Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
   3 */
   4
   5/* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
   6 */
   7
   8#include <linux/tcp.h>
   9#include <linux/ip.h>
  10#include <linux/ipv6.h>
  11#include <linux/crc32.h>
  12#include <linux/if_vlan.h>
  13#include <linux/jiffies.h>
  14#include <linux/phy.h>
  15#include <linux/of.h>
  16#include <net/ip6_checksum.h>
  17#include "emac.h"
  18#include "emac-sgmii.h"
  19
  20/* EMAC_MAC_CTRL */
  21#define SINGLE_PAUSE_MODE       	0x10000000
  22#define DEBUG_MODE                      0x08000000
  23#define BROAD_EN                        0x04000000
  24#define MULTI_ALL                       0x02000000
  25#define RX_CHKSUM_EN                    0x01000000
  26#define HUGE                            0x00800000
  27#define SPEED(x)			(((x) & 0x3) << 20)
  28#define SPEED_MASK			SPEED(0x3)
  29#define SIMR                            0x00080000
  30#define TPAUSE                          0x00010000
  31#define PROM_MODE                       0x00008000
  32#define VLAN_STRIP                      0x00004000
  33#define PRLEN_BMSK                      0x00003c00
  34#define PRLEN_SHFT                      10
  35#define HUGEN                           0x00000200
  36#define FLCHK                           0x00000100
  37#define PCRCE                           0x00000080
  38#define CRCE                            0x00000040
  39#define FULLD                           0x00000020
  40#define MAC_LP_EN                       0x00000010
  41#define RXFC                            0x00000008
  42#define TXFC                            0x00000004
  43#define RXEN                            0x00000002
  44#define TXEN                            0x00000001
  45
  46/* EMAC_DESC_CTRL_3 */
  47#define RFD_RING_SIZE_BMSK                                       0xfff
  48
  49/* EMAC_DESC_CTRL_4 */
  50#define RX_BUFFER_SIZE_BMSK                                     0xffff
  51
  52/* EMAC_DESC_CTRL_6 */
  53#define RRD_RING_SIZE_BMSK                                       0xfff
  54
  55/* EMAC_DESC_CTRL_9 */
  56#define TPD_RING_SIZE_BMSK                                      0xffff
  57
  58/* EMAC_TXQ_CTRL_0 */
  59#define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
  60#define NUM_TXF_BURST_PREF_SHFT                                     16
  61#define LS_8023_SP                                                0x80
  62#define TXQ_MODE                                                  0x40
  63#define TXQ_EN                                                    0x20
  64#define IP_OP_SP                                                  0x10
  65#define NUM_TPD_BURST_PREF_BMSK                                    0xf
  66#define NUM_TPD_BURST_PREF_SHFT                                      0
  67
  68/* EMAC_TXQ_CTRL_1 */
  69#define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
  70
  71/* EMAC_TXQ_CTRL_2 */
  72#define TXF_HWM_BMSK                                         0xfff0000
  73#define TXF_LWM_BMSK                                             0xfff
  74
  75/* EMAC_RXQ_CTRL_0 */
  76#define RXQ_EN                                                 BIT(31)
  77#define CUT_THRU_EN                                            BIT(30)
  78#define RSS_HASH_EN                                            BIT(29)
  79#define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
  80#define NUM_RFD_BURST_PREF_SHFT                                     20
  81#define IDT_TABLE_SIZE_BMSK                                    0x1ff00
  82#define IDT_TABLE_SIZE_SHFT                                          8
  83#define SP_IPV6                                                   0x80
  84
  85/* EMAC_RXQ_CTRL_1 */
  86#define JUMBO_1KAH_BMSK                                         0xf000
  87#define JUMBO_1KAH_SHFT                                             12
  88#define RFD_PREF_LOW_TH                                           0x10
  89#define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
  90#define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
  91#define RFD_PREF_UP_TH                                            0x10
  92#define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
  93#define RFD_PREF_UP_THRESHOLD_SHFT                                   0
  94
  95/* EMAC_RXQ_CTRL_2 */
  96#define RXF_DOF_THRESFHOLD                                       0x1a0
  97#define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
  98#define RXF_DOF_THRESHOLD_SHFT                                      16
  99#define RXF_UOF_THRESFHOLD                                        0xbe
 100#define RXF_UOF_THRESHOLD_BMSK                                   0xfff
 101#define RXF_UOF_THRESHOLD_SHFT                                       0
 102
 103/* EMAC_RXQ_CTRL_3 */
 104#define RXD_TIMER_BMSK                                      0xffff0000
 105#define RXD_THRESHOLD_BMSK                                       0xfff
 106#define RXD_THRESHOLD_SHFT                                           0
 107
 108/* EMAC_DMA_CTRL */
 109#define DMAW_DLY_CNT_BMSK                                      0xf0000
 110#define DMAW_DLY_CNT_SHFT                                           16
 111#define DMAR_DLY_CNT_BMSK                                       0xf800
 112#define DMAR_DLY_CNT_SHFT                                           11
 113#define DMAR_REQ_PRI                                             0x400
 114#define REGWRBLEN_BMSK                                           0x380
 115#define REGWRBLEN_SHFT                                               7
 116#define REGRDBLEN_BMSK                                            0x70
 117#define REGRDBLEN_SHFT                                               4
 118#define OUT_ORDER_MODE                                             0x4
 119#define ENH_ORDER_MODE                                             0x2
 120#define IN_ORDER_MODE                                              0x1
 121
 122/* EMAC_MAILBOX_13 */
 123#define RFD3_PROC_IDX_BMSK                                   0xfff0000
 124#define RFD3_PROC_IDX_SHFT                                          16
 125#define RFD3_PROD_IDX_BMSK                                       0xfff
 126#define RFD3_PROD_IDX_SHFT                                           0
 127
 128/* EMAC_MAILBOX_2 */
 129#define NTPD_CONS_IDX_BMSK                                  0xffff0000
 130#define NTPD_CONS_IDX_SHFT                                          16
 131
 132/* EMAC_MAILBOX_3 */
 133#define RFD0_CONS_IDX_BMSK                                       0xfff
 134#define RFD0_CONS_IDX_SHFT                                           0
 135
 136/* EMAC_MAILBOX_11 */
 137#define H3TPD_PROD_IDX_BMSK                                 0xffff0000
 138#define H3TPD_PROD_IDX_SHFT                                         16
 139
 140/* EMAC_AXI_MAST_CTRL */
 141#define DATA_BYTE_SWAP                                             0x8
 142#define MAX_BOUND                                                  0x2
 143#define MAX_BTYPE                                                  0x1
 144
 145/* EMAC_MAILBOX_12 */
 146#define H3TPD_CONS_IDX_BMSK                                 0xffff0000
 147#define H3TPD_CONS_IDX_SHFT                                         16
 148
 149/* EMAC_MAILBOX_9 */
 150#define H2TPD_PROD_IDX_BMSK                                     0xffff
 151#define H2TPD_PROD_IDX_SHFT                                          0
 152
 153/* EMAC_MAILBOX_10 */
 154#define H1TPD_CONS_IDX_BMSK                                 0xffff0000
 155#define H1TPD_CONS_IDX_SHFT                                         16
 156#define H2TPD_CONS_IDX_BMSK                                     0xffff
 157#define H2TPD_CONS_IDX_SHFT                                          0
 158
 159/* EMAC_ATHR_HEADER_CTRL */
 160#define HEADER_CNT_EN                                              0x2
 161#define HEADER_ENABLE                                              0x1
 162
 163/* EMAC_MAILBOX_0 */
 164#define RFD0_PROC_IDX_BMSK                                   0xfff0000
 165#define RFD0_PROC_IDX_SHFT                                          16
 166#define RFD0_PROD_IDX_BMSK                                       0xfff
 167#define RFD0_PROD_IDX_SHFT                                           0
 168
 169/* EMAC_MAILBOX_5 */
 170#define RFD1_PROC_IDX_BMSK                                   0xfff0000
 171#define RFD1_PROC_IDX_SHFT                                          16
 172#define RFD1_PROD_IDX_BMSK                                       0xfff
 173#define RFD1_PROD_IDX_SHFT                                           0
 174
 175/* EMAC_MISC_CTRL */
 176#define RX_UNCPL_INT_EN                                            0x1
 177
 178/* EMAC_MAILBOX_7 */
 179#define RFD2_CONS_IDX_BMSK                                   0xfff0000
 180#define RFD2_CONS_IDX_SHFT                                          16
 181#define RFD1_CONS_IDX_BMSK                                       0xfff
 182#define RFD1_CONS_IDX_SHFT                                           0
 183
 184/* EMAC_MAILBOX_8 */
 185#define RFD3_CONS_IDX_BMSK                                       0xfff
 186#define RFD3_CONS_IDX_SHFT                                           0
 187
 188/* EMAC_MAILBOX_15 */
 189#define NTPD_PROD_IDX_BMSK                                      0xffff
 190#define NTPD_PROD_IDX_SHFT                                           0
 191
 192/* EMAC_MAILBOX_16 */
 193#define H1TPD_PROD_IDX_BMSK                                     0xffff
 194#define H1TPD_PROD_IDX_SHFT                                          0
 195
 196#define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
 197#define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
 198#define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
 199#define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
 200
 201/* EMAC_EMAC_WRAPPER_TX_TS_INX */
 202#define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
 203#define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
 204
 205struct emac_skb_cb {
 206	u32           tpd_idx;
 207	unsigned long jiffies;
 208};
 209
 210#define EMAC_SKB_CB(skb)	((struct emac_skb_cb *)(skb)->cb)
 211#define EMAC_RSS_IDT_SIZE	256
 212#define JUMBO_1KAH		0x4
 213#define RXD_TH			0x100
 214#define EMAC_TPD_LAST_FRAGMENT	0x80000000
 215#define EMAC_TPD_TSTAMP_SAVE	0x80000000
 216
 217/* EMAC Errors in emac_rrd.word[3] */
 218#define EMAC_RRD_L4F		BIT(14)
 219#define EMAC_RRD_IPF		BIT(15)
 220#define EMAC_RRD_CRC		BIT(21)
 221#define EMAC_RRD_FAE		BIT(22)
 222#define EMAC_RRD_TRN		BIT(23)
 223#define EMAC_RRD_RNT		BIT(24)
 224#define EMAC_RRD_INC		BIT(25)
 225#define EMAC_RRD_FOV		BIT(29)
 226#define EMAC_RRD_LEN		BIT(30)
 227
 228/* Error bits that will result in a received frame being discarded */
 229#define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
 230			EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
 231			EMAC_RRD_FOV | EMAC_RRD_LEN)
 232#define EMAC_RRD_STATS_DW_IDX 3
 233
 234#define EMAC_RRD(RXQ, SIZE, IDX)	((RXQ)->rrd.v_addr + (SIZE * (IDX)))
 235#define EMAC_RFD(RXQ, SIZE, IDX)	((RXQ)->rfd.v_addr + (SIZE * (IDX)))
 236#define EMAC_TPD(TXQ, SIZE, IDX)	((TXQ)->tpd.v_addr + (SIZE * (IDX)))
 237
 238#define GET_RFD_BUFFER(RXQ, IDX)	(&((RXQ)->rfd.rfbuff[(IDX)]))
 239#define GET_TPD_BUFFER(RTQ, IDX)	(&((RTQ)->tpd.tpbuff[(IDX)]))
 240
 241#define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD	8
 242
 243#define ISR_RX_PKT      (\
 244	RX_PKT_INT0     |\
 245	RX_PKT_INT1     |\
 246	RX_PKT_INT2     |\
 247	RX_PKT_INT3)
 248
 249void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
 250{
 251	u32 crc32, bit, reg, mta;
 252
 253	/* Calculate the CRC of the MAC address */
 254	crc32 = ether_crc(ETH_ALEN, addr);
 255
 256	/* The HASH Table is an array of 2 32-bit registers. It is
 257	 * treated like an array of 64 bits (BitArray[hash_value]).
 258	 * Use the upper 6 bits of the above CRC as the hash value.
