Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2011-2013 Solarflare Communications Inc.
   5 */
   6
   7/* Theory of operation:
   8 *
   9 * PTP support is assisted by firmware running on the MC, which provides
  10 * the hardware timestamping capabilities.  Both transmitted and received
  11 * PTP event packets are queued onto internal queues for subsequent processing;
  12 * this is because the MC operations are relatively long and would block
  13 * block NAPI/interrupt operation.
  14 *
  15 * Receive event processing:
  16 *	The event contains the packet's UUID and sequence number, together
  17 *	with the hardware timestamp.  The PTP receive packet queue is searched
  18 *	for this UUID/sequence number and, if found, put on a pending queue.
  19 *	Packets not matching are delivered without timestamps (MCDI events will
  20 *	always arrive after the actual packet).
  21 *	It is important for the operation of the PTP protocol that the ordering
  22 *	of packets between the event and general port is maintained.
  23 *
  24 * Work queue processing:
  25 *	If work waiting, synchronise host/hardware time
  26 *
  27 *	Transmit: send packet through MC, which returns the transmission time
  28 *	that is converted to an appropriate timestamp.
  29 *
  30 *	Receive: the packet's reception time is converted to an appropriate
  31 *	timestamp.
  32 */
  33#include <linux/ip.h>
  34#include <linux/udp.h>
  35#include <linux/time.h>
  36#include <linux/errno.h>
  37#include <linux/ktime.h>
  38#include <linux/module.h>
  39#include <linux/pps_kernel.h>
  40#include <linux/ptp_clock_kernel.h>
  41#include "net_driver.h"
  42#include "efx.h"
  43#include "mcdi.h"
  44#include "mcdi_pcol.h"
  45#include "io.h"
 
  46#include "tx.h"
  47#include "nic.h" /* indirectly includes ptp.h */
  48#include "efx_channels.h"
  49
  50/* Maximum number of events expected to make up a PTP event */
  51#define	MAX_EVENT_FRAGS			3
  52
  53/* Maximum delay, ms, to begin synchronisation */
  54#define	MAX_SYNCHRONISE_WAIT_MS		2
  55
  56/* How long, at most, to spend synchronising */
  57#define	SYNCHRONISE_PERIOD_NS		250000
  58
  59/* How often to update the shared memory time */
  60#define	SYNCHRONISATION_GRANULARITY_NS	200
  61
  62/* Minimum permitted length of a (corrected) synchronisation time */
  63#define	DEFAULT_MIN_SYNCHRONISATION_NS	120
  64
  65/* Maximum permitted length of a (corrected) synchronisation time */
  66#define	MAX_SYNCHRONISATION_NS		1000
  67
  68/* How many (MC) receive events that can be queued */
  69#define	MAX_RECEIVE_EVENTS		8
  70
  71/* Length of (modified) moving average. */
  72#define	AVERAGE_LENGTH			16
  73
  74/* How long an unmatched event or packet can be held */
  75#define PKT_EVENT_LIFETIME_MS		10
  76
  77/* How long unused unicast filters can be held */
  78#define UCAST_FILTER_EXPIRY_JIFFIES	msecs_to_jiffies(30000)
  79
  80/* Offsets into PTP packet for identification.  These offsets are from the
  81 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  82 * PTP V2 permit the use of IPV4 options.
  83 */
  84#define PTP_DPORT_OFFSET	22
  85
  86#define PTP_V1_VERSION_LENGTH	2
  87#define PTP_V1_VERSION_OFFSET	28
  88
 
 
 
  89#define PTP_V1_SEQUENCE_LENGTH	2
  90#define PTP_V1_SEQUENCE_OFFSET	58
  91
  92/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  93 * includes IP header.
  94 */
  95#define	PTP_V1_MIN_LENGTH	64
  96
  97#define PTP_V2_VERSION_LENGTH	1
  98#define PTP_V2_VERSION_OFFSET	29
  99
 
 
 
 
 
 
 
 
 
 
 
 100#define PTP_V2_SEQUENCE_LENGTH	2
 101#define PTP_V2_SEQUENCE_OFFSET	58
 102
 103/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 104 * includes IP header.
 105 */
 106#define	PTP_V2_MIN_LENGTH	63
 107
 108#define	PTP_MIN_LENGTH		63
 109
 110#define PTP_ADDR_IPV4		0xe0000181	/* 224.0.1.129 */
 111
 112/* ff0e::181 */
 113static const struct in6_addr ptp_addr_ipv6 = { { {
 114	0xff, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01, 0x81 } } };
 115
 116/* 01-1B-19-00-00-00 */
 117static const u8 ptp_addr_ether[ETH_ALEN] __aligned(2) = {
 118	0x01, 0x1b, 0x19, 0x00, 0x00, 0x00 };
 119
 
 
 
 120#define PTP_EVENT_PORT		319
 121#define PTP_GENERAL_PORT	320
 
 122
 123/* Annoyingly the format of the version numbers are different between
 124 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 125 */
 126#define	PTP_VERSION_V1		1
 127
 128#define	PTP_VERSION_V2		2
 129#define	PTP_VERSION_V2_MASK	0x0f
 130
 131enum ptp_packet_state {
 132	PTP_PACKET_STATE_UNMATCHED = 0,
 133	PTP_PACKET_STATE_MATCHED,
 134	PTP_PACKET_STATE_TIMED_OUT,
 135	PTP_PACKET_STATE_MATCH_UNWANTED
 136};
 137
 138/* NIC synchronised with single word of time only comprising
 139 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 140 */
 141#define	MC_NANOSECOND_BITS	30
 142#define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
 143#define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 144
 145/* Maximum parts-per-billion adjustment that is acceptable */
 146#define MAX_PPB			1000000
 147
 148/* Precalculate scale word to avoid long long division at runtime */
 149/* This is equivalent to 2^66 / 10^9. */
 150#define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
 151
 152/* How much to shift down after scaling to convert to FP40 */
 153#define PPB_SHIFT_FP40		26
 154/* ... and FP44. */
 155#define PPB_SHIFT_FP44		22
 156
 157#define PTP_SYNC_ATTEMPTS	4
 158
 159/**
 160 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 
 161 * @expiry: Time after which the packet should be delivered irrespective of
 162 *            event arrival.
 163 * @state: The state of the packet - whether it is ready for processing or
 164 *         whether that is of no interest.
 165 */
 166struct efx_ptp_match {
 
 167	unsigned long expiry;
 168	enum ptp_packet_state state;
 169};
 170
 171/**
 172 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 173 * @link: list of events
 174 * @seq0: First part of (PTP) UUID
 175 * @seq1: Second part of (PTP) UUID and sequence number
 176 * @hwtimestamp: Event timestamp
 177 * @expiry: Time which the packet arrived
 178 */
 179struct efx_ptp_event_rx {
 180	struct list_head link;
 181	u32 seq0;
 182	u32 seq1;
 183	ktime_t hwtimestamp;
 184	unsigned long expiry;
 185};
 186
 187/**
 188 * struct efx_ptp_timeset - Synchronisation between host and MC
 189 * @host_start: Host time immediately before hardware timestamp taken
 190 * @major: Hardware timestamp, major
 191 * @minor: Hardware timestamp, minor
 192 * @host_end: Host time immediately after hardware timestamp taken
 193 * @wait: Number of NIC clock ticks between hardware timestamp being read and
 194 *          host end time being seen
 195 * @window: Difference of host_end and host_start
 196 * @valid: Whether this timeset is valid
 197 */
 198struct efx_ptp_timeset {
 199	u32 host_start;
 200	u32 major;
 201	u32 minor;
 202	u32 host_end;
 203	u32 wait;
 204	u32 window;	/* Derived: end - start, allowing for wrap */
 205};
 206
 207/**
 208 * struct efx_ptp_rxfilter - Filter for PTP packets
 209 * @list: Node of the list where the filter is added
 210 * @ether_type: Network protocol of the filter (ETHER_P_IP / ETHER_P_IPV6)
 211 * @loc_port: UDP port of the filter (PTP_EVENT_PORT / PTP_GENERAL_PORT)
 212 * @loc_host: IPv4/v6 address of the filter
 213 * @expiry: time when the filter expires, in jiffies
 214 * @handle: Handle ID for the MCDI filters table
 215 */
 216struct efx_ptp_rxfilter {
 217	struct list_head list;
 218	__be16 ether_type;
 219	__be16 loc_port;
 220	__be32 loc_host[4];
 221	unsigned long expiry;
 222	int handle;
 223};
 224
 225/**
 226 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 227 * @efx: The NIC context
 228 * @channel: The PTP channel (for Medford and Medford2)
 
 
 229 * @rxq: Receive SKB queue (awaiting timestamps)
 230 * @txq: Transmit SKB queue
 
 
 
 
 231 * @workwq: Work queue for processing pending PTP operations
 232 * @work: Work task
 233 * @cleanup_work: Work task for periodic cleanup
 234 * @reset_required: A serious error has occurred and the PTP task needs to be
 235 *                  reset (disable, enable).
 236 * @rxfilters_mcast: Receive filters for multicast PTP packets
 237 * @rxfilters_ucast: Receive filters for unicast PTP packets
 238 * @config: Current timestamp configuration
 239 * @enabled: PTP operation enabled
 240 * @mode: Mode in which PTP operating (PTP version)
 241 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 242 * @nic_to_kernel_time: Function to convert from NIC to kernel time
 243 * @nic_time: contains time details
 244 * @nic_time.minor_max: Wrap point for NIC minor times
 245 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
 246 * in packet prefix and last MCDI time sync event i.e. how much earlier than
 247 * the last sync event time a packet timestamp can be.
 248 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
 249 * in packet prefix and last MCDI time sync event i.e. how much later than
 250 * the last sync event time a packet timestamp can be.
 251 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
 252 * field in MCDI time sync event.
 253 * @min_synchronisation_ns: Minimum acceptable corrected sync window
 254 * @capabilities: Capabilities flags from the NIC
 255 * @ts_corrections: contains corrections details
 256 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
 257 *                         timestamps
 258 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
 259 *                         timestamps
 260 * @ts_corrections.pps_out: PPS output error (information only)
 261 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 262 * @ts_corrections.general_tx: Required driver correction of general packet
 263 *                             transmit timestamps
 264 * @ts_corrections.general_rx: Required driver correction of general packet
 265 *                             receive timestamps
 266 * @evt_frags: Partly assembled PTP events
 267 * @evt_frag_idx: Current fragment number
 268 * @evt_code: Last event code
 269 * @start: Address at which MC indicates ready for synchronisation
 270 * @host_time_pps: Host time at last PPS
 271 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
 272 * frequency adjustment into a fixed point fractional nanosecond format.
 273 * @current_adjfreq: Current ppb adjustment.
 274 * @phc_clock: Pointer to registered phc device (if primary function)
 275 * @phc_clock_info: Registration structure for phc device
 276 * @pps_work: pps work task for handling pps events
 277 * @pps_workwq: pps work queue
 278 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 279 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 280 *         allocations in main data path).
 281 * @good_syncs: Number of successful synchronisations.
 282 * @fast_syncs: Number of synchronisations requiring short delay
 283 * @bad_syncs: Number of failed synchronisations.
 284 * @sync_timeouts: Number of synchronisation timeouts
 285 * @no_time_syncs: Number of synchronisations with no good times.
 286 * @invalid_sync_windows: Number of sync windows with bad durations.
 287 * @undersize_sync_windows: Number of corrected sync windows that are too small
 288 * @oversize_sync_windows: Number of corrected sync windows that are too large
 289 * @rx_no_timestamp: Number of packets received without a timestamp.
 290 * @timeset: Last set of synchronisation statistics.
 291 * @xmit_skb: Transmit SKB function.
 292 */
 293struct efx_ptp_data {
 294	struct efx_nic *efx;
 295	struct efx_channel *channel;
 
 296	struct sk_buff_head rxq;
 297	struct sk_buff_head txq;
 
 
 
 
 298	struct workqueue_struct *workwq;
 299	struct work_struct work;
 300	struct delayed_work cleanup_work;
 301	bool reset_required;
 302	struct list_head rxfilters_mcast;
 303	struct list_head rxfilters_ucast;
 304	struct kernel_hwtstamp_config config;
 305	bool enabled;
 306	unsigned int mode;
 307	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
 308	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
 309				      s32 correction);
 310	struct {
 311		u32 minor_max;
 312		u32 sync_event_diff_min;
 313		u32 sync_event_diff_max;
 314		unsigned int sync_event_minor_shift;
 315	} nic_time;
 316	unsigned int min_synchronisation_ns;
 317	unsigned int capabilities;
 318	struct {
 319		s32 ptp_tx;
 320		s32 ptp_rx;
 321		s32 pps_out;
 322		s32 pps_in;
 323		s32 general_tx;
 324		s32 general_rx;
 325	} ts_corrections;
 326	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 327	int evt_frag_idx;
 328	int evt_code;
 329	struct efx_buffer start;
 330	struct pps_event_time host_time_pps;
 331	unsigned int adjfreq_ppb_shift;
 332	s64 current_adjfreq;
 333	struct ptp_clock *phc_clock;
 334	struct ptp_clock_info phc_clock_info;
 335	struct work_struct pps_work;
 336	struct workqueue_struct *pps_workwq;
 337	bool nic_ts_enabled;
 338	efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];
 339
 340	unsigned int good_syncs;
 341	unsigned int fast_syncs;
 342	unsigned int bad_syncs;
 343	unsigned int sync_timeouts;
 344	unsigned int no_time_syncs;
 345	unsigned int invalid_sync_windows;
 346	unsigned int undersize_sync_windows;
 347	unsigned int oversize_sync_windows;
 348	unsigned int rx_no_timestamp;
 349	struct efx_ptp_timeset
 350	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 351	void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
 352};
 353
 354static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm);
 355static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 356static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
 357static int efx_phc_settime(struct ptp_clock_info *ptp,
 358			   const struct timespec64 *e_ts);
 359static int efx_phc_enable(struct ptp_clock_info *ptp,
 360			  struct ptp_clock_request *request, int on);
 361static int efx_ptp_insert_unicast_filter(struct efx_nic *efx,
 362					 struct sk_buff *skb);
 363
 364bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
 365{
 366	return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
 367}
 368
 369/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
 370 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
 371 */
 372static bool efx_ptp_want_txqs(struct efx_channel *channel)
 373{
 374	return efx_ptp_use_mac_tx_timestamps(channel->efx);
 375}
 376
 377#define PTP_SW_STAT(ext_name, field_name)				\
 378	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
 379#define PTP_MC_STAT(ext_name, mcdi_name)				\
 380	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
 381static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
 382	PTP_SW_STAT(ptp_good_syncs, good_syncs),
 383	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
 384	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
 385	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
 386	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
 387	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
 388	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
 389	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
 390	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
 391	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
 392	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
 393	PTP_MC_STAT(ptp_timestamp_packets, TS),
 394	PTP_MC_STAT(ptp_filter_matches, FM),
 395	PTP_MC_STAT(ptp_non_filter_matches, NFM),
 396};
 397#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
 398static const unsigned long efx_ptp_stat_mask[] = {
 399	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
 400};
 401
 402size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 **strings)
 403{
 404	if (!efx->ptp_data)
 405		return 0;
 406
 407	return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 408				      efx_ptp_stat_mask, strings);
 409}
 410
 411size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
 412{
 413	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
 414	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
 415	size_t i;
 416	int rc;
 417
 418	if (!efx->ptp_data)
 419		return 0;
 420
 421	/* Copy software statistics */
 422	for (i = 0; i < PTP_STAT_COUNT; i++) {
 423		if (efx_ptp_stat_desc[i].dma_width)
 424			continue;
 425		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
 426					     efx_ptp_stat_desc[i].offset);
 427	}
 428
 429	/* Fetch MC statistics.  We *must* fill in all statistics or
 430	 * risk leaking kernel memory to userland, so if the MCDI
 431	 * request fails we pretend we got zeroes.
 432	 */
 433	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
 434	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 435	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 436			  outbuf, sizeof(outbuf), NULL);
 437	if (rc)
 438		memset(outbuf, 0, sizeof(outbuf));
 439	efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 440			     efx_ptp_stat_mask,
 441			     stats, _MCDI_PTR(outbuf, 0), false);
 442
 443	return PTP_STAT_COUNT;
 444}
 445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446/* To convert from s27 format to ns we multiply then divide by a power of 2.
 447 * For the conversion from ns to s27, the operation is also converted to a
 448 * multiply and shift.
 449 */
 450#define S27_TO_NS_SHIFT	(27)
 451#define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
 452#define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
 453#define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)
 454
 455/* For Huntington platforms NIC time is in seconds and fractions of a second
 456 * where the minor register only uses 27 bits in units of 2^-27s.
 457 */
 458static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
 459{
 460	struct timespec64 ts = ns_to_timespec64(ns);
 461	u32 maj = (u32)ts.tv_sec;
 462	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
 463			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
 464
 465	/* The conversion can result in the minor value exceeding the maximum.
 466	 * In this case, round up to the next second.
 467	 */
 468	if (min >= S27_MINOR_MAX) {
 469		min -= S27_MINOR_MAX;
 470		maj++;
 471	}
 472
 473	*nic_major = maj;
 474	*nic_minor = min;
 475}
 476
 477static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
 478{
 479	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
 480			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
 481	return ktime_set(nic_major, ns);
 482}
 483
 484static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
 485					       s32 correction)
 486{
 487	/* Apply the correction and deal with carry */
 488	nic_minor += correction;
 489	if ((s32)nic_minor < 0) {
 490		nic_minor += S27_MINOR_MAX;
 491		nic_major--;
 492	} else if (nic_minor >= S27_MINOR_MAX) {
 493		nic_minor -= S27_MINOR_MAX;
 494		nic_major++;
 495	}
 496
 497	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
 498}
 499
 500/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
 501static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
 502{
 503	struct timespec64 ts = ns_to_timespec64(ns);
 504
 505	*nic_major = (u32)ts.tv_sec;
 506	*nic_minor = ts.tv_nsec * 4;
 507}
 508
 509static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 510						 s32 correction)
 511{
 512	ktime_t kt;
 513
 514	nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
 515	correction = DIV_ROUND_CLOSEST(correction, 4);
 516
 517	kt = ktime_set(nic_major, nic_minor);
 518
 519	if (correction >= 0)
 520		kt = ktime_add_ns(kt, (u64)correction);
 521	else
 522		kt = ktime_sub_ns(kt, (u64)-correction);
 523	return kt;
 524}
 525
 526struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
 527{
 528	return efx->ptp_data ? efx->ptp_data->channel : NULL;
 529}
 530
 531void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel)
 532{
 533	if (efx->ptp_data)
 534		efx->ptp_data->channel = channel;
 535}
 536
 537static u32 last_sync_timestamp_major(struct efx_nic *efx)
 538{
 539	struct efx_channel *channel = efx_ptp_channel(efx);
 540	u32 major = 0;
 541
 542	if (channel)
 543		major = channel->sync_timestamp_major;
 544	return major;
 545}
 546
 547/* The 8000 series and later can provide the time from the MAC, which is only
 548 * 48 bits long and provides meta-information in the top 2 bits.
 549 */
 550static ktime_t
 551efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
 552				    struct efx_ptp_data *ptp,
 553				    u32 nic_major, u32 nic_minor,
 554				    s32 correction)
 555{
 556	u32 sync_timestamp;
 557	ktime_t kt = { 0 };
 558	s16 delta;
 559
 560	if (!(nic_major & 0x80000000)) {
 561		WARN_ON_ONCE(nic_major >> 16);
 562
 563		/* Medford provides 48 bits of timestamp, so we must get the top
 564		 * 16 bits from the timesync event state.
 565		 *
 566		 * We only have the lower 16 bits of the time now, but we do
 567		 * have a full resolution timestamp at some point in past. As
 568		 * long as the difference between the (real) now and the sync
 569		 * is less than 2^15, then we can reconstruct the difference
 570		 * between those two numbers using only the lower 16 bits of
 571		 * each.
 572		 *
 573		 * Put another way
 574		 *
 575		 * a - b = ((a mod k) - b) mod k
 576		 *
 577		 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
 578		 * (a mod k) and b, so can calculate the delta, a - b.
 579		 *
 580		 */
 581		sync_timestamp = last_sync_timestamp_major(efx);
 582
 583		/* Because delta is s16 this does an implicit mask down to
 584		 * 16 bits which is what we need, assuming
 585		 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
 586		 * we can deal with the (unlikely) case of sync timestamps
 587		 * arriving from the future.
 588		 */
 589		delta = nic_major - sync_timestamp;
 590
 591		/* Recover the fully specified time now, by applying the offset
 592		 * to the (fully specified) sync time.
 593		 */
 594		nic_major = sync_timestamp + delta;
 595
 596		kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
 597					     correction);
 598	}
 599	return kt;
 600}
 601
 602ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
 603{
 604	struct efx_nic *efx = tx_queue->efx;
 605	struct efx_ptp_data *ptp = efx->ptp_data;
 606	ktime_t kt;
 607
 608	if (efx_ptp_use_mac_tx_timestamps(efx))
 609		kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
 610				tx_queue->completed_timestamp_major,
 611				tx_queue->completed_timestamp_minor,
 612				ptp->ts_corrections.general_tx);
 613	else
 614		kt = ptp->nic_to_kernel_time(
 615				tx_queue->completed_timestamp_major,
 616				tx_queue->completed_timestamp_minor,
 617				ptp->ts_corrections.general_tx);
 618	return kt;
 619}
 620
 621/* Get PTP attributes and set up time conversions */
 622static int efx_ptp_get_attributes(struct efx_nic *efx)
 623{
 624	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
 625	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
 626	struct efx_ptp_data *ptp = efx->ptp_data;
 627	int rc;
 628	u32 fmt;
 629	size_t out_len;
 630
 631	/* Get the PTP attributes. If the NIC doesn't support the operation we
 632	 * use the default format for compatibility with older NICs i.e.
 633	 * seconds and nanoseconds.
 634	 */
 635	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
 636	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 637	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 638				outbuf, sizeof(outbuf), &out_len);
 639	if (rc == 0) {
 640		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
 641	} else if (rc == -EINVAL) {
 642		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
 643	} else if (rc == -EPERM) {
 644		pci_info(efx->pci_dev, "no PTP support\n");
 645		return rc;
 646	} else {
 647		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
 648				       outbuf, sizeof(outbuf), rc);
 649		return rc;
 650	}
 651
 652	switch (fmt) {
 653	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
 654		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
 655		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
 656		ptp->nic_time.minor_max = 1 << 27;
 657		ptp->nic_time.sync_event_minor_shift = 19;
 658		break;
 
