Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   4 *
   5 * Copyright (c) 2009-2010 Micrel, Inc.
   6 * 	Tristram Ha <Tristram.Ha@micrel.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/ioport.h>
  16#include <linux/pci.h>
  17#include <linux/proc_fs.h>
  18#include <linux/mii.h>
  19#include <linux/platform_device.h>
  20#include <linux/ethtool.h>
  21#include <linux/etherdevice.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/if_vlan.h>
  25#include <linux/crc32.h>
  26#include <linux/sched.h>
  27#include <linux/slab.h>
  28#include <linux/micrel_phy.h>
  29
  30
  31/* DMA Registers */
  32
  33#define KS_DMA_TX_CTRL			0x0000
  34#define DMA_TX_ENABLE			0x00000001
  35#define DMA_TX_CRC_ENABLE		0x00000002
  36#define DMA_TX_PAD_ENABLE		0x00000004
  37#define DMA_TX_LOOPBACK			0x00000100
  38#define DMA_TX_FLOW_ENABLE		0x00000200
  39#define DMA_TX_CSUM_IP			0x00010000
  40#define DMA_TX_CSUM_TCP			0x00020000
  41#define DMA_TX_CSUM_UDP			0x00040000
  42#define DMA_TX_BURST_SIZE		0x3F000000
  43
  44#define KS_DMA_RX_CTRL			0x0004
  45#define DMA_RX_ENABLE			0x00000001
  46#define KS884X_DMA_RX_MULTICAST		0x00000002
  47#define DMA_RX_PROMISCUOUS		0x00000004
  48#define DMA_RX_ERROR			0x00000008
  49#define DMA_RX_UNICAST			0x00000010
  50#define DMA_RX_ALL_MULTICAST		0x00000020
  51#define DMA_RX_BROADCAST		0x00000040
  52#define DMA_RX_FLOW_ENABLE		0x00000200
  53#define DMA_RX_CSUM_IP			0x00010000
  54#define DMA_RX_CSUM_TCP			0x00020000
  55#define DMA_RX_CSUM_UDP			0x00040000
  56#define DMA_RX_BURST_SIZE		0x3F000000
  57
  58#define DMA_BURST_SHIFT			24
  59#define DMA_BURST_DEFAULT		8
  60
  61#define KS_DMA_TX_START			0x0008
  62#define KS_DMA_RX_START			0x000C
  63#define DMA_START			0x00000001
  64
  65#define KS_DMA_TX_ADDR			0x0010
  66#define KS_DMA_RX_ADDR			0x0014
  67
  68#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  69#define DMA_ADDR_LIST_SHIFT		2
  70
  71/* MTR0 */
  72#define KS884X_MULTICAST_0_OFFSET	0x0020
  73#define KS884X_MULTICAST_1_OFFSET	0x0021
  74#define KS884X_MULTICAST_2_OFFSET	0x0022
  75#define KS884x_MULTICAST_3_OFFSET	0x0023
  76/* MTR1 */
  77#define KS884X_MULTICAST_4_OFFSET	0x0024
  78#define KS884X_MULTICAST_5_OFFSET	0x0025
  79#define KS884X_MULTICAST_6_OFFSET	0x0026
  80#define KS884X_MULTICAST_7_OFFSET	0x0027
  81
  82/* Interrupt Registers */
  83
  84/* INTEN */
  85#define KS884X_INTERRUPTS_ENABLE	0x0028
  86/* INTST */
  87#define KS884X_INTERRUPTS_STATUS	0x002C
  88
  89#define KS884X_INT_RX_STOPPED		0x02000000
  90#define KS884X_INT_TX_STOPPED		0x04000000
  91#define KS884X_INT_RX_OVERRUN		0x08000000
  92#define KS884X_INT_TX_EMPTY		0x10000000
  93#define KS884X_INT_RX			0x20000000
  94#define KS884X_INT_TX			0x40000000
  95#define KS884X_INT_PHY			0x80000000
  96
  97#define KS884X_INT_RX_MASK		\
  98	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
  99#define KS884X_INT_TX_MASK		\
 100	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 101#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 102
 103/* MAC Additional Station Address */
 104
 105/* MAAL0 */
 106#define KS_ADD_ADDR_0_LO		0x0080
 107/* MAAH0 */
 108#define KS_ADD_ADDR_0_HI		0x0084
 109/* MAAL1 */
 110#define KS_ADD_ADDR_1_LO		0x0088
 111/* MAAH1 */
 112#define KS_ADD_ADDR_1_HI		0x008C
 113/* MAAL2 */
 114#define KS_ADD_ADDR_2_LO		0x0090
 115/* MAAH2 */
 116#define KS_ADD_ADDR_2_HI		0x0094
 117/* MAAL3 */
 118#define KS_ADD_ADDR_3_LO		0x0098
 119/* MAAH3 */
 120#define KS_ADD_ADDR_3_HI		0x009C
 121/* MAAL4 */
 122#define KS_ADD_ADDR_4_LO		0x00A0
 123/* MAAH4 */
 124#define KS_ADD_ADDR_4_HI		0x00A4
 125/* MAAL5 */
 126#define KS_ADD_ADDR_5_LO		0x00A8
 127/* MAAH5 */
 128#define KS_ADD_ADDR_5_HI		0x00AC
 129/* MAAL6 */
 130#define KS_ADD_ADDR_6_LO		0x00B0
 131/* MAAH6 */
 132#define KS_ADD_ADDR_6_HI		0x00B4
 133/* MAAL7 */
 134#define KS_ADD_ADDR_7_LO		0x00B8
 135/* MAAH7 */
 136#define KS_ADD_ADDR_7_HI		0x00BC
 137/* MAAL8 */
 138#define KS_ADD_ADDR_8_LO		0x00C0
 139/* MAAH8 */
 140#define KS_ADD_ADDR_8_HI		0x00C4
 141/* MAAL9 */
 142#define KS_ADD_ADDR_9_LO		0x00C8
 143/* MAAH9 */
 144#define KS_ADD_ADDR_9_HI		0x00CC
 145/* MAAL10 */
 146#define KS_ADD_ADDR_A_LO		0x00D0
 147/* MAAH10 */
 148#define KS_ADD_ADDR_A_HI		0x00D4
 149/* MAAL11 */
 150#define KS_ADD_ADDR_B_LO		0x00D8
 151/* MAAH11 */
 152#define KS_ADD_ADDR_B_HI		0x00DC
 153/* MAAL12 */
 154#define KS_ADD_ADDR_C_LO		0x00E0
 155/* MAAH12 */
 156#define KS_ADD_ADDR_C_HI		0x00E4
 157/* MAAL13 */
 158#define KS_ADD_ADDR_D_LO		0x00E8
 159/* MAAH13 */
 160#define KS_ADD_ADDR_D_HI		0x00EC
 161/* MAAL14 */
 162#define KS_ADD_ADDR_E_LO		0x00F0
 163/* MAAH14 */
 164#define KS_ADD_ADDR_E_HI		0x00F4
 165/* MAAL15 */
 166#define KS_ADD_ADDR_F_LO		0x00F8
 167/* MAAH15 */
 168#define KS_ADD_ADDR_F_HI		0x00FC
 169
 170#define ADD_ADDR_HI_MASK		0x0000FFFF
 171#define ADD_ADDR_ENABLE			0x80000000
 172#define ADD_ADDR_INCR			8
 173
 174/* Miscellaneous Registers */
 175
 176/* MARL */
 177#define KS884X_ADDR_0_OFFSET		0x0200
 178#define KS884X_ADDR_1_OFFSET		0x0201
 179/* MARM */
 180#define KS884X_ADDR_2_OFFSET		0x0202
 181#define KS884X_ADDR_3_OFFSET		0x0203
 182/* MARH */
 183#define KS884X_ADDR_4_OFFSET		0x0204
 184#define KS884X_ADDR_5_OFFSET		0x0205
 185
 186/* OBCR */
 187#define KS884X_BUS_CTRL_OFFSET		0x0210
 188
 189#define BUS_SPEED_125_MHZ		0x0000
 190#define BUS_SPEED_62_5_MHZ		0x0001
 191#define BUS_SPEED_41_66_MHZ		0x0002
 192#define BUS_SPEED_25_MHZ		0x0003
 193
 194/* EEPCR */
 195#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 196
 197#define EEPROM_CHIP_SELECT		0x0001
 198#define EEPROM_SERIAL_CLOCK		0x0002
 199#define EEPROM_DATA_OUT			0x0004
 200#define EEPROM_DATA_IN			0x0008
 201#define EEPROM_ACCESS_ENABLE		0x0010
 202
 203/* MBIR */
 204#define KS884X_MEM_INFO_OFFSET		0x0214
 205
 206#define RX_MEM_TEST_FAILED		0x0008
 207#define RX_MEM_TEST_FINISHED		0x0010
 208#define TX_MEM_TEST_FAILED		0x0800
 209#define TX_MEM_TEST_FINISHED		0x1000
 210
 211/* GCR */
 212#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 213#define GLOBAL_SOFTWARE_RESET		0x0001
 214
 215#define KS8841_POWER_MANAGE_OFFSET	0x0218
 216
 217/* WFCR */
 218#define KS8841_WOL_CTRL_OFFSET		0x021A
 219#define KS8841_WOL_MAGIC_ENABLE		0x0080
 220#define KS8841_WOL_FRAME3_ENABLE	0x0008
 221#define KS8841_WOL_FRAME2_ENABLE	0x0004
 222#define KS8841_WOL_FRAME1_ENABLE	0x0002
 223#define KS8841_WOL_FRAME0_ENABLE	0x0001
 224
 225/* WF0 */
 226#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 227#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 228#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 229
 230/* IACR */
 231#define KS884X_IACR_P			0x04A0
 232#define KS884X_IACR_OFFSET		KS884X_IACR_P
 233
 234/* IADR1 */
 235#define KS884X_IADR1_P			0x04A2
 236#define KS884X_IADR2_P			0x04A4
 237#define KS884X_IADR3_P			0x04A6
 238#define KS884X_IADR4_P			0x04A8
 239#define KS884X_IADR5_P			0x04AA
 240
 241#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 242#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 243
 244#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 245#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 246#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 247#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 248#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 249#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 250#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 251#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 252#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 253
 254/* P1MBCR */
 255#define KS884X_P1MBCR_P			0x04D0
 256#define KS884X_P1MBSR_P			0x04D2
 257#define KS884X_PHY1ILR_P		0x04D4
 258#define KS884X_PHY1IHR_P		0x04D6
 259#define KS884X_P1ANAR_P			0x04D8
 260#define KS884X_P1ANLPR_P		0x04DA
 261
 262/* P2MBCR */
 263#define KS884X_P2MBCR_P			0x04E0
 264#define KS884X_P2MBSR_P			0x04E2
 265#define KS884X_PHY2ILR_P		0x04E4
 266#define KS884X_PHY2IHR_P		0x04E6
 267#define KS884X_P2ANAR_P			0x04E8
 268#define KS884X_P2ANLPR_P		0x04EA
 269
 270#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 271#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 272
 273#define KS884X_PHY_CTRL_OFFSET		0x00
 274
 275#define KS884X_PHY_STATUS_OFFSET	0x02
 276
 277#define KS884X_PHY_ID_1_OFFSET		0x04
 278#define KS884X_PHY_ID_2_OFFSET		0x06
 279
 280#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 281
 282#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 283
 284/* P1VCT */
 285#define KS884X_P1VCT_P			0x04F0
 286#define KS884X_P1PHYCTRL_P		0x04F2
 287
 288/* P2VCT */
 289#define KS884X_P2VCT_P			0x04F4
 290#define KS884X_P2PHYCTRL_P		0x04F6
 291
 292#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 293#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 294
 295#define KS884X_PHY_LINK_MD_OFFSET	0x00
 296
 297#define PHY_START_CABLE_DIAG		0x8000
 298#define PHY_CABLE_DIAG_RESULT		0x6000
 299#define PHY_CABLE_STAT_NORMAL		0x0000
 300#define PHY_CABLE_STAT_OPEN		0x2000
 301#define PHY_CABLE_STAT_SHORT		0x4000