 259	 */
 260	reg = (crc32 >> 31) & 0x1;
 261	bit = (crc32 >> 26) & 0x1F;
 262
 263	mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
 264	mta |= BIT(bit);
 265	writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
 266}
 267
 268void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
 269{
 270	writel(0, adpt->base + EMAC_HASH_TAB_REG0);
 271	writel(0, adpt->base + EMAC_HASH_TAB_REG1);
 272}
 273
 274/* definitions for RSS */
 275#define EMAC_RSS_KEY(_i, _type) \
 276		(EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
 277#define EMAC_RSS_TBL(_i, _type) \
 278		(EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
 279
 280/* Config MAC modes */
 281void emac_mac_mode_config(struct emac_adapter *adpt)
 282{
 283	struct net_device *netdev = adpt->netdev;
 284	u32 mac;
 285
 286	mac = readl(adpt->base + EMAC_MAC_CTRL);
 287	mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
 288
 289	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
 290		mac |= VLAN_STRIP;
 291
 292	if (netdev->flags & IFF_PROMISC)
 293		mac |= PROM_MODE;
 294
 295	if (netdev->flags & IFF_ALLMULTI)
 296		mac |= MULTI_ALL;
 297
 298	writel(mac, adpt->base + EMAC_MAC_CTRL);
 299}
 300
 301/* Config descriptor rings */
 302static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
 303{
 304	/* TPD (Transmit Packet Descriptor) */
 305	writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
 306	       adpt->base + EMAC_DESC_CTRL_1);
 307
 308	writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
 309	       adpt->base + EMAC_DESC_CTRL_8);
 310
 311	writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
 312	       adpt->base + EMAC_DESC_CTRL_9);
 313
 314	/* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
 315	writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
 316	       adpt->base + EMAC_DESC_CTRL_0);
 317
 318	writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
 319	       adpt->base + EMAC_DESC_CTRL_2);
 320	writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
 321	       adpt->base + EMAC_DESC_CTRL_5);
 322
 323	writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
 324	       adpt->base + EMAC_DESC_CTRL_3);
 325	writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
 326	       adpt->base + EMAC_DESC_CTRL_6);
 327
 328	writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
 329	       adpt->base + EMAC_DESC_CTRL_4);
 330
 331	writel(0, adpt->base + EMAC_DESC_CTRL_11);
 332
 333	/* Load all of the base addresses above and ensure that triggering HW to
 334	 * read ring pointers is flushed
 335	 */
 336	writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
 337}
 338
 339/* Config transmit parameters */
 340static void emac_mac_tx_config(struct emac_adapter *adpt)
 341{
 342	u32 val;
 343
 344	writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
 345	       JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
 346
 347	val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
 348	       NUM_TPD_BURST_PREF_BMSK;
 349
 350	val |= TXQ_MODE | LS_8023_SP;
 351	val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
 352		NUM_TXF_BURST_PREF_BMSK;
 353
 354	writel(val, adpt->base + EMAC_TXQ_CTRL_0);
 355	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
 356			  (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
 357}
 358
 359/* Config receive parameters */
 360static void emac_mac_rx_config(struct emac_adapter *adpt)
 361{
 362	u32 val;
 363
 364	val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
 365	       NUM_RFD_BURST_PREF_BMSK;
 366	val |= (SP_IPV6 | CUT_THRU_EN);
 367
 368	writel(val, adpt->base + EMAC_RXQ_CTRL_0);
 369
 370	val = readl(adpt->base + EMAC_RXQ_CTRL_1);
 371	val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
 372		 RFD_PREF_UP_THRESHOLD_BMSK);
 373	val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
 374		(RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
 375		(RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
 376	writel(val, adpt->base + EMAC_RXQ_CTRL_1);
 377
 378	val = readl(adpt->base + EMAC_RXQ_CTRL_2);
 379	val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
 380	val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
 381		(RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
 382	writel(val, adpt->base + EMAC_RXQ_CTRL_2);
 383
 384	val = readl(adpt->base + EMAC_RXQ_CTRL_3);
 385	val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
 386	val |= RXD_TH << RXD_THRESHOLD_SHFT;
 387	writel(val, adpt->base + EMAC_RXQ_CTRL_3);
 388}
 389
 390/* Config dma */
 391static void emac_mac_dma_config(struct emac_adapter *adpt)
 392{
 393	u32 dma_ctrl = DMAR_REQ_PRI;
 394
 395	switch (adpt->dma_order) {
 396	case emac_dma_ord_in:
 397		dma_ctrl |= IN_ORDER_MODE;
 398		break;
 399	case emac_dma_ord_enh:
 400		dma_ctrl |= ENH_ORDER_MODE;
 401		break;
 402	case emac_dma_ord_out:
 403		dma_ctrl |= OUT_ORDER_MODE;
 404		break;
 405	default:
 406		break;
 407	}
 408
 409	dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
 410						REGRDBLEN_BMSK;
 411	dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
 412						REGWRBLEN_BMSK;
 413	dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
 414						DMAR_DLY_CNT_BMSK;
 415	dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
 416						DMAW_DLY_CNT_BMSK;
 417
 418	/* config DMA and ensure that configuration is flushed to HW */
 419	writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
 420}
 421
 422/* set MAC address */
 423static void emac_set_mac_address(struct emac_adapter *adpt, const u8 *addr)
 424{
 425	u32 sta;
 426
 427	/* for example: 00-A0-C6-11-22-33
 428	 * 0<-->C6112233, 1<-->00A0.
 429	 */
 430
 431	/* low 32bit word */
 432	sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
 433	      (((u32)addr[4]) << 8)  | (((u32)addr[5]));
 434	writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
 435
 436	/* hight 32bit word */
 437	sta = (((u32)addr[0]) << 8) | (u32)addr[1];
 438	writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
 439}
 440
 441static void emac_mac_config(struct emac_adapter *adpt)
 442{
 443	struct net_device *netdev = adpt->netdev;
 444	unsigned int max_frame;
 445	u32 val;
 446
 447	emac_set_mac_address(adpt, netdev->dev_addr);
 448
 449	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 450	adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
 451		ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
 452
 453	emac_mac_dma_rings_config(adpt);
 454
 455	writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
 456	       adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
 457
 458	emac_mac_tx_config(adpt);
 459	emac_mac_rx_config(adpt);
 460	emac_mac_dma_config(adpt);
 461
 462	val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
 463	val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
 464	val |= MAX_BTYPE;
 465	writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
 466	writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
 467	writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
 468}
 469
 470void emac_mac_reset(struct emac_adapter *adpt)
 471{
 472	emac_mac_stop(adpt);
 473
 474	emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
 475	usleep_range(100, 150); /* reset may take up to 100usec */
 476
 477	/* interrupt clear-on-read */
 478	emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
 479}
 480
 481static void emac_mac_start(struct emac_adapter *adpt)
 482{
 483	struct phy_device *phydev = adpt->phydev;
 484	u32 mac, csr1;
 485
 486	/* enable tx queue */
 487	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
 488
 489	/* enable rx queue */
 490	emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
 491
 492	/* enable mac control */
 493	mac = readl(adpt->base + EMAC_MAC_CTRL);
 494	csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
 495
 496	mac |= TXEN | RXEN;     /* enable RX/TX */
 497
 498	/* Configure MAC flow control. If set to automatic, then match
 499	 * whatever the PHY does. Otherwise, enable or disable it, depending
 500	 * on what the user configured via ethtool.
 501	 */
 502	mac &= ~(RXFC | TXFC);
 503
 504	if (adpt->automatic) {
 505		/* If it's set to automatic, then update our local values */
 506		adpt->rx_flow_control = phydev->pause;
 507		adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
 508	}
 509	mac |= adpt->rx_flow_control ? RXFC : 0;
 510	mac |= adpt->tx_flow_control ? TXFC : 0;
 511
 512	/* setup link speed */
 513	mac &= ~SPEED_MASK;
 514	if (phydev->speed == SPEED_1000) {
 515		mac |= SPEED(2);
 516		csr1 |= FREQ_MODE;
 517	} else {
 518		mac |= SPEED(1);
 519		csr1 &= ~FREQ_MODE;
 520	}
 521
 522	if (phydev->duplex == DUPLEX_FULL)
 523		mac |= FULLD;
 524	else
 525		mac &= ~FULLD;
 526
 527	/* other parameters */
 528	mac |= (CRCE | PCRCE);
 529	mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
 530	mac |= BROAD_EN;
 531	mac |= FLCHK;
 532	mac &= ~RX_CHKSUM_EN;
 533	mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
 534		 DEBUG_MODE | SINGLE_PAUSE_MODE);
 535
 536	/* Enable single-pause-frame mode if requested.
 537	 *
 538	 * If enabled, the EMAC will send a single pause frame when the RX
 539	 * queue is full.  This normally leads to packet loss because
 540	 * the pause frame disables the remote MAC only for 33ms (the quanta),
 541	 * and then the remote MAC continues sending packets even though
 542	 * the RX queue is still full.
 543	 *
 544	 * If disabled, the EMAC sends a pause frame every 31ms until the RX
 545	 * queue is no longer full.  Normally, this is the preferred
 546	 * method of operation.  However, when the system is hung (e.g.
 547	 * cores are halted), the EMAC interrupt handler is never called
 548	 * and so the RX queue fills up quickly and stays full.  The resuling
 549	 * non-stop "flood" of pause frames sometimes has the effect of
 550	 * disabling nearby switches.  In some cases, other nearby switches
 551	 * are also affected, shutting down the entire network.
 552	 *
 553	 * The user can enable or disable single-pause-frame mode
 554	 * via ethtool.
 555	 */
 556	mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
 557
 558	writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
 559
 560	writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
 561
 562	/* enable interrupt read clear, low power sleep mode and
 563	 * the irq moderators
 564	 */
 565
 566	writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
 567	writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
 568			IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
 569
 570	emac_mac_mode_config(adpt);
 571
 572	emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
 573			  (HEADER_ENABLE | HEADER_CNT_EN), 0);
 574}
 575
 576void emac_mac_stop(struct emac_adapter *adpt)
 577{
 578	emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
 579	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
 580	emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
 581	usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
 582}
 583
 584/* Free all descriptors of given transmit queue */
 585static void emac_tx_q_descs_free(struct emac_adapter *adpt)
 586{
 587	struct emac_tx_queue *tx_q = &adpt->tx_q;
 588	unsigned int i;
 589	size_t size;
 590
 591	/* ring already cleared, nothing to do */
 592	if (!tx_q->tpd.tpbuff)
 593		return;
 594
 595	for (i = 0; i < tx_q->tpd.count; i++) {
 596		struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
 597
 598		if (tpbuf->dma_addr) {
 599			dma_unmap_single(adpt->netdev->dev.parent,
 600					 tpbuf->dma_addr, tpbuf->length,
 601					 DMA_TO_DEVICE);
 602			tpbuf->dma_addr = 0;
 603		}
 604		if (tpbuf->skb) {
 605			dev_kfree_skb_any(tpbuf->skb);
 606			tpbuf->skb = NULL;
 607		}
 608	}
 609
 610	size = sizeof(struct emac_buffer) * tx_q->tpd.count;
 611	memset(tx_q->tpd.tpbuff, 0, size);
 612
 613	/* clear the descriptor ring */
 614	memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
 615
 616	tx_q->tpd.consume_idx = 0;
 617	tx_q->tpd.produce_idx = 0;
 618}
 619
 620/* Free all descriptors of given receive queue */
 621static void emac_rx_q_free_descs(struct emac_adapter *adpt)
 622{
 623	struct device *dev = adpt->netdev->dev.parent;
 624	struct emac_rx_queue *rx_q = &adpt->rx_q;
 625	unsigned int i;
 626	size_t size;
 627
 628	/* ring already cleared, nothing to do */
 629	if (!rx_q->rfd.rfbuff)
 630		return;
 631
 632	for (i = 0; i < rx_q->rfd.count; i++) {
 633		struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
 634
 635		if (rfbuf->dma_addr) {
 636			dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
 637					 DMA_FROM_DEVICE);
 638			rfbuf->dma_addr = 0;
 639		}
 640		if (rfbuf->skb) {
 641			dev_kfree_skb(rfbuf->skb);
 642			rfbuf->skb = NULL;
 643		}
 644	}
 645
 646	size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
 647	memset(rx_q->rfd.rfbuff, 0, size);
 648
 649	/* clear the descriptor rings */
 650	memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
 651	rx_q->rrd.produce_idx = 0;
 652	rx_q->rrd.consume_idx = 0;
 653
 654	memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
 655	rx_q->rfd.produce_idx = 0;
 656	rx_q->rfd.consume_idx = 0;
 657}
 658
 659/* Free all buffers associated with given transmit queue */
 660static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
 661{
 662	struct emac_tx_queue *tx_q = &adpt->tx_q;
 663
 664	emac_tx_q_descs_free(adpt);
 665
 666	kfree(tx_q->tpd.tpbuff);
 667	tx_q->tpd.tpbuff = NULL;
 668	tx_q->tpd.v_addr = NULL;
 669	tx_q->tpd.dma_addr = 0;
 670	tx_q->tpd.size = 0;
 671}
 672
 673/* Allocate TX descriptor ring for the given transmit queue */
 674static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
 675				struct emac_tx_queue *tx_q)
 676{
 677	struct emac_ring_header *ring_header = &adpt->ring_header;
 678	int node = dev_to_node(adpt->netdev->dev.parent);
 679	size_t size;
 680
 681	size = sizeof(struct emac_buffer) * tx_q->tpd.count;
 682	tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node);
 683	if (!tx_q->tpd.tpbuff)
 684		return -ENOMEM;
 685
 686	tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
 687	tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
 688	tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
 689	ring_header->used += ALIGN(tx_q->tpd.size, 8);
 690	tx_q->tpd.produce_idx = 0;
 691	tx_q->tpd.consume_idx = 0;
 692
 693	return 0;
 694}
 695
 696/* Free all buffers associated with given transmit queue */
 697static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
 698{
 699	struct emac_rx_queue *rx_q = &adpt->rx_q;
 700
 701	emac_rx_q_free_descs(adpt);
 702
 703	kfree(rx_q->rfd.rfbuff);
 704	rx_q->rfd.rfbuff   = NULL;
 705
 706	rx_q->rfd.v_addr   = NULL;
 707	rx_q->rfd.dma_addr = 0;
 708	rx_q->rfd.size     = 0;
 709
 710	rx_q->rrd.v_addr   = NULL;
 711	rx_q->rrd.dma_addr = 0;
 712	rx_q->rrd.size     = 0;
 713}
 714
 715/* Allocate RX descriptor rings for the given receive queue */
 716static int emac_rx_descs_alloc(struct emac_adapter *adpt)
 717{
 718	struct emac_ring_header *ring_header = &adpt->ring_header;
 719	int node = dev_to_node(adpt->netdev->dev.parent);
 720	struct emac_rx_queue *rx_q = &adpt->rx_q;
 721	size_t size;
 722
 723	size = sizeof(struct emac_buffer) * rx_q->rfd.count;
 724	rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node);
 725	if (!rx_q->rfd.rfbuff)
 726		return -ENOMEM;
 727
 728	rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
 729	rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
 730
 731	rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
 732	rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
 733	ring_header->used += ALIGN(rx_q->rrd.size, 8);
 734
 735	rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
 736	rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
 737	ring_header->used += ALIGN(rx_q->rfd.size, 8);
 738
 739	rx_q->rrd.produce_idx = 0;
 740	rx_q->rrd.consume_idx = 0;
 741
 742	rx_q->rfd.produce_idx = 0;
 743	rx_q->rfd.consume_idx = 0;
 744
 745	return 0;
 746}
 747
 748/* Allocate all TX and RX descriptor rings */
 749int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
 750{
 751	struct emac_ring_header *ring_header = &adpt->ring_header;
 752	struct device *dev = adpt->netdev->dev.parent;
 753	unsigned int num_tx_descs = adpt->tx_desc_cnt;
 754	unsigned int num_rx_descs = adpt->rx_desc_cnt;
 755	int ret;
 756
 757	adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
 758
 759	adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
 760	adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
 761
 762	/* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
 763	 * hence the additional padding bytes are allocated.