 
 
 
 
 
 659	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
 660		ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
 661		ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
 662		ptp->nic_time.minor_max = 4000000000UL;
 663		ptp->nic_time.sync_event_minor_shift = 24;
 664		break;
 665	default:
 666		return -ERANGE;
 667	}
 668
 669	/* Precalculate acceptable difference between the minor time in the
 670	 * packet prefix and the last MCDI time sync event. We expect the
 671	 * packet prefix timestamp to be after of sync event by up to one
 672	 * sync event interval (0.25s) but we allow it to exceed this by a
 673	 * fuzz factor of (0.1s)
 674	 */
 675	ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
 676		- (ptp->nic_time.minor_max / 10);
 677	ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
 678		+ (ptp->nic_time.minor_max / 10);
 679
 680	/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
 681	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
 682	 * a value to use for the minimum acceptable corrected synchronization
 683	 * window and may return further capabilities.
 684	 * If we have the extra information store it. For older firmware that
 685	 * does not implement the extended command use the default value.
 686	 */
 687	if (rc == 0 &&
 688	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
 689		ptp->min_synchronisation_ns =
 690			MCDI_DWORD(outbuf,
 691				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
 692	else
 693		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
 694
 695	if (rc == 0 &&
 696	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
 697		ptp->capabilities = MCDI_DWORD(outbuf,
 698					PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
 699	else
 700		ptp->capabilities = 0;
 701
 702	/* Set up the shift for conversion between frequency
 703	 * adjustments in parts-per-billion and the fixed-point
 704	 * fractional ns format that the adapter uses.
 705	 */
 706	if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
 707		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
 708	else
 709		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
 710
 711	return 0;
 712}
 713
 714/* Get PTP timestamp corrections */
 715static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
 716{
 717	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
 718	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
 719	int rc;
 720	size_t out_len;
 721
 722	/* Get the timestamp corrections from the NIC. If this operation is
 723	 * not supported (older NICs) then no correction is required.
 724	 */
 725	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
 726		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
 727	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 728
 729	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 730				outbuf, sizeof(outbuf), &out_len);
 731	if (rc == 0) {
 732		efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
 733			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
 734		efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
 735			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
 736		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
 737			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
 738		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
 739			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
 740
 741		if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
 742			efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
 743				outbuf,
 744				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
 745			efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
 746				outbuf,
 747				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
 748		} else {
 749			efx->ptp_data->ts_corrections.general_tx =
 750				efx->ptp_data->ts_corrections.ptp_tx;
 751			efx->ptp_data->ts_corrections.general_rx =
 752				efx->ptp_data->ts_corrections.ptp_rx;
 753		}
 754	} else if (rc == -EINVAL) {
 755		efx->ptp_data->ts_corrections.ptp_tx = 0;
 756		efx->ptp_data->ts_corrections.ptp_rx = 0;
 757		efx->ptp_data->ts_corrections.pps_out = 0;
 758		efx->ptp_data->ts_corrections.pps_in = 0;
 759		efx->ptp_data->ts_corrections.general_tx = 0;
 760		efx->ptp_data->ts_corrections.general_rx = 0;
 761	} else {
 762		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
 763				       sizeof(outbuf), rc);
 764		return rc;
 765	}
 766
 767	return 0;
 768}
 769
 770/* Enable MCDI PTP support. */
 771static int efx_ptp_enable(struct efx_nic *efx)
 772{
 773	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
 774	MCDI_DECLARE_BUF_ERR(outbuf);
 775	int rc;
 776
 777	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 778	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 779	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 780		       efx->ptp_data->channel ?
 781		       efx->ptp_data->channel->channel : 0);
 782	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 783
 784	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 785				outbuf, sizeof(outbuf), NULL);
 786	rc = (rc == -EALREADY) ? 0 : rc;
 787	if (rc)
 788		efx_mcdi_display_error(efx, MC_CMD_PTP,
 789				       MC_CMD_PTP_IN_ENABLE_LEN,
 790				       outbuf, sizeof(outbuf), rc);
 791	return rc;
 792}
 793
 794/* Disable MCDI PTP support.
 795 *
 796 * Note that this function should never rely on the presence of ptp_data -
 797 * may be called before that exists.
 798 */
 799static int efx_ptp_disable(struct efx_nic *efx)
 800{
 801	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
 802	MCDI_DECLARE_BUF_ERR(outbuf);
 803	int rc;
 804
 805	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 806	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 807	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 808				outbuf, sizeof(outbuf), NULL);
 809	rc = (rc == -EALREADY) ? 0 : rc;
 810	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
 811	 * should only have been called during probe.
 812	 */
 813	if (rc == -ENOSYS || rc == -EPERM)
 814		pci_info(efx->pci_dev, "no PTP support\n");
 815	else if (rc)
 816		efx_mcdi_display_error(efx, MC_CMD_PTP,
 817				       MC_CMD_PTP_IN_DISABLE_LEN,
 818				       outbuf, sizeof(outbuf), rc);
 819	return rc;
 820}
 821
 822static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 823{
 824	struct sk_buff *skb;
 825
 826	while ((skb = skb_dequeue(q))) {
 827		local_bh_disable();
 828		netif_receive_skb(skb);
 829		local_bh_enable();
 830	}
 831}
 832
 833static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 834{
 835	netif_err(efx, drv, efx->net_dev,
 836		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 837		  "vector. PTP disabled\n");
 838}
 839
 840/* Repeatedly send the host time to the MC which will capture the hardware
 841 * time.
 842 */
 843static void efx_ptp_send_times(struct efx_nic *efx,
 844			       struct pps_event_time *last_time)
 845{
 846	struct pps_event_time now;
 847	struct timespec64 limit;
 848	struct efx_ptp_data *ptp = efx->ptp_data;
 849	int *mc_running = ptp->start.addr;
 850
 851	pps_get_ts(&now);
 852	limit = now.ts_real;
 853	timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 854
 855	/* Write host time for specified period or until MC is done */
 856	while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
 857	       READ_ONCE(*mc_running)) {
 858		struct timespec64 update_time;
 859		unsigned int host_time;
 860
 861		/* Don't update continuously to avoid saturating the PCIe bus */
 862		update_time = now.ts_real;
 863		timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 864		do {
 865			pps_get_ts(&now);
 866		} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
 867			 READ_ONCE(*mc_running));
 868
 869		/* Synchronise NIC with single word of time only */
 870		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 871			     now.ts_real.tv_nsec);
 872		/* Update host time in NIC memory */
 873		efx->type->ptp_write_host_time(efx, host_time);
 874	}
 875	*last_time = now;
 876}
 877
 878/* Read a timeset from the MC's results and partial process. */
 879static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
 880				 struct efx_ptp_timeset *timeset)
 881{
 882	unsigned start_ns, end_ns;
 883
 884	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 885	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
 886	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
 887	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND);
 888	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 889
 890	/* Ignore seconds */
 891	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 892	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 893	/* Allow for rollover */
 894	if (end_ns < start_ns)
 895		end_ns += NSEC_PER_SEC;
 896	/* Determine duration of operation */
 897	timeset->window = end_ns - start_ns;
 898}
 899
 900/* Process times received from MC.
 901 *
 902 * Extract times from returned results, and establish the minimum value
 903 * seen.  The minimum value represents the "best" possible time and events
 904 * too much greater than this are rejected - the machine is, perhaps, too
 905 * busy. A number of readings are taken so that, hopefully, at least one good
 906 * synchronisation will be seen in the results.
 907 */
 908static int
 909efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
 910		      size_t response_length,
 911		      const struct pps_event_time *last_time)
 912{
 913	unsigned number_readings =
 914		MCDI_VAR_ARRAY_LEN(response_length,
 915				   PTP_OUT_SYNCHRONIZE_TIMESET);
 916	unsigned i;
 917	unsigned ngood = 0;
 918	unsigned last_good = 0;
 919	struct efx_ptp_data *ptp = efx->ptp_data;
 920	u32 last_sec;
 921	u32 start_sec;
 922	struct timespec64 delta;
 923	ktime_t mc_time;
 924
 925	if (number_readings == 0)
 926		return -EAGAIN;
 927
 928	/* Read the set of results and find the last good host-MC
 929	 * synchronization result. The MC times when it finishes reading the
 930	 * host time so the corrected window time should be fairly constant
 931	 * for a given platform. Increment stats for any results that appear
 932	 * to be erroneous.
 933	 */
 934	for (i = 0; i < number_readings; i++) {
 935		s32 window, corrected;
 936		struct timespec64 wait;
 937
 938		efx_ptp_read_timeset(
 939			MCDI_ARRAY_STRUCT_PTR(synch_buf,
 940					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
 941			&ptp->timeset[i]);
 942
 943		wait = ktime_to_timespec64(
 944			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
 945		window = ptp->timeset[i].window;
 946		corrected = window - wait.tv_nsec;
 947
 948		/* We expect the uncorrected synchronization window to be at
 949		 * least as large as the interval between host start and end
 950		 * times. If it is smaller than this then this is mostly likely
 951		 * to be a consequence of the host's time being adjusted.
 952		 * Check that the corrected sync window is in a reasonable
 953		 * range. If it is out of range it is likely to be because an
 954		 * interrupt or other delay occurred between reading the system
 955		 * time and writing it to MC memory.
 956		 */
 957		if (window < SYNCHRONISATION_GRANULARITY_NS) {
 958			++ptp->invalid_sync_windows;
 959		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
 960			++ptp->oversize_sync_windows;
 961		} else if (corrected < ptp->min_synchronisation_ns) {
 962			++ptp->undersize_sync_windows;
 963		} else {
 964			ngood++;
 965			last_good = i;
 966		}
 967	}
 968
 969	if (ngood == 0) {
 970		netif_warn(efx, drv, efx->net_dev,
 971			   "PTP no suitable synchronisations\n");
 972		return -EAGAIN;
 973	}
 974
 975	/* Calculate delay from last good sync (host time) to last_time.
 976	 * It is possible that the seconds rolled over between taking
 977	 * the start reading and the last value written by the host.  The
 978	 * timescales are such that a gap of more than one second is never
 979	 * expected.  delta is *not* normalised.
 980	 */
 981	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 982	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 983	if (start_sec != last_sec &&
 984	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 985		netif_warn(efx, hw, efx->net_dev,
 986			   "PTP bad synchronisation seconds\n");
 987		return -EAGAIN;
 988	}
 989	delta.tv_sec = (last_sec - start_sec) & 1;
 990	delta.tv_nsec =
 991		last_time->ts_real.tv_nsec -
 992		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
 993
 994	/* Convert the NIC time at last good sync into kernel time.
 995	 * No correction is required - this time is the output of a
 996	 * firmware process.
 997	 */
 998	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
 999					  ptp->timeset[last_good].minor, 0);
1000
1001	/* Calculate delay from NIC top of second to last_time */
1002	delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
1003
1004	/* Set PPS timestamp to match NIC top of second */
1005	ptp->host_time_pps = *last_time;
1006	pps_sub_ts(&ptp->host_time_pps, delta);
1007
1008	return 0;
1009}
1010
1011/* Synchronize times between the host and the MC */
1012static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1013{
1014	struct efx_ptp_data *ptp = efx->ptp_data;
1015	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1016	size_t response_length;
1017	int rc;
1018	unsigned long timeout;
1019	struct pps_event_time last_time = {};
1020	unsigned int loops = 0;
1021	int *start = ptp->start.addr;
1022
1023	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1024	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1025	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1026		       num_readings);
1027	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1028		       ptp->start.dma_addr);
1029
1030	/* Clear flag that signals MC ready */
1031	WRITE_ONCE(*start, 0);
1032	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1033				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1034	EFX_WARN_ON_ONCE_PARANOID(rc);
1035
1036	/* Wait for start from MCDI (or timeout) */
1037	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1038	while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1039		udelay(20);	/* Usually start MCDI execution quickly */
1040		loops++;
1041	}
1042
1043	if (loops <= 1)
1044		++ptp->fast_syncs;
1045	if (!time_before(jiffies, timeout))
1046		++ptp->sync_timeouts;
1047
1048	if (READ_ONCE(*start))
1049		efx_ptp_send_times(efx, &last_time);
1050
1051	/* Collect results */
1052	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1053				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1054				 synch_buf, sizeof(synch_buf),
1055				 &response_length);
1056	if (rc == 0) {
1057		rc = efx_ptp_process_times(efx, synch_buf, response_length,
1058					   &last_time);
1059		if (rc == 0)
1060			++ptp->good_syncs;
1061		else
1062			++ptp->no_time_syncs;
1063	}
1064
1065	/* Increment the bad syncs counter if the synchronize fails, whatever
1066	 * the reason.
1067	 */
1068	if (rc != 0)
1069		++ptp->bad_syncs;
1070
1071	return rc;
1072}
1073
1074/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1075static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1076{
1077	struct efx_ptp_data *ptp_data = efx->ptp_data;
1078	u8 type = efx_tx_csum_type_skb(skb);
1079	struct efx_tx_queue *tx_queue;
1080
1081	tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
1082	if (tx_queue && tx_queue->timestamping) {
1083		skb_get(skb);
1084
1085		/* This code invokes normal driver TX code which is always
1086		 * protected from softirqs when called from generic TX code,
1087		 * which in turn disables preemption. Look at __dev_queue_xmit
1088		 * which uses rcu_read_lock_bh disabling preemption for RCU
1089		 * plus disabling softirqs. We do not need RCU reader
1090		 * protection here.
1091		 *
1092		 * Although it is theoretically safe for current PTP TX/RX code
1093		 * running without disabling softirqs, there are three good
1094		 * reasond for doing so:
1095		 *
1096		 *      1) The code invoked is mainly implemented for non-PTP
1097		 *         packets and it is always executed with softirqs
1098		 *         disabled.
1099		 *      2) This being a single PTP packet, better to not
1100		 *         interrupt its processing by softirqs which can lead
1101		 *         to high latencies.
1102		 *      3) netdev_xmit_more checks preemption is disabled and
1103		 *         triggers a BUG_ON if not.
1104		 */
1105		local_bh_disable();
1106		efx_enqueue_skb(tx_queue, skb);
1107		local_bh_enable();
1108
1109		/* We need to add the filters after enqueuing the packet.
1110		 * Otherwise, there's high latency in sending back the
1111		 * timestamp, causing ptp4l timeouts
1112		 */
1113		efx_ptp_insert_unicast_filter(efx, skb);
1114		dev_consume_skb_any(skb);
1115	} else {
1116		WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1117		dev_kfree_skb_any(skb);
1118	}
1119}
1120
1121/* Transmit a PTP packet, via the MCDI interface, to the wire. */
1122static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1123{
1124	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1125	struct efx_ptp_data *ptp_data = efx->ptp_data;
1126	struct skb_shared_hwtstamps timestamps;
 