 302#define PHY_CABLE_STAT_FAILED		0x6000
 303#define PHY_CABLE_10M_SHORT		0x1000
 304#define PHY_CABLE_FAULT_COUNTER		0x01FF
 305
 306#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 307
 308#define PHY_STAT_REVERSED_POLARITY	0x0020
 309#define PHY_STAT_MDIX			0x0010
 310#define PHY_FORCE_LINK			0x0008
 311#define PHY_POWER_SAVING_DISABLE	0x0004
 312#define PHY_REMOTE_LOOPBACK		0x0002
 313
 314/* SIDER */
 315#define KS884X_SIDER_P			0x0400
 316#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 317#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 318
 319#define REG_FAMILY_ID			0x88
 320
 321#define REG_CHIP_ID_41			0x8810
 322#define REG_CHIP_ID_42			0x8800
 323
 324#define KS884X_CHIP_ID_MASK_41		0xFF10
 325#define KS884X_CHIP_ID_MASK		0xFFF0
 326#define KS884X_CHIP_ID_SHIFT		4
 327#define KS884X_REVISION_MASK		0x000E
 328#define KS884X_REVISION_SHIFT		1
 329#define KS8842_START			0x0001
 330
 331#define CHIP_IP_41_M			0x8810
 332#define CHIP_IP_42_M			0x8800
 333#define CHIP_IP_61_M			0x8890
 334#define CHIP_IP_62_M			0x8880
 335
 336#define CHIP_IP_41_P			0x8850
 337#define CHIP_IP_42_P			0x8840
 338#define CHIP_IP_61_P			0x88D0
 339#define CHIP_IP_62_P			0x88C0
 340
 341/* SGCR1 */
 342#define KS8842_SGCR1_P			0x0402
 343#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 344
 345#define SWITCH_PASS_ALL			0x8000
 346#define SWITCH_TX_FLOW_CTRL		0x2000
 347#define SWITCH_RX_FLOW_CTRL		0x1000
 348#define SWITCH_CHECK_LENGTH		0x0800
 349#define SWITCH_AGING_ENABLE		0x0400
 350#define SWITCH_FAST_AGING		0x0200
 351#define SWITCH_AGGR_BACKOFF		0x0100
 352#define SWITCH_PASS_PAUSE		0x0008
 353#define SWITCH_LINK_AUTO_AGING		0x0001
 354
 355/* SGCR2 */
 356#define KS8842_SGCR2_P			0x0404
 357#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 358
 359#define SWITCH_VLAN_ENABLE		0x8000
 360#define SWITCH_IGMP_SNOOP		0x4000
 361#define IPV6_MLD_SNOOP_ENABLE		0x2000
 362#define IPV6_MLD_SNOOP_OPTION		0x1000
 363#define PRIORITY_SCHEME_SELECT		0x0800
 364#define SWITCH_MIRROR_RX_TX		0x0100
 365#define UNICAST_VLAN_BOUNDARY		0x0080
 366#define MULTICAST_STORM_DISABLE		0x0040
 367#define SWITCH_BACK_PRESSURE		0x0020
 368#define FAIR_FLOW_CTRL			0x0010
 369#define NO_EXC_COLLISION_DROP		0x0008
 370#define SWITCH_HUGE_PACKET		0x0004
 371#define SWITCH_LEGAL_PACKET		0x0002
 372#define SWITCH_BUF_RESERVE		0x0001
 373
 374/* SGCR3 */
 375#define KS8842_SGCR3_P			0x0406
 376#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 377
 378#define BROADCAST_STORM_RATE_LO		0xFF00
 379#define SWITCH_REPEATER			0x0080
 380#define SWITCH_HALF_DUPLEX		0x0040
 381#define SWITCH_FLOW_CTRL		0x0020
 382#define SWITCH_10_MBIT			0x0010
 383#define SWITCH_REPLACE_NULL_VID		0x0008
 384#define BROADCAST_STORM_RATE_HI		0x0007
 385
 386#define BROADCAST_STORM_RATE		0x07FF
 387
 388/* SGCR4 */
 389#define KS8842_SGCR4_P			0x0408
 390
 391/* SGCR5 */
 392#define KS8842_SGCR5_P			0x040A
 393#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 394
 395#define LED_MODE			0x8200
 396#define LED_SPEED_DUPLEX_ACT		0x0000
 397#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 398#define LED_DUPLEX_10_100		0x0200
 399
 400/* SGCR6 */
 401#define KS8842_SGCR6_P			0x0410
 402#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 403
 404#define KS8842_PRIORITY_MASK		3
 405#define KS8842_PRIORITY_SHIFT		2
 406
 407/* SGCR7 */
 408#define KS8842_SGCR7_P			0x0412
 409#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 410
 411#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 412#define SWITCH_UNK_DEF_PORT_3		0x0004
 413#define SWITCH_UNK_DEF_PORT_2		0x0002
 414#define SWITCH_UNK_DEF_PORT_1		0x0001
 415
 416/* MACAR1 */
 417#define KS8842_MACAR1_P			0x0470
 418#define KS8842_MACAR2_P			0x0472
 419#define KS8842_MACAR3_P			0x0474
 420#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 421#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 422#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 423#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 424#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 425#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 426
 427/* TOSR1 */
 428#define KS8842_TOSR1_P			0x0480
 429#define KS8842_TOSR2_P			0x0482
 430#define KS8842_TOSR3_P			0x0484
 431#define KS8842_TOSR4_P			0x0486
 432#define KS8842_TOSR5_P			0x0488
 433#define KS8842_TOSR6_P			0x048A
 434#define KS8842_TOSR7_P			0x0490
 435#define KS8842_TOSR8_P			0x0492
 436#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 437#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 438#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 439#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 440#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 441#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 442
 443#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 444#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 445
 446/* P1CR1 */
 447#define KS8842_P1CR1_P			0x0500
 448#define KS8842_P1CR2_P			0x0502
 449#define KS8842_P1VIDR_P			0x0504
 450#define KS8842_P1CR3_P			0x0506
 451#define KS8842_P1IRCR_P			0x0508
 452#define KS8842_P1ERCR_P			0x050A
 453#define KS884X_P1SCSLMD_P		0x0510
 454#define KS884X_P1CR4_P			0x0512
 455#define KS884X_P1SR_P			0x0514
 456
 457/* P2CR1 */
 458#define KS8842_P2CR1_P			0x0520
 459#define KS8842_P2CR2_P			0x0522
 460#define KS8842_P2VIDR_P			0x0524
 461#define KS8842_P2CR3_P			0x0526
 462#define KS8842_P2IRCR_P			0x0528
 463#define KS8842_P2ERCR_P			0x052A
 464#define KS884X_P2SCSLMD_P		0x0530
 465#define KS884X_P2CR4_P			0x0532
 466#define KS884X_P2SR_P			0x0534
 467
 468/* P3CR1 */
 469#define KS8842_P3CR1_P			0x0540
 470#define KS8842_P3CR2_P			0x0542
 471#define KS8842_P3VIDR_P			0x0544
 472#define KS8842_P3CR3_P			0x0546
 473#define KS8842_P3IRCR_P			0x0548
 474#define KS8842_P3ERCR_P			0x054A
 475
 476#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 477#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 478#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 479
 480#define PORT_CTRL_ADDR(port, addr)		\
 481	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 482		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 483
 484#define KS8842_PORT_CTRL_1_OFFSET	0x00
 485
 486#define PORT_BROADCAST_STORM		0x0080
 487#define PORT_DIFFSERV_ENABLE		0x0040
 488#define PORT_802_1P_ENABLE		0x0020
 489#define PORT_BASED_PRIORITY_MASK	0x0018
 490#define PORT_BASED_PRIORITY_BASE	0x0003
 491#define PORT_BASED_PRIORITY_SHIFT	3
 492#define PORT_BASED_PRIORITY_0		0x0000
 493#define PORT_BASED_PRIORITY_1		0x0008
 494#define PORT_BASED_PRIORITY_2		0x0010
 495#define PORT_BASED_PRIORITY_3		0x0018
 496#define PORT_INSERT_TAG			0x0004
 497#define PORT_REMOVE_TAG			0x0002
 498#define PORT_PRIO_QUEUE_ENABLE		0x0001
 499
 500#define KS8842_PORT_CTRL_2_OFFSET	0x02
 501
 502#define PORT_INGRESS_VLAN_FILTER	0x4000
 503#define PORT_DISCARD_NON_VID		0x2000
 504#define PORT_FORCE_FLOW_CTRL		0x1000
 505#define PORT_BACK_PRESSURE		0x0800
 506#define PORT_TX_ENABLE			0x0400
 507#define PORT_RX_ENABLE			0x0200
 508#define PORT_LEARN_DISABLE		0x0100
 509#define PORT_MIRROR_SNIFFER		0x0080
 510#define PORT_MIRROR_RX			0x0040
 511#define PORT_MIRROR_TX			0x0020
 512#define PORT_USER_PRIORITY_CEILING	0x0008
 513#define PORT_VLAN_MEMBERSHIP		0x0007
 514
 515#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 516
 517#define PORT_DEFAULT_VID		0x0001
 518
 519#define KS8842_PORT_CTRL_3_OFFSET	0x06
 520
 521#define PORT_INGRESS_LIMIT_MODE		0x000C
 522#define PORT_INGRESS_ALL		0x0000
 523#define PORT_INGRESS_UNICAST		0x0004
 524#define PORT_INGRESS_MULTICAST		0x0008
 525#define PORT_INGRESS_BROADCAST		0x000C
 526#define PORT_COUNT_IFG			0x0002
 527#define PORT_COUNT_PREAMBLE		0x0001
 528
 529#define KS8842_PORT_IN_RATE_OFFSET	0x08
 530#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 531
 532#define PORT_PRIORITY_RATE		0x0F
 533#define PORT_PRIORITY_RATE_SHIFT	4
 534
 535#define KS884X_PORT_LINK_MD		0x10
 536
 537#define PORT_CABLE_10M_SHORT		0x8000
 538#define PORT_CABLE_DIAG_RESULT		0x6000
 539#define PORT_CABLE_STAT_NORMAL		0x0000
 540#define PORT_CABLE_STAT_OPEN		0x2000
 541#define PORT_CABLE_STAT_SHORT		0x4000
 542#define PORT_CABLE_STAT_FAILED		0x6000
 543#define PORT_START_CABLE_DIAG		0x1000
 544#define PORT_FORCE_LINK			0x0800
 545#define PORT_POWER_SAVING_DISABLE	0x0400
 546#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 547#define PORT_CABLE_FAULT_COUNTER	0x01FF
 548
 549#define KS884X_PORT_CTRL_4_OFFSET	0x12
 550
 551#define PORT_LED_OFF			0x8000
 552#define PORT_TX_DISABLE			0x4000
 553#define PORT_AUTO_NEG_RESTART		0x2000
 554#define PORT_REMOTE_FAULT_DISABLE	0x1000
 555#define PORT_POWER_DOWN			0x0800
 556#define PORT_AUTO_MDIX_DISABLE		0x0400
 557#define PORT_FORCE_MDIX			0x0200
 558#define PORT_LOOPBACK			0x0100
 559#define PORT_AUTO_NEG_ENABLE		0x0080
 560#define PORT_FORCE_100_MBIT		0x0040
 561#define PORT_FORCE_FULL_DUPLEX		0x0020
 562#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 563#define PORT_AUTO_NEG_100BTX_FD		0x0008
