list);
 494	cp->rx_spares_needed = RX_SPARE_COUNT;
 495	spin_unlock(&cp->rx_spare_lock);
 496}
 497
 498/* used on close. free all the spare buffers. */
 499static void cas_spare_free(struct cas *cp)
 500{
 501	struct list_head list, *elem, *tmp;
 502
 503	/* free spare buffers */
 504	INIT_LIST_HEAD(&list);
 505	spin_lock(&cp->rx_spare_lock);
 506	list_splice_init(&cp->rx_spare_list, &list);
 507	spin_unlock(&cp->rx_spare_lock);
 508	list_for_each_safe(elem, tmp, &list) {
 509		cas_page_free(cp, list_entry(elem, cas_page_t, list));
 510	}
 511
 512	INIT_LIST_HEAD(&list);
 513#if 1
 514	/*
 515	 * Looks like Adrian had protected this with a different
 516	 * lock than used everywhere else to manipulate this list.
 517	 */
 518	spin_lock(&cp->rx_inuse_lock);
 519	list_splice_init(&cp->rx_inuse_list, &list);
 520	spin_unlock(&cp->rx_inuse_lock);
 521#else
 522	spin_lock(&cp->rx_spare_lock);
 523	list_splice_init(&cp->rx_inuse_list, &list);
 524	spin_unlock(&cp->rx_spare_lock);
 525#endif
 526	list_for_each_safe(elem, tmp, &list) {
 527		cas_page_free(cp, list_entry(elem, cas_page_t, list));
 528	}
 529}
 530
 531/* replenish spares if needed */
 532static void cas_spare_recover(struct cas *cp, const gfp_t flags)
 533{
 534	struct list_head list, *elem, *tmp;
 535	int needed, i;
 536
 537	/* check inuse list. if we don't need any more free buffers,
 538	 * just free it
 539	 */
 540
 541	/* make a local copy of the list */
 542	INIT_LIST_HEAD(&list);
 543	spin_lock(&cp->rx_inuse_lock);
 544	list_splice_init(&cp->rx_inuse_list, &list);
 545	spin_unlock(&cp->rx_inuse_lock);
 546
 547	list_for_each_safe(elem, tmp, &list) {
 548		cas_page_t *page = list_entry(elem, cas_page_t, list);
 549
 550		/*
 551		 * With the lockless pagecache, cassini buffering scheme gets
 552		 * slightly less accurate: we might find that a page has an
 553		 * elevated reference count here, due to a speculative ref,
 554		 * and skip it as in-use. Ideally we would be able to reclaim
 555		 * it. However this would be such a rare case, it doesn't
 556		 * matter too much as we should pick it up the next time round.
 557		 *
 558		 * Importantly, if we find that the page has a refcount of 1
 559		 * here (our refcount), then we know it is definitely not inuse
 560		 * so we can reuse it.
 561		 */
 562		if (page_count(page->buffer) > 1)
 563			continue;
 564
 565		list_del(elem);
 566		spin_lock(&cp->rx_spare_lock);
 567		if (cp->rx_spares_needed > 0) {
 568			list_add(elem, &cp->rx_spare_list);
 569			cp->rx_spares_needed--;
 570			spin_unlock(&cp->rx_spare_lock);
 571		} else {
 572			spin_unlock(&cp->rx_spare_lock);
 573			cas_page_free(cp, page);
 574		}
 575	}
 576
 577	/* put any inuse buffers back on the list */
 578	if (!list_empty(&list)) {
 579		spin_lock(&cp->rx_inuse_lock);
 580		list_splice(&list, &cp->rx_inuse_list);
 581		spin_unlock(&cp->rx_inuse_lock);
 582	}
 583
 584	spin_lock(&cp->rx_spare_lock);
 585	needed = cp->rx_spares_needed;
 586	spin_unlock(&cp->rx_spare_lock);
 587	if (!needed)
 588		return;
 589
 590	/* we still need spares, so try to allocate some */
 591	INIT_LIST_HEAD(&list);
 592	i = 0;
 593	while (i < needed) {
 594		cas_page_t *spare = cas_page_alloc(cp, flags);
 595		if (!spare)
 596			break;
 597		list_add(&spare->list, &list);
 598		i++;
 599	}
 600
 601	spin_lock(&cp->rx_spare_lock);
 602	list_splice(&list, &cp->rx_spare_list);
 603	cp->rx_spares_needed -= i;
 604	spin_unlock(&cp->rx_spare_lock);
 605}
 606
 607/* pull a page from the list. */
 608static cas_page_t *cas_page_dequeue(struct cas *cp)
 609{
 610	struct list_head *entry;
 611	int recover;
 612
 613	spin_lock(&cp->rx_spare_lock);
 614	if (list_empty(&cp->rx_spare_list)) {
 615		/* try to do a quick recovery */
 616		spin_unlock(&cp->rx_spare_lock);
 617		cas_spare_recover(cp, GFP_ATOMIC);
 618		spin_lock(&cp->rx_spare_lock);
 619		if (list_empty(&cp->rx_spare_list)) {
 620			netif_err(cp, rx_err, cp->dev,
 621				  "no spare buffers available\n");
 622			spin_unlock(&cp->rx_spare_lock);
 623			return NULL;
 624		}
 625	}
 626
 627	entry = cp->rx_spare_list.next;
 628	list_del(entry);
 629	recover = ++cp->rx_spares_needed;
 630	spin_unlock(&cp->rx_spare_lock);
 631
 632	/* trigger the timer to do the recovery */
 633	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
 634#if 1
 635		atomic_inc(&cp->reset_task_pending);
 636		atomic_inc(&cp->reset_task_pending_spare);
 637		schedule_work(&cp->reset_task);
 638#else
 639		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
 640		schedule_work(&cp->reset_task);
 641#endif
 642	}
 643	return list_entry(entry, cas_page_t, list);
 644}
 645
 646
 647static void cas_mif_poll(struct cas *cp, const int enable)
 648{
 649	u32 cfg;
 650
 651	cfg  = readl(cp->regs + REG_MIF_CFG);
 652	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
 653
 654	if (cp->phy_type & CAS_PHY_MII_MDIO1)
 655		cfg |= MIF_CFG_PHY_SELECT;
 656
 657	/* poll and interrupt on link status change. */
 658	if (enable) {
 659		cfg |= MIF_CFG_POLL_EN;
 660		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
 661		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
 662	}
 663	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
 664	       cp->regs + REG_MIF_MASK);
 665	writel(cfg, cp->regs + REG_MIF_CFG);
 666}
 667
 668/* Must be invoked under cp->lock */
 669static void cas_begin_auto_negotiation(struct cas *cp,
 670				       const struct ethtool_link_ksettings *ep)
 671{
 672	u16 ctl;
 673#if 1
 674	int lcntl;
 675	int changed = 0;
 676	int oldstate = cp->lstate;
 677	int link_was_not_down = !(oldstate == link_down);
 678#endif
 679	/* Setup link parameters */
 680	if (!ep)
 681		goto start_aneg;
 682	lcntl = cp->link_cntl;
 683	if (ep->base.autoneg == AUTONEG_ENABLE) {
 684		cp->link_cntl = BMCR_ANENABLE;
 685	} else {
 686		u32 speed = ep->base.speed;
 687		cp->link_cntl = 0;
 688		if (speed == SPEED_100)
 689			cp->link_cntl |= BMCR_SPEED100;
 690		else if (speed == SPEED_1000)
 691			cp->link_cntl |= CAS_BMCR_SPEED1000;
 692		if (ep->base.duplex == DUPLEX_FULL)
 693			cp->link_cntl |= BMCR_FULLDPLX;
 694	}
 695#if 1
 696	changed = (lcntl != cp->link_cntl);
 697#endif
 698start_aneg:
 699	if (cp->lstate == link_up) {
 700		netdev_info(cp->dev, "PCS link down\n");
 701	} else {
 702		if (changed) {
 703			netdev_info(cp->dev, "link configuration changed\n");
 704		}
 705	}
 706	cp->lstate = link_down;
 707	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
 708	if (!cp->hw_running)
 709		return;
 710#if 1
 711	/*
 712	 * WTZ: If the old state was link_up, we turn off the carrier
 713	 * to replicate everything we do elsewhere on a link-down
 714	 * event when we were already in a link-up state..
 715	 */
 716	if (oldstate == link_up)
 717		netif_carrier_off(cp->dev);
 718	if (changed  && link_was_not_down) {
 719		/*
 720		 * WTZ: This branch will simply schedule a full reset after
 721		 * we explicitly changed link modes in an ioctl. See if this
 722		 * fixes the link-problems we were having for forced mode.
 723		 */
 724		atomic_inc(&cp->reset_task_pending);
 725		atomic_inc(&cp->reset_task_pending_all);
 726		schedule_work(&cp->reset_task);
 727		cp->timer_ticks = 0;
 728		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 729		return;
 730	}
 731#endif
 732	if (cp->phy_type & CAS_PHY_SERDES) {
 733		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
 734
 735		if (cp->link_cntl & BMCR_ANENABLE) {
 736			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
 737			cp->lstate = link_aneg;
 738		} else {
 739			if (cp->link_cntl & BMCR_FULLDPLX)
 740				val |= PCS_MII_CTRL_DUPLEX;
 741			val &= ~PCS_MII_AUTONEG_EN;
 742			cp->lstate = link_force_ok;
 743		}
 744		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 745		writel(val, cp->regs + REG_PCS_MII_CTRL);
 746
 747	} else {
 748		cas_mif_poll(cp, 0);
 749		ctl = cas_phy_read(cp, MII_BMCR);
 750		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
 751			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
 752		ctl |= cp->link_cntl;
 753		if (ctl & BMCR_ANENABLE) {
 754			ctl |= BMCR_ANRESTART;
 755			cp->lstate = link_aneg;
 756		} else {
 757			cp->lstate = link_force_ok;
 758		}
 759		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 760		cas_phy_write(cp, MII_BMCR, ctl);
 761		cas_mif_poll(cp, 1);
 762	}
 763
 764	cp->timer_ticks = 0;
 765	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 766}
 767
 768/* Must be invoked under cp->lock. */
 769static int cas_reset_mii_phy(struct cas *cp)
 770{
 771	int limit = STOP_TRIES_PHY;
 772	u16 val;
 773
 774	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
 775	udelay(100);
 776	while (--limit) {
 777		val = cas_phy_read(cp, MII_BMCR);
 778		if ((val & BMCR_RESET) == 0)
 779			break;
 780		udelay(10);
 781	}
 782	return limit <= 0;
 783}
 784
 785static void cas_saturn_firmware_init(struct cas *cp)
 786{
 787	const struct firmware *fw;
 788	const char fw_name[] = "sun/cassini.bin";
 789	int err;
 790
 791	if (PHY_NS_DP83065 != cp->phy_id)
 792		return;
 793
 794	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
 795	if (err) {
 796		pr_err("Failed to load firmware \"%s\"\n",
 797		       fw_name);
 798		return;
 799	}
 800	if (fw->size < 2) {
 801		pr_err("bogus length %zu in \"%s\"\n",
 802		       fw->size, fw_name);
 803		goto out;
 804	}
 805	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
 806	cp->fw_size = fw->size - 2;
 807	cp->fw_data = vmalloc(cp->fw_size);
 808	if (!cp->fw_data)
 809		goto out;
 810	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
 811out:
 812	release_firmware(fw);
 813}
 814
 815static void cas_saturn_firmware_load(struct cas *cp)
 816{
 817	int i;
 818
 819	if (!cp->fw_data)
 820		return;
 821
 822	cas_phy_powerdown(cp);
 823
 824	/* expanded memory access mode */
 825	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
 826
 827	/* pointer configuration for new firmware */
 828	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
 829	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
 830	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
 831	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
 832	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
 833	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
 834	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
 835	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
 836
 837	/* download new firmware */
 838	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
 839	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
 840	for (i = 0; i < cp->fw_size; i++)
 841		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
 842
 843	/* enable firmware */
 844	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
 845	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
 846}
 847
 848
 849/* phy initialization */
 850static void cas_phy_init(struct cas *cp)
 851{
 852	u16 val;
 853
 854	/* if we're in MII/GMII mode, set up phy */
 855	if (CAS_PHY_MII(cp->phy_type)) {
 856		writel(PCS_DATAPATH_MODE_MII,
 857		       cp->regs + REG_PCS_DATAPATH_MODE);
 858
 859		cas_mif_poll(cp, 0);
 860		cas_reset_mii_phy(cp); /* take out of isolate mode */
 861
 862		if (PHY_LUCENT_B0 == cp->phy_id) {
 863			/* workaround link up/down issue with lucent */
 864			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
 865			cas_phy_write(cp, MII_BMCR, 0x00f1);
 866			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
 867
 868		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
 869			/* workarounds for broadcom phy */
 870			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
 871			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
 872			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
 873			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
 874			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
 875			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 876			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
 877			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 878			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
 879			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
 880			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
 881
 882		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
 883			val = cas_phy_read(cp, BROADCOM_MII_REG4);
 884			val = cas_phy_read(cp, BROADCOM_MII_REG4);
 885			if (val & 0x0080) {
 886				/* link workaround */
 887				cas_phy_write(cp, BROADCOM_MII_REG4,
 888					      val & ~0x0080);
 889			}
 890
 891		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
 892			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
 893			       SATURN_PCFG_FSI : 0x0,
 894			       cp->regs + REG_SATURN_PCFG);
 895
 896			/* load firmware to address 10Mbps auto-negotiation
 897			 * issue. NOTE: this will need to be changed if the
 898			 * default firmware gets fixed.
 899			 */
 900			if (PHY_NS_DP83065 == cp->phy_id) {
 901				cas_saturn_firmware_load(cp);
 902			}
 903			cas_phy_powerup(cp);
 904		}
 905
 906		/* advertise capabilities */
 907		val = cas_phy_read(cp, MII_BMCR);
 908		val &= ~BMCR_ANENABLE;
 909		cas_phy_write(cp, MII_BMCR, val);
 910		udelay(10);
 911
 912		cas_phy_write(cp, MII_ADVERTISE,
 913			      cas_phy_read(cp, MII_ADVERTISE) |
 914			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
 915			       ADVERTISE_100HALF | ADVERTISE_100FULL |
 916			       CAS_ADVERTISE_PAUSE |
 917			       CAS_ADVERTISE_ASYM_PAUSE));
 918
 919		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
 920			/* make sure that we don't advertise half
 921			 * duplex to avoid a chip issue
 922			 */
 923			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
 924			val &= ~CAS_ADVERTISE_1000HALF;
 925			val |= CAS_ADVERTISE_1000FULL;
 926			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
 927		}
 928
 929	} else {
 930		/* reset pcs for serdes */
 931		u32 val;
 932		int limit;
 933
 934		writel(PCS_DATAPATH_MODE_SERDES,
 935		       cp->regs + REG_PCS_DATAPATH_MODE);
 936
 937		/* enable serdes pins on saturn */
 938		if (cp->cas_flags & CAS_FLAG_SATURN)
 939			writel(0, cp->regs + REG_SATURN_PCFG);
 940
 941		/* Reset PCS unit. */
 942		val = readl(cp->regs + REG_PCS_MII_CTRL);
 943		val |= PCS_MII_RESET;
 944		writel(val, cp->regs + REG_PCS_MII_CTRL);
 945
 946		limit = STOP_TRIES;
 947		while (--limit > 0) {
 948			udelay(10);
 949			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
 950			     PCS_MII_RESET) == 0)
 951				break;
 952		}
 953		if (limit <= 0)
 954			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
 955				    readl(cp->regs + REG_PCS_STATE_MACHINE));
 956
 957		/* Make sure PCS is disabled while changing advertisement
 958		 * configuration.
 959		 */
 960		writel(0x0, cp->regs + REG_PCS_CFG);
 961
 962		/* Advertise all capabilities except half-duplex. */
 963		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
 964		val &= ~PCS_MII_ADVERT_HD;
 965		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
 966			PCS_MII_ADVERT_ASYM_PAUSE);
 967		writel(val, cp->regs + REG_PCS_MII_ADVERT);
 968
 969		/* enable PCS */
 970		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
 971
 972		/* pcs workaround: enable sync detect */
 973		writel(PCS_SERDES_CTRL_SYNCD_EN,
 974		       cp->regs + REG_PCS_SERDES_CTRL);
 975	}
 976}
 977
 978
 979static int cas_pcs_link_check(struct cas *cp)
 980{
 981	u32 stat, state_machine;
 982	int retval = 0;
 983
 984	/* The link status bit latches on zero, so you must
 985	 * read it twice in such a case to see a transition
 986	 * to the link being up.
 987	 */
 988	stat = readl(cp->regs + REG_PCS_MII_STATUS);
 989	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
 990		stat = readl(cp->regs + REG_PCS_MII_STATUS);
 991
 992	/* The remote-fault indication is only valid
 993	 * when autoneg has completed.
 994	 */
 995	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
 996		     PCS_MII_STATUS_REMOTE_FAULT)) ==
 997	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
 998		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
 999
1000	/* work around link detection issue by querying the PCS state
1001	 * machine directly.
1002	 */
1003	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1004	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1005		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1006	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1007		stat |= PCS_MII_STATUS_LINK_STATUS;
1008	}
1009
1010	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1011		if (cp->lstate != link_up) {
1012			if (cp->opened) {
1013				cp->lstate = link_up;
1014				cp->link_transition = LINK_TRANSITION_LINK_UP;
1015
1016				cas_set_link_modes(cp);
1017				netif_carrier_on(cp->dev);
1018			}
1019		}
1020	} else if (cp->lstate == link_up) {
1021		cp->lstate = link_down;
1022		if (link_transition_timeout != 0 &&
1023		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1024		    !cp->link_transition_jiffies_valid) {
1025			/*
1026			 * force a reset, as a workaround for the
1027			 * link-failure problem. May want to move this to a
1028			 * point a bit earlier in the sequence. If we had
1029			 * generated a reset a short time ago, we'll wait for
1030			 * the link timer to check the status until a
1031			 * timer expires (link_transistion_jiffies_valid is
1032			 * true when the timer is running.)  Instead of using
1033			 * a system timer, we just do a check whenever the
1034			 * link timer is running - this clears the flag after
1035			 * a suitable delay.