 
1127	size_t len;
1128	int rc;
1129
1130	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1131	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1132	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1133	if (skb_shinfo(skb)->nr_frags != 0) {
1134		rc = skb_linearize(skb);
1135		if (rc != 0)
1136			goto fail;
1137	}
1138
1139	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1140		rc = skb_checksum_help(skb);
1141		if (rc != 0)
1142			goto fail;
1143	}
1144	skb_copy_from_linear_data(skb,
1145				  MCDI_PTR(ptp_data->txbuf,
1146					   PTP_IN_TRANSMIT_PACKET),
1147				  skb->len);
1148	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1149			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1150			  txtime, sizeof(txtime), &len);
1151	if (rc != 0)
1152		goto fail;
1153
1154	memset(&timestamps, 0, sizeof(timestamps));
1155	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1156		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1157		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1158		ptp_data->ts_corrections.ptp_tx);
1159
1160	skb_tstamp_tx(skb, &timestamps);
1161
1162	/* Add the filters after sending back the timestamp to avoid delaying it
1163	 * or ptp4l may timeout.
1164	 */
1165	efx_ptp_insert_unicast_filter(efx, skb);
1166
1167fail:
1168	dev_kfree_skb_any(skb);
1169
1170	return;
1171}
1172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173/* Process any queued receive events and corresponding packets
1174 *
1175 * q is returned with all the packets that are ready for delivery.
1176 */
1177static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1178{
1179	struct efx_ptp_data *ptp = efx->ptp_data;
1180	struct sk_buff *skb;
1181
1182	while ((skb = skb_dequeue(&ptp->rxq))) {
1183		struct efx_ptp_match *match;
1184
1185		match = (struct efx_ptp_match *)skb->cb;
1186		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1187			__skb_queue_tail(q, skb);
 
 
 
1188		} else if (time_after(jiffies, match->expiry)) {
1189			match->state = PTP_PACKET_STATE_TIMED_OUT;
1190			++ptp->rx_no_timestamp;
1191			__skb_queue_tail(q, skb);
1192		} else {
1193			/* Replace unprocessed entry and stop */
1194			skb_queue_head(&ptp->rxq, skb);
1195			break;
1196		}
1197	}
1198}
1199
1200/* Complete processing of a received packet */
1201static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1202{
1203	local_bh_disable();
1204	netif_receive_skb(skb);
1205	local_bh_enable();
1206}
1207
1208static struct efx_ptp_rxfilter *
1209efx_ptp_find_filter(struct list_head *filter_list, struct efx_filter_spec *spec)
1210{
1211	struct efx_ptp_rxfilter *rxfilter;
1212
1213	list_for_each_entry(rxfilter, filter_list, list) {
1214		if (rxfilter->ether_type == spec->ether_type &&
1215		    rxfilter->loc_port == spec->loc_port &&
1216		    !memcmp(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host)))
1217			return rxfilter;
1218	}
1219
1220	return NULL;
1221}
1222
1223static void efx_ptp_remove_one_filter(struct efx_nic *efx,
1224				      struct efx_ptp_rxfilter *rxfilter)
1225{
1226	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1227				  rxfilter->handle);
1228	list_del(&rxfilter->list);
1229	kfree(rxfilter);
1230}
1231
1232static void efx_ptp_remove_filters(struct efx_nic *efx,
1233				   struct list_head *filter_list)
1234{
1235	struct efx_ptp_rxfilter *rxfilter, *tmp;
1236
1237	list_for_each_entry_safe(rxfilter, tmp, filter_list, list)
1238		efx_ptp_remove_one_filter(efx, rxfilter);
1239}
1240
1241static void efx_ptp_init_filter(struct efx_nic *efx,
1242				struct efx_filter_spec *rxfilter)
1243{
1244	struct efx_channel *channel = efx->ptp_data->channel;
1245	struct efx_rx_queue *queue = efx_channel_get_rx_queue(channel);
1246
1247	efx_filter_init_rx(rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1248			   efx_rx_queue_index(queue));
1249}
1250
1251static int efx_ptp_insert_filter(struct efx_nic *efx,
1252				 struct list_head *filter_list,
1253				 struct efx_filter_spec *spec,
1254				 unsigned long expiry)
1255{
1256	struct efx_ptp_data *ptp = efx->ptp_data;
1257	struct efx_ptp_rxfilter *rxfilter;
1258	int rc;
1259
1260	rxfilter = efx_ptp_find_filter(filter_list, spec);
1261	if (rxfilter) {
1262		rxfilter->expiry = expiry;
1263		return 0;
1264	}
1265
1266	rxfilter = kzalloc(sizeof(*rxfilter), GFP_KERNEL);
1267	if (!rxfilter)
1268		return -ENOMEM;
1269
1270	rc = efx_filter_insert_filter(efx, spec, true);
1271	if (rc < 0)
1272		goto fail;
1273
1274	rxfilter->handle = rc;
1275	rxfilter->ether_type = spec->ether_type;
1276	rxfilter->loc_port = spec->loc_port;
1277	memcpy(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host));
1278	rxfilter->expiry = expiry;
1279	list_add(&rxfilter->list, filter_list);
1280
1281	queue_delayed_work(ptp->workwq, &ptp->cleanup_work,
1282			   UCAST_FILTER_EXPIRY_JIFFIES + 1);
1283
1284	return 0;
1285
1286fail:
1287	kfree(rxfilter);
1288	return rc;
1289}
1290
1291static int efx_ptp_insert_ipv4_filter(struct efx_nic *efx,
1292				      struct list_head *filter_list,
1293				      __be32 addr, u16 port,
1294				      unsigned long expiry)
1295{
1296	struct efx_filter_spec spec;
1297
1298	efx_ptp_init_filter(efx, &spec);
1299	efx_filter_set_ipv4_local(&spec, IPPROTO_UDP, addr, htons(port));
1300	return efx_ptp_insert_filter(efx, filter_list, &spec, expiry);
 
1301}
1302
1303static int efx_ptp_insert_ipv6_filter(struct efx_nic *efx,
1304				      struct list_head *filter_list,
1305				      const struct in6_addr *addr, u16 port,
1306				      unsigned long expiry)
1307{
1308	struct efx_filter_spec spec;
 
1309
1310	efx_ptp_init_filter(efx, &spec);
1311	efx_filter_set_ipv6_local(&spec, IPPROTO_UDP, addr, htons(port));
1312	return efx_ptp_insert_filter(efx, filter_list, &spec, expiry);
1313}
1314
1315static int efx_ptp_insert_eth_multicast_filter(struct efx_nic *efx)
1316{
1317	struct efx_ptp_data *ptp = efx->ptp_data;
1318	struct efx_filter_spec spec;
1319
1320	efx_ptp_init_filter(efx, &spec);
1321	efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, ptp_addr_ether);
1322	spec.match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
1323	spec.ether_type = htons(ETH_P_1588);
1324	return efx_ptp_insert_filter(efx, &ptp->rxfilters_mcast, &spec, 0);
1325}
1326
1327static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1328{
1329	struct efx_ptp_data *ptp = efx->ptp_data;
1330	int rc;
1331
1332	if (!ptp->channel || !list_empty(&ptp->rxfilters_mcast))
1333		return 0;
1334
1335	/* Must filter on both event and general ports to ensure
1336	 * that there is no packet re-ordering.
1337	 */
1338	rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast,
1339					htonl(PTP_ADDR_IPV4), PTP_EVENT_PORT,
1340					0);
1341	if (rc < 0)
1342		goto fail;
1343
1344	rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast,
1345					htonl(PTP_ADDR_IPV4), PTP_GENERAL_PORT,
1346					0);
1347	if (rc < 0)
1348		goto fail;
1349
1350	/* if the NIC supports hw timestamps by the MAC, we can support
1351	 * PTP over IPv6 and Ethernet
1352	 */
1353	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1354		rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast,
1355						&ptp_addr_ipv6, PTP_EVENT_PORT, 0);
1356		if (rc < 0)
1357			goto fail;
1358
1359		rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast,
1360						&ptp_addr_ipv6, PTP_GENERAL_PORT, 0);
1361		if (rc < 0)
1362			goto fail;
1363
1364		rc = efx_ptp_insert_eth_multicast_filter(efx);
1365
1366		/* Not all firmware variants support this filter */
1367		if (rc < 0 && rc != -EPROTONOSUPPORT)
1368			goto fail;
1369	}
1370
1371	return 0;
1372
1373fail:
1374	efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast);
1375	return rc;
1376}
1377
1378static bool efx_ptp_valid_unicast_event_pkt(struct sk_buff *skb)
1379{
1380	if (skb->protocol == htons(ETH_P_IP)) {
1381		return ip_hdr(skb)->daddr != htonl(PTP_ADDR_IPV4) &&
1382			ip_hdr(skb)->protocol == IPPROTO_UDP &&
1383			udp_hdr(skb)->source == htons(PTP_EVENT_PORT);
1384	} else if (skb->protocol == htons(ETH_P_IPV6)) {
1385		return !ipv6_addr_equal(&ipv6_hdr(skb)->daddr, &ptp_addr_ipv6) &&
1386			ipv6_hdr(skb)->nexthdr == IPPROTO_UDP &&
1387			udp_hdr(skb)->source == htons(PTP_EVENT_PORT);
1388	}
1389	return false;
1390}
1391
1392static int efx_ptp_insert_unicast_filter(struct efx_nic *efx,
1393					 struct sk_buff *skb)
1394{
1395	struct efx_ptp_data *ptp = efx->ptp_data;
1396	unsigned long expiry;
1397	int rc;
1398
1399	if (!efx_ptp_valid_unicast_event_pkt(skb))
1400		return -EINVAL;
1401
1402	expiry = jiffies + UCAST_FILTER_EXPIRY_JIFFIES;
1403
1404	if (skb->protocol == htons(ETH_P_IP)) {
1405		__be32 addr = ip_hdr(skb)->saddr;
1406
1407		rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast,
1408						addr, PTP_EVENT_PORT, expiry);
1409		if (rc < 0)
1410			goto out;
1411
1412		rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast,
1413						addr, PTP_GENERAL_PORT, expiry);
1414	} else if (efx_ptp_use_mac_tx_timestamps(efx)) {
1415		/* IPv6 PTP only supported by devices with MAC hw timestamp */
1416		struct in6_addr *addr = &ipv6_hdr(skb)->saddr;
1417
1418		rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast,
1419						addr, PTP_EVENT_PORT, expiry);
1420		if (rc < 0)
1421			goto out;
1422
1423		rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast,
1424						addr, PTP_GENERAL_PORT, expiry);
1425	} else {
1426		return -EOPNOTSUPP;
1427	}
1428
1429out:
1430	return rc;
1431}
1432
1433static int efx_ptp_start(struct efx_nic *efx)
1434{
1435	struct efx_ptp_data *ptp = efx->ptp_data;
1436	int rc;
1437
1438	ptp->reset_required = false;
1439
1440	rc = efx_ptp_insert_multicast_filters(efx);
1441	if (rc)
1442		return rc;
1443
1444	rc = efx_ptp_enable(efx);
1445	if (rc != 0)
1446		goto fail;
1447
1448	ptp->evt_frag_idx = 0;
1449	ptp->current_adjfreq = 0;
1450
1451	return 0;
1452
1453fail:
1454	efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast);
1455	return rc;
1456}
1457
1458static int efx_ptp_stop(struct efx_nic *efx)
1459{
1460	struct efx_ptp_data *ptp = efx->ptp_data;
 
 
1461	int rc;
1462
1463	if (ptp == NULL)
1464		return 0;
1465
1466	rc = efx_ptp_disable(efx);
1467
1468	efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast);
1469	efx_ptp_remove_filters(efx, &ptp->rxfilters_ucast);
1470
1471	/* Make sure RX packets are really delivered */
1472	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1473	skb_queue_purge(&efx->ptp_data->txq);
1474
 
 
 
 
 
 
 
1475	return rc;
1476}
1477
1478static int efx_ptp_restart(struct efx_nic *efx)
1479{
1480	if (efx->ptp_data && efx->ptp_data->enabled)
1481		return efx_ptp_start(efx);
1482	return 0;
1483}
1484
1485static void efx_ptp_pps_worker(struct work_struct *work)
1486{
1487	struct efx_ptp_data *ptp =
1488		container_of(work, struct efx_ptp_data, pps_work);
1489	struct efx_nic *efx = ptp->efx;
1490	struct ptp_clock_event ptp_evt;
1491
1492	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1493		return;
1494
1495	ptp_evt.type = PTP_CLOCK_PPSUSR;
1496	ptp_evt.pps_times = ptp->host_time_pps;
1497	ptp_clock_event(ptp->phc_clock, &ptp_evt);
1498}
1499
1500static void efx_ptp_worker(struct work_struct *work)
1501{
1502	struct efx_ptp_data *ptp_data =
1503		container_of(work, struct efx_ptp_data, work);
1504	struct efx_nic *efx = ptp_data->efx;
1505	struct sk_buff *skb;
1506	struct sk_buff_head tempq;
1507
1508	if (ptp_data->reset_required) {
1509		efx_ptp_stop(efx);
1510		efx_ptp_start(efx);
1511		return;
1512	}
1513
 
 
1514	__skb_queue_head_init(&tempq);
1515	efx_ptp_process_events(efx, &tempq);
1516
1517	while ((skb = skb_dequeue(&ptp_data->txq)))
1518		ptp_data->xmit_skb(efx, skb);
1519
1520	while ((skb = __skb_dequeue(&tempq)))
1521		efx_ptp_process_rx(efx, skb);
1522}
1523
1524static void efx_ptp_cleanup_worker(struct work_struct *work)
1525{
1526	struct efx_ptp_data *ptp =
1527		container_of(work, struct efx_ptp_data, cleanup_work.work);
1528	struct efx_ptp_rxfilter *rxfilter, *tmp;
1529
1530	list_for_each_entry_safe(rxfilter, tmp, &ptp->rxfilters_ucast, list) {
1531		if (time_is_before_jiffies(rxfilter->expiry))
1532			efx_ptp_remove_one_filter(ptp->efx, rxfilter);
1533	}
1534
1535	if (!list_empty(&ptp->rxfilters_ucast)) {
1536		queue_delayed_work(ptp->workwq, &ptp->cleanup_work,
1537				   UCAST_FILTER_EXPIRY_JIFFIES + 1);
1538	}
1539}
1540
1541static const struct ptp_clock_info efx_phc_clock_info = {
1542	.owner		= THIS_MODULE,
1543	.name		= "sfc",
1544	.max_adj	= MAX_PPB,
1545	.n_alarm	= 0,
1546	.n_ext_ts	= 0,
1547	.n_per_out	= 0,
1548	.n_pins		= 0,
1549	.pps		= 1,
1550	.adjfine	= efx_phc_adjfine,
1551	.adjtime	= efx_phc_adjtime,
1552	.gettime64	= efx_phc_gettime,
1553	.settime64	= efx_phc_settime,
1554	.enable		= efx_phc_enable,
1555};
1556
1557/* Initialise PTP state. */
1558int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1559{
1560	struct efx_ptp_data *ptp;
1561	int rc = 0;
 
1562
1563	if (efx->ptp_data) {
1564		efx->ptp_data->channel = channel;
1565		return 0;
1566	}
1567
1568	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1569	efx->ptp_data = ptp;
1570	if (!efx->ptp_data)
1571		return -ENOMEM;
1572
1573	ptp->efx = efx;
1574	ptp->channel = channel;
 
1575
1576	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1577	if (rc != 0)
1578		goto fail1;
1579
1580	skb_queue_head_init(&ptp->rxq);
1581	skb_queue_head_init(&ptp->txq);
1582	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1583	if (!ptp->workwq) {
1584		rc = -ENOMEM;
1585		goto fail2;
1586	}
1587
1588	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1589		ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1590		/* Request sync events on this channel. */
1591		channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1592	} else {
1593		ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1594	}
1595
1596	INIT_WORK(&ptp->work, efx_ptp_worker);
1597	INIT_DELAYED_WORK(&ptp->cleanup_work, efx_ptp_cleanup_worker);
1598	ptp->config.flags = 0;
1599	ptp->config.tx_type = HWTSTAMP_TX_OFF;
1600	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1601	INIT_LIST_HEAD(&ptp->rxfilters_mcast);
1602	INIT_LIST_HEAD(&ptp->rxfilters_ucast);
 
 
 