 564#define PORT_AUTO_NEG_100BTX		0x0004
 565#define PORT_AUTO_NEG_10BT_FD		0x0002
 566#define PORT_AUTO_NEG_10BT		0x0001
 567
 568#define KS884X_PORT_STATUS_OFFSET	0x14
 569
 570#define PORT_HP_MDIX			0x8000
 571#define PORT_REVERSED_POLARITY		0x2000
 572#define PORT_RX_FLOW_CTRL		0x0800
 573#define PORT_TX_FLOW_CTRL		0x1000
 574#define PORT_STATUS_SPEED_100MBIT	0x0400
 575#define PORT_STATUS_FULL_DUPLEX		0x0200
 576#define PORT_REMOTE_FAULT		0x0100
 577#define PORT_MDIX_STATUS		0x0080
 578#define PORT_AUTO_NEG_COMPLETE		0x0040
 579#define PORT_STATUS_LINK_GOOD		0x0020
 580#define PORT_REMOTE_SYM_PAUSE		0x0010
 581#define PORT_REMOTE_100BTX_FD		0x0008
 582#define PORT_REMOTE_100BTX		0x0004
 583#define PORT_REMOTE_10BT_FD		0x0002
 584#define PORT_REMOTE_10BT		0x0001
 585
 586/*
 587#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 588#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 589#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 590#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 591#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 592#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 593*/
 594
 595#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 596#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 597#define STATIC_MAC_TABLE_VALID		0x00080000
 598#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 599#define STATIC_MAC_TABLE_USE_FID	0x00200000
 600#define STATIC_MAC_TABLE_FID		0x03C00000
 601
 602#define STATIC_MAC_FWD_PORTS_SHIFT	16
 603#define STATIC_MAC_FID_SHIFT		22
 604
 605/*
 606#define VLAN_TABLE_VID			00-00000000-00000FFF
 607#define VLAN_TABLE_FID			00-00000000-0000F000
 608#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 609#define VLAN_TABLE_VALID		00-00000000-00080000
 610*/
 611
 612#define VLAN_TABLE_VID			0x00000FFF
 613#define VLAN_TABLE_FID			0x0000F000
 614#define VLAN_TABLE_MEMBERSHIP		0x00070000
 615#define VLAN_TABLE_VALID		0x00080000
 616
 617#define VLAN_TABLE_FID_SHIFT		12
 618#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 619
 620/*
 621#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 622#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 623#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 624#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 625#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 626#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 627#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 628#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 629*/
 630
 631#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 632#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 633#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 634#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 635#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 636
 637#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 638#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 639#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 640#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 641
 642#define DYNAMIC_MAC_FID_SHIFT		16
 643#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 644#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 645#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 646#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 647
 648/*
 649#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 650#define MIB_COUNTER_VALID		00-00000000-40000000
 651#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 652*/
 653
 654#define MIB_COUNTER_VALUE		0x3FFFFFFF
 655#define MIB_COUNTER_VALID		0x40000000
 656#define MIB_COUNTER_OVERFLOW		0x80000000
 657
 658#define MIB_PACKET_DROPPED		0x0000FFFF
 659
 660#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 661#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 662#define KS_MIB_PACKET_DROPPED_TX	0x102
 663#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 664#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 665#define KS_MIB_PACKET_DROPPED_RX	0x105
 666
 667/* Change default LED mode. */
 668#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 669
 670#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 671
 672#define MAX_ETHERNET_BODY_SIZE		1500
 673#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 674
 675#define MAX_ETHERNET_PACKET_SIZE	\
 676	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 677
 678#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 679#define MAX_RX_BUF_SIZE			(1912 + 4)
 680
 681#define ADDITIONAL_ENTRIES		16
 682#define MAX_MULTICAST_LIST		32
 683
 684#define HW_MULTICAST_SIZE		8
 685
 686#define HW_TO_DEV_PORT(port)		(port - 1)
 687
 688enum {
 689	media_connected,
 690	media_disconnected
 691};
 692
 693enum {
 694	OID_COUNTER_UNKOWN,
 695
 696	OID_COUNTER_FIRST,
 697
 698	/* total transmit errors */
 699	OID_COUNTER_XMIT_ERROR,
 700
 701	/* total receive errors */
 702	OID_COUNTER_RCV_ERROR,
 703
 704	OID_COUNTER_LAST
 705};
 706
 707/*
 708 * Hardware descriptor definitions
 709 */
 710
 711#define DESC_ALIGNMENT			16
 712#define BUFFER_ALIGNMENT		8
 713
 714#define NUM_OF_RX_DESC			64
 715#define NUM_OF_TX_DESC			64
 716
 717#define KS_DESC_RX_FRAME_LEN		0x000007FF
 718#define KS_DESC_RX_FRAME_TYPE		0x00008000
 719#define KS_DESC_RX_ERROR_CRC		0x00010000
 720#define KS_DESC_RX_ERROR_RUNT		0x00020000
 721#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 722#define KS_DESC_RX_ERROR_PHY		0x00080000
 723#define KS884X_DESC_RX_PORT_MASK	0x00300000
 724#define KS_DESC_RX_MULTICAST		0x01000000
 725#define KS_DESC_RX_ERROR		0x02000000
 726#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 727#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 728#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 729#define KS_DESC_RX_LAST			0x20000000
 730#define KS_DESC_RX_FIRST		0x40000000
 731#define KS_DESC_RX_ERROR_COND		\
 732	(KS_DESC_RX_ERROR_CRC |		\
 733	KS_DESC_RX_ERROR_RUNT |		\
 734	KS_DESC_RX_ERROR_PHY |		\
 735	KS_DESC_RX_ERROR_TOO_LONG)
 736
 737#define KS_DESC_HW_OWNED		0x80000000
 738
 739#define KS_DESC_BUF_SIZE		0x000007FF
 740#define KS884X_DESC_TX_PORT_MASK	0x00300000
 741#define KS_DESC_END_OF_RING		0x02000000
 742#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 743#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 744#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 745#define KS_DESC_TX_LAST			0x20000000
 746#define KS_DESC_TX_FIRST		0x40000000
 747#define KS_DESC_TX_INTERRUPT		0x80000000
 748
 749#define KS_DESC_PORT_SHIFT		20
 750
 751#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 752
 753#define KS_DESC_TX_MASK			\
 754	(KS_DESC_TX_INTERRUPT |		\
 755	KS_DESC_TX_FIRST |		\
 756	KS_DESC_TX_LAST |		\
 757	KS_DESC_TX_CSUM_GEN_IP |	\
 758	KS_DESC_TX_CSUM_GEN_TCP |	\
 759	KS_DESC_TX_CSUM_GEN_UDP |	\
 760	KS_DESC_BUF_SIZE)
 761
 762struct ksz_desc_rx_stat {
 763#ifdef __BIG_ENDIAN_BITFIELD
 764	u32 hw_owned:1;
 765	u32 first_desc:1;
 766	u32 last_desc:1;
 767	u32 csum_err_ip:1;
 768	u32 csum_err_tcp:1;
 769	u32 csum_err_udp:1;
 770	u32 error:1;
 771	u32 multicast:1;
 772	u32 src_port:4;
 773	u32 err_phy:1;
 774	u32 err_too_long:1;
 775	u32 err_runt:1;
 776	u32 err_crc:1;
 777	u32 frame_type:1;
 778	u32 reserved1:4;
 779	u32 frame_len:11;
 780#else
 781	u32 frame_len:11;
 782	u32 reserved1:4;
 783	u32 frame_type:1;
 784	u32 err_crc:1;
 785	u32 err_runt:1;
 786	u32 err_too_long:1;
 787	u32 err_phy:1;
 788	u32 src_port:4;
 789	u32 multicast:1;
 790	u32 error:1;
 791	u32 csum_err_udp:1;
 792	u32 csum_err_tcp:1;
 793	u32 csum_err_ip:1;
 794	u32 last_desc:1;
 795	u32 first_desc:1;
 796	u32 hw_owned:1;
 797#endif
 798};
 799
 800struct ksz_desc_tx_stat {
 801#ifdef __BIG_ENDIAN_BITFIELD
 802	u32 hw_owned:1;
 803	u32 reserved1:31;
 804#else
 805	u32 reserved1:31;
 806	u32 hw_owned:1;
 807#endif
 808};
 809
 810struct ksz_desc_rx_buf {
 811#ifdef __BIG_ENDIAN_BITFIELD
 812	u32 reserved4:6;
 813	u32 end_of_ring:1;
 814	u32 reserved3:14;
 815	u32 buf_size:11;
 816#else
 817	u32 buf_size:11;
 818	u32 reserved3:14;
 819	u32 end_of_ring:1;
 820	u32 reserved4:6;
 821#endif
 822};
 823
 824struct ksz_desc_tx_buf {
 825#ifdef __BIG_ENDIAN_BITFIELD
 826	u32 intr:1;
 827	u32 first_seg:1;
 828	u32 last_seg:1;
 829	u32 csum_gen_ip:1;
 830	u32 csum_gen_tcp:1;
 831	u32 csum_gen_udp:1;
 832	u32 end_of_ring:1;
 833	u32 reserved4:1;
 834	u32 dest_port:4;
 835	u32 reserved3:9;
 836	u32 buf_size:11;
 837#else
 838	u32 buf_size:11;
 839	u32 reserved3:9;
 840	u32 dest_port:4;
 841	u32 reserved4:1;
 842	u32 end_of_ring:1;
 843	u32 csum_gen_udp:1;
 844	u32 csum_gen_tcp:1;
 845	u32 csum_gen_ip:1;
 846	u32 last_seg:1;
 847	u32 first_seg:1;
 848	u32 intr:1;
 849#endif
 850};
 851
 852union desc_stat {
 853	struct ksz_desc_rx_stat rx;
 854	struct ksz_desc_tx_stat tx;
 855	u32 data;
 856};
 857
 858union desc_buf {
 859	struct ksz_desc_rx_buf rx;
 860	struct ksz_desc_tx_buf tx;
 861	u32 data;
 862};
 863
 864/**
 865 * struct ksz_hw_desc - Hardware descriptor data structure
 866 * @ctrl:	Descriptor control value.