1036			 */
1037			retval = 1;
1038			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1039			cp->link_transition_jiffies = jiffies;
1040			cp->link_transition_jiffies_valid = 1;
1041		} else {
1042			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1043		}
1044		netif_carrier_off(cp->dev);
1045		if (cp->opened)
1046			netif_info(cp, link, cp->dev, "PCS link down\n");
1047
1048		/* Cassini only: if you force a mode, there can be
1049		 * sync problems on link down. to fix that, the following
1050		 * things need to be checked:
1051		 * 1) read serialink state register
1052		 * 2) read pcs status register to verify link down.
1053		 * 3) if link down and serial link == 0x03, then you need
1054		 *    to global reset the chip.
1055		 */
1056		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1057			/* should check to see if we're in a forced mode */
1058			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1059			if (stat == 0x03)
1060				return 1;
1061		}
1062	} else if (cp->lstate == link_down) {
1063		if (link_transition_timeout != 0 &&
1064		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1065		    !cp->link_transition_jiffies_valid) {
1066			/* force a reset, as a workaround for the
1067			 * link-failure problem.  May want to move
1068			 * this to a point a bit earlier in the
1069			 * sequence.
1070			 */
1071			retval = 1;
1072			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1073			cp->link_transition_jiffies = jiffies;
1074			cp->link_transition_jiffies_valid = 1;
1075		} else {
1076			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1077		}
1078	}
1079
1080	return retval;
1081}
1082
1083static int cas_pcs_interrupt(struct net_device *dev,
1084			     struct cas *cp, u32 status)
1085{
1086	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1087
1088	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1089		return 0;
1090	return cas_pcs_link_check(cp);
1091}
1092
1093static int cas_txmac_interrupt(struct net_device *dev,
1094			       struct cas *cp, u32 status)
1095{
1096	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1097
1098	if (!txmac_stat)
1099		return 0;
1100
1101	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1102		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1103
1104	/* Defer timer expiration is quite normal,
1105	 * don't even log the event.
1106	 */
1107	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1108	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1109		return 0;
1110
1111	spin_lock(&cp->stat_lock[0]);
1112	if (txmac_stat & MAC_TX_UNDERRUN) {
1113		netdev_err(dev, "TX MAC xmit underrun\n");
1114		cp->net_stats[0].tx_fifo_errors++;
1115	}
1116
1117	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1118		netdev_err(dev, "TX MAC max packet size error\n");
1119		cp->net_stats[0].tx_errors++;
1120	}
1121
1122	/* The rest are all cases of one of the 16-bit TX
1123	 * counters expiring.
1124	 */
1125	if (txmac_stat & MAC_TX_COLL_NORMAL)
1126		cp->net_stats[0].collisions += 0x10000;
1127
1128	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1129		cp->net_stats[0].tx_aborted_errors += 0x10000;
1130		cp->net_stats[0].collisions += 0x10000;
1131	}
1132
1133	if (txmac_stat & MAC_TX_COLL_LATE) {
1134		cp->net_stats[0].tx_aborted_errors += 0x10000;
1135		cp->net_stats[0].collisions += 0x10000;
1136	}
1137	spin_unlock(&cp->stat_lock[0]);
1138
1139	/* We do not keep track of MAC_TX_COLL_FIRST and
1140	 * MAC_TX_PEAK_ATTEMPTS events.
1141	 */
1142	return 0;
1143}
1144
1145static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1146{
1147	cas_hp_inst_t *inst;
1148	u32 val;
1149	int i;
1150
1151	i = 0;
1152	while ((inst = firmware) && inst->note) {
1153		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1154
1155		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1156		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1157		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1158
1159		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1160		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1161		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1162		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1163		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1164		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1165		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1166		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1167
1168		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1169		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1170		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1171		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1172		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1173		++firmware;
1174		++i;
1175	}
1176}
1177
1178static void cas_init_rx_dma(struct cas *cp)
1179{
1180	u64 desc_dma = cp->block_dvma;
1181	u32 val;
1182	int i, size;
1183
1184	/* rx free descriptors */
1185	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1186	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1187	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1188	if ((N_RX_DESC_RINGS > 1) &&
1189	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1190		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1191	writel(val, cp->regs + REG_RX_CFG);
1192
1193	val = (unsigned long) cp->init_rxds[0] -
1194		(unsigned long) cp->init_block;
1195	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1196	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1197	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1198
1199	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1200		/* rx desc 2 is for IPSEC packets. however,
1201		 * we don't it that for that purpose.
1202		 */
1203		val = (unsigned long) cp->init_rxds[1] -
1204			(unsigned long) cp->init_block;
1205		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1206		writel((desc_dma + val) & 0xffffffff, cp->regs +
1207		       REG_PLUS_RX_DB1_LOW);
1208		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1209		       REG_PLUS_RX_KICK1);
1210	}
1211
1212	/* rx completion registers */
1213	val = (unsigned long) cp->init_rxcs[0] -
1214		(unsigned long) cp->init_block;
1215	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1216	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1217
1218	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1219		/* rx comp 2-4 */
1220		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1221			val = (unsigned long) cp->init_rxcs[i] -
1222				(unsigned long) cp->init_block;
1223			writel((desc_dma + val) >> 32, cp->regs +
1224			       REG_PLUS_RX_CBN_HI(i));
1225			writel((desc_dma + val) & 0xffffffff, cp->regs +
1226			       REG_PLUS_RX_CBN_LOW(i));
1227		}
1228	}
1229
1230	/* read selective clear regs to prevent spurious interrupts
1231	 * on reset because complete == kick.
1232	 * selective clear set up to prevent interrupts on resets
1233	 */
1234	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1235	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1236
1237	/* set up pause thresholds */
1238	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1239			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1240	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1241			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1242	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1243
1244	/* zero out dma reassembly buffers */
1245	for (i = 0; i < 64; i++) {
1246		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1247		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1248		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1249		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1250	}
1251
1252	/* make sure address register is 0 for normal operation */
1253	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1254	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1255
1256	/* interrupt mitigation */
1257#ifdef USE_RX_BLANK
1258	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1259	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1260	writel(val, cp->regs + REG_RX_BLANK);
1261#else
1262	writel(0x0, cp->regs + REG_RX_BLANK);
1263#endif
1264
1265	/* interrupt generation as a function of low water marks for
1266	 * free desc and completion entries. these are used to trigger
1267	 * housekeeping for rx descs. we don't use the free interrupt
1268	 * as it's not very useful
1269	 */
1270	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1271	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1272	writel(val, cp->regs + REG_RX_AE_THRESH);
1273	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1274		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1275		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1276	}
1277
1278	/* Random early detect registers. useful for congestion avoidance.
1279	 * this should be tunable.
1280	 */
1281	writel(0x0, cp->regs + REG_RX_RED);
1282
1283	/* receive page sizes. default == 2K (0x800) */
1284	val = 0;
1285	if (cp->page_size == 0x1000)
1286		val = 0x1;
1287	else if (cp->page_size == 0x2000)
1288		val = 0x2;
1289	else if (cp->page_size == 0x4000)
1290		val = 0x3;
1291
1292	/* round mtu + offset. constrain to page size. */
1293	size = cp->dev->mtu + 64;
1294	if (size > cp->page_size)
1295		size = cp->page_size;
1296
1297	if (size <= 0x400)
1298		i = 0x0;
1299	else if (size <= 0x800)
1300		i = 0x1;
1301	else if (size <= 0x1000)
1302		i = 0x2;
1303	else
1304		i = 0x3;
1305
1306	cp->mtu_stride = 1 << (i + 10);
1307	val  = CAS_BASE(RX_PAGE_SIZE, val);
1308	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1309	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1310	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1311	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1312
1313	/* enable the header parser if desired */
1314	if (&CAS_HP_FIRMWARE[0] == &cas_prog_null[0])
1315		return;
1316
1317	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1318	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1319	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1320	writel(val, cp->regs + REG_HP_CFG);
1321}
1322
1323static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1324{
1325	memset(rxc, 0, sizeof(*rxc));
1326	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1327}
1328
1329/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1330 * flipping is protected by the fact that the chip will not
1331 * hand back the same page index while it's being processed.
1332 */
1333static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1334{
1335	cas_page_t *page = cp->rx_pages[1][index];
1336	cas_page_t *new;
1337
1338	if (page_count(page->buffer) == 1)
1339		return page;
1340
1341	new = cas_page_dequeue(cp);
1342	if (new) {
1343		spin_lock(&cp->rx_inuse_lock);
1344		list_add(&page->list, &cp->rx_inuse_list);
1345		spin_unlock(&cp->rx_inuse_lock);
1346	}
1347	return new;
1348}
1349
1350/* this needs to be changed if we actually use the ENC RX DESC ring */
1351static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1352				 const int index)
1353{
1354	cas_page_t **page0 = cp->rx_pages[0];
1355	cas_page_t **page1 = cp->rx_pages[1];
1356
1357	/* swap if buffer is in use */
1358	if (page_count(page0[index]->buffer) > 1) {
1359		cas_page_t *new = cas_page_spare(cp, index);
1360		if (new) {
1361			page1[index] = page0[index];
1362			page0[index] = new;
1363		}
1364	}
1365	RX_USED_SET(page0[index], 0);
1366	return page0[index];
1367}
1368
1369static void cas_clean_rxds(struct cas *cp)
1370{
1371	/* only clean ring 0 as ring 1 is used for spare buffers */
1372        struct cas_rx_desc *rxd = cp->init_rxds[0];
1373	int i, size;
1374
1375	/* release all rx flows */
1376	for (i = 0; i < N_RX_FLOWS; i++) {
1377		struct sk_buff *skb;
1378		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1379			cas_skb_release(skb);
1380		}
1381	}
1382
1383	/* initialize descriptors */
1384	size = RX_DESC_RINGN_SIZE(0);
1385	for (i = 0; i < size; i++) {
1386		cas_page_t *page = cas_page_swap(cp, 0, i);
1387		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1388		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1389					    CAS_BASE(RX_INDEX_RING, 0));
1390	}
1391
1392	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1393	cp->rx_last[0] = 0;
1394	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1395}
1396
1397static void cas_clean_rxcs(struct cas *cp)
1398{
1399	int i, j;
1400
1401	/* take ownership of rx comp descriptors */
1402	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1403	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1404	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1405		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1406		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1407			cas_rxc_init(rxc + j);
1408		}
1409	}
1410}
1411
1412#if 0
1413/* When we get a RX fifo overflow, the RX unit is probably hung
1414 * so we do the following.
1415 *
1416 * If any part of the reset goes wrong, we return 1 and that causes the
1417 * whole chip to be reset.
1418 */
1419static int cas_rxmac_reset(struct cas *cp)
1420{
1421	struct net_device *dev = cp->dev;
1422	int limit;
1423	u32 val;
1424
1425	/* First, reset MAC RX. */
1426	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1427	for (limit = 0; limit < STOP_TRIES; limit++) {
1428		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1429			break;
1430		udelay(10);
1431	}
1432	if (limit == STOP_TRIES) {
1433		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1434		return 1;
1435	}
1436
1437	/* Second, disable RX DMA. */
1438	writel(0, cp->regs + REG_RX_CFG);
1439	for (limit = 0; limit < STOP_TRIES; limit++) {
1440		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1441			break;
1442		udelay(10);
1443	}
1444	if (limit == STOP_TRIES) {
1445		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1446		return 1;
1447	}
1448
1449	mdelay(5);
1450
1451	/* Execute RX reset command. */
1452	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1453	for (limit = 0; limit < STOP_TRIES; limit++) {
1454		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1455			break;
1456		udelay(10);
1457	}
1458	if (limit == STOP_TRIES) {
1459		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1460		return 1;
1461	}
1462
1463	/* reset driver rx state */
1464	cas_clean_rxds(cp);
1465	cas_clean_rxcs(cp);
1466
1467	/* Now, reprogram the rest of RX unit. */
1468	cas_init_rx_dma(cp);
1469
1470	/* re-enable */
1471	val = readl(cp->regs + REG_RX_CFG);
1472	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1473	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1474	val = readl(cp->regs + REG_MAC_RX_CFG);
1475	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1476	return 0;
1477}
1478#endif
1479
1480static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1481			       u32 status)
1482{
1483	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1484
1485	if (!stat)
1486		return 0;
1487
1488	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1489
1490	/* these are all rollovers */
1491	spin_lock(&cp->stat_lock[0]);
1492	if (stat & MAC_RX_ALIGN_ERR)
1493		cp->net_stats[0].rx_frame_errors += 0x10000;
1494
1495	if (stat & MAC_RX_CRC_ERR)
1496		cp->net_stats[0].rx_crc_errors += 0x10000;
1497
1498	if (stat & MAC_RX_LEN_ERR)
1499		cp->net_stats[0].rx_length_errors += 0x10000;
1500
1501	if (stat & MAC_RX_OVERFLOW) {
1502		cp->net_stats[0].rx_over_errors++;
1503		cp->net_stats[0].rx_fifo_errors++;
1504	}
1505
1506	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1507	 * events.
1508	 */
1509	spin_unlock(&cp->stat_lock[0]);
1510	return 0;
1511}
1512
1513static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1514			     u32 status)
1515{
1516	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1517
1518	if (!stat)
1519		return 0;
1520
1521	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1522		     "mac interrupt, stat: 0x%x\n", stat);
1523
1524	/* This interrupt is just for pause frame and pause
1525	 * tracking.  It is useful for diagnostics and debug
1526	 * but probably by default we will mask these events.
1527	 */
1528	if (stat & MAC_CTRL_PAUSE_STATE)
1529		cp->pause_entered++;
1530
1531	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1532		cp->pause_last_time_recvd = (stat >> 16);
1533
1534	return 0;
1535}
1536
1537
1538/* Must be invoked under cp->lock. */
1539static inline int cas_mdio_link_not_up(struct cas *cp)
1540{
1541	u16 val;
1542
1543	switch (cp->lstate) {
1544	case link_force_ret:
1545		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1546		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1547		cp->timer_ticks = 5;
1548		cp->lstate = link_force_ok;
1549		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1550		break;
1551
1552	case link_aneg:
1553		val = cas_phy_read(cp, MII_BMCR);
1554
1555		/* Try forced modes. we try things in the following order:
1556		 * 1000 full -> 100 full/half -> 10 half
1557		 */
1558		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1559		val |= BMCR_FULLDPLX;
1560		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1561			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1562		cas_phy_write(cp, MII_BMCR, val);
1563		cp->timer_ticks = 5;
1564		cp->lstate = link_force_try;
1565		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1566		break;
1567
1568	case link_force_try:
1569		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1570		val = cas_phy_read(cp, MII_BMCR);
1571		cp->timer_ticks = 5;
1572		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1573			val &= ~CAS_BMCR_SPEED1000;
1574			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1575			cas_phy_write(cp, MII_BMCR, val);
1576			break;
1577		}
1578
1579		if (val & BMCR_SPEED100) {
1580			if (val & BMCR_FULLDPLX) /* fd failed */
1581				val &= ~BMCR_FULLDPLX;
1582			else { /* 100Mbps failed */
1583				val &= ~BMCR_SPEED100;
1584			}
1585			cas_phy_write(cp, MII_BMCR, val);
1586			break;
1587		}
1588		break;
1589	default:
1590		break;
1591	}
1592	return 0;
1593}
1594
1595
1596/* must be invoked with cp->lock held */
1597static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1598{
1599	int restart;
1600
1601	if (bmsr & BMSR_LSTATUS) {
1602		/* Ok, here we got a link. If we had it due to a forced
1603		 * fallback, and we were configured for autoneg, we
1604		 * retry a short autoneg pass. If you know your hub is
1605		 * broken, use ethtool ;)
1606		 */
1607		if ((cp->lstate == link_force_try) &&
1608		    (cp->link_cntl & BMCR_ANENABLE)) {
1609			cp->lstate = link_force_ret;
1610			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1611			cas_mif_poll(cp, 0);
1612			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1613			cp->timer_ticks = 5;
1614			if (cp->opened)
1615				netif_info(cp, link, cp->dev,
1616					   "Got link after fallback, retrying autoneg once...\n");
1617			cas_phy_write(cp, MII_BMCR,
1618				      cp->link_fcntl | BMCR_ANENABLE |
1619				      BMCR_ANRESTART);
1620			cas_mif_poll(cp, 1);
1621
1622		} else if (cp->lstate != link_up) {
1623			cp->lstate = link_up;
1624			cp->link_transition = LINK_TRANSITION_LINK_UP;
1625
1626			if (cp->opened) {
1627				cas_set_link_modes(cp);
1628				netif_carrier_on(cp->dev);
1629			}
1630		}
1631		return 0;
1632	}
1633
1634	/* link not up. if the link was previously up, we restart the
1635	 * whole process
1636	 */
1637	restart = 0;
1638	if (cp->lstate == link_up) {
1639		cp->lstate = link_down;
1640		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1641
1642		netif_carrier_off(cp->dev);
1643		if (cp->opened)
1644			netif_info(cp, link, cp->dev, "Link down\n");
1645		restart = 1;
1646
1647	} else if (++cp->timer_ticks > 10)
1648		cas_mdio_link_not_up(cp);
1649
1650	return restart;
1651}
1652
1653static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1654			     u32 status)
1655{
1656	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1657	u16 bmsr;
1658
1659	/* check for a link change */
1660	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1661		return 0;
1662
1663	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1664	return cas_mii_link_check(cp, bmsr);
1665}
1666
1667static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1668			     u32 status)
1669{
1670	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1671
1672	if (!stat)
1673		return 0;
1674
1675	netdev_err(dev, "PCI error [%04x:%04x]",
1676		   stat, readl(cp->regs + REG_BIM_DIAG));
1677
1678	/* cassini+ has this reserved */
1679	if ((stat & PCI_ERR_BADACK) &&
1680	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1681		pr_cont(" <No ACK64# during ABS64 cycle>");
1682
1683	if (stat & PCI_ERR_DTRTO)
1684		pr_cont(" <Delayed transaction timeout>");
1685	if (stat & PCI_ERR_OTHER)
1686		pr_cont(" <other>");
1687	if (stat & PCI_ERR_BIM_DMA_WRITE)
1688		pr_cont(" <BIM DMA 0 write req>");
1689	if (stat & PCI_ERR_BIM_DMA_READ)
1690		pr_cont(" <BIM DMA 0 read req>");
1691	pr_cont("\n");
1692
1693	if (stat & PCI_ERR_OTHER) {
1694		int pci_errs;
1695
1696		/* Interrogate PCI config space for the
1697		 * true cause.