1603
1604	/* Get the NIC PTP attributes and set up time conversions */
1605	rc = efx_ptp_get_attributes(efx);
1606	if (rc < 0)
1607		goto fail3;
1608
1609	/* Get the timestamp corrections */
1610	rc = efx_ptp_get_timestamp_corrections(efx);
1611	if (rc < 0)
1612		goto fail3;
1613
1614	if (efx->mcdi->fn_flags &
1615	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1616		ptp->phc_clock_info = efx_phc_clock_info;
1617		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1618						    &efx->pci_dev->dev);
1619		if (IS_ERR(ptp->phc_clock)) {
1620			rc = PTR_ERR(ptp->phc_clock);
1621			goto fail3;
1622		} else if (ptp->phc_clock) {
1623			INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1624			ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1625			if (!ptp->pps_workwq) {
1626				rc = -ENOMEM;
1627				goto fail4;
1628			}
1629		}
1630	}
1631	ptp->nic_ts_enabled = false;
1632
1633	return 0;
1634fail4:
1635	ptp_clock_unregister(efx->ptp_data->phc_clock);
1636
1637fail3:
1638	destroy_workqueue(efx->ptp_data->workwq);
1639
1640fail2:
1641	efx_nic_free_buffer(efx, &ptp->start);
1642
1643fail1:
1644	kfree(efx->ptp_data);
1645	efx->ptp_data = NULL;
1646
1647	return rc;
1648}
1649
1650/* Initialise PTP channel.
1651 *
1652 * Setting core_index to zero causes the queue to be initialised and doesn't
1653 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1654 */
1655static int efx_ptp_probe_channel(struct efx_channel *channel)
1656{
1657	struct efx_nic *efx = channel->efx;
1658	int rc;
1659
1660	channel->irq_moderation_us = 0;
1661	channel->rx_queue.core_index = 0;
1662
1663	rc = efx_ptp_probe(efx, channel);
1664	/* Failure to probe PTP is not fatal; this channel will just not be
1665	 * used for anything.
1666	 * In the case of EPERM, efx_ptp_probe will print its own message (in
1667	 * efx_ptp_get_attributes()), so we don't need to.
1668	 */
1669	if (rc && rc != -EPERM)
1670		netif_warn(efx, drv, efx->net_dev,
1671			   "Failed to probe PTP, rc=%d\n", rc);
1672	return 0;
1673}
1674
1675void efx_ptp_remove(struct efx_nic *efx)
1676{
1677	if (!efx->ptp_data)
1678		return;
1679
1680	(void)efx_ptp_disable(efx);
1681
1682	cancel_work_sync(&efx->ptp_data->work);
1683	cancel_delayed_work_sync(&efx->ptp_data->cleanup_work);
1684	if (efx->ptp_data->pps_workwq)
1685		cancel_work_sync(&efx->ptp_data->pps_work);
1686
1687	skb_queue_purge(&efx->ptp_data->rxq);
1688	skb_queue_purge(&efx->ptp_data->txq);
1689
1690	if (efx->ptp_data->phc_clock) {
1691		destroy_workqueue(efx->ptp_data->pps_workwq);
1692		ptp_clock_unregister(efx->ptp_data->phc_clock);
1693	}
1694
1695	destroy_workqueue(efx->ptp_data->workwq);
1696
1697	efx_nic_free_buffer(efx, &efx->ptp_data->start);
1698	kfree(efx->ptp_data);
1699	efx->ptp_data = NULL;
1700}
1701
1702static void efx_ptp_remove_channel(struct efx_channel *channel)
1703{
1704	efx_ptp_remove(channel->efx);
1705}
1706
1707static void efx_ptp_get_channel_name(struct efx_channel *channel,
1708				     char *buf, size_t len)
1709{
1710	snprintf(buf, len, "%s-ptp", channel->efx->name);
1711}
1712
1713/* Determine whether this packet should be processed by the PTP module
1714 * or transmitted conventionally.
1715 */
1716bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1717{
1718	return efx->ptp_data &&
1719		efx->ptp_data->enabled &&
1720		skb->len >= PTP_MIN_LENGTH &&
1721		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1722		likely(skb->protocol == htons(ETH_P_IP)) &&
1723		skb_transport_header_was_set(skb) &&
1724		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1725		ip_hdr(skb)->protocol == IPPROTO_UDP &&
1726		skb_headlen(skb) >=
1727		skb_transport_offset(skb) + sizeof(struct udphdr) &&
1728		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1729}
1730
1731/* Receive a PTP packet.  Packets are queued until the arrival of
1732 * the receive timestamp from the MC - this will probably occur after the
1733 * packet arrival because of the processing in the MC.
1734 */
1735static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1736{
1737	struct efx_nic *efx = channel->efx;
1738	struct efx_ptp_data *ptp = efx->ptp_data;
1739	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
 
1740	unsigned int version;
1741	u8 *data;
1742
1743	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1744
1745	/* Correct version? */
1746	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1747		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1748			return false;
1749		}
1750		data = skb->data;
1751		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1752		if (version != PTP_VERSION_V1) {
1753			return false;
1754		}
 
 
 
 
 
 
1755	} else {
1756		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1757			return false;
1758		}
1759		data = skb->data;
1760		version = data[PTP_V2_VERSION_OFFSET];
1761		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1762			return false;
1763		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764	}
1765
1766	/* Does this packet require timestamping? */
1767	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1768		match->state = PTP_PACKET_STATE_UNMATCHED;
1769
1770		/* We expect the sequence number to be in the same position in
1771		 * the packet for PTP V1 and V2
1772		 */
1773		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1774		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
 
 
 
 
 
 
 
 
 
 
 
1775	} else {
1776		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1777	}
1778
1779	skb_queue_tail(&ptp->rxq, skb);
1780	queue_work(ptp->workwq, &ptp->work);
1781
1782	return true;
1783}
1784
1785/* Transmit a PTP packet.  This has to be transmitted by the MC
1786 * itself, through an MCDI call.  MCDI calls aren't permitted
1787 * in the transmit path so defer the actual transmission to a suitable worker.
1788 */
1789int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1790{
1791	struct efx_ptp_data *ptp = efx->ptp_data;
1792
1793	skb_queue_tail(&ptp->txq, skb);
1794
1795	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1796	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1797		efx_xmit_hwtstamp_pending(skb);
1798	queue_work(ptp->workwq, &ptp->work);
1799
1800	return NETDEV_TX_OK;
1801}
1802
 
 
 
 
 
1803int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1804			unsigned int new_mode)
1805{
1806	if ((enable_wanted != efx->ptp_data->enabled) ||
1807	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1808		int rc = 0;
1809
1810		if (enable_wanted) {
1811			/* Change of mode requires disable */
1812			if (efx->ptp_data->enabled &&
1813			    (efx->ptp_data->mode != new_mode)) {
1814				efx->ptp_data->enabled = false;
1815				rc = efx_ptp_stop(efx);
1816				if (rc != 0)
1817					return rc;
1818			}
1819
1820			/* Set new operating mode and establish
1821			 * baseline synchronisation, which must
1822			 * succeed.
1823			 */
1824			efx->ptp_data->mode = new_mode;
1825			if (netif_running(efx->net_dev))
1826				rc = efx_ptp_start(efx);
1827			if (rc == 0) {
1828				rc = efx_ptp_synchronize(efx,
1829							 PTP_SYNC_ATTEMPTS * 2);
1830				if (rc != 0)
1831					efx_ptp_stop(efx);
1832			}
1833		} else {
1834			rc = efx_ptp_stop(efx);
1835		}
1836
1837		if (rc != 0)
1838			return rc;
1839
1840		efx->ptp_data->enabled = enable_wanted;
1841	}
1842
1843	return 0;
1844}
1845
1846static int efx_ptp_ts_init(struct efx_nic *efx, struct kernel_hwtstamp_config *init)
1847{
1848	int rc;
1849
1850	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1851	    (init->tx_type != HWTSTAMP_TX_ON))
1852		return -ERANGE;
1853
1854	rc = efx->type->ptp_set_ts_config(efx, init);
1855	if (rc)
1856		return rc;
1857
1858	efx->ptp_data->config = *init;
1859	return 0;
1860}
1861
1862void efx_ptp_get_ts_info(struct efx_nic *efx, struct kernel_ethtool_ts_info *ts_info)
1863{
1864	struct efx_ptp_data *ptp = efx->ptp_data;
1865	struct efx_nic *primary = efx->primary;
1866
1867	ASSERT_RTNL();
1868
1869	if (!ptp)
1870		return;
1871
1872	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1873				     SOF_TIMESTAMPING_RX_HARDWARE |
1874				     SOF_TIMESTAMPING_RAW_HARDWARE);
1875	/* Check licensed features.  If we don't have the license for TX
1876	 * timestamps, the NIC will not support them.
1877	 */
1878	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1879		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1880
1881		if (!(nic_data->licensed_features &
1882		      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1883			ts_info->so_timestamping &=
1884				~SOF_TIMESTAMPING_TX_HARDWARE;
1885	}
1886	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1887		ts_info->phc_index =
1888			ptp_clock_index(primary->ptp_data->phc_clock);
1889	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1890	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1891}
1892
1893int efx_ptp_set_ts_config(struct efx_nic *efx,
1894			  struct kernel_hwtstamp_config *config,
1895			  struct netlink_ext_ack __always_unused *extack)
1896{
 
 
 
1897	/* Not a PTP enabled port */
1898	if (!efx->ptp_data)
1899		return -EOPNOTSUPP;
1900
1901	return efx_ptp_ts_init(efx, config);
 
 
 
 
 
 
 
 
1902}
1903
1904int efx_ptp_get_ts_config(struct efx_nic *efx,
1905			  struct kernel_hwtstamp_config *config)
1906{
1907	/* Not a PTP enabled port */
1908	if (!efx->ptp_data)
1909		return -EOPNOTSUPP;
1910	*config = efx->ptp_data->config;
1911	return 0;
 
1912}
1913
1914static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1915{
1916	struct efx_ptp_data *ptp = efx->ptp_data;
1917
1918	netif_err(efx, hw, efx->net_dev,
1919		"PTP unexpected event length: got %d expected %d\n",
1920		ptp->evt_frag_idx, expected_frag_len);
1921	ptp->reset_required = true;
1922	queue_work(ptp->workwq, &ptp->work);
1923}
1924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1925static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1926{
1927	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1928	if (ptp->evt_frag_idx != 1) {
1929		ptp_event_failure(efx, 1);
1930		return;
1931	}
1932
1933	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1934}
1935
1936static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1937{
1938	if (ptp->nic_ts_enabled)
1939		queue_work(ptp->pps_workwq, &ptp->pps_work);
1940}
1941
1942void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1943{
1944	struct efx_ptp_data *ptp = efx->ptp_data;
1945	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1946
1947	if (!ptp) {
1948		if (!efx->ptp_warned) {
1949			netif_warn(efx, drv, efx->net_dev,
1950				   "Received PTP event but PTP not set up\n");
1951			efx->ptp_warned = true;
1952		}
1953		return;
1954	}
1955
1956	if (!ptp->enabled)
1957		return;
1958
1959	if (ptp->evt_frag_idx == 0) {
1960		ptp->evt_code = code;
1961	} else if (ptp->evt_code != code) {
1962		netif_err(efx, hw, efx->net_dev,
1963			  "PTP out of sequence event %d\n", code);
1964		ptp->evt_frag_idx = 0;
1965	}
1966
1967	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1968	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1969		/* Process resulting event */
1970		switch (code) {
 
 
 
1971		case MCDI_EVENT_CODE_PTP_FAULT:
1972			ptp_event_fault(efx, ptp);
1973			break;
1974		case MCDI_EVENT_CODE_PTP_PPS:
1975			ptp_event_pps(efx, ptp);
1976			break;
1977		default:
1978			netif_err(efx, hw, efx->net_dev,
1979				  "PTP unknown event %d\n", code);
1980			break;
1981		}
1982		ptp->evt_frag_idx = 0;
1983	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1984		netif_err(efx, hw, efx->net_dev,
1985			  "PTP too many event fragments\n");
1986		ptp->evt_frag_idx = 0;
1987	}
1988}
1989
1990void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1991{
1992	struct efx_nic *efx = channel->efx;
1993	struct efx_ptp_data *ptp = efx->ptp_data;
1994
1995	/* When extracting the sync timestamp minor value, we should discard
1996	 * the least significant two bits. These are not required in order
1997	 * to reconstruct full-range timestamps and they are optionally used
1998	 * to report status depending on the options supplied when subscribing
1999	 * for sync events.
2000	 */
2001	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
2002	channel->sync_timestamp_minor =
2003		(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
2004			<< ptp->nic_time.sync_event_minor_shift;
2005
2006	/* if sync events have been disabled then we want to silently ignore
2007	 * this event, so throw away result.
2008	 */
2009	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
2010		       SYNC_EVENTS_VALID);
2011}
2012
2013static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
2014{
2015#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
2016	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
2017#else
2018	const u8 *data = eh + efx->rx_packet_ts_offset;
2019	return (u32)data[0]       |
2020	       (u32)data[1] << 8  |
2021	       (u32)data[2] << 16 |
2022	       (u32)data[3] << 24;
2023#endif
2024}
2025
2026void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2027				   struct sk_buff *skb)
2028{
2029	struct efx_nic *efx = channel->efx;
2030	struct efx_ptp_data *ptp = efx->ptp_data;
2031	u32 pkt_timestamp_major, pkt_timestamp_minor;
2032	u32 diff, carry;
2033	struct skb_shared_hwtstamps *timestamps;
2034
2035	if (channel->sync_events_state != SYNC_EVENTS_VALID)
2036		return;
2037
2038	pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2039
2040	/* get the difference between the packet and sync timestamps,
2041	 * modulo one second
2042	 */
2043	diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2044	if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2045		diff += ptp->nic_time.minor_max;
2046
2047	/* do we roll over a second boundary and need to carry the one? */
2048	carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2049		1 : 0;
2050
2051	if (diff <= ptp->nic_time.sync_event_diff_max) {
2052		/* packet is ahead of the sync event by a quarter of a second or
2053		 * less (allowing for fuzz)
2054		 */
2055		pkt_timestamp_major = channel->sync_timestamp_major + carry;
2056	} else if (diff >= ptp->nic_time.sync_event_diff_min) {
2057		/* packet is behind the sync event but within the fuzz factor.
2058		 * This means the RX packet and sync event crossed as they were
2059		 * placed on the event queue, which can sometimes happen.
2060		 */
2061		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2062	} else {
2063		/* it's outside tolerance in both directions. this might be
2064		 * indicative of us missing sync events for some reason, so
2065		 * we'll call it an error rather than risk giving a bogus
2066		 * timestamp.
2067		 */
2068		netif_vdbg(efx, drv, efx->net_dev,
2069			  "packet timestamp %x too far from sync event %x:%x\n",
2070			  pkt_timestamp_minor, channel->sync_timestamp_major,
2071			  channel->sync_timestamp_minor);
2072		return;
2073	}
2074
2075	/* attach the timestamps to the skb */
2076	timestamps = skb_hwtstamps(skb);
2077	timestamps->hwtstamp =
2078		ptp->nic_to_kernel_time(pkt_timestamp_major,
2079					pkt_timestamp_minor,
2080					ptp->ts_corrections.general_rx);
2081}
2082
2083static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
2084{
2085	struct efx_ptp_data *ptp_data = container_of(ptp,
2086						     struct efx_ptp_data,
2087						     phc_clock_info);
2088	s32 delta = scaled_ppm_to_ppb(scaled_ppm);
2089	struct efx_nic *efx = ptp_data->efx;
2090	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2091	s64 adjustment_ns;
2092	int rc;
2093
2094	if (delta > MAX_PPB)
2095		delta = MAX_PPB;
2096	else if (delta < -MAX_PPB)
2097		delta = -MAX_PPB;
2098
2099	/* Convert ppb to fixed point ns taking care to round correctly. */
2100	adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2101			 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2102			ptp_data->adjfreq_ppb_shift;
2103
2104	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2105	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2106	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2107	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2108	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2109	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2110			  NULL, 0, NULL);
2111	if (rc != 0)
2112		return rc;
2113
2114	ptp_data->current_adjfreq = adjustment_ns;
2115	return 0;
2116}
2117
2118static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2119{
2120	u32 nic_major, nic_minor;
2121	struct efx_ptp_data *ptp_data = container_of(ptp,
2122						     struct efx_ptp_data,
2123						     phc_clock_info);
2124	struct efx_nic *efx = ptp_data->efx;
2125	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2126
2127	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2128
2129	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2130	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2131	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2132	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2133	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2134	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2135			    NULL, 0, NULL);
2136}
2137
2138static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2139{
2140	struct efx_ptp_data *ptp_data = container_of(ptp,
2141						     struct efx_ptp_data,
2142						     phc_clock_info);
2143	struct efx_nic *efx = ptp_data->efx;
2144	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2145	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2146	int rc;
2147	ktime_t kt;
2148
2149	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2150	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2151
2152	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2153			  outbuf, sizeof(outbuf), NULL);
2154	if (rc != 0)
2155		return rc;
2156
2157	kt = ptp_data->nic_to_kernel_time(
2158		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2159		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2160	*ts = ktime_to_timespec64(kt);
2161	return 0;
2162}
2163
2164static int efx_phc_settime(struct ptp_clock_info *ptp,
2165			   const struct timespec64 *e_ts)
2166{
2167	/* Get the current NIC time, efx_phc_gettime.
2168	 * Subtract from the desired time to get the offset
2169	 * call efx_phc_adjtime with the offset
2170	 */
2171	int rc;
2172	struct timespec64 time_now;
2173	struct timespec64 delta;
2174
2175	rc = efx_phc_gettime(ptp, &time_now);
2176	if (rc != 0)
2177		return rc;
2178
2179	delta = timespec64_sub(*e_ts, time_now);
2180
2181	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2182	if (rc != 0)
2183		return rc;
2184
2185	return 0;
2186}
2187
2188static int efx_phc_enable(struct ptp_clock_info *ptp,
2189			  struct ptp_clock_request *request,
2190			  int enable)
2191{
2192	struct efx_ptp_data *ptp_data = container_of(ptp,
2193						     struct efx_ptp_data,
2194						     phc_clock_info);
2195	if (request->type != PTP_CLK_REQ_PPS)
2196		return -EOPNOTSUPP;
2197
2198	ptp_data->nic_ts_enabled = !!enable;
2199	return 0;
2200}
2201
2202static const struct efx_channel_type efx_ptp_channel_type = {
2203	.handle_no_channel	= efx_ptp_handle_no_channel,
2204	.pre_probe		= efx_ptp_probe_channel,
2205	.post_remove		= efx_ptp_remove_channel,
2206	.get_name		= efx_ptp_get_channel_name,
2207	.copy                   = efx_copy_channel,
2208	.receive_skb		= efx_ptp_rx,
2209	.want_txqs		= efx_ptp_want_txqs,
2210	.keep_eventq		= false,
2211};
2212
2213void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2214{
2215	/* Check whether PTP is implemented on this NIC.  The DISABLE
2216	 * operation will succeed if and only if it is implemented.
2217	 */
2218	if (efx_ptp_disable(efx) == 0)
2219		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2220			&efx_ptp_channel_type;
2221}
2222
2223void efx_ptp_start_datapath(struct efx_nic *efx)
2224{
2225	if (efx_ptp_restart(efx))
2226		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2227	/* re-enable timestamping if it was previously enabled */
2228	if (efx->type->ptp_set_ts_sync_events)
2229		efx->type->ptp_set_ts_sync_events(efx, true, true);
2230}
2231
2232void efx_ptp_stop_datapath(struct efx_nic *efx)
2233{
2234	/* temporarily disable timestamping */
2235	if (efx->type->ptp_set_ts_sync_events)
2236		efx->type->ptp_set_ts_sync_events(efx, false, true);
2237	efx_ptp_stop(efx);
2238}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2011-2013 Solarflare Communications Inc.
   5 */
   6
   7/* Theory of operation:
   8 *
   9 * PTP support is assisted by firmware running on the MC, which provides
  10 * the hardware timestamping capabilities.  Both transmitted and received
  11 * PTP event packets are queued onto internal queues for subsequent processing;
  12 * this is because the MC operations are relatively long and would block
  13 * block NAPI/interrupt operation.
  14 *
  15 * Receive event processing:
  16 *	The event contains the packet's UUID and sequence number, together
  17 *	with the hardware timestamp.  The PTP receive packet queue is searched
  18 *	for this UUID/sequence number and, if found, put on a pending queue.
  19 *	Packets not matching are delivered without timestamps (MCDI events will
  20 *	always arrive after the actual packet).
  21 *	It is important for the operation of the PTP protocol that the ordering
  22 *	of packets between the event and general port is maintained.
  23 *
  24 * Work queue processing:
  25 *	If work waiting, synchronise host/hardware time
  26 *
  27 *	Transmit: send packet through MC, which returns the transmission time
  28 *	that is converted to an appropriate timestamp.
  29 *
  30 *	Receive: the packet's reception time is converted to an appropriate
  31 *	timestamp.
  32 */
  33#include <linux/ip.h>
  34#include <linux/udp.h>
  35#include <linux/time.h>
 