 867 * @buf:	Descriptor buffer value.
 868 * @addr:	Physical address of memory buffer.
 869 * @next:	Pointer to next hardware descriptor.
 870 */
 871struct ksz_hw_desc {
 872	union desc_stat ctrl;
 873	union desc_buf buf;
 874	u32 addr;
 875	u32 next;
 876};
 877
 878/**
 879 * struct ksz_sw_desc - Software descriptor data structure
 880 * @ctrl:	Descriptor control value.
 881 * @buf:	Descriptor buffer value.
 882 * @buf_size:	Current buffers size value in hardware descriptor.
 883 */
 884struct ksz_sw_desc {
 885	union desc_stat ctrl;
 886	union desc_buf buf;
 887	u32 buf_size;
 888};
 889
 890/**
 891 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 892 * @skb:	Associated socket buffer.
 893 * @dma:	Associated physical DMA address.
 894 * @len:	Actual len used.
 895 */
 896struct ksz_dma_buf {
 897	struct sk_buff *skb;
 898	dma_addr_t dma;
 899	int len;
 900};
 901
 902/**
 903 * struct ksz_desc - Descriptor structure
 904 * @phw:	Hardware descriptor pointer to uncached physical memory.
 905 * @sw:		Cached memory to hold hardware descriptor values for
 906 * 		manipulation.
 907 * @dma_buf:	Operating system dependent data structure to hold physical
 908 * 		memory buffer allocation information.
 909 */
 910struct ksz_desc {
 911	struct ksz_hw_desc *phw;
 912	struct ksz_sw_desc sw;
 913	struct ksz_dma_buf dma_buf;
 914};
 915
 916#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 917
 918/**
 919 * struct ksz_desc_info - Descriptor information data structure
 920 * @ring:	First descriptor in the ring.
 921 * @cur:	Current descriptor being manipulated.
 922 * @ring_virt:	First hardware descriptor in the ring.
 923 * @ring_phys:	The physical address of the first descriptor of the ring.
 924 * @size:	Size of hardware descriptor.
 925 * @alloc:	Number of descriptors allocated.
 926 * @avail:	Number of descriptors available for use.
 927 * @last:	Index for last descriptor released to hardware.
 928 * @next:	Index for next descriptor available for use.
 929 * @mask:	Mask for index wrapping.
 930 */
 931struct ksz_desc_info {
 932	struct ksz_desc *ring;
 933	struct ksz_desc *cur;
 934	struct ksz_hw_desc *ring_virt;
 935	u32 ring_phys;
 936	int size;
 937	int alloc;
 938	int avail;
 939	int last;
 940	int next;
 941	int mask;
 942};
 943
 944/*
 945 * KSZ8842 switch definitions
 946 */
 947
 948enum {
 949	TABLE_STATIC_MAC = 0,
 950	TABLE_VLAN,
 951	TABLE_DYNAMIC_MAC,
 952	TABLE_MIB
 953};
 954
 955#define LEARNED_MAC_TABLE_ENTRIES	1024
 956#define STATIC_MAC_TABLE_ENTRIES	8
 957
 958/**
 959 * struct ksz_mac_table - Static MAC table data structure
 960 * @mac_addr:	MAC address to filter.
 961 * @vid:	VID value.
 962 * @fid:	FID value.
 963 * @ports:	Port membership.
 964 * @override:	Override setting.
 965 * @use_fid:	FID use setting.
 966 * @valid:	Valid setting indicating the entry is being used.
 967 */
 968struct ksz_mac_table {
 969	u8 mac_addr[ETH_ALEN];
 970	u16 vid;
 971	u8 fid;
 972	u8 ports;
 973	u8 override:1;
 974	u8 use_fid:1;
 975	u8 valid:1;
 976};
 977
 978#define VLAN_TABLE_ENTRIES		16
 979
 980/**
 981 * struct ksz_vlan_table - VLAN table data structure
 982 * @vid:	VID value.
 983 * @fid:	FID value.
 984 * @member:	Port membership.
 985 */
 986struct ksz_vlan_table {
 987	u16 vid;
 988	u8 fid;
 989	u8 member;
 990};
 991
 992#define DIFFSERV_ENTRIES		64
 993#define PRIO_802_1P_ENTRIES		8
 994#define PRIO_QUEUES			4
 995
 996#define SWITCH_PORT_NUM			2
 997#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
 998#define HOST_MASK			(1 << SWITCH_PORT_NUM)
 999#define PORT_MASK			7
1000
1001#define MAIN_PORT			0
1002#define OTHER_PORT			1
1003#define HOST_PORT			SWITCH_PORT_NUM
1004
1005#define PORT_COUNTER_NUM		0x20
1006#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1007
1008#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1009#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1010#define MIB_COUNTER_RX_UNDERSIZE	0x02
1011#define MIB_COUNTER_RX_FRAGMENT		0x03
1012#define MIB_COUNTER_RX_OVERSIZE		0x04
1013#define MIB_COUNTER_RX_JABBER		0x05
1014#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1015#define MIB_COUNTER_RX_CRC_ERR		0x07
1016#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1017#define MIB_COUNTER_RX_CTRL_8808	0x09
1018#define MIB_COUNTER_RX_PAUSE		0x0A
1019#define MIB_COUNTER_RX_BROADCAST	0x0B
1020#define MIB_COUNTER_RX_MULTICAST	0x0C
1021#define MIB_COUNTER_RX_UNICAST		0x0D
1022#define MIB_COUNTER_RX_OCTET_64		0x0E
1023#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1024#define MIB_COUNTER_RX_OCTET_128_255	0x10
1025#define MIB_COUNTER_RX_OCTET_256_511	0x11
1026#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1027#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1028#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1029#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1030#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1031#define MIB_COUNTER_TX_PAUSE		0x17
1032#define MIB_COUNTER_TX_BROADCAST	0x18
1033#define MIB_COUNTER_TX_MULTICAST	0x19
1034#define MIB_COUNTER_TX_UNICAST		0x1A
1035#define MIB_COUNTER_TX_DEFERRED		0x1B
1036#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1037#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1038#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1039#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1040
1041#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1042#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1043
1044/**
1045 * struct ksz_port_mib - Port MIB data structure
1046 * @cnt_ptr:	Current pointer to MIB counter index.
1047 * @link_down:	Indication the link has just gone down.
1048 * @state:	Connection status of the port.
1049 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1050 * @counter:	64-bit MIB counter value.
1051 * @dropped:	Temporary buffer to remember last read packet dropped values.
1052 *
1053 * MIB counters needs to be read periodically so that counters do not get
1054 * overflowed and give incorrect values.  A right balance is needed to
1055 * satisfy this condition and not waste too much CPU time.
1056 *
1057 * It is pointless to read MIB counters when the port is disconnected.  The
1058 * @state provides the connection status so that MIB counters are read only
1059 * when the port is connected.  The @link_down indicates the port is just
1060 * disconnected so that all MIB counters are read one last time to update the
1061 * information.
1062 */
1063struct ksz_port_mib {
1064	u8 cnt_ptr;
1065	u8 link_down;
1066	u8 state;
1067	u8 mib_start;
1068
1069	u64 counter[TOTAL_PORT_COUNTER_NUM];
1070	u32 dropped[2];
1071};
1072
1073/**
1074 * struct ksz_port_cfg - Port configuration data structure
1075 * @vid:	VID value.
1076 * @member:	Port membership.
1077 * @port_prio:	Port priority.
1078 * @rx_rate:	Receive priority rate.
1079 * @tx_rate:	Transmit priority rate.
1080 * @stp_state:	Current Spanning Tree Protocol state.
1081 */
1082struct ksz_port_cfg {
1083	u16 vid;
1084	u8 member;
1085	u8 port_prio;
1086	u32 rx_rate[PRIO_QUEUES];
1087	u32 tx_rate[PRIO_QUEUES];
1088	int stp_state;
1089};
1090
1091/**
1092 * struct ksz_switch - KSZ8842 switch data structure
1093 * @mac_table:	MAC table entries information.
1094 * @vlan_table:	VLAN table entries information.
1095 * @port_cfg:	Port configuration information.
1096 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1097 * 		(bit7 ~ bit2) field.
1098 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1099 * 		Tag priority field.
1100 * @br_addr:	Bridge address.  Used for STP.
1101 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1102 * @broad_per:	Broadcast storm percentage.
1103 * @member:	Current port membership.  Used for STP.
1104 */
1105struct ksz_switch {
1106	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1107	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1108	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1109
1110	u8 diffserv[DIFFSERV_ENTRIES];
1111	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1112
1113	u8 br_addr[ETH_ALEN];
1114	u8 other_addr[ETH_ALEN];
1115
1116	u8 broad_per;
1117	u8 member;
1118};
1119
1120#define TX_RATE_UNIT			10000
1121
1122/**
1123 * struct ksz_port_info - Port information data structure
1124 * @state:	Connection status of the port.
1125 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1126 * @duplex:	Duplex mode.
1127 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1128 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1129 * @port_id:	Port index to access actual hardware register.
1130 * @pdev:	Pointer to OS dependent network device.
1131 */
1132struct ksz_port_info {
1133	uint state;
1134	uint tx_rate;
1135	u8 duplex;
1136	u8 advertised;
1137	u8 partner;
1138	u8 port_id;
1139	void *pdev;
1140};
1141
1142#define MAX_TX_HELD_SIZE		52000
1143
1144/* Hardware features and bug fixes. */
1145#define LINK_INT_WORKING		(1 << 0)
1146#define SMALL_PACKET_TX_BUG		(1 << 1)
1147#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1148#define RX_HUGE_FRAME			(1 << 4)
1149#define STP_SUPPORT			(1 << 8)
1150
1151/* Software overrides. */
1152#define PAUSE_FLOW_CTRL			(1 << 0)
1153#define FAST_AGING			(1 << 1)
1154
1155/**
1156 * struct ksz_hw - KSZ884X hardware data structure
1157 * @io:			Virtual address assigned.
1158 * @ksz_switch:		Pointer to KSZ8842 switch.