1698		 */
1699		pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1700
1701		netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1702		if (pci_errs & PCI_STATUS_PARITY)
1703			netdev_err(dev, "PCI parity error detected\n");
1704		if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1705			netdev_err(dev, "PCI target abort\n");
1706		if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1707			netdev_err(dev, "PCI master acks target abort\n");
1708		if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1709			netdev_err(dev, "PCI master abort\n");
1710		if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1711			netdev_err(dev, "PCI system error SERR#\n");
1712		if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1713			netdev_err(dev, "PCI parity error\n");
1714	}
1715
1716	/* For all PCI errors, we should reset the chip. */
1717	return 1;
1718}
1719
1720/* All non-normal interrupt conditions get serviced here.
1721 * Returns non-zero if we should just exit the interrupt
1722 * handler right now (ie. if we reset the card which invalidates
1723 * all of the other original irq status bits).
1724 */
1725static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1726			    u32 status)
1727{
1728	if (status & INTR_RX_TAG_ERROR) {
1729		/* corrupt RX tag framing */
1730		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1731			     "corrupt rx tag framing\n");
1732		spin_lock(&cp->stat_lock[0]);
1733		cp->net_stats[0].rx_errors++;
1734		spin_unlock(&cp->stat_lock[0]);
1735		goto do_reset;
1736	}
1737
1738	if (status & INTR_RX_LEN_MISMATCH) {
1739		/* length mismatch. */
1740		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1741			     "length mismatch for rx frame\n");
1742		spin_lock(&cp->stat_lock[0]);
1743		cp->net_stats[0].rx_errors++;
1744		spin_unlock(&cp->stat_lock[0]);
1745		goto do_reset;
1746	}
1747
1748	if (status & INTR_PCS_STATUS) {
1749		if (cas_pcs_interrupt(dev, cp, status))
1750			goto do_reset;
1751	}
1752
1753	if (status & INTR_TX_MAC_STATUS) {
1754		if (cas_txmac_interrupt(dev, cp, status))
1755			goto do_reset;
1756	}
1757
1758	if (status & INTR_RX_MAC_STATUS) {
1759		if (cas_rxmac_interrupt(dev, cp, status))
1760			goto do_reset;
1761	}
1762
1763	if (status & INTR_MAC_CTRL_STATUS) {
1764		if (cas_mac_interrupt(dev, cp, status))
1765			goto do_reset;
1766	}
1767
1768	if (status & INTR_MIF_STATUS) {
1769		if (cas_mif_interrupt(dev, cp, status))
1770			goto do_reset;
1771	}
1772
1773	if (status & INTR_PCI_ERROR_STATUS) {
1774		if (cas_pci_interrupt(dev, cp, status))
1775			goto do_reset;
1776	}
1777	return 0;
1778
1779do_reset:
1780#if 1
1781	atomic_inc(&cp->reset_task_pending);
1782	atomic_inc(&cp->reset_task_pending_all);
1783	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1784	schedule_work(&cp->reset_task);
1785#else
1786	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1787	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1788	schedule_work(&cp->reset_task);
1789#endif
1790	return 1;
1791}
1792
1793/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1794 *       determining whether to do a netif_stop/wakeup
1795 */
1796#define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1797#define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1798static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1799				  const int len)
1800{
1801	unsigned long off = addr + len;
1802
1803	if (CAS_TABORT(cp) == 1)
1804		return 0;
1805	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1806		return 0;
1807	return TX_TARGET_ABORT_LEN;
1808}
1809
1810static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1811{
1812	struct cas_tx_desc *txds;
1813	struct sk_buff **skbs;
1814	struct net_device *dev = cp->dev;
1815	int entry, count;
1816
1817	spin_lock(&cp->tx_lock[ring]);
1818	txds = cp->init_txds[ring];
1819	skbs = cp->tx_skbs[ring];
1820	entry = cp->tx_old[ring];
1821
1822	count = TX_BUFF_COUNT(ring, entry, limit);
1823	while (entry != limit) {
1824		struct sk_buff *skb = skbs[entry];
1825		dma_addr_t daddr;
1826		u32 dlen;
1827		int frag;
1828
1829		if (!skb) {
1830			/* this should never occur */
1831			entry = TX_DESC_NEXT(ring, entry);
1832			continue;
1833		}
1834
1835		/* however, we might get only a partial skb release. */
1836		count -= skb_shinfo(skb)->nr_frags +
1837			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1838		if (count < 0)
1839			break;
1840
1841		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1842			     "tx[%d] done, slot %d\n", ring, entry);
1843
1844		skbs[entry] = NULL;
1845		cp->tx_tiny_use[ring][entry].nbufs = 0;
1846
1847		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1848			struct cas_tx_desc *txd = txds + entry;
1849
1850			daddr = le64_to_cpu(txd->buffer);
1851			dlen = CAS_VAL(TX_DESC_BUFLEN,
1852				       le64_to_cpu(txd->control));
1853			dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1854				       DMA_TO_DEVICE);
1855			entry = TX_DESC_NEXT(ring, entry);
1856
1857			/* tiny buffer may follow */
1858			if (cp->tx_tiny_use[ring][entry].used) {
1859				cp->tx_tiny_use[ring][entry].used = 0;
1860				entry = TX_DESC_NEXT(ring, entry);
1861			}
1862		}
1863
1864		spin_lock(&cp->stat_lock[ring]);
1865		cp->net_stats[ring].tx_packets++;
1866		cp->net_stats[ring].tx_bytes += skb->len;
1867		spin_unlock(&cp->stat_lock[ring]);
1868		dev_consume_skb_irq(skb);
1869	}
1870	cp->tx_old[ring] = entry;
1871
1872	/* this is wrong for multiple tx rings. the net device needs
1873	 * multiple queues for this to do the right thing.  we wait
1874	 * for 2*packets to be available when using tiny buffers
1875	 */
1876	if (netif_queue_stopped(dev) &&
1877	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1878		netif_wake_queue(dev);
1879	spin_unlock(&cp->tx_lock[ring]);
1880}
1881
1882static void cas_tx(struct net_device *dev, struct cas *cp,
1883		   u32 status)
1884{
1885        int limit, ring;
1886#ifdef USE_TX_COMPWB
1887	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1888#endif
1889	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1890		     "tx interrupt, status: 0x%x, %llx\n",
1891		     status, (unsigned long long)compwb);
1892	/* process all the rings */
1893	for (ring = 0; ring < N_TX_RINGS; ring++) {
1894#ifdef USE_TX_COMPWB
1895		/* use the completion writeback registers */
1896		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1897			CAS_VAL(TX_COMPWB_LSB, compwb);
1898		compwb = TX_COMPWB_NEXT(compwb);
1899#else
1900		limit = readl(cp->regs + REG_TX_COMPN(ring));
1901#endif
1902		if (cp->tx_old[ring] != limit)
1903			cas_tx_ringN(cp, ring, limit);
1904	}
1905}
1906
1907
1908static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1909			      int entry, const u64 *words,
1910			      struct sk_buff **skbref)
1911{
1912	int dlen, hlen, len, i, alloclen;
1913	int off, swivel = RX_SWIVEL_OFF_VAL;
1914	struct cas_page *page;
1915	struct sk_buff *skb;
1916	void *crcaddr;
1917	__sum16 csum;
1918	char *p;
1919
1920	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1921	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1922	len  = hlen + dlen;
1923
1924	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1925		alloclen = len;
1926	else
1927		alloclen = max(hlen, RX_COPY_MIN);
1928
1929	skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1930	if (skb == NULL)
1931		return -1;
1932
1933	*skbref = skb;
1934	skb_reserve(skb, swivel);
1935
1936	p = skb->data;
1937	crcaddr = NULL;
1938	if (hlen) { /* always copy header pages */
1939		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1940		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1941		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1942			swivel;
1943
1944		i = hlen;
1945		if (!dlen) /* attach FCS */
1946			i += cp->crc_size;
1947		dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1948					i, DMA_FROM_DEVICE);
1949		memcpy(p, page_address(page->buffer) + off, i);
1950		dma_sync_single_for_device(&cp->pdev->dev,
1951					   page->dma_addr + off, i,
1952					   DMA_FROM_DEVICE);
1953		RX_USED_ADD(page, 0x100);
1954		p += hlen;
1955		swivel = 0;
1956	}
1957
1958
1959	if (alloclen < (hlen + dlen)) {
1960		skb_frag_t *frag = skb_shinfo(skb)->frags;
1961
1962		/* normal or jumbo packets. we use frags */
1963		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1964		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1965		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1966
1967		hlen = min(cp->page_size - off, dlen);
1968		if (hlen < 0) {
1969			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1970				     "rx page overflow: %d\n", hlen);
1971			dev_kfree_skb_irq(skb);
1972			return -1;
1973		}
1974		i = hlen;
1975		if (i == dlen)  /* attach FCS */
1976			i += cp->crc_size;
1977		dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1978					i, DMA_FROM_DEVICE);
1979
1980		/* make sure we always copy a header */
1981		swivel = 0;
1982		if (p == (char *) skb->data) { /* not split */
1983			memcpy(p, page_address(page->buffer) + off,
1984			       RX_COPY_MIN);
1985			dma_sync_single_for_device(&cp->pdev->dev,
1986						   page->dma_addr + off, i,
1987						   DMA_FROM_DEVICE);
1988			off += RX_COPY_MIN;
1989			swivel = RX_COPY_MIN;
1990			RX_USED_ADD(page, cp->mtu_stride);
1991		} else {
1992			RX_USED_ADD(page, hlen);
1993		}
1994		skb_put(skb, alloclen);
1995
1996		skb_shinfo(skb)->nr_frags++;
1997		skb->data_len += hlen - swivel;
1998		skb->truesize += hlen - swivel;
1999		skb->len      += hlen - swivel;
2000
2001		__skb_frag_set_page(frag, page->buffer);
2002		__skb_frag_ref(frag);
2003		skb_frag_off_set(frag, off);
2004		skb_frag_size_set(frag, hlen - swivel);
2005
2006		/* any more data? */
2007		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2008			hlen = dlen;
2009			off = 0;
2010
2011			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2012			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2013			dma_sync_single_for_cpu(&cp->pdev->dev,
2014						page->dma_addr,
2015						hlen + cp->crc_size,
2016						DMA_FROM_DEVICE);
2017			dma_sync_single_for_device(&cp->pdev->dev,
2018						   page->dma_addr,
2019						   hlen + cp->crc_size,
2020						   DMA_FROM_DEVICE);
2021
2022			skb_shinfo(skb)->nr_frags++;
2023			skb->data_len += hlen;
2024			skb->len      += hlen;
2025			frag++;
2026
2027			__skb_frag_set_page(frag, page->buffer);
2028			__skb_frag_ref(frag);
2029			skb_frag_off_set(frag, 0);
2030			skb_frag_size_set(frag, hlen);
2031			RX_USED_ADD(page, hlen + cp->crc_size);
2032		}
2033
2034		if (cp->crc_size)
2035			crcaddr = page_address(page->buffer) + off + hlen;
2036
2037	} else {
2038		/* copying packet */
2039		if (!dlen)
2040			goto end_copy_pkt;
2041
2042		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2043		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2044		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2045		hlen = min(cp->page_size - off, dlen);
2046		if (hlen < 0) {
2047			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2048				     "rx page overflow: %d\n", hlen);
2049			dev_kfree_skb_irq(skb);
2050			return -1;
2051		}
2052		i = hlen;
2053		if (i == dlen) /* attach FCS */
2054			i += cp->crc_size;
2055		dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2056					i, DMA_FROM_DEVICE);
2057		memcpy(p, page_address(page->buffer) + off, i);
2058		dma_sync_single_for_device(&cp->pdev->dev,
2059					   page->dma_addr + off, i,
2060					   DMA_FROM_DEVICE);
2061		if (p == (char *) skb->data) /* not split */
2062			RX_USED_ADD(page, cp->mtu_stride);
2063		else
2064			RX_USED_ADD(page, i);
2065
2066		/* any more data? */
2067		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2068			p += hlen;
2069			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2070			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2071			dma_sync_single_for_cpu(&cp->pdev->dev,
2072						page->dma_addr,
2073						dlen + cp->crc_size,
2074						DMA_FROM_DEVICE);
2075			memcpy(p, page_address(page->buffer), dlen + cp->crc_size);
2076			dma_sync_single_for_device(&cp->pdev->dev,
2077						   page->dma_addr,
2078						   dlen + cp->crc_size,
2079						   DMA_FROM_DEVICE);
2080			RX_USED_ADD(page, dlen + cp->crc_size);
2081		}
2082end_copy_pkt:
2083		if (cp->crc_size)
2084			crcaddr = skb->data + alloclen;
2085
2086		skb_put(skb, alloclen);
2087	}
2088
2089	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2090	if (cp->crc_size) {
2091		/* checksum includes FCS. strip it out. */
2092		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2093					      csum_unfold(csum)));
2094	}
2095	skb->protocol = eth_type_trans(skb, cp->dev);
2096	if (skb->protocol == htons(ETH_P_IP)) {
2097		skb->csum = csum_unfold(~csum);
2098		skb->ip_summed = CHECKSUM_COMPLETE;
2099	} else
2100		skb_checksum_none_assert(skb);
2101	return len;
2102}
2103
2104
2105/* we can handle up to 64 rx flows at a time. we do the same thing
2106 * as nonreassm except that we batch up the buffers.
2107 * NOTE: we currently just treat each flow as a bunch of packets that
2108 *       we pass up. a better way would be to coalesce the packets
2109 *       into a jumbo packet. to do that, we need to do the following:
2110 *       1) the first packet will have a clean split between header and
2111 *          data. save both.
2112 *       2) each time the next flow packet comes in, extend the
2113 *          data length and merge the checksums.
2114 *       3) on flow release, fix up the header.
2115 *       4) make sure the higher layer doesn't care.
2116 * because packets get coalesced, we shouldn't run into fragment count
2117 * issues.
2118 */
2119static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2120				   struct sk_buff *skb)
2121{
2122	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2123	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2124
2125	/* this is protected at a higher layer, so no need to
2126	 * do any additional locking here. stick the buffer
2127	 * at the end.
2128	 */
2129	__skb_queue_tail(flow, skb);
2130	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2131		while ((skb = __skb_dequeue(flow))) {
2132			cas_skb_release(skb);
2133		}
2134	}
2135}
2136
2137/* put rx descriptor back on ring. if a buffer is in use by a higher
2138 * layer, this will need to put in a replacement.
2139 */
2140static void cas_post_page(struct cas *cp, const int ring, const int index)
2141{
2142	cas_page_t *new;
2143	int entry;
2144
2145	entry = cp->rx_old[ring];
2146
2147	new = cas_page_swap(cp, ring, index);
2148	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2149	cp->init_rxds[ring][entry].index  =
2150		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2151			    CAS_BASE(RX_INDEX_RING, ring));
2152
2153	entry = RX_DESC_ENTRY(ring, entry + 1);
2154	cp->rx_old[ring] = entry;
2155
2156	if (entry % 4)
2157		return;
2158
2159	if (ring == 0)
2160		writel(entry, cp->regs + REG_RX_KICK);
2161	else if ((N_RX_DESC_RINGS > 1) &&
2162		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2163		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2164}
2165
2166
2167/* only when things are bad */
2168static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2169{
2170	unsigned int entry, last, count, released;
2171	int cluster;
2172	cas_page_t **page = cp->rx_pages[ring];
2173
2174	entry = cp->rx_old[ring];
2175
2176	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2177		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2178
2179	cluster = -1;
2180	count = entry & 0x3;
2181	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2182	released = 0;
2183	while (entry != last) {
2184		/* make a new buffer if it's still in use */
2185		if (page_count(page[entry]->buffer) > 1) {
2186			cas_page_t *new = cas_page_dequeue(cp);
2187			if (!new) {
2188				/* let the timer know that we need to
2189				 * do this again
2190				 */
2191				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2192				if (!timer_pending(&cp->link_timer))
2193					mod_timer(&cp->link_timer, jiffies +
2194						  CAS_LINK_FAST_TIMEOUT);
2195				cp->rx_old[ring]  = entry;
2196				cp->rx_last[ring] = num ? num - released : 0;
2197				return -ENOMEM;
2198			}
2199			spin_lock(&cp->rx_inuse_lock);
2200			list_add(&page[entry]->list, &cp->rx_inuse_list);
2201			spin_unlock(&cp->rx_inuse_lock);
2202			cp->init_rxds[ring][entry].buffer =
2203				cpu_to_le64(new->dma_addr);
2204			page[entry] = new;
2205
2206		}
2207
2208		if (++count == 4) {
2209			cluster = entry;
2210			count = 0;
2211		}
2212		released++;
2213		entry = RX_DESC_ENTRY(ring, entry + 1);
2214	}
2215	cp->rx_old[ring] = entry;
2216
2217	if (cluster < 0)
2218		return 0;
2219
2220	if (ring == 0)
2221		writel(cluster, cp->regs + REG_RX_KICK);
2222	else if ((N_RX_DESC_RINGS > 1) &&
2223		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2224		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2225	return 0;
2226}
2227
2228
2229/* process a completion ring. packets are set up in three basic ways:
2230 * small packets: should be copied header + data in single buffer.
2231 * large packets: header and data in a single buffer.
2232 * split packets: header in a separate buffer from data.
2233 *                data may be in multiple pages. data may be > 256
2234 *                bytes but in a single page.
2235 *
2236 * NOTE: RX page posting is done in this routine as well. while there's
2237 *       the capability of using multiple RX completion rings, it isn't
2238 *       really worthwhile due to the fact that the page posting will
2239 *       force serialization on the single descriptor ring.
2240 */
2241static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2242{
2243	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2244	int entry, drops;
2245	int npackets = 0;
2246
2247	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2248		     "rx[%d] interrupt, done: %d/%d\n",
2249		     ring,
2250		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2251
2252	entry = cp->rx_new[ring];
2253	drops = 0;
2254	while (1) {
2255		struct cas_rx_comp *rxc = rxcs + entry;
2256		struct sk_buff *skb;
2257		int type, len;
2258		u64 words[4];
2259		int i, dring;
2260
2261		words[0] = le64_to_cpu(rxc->word1);
2262		words[1] = le64_to_cpu(rxc->word2);
2263		words[2] = le64_to_cpu(rxc->word3);
2264		words[3] = le64_to_cpu(rxc->word4);
2265
2266		/* don't touch if still owned by hw */
2267		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2268		if (type == 0)
2269			break;
2270
2271		/* hw hasn't cleared the zero bit yet */
2272		if (words[3] & RX_COMP4_ZERO) {
2273			break;
2274		}
2275
2276		/* get info on the packet */
2277		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2278			spin_lock(&cp->stat_lock[ring]);
2279			cp->net_stats[ring].rx_errors++;
2280			if (words[3] & RX_COMP4_LEN_MISMATCH)
2281				cp->net_stats[ring].rx_length_errors++;
2282			if (words[3] & RX_COMP4_BAD)
2283				cp->net_stats[ring].rx_crc_errors++;
2284			spin_unlock(&cp->stat_lock[ring]);
2285
2286			/* We'll just return it to Cassini. */
2287		drop_it:
2288			spin_lock(&cp->stat_lock[ring]);
2289			++cp->net_stats[ring].rx_dropped;
2290			spin_unlock(&cp->stat_lock[ring]);
2291			goto next;
2292		}
2293
2294		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2295		if (len < 0) {
2296			++drops;
2297			goto drop_it;
2298		}
2299
2300		/* see if it's a flow re-assembly or not. the driver
2301		 * itself handles release back up.