  36#include <linux/ktime.h>
  37#include <linux/module.h>
  38#include <linux/pps_kernel.h>
  39#include <linux/ptp_clock_kernel.h>
  40#include "net_driver.h"
  41#include "efx.h"
  42#include "mcdi.h"
  43#include "mcdi_pcol.h"
  44#include "io.h"
  45#include "farch_regs.h"
  46#include "tx.h"
  47#include "nic.h" /* indirectly includes ptp.h */
  48#include "efx_channels.h"
  49
  50/* Maximum number of events expected to make up a PTP event */
  51#define	MAX_EVENT_FRAGS			3
  52
  53/* Maximum delay, ms, to begin synchronisation */
  54#define	MAX_SYNCHRONISE_WAIT_MS		2
  55
  56/* How long, at most, to spend synchronising */
  57#define	SYNCHRONISE_PERIOD_NS		250000
  58
  59/* How often to update the shared memory time */
  60#define	SYNCHRONISATION_GRANULARITY_NS	200
  61
  62/* Minimum permitted length of a (corrected) synchronisation time */
  63#define	DEFAULT_MIN_SYNCHRONISATION_NS	120
  64
  65/* Maximum permitted length of a (corrected) synchronisation time */
  66#define	MAX_SYNCHRONISATION_NS		1000
  67
  68/* How many (MC) receive events that can be queued */
  69#define	MAX_RECEIVE_EVENTS		8
  70
  71/* Length of (modified) moving average. */
  72#define	AVERAGE_LENGTH			16
  73
  74/* How long an unmatched event or packet can be held */
  75#define PKT_EVENT_LIFETIME_MS		10
  76
 
 
 
  77/* Offsets into PTP packet for identification.  These offsets are from the
  78 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  79 * PTP V2 permit the use of IPV4 options.
  80 */
  81#define PTP_DPORT_OFFSET	22
  82
  83#define PTP_V1_VERSION_LENGTH	2
  84#define PTP_V1_VERSION_OFFSET	28
  85
  86#define PTP_V1_UUID_LENGTH	6
  87#define PTP_V1_UUID_OFFSET	50
  88
  89#define PTP_V1_SEQUENCE_LENGTH	2
  90#define PTP_V1_SEQUENCE_OFFSET	58
  91
  92/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  93 * includes IP header.
  94 */
  95#define	PTP_V1_MIN_LENGTH	64
  96
  97#define PTP_V2_VERSION_LENGTH	1
  98#define PTP_V2_VERSION_OFFSET	29
  99
 100#define PTP_V2_UUID_LENGTH	8
 101#define PTP_V2_UUID_OFFSET	48
 102
 103/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 104 * the MC only captures the last six bytes of the clock identity. These values
 105 * reflect those, not the ones used in the standard.  The standard permits
 106 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 107 */
 108#define PTP_V2_MC_UUID_LENGTH	6
 109#define PTP_V2_MC_UUID_OFFSET	50
 110
 111#define PTP_V2_SEQUENCE_LENGTH	2
 112#define PTP_V2_SEQUENCE_OFFSET	58
 113
 114/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 115 * includes IP header.
 116 */
 117#define	PTP_V2_MIN_LENGTH	63
 118
 119#define	PTP_MIN_LENGTH		63
 120
 121#define PTP_RXFILTERS_LEN	5
 
 
 
 
 
 
 
 
 122
 123#define PTP_ADDR_IPV4		0xe0000181	/* 224.0.1.129 */
 124#define PTP_ADDR_IPV6		{0xff, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
 125				0, 0x01, 0x81}	/* ff0e::181 */
 126#define PTP_EVENT_PORT		319
 127#define PTP_GENERAL_PORT	320
 128#define PTP_ADDR_ETHER		{0x01, 0x1b, 0x19, 0, 0, 0} /* 01-1B-19-00-00-00 */
 129
 130/* Annoyingly the format of the version numbers are different between
 131 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 132 */
 133#define	PTP_VERSION_V1		1
 134
 135#define	PTP_VERSION_V2		2
 136#define	PTP_VERSION_V2_MASK	0x0f
 137
 138enum ptp_packet_state {
 139	PTP_PACKET_STATE_UNMATCHED = 0,
 140	PTP_PACKET_STATE_MATCHED,
 141	PTP_PACKET_STATE_TIMED_OUT,
 142	PTP_PACKET_STATE_MATCH_UNWANTED
 143};
 144
 145/* NIC synchronised with single word of time only comprising
 146 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 147 */
 148#define	MC_NANOSECOND_BITS	30
 149#define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
 150#define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 151
 152/* Maximum parts-per-billion adjustment that is acceptable */
 153#define MAX_PPB			1000000
 154
 155/* Precalculate scale word to avoid long long division at runtime */
 156/* This is equivalent to 2^66 / 10^9. */
 157#define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
 158
 159/* How much to shift down after scaling to convert to FP40 */
 160#define PPB_SHIFT_FP40		26
 161/* ... and FP44. */
 162#define PPB_SHIFT_FP44		22
 163
 164#define PTP_SYNC_ATTEMPTS	4
 165
 166/**
 167 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 168 * @words: UUID and (partial) sequence number
 169 * @expiry: Time after which the packet should be delivered irrespective of
 170 *            event arrival.
 171 * @state: The state of the packet - whether it is ready for processing or
 172 *         whether that is of no interest.
 173 */
 174struct efx_ptp_match {
 175	u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 176	unsigned long expiry;
 177	enum ptp_packet_state state;
 178};
 179
 180/**
 181 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 182 * @link: list of events
 183 * @seq0: First part of (PTP) UUID
 184 * @seq1: Second part of (PTP) UUID and sequence number
 185 * @hwtimestamp: Event timestamp
 186 * @expiry: Time which the packet arrived
 187 */
 188struct efx_ptp_event_rx {
 189	struct list_head link;
 190	u32 seq0;
 191	u32 seq1;
 192	ktime_t hwtimestamp;
 193	unsigned long expiry;
 194};
 195
 196/**
 197 * struct efx_ptp_timeset - Synchronisation between host and MC
 198 * @host_start: Host time immediately before hardware timestamp taken
 199 * @major: Hardware timestamp, major
 200 * @minor: Hardware timestamp, minor
 201 * @host_end: Host time immediately after hardware timestamp taken
 202 * @wait: Number of NIC clock ticks between hardware timestamp being read and
 203 *          host end time being seen
 204 * @window: Difference of host_end and host_start
 205 * @valid: Whether this timeset is valid
 206 */
 207struct efx_ptp_timeset {
 208	u32 host_start;
 209	u32 major;
 210	u32 minor;
 211	u32 host_end;
 212	u32 wait;
 213	u32 window;	/* Derived: end - start, allowing for wrap */
 214};
 215
 216/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 218 * @efx: The NIC context
 219 * @channel: The PTP channel (Siena only)
 220 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
 221 *	separate events)
 222 * @rxq: Receive SKB queue (awaiting timestamps)
 223 * @txq: Transmit SKB queue
 224 * @evt_list: List of MC receive events awaiting packets
 225 * @evt_free_list: List of free events
 226 * @evt_lock: Lock for manipulating evt_list and evt_free_list
 227 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 228 * @workwq: Work queue for processing pending PTP operations
 229 * @work: Work task
 
 230 * @reset_required: A serious error has occurred and the PTP task needs to be
 231 *                  reset (disable, enable).
 232 * @rxfilters: Receive filters when operating
 233 * @rxfilters_count: Num of installed rxfilters, should be == PTP_RXFILTERS_LEN
 234 * @config: Current timestamp configuration
 235 * @enabled: PTP operation enabled
 236 * @mode: Mode in which PTP operating (PTP version)
 237 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 238 * @nic_to_kernel_time: Function to convert from NIC to kernel time
 239 * @nic_time: contains time details
 240 * @nic_time.minor_max: Wrap point for NIC minor times
 241 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
 242 * in packet prefix and last MCDI time sync event i.e. how much earlier than
 243 * the last sync event time a packet timestamp can be.
 244 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
 245 * in packet prefix and last MCDI time sync event i.e. how much later than
 246 * the last sync event time a packet timestamp can be.
 247 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
 248 * field in MCDI time sync event.
 249 * @min_synchronisation_ns: Minimum acceptable corrected sync window
 250 * @capabilities: Capabilities flags from the NIC
 251 * @ts_corrections: contains corrections details
 252 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
 253 *                         timestamps
 254 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
 255 *                         timestamps
 256 * @ts_corrections.pps_out: PPS output error (information only)
 257 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 258 * @ts_corrections.general_tx: Required driver correction of general packet
 259 *                             transmit timestamps
 260 * @ts_corrections.general_rx: Required driver correction of general packet
 261 *                             receive timestamps
 262 * @evt_frags: Partly assembled PTP events
 263 * @evt_frag_idx: Current fragment number
 264 * @evt_code: Last event code
 265 * @start: Address at which MC indicates ready for synchronisation
 266 * @host_time_pps: Host time at last PPS
 267 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
 268 * frequency adjustment into a fixed point fractional nanosecond format.
 269 * @current_adjfreq: Current ppb adjustment.
 270 * @phc_clock: Pointer to registered phc device (if primary function)
 271 * @phc_clock_info: Registration structure for phc device
 272 * @pps_work: pps work task for handling pps events
 273 * @pps_workwq: pps work queue
 274 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 275 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 276 *         allocations in main data path).
 277 * @good_syncs: Number of successful synchronisations.
 278 * @fast_syncs: Number of synchronisations requiring short delay
 279 * @bad_syncs: Number of failed synchronisations.
 280 * @sync_timeouts: Number of synchronisation timeouts
 281 * @no_time_syncs: Number of synchronisations with no good times.
 282 * @invalid_sync_windows: Number of sync windows with bad durations.
 283 * @undersize_sync_windows: Number of corrected sync windows that are too small
 284 * @oversize_sync_windows: Number of corrected sync windows that are too large
 285 * @rx_no_timestamp: Number of packets received without a timestamp.
 286 * @timeset: Last set of synchronisation statistics.
 287 * @xmit_skb: Transmit SKB function.
 288 */
 289struct efx_ptp_data {
 290	struct efx_nic *efx;
 291	struct efx_channel *channel;
 292	bool rx_ts_inline;
 293	struct sk_buff_head rxq;
 294	struct sk_buff_head txq;
 295	struct list_head evt_list;
 296	struct list_head evt_free_list;
 297	spinlock_t evt_lock;
 298	struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 299	struct workqueue_struct *workwq;
 300	struct work_struct work;
 
 301	bool reset_required;
 302	u32 rxfilters[PTP_RXFILTERS_LEN];
 303	size_t rxfilters_count;
 304	struct hwtstamp_config config;
 305	bool enabled;
 306	unsigned int mode;
 307	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
 308	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
 309				      s32 correction);
 310	struct {
 311		u32 minor_max;
 312		u32 sync_event_diff_min;
 313		u32 sync_event_diff_max;
 314		unsigned int sync_event_minor_shift;
 315	} nic_time;
 316	unsigned int min_synchronisation_ns;
 317	unsigned int capabilities;
 318	struct {
 319		s32 ptp_tx;
 320		s32 ptp_rx;
 321		s32 pps_out;
 322		s32 pps_in;
 323		s32 general_tx;
 324		s32 general_rx;
 325	} ts_corrections;
 326	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 327	int evt_frag_idx;
 328	int evt_code;
 329	struct efx_buffer start;
 330	struct pps_event_time host_time_pps;
 331	unsigned int adjfreq_ppb_shift;
 332	s64 current_adjfreq;
 333	struct ptp_clock *phc_clock;
 334	struct ptp_clock_info phc_clock_info;
 335	struct work_struct pps_work;
 336	struct workqueue_struct *pps_workwq;
 337	bool nic_ts_enabled;
 338	efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];
 339
 340	unsigned int good_syncs;
 341	unsigned int fast_syncs;
 342	unsigned int bad_syncs;
 343	unsigned int sync_timeouts;
 344	unsigned int no_time_syncs;
 345	unsigned int invalid_sync_windows;
 346	unsigned int undersize_sync_windows;
 347	unsigned int oversize_sync_windows;
 348	unsigned int rx_no_timestamp;
 349	struct efx_ptp_timeset
 350	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 351	void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
 352};
 353
 354static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm);
 355static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 356static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
 357static int efx_phc_settime(struct ptp_clock_info *ptp,
 358			   const struct timespec64 *e_ts);
 359static int efx_phc_enable(struct ptp_clock_info *ptp,
 360			  struct ptp_clock_request *request, int on);
 