1159 * @port_info:		Port information.
1160 * @port_mib:		Port MIB information.
1161 * @dev_count:		Number of network devices this hardware supports.
1162 * @dst_ports:		Destination ports in switch for transmission.
1163 * @id:			Hardware ID.  Used for display only.
1164 * @mib_cnt:		Number of MIB counters this hardware has.
1165 * @mib_port_cnt:	Number of ports with MIB counters.
1166 * @tx_cfg:		Cached transmit control settings.
1167 * @rx_cfg:		Cached receive control settings.
1168 * @intr_mask:		Current interrupt mask.
1169 * @intr_set:		Current interrup set.
1170 * @intr_blocked:	Interrupt blocked.
1171 * @rx_desc_info:	Receive descriptor information.
1172 * @tx_desc_info:	Transmit descriptor information.
1173 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1174 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1175 * @tx_size:		Transmit data size.  Used for TX optimization.
1176 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1177 * @perm_addr:		Permanent MAC address.
1178 * @override_addr:	Overridden MAC address.
1179 * @address:		Additional MAC address entries.
1180 * @addr_list_size:	Additional MAC address list size.
1181 * @mac_override:	Indication of MAC address overridden.
1182 * @promiscuous:	Counter to keep track of promiscuous mode set.
1183 * @all_multi:		Counter to keep track of all multicast mode set.
1184 * @multi_list:		Multicast address entries.
1185 * @multi_bits:		Cached multicast hash table settings.
1186 * @multi_list_size:	Multicast address list size.
1187 * @enabled:		Indication of hardware enabled.
1188 * @rx_stop:		Indication of receive process stop.
1189 * @reserved2:		none
1190 * @features:		Hardware features to enable.
1191 * @overrides:		Hardware features to override.
1192 * @parent:		Pointer to parent, network device private structure.
1193 */
1194struct ksz_hw {
1195	void __iomem *io;
1196
1197	struct ksz_switch *ksz_switch;
1198	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1199	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1200	int dev_count;
1201	int dst_ports;
1202	int id;
1203	int mib_cnt;
1204	int mib_port_cnt;
1205
1206	u32 tx_cfg;
1207	u32 rx_cfg;
1208	u32 intr_mask;
1209	u32 intr_set;
1210	uint intr_blocked;
1211
1212	struct ksz_desc_info rx_desc_info;
1213	struct ksz_desc_info tx_desc_info;
1214
1215	int tx_int_cnt;
1216	int tx_int_mask;
1217	int tx_size;
1218
1219	u8 perm_addr[ETH_ALEN];
1220	u8 override_addr[ETH_ALEN];
1221	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1222	u8 addr_list_size;
1223	u8 mac_override;
1224	u8 promiscuous;
1225	u8 all_multi;
1226	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1227	u8 multi_bits[HW_MULTICAST_SIZE];
1228	u8 multi_list_size;
1229
1230	u8 enabled;
1231	u8 rx_stop;
1232	u8 reserved2[1];
1233
1234	uint features;
1235	uint overrides;
1236
1237	void *parent;
1238};
1239
1240enum {
1241	PHY_NO_FLOW_CTRL,
1242	PHY_FLOW_CTRL,
1243	PHY_TX_ONLY,
1244	PHY_RX_ONLY
1245};
1246
1247/**
1248 * struct ksz_port - Virtual port data structure
1249 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1250 * 			duplex, and 0 for auto, which normally results in full
1251 * 			duplex.
1252 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1253 * 			0 for auto, which normally results in 100 Mbit.
1254 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1255 * 			force.
1256 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1257 * 			control, and PHY_FLOW_CTRL for flow control.
1258 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1259 * 			Mbit PHY.
1260 * @first_port:		Index of first port this port supports.
1261 * @mib_port_cnt:	Number of ports with MIB counters.
1262 * @port_cnt:		Number of ports this port supports.
1263 * @counter:		Port statistics counter.
1264 * @hw:			Pointer to hardware structure.
1265 * @linked:		Pointer to port information linked to this port.
1266 */
1267struct ksz_port {
1268	u8 duplex;
1269	u8 speed;
1270	u8 force_link;
1271	u8 flow_ctrl;
1272
1273	int first_port;
1274	int mib_port_cnt;
1275	int port_cnt;
1276	u64 counter[OID_COUNTER_LAST];
1277
1278	struct ksz_hw *hw;
1279	struct ksz_port_info *linked;
1280};
1281
1282/**
1283 * struct ksz_timer_info - Timer information data structure
1284 * @timer:	Kernel timer.
1285 * @cnt:	Running timer counter.
1286 * @max:	Number of times to run timer; -1 for infinity.
1287 * @period:	Timer period in jiffies.
1288 */
1289struct ksz_timer_info {
1290	struct timer_list timer;
1291	int cnt;
1292	int max;
1293	int period;
1294};
1295
1296/**
1297 * struct ksz_shared_mem - OS dependent shared memory data structure
1298 * @dma_addr:	Physical DMA address allocated.
1299 * @alloc_size:	Allocation size.
1300 * @phys:	Actual physical address used.
1301 * @alloc_virt:	Virtual address allocated.
1302 * @virt:	Actual virtual address used.
1303 */
1304struct ksz_shared_mem {
1305	dma_addr_t dma_addr;
1306	uint alloc_size;
1307	uint phys;
1308	u8 *alloc_virt;
1309	u8 *virt;
1310};
1311
1312/**
1313 * struct ksz_counter_info - OS dependent counter information data structure
1314 * @counter:	Wait queue to wakeup after counters are read.
1315 * @time:	Next time in jiffies to read counter.
1316 * @read:	Indication of counters read in full or not.
1317 */
1318struct ksz_counter_info {
1319	wait_queue_head_t counter;
1320	unsigned long time;
1321	int read;
1322};
1323
1324/**
1325 * struct dev_info - Network device information data structure
1326 * @dev:		Pointer to network device.
1327 * @pdev:		Pointer to PCI device.
1328 * @hw:			Hardware structure.
1329 * @desc_pool:		Physical memory used for descriptor pool.
1330 * @hwlock:		Spinlock to prevent hardware from accessing.
1331 * @lock:		Mutex lock to prevent device from accessing.
1332 * @dev_rcv:		Receive process function used.
1333 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1334 * @skb_index:		Buffer index for receiving fragments.
1335 * @skb_len:		Buffer length for receiving fragments.
1336 * @mib_read:		Workqueue to read MIB counters.
1337 * @mib_timer_info:	Timer to read MIB counters.
1338 * @counter:		Used for MIB reading.
1339 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1340 * 			the maximum is MAX_RX_BUF_SIZE.
1341 * @opened:		Counter to keep track of device open.
1342 * @rx_tasklet:		Receive processing tasklet.
1343 * @tx_tasklet:		Transmit processing tasklet.
1344 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1345 * @wol_support:	Wake-on-LAN support used by ethtool.
1346 * @pme_wait:		Used for KSZ8841 power management.
1347 */
1348struct dev_info {
1349	struct net_device *dev;
1350	struct pci_dev *pdev;
1351
1352	struct ksz_hw hw;
1353	struct ksz_shared_mem desc_pool;
1354
1355	spinlock_t hwlock;
1356	struct mutex lock;
1357
1358	int (*dev_rcv)(struct dev_info *);
1359
1360	struct sk_buff *last_skb;
1361	int skb_index;
1362	int skb_len;
1363
1364	struct work_struct mib_read;
1365	struct ksz_timer_info mib_timer_info;
1366	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1367
1368	int mtu;
1369	int opened;
1370
1371	struct tasklet_struct rx_tasklet;
1372	struct tasklet_struct tx_tasklet;
1373
1374	int wol_enable;
1375	int wol_support;
1376	unsigned long pme_wait;
1377};
1378
1379/**
1380 * struct dev_priv - Network device private data structure
1381 * @adapter:		Adapter device information.
1382 * @port:		Port information.
1383 * @monitor_timer_info:	Timer to monitor ports.
1384 * @proc_sem:		Semaphore for proc accessing.
1385 * @id:			Device ID.
1386 * @mii_if:		MII interface information.
1387 * @advertising:	Temporary variable to store advertised settings.
1388 * @msg_enable:		The message flags controlling driver output.
1389 * @media_state:	The connection status of the device.
1390 * @multicast:		The all multicast state of the device.
1391 * @promiscuous:	The promiscuous state of the device.
1392 */
1393struct dev_priv {
1394	struct dev_info *adapter;
1395	struct ksz_port port;
1396	struct ksz_timer_info monitor_timer_info;
1397
1398	struct semaphore proc_sem;
1399	int id;
1400
1401	struct mii_if_info mii_if;
1402	u32 advertising;
1403
1404	u32 msg_enable;
1405	int media_state;
1406	int multicast;
1407	int promiscuous;
1408};
1409
1410#define DRV_NAME		"KSZ884X PCI"
1411#define DEVICE_NAME		"KSZ884x PCI"
1412#define DRV_VERSION		"1.0.0"
1413#define DRV_RELDATE		"Feb 8, 2010"
1414
1415static char version[] =
1416	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1417
1418static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1419
1420/*
1421 * Interrupt processing primary routines
1422 */
1423
1424static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1425{
1426	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1427}
1428
1429static inline void hw_dis_intr(struct ksz_hw *hw)
1430{
1431	hw->intr_blocked = hw->intr_mask;
1432	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1433	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1434}
1435
1436static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1437{
1438	hw->intr_set = interrupt;
1439	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1440}
1441
1442static inline void hw_ena_intr(struct ksz_hw *hw)
1443{
1444	hw->intr_blocked = 0;
1445	hw_set_intr(hw, hw->intr_mask);
1446}
1447
1448static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1449{
1450	hw->intr_mask &= ~(bit);
1451}
1452
1453static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1454{
1455	u32 read_intr;
1456
1457	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1458	hw->intr_set = read_intr & ~interrupt;
1459	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1460	hw_dis_intr_bit(hw, interrupt);
1461}
1462
1463/**
1464 * hw_turn_on_intr - turn on specified interrupts
1465 * @hw: 	The hardware instance.
1466 * @bit:	The interrupt bits to be on.
1467 *
1468 * This routine turns on the specified interrupts in the interrupt mask so that
1469 * those interrupts will be enabled.
1470 */
1471static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1472{
1473	hw->intr_mask |= bit;
1474
1475	if (!hw->intr_blocked)
1476		hw_set_intr(hw, hw->intr_mask);
1477}
1478
 
 
 
 
 
 
 
 
 
1479static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1480{
1481	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1482	*status = *status & hw->intr_set;
1483}
1484
1485static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1486{
1487	if (interrupt)
1488		hw_ena_intr(hw);
1489}
1490
1491/**
1492 * hw_block_intr - block hardware interrupts
1493 * @hw: The hardware instance.
1494 *
1495 * This function blocks all interrupts of the hardware and returns the current
1496 * interrupt enable mask so that interrupts can be restored later.