2302		 */
2303		if (RX_DONT_BATCH || (type == 0x2)) {
2304			/* non-reassm: these always get released */
2305			cas_skb_release(skb);
2306		} else {
2307			cas_rx_flow_pkt(cp, words, skb);
2308		}
2309
2310		spin_lock(&cp->stat_lock[ring]);
2311		cp->net_stats[ring].rx_packets++;
2312		cp->net_stats[ring].rx_bytes += len;
2313		spin_unlock(&cp->stat_lock[ring]);
2314
2315	next:
2316		npackets++;
2317
2318		/* should it be released? */
2319		if (words[0] & RX_COMP1_RELEASE_HDR) {
2320			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2321			dring = CAS_VAL(RX_INDEX_RING, i);
2322			i = CAS_VAL(RX_INDEX_NUM, i);
2323			cas_post_page(cp, dring, i);
2324		}
2325
2326		if (words[0] & RX_COMP1_RELEASE_DATA) {
2327			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2328			dring = CAS_VAL(RX_INDEX_RING, i);
2329			i = CAS_VAL(RX_INDEX_NUM, i);
2330			cas_post_page(cp, dring, i);
2331		}
2332
2333		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2334			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2335			dring = CAS_VAL(RX_INDEX_RING, i);
2336			i = CAS_VAL(RX_INDEX_NUM, i);
2337			cas_post_page(cp, dring, i);
2338		}
2339
2340		/* skip to the next entry */
2341		entry = RX_COMP_ENTRY(ring, entry + 1 +
2342				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2343#ifdef USE_NAPI
2344		if (budget && (npackets >= budget))
2345			break;
2346#endif
2347	}
2348	cp->rx_new[ring] = entry;
2349
2350	if (drops)
2351		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2352	return npackets;
2353}
2354
2355
2356/* put completion entries back on the ring */
2357static void cas_post_rxcs_ringN(struct net_device *dev,
2358				struct cas *cp, int ring)
2359{
2360	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2361	int last, entry;
2362
2363	last = cp->rx_cur[ring];
2364	entry = cp->rx_new[ring];
2365	netif_printk(cp, intr, KERN_DEBUG, dev,
2366		     "rxc[%d] interrupt, done: %d/%d\n",
2367		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2368
2369	/* zero and re-mark descriptors */
2370	while (last != entry) {
2371		cas_rxc_init(rxc + last);
2372		last = RX_COMP_ENTRY(ring, last + 1);
2373	}
2374	cp->rx_cur[ring] = last;
2375
2376	if (ring == 0)
2377		writel(last, cp->regs + REG_RX_COMP_TAIL);
2378	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2379		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2380}
2381
2382
2383
2384/* cassini can use all four PCI interrupts for the completion ring.
2385 * rings 3 and 4 are identical
2386 */
2387#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2388static inline void cas_handle_irqN(struct net_device *dev,
2389				   struct cas *cp, const u32 status,
2390				   const int ring)
2391{
2392	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2393		cas_post_rxcs_ringN(dev, cp, ring);
2394}
2395
2396static irqreturn_t cas_interruptN(int irq, void *dev_id)
2397{
2398	struct net_device *dev = dev_id;
2399	struct cas *cp = netdev_priv(dev);
2400	unsigned long flags;
2401	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2402	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2403
2404	/* check for shared irq */
2405	if (status == 0)
2406		return IRQ_NONE;
2407
2408	spin_lock_irqsave(&cp->lock, flags);
2409	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2410#ifdef USE_NAPI
2411		cas_mask_intr(cp);
2412		napi_schedule(&cp->napi);
2413#else
2414		cas_rx_ringN(cp, ring, 0);
2415#endif
2416		status &= ~INTR_RX_DONE_ALT;
2417	}
2418
2419	if (status)
2420		cas_handle_irqN(dev, cp, status, ring);
2421	spin_unlock_irqrestore(&cp->lock, flags);
2422	return IRQ_HANDLED;
2423}
2424#endif
2425
2426#ifdef USE_PCI_INTB
2427/* everything but rx packets */
2428static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2429{
2430	if (status & INTR_RX_BUF_UNAVAIL_1) {
2431		/* Frame arrived, no free RX buffers available.
2432		 * NOTE: we can get this on a link transition. */
2433		cas_post_rxds_ringN(cp, 1, 0);
2434		spin_lock(&cp->stat_lock[1]);
2435		cp->net_stats[1].rx_dropped++;
2436		spin_unlock(&cp->stat_lock[1]);
2437	}
2438
2439	if (status & INTR_RX_BUF_AE_1)
2440		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2441				    RX_AE_FREEN_VAL(1));
2442
2443	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2444		cas_post_rxcs_ringN(cp, 1);
2445}
2446
2447/* ring 2 handles a few more events than 3 and 4 */
2448static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2449{
2450	struct net_device *dev = dev_id;
2451	struct cas *cp = netdev_priv(dev);
2452	unsigned long flags;
2453	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2454
2455	/* check for shared interrupt */
2456	if (status == 0)
2457		return IRQ_NONE;
2458
2459	spin_lock_irqsave(&cp->lock, flags);
2460	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2461#ifdef USE_NAPI
2462		cas_mask_intr(cp);
2463		napi_schedule(&cp->napi);
2464#else
2465		cas_rx_ringN(cp, 1, 0);
2466#endif
2467		status &= ~INTR_RX_DONE_ALT;
2468	}
2469	if (status)
2470		cas_handle_irq1(cp, status);
2471	spin_unlock_irqrestore(&cp->lock, flags);
2472	return IRQ_HANDLED;
2473}
2474#endif
2475
2476static inline void cas_handle_irq(struct net_device *dev,
2477				  struct cas *cp, const u32 status)
2478{
2479	/* housekeeping interrupts */
2480	if (status & INTR_ERROR_MASK)
2481		cas_abnormal_irq(dev, cp, status);
2482
2483	if (status & INTR_RX_BUF_UNAVAIL) {
2484		/* Frame arrived, no free RX buffers available.
2485		 * NOTE: we can get this on a link transition.
2486		 */
2487		cas_post_rxds_ringN(cp, 0, 0);
2488		spin_lock(&cp->stat_lock[0]);
2489		cp->net_stats[0].rx_dropped++;
2490		spin_unlock(&cp->stat_lock[0]);
2491	} else if (status & INTR_RX_BUF_AE) {
2492		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2493				    RX_AE_FREEN_VAL(0));
2494	}
2495
2496	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2497		cas_post_rxcs_ringN(dev, cp, 0);
2498}
2499
2500static irqreturn_t cas_interrupt(int irq, void *dev_id)
2501{
2502	struct net_device *dev = dev_id;
2503	struct cas *cp = netdev_priv(dev);
2504	unsigned long flags;
2505	u32 status = readl(cp->regs + REG_INTR_STATUS);
2506
2507	if (status == 0)
2508		return IRQ_NONE;
2509
2510	spin_lock_irqsave(&cp->lock, flags);
2511	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2512		cas_tx(dev, cp, status);
2513		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2514	}
2515
2516	if (status & INTR_RX_DONE) {
2517#ifdef USE_NAPI
2518		cas_mask_intr(cp);
2519		napi_schedule(&cp->napi);
2520#else
2521		cas_rx_ringN(cp, 0, 0);
2522#endif
2523		status &= ~INTR_RX_DONE;
2524	}
2525
2526	if (status)
2527		cas_handle_irq(dev, cp, status);
2528	spin_unlock_irqrestore(&cp->lock, flags);
2529	return IRQ_HANDLED;
2530}
2531
2532
2533#ifdef USE_NAPI
2534static int cas_poll(struct napi_struct *napi, int budget)
2535{
2536	struct cas *cp = container_of(napi, struct cas, napi);
2537	struct net_device *dev = cp->dev;
2538	int i, enable_intr, credits;
2539	u32 status = readl(cp->regs + REG_INTR_STATUS);
2540	unsigned long flags;
2541
2542	spin_lock_irqsave(&cp->lock, flags);
2543	cas_tx(dev, cp, status);
2544	spin_unlock_irqrestore(&cp->lock, flags);
2545
2546	/* NAPI rx packets. we spread the credits across all of the
2547	 * rxc rings
2548	 *
2549	 * to make sure we're fair with the work we loop through each
2550	 * ring N_RX_COMP_RING times with a request of
2551	 * budget / N_RX_COMP_RINGS
2552	 */
2553	enable_intr = 1;
2554	credits = 0;
2555	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2556		int j;
2557		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2558			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2559			if (credits >= budget) {
2560				enable_intr = 0;
2561				goto rx_comp;
2562			}
2563		}
2564	}
2565
2566rx_comp:
2567	/* final rx completion */
2568	spin_lock_irqsave(&cp->lock, flags);
2569	if (status)
2570		cas_handle_irq(dev, cp, status);
2571
2572#ifdef USE_PCI_INTB
2573	if (N_RX_COMP_RINGS > 1) {
2574		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2575		if (status)
2576			cas_handle_irq1(dev, cp, status);
2577	}
2578#endif
2579
2580#ifdef USE_PCI_INTC
2581	if (N_RX_COMP_RINGS > 2) {
2582		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2583		if (status)
2584			cas_handle_irqN(dev, cp, status, 2);
2585	}
2586#endif
2587
2588#ifdef USE_PCI_INTD
2589	if (N_RX_COMP_RINGS > 3) {
2590		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2591		if (status)
2592			cas_handle_irqN(dev, cp, status, 3);
2593	}
2594#endif
2595	spin_unlock_irqrestore(&cp->lock, flags);
2596	if (enable_intr) {
2597		napi_complete(napi);
2598		cas_unmask_intr(cp);
2599	}
2600	return credits;
2601}
2602#endif
2603
2604#ifdef CONFIG_NET_POLL_CONTROLLER
2605static void cas_netpoll(struct net_device *dev)
2606{
2607	struct cas *cp = netdev_priv(dev);
2608
2609	cas_disable_irq(cp, 0);
2610	cas_interrupt(cp->pdev->irq, dev);
2611	cas_enable_irq(cp, 0);
2612
2613#ifdef USE_PCI_INTB
2614	if (N_RX_COMP_RINGS > 1) {
2615		/* cas_interrupt1(); */
2616	}
2617#endif
2618#ifdef USE_PCI_INTC
2619	if (N_RX_COMP_RINGS > 2) {
2620		/* cas_interruptN(); */
2621	}
2622#endif
2623#ifdef USE_PCI_INTD
2624	if (N_RX_COMP_RINGS > 3) {
2625		/* cas_interruptN(); */
2626	}
2627#endif
2628}
2629#endif
2630
2631static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2632{
2633	struct cas *cp = netdev_priv(dev);
2634
2635	netdev_err(dev, "transmit timed out, resetting\n");
2636	if (!cp->hw_running) {
2637		netdev_err(dev, "hrm.. hw not running!\n");
2638		return;
2639	}
2640
2641	netdev_err(dev, "MIF_STATE[%08x]\n",
2642		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2643
2644	netdev_err(dev, "MAC_STATE[%08x]\n",
2645		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2646
2647	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2648		   readl(cp->regs + REG_TX_CFG),
2649		   readl(cp->regs + REG_MAC_TX_STATUS),
2650		   readl(cp->regs + REG_MAC_TX_CFG),
2651		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2652		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2653		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2654		   readl(cp->regs + REG_TX_SM_1),
2655		   readl(cp->regs + REG_TX_SM_2));
2656
2657	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2658		   readl(cp->regs + REG_RX_CFG),
2659		   readl(cp->regs + REG_MAC_RX_STATUS),
2660		   readl(cp->regs + REG_MAC_RX_CFG));
2661
2662	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2663		   readl(cp->regs + REG_HP_STATE_MACHINE),
2664		   readl(cp->regs + REG_HP_STATUS0),
2665		   readl(cp->regs + REG_HP_STATUS1),
2666		   readl(cp->regs + REG_HP_STATUS2));
2667
2668#if 1
2669	atomic_inc(&cp->reset_task_pending);
2670	atomic_inc(&cp->reset_task_pending_all);
2671	schedule_work(&cp->reset_task);
2672#else
2673	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2674	schedule_work(&cp->reset_task);
2675#endif
2676}
2677
2678static inline int cas_intme(int ring, int entry)
2679{
2680	/* Algorithm: IRQ every 1/2 of descriptors. */
2681	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2682		return 1;
2683	return 0;
2684}
2685
2686
2687static void cas_write_txd(struct cas *cp, int ring, int entry,
2688			  dma_addr_t mapping, int len, u64 ctrl, int last)
2689{
2690	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2691
2692	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2693	if (cas_intme(ring, entry))
2694		ctrl |= TX_DESC_INTME;
2695	if (last)
2696		ctrl |= TX_DESC_EOF;
2697	txd->control = cpu_to_le64(ctrl);
2698	txd->buffer = cpu_to_le64(mapping);
2699}
2700
2701static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2702				const int entry)
2703{
2704	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2705}
2706
2707static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2708				     const int entry, const int tentry)
2709{
2710	cp->tx_tiny_use[ring][tentry].nbufs++;
2711	cp->tx_tiny_use[ring][entry].used = 1;
2712	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2713}
2714
2715static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2716				    struct sk_buff *skb)
2717{
2718	struct net_device *dev = cp->dev;
2719	int entry, nr_frags, frag, tabort, tentry;
2720	dma_addr_t mapping;
2721	unsigned long flags;
2722	u64 ctrl;
2723	u32 len;
2724
2725	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2726
2727	/* This is a hard error, log it. */
2728	if (TX_BUFFS_AVAIL(cp, ring) <=
2729	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2730		netif_stop_queue(dev);
2731		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2732		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2733		return 1;
2734	}
2735
2736	ctrl = 0;
2737	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2738		const u64 csum_start_off = skb_checksum_start_offset(skb);
2739		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2740
2741		ctrl =  TX_DESC_CSUM_EN |
2742			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2743			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2744	}
2745
2746	entry = cp->tx_new[ring];
2747	cp->tx_skbs[ring][entry] = skb;
2748
2749	nr_frags = skb_shinfo(skb)->nr_frags;
2750	len = skb_headlen(skb);
2751	mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2752			       offset_in_page(skb->data), len, DMA_TO_DEVICE);
2753
2754	tentry = entry;
2755	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2756	if (unlikely(tabort)) {
2757		/* NOTE: len is always >  tabort */
2758		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2759			      ctrl | TX_DESC_SOF, 0);
2760		entry = TX_DESC_NEXT(ring, entry);
2761
2762		skb_copy_from_linear_data_offset(skb, len - tabort,
2763			      tx_tiny_buf(cp, ring, entry), tabort);
2764		mapping = tx_tiny_map(cp, ring, entry, tentry);
2765		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2766			      (nr_frags == 0));
2767	} else {
2768		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2769			      TX_DESC_SOF, (nr_frags == 0));
2770	}
2771	entry = TX_DESC_NEXT(ring, entry);
2772
2773	for (frag = 0; frag < nr_frags; frag++) {
2774		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2775
2776		len = skb_frag_size(fragp);
2777		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2778					   DMA_TO_DEVICE);
2779
2780		tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2781		if (unlikely(tabort)) {
2782			/* NOTE: len is always > tabort */
2783			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2784				      ctrl, 0);
2785			entry = TX_DESC_NEXT(ring, entry);
2786			memcpy_from_page(tx_tiny_buf(cp, ring, entry),
2787					 skb_frag_page(fragp),
2788					 skb_frag_off(fragp) + len - tabort,
2789					 tabort);
2790			mapping = tx_tiny_map(cp, ring, entry, tentry);
2791			len     = tabort;
2792		}
2793
2794		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2795			      (frag + 1 == nr_frags));
2796		entry = TX_DESC_NEXT(ring, entry);
2797	}
2798
2799	cp->tx_new[ring] = entry;
2800	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2801		netif_stop_queue(dev);
2802
2803	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2804		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2805		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2806	writel(entry, cp->regs + REG_TX_KICKN(ring));
2807	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2808	return 0;
2809}
2810
2811static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2812{
2813	struct cas *cp = netdev_priv(dev);
2814
2815	/* this is only used as a load-balancing hint, so it doesn't
2816	 * need to be SMP safe
2817	 */
2818	static int ring;
2819
2820	if (skb_padto(skb, cp->min_frame_size))
2821		return NETDEV_TX_OK;
2822
2823	/* XXX: we need some higher-level QoS hooks to steer packets to
2824	 *      individual queues.
2825	 */
2826	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2827		return NETDEV_TX_BUSY;
2828	return NETDEV_TX_OK;
2829}
2830
2831static void cas_init_tx_dma(struct cas *cp)
2832{
2833	u64 desc_dma = cp->block_dvma;
2834	unsigned long off;
2835	u32 val;
2836	int i;
2837
2838	/* set up tx completion writeback registers. must be 8-byte aligned */
2839#ifdef USE_TX_COMPWB
2840	off = offsetof(struct cas_init_block, tx_compwb);
2841	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2842	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2843#endif
2844
2845	/* enable completion writebacks, enable paced mode,
2846	 * disable read pipe, and disable pre-interrupt compwbs
2847	 */
2848	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2849		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2850		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2851		TX_CFG_INTR_COMPWB_DIS;
2852
2853	/* write out tx ring info and tx desc bases */
2854	for (i = 0; i < MAX_TX_RINGS; i++) {
2855		off = (unsigned long) cp->init_txds[i] -
2856			(unsigned long) cp->init_block;
2857
2858		val |= CAS_TX_RINGN_BASE(i);
2859		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2860		writel((desc_dma + off) & 0xffffffff, cp->regs +
2861		       REG_TX_DBN_LOW(i));
2862		/* don't zero out the kick register here as the system
2863		 * will wedge
2864		 */
2865	}
2866	writel(val, cp->regs + REG_TX_CFG);
2867
2868	/* program max burst sizes. these numbers should be different
2869	 * if doing QoS.