 764	 */
 765	ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
 766			    num_rx_descs * (adpt->rfd_size * 4) +
 767			    num_rx_descs * (adpt->rrd_size * 4) +
 768			    8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
 769
 770	ring_header->used = 0;
 771	ring_header->v_addr = dma_alloc_coherent(dev, ring_header->size,
 772						 &ring_header->dma_addr,
 773						 GFP_KERNEL);
 774	if (!ring_header->v_addr)
 775		return -ENOMEM;
 776
 777	ring_header->used = ALIGN(ring_header->dma_addr, 8) -
 778							ring_header->dma_addr;
 779
 780	ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
 781	if (ret) {
 782		netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
 783		goto err_alloc_tx;
 784	}
 785
 786	ret = emac_rx_descs_alloc(adpt);
 787	if (ret) {
 788		netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
 789		goto err_alloc_rx;
 790	}
 791
 792	return 0;
 793
 794err_alloc_rx:
 795	emac_tx_q_bufs_free(adpt);
 796err_alloc_tx:
 797	dma_free_coherent(dev, ring_header->size,
 798			  ring_header->v_addr, ring_header->dma_addr);
 799
 800	ring_header->v_addr   = NULL;
 801	ring_header->dma_addr = 0;
 802	ring_header->size     = 0;
 803	ring_header->used     = 0;
 804
 805	return ret;
 806}
 807
 808/* Free all TX and RX descriptor rings */
 809void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
 810{
 811	struct emac_ring_header *ring_header = &adpt->ring_header;
 812	struct device *dev = adpt->netdev->dev.parent;
 813
 814	emac_tx_q_bufs_free(adpt);
 815	emac_rx_q_bufs_free(adpt);
 816
 817	dma_free_coherent(dev, ring_header->size,
 818			  ring_header->v_addr, ring_header->dma_addr);
 819
 820	ring_header->v_addr   = NULL;
 821	ring_header->dma_addr = 0;
 822	ring_header->size     = 0;
 823	ring_header->used     = 0;
 824}
 825
 826/* Initialize descriptor rings */
 827static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
 828{
 829	unsigned int i;
 830
 831	adpt->tx_q.tpd.produce_idx = 0;
 832	adpt->tx_q.tpd.consume_idx = 0;
 833	for (i = 0; i < adpt->tx_q.tpd.count; i++)
 834		adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
 835
 836	adpt->rx_q.rrd.produce_idx = 0;
 837	adpt->rx_q.rrd.consume_idx = 0;
 838	adpt->rx_q.rfd.produce_idx = 0;
 839	adpt->rx_q.rfd.consume_idx = 0;
 840	for (i = 0; i < adpt->rx_q.rfd.count; i++)
 841		adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
 842}
 843
 844/* Produce new receive free descriptor */
 845static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
 846				   struct emac_rx_queue *rx_q,
 847				   dma_addr_t addr)
 848{
 849	u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
 850
 851	*(hw_rfd++) = lower_32_bits(addr);
 852	*hw_rfd = upper_32_bits(addr);
 853
 854	if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
 855		rx_q->rfd.produce_idx = 0;
 856}
 857
 858/* Fill up receive queue's RFD with preallocated receive buffers */
 859static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
 860				    struct emac_rx_queue *rx_q)
 861{
 862	struct emac_buffer *curr_rxbuf;
 863	struct emac_buffer *next_rxbuf;
 864	unsigned int count = 0;
 865	u32 next_produce_idx;
 866
 867	next_produce_idx = rx_q->rfd.produce_idx + 1;
 868	if (next_produce_idx == rx_q->rfd.count)
 869		next_produce_idx = 0;
 870
 871	curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
 872	next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
 873
 874	/* this always has a blank rx_buffer*/
 875	while (!next_rxbuf->dma_addr) {
 876		struct sk_buff *skb;
 877		int ret;
 878
 879		skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
 880		if (!skb)
 881			break;
 882
 883		curr_rxbuf->dma_addr =
 884			dma_map_single(adpt->netdev->dev.parent, skb->data,
 885				       adpt->rxbuf_size, DMA_FROM_DEVICE);
 886
 887		ret = dma_mapping_error(adpt->netdev->dev.parent,
 888					curr_rxbuf->dma_addr);
 889		if (ret) {
 890			dev_kfree_skb(skb);
 891			break;
 892		}
 893		curr_rxbuf->skb = skb;
 894		curr_rxbuf->length = adpt->rxbuf_size;
 895
 896		emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
 897		next_produce_idx = rx_q->rfd.produce_idx + 1;
 898		if (next_produce_idx == rx_q->rfd.count)
 899			next_produce_idx = 0;
 900
 901		curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
 902		next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
 903		count++;
 904	}
 905
 906	if (count) {
 907		u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
 908				rx_q->produce_mask;
 909		emac_reg_update32(adpt->base + rx_q->produce_reg,
 910				  rx_q->produce_mask, prod_idx);
 911	}
 912}
 913
 914static void emac_adjust_link(struct net_device *netdev)
 915{
 916	struct emac_adapter *adpt = netdev_priv(netdev);
 917	struct phy_device *phydev = netdev->phydev;
 918
 919	if (phydev->link) {
 920		emac_mac_start(adpt);
 921		emac_sgmii_link_change(adpt, true);
 922	} else {
 923		emac_sgmii_link_change(adpt, false);
 924		emac_mac_stop(adpt);
 925	}
 926
 927	phy_print_status(phydev);
 928}
 929
 930/* Bringup the interface/HW */
 931int emac_mac_up(struct emac_adapter *adpt)
 932{
 933	struct net_device *netdev = adpt->netdev;
 934	int ret;
 935
 936	emac_mac_rx_tx_ring_reset_all(adpt);
 937	emac_mac_config(adpt);
 938	emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
 939
 940	adpt->phydev->irq = PHY_POLL;
 941	ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
 942				 PHY_INTERFACE_MODE_SGMII);
 943	if (ret) {
 944		netdev_err(adpt->netdev, "could not connect phy\n");
 945		return ret;
 946	}
 947
 948	phy_attached_print(adpt->phydev, NULL);
 949
 950	/* enable mac irq */
 951	writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
 952	writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
 953
 954	phy_start(adpt->phydev);
 955
 956	napi_enable(&adpt->rx_q.napi);
 957	netif_start_queue(netdev);
 958
 959	return 0;
 960}
 961
 962/* Bring down the interface/HW */
 963void emac_mac_down(struct emac_adapter *adpt)
 964{
 965	struct net_device *netdev = adpt->netdev;
 966
 967	netif_stop_queue(netdev);
 968	napi_disable(&adpt->rx_q.napi);
 969
 970	phy_stop(adpt->phydev);
 971
 972	/* Interrupts must be disabled before the PHY is disconnected, to
 973	 * avoid a race condition where adjust_link is null when we get
 974	 * an interrupt.
 975	 */
 976	writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
 977	writel(0, adpt->base + EMAC_INT_MASK);
 978	synchronize_irq(adpt->irq.irq);
 979
 980	phy_disconnect(adpt->phydev);
 981
 982	emac_mac_reset(adpt);
 983
 984	emac_tx_q_descs_free(adpt);
 985	netdev_reset_queue(adpt->netdev);
 986	emac_rx_q_free_descs(adpt);
 987}
 988
 989/* Consume next received packet descriptor */
 990static bool emac_rx_process_rrd(struct emac_adapter *adpt,
 991				struct emac_rx_queue *rx_q,
 992				struct emac_rrd *rrd)
 993{
 994	u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
 995
 996	rrd->word[3] = *(hw_rrd + 3);
 997
 998	if (!RRD_UPDT(rrd))
 999		return false;
1000
1001	rrd->word[4] = 0;
1002	rrd->word[5] = 0;
1003
1004	rrd->word[0] = *(hw_rrd++);
1005	rrd->word[1] = *(hw_rrd++);
1006	rrd->word[2] = *(hw_rrd++);
1007
1008	if (unlikely(RRD_NOR(rrd) != 1)) {
1009		netdev_err(adpt->netdev,
1010			   "error: multi-RFD not support yet! nor:%lu\n",
1011			   RRD_NOR(rrd));
1012	}
1013
1014	/* mark rrd as processed */
1015	RRD_UPDT_SET(rrd, 0);
1016	*hw_rrd = rrd->word[3];
1017
1018	if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1019		rx_q->rrd.consume_idx = 0;
1020
1021	return true;
1022}
1023
1024/* Produce new transmit descriptor */
1025static void emac_tx_tpd_create(struct emac_adapter *adpt,
1026			       struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1027{
1028	u32 *hw_tpd;
1029
1030	tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1031	hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1032
1033	if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1034		tx_q->tpd.produce_idx = 0;
1035
1036	*(hw_tpd++) = tpd->word[0];
1037	*(hw_tpd++) = tpd->word[1];
1038	*(hw_tpd++) = tpd->word[2];
1039	*hw_tpd = tpd->word[3];
1040}
1041
1042/* Mark the last transmit descriptor as such (for the transmit packet) */
1043static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1044				  struct emac_tx_queue *tx_q)
1045{
1046	u32 *hw_tpd =
1047		EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1048	u32 tmp_tpd;
1049
1050	tmp_tpd = *(hw_tpd + 1);
1051	tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1052	*(hw_tpd + 1) = tmp_tpd;
1053}
1054
1055static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1056{
1057	struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1058	u32 consume_idx = RRD_SI(rrd);
1059	unsigned int i;
1060
1061	for (i = 0; i < RRD_NOR(rrd); i++) {
1062		rfbuf[consume_idx].skb = NULL;
1063		if (++consume_idx == rx_q->rfd.count)
1064			consume_idx = 0;
1065	}
1066
1067	rx_q->rfd.consume_idx = consume_idx;
1068	rx_q->rfd.process_idx = consume_idx;
1069}
1070
1071/* Push the received skb to upper layers */
1072static void emac_receive_skb(struct emac_rx_queue *rx_q,
1073			     struct sk_buff *skb,
1074			     u16 vlan_tag, bool vlan_flag)
1075{
1076	if (vlan_flag) {
1077		u16 vlan;
1078
1079		EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1080		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1081	}
1082
1083	napi_gro_receive(&rx_q->napi, skb);
1084}
1085
1086/* Process receive event */
1087void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1088			 int *num_pkts, int max_pkts)
1089{
1090	u32 proc_idx, hw_consume_idx, num_consume_pkts;
1091	struct net_device *netdev  = adpt->netdev;
1092	struct emac_buffer *rfbuf;
1093	unsigned int count = 0;
1094	struct emac_rrd rrd;
1095	struct sk_buff *skb;
1096	u32 reg;
1097
1098	reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1099
1100	hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1101	num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1102		(hw_consume_idx -  rx_q->rrd.consume_idx) :
1103		(hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1104
1105	do {
1106		if (!num_consume_pkts)
1107			break;
1108
1109		if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1110			break;
1111
1112		if (likely(RRD_NOR(&rrd) == 1)) {
1113			/* good receive */
1114			rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1115			dma_unmap_single(adpt->netdev->dev.parent,
1116					 rfbuf->dma_addr, rfbuf->length,
1117					 DMA_FROM_DEVICE);
1118			rfbuf->dma_addr = 0;
1119			skb = rfbuf->skb;
1120		} else {
1121			netdev_err(adpt->netdev,
1122				   "error: multi-RFD not support yet!\n");
1123			break;
1124		}
1125		emac_rx_rfd_clean(rx_q, &rrd);
1126		num_consume_pkts--;
1127		count++;
1128
1129		/* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1130		 * with DF set are marked as error), drop packets based on the
1131		 * error mask rather than the summary bit (ignoring L4F errors)
1132		 */
1133		if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1134			netif_dbg(adpt, rx_status, adpt->netdev,
1135				  "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1136				  rrd.word[0], rrd.word[1],
1137				  rrd.word[2], rrd.word[3]);
1138
1139			dev_kfree_skb(skb);
1140			continue;
1141		}
1142
1143		skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1144		skb->dev = netdev;
1145		skb->protocol = eth_type_trans(skb, skb->dev);
1146		if (netdev->features & NETIF_F_RXCSUM)
1147			skb->ip_summed = RRD_L4F(&rrd) ?