 
 361
 362bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
 363{
 364	return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
 365}
 366
 367/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
 368 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
 369 */
 370static bool efx_ptp_want_txqs(struct efx_channel *channel)
 371{
 372	return efx_ptp_use_mac_tx_timestamps(channel->efx);
 373}
 374
 375#define PTP_SW_STAT(ext_name, field_name)				\
 376	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
 377#define PTP_MC_STAT(ext_name, mcdi_name)				\
 378	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
 379static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
 380	PTP_SW_STAT(ptp_good_syncs, good_syncs),
 381	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
 382	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
 383	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
 384	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
 385	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
 386	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
 387	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
 388	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
 389	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
 390	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
 391	PTP_MC_STAT(ptp_timestamp_packets, TS),
 392	PTP_MC_STAT(ptp_filter_matches, FM),
 393	PTP_MC_STAT(ptp_non_filter_matches, NFM),
 394};
 395#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
 396static const unsigned long efx_ptp_stat_mask[] = {
 397	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
 398};
 399
 400size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
 401{
 402	if (!efx->ptp_data)
 403		return 0;
 404
 405	return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 406				      efx_ptp_stat_mask, strings);
 407}
 408
 409size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
 410{
 411	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
 412	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
 413	size_t i;
 414	int rc;
 415
 416	if (!efx->ptp_data)
 417		return 0;
 418
 419	/* Copy software statistics */
 420	for (i = 0; i < PTP_STAT_COUNT; i++) {
 421		if (efx_ptp_stat_desc[i].dma_width)
 422			continue;
 423		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
 424					     efx_ptp_stat_desc[i].offset);
 425	}
 426
 427	/* Fetch MC statistics.  We *must* fill in all statistics or
 428	 * risk leaking kernel memory to userland, so if the MCDI
 429	 * request fails we pretend we got zeroes.
 430	 */
 431	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
 432	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 433	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 434			  outbuf, sizeof(outbuf), NULL);
 435	if (rc)
 436		memset(outbuf, 0, sizeof(outbuf));
 437	efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 438			     efx_ptp_stat_mask,
 439			     stats, _MCDI_PTR(outbuf, 0), false);
 440
 441	return PTP_STAT_COUNT;
 442}
 443
 444/* For Siena platforms NIC time is s and ns */
 445static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
 446{
 447	struct timespec64 ts = ns_to_timespec64(ns);
 448	*nic_major = (u32)ts.tv_sec;
 449	*nic_minor = ts.tv_nsec;
 450}
 451
 452static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 453						s32 correction)
 454{
 455	ktime_t kt = ktime_set(nic_major, nic_minor);
 456	if (correction >= 0)
 457		kt = ktime_add_ns(kt, (u64)correction);
 458	else
 459		kt = ktime_sub_ns(kt, (u64)-correction);
 460	return kt;
 461}
 462
 463/* To convert from s27 format to ns we multiply then divide by a power of 2.
 464 * For the conversion from ns to s27, the operation is also converted to a
 465 * multiply and shift.
 466 */
 467#define S27_TO_NS_SHIFT	(27)
 468#define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
 469#define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
 470#define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)
 471
 472/* For Huntington platforms NIC time is in seconds and fractions of a second
 473 * where the minor register only uses 27 bits in units of 2^-27s.
 474 */
 475static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
 476{
 477	struct timespec64 ts = ns_to_timespec64(ns);
 478	u32 maj = (u32)ts.tv_sec;
 479	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
 480			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
 481
 482	/* The conversion can result in the minor value exceeding the maximum.
 483	 * In this case, round up to the next second.
 484	 */
 485	if (min >= S27_MINOR_MAX) {
 486		min -= S27_MINOR_MAX;
 487		maj++;
 488	}
 489
 490	*nic_major = maj;
 491	*nic_minor = min;
 492}
 493
 494static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
 495{
 496	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
 497			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
 498	return ktime_set(nic_major, ns);
 499}
 500
 501static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
 502					       s32 correction)
 503{
 504	/* Apply the correction and deal with carry */
 505	nic_minor += correction;
 506	if ((s32)nic_minor < 0) {
 507		nic_minor += S27_MINOR_MAX;
 508		nic_major--;
 509	} else if (nic_minor >= S27_MINOR_MAX) {
 510		nic_minor -= S27_MINOR_MAX;
 511		nic_major++;
 512	}
 513
 514	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
 515}
 516
 517/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
 518static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
 519{
 520	struct timespec64 ts = ns_to_timespec64(ns);
 521
 522	*nic_major = (u32)ts.tv_sec;
 523	*nic_minor = ts.tv_nsec * 4;
 524}
 525
 526static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 527						 s32 correction)
 528{
 529	ktime_t kt;
 530
 531	nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
 532	correction = DIV_ROUND_CLOSEST(correction, 4);
 533
 534	kt = ktime_set(nic_major, nic_minor);
 535
 536	if (correction >= 0)
 537		kt = ktime_add_ns(kt, (u64)correction);
 538	else
 539		kt = ktime_sub_ns(kt, (u64)-correction);
 540	return kt;
 541}
 542
 543struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
 544{
 545	return efx->ptp_data ? efx->ptp_data->channel : NULL;
 546}
 547
 548void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel)
 549{
 550	if (efx->ptp_data)
 551		efx->ptp_data->channel = channel;
 552}
 553
 554static u32 last_sync_timestamp_major(struct efx_nic *efx)
 555{
 556	struct efx_channel *channel = efx_ptp_channel(efx);
 557	u32 major = 0;
 558
 559	if (channel)
 560		major = channel->sync_timestamp_major;
 561	return major;
 562}
 563
 564/* The 8000 series and later can provide the time from the MAC, which is only
 565 * 48 bits long and provides meta-information in the top 2 bits.
 566 */
 567static ktime_t
 568efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
 569				    struct efx_ptp_data *ptp,
 570				    u32 nic_major, u32 nic_minor,
 571				    s32 correction)
 572{
 573	u32 sync_timestamp;
 574	ktime_t kt = { 0 };
 575	s16 delta;
 576
 577	if (!(nic_major & 0x80000000)) {
 578		WARN_ON_ONCE(nic_major >> 16);
 579
 580		/* Medford provides 48 bits of timestamp, so we must get the top
 581		 * 16 bits from the timesync event state.
 582		 *
 583		 * We only have the lower 16 bits of the time now, but we do
 584		 * have a full resolution timestamp at some point in past. As
 585		 * long as the difference between the (real) now and the sync
 586		 * is less than 2^15, then we can reconstruct the difference
 587		 * between those two numbers using only the lower 16 bits of
 588		 * each.
 589		 *
 590		 * Put another way
 591		 *
 592		 * a - b = ((a mod k) - b) mod k
 593		 *
 594		 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
 595		 * (a mod k) and b, so can calculate the delta, a - b.
 596		 *
 597		 */
 598		sync_timestamp = last_sync_timestamp_major(efx);
 599
 600		/* Because delta is s16 this does an implicit mask down to
 601		 * 16 bits which is what we need, assuming
 602		 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
 603		 * we can deal with the (unlikely) case of sync timestamps
 604		 * arriving from the future.
 605		 */
 606		delta = nic_major - sync_timestamp;
 607
 608		/* Recover the fully specified time now, by applying the offset
 609		 * to the (fully specified) sync time.
 610		 */
 611		nic_major = sync_timestamp + delta;
 612
 613		kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
 614					     correction);
 615	}
 616	return kt;
 617}
 618
 619ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
 620{
 621	struct efx_nic *efx = tx_queue->efx;
 622	struct efx_ptp_data *ptp = efx->ptp_data;
 623	ktime_t kt;
 624
 625	if (efx_ptp_use_mac_tx_timestamps(efx))
 626		kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
 627				tx_queue->completed_timestamp_major,
 628				tx_queue->completed_timestamp_minor,
 629				ptp->ts_corrections.general_tx);
 630	else
 631		kt = ptp->nic_to_kernel_time(
 632				tx_queue->completed_timestamp_major,
 633				tx_queue->completed_timestamp_minor,
 634				ptp->ts_corrections.general_tx);
 635	return kt;
 636}
 637
 638/* Get PTP attributes and set up time conversions */
 639static int efx_ptp_get_attributes(struct efx_nic *efx)
 640{
 641	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
 642	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
 643	struct efx_ptp_data *ptp = efx->ptp_data;
 644	int rc;
 645	u32 fmt;
 646	size_t out_len;
 647
 648	/* Get the PTP attributes. If the NIC doesn't support the operation we
 649	 * use the default format for compatibility with older NICs i.e.
 650	 * seconds and nanoseconds.
 651	 */
 652	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
 653	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 654	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 655				outbuf, sizeof(outbuf), &out_len);
 656	if (rc == 0) {
 657		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
 658	} else if (rc == -EINVAL) {
 659		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
 660	} else if (rc == -EPERM) {
 661		pci_info(efx->pci_dev, "no PTP support\n");
 662		return rc;
 663	} else {
 664		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
 665				       outbuf, sizeof(outbuf), rc);
 666		return rc;
 667	}
 668
 669	switch (fmt) {
 670	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
 671		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
 672		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
 673		ptp->nic_time.minor_max = 1 << 27;
 674		ptp->nic_time.sync_event_minor_shift = 19;
 675		break;
 676	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
 677		ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
 678		ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
 679		ptp->nic_time.minor_max = 1000000000;
 680		ptp->nic_time.sync_event_minor_shift = 22;
 681		break;
 682	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
 683		ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
 684		ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
 685		ptp->nic_time.minor_max = 4000000000UL;
 686		ptp->nic_time.sync_event_minor_shift = 24;
 687		break;
 688	default:
 689		return -ERANGE;
 690	}
 691
 692	/* Precalculate acceptable difference between the minor time in the
 693	 * packet prefix and the last MCDI time sync event. We expect the
 694	 * packet prefix timestamp to be after of sync event by up to one
 695	 * sync event interval (0.25s) but we allow it to exceed this by a
 696	 * fuzz factor of (0.1s)
 697	 */
 698	ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
 699		- (ptp->nic_time.minor_max / 10);
 700	ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
 701		+ (ptp->nic_time.minor_max / 10);
 702
 703	/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
 704	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
 705	 * a value to use for the minimum acceptable corrected synchronization
 706	 * window and may return further capabilities.
 707	 * If we have the extra information store it. For older firmware that
 708	 * does not implement the extended command use the default value.
 709	 */
 710	if (rc == 0 &&
 711	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
 712		ptp->min_synchronisation_ns =
 713			MCDI_DWORD(outbuf,
 714				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
 715	else
 716		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
 717
 718	if (rc == 0 &&
 719	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
 720		ptp->capabilities = MCDI_DWORD(outbuf,
 721					PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
 722	else
 723		ptp->capabilities = 0;
 724
 725	/* Set up the shift for conversion between frequency
 726	 * adjustments in parts-per-billion and the fixed-point
 727	 * fractional ns format that the adapter uses.
 728	 */
 729	if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
 730		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
 731	else
 732		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
 733
 734	return 0;
 735}
 736
 737/* Get PTP timestamp corrections */
 738static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
 739{
 740	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
 741	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
 742	int rc;
 743	size_t out_len;
 744
 745	/* Get the timestamp corrections from the NIC. If this operation is
 746	 * not supported (older NICs) then no correction is required.
 747	 */
 748	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
 749		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
 750	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 751
 752	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 753				outbuf, sizeof(outbuf), &out_len);
 754	if (rc == 0) {
 755		efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
 756			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
 757		efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
 758			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
 759		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
 760			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
 761		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
 762			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
 763
 764		if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
 765			efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
 766				outbuf,
 767				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
 768			efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
 769				outbuf,
 770				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
 771		} else {
 772			efx->ptp_data->ts_corrections.general_tx =
 773				efx->ptp_data->ts_corrections.ptp_tx;
 774			efx->ptp_data->ts_corrections.general_rx =
 775				efx->ptp_data->ts_corrections.ptp_rx;
 776		}
 777	} else if (rc == -EINVAL) {
 778		efx->ptp_data->ts_corrections.ptp_tx = 0;
 779		efx->ptp_data->ts_corrections.ptp_rx = 0;
 780		efx->ptp_data->ts_corrections.pps_out = 0;
 781		efx->ptp_data->ts_corrections.pps_in = 0;
 782		efx->ptp_data->ts_corrections.general_tx = 0;
 783		efx->ptp_data->ts_corrections.general_rx = 0;
 784	} else {
 785		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
 786				       sizeof(outbuf), rc);
 787		return rc;
 788	}
 789
 790	return 0;
 791}
 792
 793/* Enable MCDI PTP support. */
 794static int efx_ptp_enable(struct efx_nic *efx)
 795{
 796	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
 797	MCDI_DECLARE_BUF_ERR(outbuf);
 798	int rc;
 799
 800	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 801	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 802	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 803		       efx->ptp_data->channel ?
 804		       efx->ptp_data->channel->channel : 0);
 805	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 806
 807	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 808				outbuf, sizeof(outbuf), NULL);
 809	rc = (rc == -EALREADY) ? 0 : rc;
 810	if (rc)
 811		efx_mcdi_display_error(efx, MC_CMD_PTP,
 812				       MC_CMD_PTP_IN_ENABLE_LEN,
 813				       outbuf, sizeof(outbuf), rc);
 814	return rc;
 815}
 816
 817/* Disable MCDI PTP support.
 818 *
 819 * Note that this function should never rely on the presence of ptp_data -
 820 * may be called before that exists.
 821 */
 822static int efx_ptp_disable(struct efx_nic *efx)
 823{
 824	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
 825	MCDI_DECLARE_BUF_ERR(outbuf);
 826	int rc;
 827
 828	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 829	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 830	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 831				outbuf, sizeof(outbuf), NULL);
 832	rc = (rc == -EALREADY) ? 0 : rc;
 833	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
 834	 * should only have been called during probe.
 835	 */
 836	if (rc == -ENOSYS || rc == -EPERM)
 837		pci_info(efx->pci_dev, "no PTP support\n");
 838	else if (rc)
 839		efx_mcdi_display_error(efx, MC_CMD_PTP,
 840				       MC_CMD_PTP_IN_DISABLE_LEN,
 841				       outbuf, sizeof(outbuf), rc);
 842	return rc;
 843}
 844
 845static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 846{
 847	struct sk_buff *skb;
 848
 849	while ((skb = skb_dequeue(q))) {
 850		local_bh_disable();
 851		netif_receive_skb(skb);
 852		local_bh_enable();
 853	}
 854}
 855
 856static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 857{
 858	netif_err(efx, drv, efx->net_dev,
 859		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 860		  "vector. PTP disabled\n");
 861}
 862
 863/* Repeatedly send the host time to the MC which will capture the hardware
 864 * time.
 865 */
 866static void efx_ptp_send_times(struct efx_nic *efx,
 867			       struct pps_event_time *last_time)
 868{
 869	struct pps_event_time now;
 870	struct timespec64 limit;
 871	struct efx_ptp_data *ptp = efx->ptp_data;
 872	int *mc_running = ptp->start.addr;
 873
 874	pps_get_ts(&now);
 875	limit = now.ts_real;
 876	timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 877
 878	/* Write host time for specified period or until MC is done */
 879	while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
 880	       READ_ONCE(*mc_running)) {
 881		struct timespec64 update_time;
 882		unsigned int host_time;
 883
 884		/* Don't update continuously to avoid saturating the PCIe bus */
 885		update_time = now.ts_real;
 886		timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 887		do {
 888			pps_get_ts(&now);
 889		} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
 890			 READ_ONCE(*mc_running));
 891
 892		/* Synchronise NIC with single word of time only */
 893		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 894			     now.ts_real.tv_nsec);
 895		/* Update host time in NIC memory */
 896		efx->type->ptp_write_host_time(efx, host_time);
 897	}
 898	*last_time = now;
 899}
 900
 901/* Read a timeset from the MC's results and partial process. */
 902static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
 903				 struct efx_ptp_timeset *timeset)
 904{
 905	unsigned start_ns, end_ns;
 906
 907	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 908	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
 909	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
 910	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 911	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 912
 913	/* Ignore seconds */
 914	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 915	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 916	/* Allow for rollover */
 917	if (end_ns < start_ns)
 918		end_ns += NSEC_PER_SEC;
 919	/* Determine duration of operation */
 920	timeset->window = end_ns - start_ns;
 921}
 922
 923/* Process times received from MC.
 924 *
 925 * Extract times from returned results, and establish the minimum value
 926 * seen.  The minimum value represents the "best" possible time and events
 927 * too much greater than this are rejected - the machine is, perhaps, too
 928 * busy. A number of readings are taken so that, hopefully, at least one good
 929 * synchronisation will be seen in the results.
 930 */
 931static int
 932efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
 933		      size_t response_length,
 934		      const struct pps_event_time *last_time)
 935{
 936	unsigned number_readings =
 937		MCDI_VAR_ARRAY_LEN(response_length,
 938				   PTP_OUT_SYNCHRONIZE_TIMESET);
 939	unsigned i;
 940	unsigned ngood = 0;
 941	unsigned last_good = 0;
 942	struct efx_ptp_data *ptp = efx->ptp_data;
 943	u32 last_sec;
 944	u32 start_sec;
 945	struct timespec64 delta;
 946	ktime_t mc_time;
 947
 948	if (number_readings == 0)
 949		return -EAGAIN;
 950
 951	/* Read the set of results and find the last good host-MC
 952	 * synchronization result. The MC times when it finishes reading the
 953	 * host time so the corrected window time should be fairly constant
 954	 * for a given platform. Increment stats for any results that appear
 955	 * to be erroneous.
 956	 */
 957	for (i = 0; i < number_readings; i++) {
 958		s32 window, corrected;
 959		struct timespec64 wait;
 960
 961		efx_ptp_read_timeset(
 962			MCDI_ARRAY_STRUCT_PTR(synch_buf,
 963					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
 964			&ptp->timeset[i]);
 965
 966		wait = ktime_to_timespec64(
 967			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
 968		window = ptp->timeset[i].window;
 969		corrected = window - wait.tv_nsec;
 970
 971		/* We expect the uncorrected synchronization window to be at
 972		 * least as large as the interval between host start and end
 973		 * times. If it is smaller than this then this is mostly likely
 974		 * to be a consequence of the host's time being adjusted.
 975		 * Check that the corrected sync window is in a reasonable
 976		 * range. If it is out of range it is likely to be because an
 977		 * interrupt or other delay occurred between reading the system
 978		 * time and writing it to MC memory.
 979		 */
 980		if (window < SYNCHRONISATION_GRANULARITY_NS) {
 981			++ptp->invalid_sync_windows;
 982		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
 983			++ptp->oversize_sync_windows;
 984		} else if (corrected < ptp->min_synchronisation_ns) {
 985			++ptp->undersize_sync_windows;
 986		} else {
 987			ngood++;
 988			last_good = i;
 989		}
 990	}
 991
 992	if (ngood == 0) {
 993		netif_warn(efx, drv, efx->net_dev,
 994			   "PTP no suitable synchronisations\n");
 995		return -EAGAIN;
 996	}
 997
 998	/* Calculate delay from last good sync (host time) to last_time.
 999	 * It is possible that the seconds rolled over between taking
1000	 * the start reading and the last value written by the host.  The
1001	 * timescales are such that a gap of more than one second is never
1002	 * expected.  delta is *not* normalised.
1003	 */
1004	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
1005	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
1006	if (start_sec != last_sec &&
1007	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
1008		netif_warn(efx, hw, efx->net_dev,
1009			   "PTP bad synchronisation seconds\n");
1010		return -EAGAIN;
1011	}
1012	delta.tv_sec = (last_sec - start_sec) & 1;
1013	delta.tv_nsec =
1014		last_time->ts_real.tv_nsec -
1015		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
1016
1017	/* Convert the NIC time at last good sync into kernel time.
1018	 * No correction is required - this time is the output of a
1019	 * firmware process.
1020	 */
1021	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
1022					  ptp->timeset[last_good].minor, 0);
1023
1024	/* Calculate delay from NIC top of second to last_time */
1025	delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
1026
1027	/* Set PPS timestamp to match NIC top of second */
1028	ptp->host_time_pps = *last_time;
1029	pps_sub_ts(&ptp->host_time_pps, delta);
1030
1031	return 0;
1032}
1033
1034/* Synchronize times between the host and the MC */
1035static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1036{
1037	struct efx_ptp_data *ptp = efx->ptp_data;
1038	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1039	size_t response_length;
1040	int rc;
1041	unsigned long timeout;
1042	struct pps_event_time last_time = {};
1043	unsigned int loops = 0;
1044	int *start = ptp->start.addr;
1045
1046	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1047	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1048	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1049		       num_readings);
1050	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1051		       ptp->start.dma_addr);
1052
1053	/* Clear flag that signals MC ready */
1054	WRITE_ONCE(*start, 0);
1055	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1056				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1057	EFX_WARN_ON_ONCE_PARANOID(rc);
1058
1059	/* Wait for start from MCDI (or timeout) */
1060	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1061	while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1062		udelay(20);	/* Usually start MCDI execution quickly */
1063		loops++;
1064	}
1065
1066	if (loops <= 1)
1067		++ptp->fast_syncs;
1068	if (!time_before(jiffies, timeout))
1069		++ptp->sync_timeouts;
1070
1071	if (READ_ONCE(*start))
1072		efx_ptp_send_times(efx, &last_time);
1073
1074	/* Collect results */
1075	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1076				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1077				 synch_buf, sizeof(synch_buf),
1078				 &response_length);
1079	if (rc == 0) {
1080		rc = efx_ptp_process_times(efx, synch_buf, response_length,
1081					   &last_time);
1082		if (rc == 0)
1083			++ptp->good_syncs;
1084		else
1085			++ptp->no_time_syncs;
1086	}
1087
1088	/* Increment the bad syncs counter if the synchronize fails, whatever
1089	 * the reason.
1090	 */
1091	if (rc != 0)
1092		++ptp->bad_syncs;
1093
1094	return rc;
1095}
1096
1097/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1098static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1099{
1100	struct efx_ptp_data *ptp_data = efx->ptp_data;
1101	u8 type = efx_tx_csum_type_skb(skb);
1102	struct efx_tx_queue *tx_queue;
1103
1104	tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
1105	if (tx_queue && tx_queue->timestamping) {
 
 
1106		/* This code invokes normal driver TX code which is always
1107		 * protected from softirqs when called from generic TX code,
1108		 * which in turn disables preemption. Look at __dev_queue_xmit
1109		 * which uses rcu_read_lock_bh disabling preemption for RCU
1110		 * plus disabling softirqs. We do not need RCU reader
1111		 * protection here.
1112		 *
1113		 * Although it is theoretically safe for current PTP TX/RX code
1114		 * running without disabling softirqs, there are three good
1115		 * reasond for doing so:
1116		 *
1117		 *      1) The code invoked is mainly implemented for non-PTP
1118		 *         packets and it is always executed with softirqs
1119		 *         disabled.
1120		 *      2) This being a single PTP packet, better to not
1121		 *         interrupt its processing by softirqs which can lead
1122		 *         to high latencies.
1123		 *      3) netdev_xmit_more checks preemption is disabled and
1124		 *         triggers a BUG_ON if not.
1125		 */
1126		local_bh_disable();
1127		efx_enqueue_skb(tx_queue, skb);
1128		local_bh_enable();
 
 
 
 
 
 
 