2870	 */
2871#ifdef USE_QOS
2872	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2873	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2874	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2875	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2876#else
2877	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2878	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2879	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2880	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2881#endif
2882}
2883
2884/* Must be invoked under cp->lock. */
2885static inline void cas_init_dma(struct cas *cp)
2886{
2887	cas_init_tx_dma(cp);
2888	cas_init_rx_dma(cp);
2889}
2890
2891static void cas_process_mc_list(struct cas *cp)
2892{
2893	u16 hash_table[16];
2894	u32 crc;
2895	struct netdev_hw_addr *ha;
2896	int i = 1;
2897
2898	memset(hash_table, 0, sizeof(hash_table));
2899	netdev_for_each_mc_addr(ha, cp->dev) {
2900		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2901			/* use the alternate mac address registers for the
2902			 * first 15 multicast addresses
2903			 */
2904			writel((ha->addr[4] << 8) | ha->addr[5],
2905			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2906			writel((ha->addr[2] << 8) | ha->addr[3],
2907			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2908			writel((ha->addr[0] << 8) | ha->addr[1],
2909			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2910			i++;
2911		}
2912		else {
2913			/* use hw hash table for the next series of
2914			 * multicast addresses
2915			 */
2916			crc = ether_crc_le(ETH_ALEN, ha->addr);
2917			crc >>= 24;
2918			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2919		}
2920	}
2921	for (i = 0; i < 16; i++)
2922		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2923}
2924
2925/* Must be invoked under cp->lock. */
2926static u32 cas_setup_multicast(struct cas *cp)
2927{
2928	u32 rxcfg = 0;
2929	int i;
2930
2931	if (cp->dev->flags & IFF_PROMISC) {
2932		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2933
2934	} else if (cp->dev->flags & IFF_ALLMULTI) {
2935	    	for (i=0; i < 16; i++)
2936			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2937		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2938
2939	} else {
2940		cas_process_mc_list(cp);
2941		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2942	}
2943
2944	return rxcfg;
2945}
2946
2947/* must be invoked under cp->stat_lock[N_TX_RINGS] */
2948static void cas_clear_mac_err(struct cas *cp)
2949{
2950	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2951	writel(0, cp->regs + REG_MAC_COLL_FIRST);
2952	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2953	writel(0, cp->regs + REG_MAC_COLL_LATE);
2954	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2955	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2956	writel(0, cp->regs + REG_MAC_RECV_FRAME);
2957	writel(0, cp->regs + REG_MAC_LEN_ERR);
2958	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2959	writel(0, cp->regs + REG_MAC_FCS_ERR);
2960	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2961}
2962
2963
2964static void cas_mac_reset(struct cas *cp)
2965{
2966	int i;
2967
2968	/* do both TX and RX reset */
2969	writel(0x1, cp->regs + REG_MAC_TX_RESET);
2970	writel(0x1, cp->regs + REG_MAC_RX_RESET);
2971
2972	/* wait for TX */
2973	i = STOP_TRIES;
2974	while (i-- > 0) {
2975		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
2976			break;
2977		udelay(10);
2978	}
2979
2980	/* wait for RX */
2981	i = STOP_TRIES;
2982	while (i-- > 0) {
2983		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
2984			break;
2985		udelay(10);
2986	}
2987
2988	if (readl(cp->regs + REG_MAC_TX_RESET) |
2989	    readl(cp->regs + REG_MAC_RX_RESET))
2990		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
2991			   readl(cp->regs + REG_MAC_TX_RESET),
2992			   readl(cp->regs + REG_MAC_RX_RESET),
2993			   readl(cp->regs + REG_MAC_STATE_MACHINE));
2994}
2995
2996
2997/* Must be invoked under cp->lock. */
2998static void cas_init_mac(struct cas *cp)
2999{
3000	const unsigned char *e = &cp->dev->dev_addr[0];
3001	int i;
3002	cas_mac_reset(cp);
3003
3004	/* setup core arbitration weight register */
3005	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3006
3007#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3008	/* set the infinite burst register for chips that don't have
3009	 * pci issues.
3010	 */
3011	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3012		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3013#endif
3014
3015	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3016
3017	writel(0x00, cp->regs + REG_MAC_IPG0);
3018	writel(0x08, cp->regs + REG_MAC_IPG1);
3019	writel(0x04, cp->regs + REG_MAC_IPG2);
3020
3021	/* change later for 802.3z */
3022	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3023
3024	/* min frame + FCS */
3025	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3026
3027	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3028	 * specify the maximum frame size to prevent RX tag errors on
3029	 * oversized frames.
3030	 */
3031	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3032	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3033			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3034	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3035
3036	/* NOTE: crc_size is used as a surrogate for half-duplex.
3037	 * workaround saturn half-duplex issue by increasing preamble
3038	 * size to 65 bytes.
3039	 */
3040	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3041		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3042	else
3043		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3044	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3045	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3046	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3047
3048	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3049
3050	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3051	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3052	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3053	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3054	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3055
3056	/* setup mac address in perfect filter array */
3057	for (i = 0; i < 45; i++)
3058		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3059
3060	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3061	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3062	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3063
3064	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3065	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3066	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3067
3068	cp->mac_rx_cfg = cas_setup_multicast(cp);
3069
3070	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3071	cas_clear_mac_err(cp);
3072	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3073
3074	/* Setup MAC interrupts.  We want to get all of the interesting
3075	 * counter expiration events, but we do not want to hear about
3076	 * normal rx/tx as the DMA engine tells us that.
3077	 */
3078	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3079	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3080
3081	/* Don't enable even the PAUSE interrupts for now, we
3082	 * make no use of those events other than to record them.
3083	 */
3084	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3085}
3086
3087/* Must be invoked under cp->lock. */
3088static void cas_init_pause_thresholds(struct cas *cp)
3089{
3090	/* Calculate pause thresholds.  Setting the OFF threshold to the
3091	 * full RX fifo size effectively disables PAUSE generation
3092	 */
3093	if (cp->rx_fifo_size <= (2 * 1024)) {
3094		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3095	} else {
3096		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3097		if (max_frame * 3 > cp->rx_fifo_size) {
3098			cp->rx_pause_off = 7104;
3099			cp->rx_pause_on  = 960;
3100		} else {
3101			int off = (cp->rx_fifo_size - (max_frame * 2));
3102			int on = off - max_frame;
3103			cp->rx_pause_off = off;
3104			cp->rx_pause_on = on;
3105		}
3106	}
3107}
3108
3109static int cas_vpd_match(const void __iomem *p, const char *str)
3110{
3111	int len = strlen(str) + 1;
3112	int i;
3113
3114	for (i = 0; i < len; i++) {
3115		if (readb(p + i) != str[i])
3116			return 0;
3117	}
3118	return 1;
3119}
3120
3121
3122/* get the mac address by reading the vpd information in the rom.
3123 * also get the phy type and determine if there's an entropy generator.
3124 * NOTE: this is a bit convoluted for the following reasons:
3125 *  1) vpd info has order-dependent mac addresses for multinic cards
3126 *  2) the only way to determine the nic order is to use the slot
3127 *     number.
3128 *  3) fiber cards don't have bridges, so their slot numbers don't
3129 *     mean anything.
3130 *  4) we don't actually know we have a fiber card until after
3131 *     the mac addresses are parsed.
3132 */
3133static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3134			    const int offset)
3135{
3136	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3137	void __iomem *base, *kstart;
3138	int i, len;
3139	int found = 0;
3140#define VPD_FOUND_MAC        0x01
3141#define VPD_FOUND_PHY        0x02
3142
3143	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3144	int mac_off  = 0;
3145
3146#if defined(CONFIG_SPARC)
3147	const unsigned char *addr;
3148#endif
3149
3150	/* give us access to the PROM */
3151	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3152	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3153
3154	/* check for an expansion rom */
3155	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3156		goto use_random_mac_addr;
3157
3158	/* search for beginning of vpd */
3159	base = NULL;
3160	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3161		/* check for PCIR */
3162		if ((readb(p + i + 0) == 0x50) &&
3163		    (readb(p + i + 1) == 0x43) &&
3164		    (readb(p + i + 2) == 0x49) &&
3165		    (readb(p + i + 3) == 0x52)) {
3166			base = p + (readb(p + i + 8) |
3167				    (readb(p + i + 9) << 8));
3168			break;
3169		}
3170	}
3171
3172	if (!base || (readb(base) != 0x82))
3173		goto use_random_mac_addr;
3174
3175	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3176	while (i < EXPANSION_ROM_SIZE) {
3177		if (readb(base + i) != 0x90) /* no vpd found */
3178			goto use_random_mac_addr;
3179
3180		/* found a vpd field */
3181		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3182
3183		/* extract keywords */
3184		kstart = base + i + 3;
3185		p = kstart;
3186		while ((p - kstart) < len) {
3187			int klen = readb(p + 2);
3188			int j;
3189			char type;
3190
3191			p += 3;
3192
3193			/* look for the following things:
3194			 * -- correct length == 29
3195			 * 3 (type) + 2 (size) +
3196			 * 18 (strlen("local-mac-address") + 1) +
3197			 * 6 (mac addr)
3198			 * -- VPD Instance 'I'
3199			 * -- VPD Type Bytes 'B'
3200			 * -- VPD data length == 6
3201			 * -- property string == local-mac-address
3202			 *
3203			 * -- correct length == 24
3204			 * 3 (type) + 2 (size) +
3205			 * 12 (strlen("entropy-dev") + 1) +
3206			 * 7 (strlen("vms110") + 1)
3207			 * -- VPD Instance 'I'
3208			 * -- VPD Type String 'B'
3209			 * -- VPD data length == 7
3210			 * -- property string == entropy-dev
3211			 *
3212			 * -- correct length == 18
3213			 * 3 (type) + 2 (size) +
3214			 * 9 (strlen("phy-type") + 1) +
3215			 * 4 (strlen("pcs") + 1)
3216			 * -- VPD Instance 'I'
3217			 * -- VPD Type String 'S'
3218			 * -- VPD data length == 4
3219			 * -- property string == phy-type
3220			 *
3221			 * -- correct length == 23
3222			 * 3 (type) + 2 (size) +
3223			 * 14 (strlen("phy-interface") + 1) +
3224			 * 4 (strlen("pcs") + 1)
3225			 * -- VPD Instance 'I'
3226			 * -- VPD Type String 'S'
3227			 * -- VPD data length == 4
3228			 * -- property string == phy-interface
3229			 */
3230			if (readb(p) != 'I')
3231				goto next;
3232
3233			/* finally, check string and length */
3234			type = readb(p + 3);
3235			if (type == 'B') {
3236				if ((klen == 29) && readb(p + 4) == 6 &&
3237				    cas_vpd_match(p + 5,
3238						  "local-mac-address")) {
3239					if (mac_off++ > offset)
3240						goto next;
3241
3242					/* set mac address */
3243					for (j = 0; j < 6; j++)
3244						dev_addr[j] =
3245							readb(p + 23 + j);
3246					goto found_mac;
3247				}
3248			}
3249
3250			if (type != 'S')
3251				goto next;
3252
3253#ifdef USE_ENTROPY_DEV
3254			if ((klen == 24) &&
3255			    cas_vpd_match(p + 5, "entropy-dev") &&
3256			    cas_vpd_match(p + 17, "vms110")) {
3257				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3258				goto next;
3259			}
3260#endif
3261
3262			if (found & VPD_FOUND_PHY)
3263				goto next;
3264
3265			if ((klen == 18) && readb(p + 4) == 4 &&
3266			    cas_vpd_match(p + 5, "phy-type")) {
3267				if (cas_vpd_match(p + 14, "pcs")) {
3268					phy_type = CAS_PHY_SERDES;
3269					goto found_phy;
3270				}
3271			}
3272
3273			if ((klen == 23) && readb(p + 4) == 4 &&
3274			    cas_vpd_match(p + 5, "phy-interface")) {
3275				if (cas_vpd_match(p + 19, "pcs")) {
3276					phy_type = CAS_PHY_SERDES;
3277					goto found_phy;
3278				}
3279			}
3280found_mac:
3281			found |= VPD_FOUND_MAC;
3282			goto next;
3283
3284found_phy:
3285			found |= VPD_FOUND_PHY;
3286
3287next:
3288			p += klen;
3289		}
3290		i += len + 3;
3291	}
3292
3293use_random_mac_addr:
3294	if (found & VPD_FOUND_MAC)
3295		goto done;
3296
3297#if defined(CONFIG_SPARC)
3298	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3299	if (addr != NULL) {
3300		memcpy(dev_addr, addr, ETH_ALEN);
3301		goto done;
3302	}
3303#endif
3304
3305	/* Sun MAC prefix then 3 random bytes. */
3306	pr_info("MAC address not found in ROM VPD\n");
3307	dev_addr[0] = 0x08;
3308	dev_addr[1] = 0x00;
3309	dev_addr[2] = 0x20;
3310	get_random_bytes(dev_addr + 3, 3);
3311
3312done:
3313	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3314	return phy_type;
3315}
3316
3317/* check pci invariants */
3318static void cas_check_pci_invariants(struct cas *cp)
3319{
3320	struct pci_dev *pdev = cp->pdev;
3321
3322	cp->cas_flags = 0;
3323	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3324	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3325		if (pdev->revision >= CAS_ID_REVPLUS)
3326			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3327		if (pdev->revision < CAS_ID_REVPLUS02u)
3328			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3329
3330		/* Original Cassini supports HW CSUM, but it's not
3331		 * enabled by default as it can trigger TX hangs.
3332		 */
3333		if (pdev->revision < CAS_ID_REV2)
3334			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3335	} else {
3336		/* Only sun has original cassini chips.  */
3337		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3338
3339		/* We use a flag because the same phy might be externally
3340		 * connected.
3341		 */
3342		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3343		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3344			cp->cas_flags |= CAS_FLAG_SATURN;
3345	}
3346}
3347
3348
3349static int cas_check_invariants(struct cas *cp)
3350{
3351	struct pci_dev *pdev = cp->pdev;
3352	u8 addr[ETH_ALEN];
3353	u32 cfg;
3354	int i;
3355
3356	/* get page size for rx buffers. */
3357	cp->page_order = 0;
3358#ifdef USE_PAGE_ORDER
3359	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3360		/* see if we can allocate larger pages */
3361		struct page *page = alloc_pages(GFP_ATOMIC,
3362						CAS_JUMBO_PAGE_SHIFT -
3363						PAGE_SHIFT);
3364		if (page) {
3365			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3366			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3367		} else {
3368			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3369		}
3370	}
3371#endif
3372	cp->page_size = (PAGE_SIZE << cp->page_order);
3373
3374	/* Fetch the FIFO configurations. */
3375	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3376	cp->rx_fifo_size = RX_FIFO_SIZE;
3377
3378	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3379	 * they're both connected.
3380	 */
3381	cp->phy_type = cas_get_vpd_info(cp, addr, PCI_SLOT(pdev->devfn));
3382	eth_hw_addr_set(cp->dev, addr);
3383	if (cp->phy_type & CAS_PHY_SERDES) {
3384		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3385		return 0; /* no more checking needed */
3386	}
3387
3388	/* MII */
3389	cfg = readl(cp->regs + REG_MIF_CFG);
3390	if (cfg & MIF_CFG_MDIO_1) {
3391		cp->phy_type = CAS_PHY_MII_MDIO1;
3392	} else if (cfg & MIF_CFG_MDIO_0) {
3393		cp->phy_type = CAS_PHY_MII_MDIO0;
3394	}
3395
3396	cas_mif_poll(cp, 0);
3397	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3398
3399	for (i = 0; i < 32; i++) {
3400		u32 phy_id;
3401		int j;
3402
3403		for (j = 0; j < 3; j++) {
3404			cp->phy_addr = i;
3405			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3406			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3407			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3408				cp->phy_id = phy_id;
3409				goto done;
3410			}
3411		}
3412	}
3413	pr_err("MII phy did not respond [%08x]\n",
3414	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3415	return -1;
3416
3417done:
3418	/* see if we can do gigabit */
3419	cfg = cas_phy_read(cp, MII_BMSR);
3420	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3421	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3422		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3423	return 0;
3424}
3425
3426/* Must be invoked under cp->lock. */
3427static inline void cas_start_dma(struct cas *cp)
3428{
3429	int i;
3430	u32 val;
3431	int txfailed = 0;
3432
3433	/* enable dma */
3434	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3435	writel(val, cp->regs + REG_TX_CFG);
3436	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3437	writel(val, cp->regs + REG_RX_CFG);
3438
3439	/* enable the mac */
3440	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3441	writel(val, cp->regs + REG_MAC_TX_CFG);
3442	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3443	writel(val, cp->regs + REG_MAC_RX_CFG);
3444
3445	i = STOP_TRIES;
3446	while (i-- > 0) {
3447		val = readl(cp->regs + REG_MAC_TX_CFG);
3448		if ((val & MAC_TX_CFG_EN))
3449			break;
3450		udelay(10);
3451	}
3452	if (i < 0) txfailed = 1;
3453	i = STOP_TRIES;
3454	while (i-- > 0) {
3455		val = readl(cp->regs + REG_MAC_RX_CFG);
3456		if ((val & MAC_RX_CFG_EN)) {
3457			if (txfailed) {
3458				netdev_err(cp->dev,
3459					   "enabling mac failed [tx:%08x:%08x]\n",
3460					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3461					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3462			}
3463			goto enable_rx_done;
3464		}
3465		udelay(10);
3466	}
3467	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3468		   (txfailed ? "tx,rx" : "rx"),
3469		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3470		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3471
3472enable_rx_done:
3473	cas_unmask_intr(cp); /* enable interrupts */
3474	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3475	writel(0, cp->regs + REG_RX_COMP_TAIL);
3476
3477	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3478		if (N_RX_DESC_RINGS > 1)
3479			writel(RX_DESC_RINGN_SIZE(1) - 4,
3480			       cp->regs + REG_PLUS_RX_KICK1);
3481	}
3482}
3483
3484/* Must be invoked under cp->lock. */
3485static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3486				   int *pause)
3487{
3488	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3489	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3490	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3491	if (val & PCS_MII_LPA_ASYM_PAUSE)
3492		*pause |= 0x10;
3493	*spd = 1000;
3494}
3495
3496/* Must be invoked under cp->lock. */
3497static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3498				   int *pause)
3499{
3500	u32 val;
3501
3502	*fd = 0;
3503	*spd = 10;
3504	*pause = 0;
3505
3506	/* use GMII registers */
3507	val = cas_phy_read(cp, MII_LPA);
3508	if (val & CAS_LPA_PAUSE)
3509		*pause = 0x01;
3510
3511	if (val & CAS_LPA_ASYM_PAUSE)
3512		*pause |= 0x10;
3513
3514	if (val & LPA_DUPLEX)
3515		*fd = 1;
3516	if (val & LPA_100)
3517		*spd = 100;
3518
3519	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3520		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3521		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3522			*spd = 1000;
3523		if (val & CAS_LPA_1000FULL)
3524			*fd = 1;
3525	}
3526}
3527
3528/* A link-up condition has occurred, initialize and enable the
3529 * rest of the chip.