1497 *
1498 * Return the current interrupt enable mask.
1499 */
1500static uint hw_block_intr(struct ksz_hw *hw)
1501{
1502	uint interrupt = 0;
1503
1504	if (!hw->intr_blocked) {
1505		hw_dis_intr(hw);
1506		interrupt = hw->intr_blocked;
1507	}
1508	return interrupt;
1509}
1510
1511/*
1512 * Hardware descriptor routines
1513 */
1514
1515static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1516{
1517	status.rx.hw_owned = 0;
1518	desc->phw->ctrl.data = cpu_to_le32(status.data);
1519}
1520
1521static inline void release_desc(struct ksz_desc *desc)
1522{
1523	desc->sw.ctrl.tx.hw_owned = 1;
1524	if (desc->sw.buf_size != desc->sw.buf.data) {
1525		desc->sw.buf_size = desc->sw.buf.data;
1526		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1527	}
1528	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1529}
1530
1531static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1532{
1533	*desc = &info->ring[info->last];
1534	info->last++;
1535	info->last &= info->mask;
1536	info->avail--;
1537	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1538}
1539
1540static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1541{
1542	desc->phw->addr = cpu_to_le32(addr);
1543}
1544
1545static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1546{
1547	desc->sw.buf.rx.buf_size = len;
1548}
1549
1550static inline void get_tx_pkt(struct ksz_desc_info *info,
1551	struct ksz_desc **desc)
1552{
1553	*desc = &info->ring[info->next];
1554	info->next++;
1555	info->next &= info->mask;
1556	info->avail--;
1557	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1558}
1559
1560static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1561{
1562	desc->phw->addr = cpu_to_le32(addr);
1563}
1564
1565static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1566{
1567	desc->sw.buf.tx.buf_size = len;
1568}
1569
1570/* Switch functions */
1571
1572#define TABLE_READ			0x10
1573#define TABLE_SEL_SHIFT			2
1574
1575#define HW_DELAY(hw, reg)			\
1576	do {					\
1577		readw(hw->io + reg);		\
1578	} while (0)
1579
1580/**
1581 * sw_r_table - read 4 bytes of data from switch table
1582 * @hw:		The hardware instance.
1583 * @table:	The table selector.
1584 * @addr:	The address of the table entry.
1585 * @data:	Buffer to store the read data.
1586 *
1587 * This routine reads 4 bytes of data from the table of the switch.
1588 * Hardware interrupts are disabled to minimize corruption of read data.
1589 */
1590static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1591{
1592	u16 ctrl_addr;
1593	uint interrupt;
1594
1595	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1596
1597	interrupt = hw_block_intr(hw);
1598
1599	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1600	HW_DELAY(hw, KS884X_IACR_OFFSET);
1601	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1602
1603	hw_restore_intr(hw, interrupt);
1604}
1605
1606/**
1607 * sw_w_table_64 - write 8 bytes of data to the switch table
1608 * @hw:		The hardware instance.
1609 * @table:	The table selector.
1610 * @addr:	The address of the table entry.
1611 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1612 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1613 *
1614 * This routine writes 8 bytes of data to the table of the switch.
1615 * Hardware interrupts are disabled to minimize corruption of written data.
1616 */
1617static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1618	u32 data_lo)
1619{
1620	u16 ctrl_addr;
1621	uint interrupt;
1622
1623	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1624
1625	interrupt = hw_block_intr(hw);
1626
1627	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1628	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1629
1630	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1631	HW_DELAY(hw, KS884X_IACR_OFFSET);
1632
1633	hw_restore_intr(hw, interrupt);
1634}
1635
1636/**
1637 * sw_w_sta_mac_table - write to the static MAC table
1638 * @hw: 	The hardware instance.
1639 * @addr:	The address of the table entry.
1640 * @mac_addr:	The MAC address.
1641 * @ports:	The port members.
1642 * @override:	The flag to override the port receive/transmit settings.
1643 * @valid:	The flag to indicate entry is valid.
1644 * @use_fid:	The flag to indicate the FID is valid.
1645 * @fid:	The FID value.
1646 *
1647 * This routine writes an entry of the static MAC table of the switch.  It
1648 * calls sw_w_table_64() to write the data.
1649 */
1650static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1651	u8 ports, int override, int valid, int use_fid, u8 fid)
1652{
1653	u32 data_hi;
1654	u32 data_lo;
1655
1656	data_lo = ((u32) mac_addr[2] << 24) |
1657		((u32) mac_addr[3] << 16) |
1658		((u32) mac_addr[4] << 8) | mac_addr[5];
1659	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1660	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1661
1662	if (override)
1663		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1664	if (use_fid) {
1665		data_hi |= STATIC_MAC_TABLE_USE_FID;
1666		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1667	}
1668	if (valid)
1669		data_hi |= STATIC_MAC_TABLE_VALID;
1670
1671	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1672}
1673
1674/**
1675 * sw_r_vlan_table - read from the VLAN table
1676 * @hw: 	The hardware instance.
1677 * @addr:	The address of the table entry.
1678 * @vid:	Buffer to store the VID.
1679 * @fid:	Buffer to store the VID.
1680 * @member:	Buffer to store the port membership.
1681 *
1682 * This function reads an entry of the VLAN table of the switch.  It calls
1683 * sw_r_table() to get the data.
1684 *
1685 * Return 0 if the entry is valid; otherwise -1.
1686 */
1687static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1688	u8 *member)
1689{
1690	u32 data;
1691
1692	sw_r_table(hw, TABLE_VLAN, addr, &data);
1693	if (data & VLAN_TABLE_VALID) {
1694		*vid = (u16)(data & VLAN_TABLE_VID);
1695		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1696		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1697			VLAN_TABLE_MEMBERSHIP_SHIFT);
1698		return 0;
1699	}
1700	return -1;
1701}
1702
1703/**
1704 * port_r_mib_cnt - read MIB counter
1705 * @hw: 	The hardware instance.
1706 * @port:	The port index.
1707 * @addr:	The address of the counter.
1708 * @cnt:	Buffer to store the counter.
1709 *
1710 * This routine reads a MIB counter of the port.
1711 * Hardware interrupts are disabled to minimize corruption of read data.
1712 */
1713static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1714{
1715	u32 data;
1716	u16 ctrl_addr;
1717	uint interrupt;
1718	int timeout;
1719
1720	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1721
1722	interrupt = hw_block_intr(hw);
1723
1724	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1725	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1726	HW_DELAY(hw, KS884X_IACR_OFFSET);
1727
1728	for (timeout = 100; timeout > 0; timeout--) {
1729		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1730
1731		if (data & MIB_COUNTER_VALID) {
1732			if (data & MIB_COUNTER_OVERFLOW)
1733				*cnt += MIB_COUNTER_VALUE + 1;
1734			*cnt += data & MIB_COUNTER_VALUE;
1735			break;
1736		}
1737	}
1738
1739	hw_restore_intr(hw, interrupt);
1740}
1741
1742/**
1743 * port_r_mib_pkt - read dropped packet counts
1744 * @hw: 	The hardware instance.
1745 * @port:	The port index.
1746 * @last:	last one
1747 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1748 *
1749 * This routine reads the dropped packet counts of the port.
1750 * Hardware interrupts are disabled to minimize corruption of read data.
1751 */
1752static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1753{
1754	u32 cur;
1755	u32 data;
1756	u16 ctrl_addr;
1757	uint interrupt;
1758	int index;
1759
1760	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1761	do {
1762		interrupt = hw_block_intr(hw);
1763
1764		ctrl_addr = (u16) index;
1765		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1766			<< 8);
1767		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1768		HW_DELAY(hw, KS884X_IACR_OFFSET);
1769		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1770
1771		hw_restore_intr(hw, interrupt);
1772
1773		data &= MIB_PACKET_DROPPED;
1774		cur = *last;
1775		if (data != cur) {
1776			*last = data;
1777			if (data < cur)
1778				data += MIB_PACKET_DROPPED + 1;
1779			data -= cur;
1780			*cnt += data;
1781		}
1782		++last;
1783		++cnt;
1784		index -= KS_MIB_PACKET_DROPPED_TX -
1785			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1786	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1787}
1788
1789/**
1790 * port_r_cnt - read MIB counters periodically
1791 * @hw: 	The hardware instance.
1792 * @port:	The port index.
1793 *
1794 * This routine is used to read the counters of the port periodically to avoid
1795 * counter overflow.  The hardware should be acquired first before calling this
1796 * routine.
1797 *
1798 * Return non-zero when not all counters not read.
1799 */
1800static int port_r_cnt(struct ksz_hw *hw, int port)
1801{
1802	struct ksz_port_mib *mib = &hw->port_mib[port];
1803
1804	if (mib->mib_start < PORT_COUNTER_NUM)
1805		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1806			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1807				&mib->counter[mib->cnt_ptr]);
1808			++mib->cnt_ptr;
1809		}
1810	if (hw->mib_cnt > PORT_COUNTER_NUM)
1811		port_r_mib_pkt(hw, port, mib->dropped,
1812			&mib->counter[PORT_COUNTER_NUM]);
1813	mib->cnt_ptr = 0;
1814	return 0;
1815}
1816
1817/**
1818 * port_init_cnt - initialize MIB counter values
1819 * @hw: 	The hardware instance.
1820 * @port:	The port index.
1821 *
1822 * This routine is used to initialize all counters to zero if the hardware
1823 * cannot do it after reset.
1824 */
1825static void port_init_cnt(struct ksz_hw *hw, int port)
1826{
1827	struct ksz_port_mib *mib = &hw->port_mib[port];
1828
1829	mib->cnt_ptr = 0;
1830	if (mib->mib_start < PORT_COUNTER_NUM)
1831		do {
1832			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1833				&mib->counter[mib->cnt_ptr]);
1834			++mib->cnt_ptr;
1835		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1836	if (hw->mib_cnt > PORT_COUNTER_NUM)
1837		port_r_mib_pkt(hw, port, mib->dropped,
1838			&mib->counter[PORT_COUNTER_NUM]);
1839	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1840	mib->cnt_ptr = 0;
1841}
1842
1843/*
1844 * Port functions
1845 */
1846
1847/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848 * port_cfg - set port register bits
1849 * @hw: 	The hardware instance.
1850 * @port:	The port index.
1851 * @offset:	The offset of the port register.
1852 * @bits:	The data bits to set.
1853 * @set:	The flag indicating whether the bits are to be set or not.
1854 *
1855 * This routine sets or resets the specified bits of the port register.
1856 */
1857static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1858	int set)
1859{
1860	u32 addr;
1861	u16 data;
1862
1863	PORT_CTRL_ADDR(port, addr);
1864	addr += offset;
1865	data = readw(hw->io + addr);
1866	if (set)
1867		data |= bits;
1868	else
1869		data &= ~bits;
1870	writew(data, hw->io + addr);
1871}
1872
1873/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874 * port_r8 - read byte from port register
1875 * @hw: 	The hardware instance.