1148					  CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1149		else
1150			skb_checksum_none_assert(skb);
1151
1152		emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1153				 (bool)RRD_CVTAG(&rrd));
1154
1155		(*num_pkts)++;
1156	} while (*num_pkts < max_pkts);
1157
1158	if (count) {
1159		proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1160				rx_q->process_mask;
1161		emac_reg_update32(adpt->base + rx_q->process_reg,
1162				  rx_q->process_mask, proc_idx);
1163		emac_mac_rx_descs_refill(adpt, rx_q);
1164	}
1165}
1166
1167/* get the number of free transmit descriptors */
1168static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1169{
1170	u32 produce_idx = tx_q->tpd.produce_idx;
1171	u32 consume_idx = tx_q->tpd.consume_idx;
1172
1173	return (consume_idx > produce_idx) ?
1174		(consume_idx - produce_idx - 1) :
1175		(tx_q->tpd.count + consume_idx - produce_idx - 1);
1176}
1177
1178/* Process transmit event */
1179void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1180{
1181	u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1182	u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1183	struct emac_buffer *tpbuf;
1184
1185	hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1186
1187	while (tx_q->tpd.consume_idx != hw_consume_idx) {
1188		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1189		if (tpbuf->dma_addr) {
1190			dma_unmap_page(adpt->netdev->dev.parent,
1191				       tpbuf->dma_addr, tpbuf->length,
1192				       DMA_TO_DEVICE);
1193			tpbuf->dma_addr = 0;
1194		}
1195
1196		if (tpbuf->skb) {
1197			pkts_compl++;
1198			bytes_compl += tpbuf->skb->len;
1199			dev_consume_skb_irq(tpbuf->skb);
1200			tpbuf->skb = NULL;
1201		}
1202
1203		if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1204			tx_q->tpd.consume_idx = 0;
1205	}
1206
1207	netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1208
1209	if (netif_queue_stopped(adpt->netdev))
1210		if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1211			netif_wake_queue(adpt->netdev);
1212}
1213
1214/* Initialize all queue data structures */
1215void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1216				  struct emac_adapter *adpt)
1217{
1218	adpt->rx_q.netdev = adpt->netdev;
1219
1220	adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1221	adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1222	adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1223
1224	adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1225	adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1226	adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1227
1228	adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1229	adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1230	adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1231
1232	adpt->rx_q.irq          = &adpt->irq;
1233	adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1234
1235	adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1236	adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1237	adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1238
1239	adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1240	adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1241	adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1242}
1243
1244/* Fill up transmit descriptors with TSO and Checksum offload information */
1245static int emac_tso_csum(struct emac_adapter *adpt,
1246			 struct emac_tx_queue *tx_q,
1247			 struct sk_buff *skb,
1248			 struct emac_tpd *tpd)
1249{
1250	unsigned int hdr_len;
1251	int ret;
1252
1253	if (skb_is_gso(skb)) {
1254		if (skb_header_cloned(skb)) {
1255			ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1256			if (unlikely(ret))
1257				return ret;
1258		}
1259
1260		if (skb->protocol == htons(ETH_P_IP)) {
1261			u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1262				       + ntohs(ip_hdr(skb)->tot_len);
1263			if (skb->len > pkt_len) {
1264				ret = pskb_trim(skb, pkt_len);
1265				if (unlikely(ret))
1266					return ret;
1267			}
1268		}
1269
1270		hdr_len = skb_tcp_all_headers(skb);
1271		if (unlikely(skb->len == hdr_len)) {
1272			/* we only need to do csum */
1273			netif_warn(adpt, tx_err, adpt->netdev,
1274				   "tso not needed for packet with 0 data\n");
1275			goto do_csum;
1276		}
1277
1278		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1279			ip_hdr(skb)->check = 0;
1280			tcp_hdr(skb)->check =
1281				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1282						   ip_hdr(skb)->daddr,
1283						   0, IPPROTO_TCP, 0);
1284			TPD_IPV4_SET(tpd, 1);
1285		}
1286
1287		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1288			/* ipv6 tso need an extra tpd */
1289			struct emac_tpd extra_tpd;
1290
1291			memset(tpd, 0, sizeof(*tpd));
1292			memset(&extra_tpd, 0, sizeof(extra_tpd));
1293
1294			tcp_v6_gso_csum_prep(skb);
1295
1296			TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1297			TPD_LSO_SET(&extra_tpd, 1);
1298			TPD_LSOV_SET(&extra_tpd, 1);
1299			emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1300			TPD_LSOV_SET(tpd, 1);
1301		}
1302
1303		TPD_LSO_SET(tpd, 1);
1304		TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1305		TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1306		return 0;
1307	}
1308
1309do_csum:
1310	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1311		unsigned int css, cso;
1312
1313		cso = skb_transport_offset(skb);
1314		if (unlikely(cso & 0x1)) {
1315			netdev_err(adpt->netdev,
1316				   "error: payload offset should be even\n");
1317			return -EINVAL;
1318		}
1319		css = cso + skb->csum_offset;
1320
1321		TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1322		TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1323		TPD_CSX_SET(tpd, 1);
1324	}
1325
1326	return 0;
1327}
1328
1329/* Fill up transmit descriptors */
1330static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1331			     struct emac_tx_queue *tx_q, struct sk_buff *skb,
1332			     struct emac_tpd *tpd)
1333{
1334	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1335	unsigned int first = tx_q->tpd.produce_idx;
1336	unsigned int len = skb_headlen(skb);
1337	struct emac_buffer *tpbuf = NULL;
1338	unsigned int mapped_len = 0;
1339	unsigned int i;
1340	int count = 0;
1341	int ret;
1342
1343	/* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1344	if (TPD_LSO(tpd)) {
1345		mapped_len = skb_tcp_all_headers(skb);
1346
1347		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1348		tpbuf->length = mapped_len;
1349		tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1350					       virt_to_page(skb->data),
1351					       offset_in_page(skb->data),
1352					       tpbuf->length,
1353					       DMA_TO_DEVICE);
1354		ret = dma_mapping_error(adpt->netdev->dev.parent,
1355					tpbuf->dma_addr);
1356		if (ret)
1357			goto error;
1358
1359		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1360		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1361		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1362		emac_tx_tpd_create(adpt, tx_q, tpd);
1363		count++;
1364	}
1365
1366	if (mapped_len < len) {
1367		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1368		tpbuf->length = len - mapped_len;
1369		tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1370					       virt_to_page(skb->data +
1371							    mapped_len),
1372					       offset_in_page(skb->data +
1373							      mapped_len),
1374					       tpbuf->length, DMA_TO_DEVICE);
1375		ret = dma_mapping_error(adpt->netdev->dev.parent,
1376					tpbuf->dma_addr);
1377		if (ret)
1378			goto error;
1379
1380		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1381		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1382		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1383		emac_tx_tpd_create(adpt, tx_q, tpd);
1384		count++;
1385	}
1386
1387	for (i = 0; i < nr_frags; i++) {
1388		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1389
1390		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1391		tpbuf->length = skb_frag_size(frag);
1392		tpbuf->dma_addr = skb_frag_dma_map(adpt->netdev->dev.parent,
1393						   frag, 0, tpbuf->length,
1394						   DMA_TO_DEVICE);
1395		ret = dma_mapping_error(adpt->netdev->dev.parent,
1396					tpbuf->dma_addr);
1397		if (ret)
1398			goto error;
1399
1400		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1401		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1402		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1403		emac_tx_tpd_create(adpt, tx_q, tpd);
1404		count++;
1405	}
1406
1407	/* The last tpd */
1408	wmb();
1409	emac_tx_tpd_mark_last(adpt, tx_q);
1410
1411	/* The last buffer info contain the skb address,
1412	 * so it will be freed after unmap
1413	 */
1414	tpbuf->skb = skb;
1415
1416	return;
1417
1418error:
1419	/* One of the memory mappings failed, so undo everything */
1420	tx_q->tpd.produce_idx = first;
1421
1422	while (count--) {
1423		tpbuf = GET_TPD_BUFFER(tx_q, first);
1424		dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1425			       tpbuf->length, DMA_TO_DEVICE);
1426		tpbuf->dma_addr = 0;
1427		tpbuf->length = 0;
1428
1429		if (++first == tx_q->tpd.count)
1430			first = 0;
1431	}
1432
1433	dev_kfree_skb(skb);
1434}
1435
1436/* Transmit the packet using specified transmit queue */
1437netdev_tx_t emac_mac_tx_buf_send(struct emac_adapter *adpt,
1438				 struct emac_tx_queue *tx_q,
1439				 struct sk_buff *skb)
1440{
1441	struct emac_tpd tpd;
1442	u32 prod_idx;
1443	int len;
1444
1445	memset(&tpd, 0, sizeof(tpd));
1446
1447	if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1448		dev_kfree_skb_any(skb);
1449		return NETDEV_TX_OK;
1450	}
1451
1452	if (skb_vlan_tag_present(skb)) {
1453		u16 tag;
1454
1455		EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1456		TPD_CVLAN_TAG_SET(&tpd, tag);
1457		TPD_INSTC_SET(&tpd, 1);
1458	}
1459
1460	if (skb_network_offset(skb) != ETH_HLEN)
1461		TPD_TYP_SET(&tpd, 1);
1462
1463	len = skb->len;
1464	emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1465
1466	netdev_sent_queue(adpt->netdev, len);
1467
1468	/* Make sure the are enough free descriptors to hold one
1469	 * maximum-sized SKB.  We need one desc for each fragment,
1470	 * one for the checksum (emac_tso_csum), one for TSO, and
1471	 * one for the SKB header.