3530 *
3531 * Must be invoked under cp->lock.
3532 */
3533static void cas_set_link_modes(struct cas *cp)
3534{
3535	u32 val;
3536	int full_duplex, speed, pause;
3537
3538	full_duplex = 0;
3539	speed = 10;
3540	pause = 0;
3541
3542	if (CAS_PHY_MII(cp->phy_type)) {
3543		cas_mif_poll(cp, 0);
3544		val = cas_phy_read(cp, MII_BMCR);
3545		if (val & BMCR_ANENABLE) {
3546			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3547					       &pause);
3548		} else {
3549			if (val & BMCR_FULLDPLX)
3550				full_duplex = 1;
3551
3552			if (val & BMCR_SPEED100)
3553				speed = 100;
3554			else if (val & CAS_BMCR_SPEED1000)
3555				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3556					1000 : 100;
3557		}
3558		cas_mif_poll(cp, 1);
3559
3560	} else {
3561		val = readl(cp->regs + REG_PCS_MII_CTRL);
3562		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3563		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3564			if (val & PCS_MII_CTRL_DUPLEX)
3565				full_duplex = 1;
3566		}
3567	}
3568
3569	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3570		   speed, full_duplex ? "full" : "half");
3571
3572	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3573	if (CAS_PHY_MII(cp->phy_type)) {
3574		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3575		if (!full_duplex)
3576			val |= MAC_XIF_DISABLE_ECHO;
3577	}
3578	if (full_duplex)
3579		val |= MAC_XIF_FDPLX_LED;
3580	if (speed == 1000)
3581		val |= MAC_XIF_GMII_MODE;
3582	writel(val, cp->regs + REG_MAC_XIF_CFG);
3583
3584	/* deal with carrier and collision detect. */
3585	val = MAC_TX_CFG_IPG_EN;
3586	if (full_duplex) {
3587		val |= MAC_TX_CFG_IGNORE_CARRIER;
3588		val |= MAC_TX_CFG_IGNORE_COLL;
3589	} else {
3590#ifndef USE_CSMA_CD_PROTO
3591		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3592		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3593#endif
3594	}
3595	/* val now set up for REG_MAC_TX_CFG */
3596
3597	/* If gigabit and half-duplex, enable carrier extension
3598	 * mode.  increase slot time to 512 bytes as well.
3599	 * else, disable it and make sure slot time is 64 bytes.
3600	 * also activate checksum bug workaround
3601	 */
3602	if ((speed == 1000) && !full_duplex) {
3603		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3604		       cp->regs + REG_MAC_TX_CFG);
3605
3606		val = readl(cp->regs + REG_MAC_RX_CFG);
3607		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3608		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3609		       cp->regs + REG_MAC_RX_CFG);
3610
3611		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3612
3613		cp->crc_size = 4;
3614		/* minimum size gigabit frame at half duplex */
3615		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3616
3617	} else {
3618		writel(val, cp->regs + REG_MAC_TX_CFG);
3619
3620		/* checksum bug workaround. don't strip FCS when in
3621		 * half-duplex mode
3622		 */
3623		val = readl(cp->regs + REG_MAC_RX_CFG);
3624		if (full_duplex) {
3625			val |= MAC_RX_CFG_STRIP_FCS;
3626			cp->crc_size = 0;
3627			cp->min_frame_size = CAS_MIN_MTU;
3628		} else {
3629			val &= ~MAC_RX_CFG_STRIP_FCS;
3630			cp->crc_size = 4;
3631			cp->min_frame_size = CAS_MIN_FRAME;
3632		}
3633		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3634		       cp->regs + REG_MAC_RX_CFG);
3635		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3636	}
3637
3638	if (netif_msg_link(cp)) {
3639		if (pause & 0x01) {
3640			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3641				    cp->rx_fifo_size,
3642				    cp->rx_pause_off,
3643				    cp->rx_pause_on);
3644		} else if (pause & 0x10) {
3645			netdev_info(cp->dev, "TX pause enabled\n");
3646		} else {
3647			netdev_info(cp->dev, "Pause is disabled\n");
3648		}
3649	}
3650
3651	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3652	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3653	if (pause) { /* symmetric or asymmetric pause */
3654		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3655		if (pause & 0x01) { /* symmetric pause */
3656			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3657		}
3658	}
3659	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3660	cas_start_dma(cp);
3661}
3662
3663/* Must be invoked under cp->lock. */
3664static void cas_init_hw(struct cas *cp, int restart_link)
3665{
3666	if (restart_link)
3667		cas_phy_init(cp);
3668
3669	cas_init_pause_thresholds(cp);
3670	cas_init_mac(cp);
3671	cas_init_dma(cp);
3672
3673	if (restart_link) {
3674		/* Default aneg parameters */
3675		cp->timer_ticks = 0;
3676		cas_begin_auto_negotiation(cp, NULL);
3677	} else if (cp->lstate == link_up) {
3678		cas_set_link_modes(cp);
3679		netif_carrier_on(cp->dev);
3680	}
3681}
3682
3683/* Must be invoked under cp->lock. on earlier cassini boards,
3684 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3685 * let it settle out, and then restore pci state.
3686 */
3687static void cas_hard_reset(struct cas *cp)
3688{
3689	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3690	udelay(20);
3691	pci_restore_state(cp->pdev);
3692}
3693
3694
3695static void cas_global_reset(struct cas *cp, int blkflag)
3696{
3697	int limit;
3698
3699	/* issue a global reset. don't use RSTOUT. */
3700	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3701		/* For PCS, when the blkflag is set, we should set the
3702		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3703		 * the last autonegotiation from being cleared.  We'll
3704		 * need some special handling if the chip is set into a
3705		 * loopback mode.
3706		 */
3707		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3708		       cp->regs + REG_SW_RESET);
3709	} else {
3710		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3711	}
3712
3713	/* need to wait at least 3ms before polling register */
3714	mdelay(3);
3715
3716	limit = STOP_TRIES;
3717	while (limit-- > 0) {
3718		u32 val = readl(cp->regs + REG_SW_RESET);
3719		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3720			goto done;
3721		udelay(10);
3722	}
3723	netdev_err(cp->dev, "sw reset failed\n");
3724
3725done:
3726	/* enable various BIM interrupts */
3727	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3728	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3729
3730	/* clear out pci error status mask for handled errors.
3731	 * we don't deal with DMA counter overflows as they happen
3732	 * all the time.
3733	 */
3734	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3735			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3736			       PCI_ERR_BIM_DMA_READ), cp->regs +
3737	       REG_PCI_ERR_STATUS_MASK);
3738
3739	/* set up for MII by default to address mac rx reset timeout
3740	 * issue
3741	 */
3742	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3743}
3744
3745static void cas_reset(struct cas *cp, int blkflag)
3746{
3747	u32 val;
3748
3749	cas_mask_intr(cp);
3750	cas_global_reset(cp, blkflag);
3751	cas_mac_reset(cp);
3752	cas_entropy_reset(cp);
3753
3754	/* disable dma engines. */
3755	val = readl(cp->regs + REG_TX_CFG);
3756	val &= ~TX_CFG_DMA_EN;
3757	writel(val, cp->regs + REG_TX_CFG);
3758
3759	val = readl(cp->regs + REG_RX_CFG);
3760	val &= ~RX_CFG_DMA_EN;
3761	writel(val, cp->regs + REG_RX_CFG);
3762
3763	/* program header parser */
3764	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3765	    (&CAS_HP_ALT_FIRMWARE[0] == &cas_prog_null[0])) {
3766		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3767	} else {
3768		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3769	}
3770
3771	/* clear out error registers */
3772	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3773	cas_clear_mac_err(cp);
3774	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3775}
3776
3777/* Shut down the chip, must be called with pm_mutex held.  */
3778static void cas_shutdown(struct cas *cp)
3779{
3780	unsigned long flags;
3781
3782	/* Make us not-running to avoid timers respawning */
3783	cp->hw_running = 0;
3784
3785	del_timer_sync(&cp->link_timer);
3786
3787	/* Stop the reset task */
3788#if 0
3789	while (atomic_read(&cp->reset_task_pending_mtu) ||
3790	       atomic_read(&cp->reset_task_pending_spare) ||
3791	       atomic_read(&cp->reset_task_pending_all))
3792		schedule();
3793
3794#else
3795	while (atomic_read(&cp->reset_task_pending))
3796		schedule();
3797#endif
3798	/* Actually stop the chip */
3799	cas_lock_all_save(cp, flags);
3800	cas_reset(cp, 0);
3801	if (cp->cas_flags & CAS_FLAG_SATURN)
3802		cas_phy_powerdown(cp);
3803	cas_unlock_all_restore(cp, flags);
3804}
3805
3806static int cas_change_mtu(struct net_device *dev, int new_mtu)
3807{
3808	struct cas *cp = netdev_priv(dev);
3809
3810	dev->mtu = new_mtu;
3811	if (!netif_running(dev) || !netif_device_present(dev))
3812		return 0;
3813
3814	/* let the reset task handle it */
3815#if 1
3816	atomic_inc(&cp->reset_task_pending);
3817	if ((cp->phy_type & CAS_PHY_SERDES)) {
3818		atomic_inc(&cp->reset_task_pending_all);
3819	} else {
3820		atomic_inc(&cp->reset_task_pending_mtu);
3821	}
3822	schedule_work(&cp->reset_task);
3823#else
3824	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3825		   CAS_RESET_ALL : CAS_RESET_MTU);
3826	pr_err("reset called in cas_change_mtu\n");
3827	schedule_work(&cp->reset_task);
3828#endif
3829
3830	flush_work(&cp->reset_task);
3831	return 0;
3832}
3833
3834static void cas_clean_txd(struct cas *cp, int ring)
3835{
3836	struct cas_tx_desc *txd = cp->init_txds[ring];
3837	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3838	u64 daddr, dlen;
3839	int i, size;
3840
3841	size = TX_DESC_RINGN_SIZE(ring);
3842	for (i = 0; i < size; i++) {
3843		int frag;
3844
3845		if (skbs[i] == NULL)
3846			continue;
3847
3848		skb = skbs[i];
3849		skbs[i] = NULL;
3850
3851		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3852			int ent = i & (size - 1);
3853
3854			/* first buffer is never a tiny buffer and so
3855			 * needs to be unmapped.
3856			 */
3857			daddr = le64_to_cpu(txd[ent].buffer);
3858			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3859					 le64_to_cpu(txd[ent].control));
3860			dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3861				       DMA_TO_DEVICE);
3862
3863			if (frag != skb_shinfo(skb)->nr_frags) {
3864				i++;
3865
3866				/* next buffer might by a tiny buffer.
3867				 * skip past it.
3868				 */
3869				ent = i & (size - 1);
3870				if (cp->tx_tiny_use[ring][ent].used)
3871					i++;
3872			}
3873		}
3874		dev_kfree_skb_any(skb);
3875	}
3876
3877	/* zero out tiny buf usage */
3878	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3879}
3880
3881/* freed on close */
3882static inline void cas_free_rx_desc(struct cas *cp, int ring)
3883{
3884	cas_page_t **page = cp->rx_pages[ring];
3885	int i, size;
3886
3887	size = RX_DESC_RINGN_SIZE(ring);
3888	for (i = 0; i < size; i++) {
3889		if (page[i]) {
3890			cas_page_free(cp, page[i]);
3891			page[i] = NULL;
3892		}
3893	}
3894}
3895
3896static void cas_free_rxds(struct cas *cp)
3897{
3898	int i;
3899
3900	for (i = 0; i < N_RX_DESC_RINGS; i++)
3901		cas_free_rx_desc(cp, i);
3902}
3903
3904/* Must be invoked under cp->lock. */
3905static void cas_clean_rings(struct cas *cp)
3906{
3907	int i;
3908
3909	/* need to clean all tx rings */
3910	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3911	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3912	for (i = 0; i < N_TX_RINGS; i++)
3913		cas_clean_txd(cp, i);
3914
3915	/* zero out init block */
3916	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3917	cas_clean_rxds(cp);
3918	cas_clean_rxcs(cp);
3919}
3920
3921/* allocated on open */
3922static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3923{
3924	cas_page_t **page = cp->rx_pages[ring];
3925	int size, i = 0;
3926
3927	size = RX_DESC_RINGN_SIZE(ring);
3928	for (i = 0; i < size; i++) {
3929		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3930			return -1;
3931	}
3932	return 0;
3933}
3934
3935static int cas_alloc_rxds(struct cas *cp)
3936{
3937	int i;
3938
3939	for (i = 0; i < N_RX_DESC_RINGS; i++) {
3940		if (cas_alloc_rx_desc(cp, i) < 0) {
3941			cas_free_rxds(cp);
3942			return -1;
3943		}
3944	}
3945	return 0;
3946}
3947
3948static void cas_reset_task(struct work_struct *work)
3949{
3950	struct cas *cp = container_of(work, struct cas, reset_task);
3951#if 0
3952	int pending = atomic_read(&cp->reset_task_pending);
3953#else
3954	int pending_all = atomic_read(&cp->reset_task_pending_all);
3955	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3956	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3957
3958	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3959		/* We can have more tasks scheduled than actually
3960		 * needed.
3961		 */
3962		atomic_dec(&cp->reset_task_pending);
3963		return;
3964	}
3965#endif
3966	/* The link went down, we reset the ring, but keep
3967	 * DMA stopped. Use this function for reset
3968	 * on error as well.
3969	 */
3970	if (cp->hw_running) {
3971		unsigned long flags;
3972
3973		/* Make sure we don't get interrupts or tx packets */
3974		netif_device_detach(cp->dev);
3975		cas_lock_all_save(cp, flags);
3976
3977		if (cp->opened) {
3978			/* We call cas_spare_recover when we call cas_open.
3979			 * but we do not initialize the lists cas_spare_recover
3980			 * uses until cas_open is called.
3981			 */
3982			cas_spare_recover(cp, GFP_ATOMIC);
3983		}
3984#if 1
3985		/* test => only pending_spare set */
3986		if (!pending_all && !pending_mtu)
3987			goto done;
3988#else
3989		if (pending == CAS_RESET_SPARE)
3990			goto done;
3991#endif
3992		/* when pending == CAS_RESET_ALL, the following
3993		 * call to cas_init_hw will restart auto negotiation.
3994		 * Setting the second argument of cas_reset to
3995		 * !(pending == CAS_RESET_ALL) will set this argument
3996		 * to 1 (avoiding reinitializing the PHY for the normal
3997		 * PCS case) when auto negotiation is not restarted.
3998		 */
3999#if 1
4000		cas_reset(cp, !(pending_all > 0));
4001		if (cp->opened)
4002			cas_clean_rings(cp);
4003		cas_init_hw(cp, (pending_all > 0));
4004#else
4005		cas_reset(cp, !(pending == CAS_RESET_ALL));
4006		if (cp->opened)
4007			cas_clean_rings(cp);
4008		cas_init_hw(cp, pending == CAS_RESET_ALL);
4009#endif
4010
4011done:
4012		cas_unlock_all_restore(cp, flags);
4013		netif_device_attach(cp->dev);
4014	}
4015#if 1
4016	atomic_sub(pending_all, &cp->reset_task_pending_all);
4017	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4018	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4019	atomic_dec(&cp->reset_task_pending);
4020#else
4021	atomic_set(&cp->reset_task_pending, 0);
4022#endif
4023}
4024
4025static void cas_link_timer(struct timer_list *t)
4026{
4027	struct cas *cp = from_timer(cp, t, link_timer);
4028	int mask, pending = 0, reset = 0;
4029	unsigned long flags;
4030
4031	if (link_transition_timeout != 0 &&
4032	    cp->link_transition_jiffies_valid &&
4033	    time_is_before_jiffies(cp->link_transition_jiffies +
4034	      link_transition_timeout)) {
4035		/* One-second counter so link-down workaround doesn't
4036		 * cause resets to occur so fast as to fool the switch
4037		 * into thinking the link is down.
4038		 */
4039		cp->link_transition_jiffies_valid = 0;
4040	}
4041
4042	if (!cp->hw_running)
4043		return;
4044
4045	spin_lock_irqsave(&cp->lock, flags);
4046	cas_lock_tx(cp);
4047	cas_entropy_gather(cp);
4048
4049	/* If the link task is still pending, we just
4050	 * reschedule the link timer
4051	 */
4052#if 1
4053	if (atomic_read(&cp->reset_task_pending_all) ||
4054	    atomic_read(&cp->reset_task_pending_spare) ||
4055	    atomic_read(&cp->reset_task_pending_mtu))
4056		goto done;
4057#else
4058	if (atomic_read(&cp->reset_task_pending))
4059		goto done;
4060#endif
4061
4062	/* check for rx cleaning */
4063	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4064		int i, rmask;
4065
4066		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4067			rmask = CAS_FLAG_RXD_POST(i);
4068			if ((mask & rmask) == 0)
4069				continue;
4070
4071			/* post_rxds will do a mod_timer */
4072			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4073				pending = 1;
4074				continue;
4075			}
4076			cp->cas_flags &= ~rmask;
4077		}
4078	}
4079
4080	if (CAS_PHY_MII(cp->phy_type)) {
4081		u16 bmsr;
4082		cas_mif_poll(cp, 0);
4083		bmsr = cas_phy_read(cp, MII_BMSR);
4084		/* WTZ: Solaris driver reads this twice, but that
4085		 * may be due to the PCS case and the use of a
4086		 * common implementation. Read it twice here to be
4087		 * safe.