1876 * @port:	The port index.
1877 * @offset:	The offset of the port register.
1878 * @data:	Buffer to store the data.
1879 *
1880 * This routine reads a byte from the port register.
1881 */
1882static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
1883{
1884	u32 addr;
1885
1886	PORT_CTRL_ADDR(port, addr);
1887	addr += offset;
1888	*data = readb(hw->io + addr);
1889}
1890
1891/**
1892 * port_r16 - read word from port register.
1893 * @hw: 	The hardware instance.
1894 * @port:	The port index.
1895 * @offset:	The offset of the port register.
1896 * @data:	Buffer to store the data.
1897 *
1898 * This routine reads a word from the port register.
1899 */
1900static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
1901{
1902	u32 addr;
1903
1904	PORT_CTRL_ADDR(port, addr);
1905	addr += offset;
1906	*data = readw(hw->io + addr);
1907}
1908
1909/**
1910 * port_w16 - write word to port register.
1911 * @hw: 	The hardware instance.
1912 * @port:	The port index.
1913 * @offset:	The offset of the port register.
1914 * @data:	Data to write.
1915 *
1916 * This routine writes a word to the port register.
1917 */
1918static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
1919{
1920	u32 addr;
1921
1922	PORT_CTRL_ADDR(port, addr);
1923	addr += offset;
1924	writew(data, hw->io + addr);
1925}
1926
1927/**
1928 * sw_chk - check switch register bits
1929 * @hw: 	The hardware instance.
1930 * @addr:	The address of the switch register.
1931 * @bits:	The data bits to check.
1932 *
1933 * This function checks whether the specified bits of the switch register are
1934 * set or not.
1935 *
1936 * Return 0 if the bits are not set.
1937 */
1938static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
1939{
1940	u16 data;
1941
1942	data = readw(hw->io + addr);
1943	return (data & bits) == bits;
1944}
1945
1946/**
1947 * sw_cfg - set switch register bits
1948 * @hw: 	The hardware instance.
1949 * @addr:	The address of the switch register.
1950 * @bits:	The data bits to set.
1951 * @set:	The flag indicating whether the bits are to be set or not.
1952 *
1953 * This function sets or resets the specified bits of the switch register.
1954 */
1955static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
1956{
1957	u16 data;
1958
1959	data = readw(hw->io + addr);
1960	if (set)
1961		data |= bits;
1962	else
1963		data &= ~bits;
1964	writew(data, hw->io + addr);
1965}
1966
1967/* Bandwidth */
1968
1969static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
1970{
1971	port_cfg(hw, p,
1972		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
1973}
1974
 
 
 
 
 
 
1975/* Driver set switch broadcast storm protection at 10% rate. */
1976#define BROADCAST_STORM_PROTECTION_RATE	10
1977
1978/* 148,800 frames * 67 ms / 100 */
1979#define BROADCAST_STORM_VALUE		9969
1980
1981/**
1982 * sw_cfg_broad_storm - configure broadcast storm threshold
1983 * @hw: 	The hardware instance.
1984 * @percent:	Broadcast storm threshold in percent of transmit rate.
1985 *
1986 * This routine configures the broadcast storm threshold of the switch.
1987 */
1988static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
1989{
1990	u16 data;
1991	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
1992
1993	if (value > BROADCAST_STORM_RATE)
1994		value = BROADCAST_STORM_RATE;
1995
1996	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
1997	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
1998	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
1999	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2000}
2001
2002/**
2003 * sw_get_broad_storm - get broadcast storm threshold
2004 * @hw: 	The hardware instance.
2005 * @percent:	Buffer to store the broadcast storm threshold percentage.
2006 *
2007 * This routine retrieves the broadcast storm threshold of the switch.
2008 */
2009static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2010{
2011	int num;
2012	u16 data;
2013
2014	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2015	num = (data & BROADCAST_STORM_RATE_HI);
2016	num <<= 8;
2017	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2018	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2019	*percent = (u8) num;
2020}
2021
2022/**
2023 * sw_dis_broad_storm - disable broadstorm
2024 * @hw: 	The hardware instance.
2025 * @port:	The port index.
2026 *
2027 * This routine disables the broadcast storm limit function of the switch.
2028 */
2029static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2030{
2031	port_cfg_broad_storm(hw, port, 0);
2032}
2033
2034/**
2035 * sw_ena_broad_storm - enable broadcast storm
2036 * @hw: 	The hardware instance.
2037 * @port:	The port index.
2038 *
2039 * This routine enables the broadcast storm limit function of the switch.
2040 */
2041static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2042{
2043	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2044	port_cfg_broad_storm(hw, port, 1);
2045}
2046
2047/**
2048 * sw_init_broad_storm - initialize broadcast storm
2049 * @hw: 	The hardware instance.
2050 *
2051 * This routine initializes the broadcast storm limit function of the switch.
2052 */
2053static void sw_init_broad_storm(struct ksz_hw *hw)
2054{
2055	int port;
2056
2057	hw->ksz_switch->broad_per = 1;
2058	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2059	for (port = 0; port < TOTAL_PORT_NUM; port++)
2060		sw_dis_broad_storm(hw, port);
2061	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2062}
2063
2064/**
2065 * hw_cfg_broad_storm - configure broadcast storm
2066 * @hw: 	The hardware instance.
2067 * @percent:	Broadcast storm threshold in percent of transmit rate.
2068 *
2069 * This routine configures the broadcast storm threshold of the switch.
2070 * It is called by user functions.  The hardware should be acquired first.
2071 */
2072static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2073{
2074	if (percent > 100)
2075		percent = 100;
2076
2077	sw_cfg_broad_storm(hw, percent);
2078	sw_get_broad_storm(hw, &percent);
2079	hw->ksz_switch->broad_per = percent;
2080}
2081
2082/**
2083 * sw_dis_prio_rate - disable switch priority rate
2084 * @hw: 	The hardware instance.
2085 * @port:	The port index.
2086 *
2087 * This routine disables the priority rate function of the switch.
2088 */
2089static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2090{
2091	u32 addr;
2092
2093	PORT_CTRL_ADDR(port, addr);
2094	addr += KS8842_PORT_IN_RATE_OFFSET;
2095	writel(0, hw->io + addr);
2096}
2097
2098/**
2099 * sw_init_prio_rate - initialize switch prioirty rate
2100 * @hw: 	The hardware instance.
2101 *
2102 * This routine initializes the priority rate function of the switch.
2103 */
2104static void sw_init_prio_rate(struct ksz_hw *hw)
2105{
2106	int port;
2107	int prio;
2108	struct ksz_switch *sw = hw->ksz_switch;
2109
2110	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2111		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2112			sw->port_cfg[port].rx_rate[prio] =
2113			sw->port_cfg[port].tx_rate[prio] = 0;
2114		}
2115		sw_dis_prio_rate(hw, port);
2116	}
2117}
2118
2119/* Communication */
2120
2121static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2122{
2123	port_cfg(hw, p,
2124		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2125}
2126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127/* Mirroring */
2128
2129static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2130{
2131	port_cfg(hw, p,
2132		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2133}
2134
2135static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2136{
2137	port_cfg(hw, p,
2138		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2139}
2140
2141static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2142{
2143	port_cfg(hw, p,
2144		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2145}
2146
2147static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2148{
2149	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2150}
2151
2152static void sw_init_mirror(struct ksz_hw *hw)
2153{
2154	int port;
2155
2156	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2157		port_cfg_mirror_sniffer(hw, port, 0);
2158		port_cfg_mirror_rx(hw, port, 0);
2159		port_cfg_mirror_tx(hw, port, 0);
2160	}
2161	sw_cfg_mirror_rx_tx(hw, 0);
2162}
2163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164/* Priority */
2165
2166static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2167{
2168	port_cfg(hw, p,
2169		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2170}
2171
2172static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2173{
2174	port_cfg(hw, p,
2175		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2176}
2177
2178static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2179{
2180	port_cfg(hw, p,
2181		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2182}
2183
2184static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2185{
2186	port_cfg(hw, p,
2187		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2188}
2189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2190/**
2191 * sw_dis_diffserv - disable switch DiffServ priority
2192 * @hw: 	The hardware instance.
2193 * @port:	The port index.
2194 *
2195 * This routine disables the DiffServ priority function of the switch.
2196 */
2197static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2198{
2199	port_cfg_diffserv(hw, port, 0);
2200}
2201
2202/**
2203 * sw_dis_802_1p - disable switch 802.1p priority
2204 * @hw: 	The hardware instance.
2205 * @port:	The port index.
2206 *
2207 * This routine disables the 802.1p priority function of the switch.
2208 */
2209static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2210{
2211	port_cfg_802_1p(hw, port, 0);
2212}
2213
2214/**
2215 * sw_cfg_replace_null_vid -
2216 * @hw: 	The hardware instance.
2217 * @set:	The flag to disable or enable.
2218 *
2219 */
2220static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2221{
2222	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2223}
2224
2225/**
2226 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2227 * @hw: 	The hardware instance.
2228 * @port:	The port index.
2229 * @set:	The flag to disable or enable.
2230 *
2231 * This routine enables the 802.1p priority re-mapping function of the switch.
2232 * That allows 802.1p priority field to be replaced with the port's default
2233 * tag's priority value if the ingress packet's 802.1p priority has a higher
2234 * priority than port's default tag's priority.
2235 */
2236static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2237{
2238	port_cfg_replace_vid(hw, port, set);
2239}
2240
2241/**
2242 * sw_cfg_port_based - configure switch port based priority
2243 * @hw: 	The hardware instance.
2244 * @port:	The port index.
2245 * @prio:	The priority to set.
2246 *
2247 * This routine configures the port based priority of the switch.
2248 */
2249static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2250{
2251	u16 data;
2252
2253	if (prio > PORT_BASED_PRIORITY_BASE)
2254		prio = PORT_BASED_PRIORITY_BASE;
2255
2256	hw->ksz_switch->port_cfg[port].port_prio = prio;
2257
2258	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2259	data &= ~PORT_BASED_PRIORITY_MASK;
2260	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2261	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2262}
2263
2264/**
2265 * sw_dis_multi_queue - disable transmit multiple queues
2266 * @hw: 	The hardware instance.
2267 * @port:	The port index.
2268 *
2269 * This routine disables the transmit multiple queues selection of the switch
2270 * port.  Only single transmit queue on the port.
2271 */
2272static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2273{
2274	port_cfg_prio(hw, port, 0);
2275}
2276
2277/**
2278 * sw_init_prio - initialize switch priority
2279 * @hw: 	The hardware instance.
2280 *
2281 * This routine initializes the switch QoS priority functions.
2282 */
2283static void sw_init_prio(struct ksz_hw *hw)
2284{
2285	int port;
2286	int tos;
2287	struct ksz_switch *sw = hw->ksz_switch;
2288
2289	/*
2290	 * Init all the 802.1p tag priority value to be assigned to different
2291	 * priority queue.