1472	 */
1473	if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1474		netif_stop_queue(adpt->netdev);
1475
1476	/* update produce idx */
1477	prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1478		    tx_q->produce_mask;
1479	emac_reg_update32(adpt->base + tx_q->produce_reg,
1480			  tx_q->produce_mask, prod_idx);
1481
1482	return NETDEV_TX_OK;
1483}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
   3 */
   4
   5/* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
   6 */
   7
   8#include <linux/tcp.h>
   9#include <linux/ip.h>
  10#include <linux/ipv6.h>
  11#include <linux/crc32.h>
  12#include <linux/if_vlan.h>
  13#include <linux/jiffies.h>
  14#include <linux/phy.h>
  15#include <linux/of.h>
  16#include <net/ip6_checksum.h>
  17#include "emac.h"
  18#include "emac-sgmii.h"
  19
  20/* EMAC_MAC_CTRL */
  21#define SINGLE_PAUSE_MODE       	0x10000000
  22#define DEBUG_MODE                      0x08000000
  23#define BROAD_EN                        0x04000000
  24#define MULTI_ALL                       0x02000000
  25#define RX_CHKSUM_EN                    0x01000000
  26#define HUGE                            0x00800000
  27#define SPEED(x)			(((x) & 0x3) << 20)
  28#define SPEED_MASK			SPEED(0x3)
  29#define SIMR                            0x00080000
  30#define TPAUSE                          0x00010000
  31#define PROM_MODE                       0x00008000
  32#define VLAN_STRIP                      0x00004000
  33#define PRLEN_BMSK                      0x00003c00
  34#define PRLEN_SHFT                      10
  35#define HUGEN                           0x00000200
  36#define FLCHK                           0x00000100
  37#define PCRCE                           0x00000080
  38#define CRCE                            0x00000040
  39#define FULLD                           0x00000020
  40#define MAC_LP_EN                       0x00000010
  41#define RXFC                            0x00000008
  42#define TXFC                            0x00000004
  43#define RXEN                            0x00000002
  44#define TXEN                            0x00000001
  45
  46/* EMAC_DESC_CTRL_3 */
  47#define RFD_RING_SIZE_BMSK                                       0xfff
  48
  49/* EMAC_DESC_CTRL_4 */
  50#define RX_BUFFER_SIZE_BMSK                                     0xffff
  51
  52/* EMAC_DESC_CTRL_6 */
  53#define RRD_RING_SIZE_BMSK                                       0xfff
  54
  55/* EMAC_DESC_CTRL_9 */
  56#define TPD_RING_SIZE_BMSK                                      0xffff
  57
  58/* EMAC_TXQ_CTRL_0 */
  59#define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
  60#define NUM_TXF_BURST_PREF_SHFT                                     16
  61#define LS_8023_SP                                                0x80
  62#define TXQ_MODE                                                  0x40
  63#define TXQ_EN                                                    0x20
  64#define IP_OP_SP                                                  0x10
  65#define NUM_TPD_BURST_PREF_BMSK                                    0xf
  66#define NUM_TPD_BURST_PREF_SHFT                                      0
  67
  68/* EMAC_TXQ_CTRL_1 */
  69#define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
  70
  71/* EMAC_TXQ_CTRL_2 */
  72#define TXF_HWM_BMSK                                         0xfff0000
  73#define TXF_LWM_BMSK                                             0xfff
  74
  75/* EMAC_RXQ_CTRL_0 */
  76#define RXQ_EN                                                 BIT(31)
  77#define CUT_THRU_EN                                            BIT(30)
  78#define RSS_HASH_EN                                            BIT(29)
  79#define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
  80#define NUM_RFD_BURST_PREF_SHFT                                     20
  81#define IDT_TABLE_SIZE_BMSK                                    0x1ff00
  82#define IDT_TABLE_SIZE_SHFT                                          8
  83#define SP_IPV6                                                   0x80
  84
  85/* EMAC_RXQ_CTRL_1 */
  86#define JUMBO_1KAH_BMSK                                         0xf000
  87#define JUMBO_1KAH_SHFT                                             12
  88#define RFD_PREF_LOW_TH                                           0x10
  89#define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
  90#define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
  91#define RFD_PREF_UP_TH                                            0x10
  92#define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
  93#define RFD_PREF_UP_THRESHOLD_SHFT                                   0
  94
  95/* EMAC_RXQ_CTRL_2 */
  96#define RXF_DOF_THRESFHOLD                                       0x1a0
  97#define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
  98#define RXF_DOF_THRESHOLD_SHFT                                      16
  99#define RXF_UOF_THRESFHOLD                                        0xbe
 100#define RXF_UOF_THRESHOLD_BMSK                                   0xfff
 101#define RXF_UOF_THRESHOLD_SHFT                                       0
 102
 103/* EMAC_RXQ_CTRL_3 */
 104#define RXD_TIMER_BMSK                                      0xffff0000
 105#define RXD_THRESHOLD_BMSK                                       0xfff
 106#define RXD_THRESHOLD_SHFT                                           0
 107
 108/* EMAC_DMA_CTRL */
 109#define DMAW_DLY_CNT_BMSK                                      0xf0000
 110#define DMAW_DLY_CNT_SHFT                                           16
 111#define DMAR_DLY_CNT_BMSK                                       0xf800
 112#define DMAR_DLY_CNT_SHFT                                           11
 113#define DMAR_REQ_PRI                                             0x400
 114#define REGWRBLEN_BMSK                                           0x380
 115#define REGWRBLEN_SHFT                                               7
 116#define REGRDBLEN_BMSK                                            0x70
 117#define REGRDBLEN_SHFT                                               4
 118#define OUT_ORDER_MODE                                             0x4
 119#define ENH_ORDER_MODE                                             0x2
 120#define IN_ORDER_MODE                                              0x1
 121
 122/* EMAC_MAILBOX_13 */
 123#define RFD3_PROC_IDX_BMSK                                   0xfff0000
 124#define RFD3_PROC_IDX_SHFT                                          16
 125#define RFD3_PROD_IDX_BMSK                                       0xfff
 126#define RFD3_PROD_IDX_SHFT                                           0
 127
 128/* EMAC_MAILBOX_2 */
 129#define NTPD_CONS_IDX_BMSK                                  0xffff0000
 130#define NTPD_CONS_IDX_SHFT                                          16
 131
 132/* EMAC_MAILBOX_3 */
 133#define RFD0_CONS_IDX_BMSK                                       0xfff
 134#define RFD0_CONS_IDX_SHFT                                           0
 135
 136/* EMAC_MAILBOX_11 */
 137#define H3TPD_PROD_IDX_BMSK                                 0xffff0000
 138#define H3TPD_PROD_IDX_SHFT                                         16
 139
 140/* EMAC_AXI_MAST_CTRL */
 141#define DATA_BYTE_SWAP                                             0x8
 142#define MAX_BOUND                                                  0x2
 143#define MAX_BTYPE                                                  0x1
 144
 145/* EMAC_MAILBOX_12 */
 146#define H3TPD_CONS_IDX_BMSK                                 0xffff0000
 147#define H3TPD_CONS_IDX_SHFT                                         16
 148
 149/* EMAC_MAILBOX_9 */
 150#define H2TPD_PROD_IDX_BMSK                                     0xffff
 151#define H2TPD_PROD_IDX_SHFT                                          0
 152
 153/* EMAC_MAILBOX_10 */
 154#define H1TPD_CONS_IDX_BMSK                                 0xffff0000
 155#define H1TPD_CONS_IDX_SHFT                                         16
 156#define H2TPD_CONS_IDX_BMSK                                     0xffff
 157#define H2TPD_CONS_IDX_SHFT                                          0
 158
 159/* EMAC_ATHR_HEADER_CTRL */
 160#define HEADER_CNT_EN                                              0x2
 161#define HEADER_ENABLE                                              0x1
 162
 163/* EMAC_MAILBOX_0 */
 164#define RFD0_PROC_IDX_BMSK                                   0xfff0000
 165#define RFD0_PROC_IDX_SHFT                                          16
 166#define RFD0_PROD_IDX_BMSK                                       0xfff
 167#define RFD0_PROD_IDX_SHFT                                           0
 168
 169/* EMAC_MAILBOX_5 */
 170#define RFD1_PROC_IDX_BMSK                                   0xfff0000
 171#define RFD1_PROC_IDX_SHFT                                          16
 172#define RFD1_PROD_IDX_BMSK                                       0xfff
 173#define RFD1_PROD_IDX_SHFT                                           0
 174
 175/* EMAC_MISC_CTRL */
 176#define RX_UNCPL_INT_EN                                            0x1
 177
 178/* EMAC_MAILBOX_7 */
 179#define RFD2_CONS_IDX_BMSK                                   0xfff0000
 180#define RFD2_CONS_IDX_SHFT                                          16
 181#define RFD1_CONS_IDX_BMSK                                       0xfff
 182#define RFD1_CONS_IDX_SHFT                                           0
 183
 184/* EMAC_MAILBOX_8 */
 185#define RFD3_CONS_IDX_BMSK                                       0xfff
 186#define RFD3_CONS_IDX_SHFT                                           0
 187
 188/* EMAC_MAILBOX_15 */
 189#define NTPD_PROD_IDX_BMSK                                      0xffff
 190#define NTPD_PROD_IDX_SHFT                                           0
 191
 192/* EMAC_MAILBOX_16 */
 193#define H1TPD_PROD_IDX_BMSK                                     0xffff
 194#define H1TPD_PROD_IDX_SHFT                                          0
 195
 196#define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
 197#define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
 198#define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
 199#define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
 200
 201/* EMAC_EMAC_WRAPPER_TX_TS_INX */
 202#define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
 203#define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
 204
 205struct emac_skb_cb {
 206	u32           tpd_idx;
 207	unsigned long jiffies;
 208};
 209
 210#define EMAC_SKB_CB(skb)	((struct emac_skb_cb *)(skb)->cb)
 211#define EMAC_RSS_IDT_SIZE	256
 212#define JUMBO_1KAH		0x4
 213#define RXD_TH			0x100
 214#define EMAC_TPD_LAST_FRAGMENT	0x80000000
 215#define EMAC_TPD_TSTAMP_SAVE	0x80000000
 216
 217/* EMAC Errors in emac_rrd.word[3] */
 218#define EMAC_RRD_L4F		BIT(14)
 219#define EMAC_RRD_IPF		BIT(15)
 220#define EMAC_RRD_CRC		BIT(21)
 221#define EMAC_RRD_FAE		BIT(22)
 222#define EMAC_RRD_TRN		BIT(23)
 223#define EMAC_RRD_RNT		BIT(24)
 224#define EMAC_RRD_INC		BIT(25)
 225#define EMAC_RRD_FOV		BIT(29)
 226#define EMAC_RRD_LEN		BIT(30)
 227
 228/* Error bits that will result in a received frame being discarded */
 229#define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
 230			EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
 231			EMAC_RRD_FOV | EMAC_RRD_LEN)
 232#define EMAC_RRD_STATS_DW_IDX 3
 233
 234#define EMAC_RRD(RXQ, SIZE, IDX)	((RXQ)->rrd.v_addr + (SIZE * (IDX)))
 235#define EMAC_RFD(RXQ, SIZE, IDX)	((RXQ)->rfd.v_addr + (SIZE * (IDX)))
 236#define EMAC_TPD(TXQ, SIZE, IDX)	((TXQ)->tpd.v_addr + (SIZE * (IDX)))
 237
 238#define GET_RFD_BUFFER(RXQ, IDX)	(&((RXQ)->rfd.rfbuff[(IDX)]))
 239#define GET_TPD_BUFFER(RTQ, IDX)	(&((RTQ)->tpd.tpbuff[(IDX)]))
 240
 241#define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD	8
 242
 243#define ISR_RX_PKT      (\
 244	RX_PKT_INT0     |\
 245	RX_PKT_INT1     |\
 246	RX_PKT_INT2     |\
 247	RX_PKT_INT3)
 248
 249void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
 250{
 251	u32 crc32, bit, reg, mta;
 252
 253	/* Calculate the CRC of the MAC address */
 254	crc32 = ether_crc(ETH_ALEN, addr);
 255
 256	/* The HASH Table is an array of 2 32-bit registers. It is
 257	 * treated like an array of 64 bits (BitArray[hash_value]).
 258	 * Use the upper 6 bits of the above CRC as the hash value.