4088		 */
4089		bmsr = cas_phy_read(cp, MII_BMSR);
4090		cas_mif_poll(cp, 1);
4091		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4092		reset = cas_mii_link_check(cp, bmsr);
4093	} else {
4094		reset = cas_pcs_link_check(cp);
4095	}
4096
4097	if (reset)
4098		goto done;
4099
4100	/* check for tx state machine confusion */
4101	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4102		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4103		u32 wptr, rptr;
4104		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4105
4106		if (((tlm == 0x5) || (tlm == 0x3)) &&
4107		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4108			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4109				     "tx err: MAC_STATE[%08x]\n", val);
4110			reset = 1;
4111			goto done;
4112		}
4113
4114		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4115		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4116		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4117		if ((val == 0) && (wptr != rptr)) {
4118			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4119				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4120				     val, wptr, rptr);
4121			reset = 1;
4122		}
4123
4124		if (reset)
4125			cas_hard_reset(cp);
4126	}
4127
4128done:
4129	if (reset) {
4130#if 1
4131		atomic_inc(&cp->reset_task_pending);
4132		atomic_inc(&cp->reset_task_pending_all);
4133		schedule_work(&cp->reset_task);
4134#else
4135		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4136		pr_err("reset called in cas_link_timer\n");
4137		schedule_work(&cp->reset_task);
4138#endif
4139	}
4140
4141	if (!pending)
4142		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4143	cas_unlock_tx(cp);
4144	spin_unlock_irqrestore(&cp->lock, flags);
4145}
4146
4147/* tiny buffers are used to avoid target abort issues with
4148 * older cassini's
4149 */
4150static void cas_tx_tiny_free(struct cas *cp)
4151{
4152	struct pci_dev *pdev = cp->pdev;
4153	int i;
4154
4155	for (i = 0; i < N_TX_RINGS; i++) {
4156		if (!cp->tx_tiny_bufs[i])
4157			continue;
4158
4159		dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4160				  cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
4161		cp->tx_tiny_bufs[i] = NULL;
4162	}
4163}
4164
4165static int cas_tx_tiny_alloc(struct cas *cp)
4166{
4167	struct pci_dev *pdev = cp->pdev;
4168	int i;
4169
4170	for (i = 0; i < N_TX_RINGS; i++) {
4171		cp->tx_tiny_bufs[i] =
4172			dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4173					   &cp->tx_tiny_dvma[i], GFP_KERNEL);
4174		if (!cp->tx_tiny_bufs[i]) {
4175			cas_tx_tiny_free(cp);
4176			return -1;
4177		}
4178	}
4179	return 0;
4180}
4181
4182
4183static int cas_open(struct net_device *dev)
4184{
4185	struct cas *cp = netdev_priv(dev);
4186	int hw_was_up, err;
4187	unsigned long flags;
4188
4189	mutex_lock(&cp->pm_mutex);
4190
4191	hw_was_up = cp->hw_running;
4192
4193	/* The power-management mutex protects the hw_running
4194	 * etc. state so it is safe to do this bit without cp->lock
4195	 */
4196	if (!cp->hw_running) {
4197		/* Reset the chip */
4198		cas_lock_all_save(cp, flags);
4199		/* We set the second arg to cas_reset to zero
4200		 * because cas_init_hw below will have its second
4201		 * argument set to non-zero, which will force
4202		 * autonegotiation to start.
4203		 */
4204		cas_reset(cp, 0);
4205		cp->hw_running = 1;
4206		cas_unlock_all_restore(cp, flags);
4207	}
4208
4209	err = -ENOMEM;
4210	if (cas_tx_tiny_alloc(cp) < 0)
4211		goto err_unlock;
4212
4213	/* alloc rx descriptors */
4214	if (cas_alloc_rxds(cp) < 0)
4215		goto err_tx_tiny;
4216
4217	/* allocate spares */
4218	cas_spare_init(cp);
4219	cas_spare_recover(cp, GFP_KERNEL);
4220
4221	/* We can now request the interrupt as we know it's masked
4222	 * on the controller. cassini+ has up to 4 interrupts
4223	 * that can be used, but you need to do explicit pci interrupt
4224	 * mapping to expose them
4225	 */
4226	if (request_irq(cp->pdev->irq, cas_interrupt,
4227			IRQF_SHARED, dev->name, (void *) dev)) {
4228		netdev_err(cp->dev, "failed to request irq !\n");
4229		err = -EAGAIN;
4230		goto err_spare;
4231	}
4232
4233#ifdef USE_NAPI
4234	napi_enable(&cp->napi);
4235#endif
4236	/* init hw */
4237	cas_lock_all_save(cp, flags);
4238	cas_clean_rings(cp);
4239	cas_init_hw(cp, !hw_was_up);
4240	cp->opened = 1;
4241	cas_unlock_all_restore(cp, flags);
4242
4243	netif_start_queue(dev);
4244	mutex_unlock(&cp->pm_mutex);
4245	return 0;
4246
4247err_spare:
4248	cas_spare_free(cp);
4249	cas_free_rxds(cp);
4250err_tx_tiny:
4251	cas_tx_tiny_free(cp);
4252err_unlock:
4253	mutex_unlock(&cp->pm_mutex);
4254	return err;
4255}
4256
4257static int cas_close(struct net_device *dev)
4258{
4259	unsigned long flags;
4260	struct cas *cp = netdev_priv(dev);
4261
4262#ifdef USE_NAPI
4263	napi_disable(&cp->napi);
4264#endif
4265	/* Make sure we don't get distracted by suspend/resume */
4266	mutex_lock(&cp->pm_mutex);
4267
4268	netif_stop_queue(dev);
4269
4270	/* Stop traffic, mark us closed */
4271	cas_lock_all_save(cp, flags);
4272	cp->opened = 0;
4273	cas_reset(cp, 0);
4274	cas_phy_init(cp);
4275	cas_begin_auto_negotiation(cp, NULL);
4276	cas_clean_rings(cp);
4277	cas_unlock_all_restore(cp, flags);
4278
4279	free_irq(cp->pdev->irq, (void *) dev);
4280	cas_spare_free(cp);
4281	cas_free_rxds(cp);
4282	cas_tx_tiny_free(cp);
4283	mutex_unlock(&cp->pm_mutex);
4284	return 0;
4285}
4286
4287static struct {
4288	const char name[ETH_GSTRING_LEN];
4289} ethtool_cassini_statnames[] = {
4290	{"collisions"},
4291	{"rx_bytes"},
4292	{"rx_crc_errors"},
4293	{"rx_dropped"},
4294	{"rx_errors"},
4295	{"rx_fifo_errors"},
4296	{"rx_frame_errors"},
4297	{"rx_length_errors"},
4298	{"rx_over_errors"},
4299	{"rx_packets"},
4300	{"tx_aborted_errors"},
4301	{"tx_bytes"},
4302	{"tx_dropped"},
4303	{"tx_errors"},
4304	{"tx_fifo_errors"},
4305	{"tx_packets"}
4306};
4307#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4308
4309static struct {
4310	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4311} ethtool_register_table[] = {
4312	{-MII_BMSR},
4313	{-MII_BMCR},
4314	{REG_CAWR},
4315	{REG_INF_BURST},
4316	{REG_BIM_CFG},
4317	{REG_RX_CFG},
4318	{REG_HP_CFG},
4319	{REG_MAC_TX_CFG},
4320	{REG_MAC_RX_CFG},
4321	{REG_MAC_CTRL_CFG},
4322	{REG_MAC_XIF_CFG},
4323	{REG_MIF_CFG},
4324	{REG_PCS_CFG},
4325	{REG_SATURN_PCFG},
4326	{REG_PCS_MII_STATUS},
4327	{REG_PCS_STATE_MACHINE},
4328	{REG_MAC_COLL_EXCESS},
4329	{REG_MAC_COLL_LATE}
4330};
4331#define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4332#define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4333
4334static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4335{
4336	u8 *p;
4337	int i;
4338	unsigned long flags;
4339
4340	spin_lock_irqsave(&cp->lock, flags);
4341	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4342		u16 hval;
4343		u32 val;
4344		if (ethtool_register_table[i].offsets < 0) {
4345			hval = cas_phy_read(cp,
4346				    -ethtool_register_table[i].offsets);
4347			val = hval;
4348		} else {
4349			val= readl(cp->regs+ethtool_register_table[i].offsets);
4350		}
4351		memcpy(p, (u8 *)&val, sizeof(u32));
4352	}
4353	spin_unlock_irqrestore(&cp->lock, flags);
4354}
4355
4356static struct net_device_stats *cas_get_stats(struct net_device *dev)
4357{
4358	struct cas *cp = netdev_priv(dev);
4359	struct net_device_stats *stats = cp->net_stats;
4360	unsigned long flags;
4361	int i;
4362	unsigned long tmp;
4363
4364	/* we collate all of the stats into net_stats[N_TX_RING] */
4365	if (!cp->hw_running)
4366		return stats + N_TX_RINGS;
4367
4368	/* collect outstanding stats */
4369	/* WTZ: the Cassini spec gives these as 16 bit counters but
4370	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4371	 * in case the chip somehow puts any garbage in the other bits.
4372	 * Also, counter usage didn't seem to mach what Adrian did
4373	 * in the parts of the code that set these quantities. Made
4374	 * that consistent.
4375	 */
4376	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4377	stats[N_TX_RINGS].rx_crc_errors +=
4378	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4379	stats[N_TX_RINGS].rx_frame_errors +=
4380		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4381	stats[N_TX_RINGS].rx_length_errors +=
4382		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4383#if 1
4384	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4385		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4386	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4387	stats[N_TX_RINGS].collisions +=
4388	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4389#else
4390	stats[N_TX_RINGS].tx_aborted_errors +=
4391		readl(cp->regs + REG_MAC_COLL_EXCESS);
4392	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4393		readl(cp->regs + REG_MAC_COLL_LATE);
4394#endif
4395	cas_clear_mac_err(cp);
4396
4397	/* saved bits that are unique to ring 0 */
4398	spin_lock(&cp->stat_lock[0]);
4399	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4400	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4401	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4402	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4403	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4404	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4405	spin_unlock(&cp->stat_lock[0]);
4406
4407	for (i = 0; i < N_TX_RINGS; i++) {
4408		spin_lock(&cp->stat_lock[i]);
4409		stats[N_TX_RINGS].rx_length_errors +=
4410			stats[i].rx_length_errors;
4411		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4412		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4413		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4414		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4415		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4416		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4417		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4418		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4419		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4420		memset(stats + i, 0, sizeof(struct net_device_stats));
4421		spin_unlock(&cp->stat_lock[i]);
4422	}
4423	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4424	return stats + N_TX_RINGS;
4425}
4426
4427
4428static void cas_set_multicast(struct net_device *dev)
4429{
4430	struct cas *cp = netdev_priv(dev);
4431	u32 rxcfg, rxcfg_new;
4432	unsigned long flags;
4433	int limit = STOP_TRIES;
4434
4435	if (!cp->hw_running)
4436		return;
4437
4438	spin_lock_irqsave(&cp->lock, flags);
4439	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4440
4441	/* disable RX MAC and wait for completion */
4442	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4443	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4444		if (!limit--)
4445			break;
4446		udelay(10);
4447	}
4448
4449	/* disable hash filter and wait for completion */
4450	limit = STOP_TRIES;
4451	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4452	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4453	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4454		if (!limit--)
4455			break;
4456		udelay(10);
4457	}
4458
4459	/* program hash filters */
4460	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4461	rxcfg |= rxcfg_new;
4462	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4463	spin_unlock_irqrestore(&cp->lock, flags);
4464}
4465
4466static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4467{
4468	struct cas *cp = netdev_priv(dev);
4469	strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4470	strscpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4471	strscpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4472}
4473
4474static int cas_get_link_ksettings(struct net_device *dev,
4475				  struct ethtool_link_ksettings *cmd)
4476{
4477	struct cas *cp = netdev_priv(dev);
4478	u16 bmcr;
4479	int full_duplex, speed, pause;
4480	unsigned long flags;
4481	enum link_state linkstate = link_up;
4482	u32 supported, advertising;
4483
4484	advertising = 0;
4485	supported = SUPPORTED_Autoneg;
4486	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4487		supported |= SUPPORTED_1000baseT_Full;
4488		advertising |= ADVERTISED_1000baseT_Full;
4489	}
4490
4491	/* Record PHY settings if HW is on. */
4492	spin_lock_irqsave(&cp->lock, flags);
4493	bmcr = 0;
4494	linkstate = cp->lstate;
4495	if (CAS_PHY_MII(cp->phy_type)) {
4496		cmd->base.port = PORT_MII;
4497		cmd->base.phy_address = cp->phy_addr;
4498		advertising |= ADVERTISED_TP | ADVERTISED_MII |
4499			ADVERTISED_10baseT_Half |
4500			ADVERTISED_10baseT_Full |
4501			ADVERTISED_100baseT_Half |
4502			ADVERTISED_100baseT_Full;
4503
4504		supported |=
4505			(SUPPORTED_10baseT_Half |
4506			 SUPPORTED_10baseT_Full |
4507			 SUPPORTED_100baseT_Half |
4508			 SUPPORTED_100baseT_Full |
4509			 SUPPORTED_TP | SUPPORTED_MII);
4510
4511		if (cp->hw_running) {
4512			cas_mif_poll(cp, 0);
4513			bmcr = cas_phy_read(cp, MII_BMCR);
4514			cas_read_mii_link_mode(cp, &full_duplex,
4515					       &speed, &pause);
4516			cas_mif_poll(cp, 1);
4517		}
4518
4519	} else {
4520		cmd->base.port = PORT_FIBRE;
4521		cmd->base.phy_address = 0;
4522		supported   |= SUPPORTED_FIBRE;
4523		advertising |= ADVERTISED_FIBRE;
4524
4525		if (cp->hw_running) {
4526			/* pcs uses the same bits as mii */
4527			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4528			cas_read_pcs_link_mode(cp, &full_duplex,
4529					       &speed, &pause);
4530		}
4531	}
4532	spin_unlock_irqrestore(&cp->lock, flags);
4533
4534	if (bmcr & BMCR_ANENABLE) {
4535		advertising |= ADVERTISED_Autoneg;
4536		cmd->base.autoneg = AUTONEG_ENABLE;
4537		cmd->base.speed =  ((speed == 10) ?
4538					    SPEED_10 :
4539					    ((speed == 1000) ?
4540					     SPEED_1000 : SPEED_100));
4541		cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4542	} else {
4543		cmd->base.autoneg = AUTONEG_DISABLE;
4544		cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4545					    SPEED_1000 :
4546					    ((bmcr & BMCR_SPEED100) ?
4547					     SPEED_100 : SPEED_10));
4548		cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4549			DUPLEX_FULL : DUPLEX_HALF;
4550	}
4551	if (linkstate != link_up) {
4552		/* Force these to "unknown" if the link is not up and
4553		 * autonogotiation in enabled. We can set the link
4554		 * speed to 0, but not cmd->duplex,
4555		 * because its legal values are 0 and 1.  Ethtool will
4556		 * print the value reported in parentheses after the
4557		 * word "Unknown" for unrecognized values.
4558		 *
4559		 * If in forced mode, we report the speed and duplex
4560		 * settings that we configured.
4561		 */
4562		if (cp->link_cntl & BMCR_ANENABLE) {
4563			cmd->base.speed = 0;
4564			cmd->base.duplex = 0xff;
4565		} else {
4566			cmd->base.speed = SPEED_10;
4567			if (cp->link_cntl & BMCR_SPEED100) {
4568				cmd->base.speed = SPEED_100;
4569			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4570				cmd->base.speed = SPEED_1000;
4571			}
4572			cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4573				DUPLEX_FULL : DUPLEX_HALF;
4574		}
4575	}
4576
4577	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4578						supported);
4579	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4580						advertising);
4581
4582	return 0;
4583}
4584
4585static int cas_set_link_ksettings(struct net_device *dev,
4586				  const struct ethtool_link_ksettings *cmd)
4587{
4588	struct cas *cp = netdev_priv(dev);
4589	unsigned long flags;
4590	u32 speed = cmd->base.speed;
4591
4592	/* Verify the settings we care about. */
4593	if (cmd->base.autoneg != AUTONEG_ENABLE &&
4594	    cmd->base.autoneg != AUTONEG_DISABLE)
4595		return -EINVAL;
4596
4597	if (cmd->base.autoneg == AUTONEG_DISABLE &&
4598	    ((speed != SPEED_1000 &&
4599	      speed != SPEED_100 &&
4600	      speed != SPEED_10) ||
4601	     (cmd->base.duplex != DUPLEX_HALF &&
4602	      cmd->base.duplex != DUPLEX_FULL)))
4603		return -EINVAL;
4604
4605	/* Apply settings and restart link process. */
4606	spin_lock_irqsave(&cp->lock, flags);
4607	cas_begin_auto_negotiation(cp, cmd);
4608	spin_unlock_irqrestore(&cp->lock, flags);
4609	return 0;
4610}
4611
4612static int cas_nway_reset(struct net_device *dev)
4613{
4614	struct cas *cp = netdev_priv(dev);
4615	unsigned long flags;
4616
4617	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4618		return -EINVAL;
4619
4620	/* Restart link process. */
4621	spin_lock_irqsave(&cp->lock, flags);
4622	cas_begin_auto_negotiation(cp, NULL);
4623	spin_unlock_irqrestore(&cp->lock, flags);
4624
4625	return 0;
4626}
4627
4628static u32 cas_get_link(struct net_device *dev)
4629{
4630	struct cas *cp = netdev_priv(dev);
4631	return cp->lstate == link_up;
4632}
4633
4634static u32 cas_get_msglevel(struct net_device *dev)
4635{
4636	struct cas *cp = netdev_priv(dev);
4637	return cp->msg_enable;
4638}
4639
4640static void cas_set_msglevel(struct net_device *dev, u32 value)
4641{
4642	struct cas *cp = netdev_priv(dev);
4643	cp->msg_enable = value;
4644}
4645
4646static int cas_get_regs_len(struct net_device *dev)
4647{
4648	struct cas *cp = netdev_priv(dev);
4649	return min_t(int, cp->casreg_len, CAS_MAX_REGS);
4650}
4651
4652static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4653			     void *p)
4654{
4655	struct cas *cp = netdev_priv(dev);
4656	regs->version = 0;
4657	/* cas_read_regs handles locks (cp->lock).  */
4658	cas_read_regs(cp, p, regs->len / sizeof(u32));
4659}
4660
4661static int cas_get_sset_count(struct net_device *dev, int sset)
4662{
4663	switch (sset) {
4664	case ETH_SS_STATS:
4665		return CAS_NUM_STAT_KEYS;
4666	default:
4667		return -EOPNOTSUPP;
4668	}
4669}
4670
4671static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4672{
4673	 memcpy(data, &ethtool_cassini_statnames,
4674					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4675}
4676
4677static void cas_get_ethtool_stats(struct net_device *dev,
4678				      struct ethtool_stats *estats, u64 *data)
4679{
4680	struct cas *cp = netdev_priv(dev);
4681	struct net_device_stats *stats = cas_get_stats(cp->dev);
4682	int i = 0;
4683	data[i++] = stats->collisions;
4684	data[i++] = stats->rx_bytes;
4685	data[i++] = stats->rx_crc_errors;
4686	data[i++] = stats->rx_dropped;
4687	data[i++] = stats->rx_errors;
4688	data[i++] = stats->rx_fifo_errors;
4689	data[i++] = stats->rx_frame_errors;
4690	data[i++] = stats->rx_length_errors;
4691	data[i++] = stats->rx_over_errors;
4692	data[i++] = stats->rx_packets;
4693	data[i++] = stats->tx_aborted_errors;
4694	data[i++] = stats->tx_bytes;
4695	data[i++] = stats->tx_dropped;
4696	data[i++] = stats->tx_errors;
4697	data[i++] = stats->tx_fifo_errors;
4698	data[i++] = stats->tx_packets;
4699	BUG_ON(i != CAS_NUM_STAT_KEYS);
4700}
4701
4702static const struct ethtool_ops cas_ethtool_ops = {
4703	.get_drvinfo		= cas_get_drvinfo,
4704	.nway_reset		= cas_nway_reset,
4705	.get_link		= cas_get_link,
4706	.get_msglevel		= cas_get_msglevel,
4707	.set_msglevel		= cas_set_msglevel,
4708	.get_regs_len		= cas_get_regs_len,
4709	.get_regs		= cas_get_regs,
4710	.get_sset_count		= cas_get_sset_count,
4711	.get_strings		= cas_get_strings,
4712	.get_ethtool_stats	= cas_get_ethtool_stats,
4713	.get_link_ksettings	= cas_get_link_ksettings,
4714	.set_link_ksettings	= cas_set_link_ksettings,
4715};
4716
4717static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4718{
4719	struct cas *cp = netdev_priv(dev);
4720	struct mii_ioctl_data *data = if_mii(ifr);
4721	unsigned long flags;
4722	int rc = -EOPNOTSUPP;
4723
4724	/* Hold the PM mutex while doing ioctl's or we may collide
4725	 * with open/close and power management and oops.