1129	} else {
1130		WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1131		dev_kfree_skb_any(skb);
1132	}
1133}
1134
1135/* Transmit a PTP packet, via the MCDI interface, to the wire. */
1136static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1137{
 
1138	struct efx_ptp_data *ptp_data = efx->ptp_data;
1139	struct skb_shared_hwtstamps timestamps;
1140	int rc = -EIO;
1141	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1142	size_t len;
 
1143
1144	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1145	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1146	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1147	if (skb_shinfo(skb)->nr_frags != 0) {
1148		rc = skb_linearize(skb);
1149		if (rc != 0)
1150			goto fail;
1151	}
1152
1153	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1154		rc = skb_checksum_help(skb);
1155		if (rc != 0)
1156			goto fail;
1157	}
1158	skb_copy_from_linear_data(skb,
1159				  MCDI_PTR(ptp_data->txbuf,
1160					   PTP_IN_TRANSMIT_PACKET),
1161				  skb->len);
1162	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1163			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1164			  txtime, sizeof(txtime), &len);
1165	if (rc != 0)
1166		goto fail;
1167
1168	memset(&timestamps, 0, sizeof(timestamps));
1169	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1170		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1171		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1172		ptp_data->ts_corrections.ptp_tx);
1173
1174	skb_tstamp_tx(skb, &timestamps);
1175
1176	rc = 0;
 
 
 
1177
1178fail:
1179	dev_kfree_skb_any(skb);
1180
1181	return;
1182}
1183
1184static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1185{
1186	struct efx_ptp_data *ptp = efx->ptp_data;
1187	struct list_head *cursor;
1188	struct list_head *next;
1189
1190	if (ptp->rx_ts_inline)
1191		return;
1192
1193	/* Drop time-expired events */
1194	spin_lock_bh(&ptp->evt_lock);
1195	list_for_each_safe(cursor, next, &ptp->evt_list) {
1196		struct efx_ptp_event_rx *evt;
1197
1198		evt = list_entry(cursor, struct efx_ptp_event_rx,
1199				 link);
1200		if (time_after(jiffies, evt->expiry)) {
1201			list_move(&evt->link, &ptp->evt_free_list);
1202			netif_warn(efx, hw, efx->net_dev,
1203				   "PTP rx event dropped\n");
1204		}
1205	}
1206	spin_unlock_bh(&ptp->evt_lock);
1207}
1208
1209static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1210					      struct sk_buff *skb)
1211{
1212	struct efx_ptp_data *ptp = efx->ptp_data;
1213	bool evts_waiting;
1214	struct list_head *cursor;
1215	struct list_head *next;
1216	struct efx_ptp_match *match;
1217	enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1218
1219	WARN_ON_ONCE(ptp->rx_ts_inline);
1220
1221	spin_lock_bh(&ptp->evt_lock);
1222	evts_waiting = !list_empty(&ptp->evt_list);
1223	spin_unlock_bh(&ptp->evt_lock);
1224
1225	if (!evts_waiting)
1226		return PTP_PACKET_STATE_UNMATCHED;
1227
1228	match = (struct efx_ptp_match *)skb->cb;
1229	/* Look for a matching timestamp in the event queue */
1230	spin_lock_bh(&ptp->evt_lock);
1231	list_for_each_safe(cursor, next, &ptp->evt_list) {
1232		struct efx_ptp_event_rx *evt;
1233
1234		evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1235		if ((evt->seq0 == match->words[0]) &&
1236		    (evt->seq1 == match->words[1])) {
1237			struct skb_shared_hwtstamps *timestamps;
1238
1239			/* Match - add in hardware timestamp */
1240			timestamps = skb_hwtstamps(skb);
1241			timestamps->hwtstamp = evt->hwtimestamp;
1242
1243			match->state = PTP_PACKET_STATE_MATCHED;
1244			rc = PTP_PACKET_STATE_MATCHED;
1245			list_move(&evt->link, &ptp->evt_free_list);
1246			break;
1247		}
1248	}
1249	spin_unlock_bh(&ptp->evt_lock);
1250
1251	return rc;
1252}
1253
1254/* Process any queued receive events and corresponding packets
1255 *
1256 * q is returned with all the packets that are ready for delivery.
1257 */
1258static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1259{
1260	struct efx_ptp_data *ptp = efx->ptp_data;
1261	struct sk_buff *skb;
1262
1263	while ((skb = skb_dequeue(&ptp->rxq))) {
1264		struct efx_ptp_match *match;
1265
1266		match = (struct efx_ptp_match *)skb->cb;
1267		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1268			__skb_queue_tail(q, skb);
1269		} else if (efx_ptp_match_rx(efx, skb) ==
1270			   PTP_PACKET_STATE_MATCHED) {
1271			__skb_queue_tail(q, skb);
1272		} else if (time_after(jiffies, match->expiry)) {
1273			match->state = PTP_PACKET_STATE_TIMED_OUT;
1274			++ptp->rx_no_timestamp;
1275			__skb_queue_tail(q, skb);
1276		} else {
1277			/* Replace unprocessed entry and stop */
1278			skb_queue_head(&ptp->rxq, skb);
1279			break;
1280		}
1281	}
1282}
1283
1284/* Complete processing of a received packet */
1285static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1286{
1287	local_bh_disable();
1288	netif_receive_skb(skb);
1289	local_bh_enable();
1290}
1291
1292static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
 
1293{
1294	struct efx_ptp_data *ptp = efx->ptp_data;
1295
1296	while (ptp->rxfilters_count) {
1297		ptp->rxfilters_count--;
1298		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1299					  ptp->rxfilters[ptp->rxfilters_count]);
 
1300	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301}
1302
1303static void efx_ptp_init_filter(struct efx_nic *efx,
1304				struct efx_filter_spec *rxfilter)
1305{
1306	struct efx_channel *channel = efx->ptp_data->channel;
1307	struct efx_rx_queue *queue = efx_channel_get_rx_queue(channel);
1308
1309	efx_filter_init_rx(rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1310			   efx_rx_queue_index(queue));
1311}
1312
1313static int efx_ptp_insert_filter(struct efx_nic *efx,
1314				 struct efx_filter_spec *rxfilter)
 
 
1315{
1316	struct efx_ptp_data *ptp = efx->ptp_data;
 
 
 
 
 
 
 
 
1317
1318	int rc = efx_filter_insert_filter(efx, rxfilter, true);
 
 
 
 
1319	if (rc < 0)
1320		return rc;
1321	ptp->rxfilters[ptp->rxfilters_count] = rc;
1322	ptp->rxfilters_count++;
 
 
 
 
 
 
 
 
 
1323	return 0;
 
 
 
 
1324}
1325
1326static int efx_ptp_insert_ipv4_filter(struct efx_nic *efx, u16 port)
 
 
 
1327{
1328	struct efx_filter_spec rxfilter;
1329
1330	efx_ptp_init_filter(efx, &rxfilter);
1331	efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, htonl(PTP_ADDR_IPV4),
1332				  htons(port));
1333	return efx_ptp_insert_filter(efx, &rxfilter);
1334}
1335
1336static int efx_ptp_insert_ipv6_filter(struct efx_nic *efx, u16 port)
 
 
 
1337{
1338	const struct in6_addr addr = {{PTP_ADDR_IPV6}};
1339	struct efx_filter_spec rxfilter;
1340
1341	efx_ptp_init_filter(efx, &rxfilter);
1342	efx_filter_set_ipv6_local(&rxfilter, IPPROTO_UDP, &addr, htons(port));
1343	return efx_ptp_insert_filter(efx, &rxfilter);
1344}
1345
1346static int efx_ptp_insert_eth_filter(struct efx_nic *efx)
1347{
1348	const u8 addr[ETH_ALEN] = PTP_ADDR_ETHER;
1349	struct efx_filter_spec rxfilter;
1350
1351	efx_ptp_init_filter(efx, &rxfilter);
1352	efx_filter_set_eth_local(&rxfilter, EFX_FILTER_VID_UNSPEC, addr);
1353	rxfilter.match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
1354	rxfilter.ether_type = htons(ETH_P_1588);
1355	return efx_ptp_insert_filter(efx, &rxfilter);
1356}
1357
1358static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1359{
1360	struct efx_ptp_data *ptp = efx->ptp_data;
1361	int rc;
1362
1363	if (!ptp->channel || ptp->rxfilters_count)
1364		return 0;
1365
1366	/* Must filter on both event and general ports to ensure
1367	 * that there is no packet re-ordering.
1368	 */
1369	rc = efx_ptp_insert_ipv4_filter(efx, PTP_EVENT_PORT);
 
 
1370	if (rc < 0)
1371		goto fail;
1372
1373	rc = efx_ptp_insert_ipv4_filter(efx, PTP_GENERAL_PORT);
 
 
1374	if (rc < 0)
1375		goto fail;
1376
1377	/* if the NIC supports hw timestamps by the MAC, we can support
1378	 * PTP over IPv6 and Ethernet
1379	 */
1380	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1381		rc = efx_ptp_insert_ipv6_filter(efx, PTP_EVENT_PORT);
 
1382		if (rc < 0)
1383			goto fail;
1384
1385		rc = efx_ptp_insert_ipv6_filter(efx, PTP_GENERAL_PORT);
 
1386		if (rc < 0)
1387			goto fail;
1388
1389		rc = efx_ptp_insert_eth_filter(efx);
1390		if (rc < 0)
 
 
1391			goto fail;
1392	}
1393
1394	return 0;
1395
1396fail:
1397	efx_ptp_remove_multicast_filters(efx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1398	return rc;
1399}
1400
1401static int efx_ptp_start(struct efx_nic *efx)
1402{
1403	struct efx_ptp_data *ptp = efx->ptp_data;
1404	int rc;
1405
1406	ptp->reset_required = false;
1407
1408	rc = efx_ptp_insert_multicast_filters(efx);
1409	if (rc)
1410		return rc;
1411
1412	rc = efx_ptp_enable(efx);
1413	if (rc != 0)
1414		goto fail;
1415
1416	ptp->evt_frag_idx = 0;
1417	ptp->current_adjfreq = 0;
1418
1419	return 0;
1420
1421fail:
1422	efx_ptp_remove_multicast_filters(efx);
1423	return rc;
1424}
1425
1426static int efx_ptp_stop(struct efx_nic *efx)
1427{
1428	struct efx_ptp_data *ptp = efx->ptp_data;
1429	struct list_head *cursor;
1430	struct list_head *next;
1431	int rc;
1432
1433	if (ptp == NULL)
1434		return 0;
1435
1436	rc = efx_ptp_disable(efx);
1437
1438	efx_ptp_remove_multicast_filters(efx);
 
1439
1440	/* Make sure RX packets are really delivered */
1441	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1442	skb_queue_purge(&efx->ptp_data->txq);
1443
1444	/* Drop any pending receive events */
1445	spin_lock_bh(&efx->ptp_data->evt_lock);
1446	list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1447		list_move(cursor, &efx->ptp_data->evt_free_list);
1448	}
1449	spin_unlock_bh(&efx->ptp_data->evt_lock);
1450
1451	return rc;
1452}
1453
1454static int efx_ptp_restart(struct efx_nic *efx)
1455{
1456	if (efx->ptp_data && efx->ptp_data->enabled)
1457		return efx_ptp_start(efx);
1458	return 0;
1459}
1460
1461static void efx_ptp_pps_worker(struct work_struct *work)
1462{
1463	struct efx_ptp_data *ptp =
1464		container_of(work, struct efx_ptp_data, pps_work);
1465	struct efx_nic *efx = ptp->efx;
1466	struct ptp_clock_event ptp_evt;
1467
1468	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1469		return;
1470
1471	ptp_evt.type = PTP_CLOCK_PPSUSR;
1472	ptp_evt.pps_times = ptp->host_time_pps;
1473	ptp_clock_event(ptp->phc_clock, &ptp_evt);
1474}
1475
1476static void efx_ptp_worker(struct work_struct *work)
1477{
1478	struct efx_ptp_data *ptp_data =
1479		container_of(work, struct efx_ptp_data, work);
1480	struct efx_nic *efx = ptp_data->efx;
1481	struct sk_buff *skb;
1482	struct sk_buff_head tempq;
1483
1484	if (ptp_data->reset_required) {
1485		efx_ptp_stop(efx);
1486		efx_ptp_start(efx);
1487		return;
1488	}
1489
1490	efx_ptp_drop_time_expired_events(efx);
1491
1492	__skb_queue_head_init(&tempq);
1493	efx_ptp_process_events(efx, &tempq);
1494
1495	while ((skb = skb_dequeue(&ptp_data->txq)))
1496		ptp_data->xmit_skb(efx, skb);
1497
1498	while ((skb = __skb_dequeue(&tempq)))
1499		efx_ptp_process_rx(efx, skb);
1500}
1501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1502static const struct ptp_clock_info efx_phc_clock_info = {
1503	.owner		= THIS_MODULE,
1504	.name		= "sfc",
1505	.max_adj	= MAX_PPB,
1506	.n_alarm	= 0,
1507	.n_ext_ts	= 0,
1508	.n_per_out	= 0,
1509	.n_pins		= 0,
1510	.pps		= 1,
1511	.adjfine	= efx_phc_adjfine,
1512	.adjtime	= efx_phc_adjtime,
1513	.gettime64	= efx_phc_gettime,
1514	.settime64	= efx_phc_settime,
1515	.enable		= efx_phc_enable,
1516};
1517
1518/* Initialise PTP state. */
1519int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1520{
1521	struct efx_ptp_data *ptp;
1522	int rc = 0;
1523	unsigned int pos;
1524
1525	if (efx->ptp_data) {
1526		efx->ptp_data->channel = channel;
1527		return 0;
1528	}
1529
1530	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1531	efx->ptp_data = ptp;
1532	if (!efx->ptp_data)
1533		return -ENOMEM;
1534
1535	ptp->efx = efx;
1536	ptp->channel = channel;
1537	ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1538
1539	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1540	if (rc != 0)
1541		goto fail1;
1542
1543	skb_queue_head_init(&ptp->rxq);
1544	skb_queue_head_init(&ptp->txq);
1545	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1546	if (!ptp->workwq) {
1547		rc = -ENOMEM;
1548		goto fail2;
1549	}
1550
1551	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1552		ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1553		/* Request sync events on this channel. */
1554		channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1555	} else {
1556		ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1557	}
1558
1559	INIT_WORK(&ptp->work, efx_ptp_worker);
 
1560	ptp->config.flags = 0;
1561	ptp->config.tx_type = HWTSTAMP_TX_OFF;
1562	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1563	INIT_LIST_HEAD(&ptp->evt_list);
1564	INIT_LIST_HEAD(&ptp->evt_free_list);
1565	spin_lock_init(&ptp->evt_lock);
1566	for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1567		list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1568
1569	/* Get the NIC PTP attributes and set up time conversions */
1570	rc = efx_ptp_get_attributes(efx);
1571	if (rc < 0)
1572		goto fail3;
1573
1574	/* Get the timestamp corrections */
1575	rc = efx_ptp_get_timestamp_corrections(efx);
1576	if (rc < 0)
1577		goto fail3;
1578
1579	if (efx->mcdi->fn_flags &
1580	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1581		ptp->phc_clock_info = efx_phc_clock_info;
1582		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1583						    &efx->pci_dev->dev);
1584		if (IS_ERR(ptp->phc_clock)) {
1585			rc = PTR_ERR(ptp->phc_clock);
1586			goto fail3;
1587		} else if (ptp->phc_clock) {
1588			INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1589			ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1590			if (!ptp->pps_workwq) {
1591				rc = -ENOMEM;
1592				goto fail4;
1593			}
1594		}
1595	}
1596	ptp->nic_ts_enabled = false;
1597
1598	return 0;
1599fail4:
1600	ptp_clock_unregister(efx->ptp_data->phc_clock);
1601
1602fail3:
1603	destroy_workqueue(efx->ptp_data->workwq);
1604
1605fail2:
1606	efx_nic_free_buffer(efx, &ptp->start);
1607
1608fail1:
1609	kfree(efx->ptp_data);
1610	efx->ptp_data = NULL;
1611
1612	return rc;
1613}
1614
1615/* Initialise PTP channel.
1616 *
1617 * Setting core_index to zero causes the queue to be initialised and doesn't
1618 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1619 */
1620static int efx_ptp_probe_channel(struct efx_channel *channel)
1621{
1622	struct efx_nic *efx = channel->efx;
1623	int rc;
1624
1625	channel->irq_moderation_us = 0;
1626	channel->rx_queue.core_index = 0;
1627
1628	rc = efx_ptp_probe(efx, channel);
1629	/* Failure to probe PTP is not fatal; this channel will just not be
1630	 * used for anything.
1631	 * In the case of EPERM, efx_ptp_probe will print its own message (in
1632	 * efx_ptp_get_attributes()), so we don't need to.
1633	 */
1634	if (rc && rc != -EPERM)
1635		netif_warn(efx, drv, efx->net_dev,
1636			   "Failed to probe PTP, rc=%d\n", rc);
1637	return 0;
1638}
1639
1640void efx_ptp_remove(struct efx_nic *efx)
1641{
1642	if (!efx->ptp_data)
1643		return;
1644
1645	(void)efx_ptp_disable(efx);
1646
1647	cancel_work_sync(&efx->ptp_data->work);
 