 259	 */
 260	reg = (crc32 >> 31) & 0x1;
 261	bit = (crc32 >> 26) & 0x1F;
 262
 263	mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
 264	mta |= BIT(bit);
 265	writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
 266}
 267
 268void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
 269{
 270	writel(0, adpt->base + EMAC_HASH_TAB_REG0);
 271	writel(0, adpt->base + EMAC_HASH_TAB_REG1);
 272}
 273
 274/* definitions for RSS */
 275#define EMAC_RSS_KEY(_i, _type) \
 276		(EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
 277#define EMAC_RSS_TBL(_i, _type) \
 278		(EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
 279
 280/* Config MAC modes */
 281void emac_mac_mode_config(struct emac_adapter *adpt)
 282{
 283	struct net_device *netdev = adpt->netdev;
 284	u32 mac;
 285
 286	mac = readl(adpt->base + EMAC_MAC_CTRL);
 287	mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
 288
 289	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
 290		mac |= VLAN_STRIP;
 291
 292	if (netdev->flags & IFF_PROMISC)
 293		mac |= PROM_MODE;
 294
 295	if (netdev->flags & IFF_ALLMULTI)
 296		mac |= MULTI_ALL;
 297
 298	writel(mac, adpt->base + EMAC_MAC_CTRL);
 299}
 300
 301/* Config descriptor rings */
 302static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
 303{
 304	/* TPD (Transmit Packet Descriptor) */
 305	writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
 306	       adpt->base + EMAC_DESC_CTRL_1);
 307
 308	writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
 309	       adpt->base + EMAC_DESC_CTRL_8);
 310
 311	writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
 312	       adpt->base + EMAC_DESC_CTRL_9);
 313
 314	/* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
 315	writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
 316	       adpt->base + EMAC_DESC_CTRL_0);
 317
 318	writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
 319	       adpt->base + EMAC_DESC_CTRL_2);
 320	writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
 321	       adpt->base + EMAC_DESC_CTRL_5);
 322
 323	writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
 324	       adpt->base + EMAC_DESC_CTRL_3);
 325	writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
 326	       adpt->base + EMAC_DESC_CTRL_6);
 327
 328	writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
 329	       adpt->base + EMAC_DESC_CTRL_4);
 330
 331	writel(0, adpt->base + EMAC_DESC_CTRL_11);
 332
 333	/* Load all of the base addresses above and ensure that triggering HW to
 334	 * read ring pointers is flushed
 335	 */
 336	writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
 337}
 338
 339/* Config transmit parameters */
 340static void emac_mac_tx_config(struct emac_adapter *adpt)
 341{
 342	u32 val;
 343
 344	writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
 345	       JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
 346
 347	val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
 348	       NUM_TPD_BURST_PREF_BMSK;
 349
 350	val |= TXQ_MODE | LS_8023_SP;
 351	val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
 352		NUM_TXF_BURST_PREF_BMSK;
 353
 354	writel(val, adpt->base + EMAC_TXQ_CTRL_0);
 355	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
 356			  (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
 357}
 358
 359/* Config receive parameters */
 360static void emac_mac_rx_config(struct emac_adapter *adpt)
 361{
 362	u32 val;
 363
 364	val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
 365	       NUM_RFD_BURST_PREF_BMSK;
 366	val |= (SP_IPV6 | CUT_THRU_EN);
 367
 368	writel(val, adpt->base + EMAC_RXQ_CTRL_0);
 369
 370	val = readl(adpt->base + EMAC_RXQ_CTRL_1);
 371	val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
 372		 RFD_PREF_UP_THRESHOLD_BMSK);
 373	val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
 374		(RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
 375		(RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
 376	writel(val, adpt->base + EMAC_RXQ_CTRL_1);
 377
 378	val = readl(adpt->base + EMAC_RXQ_CTRL_2);
 379	val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
 380	val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
 381		(RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
 382	writel(val, adpt->base + EMAC_RXQ_CTRL_2);
 383
 384	val = readl(adpt->base + EMAC_RXQ_CTRL_3);
 385	val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
 386	val |= RXD_TH << RXD_THRESHOLD_SHFT;
 387	writel(val, adpt->base + EMAC_RXQ_CTRL_3);
 388}
 389
 390/* Config dma */
 391static void emac_mac_dma_config(struct emac_adapter *adpt)
 392{
 393	u32 dma_ctrl = DMAR_REQ_PRI;
 394
 395	switch (adpt->dma_order) {
 396	case emac_dma_ord_in:
 397		dma_ctrl |= IN_ORDER_MODE;
 398		break;
 399	case emac_dma_ord_enh:
 400		dma_ctrl |= ENH_ORDER_MODE;
 401		break;
 402	case emac_dma_ord_out:
 403		dma_ctrl |= OUT_ORDER_MODE;
 404		break;
 405	default:
 406		break;
 407	}
 408
 409	dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
 410						REGRDBLEN_BMSK;
 411	dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
 412						REGWRBLEN_BMSK;
 413	dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
 414						DMAR_DLY_CNT_BMSK;
 415	dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
 416						DMAW_DLY_CNT_BMSK;
 417
 418	/* config DMA and ensure that configuration is flushed to HW */
 419	writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
 420}
 421
 422/* set MAC address */
 423static void emac_set_mac_address(struct emac_adapter *adpt, const u8 *addr)
 424{
 425	u32 sta;
 426
 427	/* for example: 00-A0-C6-11-22-33
 428	 * 0<-->C6112233, 1<-->00A0.
 429	 */
 430
 431	/* low 32bit word */
 432	sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
 433	      (((u32)addr[4]) << 8)  | (((u32)addr[5]));
 434	writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
 435
 436	/* hight 32bit word */
 437	sta = (((u32)addr[0]) << 8) | (u32)addr[1];
 438	writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
 439}
 440
 441static void emac_mac_config(struct emac_adapter *adpt)
 442{
 443	struct net_device *netdev = adpt->netdev;
 444	unsigned int max_frame;
 445	u32 val;
 446
 447	emac_set_mac_address(adpt, netdev->dev_addr);
 448
 449	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 450	adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
 451		ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
 452
 453	emac_mac_dma_rings_config(adpt);
 454
 455	writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
 456	       adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
 457
 458	emac_mac_tx_config(adpt);
 459	emac_mac_rx_config(adpt);
 460	emac_mac_dma_config(adpt);
 461
 462	val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
 463	val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
 464	val |= MAX_BTYPE;
 465	writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
 466	writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
 467	writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
 468}
 469
 470void emac_mac_reset(struct emac_adapter *adpt)
 471{
 472	emac_mac_stop(adpt);
 473
 474	emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
 475	usleep_range(100, 150); /* reset may take up to 100usec */
 476
 477	/* interrupt clear-on-read */
 478	emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
 479}
 480
 481static void emac_mac_start(struct emac_adapter *adpt)
 482{
 483	struct phy_device *phydev = adpt->phydev;
 484	u32 mac, csr1;
 485
 486	/* enable tx queue */
 487	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
 488
 489	/* enable rx queue */
 490	emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
 491
 492	/* enable mac control */
 493	mac = readl(adpt->base + EMAC_MAC_CTRL);
 494	csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
 495
 496	mac |= TXEN | RXEN;     /* enable RX/TX */
 497
 498	/* Configure MAC flow control. If set to automatic, then match
 499	 * whatever the PHY does. Otherwise, enable or disable it, depending
 500	 * on what the user configured via ethtool.
 501	 */
 502	mac &= ~(RXFC | TXFC);
 503
 504	if (adpt->automatic) {
 505		/* If it's set to automatic, then update our local values */
 506		adpt->rx_flow_control = phydev->pause;
 507		adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
 508	}
 509	mac |= adpt->rx_flow_control ? RXFC : 0;
 510	mac |= adpt->tx_flow_control ? TXFC : 0;
 511
 512	/* setup link speed */
 513	mac &= ~SPEED_MASK;
 514	if (phydev->speed == SPEED_1000) {
 515		mac |= SPEED(2);
 516		csr1 |= FREQ_MODE;
 517	} else {
 518		mac |= SPEED(1);
 519		csr1 &= ~FREQ_MODE;
 520	}
 521
 522	if (phydev->duplex == DUPLEX_FULL)
 523		mac |= FULLD;
 524	else
 525		mac &= ~FULLD;
 526
 527	/* other parameters */
 528	mac |= (CRCE | PCRCE);
 529	mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
 530	mac |= BROAD_EN;
 531	mac |= FLCHK;
 532	mac &= ~RX_CHKSUM_EN;
 533	mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
 534		 DEBUG_MODE | SINGLE_PAUSE_MODE);
 535
 536	/* Enable single-pause-frame mode if requested.
 537	 *
 538	 * If enabled, the EMAC will send a single pause frame when the RX
 539	 * queue is full.  This normally leads to packet loss because
 540	 * the pause frame disables the remote MAC only for 33ms (the quanta),
 541	 * and then the remote MAC continues sending packets even though
 542	 * the RX queue is still full.
 543	 *
 544	 * If disabled, the EMAC sends a pause frame every 31ms until the RX
 545	 * queue is no longer full.  Normally, this is the preferred
 546	 * method of operation.  However, when the system is hung (e.g.
 547	 * cores are halted), the EMAC interrupt handler is never called
 548	 * and so the RX queue fills up quickly and stays full.  The resuling
 549	 * non-stop "flood" of pause frames sometimes has the effect of
 550	 * disabling nearby switches.  In some cases, other nearby switches
 551	 * are also affected, shutting down the entire network.
 552	 *
 553	 * The user can enable or disable single-pause-frame mode
 554	 * via ethtool.
 555	 */
 556	mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
 557
 558	writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
 559
 560	writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
 561
 562	/* enable interrupt read clear, low power sleep mode and
 563	 * the irq moderators
 564	 */
 565
 566	writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
 567	writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
 568			IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
 569
 570	emac_mac_mode_config(adpt);
 571
 572	emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
 573			  (HEADER_ENABLE | HEADER_CNT_EN), 0);
 574}
 575
 576void emac_mac_stop(struct emac_adapter *adpt)
 577{
 578	emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
 579	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
 580	emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
 581	usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
 582}
 583
 584/* Free all descriptors of given transmit queue */
 585static void emac_tx_q_descs_free(struct emac_adapter *adpt)
 586{
 587	struct emac_tx_queue *tx_q = &adpt->tx_q;
 588	unsigned int i;
 589	size_t size;
 590
 591	/* ring already cleared, nothing to do */
 592	if (!tx_q->tpd.tpbuff)
 593		return;
 594
 595	for (i = 0; i < tx_q->tpd.count; i++) {
 596		struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
 597
 598		if (tpbuf->dma_addr) {
 599			dma_unmap_single(adpt->netdev->dev.parent,
 600					 tpbuf->dma_addr, tpbuf->length,
 601					 DMA_TO_DEVICE);
 602			tpbuf->dma_addr = 0;
 603		}
 604		if (tpbuf->skb) {
 605			dev_kfree_skb_any(tpbuf->skb);
 606			tpbuf->skb = NULL;
 607		}
 608	}
 609
 610	size = sizeof(struct emac_buffer) * tx_q->tpd.count;
 611	memset(tx_q->tpd.tpbuff, 0, size);
 612
 613	/* clear the descriptor ring */
 614	memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
 615
 616	tx_q->tpd.consume_idx = 0;
 617	tx_q->tpd.produce_idx = 0;
 618}
 619
 620/* Free all descriptors of given receive queue */
 621static void emac_rx_q_free_descs(struct emac_adapter *adpt)
 622{
 623	struct device *dev = adpt->netdev->dev.parent;
 624	struct emac_rx_queue *rx_q = &adpt->rx_q;
 625	unsigned int i;
 626	size_t size;
 627
 628	/* ring already cleared, nothing to do */
 629	if (!rx_q->rfd.rfbuff)
 630		return;
 631
 632	for (i = 0; i < rx_q->rfd.count; i++) {
 633		struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
 634
 635		if (rfbuf->dma_addr) {
 636			dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
 637					 DMA_FROM_DEVICE);
 638			rfbuf->dma_addr = 0;
 639		}
 640		if (rfbuf->skb) {
 641			dev_kfree_skb(rfbuf->skb);
 642			rfbuf->skb = NULL;
 643		}
 644	}
 645
 646	size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
 647	memset(rx_q->rfd.rfbuff, 0, size);
 648
 649	/* clear the descriptor rings */
 650	memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
 651	rx_q->rrd.produce_idx = 0;
 652	rx_q->rrd.consume_idx = 0;
 653
 654	memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
 655	rx_q->rfd.produce_idx = 0;
 656	rx_q->rfd.consume_idx = 0;
 657}
 658
 659/* Free all buffers associated with given transmit queue */
 660static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
 661{
 662	struct emac_tx_queue *tx_q = &adpt->tx_q;
 663
 664	emac_tx_q_descs_free(adpt);
 665
 666	kfree(tx_q->tpd.tpbuff);
 667	tx_q->tpd.tpbuff = NULL;
 668	tx_q->tpd.v_addr = NULL;
 669	tx_q->tpd.dma_addr = 0;
 670	tx_q->tpd.size = 0;
 671}
 672
 673/* Allocate TX descriptor ring for the given transmit queue */
 674static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
 675				struct emac_tx_queue *tx_q)
 676{
 677	struct emac_ring_header *ring_header = &adpt->ring_header;
 678	int node = dev_to_node(adpt->netdev->dev.parent);
 679	size_t size;
 680
 681	size = sizeof(struct emac_buffer) * tx_q->tpd.count;
 682	tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node);
 683	if (!tx_q->tpd.tpbuff)
 684		return -ENOMEM;
 685
 686	tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
 687	tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
 688	tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
 689	ring_header->used += ALIGN(tx_q->tpd.size, 8);
 690	tx_q->tpd.produce_idx = 0;
 691	tx_q->tpd.consume_idx = 0;
 692
 693	return 0;
 694}
 695
 696/* Free all buffers associated with given transmit queue */
 697static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
 698{
 699	struct emac_rx_queue *rx_q = &adpt->rx_q;
 700
 701	emac_rx_q_free_descs(adpt);
 702
 703	kfree(rx_q->rfd.rfbuff);
 704	rx_q->rfd.rfbuff   = NULL;
 705
 706	rx_q->rfd.v_addr   = NULL;
 707	rx_q->rfd.dma_addr = 0;
 708	rx_q->rfd.size     = 0;
 709
 710	rx_q->rrd.v_addr   = NULL;
 711	rx_q->rrd.dma_addr = 0;
 712	rx_q->rrd.size     = 0;
 713}
 714
 715/* Allocate RX descriptor rings for the given receive queue */
 716static int emac_rx_descs_alloc(struct emac_adapter *adpt)
 717{
 718	struct emac_ring_header *ring_header = &adpt->ring_header;
 719	int node = dev_to_node(adpt->netdev->dev.parent);
 720	struct emac_rx_queue *rx_q = &adpt->rx_q;
 721	size_t size;
 722
 723	size = sizeof(struct emac_buffer) * rx_q->rfd.count;
 724	rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node);
 725	if (!rx_q->rfd.rfbuff)
 726		return -ENOMEM;
 727
 728	rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
 729	rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
 730
 731	rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
 732	rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
 733	ring_header->used += ALIGN(rx_q->rrd.size, 8);
 734
 735	rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
 736	rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
 737	ring_header->used += ALIGN(rx_q->rfd.size, 8);
 738
 739	rx_q->rrd.produce_idx = 0;
 740	rx_q->rrd.consume_idx = 0;
 741
 742	rx_q->rfd.produce_idx = 0;
 743	rx_q->rfd.consume_idx = 0;
 744
 745	return 0;
 746}
 747
 748/* Allocate all TX and RX descriptor rings */
 749int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
 750{
 751	struct emac_ring_header *ring_header = &adpt->ring_header;
 752	struct device *dev = adpt->netdev->dev.parent;
 753	unsigned int num_tx_descs = adpt->tx_desc_cnt;
 754	unsigned int num_rx_descs = adpt->rx_desc_cnt;
 755	int ret;
 756
 757	adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
 758
 759	adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
 760	adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
 761
 762	/* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
 763	 * hence the additional padding bytes are allocated.