4726	 */
4727	mutex_lock(&cp->pm_mutex);
4728	switch (cmd) {
4729	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4730		data->phy_id = cp->phy_addr;
4731		fallthrough;
4732
4733	case SIOCGMIIREG:		/* Read MII PHY register. */
4734		spin_lock_irqsave(&cp->lock, flags);
4735		cas_mif_poll(cp, 0);
4736		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4737		cas_mif_poll(cp, 1);
4738		spin_unlock_irqrestore(&cp->lock, flags);
4739		rc = 0;
4740		break;
4741
4742	case SIOCSMIIREG:		/* Write MII PHY register. */
4743		spin_lock_irqsave(&cp->lock, flags);
4744		cas_mif_poll(cp, 0);
4745		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4746		cas_mif_poll(cp, 1);
4747		spin_unlock_irqrestore(&cp->lock, flags);
4748		break;
4749	default:
4750		break;
4751	}
4752
4753	mutex_unlock(&cp->pm_mutex);
4754	return rc;
4755}
4756
4757/* When this chip sits underneath an Intel 31154 bridge, it is the
4758 * only subordinate device and we can tweak the bridge settings to
4759 * reflect that fact.
4760 */
4761static void cas_program_bridge(struct pci_dev *cas_pdev)
4762{
4763	struct pci_dev *pdev = cas_pdev->bus->self;
4764	u32 val;
4765
4766	if (!pdev)
4767		return;
4768
4769	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4770		return;
4771
4772	/* Clear bit 10 (Bus Parking Control) in the Secondary
4773	 * Arbiter Control/Status Register which lives at offset
4774	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4775	 * is much simpler so that's how we do this.
4776	 */
4777	pci_read_config_dword(pdev, 0x40, &val);
4778	val &= ~0x00040000;
4779	pci_write_config_dword(pdev, 0x40, val);
4780
4781	/* Max out the Multi-Transaction Timer settings since
4782	 * Cassini is the only device present.
4783	 *
4784	 * The register is 16-bit and lives at 0x50.  When the
4785	 * settings are enabled, it extends the GRANT# signal
4786	 * for a requestor after a transaction is complete.  This
4787	 * allows the next request to run without first needing
4788	 * to negotiate the GRANT# signal back.
4789	 *
4790	 * Bits 12:10 define the grant duration:
4791	 *
4792	 *	1	--	16 clocks
4793	 *	2	--	32 clocks
4794	 *	3	--	64 clocks
4795	 *	4	--	128 clocks
4796	 *	5	--	256 clocks
4797	 *
4798	 * All other values are illegal.
4799	 *
4800	 * Bits 09:00 define which REQ/GNT signal pairs get the
4801	 * GRANT# signal treatment.  We set them all.
4802	 */
4803	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4804
4805	/* The Read Prefecth Policy register is 16-bit and sits at
4806	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4807	 * enable it and max out all of the settings since only one
4808	 * device is sitting underneath and thus bandwidth sharing is
4809	 * not an issue.
4810	 *
4811	 * The register has several 3 bit fields, which indicates a
4812	 * multiplier applied to the base amount of prefetching the
4813	 * chip would do.  These fields are at:
4814	 *
4815	 *	15:13	---	ReRead Primary Bus
4816	 *	12:10	---	FirstRead Primary Bus
4817	 *	09:07	---	ReRead Secondary Bus
4818	 *	06:04	---	FirstRead Secondary Bus
4819	 *
4820	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4821	 * get enabled on.  Bit 3 is a grouped enabler which controls
4822	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4823	 * the individual REQ/GNT pairs [2:0].
4824	 */
4825	pci_write_config_word(pdev, 0x52,
4826			      (0x7 << 13) |
4827			      (0x7 << 10) |
4828			      (0x7 <<  7) |
4829			      (0x7 <<  4) |
4830			      (0xf <<  0));
4831
4832	/* Force cacheline size to 0x8 */
4833	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4834
4835	/* Force latency timer to maximum setting so Cassini can
4836	 * sit on the bus as long as it likes.
4837	 */
4838	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4839}
4840
4841static const struct net_device_ops cas_netdev_ops = {
4842	.ndo_open		= cas_open,
4843	.ndo_stop		= cas_close,
4844	.ndo_start_xmit		= cas_start_xmit,
4845	.ndo_get_stats 		= cas_get_stats,
4846	.ndo_set_rx_mode	= cas_set_multicast,
4847	.ndo_eth_ioctl		= cas_ioctl,
4848	.ndo_tx_timeout		= cas_tx_timeout,
4849	.ndo_change_mtu		= cas_change_mtu,
4850	.ndo_set_mac_address	= eth_mac_addr,
4851	.ndo_validate_addr	= eth_validate_addr,
4852#ifdef CONFIG_NET_POLL_CONTROLLER
4853	.ndo_poll_controller	= cas_netpoll,
4854#endif
4855};
4856
4857static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4858{
4859	static int cas_version_printed = 0;
4860	unsigned long casreg_len;
4861	struct net_device *dev;
4862	struct cas *cp;
4863	u16 pci_cmd;
4864	int i, err;
4865	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4866
4867	if (cas_version_printed++ == 0)
4868		pr_info("%s", version);
4869
4870	err = pci_enable_device(pdev);
4871	if (err) {
4872		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4873		return err;
4874	}
4875
4876	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4877		dev_err(&pdev->dev, "Cannot find proper PCI device "
4878		       "base address, aborting\n");
4879		err = -ENODEV;
4880		goto err_out_disable_pdev;
4881	}
4882
4883	dev = alloc_etherdev(sizeof(*cp));
4884	if (!dev) {
4885		err = -ENOMEM;
4886		goto err_out_disable_pdev;
4887	}
4888	SET_NETDEV_DEV(dev, &pdev->dev);
4889
4890	err = pci_request_regions(pdev, dev->name);
4891	if (err) {
4892		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4893		goto err_out_free_netdev;
4894	}
4895	pci_set_master(pdev);
4896
4897	/* we must always turn on parity response or else parity
4898	 * doesn't get generated properly. disable SERR/PERR as well.
4899	 * in addition, we want to turn MWI on.
4900	 */
4901	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4902	pci_cmd &= ~PCI_COMMAND_SERR;
4903	pci_cmd |= PCI_COMMAND_PARITY;
4904	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4905	if (pci_try_set_mwi(pdev))
4906		pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4907
4908	cas_program_bridge(pdev);
4909
4910	/*
4911	 * On some architectures, the default cache line size set
4912	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4913	 * it for this case.  To start, we'll print some configuration
4914	 * data.
4915	 */
4916#if 1
4917	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4918			     &orig_cacheline_size);
4919	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4920		cas_cacheline_size =
4921			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4922			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4923		if (pci_write_config_byte(pdev,
4924					  PCI_CACHE_LINE_SIZE,
4925					  cas_cacheline_size)) {
4926			dev_err(&pdev->dev, "Could not set PCI cache "
4927			       "line size\n");
4928			goto err_out_free_res;
4929		}
4930	}
4931#endif
4932
4933
4934	/* Configure DMA attributes. */
4935	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4936	if (err) {
4937		dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4938		goto err_out_free_res;
4939	}
4940
4941	casreg_len = pci_resource_len(pdev, 0);
4942
4943	cp = netdev_priv(dev);
4944	cp->pdev = pdev;
4945#if 1
4946	/* A value of 0 indicates we never explicitly set it */
4947	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4948#endif
4949	cp->dev = dev;
4950	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4951	  cassini_debug;
4952
4953#if defined(CONFIG_SPARC)
4954	cp->of_node = pci_device_to_OF_node(pdev);
4955#endif
4956
4957	cp->link_transition = LINK_TRANSITION_UNKNOWN;
4958	cp->link_transition_jiffies_valid = 0;
4959
4960	spin_lock_init(&cp->lock);
4961	spin_lock_init(&cp->rx_inuse_lock);
4962	spin_lock_init(&cp->rx_spare_lock);
4963	for (i = 0; i < N_TX_RINGS; i++) {
4964		spin_lock_init(&cp->stat_lock[i]);
4965		spin_lock_init(&cp->tx_lock[i]);
4966	}
4967	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4968	mutex_init(&cp->pm_mutex);
4969
4970	timer_setup(&cp->link_timer, cas_link_timer, 0);
4971
4972#if 1
4973	/* Just in case the implementation of atomic operations
4974	 * change so that an explicit initialization is necessary.
4975	 */
4976	atomic_set(&cp->reset_task_pending, 0);
4977	atomic_set(&cp->reset_task_pending_all, 0);
4978	atomic_set(&cp->reset_task_pending_spare, 0);
4979	atomic_set(&cp->reset_task_pending_mtu, 0);
4980#endif
4981	INIT_WORK(&cp->reset_task, cas_reset_task);
4982
4983	/* Default link parameters */
4984	if (link_mode >= 0 && link_mode < 6)
4985		cp->link_cntl = link_modes[link_mode];
4986	else
4987		cp->link_cntl = BMCR_ANENABLE;
4988	cp->lstate = link_down;
4989	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
4990	netif_carrier_off(cp->dev);
4991	cp->timer_ticks = 0;
4992
4993	/* give us access to cassini registers */
4994	cp->regs = pci_iomap(pdev, 0, casreg_len);
4995	if (!cp->regs) {
4996		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
4997		goto err_out_free_res;
4998	}
4999	cp->casreg_len = casreg_len;
5000
5001	pci_save_state(pdev);
5002	cas_check_pci_invariants(cp);
5003	cas_hard_reset(cp);
5004	cas_reset(cp, 0);
5005	if (cas_check_invariants(cp))
5006		goto err_out_iounmap;
5007	if (cp->cas_flags & CAS_FLAG_SATURN)
5008		cas_saturn_firmware_init(cp);
5009
5010	cp->init_block =
5011		dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
5012				   &cp->block_dvma, GFP_KERNEL);
5013	if (!cp->init_block) {
5014		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5015		goto err_out_iounmap;
5016	}
5017
5018	for (i = 0; i < N_TX_RINGS; i++)
5019		cp->init_txds[i] = cp->init_block->txds[i];
5020
5021	for (i = 0; i < N_RX_DESC_RINGS; i++)
5022		cp->init_rxds[i] = cp->init_block->rxds[i];
5023
5024	for (i = 0; i < N_RX_COMP_RINGS; i++)
5025		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5026
5027	for (i = 0; i < N_RX_FLOWS; i++)
5028		skb_queue_head_init(&cp->rx_flows[i]);
5029
5030	dev->netdev_ops = &cas_netdev_ops;
5031	dev->ethtool_ops = &cas_ethtool_ops;
5032	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5033
5034#ifdef USE_NAPI
5035	netif_napi_add(dev, &cp->napi, cas_poll);
5036#endif
5037	dev->irq = pdev->irq;
5038	dev->dma = 0;
5039
5040	/* Cassini features. */
5041	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5042		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5043
5044	dev->features |= NETIF_F_HIGHDMA;
5045
5046	/* MTU range: 60 - varies or 9000 */
5047	dev->min_mtu = CAS_MIN_MTU;
5048	dev->max_mtu = CAS_MAX_MTU;
5049
5050	if (register_netdev(dev)) {
5051		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5052		goto err_out_free_consistent;
5053	}
5054
5055	i = readl(cp->regs + REG_BIM_CFG);
5056	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5057		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5058		    (i & BIM_CFG_32BIT) ? "32" : "64",
5059		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5060		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5061		    dev->dev_addr);
5062
5063	pci_set_drvdata(pdev, dev);
5064	cp->hw_running = 1;
5065	cas_entropy_reset(cp);
5066	cas_phy_init(cp);
5067	cas_begin_auto_negotiation(cp, NULL);
5068	return 0;
5069
5070err_out_free_consistent:
5071	dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5072			  cp->init_block, cp->block_dvma);
5073
5074err_out_iounmap:
5075	mutex_lock(&cp->pm_mutex);
5076	if (cp->hw_running)
5077		cas_shutdown(cp);
5078	mutex_unlock(&cp->pm_mutex);
 
 
5079
5080	pci_iounmap(pdev, cp->regs);
5081
5082
5083err_out_free_res:
5084	pci_release_regions(pdev);
5085
5086	/* Try to restore it in case the error occurred after we
5087	 * set it.
5088	 */
5089	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5090
5091err_out_free_netdev:
5092	free_netdev(dev);
5093
5094err_out_disable_pdev:
5095	pci_disable_device(pdev);
5096	return -ENODEV;
5097}
5098
5099static void cas_remove_one(struct pci_dev *pdev)
5100{
5101	struct net_device *dev = pci_get_drvdata(pdev);
5102	struct cas *cp;
5103	if (!dev)
5104		return;
5105
5106	cp = netdev_priv(dev);
5107	unregister_netdev(dev);
5108
5109	vfree(cp->fw_data);
5110
5111	mutex_lock(&cp->pm_mutex);
5112	cancel_work_sync(&cp->reset_task);
5113	if (cp->hw_running)
5114		cas_shutdown(cp);
5115	mutex_unlock(&cp->pm_mutex);
5116
5117#if 1
5118	if (cp->orig_cacheline_size) {
5119		/* Restore the cache line size if we had modified
5120		 * it.
5121		 */
5122		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5123				      cp->orig_cacheline_size);
5124	}
5125#endif
5126	dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5127			  cp->init_block, cp->block_dvma);
5128	pci_iounmap(pdev, cp->regs);
5129	free_netdev(dev);
5130	pci_release_regions(pdev);
5131	pci_disable_device(pdev);
5132}
5133
5134static int __maybe_unused cas_suspend(struct device *dev_d)
5135{
5136	struct net_device *dev = dev_get_drvdata(dev_d);
5137	struct cas *cp = netdev_priv(dev);
5138	unsigned long flags;
5139
5140	mutex_lock(&cp->pm_mutex);
5141
5142	/* If the driver is opened, we stop the DMA */
5143	if (cp->opened) {
5144		netif_device_detach(dev);
5145
5146		cas_lock_all_save(cp, flags);
5147
5148		/* We can set the second arg of cas_reset to 0
5149		 * because on resume, we'll call cas_init_hw with
5150		 * its second arg set so that autonegotiation is
5151		 * restarted.
5152		 */
5153		cas_reset(cp, 0);
5154		cas_clean_rings(cp);
5155		cas_unlock_all_restore(cp, flags);
5156	}
5157
5158	if (cp->hw_running)
5159		cas_shutdown(cp);
5160	mutex_unlock(&cp->pm_mutex);
5161
5162	return 0;
5163}
5164
5165static int __maybe_unused cas_resume(struct device *dev_d)
5166{
5167	struct net_device *dev = dev_get_drvdata(dev_d);
5168	struct cas *cp = netdev_priv(dev);
5169
5170	netdev_info(dev, "resuming\n");
5171
5172	mutex_lock(&cp->pm_mutex);
5173	cas_hard_reset(cp);
5174	if (cp->opened) {
5175		unsigned long flags;
5176		cas_lock_all_save(cp, flags);
5177		cas_reset(cp, 0);
5178		cp->hw_running = 1;
5179		cas_clean_rings(cp);
5180		cas_init_hw(cp, 1);
5181		cas_unlock_all_restore(cp, flags);
5182
5183		netif_device_attach(dev);
5184	}
5185	mutex_unlock(&cp->pm_mutex);
5186	return 0;
5187}
5188
5189static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
5190
5191static struct pci_driver cas_driver = {
5192	.name		= DRV_MODULE_NAME,
5193	.id_table	= cas_pci_tbl,
5194	.probe		= cas_init_one,
5195	.remove		= cas_remove_one,
5196	.driver.pm	= &cas_pm_ops,
5197};
5198
5199static int __init cas_init(void)
5200{
5201	if (linkdown_timeout > 0)
5202		link_transition_timeout = linkdown_timeout * HZ;
5203	else
5204		link_transition_timeout = 0;
5205
5206	return pci_register_driver(&cas_driver);
5207}
5208
5209static void __exit cas_cleanup(void)
5210{
5211	pci_unregister_driver(&cas_driver);
5212}
5213
5214module_init(cas_init);
5215module_exit(cas_cleanup);