1648	if (efx->ptp_data->pps_workwq)
1649		cancel_work_sync(&efx->ptp_data->pps_work);
1650
1651	skb_queue_purge(&efx->ptp_data->rxq);
1652	skb_queue_purge(&efx->ptp_data->txq);
1653
1654	if (efx->ptp_data->phc_clock) {
1655		destroy_workqueue(efx->ptp_data->pps_workwq);
1656		ptp_clock_unregister(efx->ptp_data->phc_clock);
1657	}
1658
1659	destroy_workqueue(efx->ptp_data->workwq);
1660
1661	efx_nic_free_buffer(efx, &efx->ptp_data->start);
1662	kfree(efx->ptp_data);
1663	efx->ptp_data = NULL;
1664}
1665
1666static void efx_ptp_remove_channel(struct efx_channel *channel)
1667{
1668	efx_ptp_remove(channel->efx);
1669}
1670
1671static void efx_ptp_get_channel_name(struct efx_channel *channel,
1672				     char *buf, size_t len)
1673{
1674	snprintf(buf, len, "%s-ptp", channel->efx->name);
1675}
1676
1677/* Determine whether this packet should be processed by the PTP module
1678 * or transmitted conventionally.
1679 */
1680bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1681{
1682	return efx->ptp_data &&
1683		efx->ptp_data->enabled &&
1684		skb->len >= PTP_MIN_LENGTH &&
1685		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1686		likely(skb->protocol == htons(ETH_P_IP)) &&
1687		skb_transport_header_was_set(skb) &&
1688		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1689		ip_hdr(skb)->protocol == IPPROTO_UDP &&
1690		skb_headlen(skb) >=
1691		skb_transport_offset(skb) + sizeof(struct udphdr) &&
1692		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1693}
1694
1695/* Receive a PTP packet.  Packets are queued until the arrival of
1696 * the receive timestamp from the MC - this will probably occur after the
1697 * packet arrival because of the processing in the MC.
1698 */
1699static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1700{
1701	struct efx_nic *efx = channel->efx;
1702	struct efx_ptp_data *ptp = efx->ptp_data;
1703	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1704	u8 *match_data_012, *match_data_345;
1705	unsigned int version;
1706	u8 *data;
1707
1708	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1709
1710	/* Correct version? */
1711	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1712		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1713			return false;
1714		}
1715		data = skb->data;
1716		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1717		if (version != PTP_VERSION_V1) {
1718			return false;
1719		}
1720
1721		/* PTP V1 uses all six bytes of the UUID to match the packet
1722		 * to the timestamp
1723		 */
1724		match_data_012 = data + PTP_V1_UUID_OFFSET;
1725		match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1726	} else {
1727		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1728			return false;
1729		}
1730		data = skb->data;
1731		version = data[PTP_V2_VERSION_OFFSET];
1732		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1733			return false;
1734		}
1735
1736		/* The original V2 implementation uses bytes 2-7 of
1737		 * the UUID to match the packet to the timestamp. This
1738		 * discards two of the bytes of the MAC address used
1739		 * to create the UUID (SF bug 33070).  The PTP V2
1740		 * enhanced mode fixes this issue and uses bytes 0-2
1741		 * and byte 5-7 of the UUID.
1742		 */
1743		match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1744		if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1745			match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1746		} else {
1747			match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1748			BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1749		}
1750	}
1751
1752	/* Does this packet require timestamping? */
1753	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1754		match->state = PTP_PACKET_STATE_UNMATCHED;
1755
1756		/* We expect the sequence number to be in the same position in
1757		 * the packet for PTP V1 and V2
1758		 */
1759		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1760		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1761
1762		/* Extract UUID/Sequence information */
1763		match->words[0] = (match_data_012[0]         |
1764				   (match_data_012[1] << 8)  |
1765				   (match_data_012[2] << 16) |
1766				   (match_data_345[0] << 24));
1767		match->words[1] = (match_data_345[1]         |
1768				   (match_data_345[2] << 8)  |
1769				   (data[PTP_V1_SEQUENCE_OFFSET +
1770					 PTP_V1_SEQUENCE_LENGTH - 1] <<
1771				    16));
1772	} else {
1773		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1774	}
1775
1776	skb_queue_tail(&ptp->rxq, skb);
1777	queue_work(ptp->workwq, &ptp->work);
1778
1779	return true;
1780}
1781
1782/* Transmit a PTP packet.  This has to be transmitted by the MC
1783 * itself, through an MCDI call.  MCDI calls aren't permitted
1784 * in the transmit path so defer the actual transmission to a suitable worker.
1785 */
1786int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1787{
1788	struct efx_ptp_data *ptp = efx->ptp_data;
1789
1790	skb_queue_tail(&ptp->txq, skb);
1791
1792	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1793	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1794		efx_xmit_hwtstamp_pending(skb);
1795	queue_work(ptp->workwq, &ptp->work);
1796
1797	return NETDEV_TX_OK;
1798}
1799
1800int efx_ptp_get_mode(struct efx_nic *efx)
1801{
1802	return efx->ptp_data->mode;
1803}
1804
1805int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1806			unsigned int new_mode)
1807{
1808	if ((enable_wanted != efx->ptp_data->enabled) ||
1809	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1810		int rc = 0;
1811
1812		if (enable_wanted) {
1813			/* Change of mode requires disable */
1814			if (efx->ptp_data->enabled &&
1815			    (efx->ptp_data->mode != new_mode)) {
1816				efx->ptp_data->enabled = false;
1817				rc = efx_ptp_stop(efx);
1818				if (rc != 0)
1819					return rc;
1820			}
1821
1822			/* Set new operating mode and establish
1823			 * baseline synchronisation, which must
1824			 * succeed.
1825			 */
1826			efx->ptp_data->mode = new_mode;
1827			if (netif_running(efx->net_dev))
1828				rc = efx_ptp_start(efx);
1829			if (rc == 0) {
1830				rc = efx_ptp_synchronize(efx,
1831							 PTP_SYNC_ATTEMPTS * 2);
1832				if (rc != 0)
1833					efx_ptp_stop(efx);
1834			}
1835		} else {
1836			rc = efx_ptp_stop(efx);
1837		}
1838
1839		if (rc != 0)
1840			return rc;
1841
1842		efx->ptp_data->enabled = enable_wanted;
1843	}
1844
1845	return 0;
1846}
1847
1848static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1849{
1850	int rc;
1851
1852	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1853	    (init->tx_type != HWTSTAMP_TX_ON))
1854		return -ERANGE;
1855
1856	rc = efx->type->ptp_set_ts_config(efx, init);
1857	if (rc)
1858		return rc;
1859
1860	efx->ptp_data->config = *init;
1861	return 0;
1862}
1863
1864void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1865{
1866	struct efx_ptp_data *ptp = efx->ptp_data;
1867	struct efx_nic *primary = efx->primary;
1868
1869	ASSERT_RTNL();
1870
1871	if (!ptp)
1872		return;
1873
1874	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1875				     SOF_TIMESTAMPING_RX_HARDWARE |
1876				     SOF_TIMESTAMPING_RAW_HARDWARE);
1877	/* Check licensed features.  If we don't have the license for TX
1878	 * timestamps, the NIC will not support them.
1879	 */
1880	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1881		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1882
1883		if (!(nic_data->licensed_features &
1884		      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1885			ts_info->so_timestamping &=
1886				~SOF_TIMESTAMPING_TX_HARDWARE;
1887	}
1888	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1889		ts_info->phc_index =
1890			ptp_clock_index(primary->ptp_data->phc_clock);
1891	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1892	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1893}
1894
1895int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
 
 
1896{
1897	struct hwtstamp_config config;
1898	int rc;
1899
1900	/* Not a PTP enabled port */
1901	if (!efx->ptp_data)
1902		return -EOPNOTSUPP;
1903
1904	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1905		return -EFAULT;
1906
1907	rc = efx_ptp_ts_init(efx, &config);
1908	if (rc != 0)
1909		return rc;
1910
1911	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1912		? -EFAULT : 0;
1913}
1914
1915int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
 
1916{
 
1917	if (!efx->ptp_data)
1918		return -EOPNOTSUPP;
1919
1920	return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1921			    sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1922}
1923
1924static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1925{
1926	struct efx_ptp_data *ptp = efx->ptp_data;
1927
1928	netif_err(efx, hw, efx->net_dev,
1929		"PTP unexpected event length: got %d expected %d\n",
1930		ptp->evt_frag_idx, expected_frag_len);
1931	ptp->reset_required = true;
1932	queue_work(ptp->workwq, &ptp->work);
1933}
1934
1935/* Process a completed receive event.  Put it on the event queue and
1936 * start worker thread.  This is required because event and their
1937 * correspoding packets may come in either order.
1938 */
1939static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1940{
1941	struct efx_ptp_event_rx *evt = NULL;
1942
1943	if (WARN_ON_ONCE(ptp->rx_ts_inline))
1944		return;
1945
1946	if (ptp->evt_frag_idx != 3) {
1947		ptp_event_failure(efx, 3);
1948		return;
1949	}
1950
1951	spin_lock_bh(&ptp->evt_lock);
1952	if (!list_empty(&ptp->evt_free_list)) {
1953		evt = list_first_entry(&ptp->evt_free_list,
1954				       struct efx_ptp_event_rx, link);
1955		list_del(&evt->link);
1956
1957		evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1958		evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1959					     MCDI_EVENT_SRC)        |
1960			     (EFX_QWORD_FIELD(ptp->evt_frags[1],
1961					      MCDI_EVENT_SRC) << 8) |
1962			     (EFX_QWORD_FIELD(ptp->evt_frags[0],
1963					      MCDI_EVENT_SRC) << 16));
1964		evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1965			EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1966			EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1967			ptp->ts_corrections.ptp_rx);
1968		evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1969		list_add_tail(&evt->link, &ptp->evt_list);
1970
1971		queue_work(ptp->workwq, &ptp->work);
1972	} else if (net_ratelimit()) {
1973		/* Log a rate-limited warning message. */
1974		netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1975	}
1976	spin_unlock_bh(&ptp->evt_lock);
1977}
1978
1979static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1980{
1981	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1982	if (ptp->evt_frag_idx != 1) {
1983		ptp_event_failure(efx, 1);
1984		return;
1985	}
1986
1987	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1988}
1989
1990static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1991{
1992	if (ptp->nic_ts_enabled)
1993		queue_work(ptp->pps_workwq, &ptp->pps_work);
1994}
1995
1996void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1997{
1998	struct efx_ptp_data *ptp = efx->ptp_data;
1999	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
2000
2001	if (!ptp) {
2002		if (!efx->ptp_warned) {
2003			netif_warn(efx, drv, efx->net_dev,
2004				   "Received PTP event but PTP not set up\n");
2005			efx->ptp_warned = true;
2006		}
2007		return;
2008	}
2009
2010	if (!ptp->enabled)
2011		return;
2012
2013	if (ptp->evt_frag_idx == 0) {
2014		ptp->evt_code = code;
2015	} else if (ptp->evt_code != code) {
2016		netif_err(efx, hw, efx->net_dev,
2017			  "PTP out of sequence event %d\n", code);
2018		ptp->evt_frag_idx = 0;
2019	}
2020
2021	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
2022	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
2023		/* Process resulting event */
2024		switch (code) {
2025		case MCDI_EVENT_CODE_PTP_RX:
2026			ptp_event_rx(efx, ptp);
2027			break;
2028		case MCDI_EVENT_CODE_PTP_FAULT:
2029			ptp_event_fault(efx, ptp);
2030			break;
2031		case MCDI_EVENT_CODE_PTP_PPS:
2032			ptp_event_pps(efx, ptp);
2033			break;
2034		default:
2035			netif_err(efx, hw, efx->net_dev,
2036				  "PTP unknown event %d\n", code);
2037			break;
2038		}
2039		ptp->evt_frag_idx = 0;
2040	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
2041		netif_err(efx, hw, efx->net_dev,
2042			  "PTP too many event fragments\n");
2043		ptp->evt_frag_idx = 0;
2044	}
2045}
2046
2047void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
2048{
2049	struct efx_nic *efx = channel->efx;
2050	struct efx_ptp_data *ptp = efx->ptp_data;
2051
2052	/* When extracting the sync timestamp minor value, we should discard
2053	 * the least significant two bits. These are not required in order
2054	 * to reconstruct full-range timestamps and they are optionally used
2055	 * to report status depending on the options supplied when subscribing
2056	 * for sync events.
2057	 */
2058	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
2059	channel->sync_timestamp_minor =
2060		(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
2061			<< ptp->nic_time.sync_event_minor_shift;
2062
2063	/* if sync events have been disabled then we want to silently ignore
2064	 * this event, so throw away result.
2065	 */
2066	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
2067		       SYNC_EVENTS_VALID);
2068}
2069
2070static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
2071{
2072#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
2073	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
2074#else
2075	const u8 *data = eh + efx->rx_packet_ts_offset;
2076	return (u32)data[0]       |
2077	       (u32)data[1] << 8  |
2078	       (u32)data[2] << 16 |
2079	       (u32)data[3] << 24;
2080#endif
2081}
2082
2083void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2084				   struct sk_buff *skb)
2085{
2086	struct efx_nic *efx = channel->efx;
2087	struct efx_ptp_data *ptp = efx->ptp_data;
2088	u32 pkt_timestamp_major, pkt_timestamp_minor;
2089	u32 diff, carry;
2090	struct skb_shared_hwtstamps *timestamps;
2091
2092	if (channel->sync_events_state != SYNC_EVENTS_VALID)
2093		return;
2094
2095	pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2096
2097	/* get the difference between the packet and sync timestamps,
2098	 * modulo one second
2099	 */
2100	diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2101	if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2102		diff += ptp->nic_time.minor_max;
2103
2104	/* do we roll over a second boundary and need to carry the one? */
2105	carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2106		1 : 0;
2107
2108	if (diff <= ptp->nic_time.sync_event_diff_max) {
2109		/* packet is ahead of the sync event by a quarter of a second or
2110		 * less (allowing for fuzz)
2111		 */
2112		pkt_timestamp_major = channel->sync_timestamp_major + carry;
2113	} else if (diff >= ptp->nic_time.sync_event_diff_min) {
2114		/* packet is behind the sync event but within the fuzz factor.
2115		 * This means the RX packet and sync event crossed as they were
2116		 * placed on the event queue, which can sometimes happen.
2117		 */
2118		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2119	} else {
2120		/* it's outside tolerance in both directions. this might be
2121		 * indicative of us missing sync events for some reason, so
2122		 * we'll call it an error rather than risk giving a bogus
2123		 * timestamp.
2124		 */
2125		netif_vdbg(efx, drv, efx->net_dev,
2126			  "packet timestamp %x too far from sync event %x:%x\n",
2127			  pkt_timestamp_minor, channel->sync_timestamp_major,
2128			  channel->sync_timestamp_minor);
2129		return;
2130	}
2131
2132	/* attach the timestamps to the skb */
2133	timestamps = skb_hwtstamps(skb);
2134	timestamps->hwtstamp =
2135		ptp->nic_to_kernel_time(pkt_timestamp_major,
2136					pkt_timestamp_minor,
2137					ptp->ts_corrections.general_rx);
2138}
2139
2140static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
2141{
2142	struct efx_ptp_data *ptp_data = container_of(ptp,
2143						     struct efx_ptp_data,
2144						     phc_clock_info);
2145	s32 delta = scaled_ppm_to_ppb(scaled_ppm);
2146	struct efx_nic *efx = ptp_data->efx;
2147	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2148	s64 adjustment_ns;
2149	int rc;
2150
2151	if (delta > MAX_PPB)
2152		delta = MAX_PPB;
2153	else if (delta < -MAX_PPB)
2154		delta = -MAX_PPB;
2155
2156	/* Convert ppb to fixed point ns taking care to round correctly. */
2157	adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2158			 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2159			ptp_data->adjfreq_ppb_shift;
2160
2161	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2162	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2163	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2164	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2165	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2166	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2167			  NULL, 0, NULL);
2168	if (rc != 0)
2169		return rc;
2170
2171	ptp_data->current_adjfreq = adjustment_ns;
2172	return 0;
2173}
2174
2175static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2176{
2177	u32 nic_major, nic_minor;
2178	struct efx_ptp_data *ptp_data = container_of(ptp,
2179						     struct efx_ptp_data,
2180						     phc_clock_info);
2181	struct efx_nic *efx = ptp_data->efx;
2182	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2183
2184	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2185
2186	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2187	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2188	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2189	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2190	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2191	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2192			    NULL, 0, NULL);
2193}
2194
2195static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2196{
2197	struct efx_ptp_data *ptp_data = container_of(ptp,
2198						     struct efx_ptp_data,
2199						     phc_clock_info);
2200	struct efx_nic *efx = ptp_data->efx;
2201	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2202	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2203	int rc;
2204	ktime_t kt;
2205
2206	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2207	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2208
2209	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2210			  outbuf, sizeof(outbuf), NULL);
2211	if (rc != 0)
2212		return rc;
2213
2214	kt = ptp_data->nic_to_kernel_time(
2215		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2216		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2217	*ts = ktime_to_timespec64(kt);
2218	return 0;
2219}
2220
2221static int efx_phc_settime(struct ptp_clock_info *ptp,
2222			   const struct timespec64 *e_ts)
2223{
2224	/* Get the current NIC time, efx_phc_gettime.
2225	 * Subtract from the desired time to get the offset
2226	 * call efx_phc_adjtime with the offset
2227	 */
2228	int rc;
2229	struct timespec64 time_now;
2230	struct timespec64 delta;
2231
2232	rc = efx_phc_gettime(ptp, &time_now);
2233	if (rc != 0)
2234		return rc;
2235
2236	delta = timespec64_sub(*e_ts, time_now);
2237
2238	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2239	if (rc != 0)
2240		return rc;
2241
2242	return 0;
2243}
2244
2245static int efx_phc_enable(struct ptp_clock_info *ptp,
2246			  struct ptp_clock_request *request,
2247			  int enable)
2248{
2249	struct efx_ptp_data *ptp_data = container_of(ptp,
2250						     struct efx_ptp_data,
2251						     phc_clock_info);
2252	if (request->type != PTP_CLK_REQ_PPS)
2253		return -EOPNOTSUPP;
2254
2255	ptp_data->nic_ts_enabled = !!enable;
2256	return 0;
2257}
2258
2259static const struct efx_channel_type efx_ptp_channel_type = {
2260	.handle_no_channel	= efx_ptp_handle_no_channel,
2261	.pre_probe		= efx_ptp_probe_channel,
2262	.post_remove		= efx_ptp_remove_channel,
2263	.get_name		= efx_ptp_get_channel_name,
2264	.copy                   = efx_copy_channel,
2265	.receive_skb		= efx_ptp_rx,
2266	.want_txqs		= efx_ptp_want_txqs,
2267	.keep_eventq		= false,
2268};
2269
2270void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2271{
2272	/* Check whether PTP is implemented on this NIC.  The DISABLE
2273	 * operation will succeed if and only if it is implemented.
2274	 */
2275	if (efx_ptp_disable(efx) == 0)
2276		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2277			&efx_ptp_channel_type;
2278}
2279
2280void efx_ptp_start_datapath(struct efx_nic *efx)
2281{
2282	if (efx_ptp_restart(efx))
2283		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2284	/* re-enable timestamping if it was previously enabled */
2285	if (efx->type->ptp_set_ts_sync_events)
2286		efx->type->ptp_set_ts_sync_events(efx, true, true);
2287}
2288
2289void efx_ptp_stop_datapath(struct efx_nic *efx)
2290{
2291	/* temporarily disable timestamping */
2292	if (efx->type->ptp_set_ts_sync_events)
2293		efx->type->ptp_set_ts_sync_events(efx, false, true);
2294	efx_ptp_stop(efx);
2295}