 764	 */
 765	ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
 766			    num_rx_descs * (adpt->rfd_size * 4) +
 767			    num_rx_descs * (adpt->rrd_size * 4) +
 768			    8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
 769
 770	ring_header->used = 0;
 771	ring_header->v_addr = dma_alloc_coherent(dev, ring_header->size,
 772						 &ring_header->dma_addr,
 773						 GFP_KERNEL);
 774	if (!ring_header->v_addr)
 775		return -ENOMEM;
 776
 777	ring_header->used = ALIGN(ring_header->dma_addr, 8) -
 778							ring_header->dma_addr;
 779
 780	ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
 781	if (ret) {
 782		netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
 783		goto err_alloc_tx;
 784	}
 785
 786	ret = emac_rx_descs_alloc(adpt);
 787	if (ret) {
 788		netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
 789		goto err_alloc_rx;
 790	}
 791
 792	return 0;
 793
 794err_alloc_rx:
 795	emac_tx_q_bufs_free(adpt);
 796err_alloc_tx:
 797	dma_free_coherent(dev, ring_header->size,
 798			  ring_header->v_addr, ring_header->dma_addr);
 799
 800	ring_header->v_addr   = NULL;
 801	ring_header->dma_addr = 0;
 802	ring_header->size     = 0;
 803	ring_header->used     = 0;
 804
 805	return ret;
 806}
 807
 808/* Free all TX and RX descriptor rings */
 809void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
 810{
 811	struct emac_ring_header *ring_header = &adpt->ring_header;
 812	struct device *dev = adpt->netdev->dev.parent;
 813
 814	emac_tx_q_bufs_free(adpt);
 815	emac_rx_q_bufs_free(adpt);
 816
 817	dma_free_coherent(dev, ring_header->size,
 818			  ring_header->v_addr, ring_header->dma_addr);
 819
 820	ring_header->v_addr   = NULL;
 821	ring_header->dma_addr = 0;
 822	ring_header->size     = 0;
 823	ring_header->used     = 0;
 824}
 825
 826/* Initialize descriptor rings */
 827static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
 828{
 829	unsigned int i;
 830
 831	adpt->tx_q.tpd.produce_idx = 0;
 832	adpt->tx_q.tpd.consume_idx = 0;
 833	for (i = 0; i < adpt->tx_q.tpd.count; i++)
 834		adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
 835
 836	adpt->rx_q.rrd.produce_idx = 0;
 837	adpt->rx_q.rrd.consume_idx = 0;
 838	adpt->rx_q.rfd.produce_idx = 0;
 839	adpt->rx_q.rfd.consume_idx = 0;
 840	for (i = 0; i < adpt->rx_q.rfd.count; i++)
 841		adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
 842}
 843
 844/* Produce new receive free descriptor */
 845static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
 846				   struct emac_rx_queue *rx_q,
 847				   dma_addr_t addr)
 848{
 849	u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
 850
 851	*(hw_rfd++) = lower_32_bits(addr);
 852	*hw_rfd = upper_32_bits(addr);
 853
 854	if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
 855		rx_q->rfd.produce_idx = 0;
 856}
 857
 858/* Fill up receive queue's RFD with preallocated receive buffers */
 859static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
 860				    struct emac_rx_queue *rx_q)
 861{
 862	struct emac_buffer *curr_rxbuf;
 863	struct emac_buffer *next_rxbuf;
 864	unsigned int count = 0;
 865	u32 next_produce_idx;
 866
 867	next_produce_idx = rx_q->rfd.produce_idx + 1;
 868	if (next_produce_idx == rx_q->rfd.count)
 869		next_produce_idx = 0;
 870
 871	curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
 872	next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
 873
 874	/* this always has a blank rx_buffer*/
 875	while (!next_rxbuf->dma_addr) {
 876		struct sk_buff *skb;
 877		int ret;
 878
 879		skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
 880		if (!skb)
 881			break;
 882
 883		curr_rxbuf->dma_addr =
 884			dma_map_single(adpt->netdev->dev.parent, skb->data,
 885				       adpt->rxbuf_size, DMA_FROM_DEVICE);
 886
 887		ret = dma_mapping_error(adpt->netdev->dev.parent,
 888					curr_rxbuf->dma_addr);
 889		if (ret) {
 890			dev_kfree_skb(skb);
 891			break;
 892		}
 893		curr_rxbuf->skb = skb;
 894		curr_rxbuf->length = adpt->rxbuf_size;
 895
 896		emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
 897		next_produce_idx = rx_q->rfd.produce_idx + 1;
 898		if (next_produce_idx == rx_q->rfd.count)
 899			next_produce_idx = 0;
 900
 901		curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
 902		next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
 903		count++;
 904	}
 905
 906	if (count) {
 907		u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
 908				rx_q->produce_mask;
 909		emac_reg_update32(adpt->base + rx_q->produce_reg,
 910				  rx_q->produce_mask, prod_idx);
 911	}
 912}
 913
 914static void emac_adjust_link(struct net_device *netdev)
 915{
 916	struct emac_adapter *adpt = netdev_priv(netdev);
 917	struct phy_device *phydev = netdev->phydev;
 918
 919	if (phydev->link) {
 920		emac_mac_start(adpt);
 921		emac_sgmii_link_change(adpt, true);
 922	} else {
 923		emac_sgmii_link_change(adpt, false);
 924		emac_mac_stop(adpt);
 925	}
 926
 927	phy_print_status(phydev);
 928}
 929
 930/* Bringup the interface/HW */
 931int emac_mac_up(struct emac_adapter *adpt)
 932{
 933	struct net_device *netdev = adpt->netdev;
 934	int ret;
 935
 936	emac_mac_rx_tx_ring_reset_all(adpt);
 937	emac_mac_config(adpt);
 938	emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
 939
 940	adpt->phydev->irq = PHY_POLL;
 941	ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
 942				 PHY_INTERFACE_MODE_SGMII);
 943	if (ret) {
 944		netdev_err(adpt->netdev, "could not connect phy\n");
 945		return ret;
 946	}
 947
 948	phy_attached_print(adpt->phydev, NULL);
 949
 950	/* enable mac irq */
 951	writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
 952	writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
 953
 954	phy_start(adpt->phydev);
 955
 956	napi_enable(&adpt->rx_q.napi);
 957	netif_start_queue(netdev);
 958
 959	return 0;
 960}
 961
 962/* Bring down the interface/HW */
 963void emac_mac_down(struct emac_adapter *adpt)
 964{
 965	struct net_device *netdev = adpt->netdev;
 966
 967	netif_stop_queue(netdev);
 968	napi_disable(&adpt->rx_q.napi);
 969
 970	phy_stop(adpt->phydev);
 971
 972	/* Interrupts must be disabled before the PHY is disconnected, to
 973	 * avoid a race condition where adjust_link is null when we get
 974	 * an interrupt.
 975	 */
 976	writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
 977	writel(0, adpt->base + EMAC_INT_MASK);
 978	synchronize_irq(adpt->irq.irq);
 979
 980	phy_disconnect(adpt->phydev);
 981
 982	emac_mac_reset(adpt);
 983
 984	emac_tx_q_descs_free(adpt);
 985	netdev_reset_queue(adpt->netdev);
 986	emac_rx_q_free_descs(adpt);
 987}
 988
 989/* Consume next received packet descriptor */
 990static bool emac_rx_process_rrd(struct emac_adapter *adpt,
 991				struct emac_rx_queue *rx_q,
 992				struct emac_rrd *rrd)
 993{
 994	u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
 995
 996	rrd->word[3] = *(hw_rrd + 3);
 997
 998	if (!RRD_UPDT(rrd))
 999		return false;
1000
1001	rrd->word[4] = 0;
1002	rrd->word[5] = 0;
1003
1004	rrd->word[0] = *(hw_rrd++);
1005	rrd->word[1] = *(hw_rrd++);
1006	rrd->word[2] = *(hw_rrd++);
1007
1008	if (unlikely(RRD_NOR(rrd) != 1)) {
1009		netdev_err(adpt->netdev,
1010			   "error: multi-RFD not support yet! nor:%lu\n",
1011			   RRD_NOR(rrd));
1012	}
1013
1014	/* mark rrd as processed */
1015	RRD_UPDT_SET(rrd, 0);
1016	*hw_rrd = rrd->word[3];
1017
1018	if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1019		rx_q->rrd.consume_idx = 0;
1020
1021	return true;
1022}
1023
1024/* Produce new transmit descriptor */
1025static void emac_tx_tpd_create(struct emac_adapter *adpt,
1026			       struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1027{
1028	u32 *hw_tpd;
1029
1030	tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1031	hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1032
1033	if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1034		tx_q->tpd.produce_idx = 0;
1035
1036	*(hw_tpd++) = tpd->word[0];
1037	*(hw_tpd++) = tpd->word[1];
1038	*(hw_tpd++) = tpd->word[2];
1039	*hw_tpd = tpd->word[3];
1040}
1041
1042/* Mark the last transmit descriptor as such (for the transmit packet) */
1043static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1044				  struct emac_tx_queue *tx_q)
1045{
1046	u32 *hw_tpd =
1047		EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1048	u32 tmp_tpd;
1049
1050	tmp_tpd = *(hw_tpd + 1);
1051	tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1052	*(hw_tpd + 1) = tmp_tpd;
1053}
1054
1055static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1056{
1057	struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1058	u32 consume_idx = RRD_SI(rrd);
1059	unsigned int i;
1060
1061	for (i = 0; i < RRD_NOR(rrd); i++) {
1062		rfbuf[consume_idx].skb = NULL;
1063		if (++consume_idx == rx_q->rfd.count)
1064			consume_idx = 0;
1065	}
1066
1067	rx_q->rfd.consume_idx = consume_idx;
1068	rx_q->rfd.process_idx = consume_idx;
1069}
1070
1071/* Push the received skb to upper layers */
1072static void emac_receive_skb(struct emac_rx_queue *rx_q,
1073			     struct sk_buff *skb,
1074			     u16 vlan_tag, bool vlan_flag)
1075{
1076	if (vlan_flag) {
1077		u16 vlan;
1078
1079		EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1080		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1081	}
1082
1083	napi_gro_receive(&rx_q->napi, skb);
1084}
1085
1086/* Process receive event */
1087void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1088			 int *num_pkts, int max_pkts)
1089{
1090	u32 proc_idx, hw_consume_idx, num_consume_pkts;
1091	struct net_device *netdev  = adpt->netdev;
1092	struct emac_buffer *rfbuf;
1093	unsigned int count = 0;
1094	struct emac_rrd rrd;
1095	struct sk_buff *skb;
1096	u32 reg;
1097
1098	reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1099
1100	hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1101	num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1102		(hw_consume_idx -  rx_q->rrd.consume_idx) :
1103		(hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1104
1105	do {
1106		if (!num_consume_pkts)
1107			break;
1108
1109		if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1110			break;
1111
1112		if (likely(RRD_NOR(&rrd) == 1)) {
1113			/* good receive */
1114			rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1115			dma_unmap_single(adpt->netdev->dev.parent,
1116					 rfbuf->dma_addr, rfbuf->length,
1117					 DMA_FROM_DEVICE);
1118			rfbuf->dma_addr = 0;
1119			skb = rfbuf->skb;
1120		} else {
1121			netdev_err(adpt->netdev,
1122				   "error: multi-RFD not support yet!\n");
1123			break;
1124		}
1125		emac_rx_rfd_clean(rx_q, &rrd);
1126		num_consume_pkts--;
1127		count++;
1128
1129		/* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1130		 * with DF set are marked as error), drop packets based on the
1131		 * error mask rather than the summary bit (ignoring L4F errors)
1132		 */
1133		if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1134			netif_dbg(adpt, rx_status, adpt->netdev,
1135				  "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1136				  rrd.word[0], rrd.word[1],
1137				  rrd.word[2], rrd.word[3]);
1138
1139			dev_kfree_skb(skb);
1140			continue;
1141		}
1142
1143		skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1144		skb->dev = netdev;
1145		skb->protocol = eth_type_trans(skb, skb->dev);
1146		if (netdev->features & NETIF_F_RXCSUM)
1147			skb->ip_summed = RRD_L4F(&rrd) ?
1148					  CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1149		else
1150			skb_checksum_none_assert(skb);
1151
1152		emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1153				 (bool)RRD_CVTAG(&rrd));
1154
1155		(*num_pkts)++;
1156	} while (*num_pkts < max_pkts);
1157
1158	if (count) {
1159		proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1160				rx_q->process_mask;
1161		emac_reg_update32(adpt->base + rx_q->process_reg,
1162				  rx_q->process_mask, proc_idx);
1163		emac_mac_rx_descs_refill(adpt, rx_q);
1164	}
1165}
1166
1167/* get the number of free transmit descriptors */
1168static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1169{
1170	u32 produce_idx = tx_q->tpd.produce_idx;
1171	u32 consume_idx = tx_q->tpd.consume_idx;
1172
1173	return (consume_idx > produce_idx) ?
1174		(consume_idx - produce_idx - 1) :
1175		(tx_q->tpd.count + consume_idx - produce_idx - 1);
1176}
1177
1178/* Process transmit event */
1179void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1180{
1181	u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1182	u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1183	struct emac_buffer *tpbuf;
1184
1185	hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1186
1187	while (tx_q->tpd.consume_idx != hw_consume_idx) {
1188		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1189		if (tpbuf->dma_addr) {
1190			dma_unmap_page(adpt->netdev->dev.parent,
1191				       tpbuf->dma_addr, tpbuf->length,
1192				       DMA_TO_DEVICE);
1193			tpbuf->dma_addr = 0;
1194		}
1195
1196		if (tpbuf->skb) {
1197			pkts_compl++;
1198			bytes_compl += tpbuf->skb->len;
1199			dev_consume_skb_irq(tpbuf->skb);
1200			tpbuf->skb = NULL;
1201		}
1202
1203		if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1204			tx_q->tpd.consume_idx = 0;
1205	}
1206
1207	netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1208
1209	if (netif_queue_stopped(adpt->netdev))
1210		if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1211			netif_wake_queue(adpt->netdev);
1212}
1213
1214/* Initialize all queue data structures */
1215void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1216				  struct emac_adapter *adpt)
1217{
1218	adpt->rx_q.netdev = adpt->netdev;
1219
1220	adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1221	adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1222	adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1223
1224	adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1225	adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1226	adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1227
1228	adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1229	adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1230	adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1231
1232	adpt->rx_q.irq          = &adpt->irq;
1233	adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1234
1235	adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1236	adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1237	adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1238
1239	adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1240	adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1241	adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1242}
1243
1244/* Fill up transmit descriptors with TSO and Checksum offload information */
1245static int emac_tso_csum(struct emac_adapter *adpt,
1246			 struct emac_tx_queue *tx_q,
1247			 struct sk_buff *skb,
1248			 struct emac_tpd *tpd)
1249{
1250	unsigned int hdr_len;
1251	int ret;
1252
1253	if (skb_is_gso(skb)) {
1254		if (skb_header_cloned(skb)) {
1255			ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1256			if (unlikely(ret))
1257				return ret;
1258		}
1259
1260		if (skb->protocol == htons(ETH_P_IP)) {
1261			u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1262				       + ntohs(ip_hdr(skb)->tot_len);
1263			if (skb->len > pkt_len)
1264				pskb_trim(skb, pkt_len);
 
 
 
1265		}
1266
1267		hdr_len = skb_tcp_all_headers(skb);
1268		if (unlikely(skb->len == hdr_len)) {
1269			/* we only need to do csum */
1270			netif_warn(adpt, tx_err, adpt->netdev,
1271				   "tso not needed for packet with 0 data\n");
1272			goto do_csum;
1273		}
1274
1275		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1276			ip_hdr(skb)->check = 0;
1277			tcp_hdr(skb)->check =
1278				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1279						   ip_hdr(skb)->daddr,
1280						   0, IPPROTO_TCP, 0);
1281			TPD_IPV4_SET(tpd, 1);
1282		}
1283
1284		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1285			/* ipv6 tso need an extra tpd */
1286			struct emac_tpd extra_tpd;
1287
1288			memset(tpd, 0, sizeof(*tpd));
1289			memset(&extra_tpd, 0, sizeof(extra_tpd));
1290
1291			tcp_v6_gso_csum_prep(skb);
1292
1293			TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1294			TPD_LSO_SET(&extra_tpd, 1);
1295			TPD_LSOV_SET(&extra_tpd, 1);
1296			emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1297			TPD_LSOV_SET(tpd, 1);
1298		}
1299
1300		TPD_LSO_SET(tpd, 1);
1301		TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1302		TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1303		return 0;
1304	}
1305
1306do_csum:
1307	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1308		unsigned int css, cso;
1309
1310		cso = skb_transport_offset(skb);
1311		if (unlikely(cso & 0x1)) {
1312			netdev_err(adpt->netdev,
1313				   "error: payload offset should be even\n");
1314			return -EINVAL;
1315		}
1316		css = cso + skb->csum_offset;
1317
1318		TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1319		TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1320		TPD_CSX_SET(tpd, 1);
1321	}
1322
1323	return 0;
1324}
1325
1326/* Fill up transmit descriptors */
1327static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1328			     struct emac_tx_queue *tx_q, struct sk_buff *skb,
1329			     struct emac_tpd *tpd)
1330{
1331	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1332	unsigned int first = tx_q->tpd.produce_idx;
1333	unsigned int len = skb_headlen(skb);
1334	struct emac_buffer *tpbuf = NULL;
1335	unsigned int mapped_len = 0;
1336	unsigned int i;
1337	int count = 0;
1338	int ret;
1339
1340	/* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1341	if (TPD_LSO(tpd)) {
1342		mapped_len = skb_tcp_all_headers(skb);
1343
1344		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1345		tpbuf->length = mapped_len;
1346		tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1347					       virt_to_page(skb->data),
1348					       offset_in_page(skb->data),
1349					       tpbuf->length,
1350					       DMA_TO_DEVICE);
1351		ret = dma_mapping_error(adpt->netdev->dev.parent,
1352					tpbuf->dma_addr);
1353		if (ret)
1354			goto error;
1355
1356		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1357		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1358		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1359		emac_tx_tpd_create(adpt, tx_q, tpd);
1360		count++;
1361	}
1362
1363	if (mapped_len < len) {
1364		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1365		tpbuf->length = len - mapped_len;
1366		tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1367					       virt_to_page(skb->data +
1368							    mapped_len),
1369					       offset_in_page(skb->data +
1370							      mapped_len),
1371					       tpbuf->length, DMA_TO_DEVICE);
1372		ret = dma_mapping_error(adpt->netdev->dev.parent,
1373					tpbuf->dma_addr);
1374		if (ret)
1375			goto error;
1376
1377		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1378		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1379		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1380		emac_tx_tpd_create(adpt, tx_q, tpd);
1381		count++;
1382	}
1383
1384	for (i = 0; i < nr_frags; i++) {
1385		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1386
1387		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1388		tpbuf->length = skb_frag_size(frag);
1389		tpbuf->dma_addr = skb_frag_dma_map(adpt->netdev->dev.parent,
1390						   frag, 0, tpbuf->length,
1391						   DMA_TO_DEVICE);
1392		ret = dma_mapping_error(adpt->netdev->dev.parent,
1393					tpbuf->dma_addr);
1394		if (ret)
1395			goto error;
1396
1397		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1398		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1399		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1400		emac_tx_tpd_create(adpt, tx_q, tpd);
1401		count++;
1402	}
1403
1404	/* The last tpd */
1405	wmb();
1406	emac_tx_tpd_mark_last(adpt, tx_q);
1407
1408	/* The last buffer info contain the skb address,
1409	 * so it will be freed after unmap
1410	 */
1411	tpbuf->skb = skb;
1412
1413	return;
1414
1415error:
1416	/* One of the memory mappings failed, so undo everything */
1417	tx_q->tpd.produce_idx = first;
1418
1419	while (count--) {
1420		tpbuf = GET_TPD_BUFFER(tx_q, first);
1421		dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1422			       tpbuf->length, DMA_TO_DEVICE);
1423		tpbuf->dma_addr = 0;
1424		tpbuf->length = 0;
1425
1426		if (++first == tx_q->tpd.count)
1427			first = 0;
1428	}
1429
1430	dev_kfree_skb(skb);
1431}
1432
1433/* Transmit the packet using specified transmit queue */
1434netdev_tx_t emac_mac_tx_buf_send(struct emac_adapter *adpt,
1435				 struct emac_tx_queue *tx_q,
1436				 struct sk_buff *skb)
1437{
1438	struct emac_tpd tpd;
1439	u32 prod_idx;
1440	int len;
1441
1442	memset(&tpd, 0, sizeof(tpd));
1443
1444	if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1445		dev_kfree_skb_any(skb);
1446		return NETDEV_TX_OK;
1447	}
1448
1449	if (skb_vlan_tag_present(skb)) {
1450		u16 tag;
1451
1452		EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1453		TPD_CVLAN_TAG_SET(&tpd, tag);
1454		TPD_INSTC_SET(&tpd, 1);
1455	}
1456
1457	if (skb_network_offset(skb) != ETH_HLEN)
1458		TPD_TYP_SET(&tpd, 1);
1459
1460	len = skb->len;
1461	emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1462
1463	netdev_sent_queue(adpt->netdev, len);
1464
1465	/* Make sure the are enough free descriptors to hold one
1466	 * maximum-sized SKB.  We need one desc for each fragment,
1467	 * one for the checksum (emac_tso_csum), one for TSO, and
1468	 * one for the SKB header.
1469	 */
1470	if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1471		netif_stop_queue(adpt->netdev);
1472
1473	/* update produce idx */
1474	prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1475		    tx_q->produce_mask;
1476	emac_reg_update32(adpt->base + tx_q->produce_reg,
1477			  tx_q->produce_mask, prod_idx);
1478
1479	return NETDEV_TX_OK;
1480}