2292	 */
2293	sw->p_802_1p[0] = 0;
2294	sw->p_802_1p[1] = 0;
2295	sw->p_802_1p[2] = 1;
2296	sw->p_802_1p[3] = 1;
2297	sw->p_802_1p[4] = 2;
2298	sw->p_802_1p[5] = 2;
2299	sw->p_802_1p[6] = 3;
2300	sw->p_802_1p[7] = 3;
2301
2302	/*
2303	 * Init all the DiffServ priority value to be assigned to priority
2304	 * queue 0.
2305	 */
2306	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2307		sw->diffserv[tos] = 0;
2308
2309	/* All QoS functions disabled. */
2310	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2311		sw_dis_multi_queue(hw, port);
2312		sw_dis_diffserv(hw, port);
2313		sw_dis_802_1p(hw, port);
2314		sw_cfg_replace_vid(hw, port, 0);
2315
2316		sw->port_cfg[port].port_prio = 0;
2317		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2318	}
2319	sw_cfg_replace_null_vid(hw, 0);
2320}
2321
2322/**
2323 * port_get_def_vid - get port default VID.
2324 * @hw: 	The hardware instance.
2325 * @port:	The port index.
2326 * @vid:	Buffer to store the VID.
2327 *
2328 * This routine retrieves the default VID of the port.
2329 */
2330static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2331{
2332	u32 addr;
2333
2334	PORT_CTRL_ADDR(port, addr);
2335	addr += KS8842_PORT_CTRL_VID_OFFSET;
2336	*vid = readw(hw->io + addr);
2337}
2338
2339/**
2340 * sw_init_vlan - initialize switch VLAN
2341 * @hw: 	The hardware instance.
2342 *
2343 * This routine initializes the VLAN function of the switch.
2344 */
2345static void sw_init_vlan(struct ksz_hw *hw)
2346{
2347	int port;
2348	int entry;
2349	struct ksz_switch *sw = hw->ksz_switch;
2350
2351	/* Read 16 VLAN entries from device's VLAN table. */
2352	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2353		sw_r_vlan_table(hw, entry,
2354			&sw->vlan_table[entry].vid,
2355			&sw->vlan_table[entry].fid,
2356			&sw->vlan_table[entry].member);
2357	}
2358
2359	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2360		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2361		sw->port_cfg[port].member = PORT_MASK;
2362	}
2363}
2364
2365/**
2366 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2367 * @hw: 	The hardware instance.
2368 * @port:	The port index.
2369 * @member:	The port-based VLAN membership.
2370 *
2371 * This routine configures the port-based VLAN membership of the port.
2372 */
2373static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2374{
2375	u32 addr;
2376	u8 data;
2377
2378	PORT_CTRL_ADDR(port, addr);
2379	addr += KS8842_PORT_CTRL_2_OFFSET;
2380
2381	data = readb(hw->io + addr);
2382	data &= ~PORT_VLAN_MEMBERSHIP;
2383	data |= (member & PORT_MASK);
2384	writeb(data, hw->io + addr);
2385
2386	hw->ksz_switch->port_cfg[port].member = member;
2387}
2388
2389/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390 * sw_set_addr - configure switch MAC address
2391 * @hw: 	The hardware instance.
2392 * @mac_addr:	The MAC address.
2393 *
2394 * This function configures the MAC address of the switch.
2395 */
2396static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2397{
2398	int i;
2399
2400	for (i = 0; i < 6; i += 2) {
2401		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2402		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2403	}
2404}
2405
2406/**
2407 * sw_set_global_ctrl - set switch global control
2408 * @hw: 	The hardware instance.
2409 *
2410 * This routine sets the global control of the switch function.
2411 */
2412static void sw_set_global_ctrl(struct ksz_hw *hw)
2413{
2414	u16 data;
2415
2416	/* Enable switch MII flow control. */
2417	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2418	data |= SWITCH_FLOW_CTRL;
2419	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2420
2421	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2422
2423	/* Enable aggressive back off algorithm in half duplex mode. */
2424	data |= SWITCH_AGGR_BACKOFF;
2425
2426	/* Enable automatic fast aging when link changed detected. */
2427	data |= SWITCH_AGING_ENABLE;
2428	data |= SWITCH_LINK_AUTO_AGING;
2429
2430	if (hw->overrides & FAST_AGING)
2431		data |= SWITCH_FAST_AGING;
2432	else
2433		data &= ~SWITCH_FAST_AGING;
2434	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2435
2436	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2437
2438	/* Enable no excessive collision drop. */
2439	data |= NO_EXC_COLLISION_DROP;
2440	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2441}
2442
2443enum {
2444	STP_STATE_DISABLED = 0,
2445	STP_STATE_LISTENING,
2446	STP_STATE_LEARNING,
2447	STP_STATE_FORWARDING,
2448	STP_STATE_BLOCKED,
2449	STP_STATE_SIMPLE
2450};
2451
2452/**
2453 * port_set_stp_state - configure port spanning tree state
2454 * @hw: 	The hardware instance.
2455 * @port:	The port index.
2456 * @state:	The spanning tree state.
2457 *
2458 * This routine configures the spanning tree state of the port.
2459 */
2460static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2461{
2462	u16 data;
2463
2464	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2465	switch (state) {
2466	case STP_STATE_DISABLED:
2467		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2468		data |= PORT_LEARN_DISABLE;
2469		break;
2470	case STP_STATE_LISTENING:
2471/*
2472 * No need to turn on transmit because of port direct mode.
2473 * Turning on receive is required if static MAC table is not setup.
2474 */
2475		data &= ~PORT_TX_ENABLE;
2476		data |= PORT_RX_ENABLE;
2477		data |= PORT_LEARN_DISABLE;
2478		break;
2479	case STP_STATE_LEARNING:
2480		data &= ~PORT_TX_ENABLE;
2481		data |= PORT_RX_ENABLE;
2482		data &= ~PORT_LEARN_DISABLE;
2483		break;
2484	case STP_STATE_FORWARDING:
2485		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2486		data &= ~PORT_LEARN_DISABLE;
2487		break;
2488	case STP_STATE_BLOCKED:
2489/*
2490 * Need to setup static MAC table with override to keep receiving BPDU
2491 * messages.  See sw_init_stp routine.
2492 */
2493		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2494		data |= PORT_LEARN_DISABLE;
2495		break;
2496	case STP_STATE_SIMPLE:
2497		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2498		data |= PORT_LEARN_DISABLE;
2499		break;
2500	}
2501	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2502	hw->ksz_switch->port_cfg[port].stp_state = state;
2503}
2504
2505#define STP_ENTRY			0
2506#define BROADCAST_ENTRY			1
2507#define BRIDGE_ADDR_ENTRY		2
2508#define IPV6_ADDR_ENTRY			3
2509
2510/**
2511 * sw_clr_sta_mac_table - clear static MAC table
2512 * @hw: 	The hardware instance.
2513 *
2514 * This routine clears the static MAC table.
2515 */
2516static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2517{
2518	struct ksz_mac_table *entry;
2519	int i;
2520
2521	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2522		entry = &hw->ksz_switch->mac_table[i];
2523		sw_w_sta_mac_table(hw, i,
2524			entry->mac_addr, entry->ports,
2525			entry->override, 0,
2526			entry->use_fid, entry->fid);
2527	}
2528}
2529
2530/**
2531 * sw_init_stp - initialize switch spanning tree support
2532 * @hw: 	The hardware instance.
2533 *
2534 * This routine initializes the spanning tree support of the switch.
2535 */
2536static void sw_init_stp(struct ksz_hw *hw)
2537{
2538	struct ksz_mac_table *entry;
2539
2540	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2541	entry->mac_addr[0] = 0x01;
2542	entry->mac_addr[1] = 0x80;
2543	entry->mac_addr[2] = 0xC2;
2544	entry->mac_addr[3] = 0x00;
2545	entry->mac_addr[4] = 0x00;
2546	entry->mac_addr[5] = 0x00;
2547	entry->ports = HOST_MASK;
2548	entry->override = 1;
2549	entry->valid = 1;
2550	sw_w_sta_mac_table(hw, STP_ENTRY,
2551		entry->mac_addr, entry->ports,
2552		entry->override, entry->valid,
2553		entry->use_fid, entry->fid);
2554}
2555
2556/**
2557 * sw_block_addr - block certain packets from the host port
2558 * @hw: 	The hardware instance.
2559 *
2560 * This routine blocks certain packets from reaching to the host port.
2561 */
2562static void sw_block_addr(struct ksz_hw *hw)
2563{
2564	struct ksz_mac_table *entry;
2565	int i;
2566
2567	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2568		entry = &hw->ksz_switch->mac_table[i];
2569		entry->valid = 0;
2570		sw_w_sta_mac_table(hw, i,
2571			entry->mac_addr, entry->ports,
2572			entry->override, entry->valid,
2573			entry->use_fid, entry->fid);
2574	}
2575}
2576
2577static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2578{
2579	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2580}
2581
2582static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2583{
2584	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2585}
2586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2587/**
2588 * hw_r_phy - read data from PHY register
2589 * @hw: 	The hardware instance.
2590 * @port:	Port to read.
2591 * @reg:	PHY register to read.
2592 * @val:	Buffer to store the read data.
2593 *
2594 * This routine reads data from the PHY register.
2595 */
2596static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2597{
2598	int phy;
2599
2600	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2601	*val = readw(hw->io + phy);
2602}
2603
2604/**
2605 * hw_w_phy - write data to PHY register
2606 * @hw: 	The hardware instance.
2607 * @port:	Port to write.
2608 * @reg:	PHY register to write.
2609 * @val:	Word data to write.
2610 *
2611 * This routine writes data to the PHY register.
2612 */
2613static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2614{
2615	int phy;
2616
2617	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2618	writew(val, hw->io + phy);
2619}
2620
2621/*
2622 * EEPROM access functions
2623 */
2624
2625#define AT93C_CODE			0
2626#define AT93C_WR_OFF			0x00
2627#define AT93C_WR_ALL			0x10
2628#define AT93C_ER_ALL			0x20
2629#define AT93C_WR_ON			0x30
2630
2631#define AT93C_WRITE			1
2632#define AT93C_READ			2
2633#define AT93C_ERASE			3
2634
2635#define EEPROM_DELAY			4
2636
2637static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
2638{
2639	u16 data;
2640
2641	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2642	data &= ~gpio;
2643	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2644}
2645
2646static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
2647{
2648	u16 data;
2649
2650	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2651	data |= gpio;
2652	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2653}
2654
2655static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
2656{
2657	u16 data;
2658
2659	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2660	return (u8)(data & gpio);
2661}
2662
2663static void eeprom_clk(struct ksz_hw *hw)
2664{
2665	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2666	udelay(EEPROM_DELAY);
2667	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2668	udelay(EEPROM_DELAY);
2669}
2670
2671static u16 spi_r(struct ksz_hw *hw)
2672{
2673	int i;
2674	u16 temp = 0;
2675
2676	for (i = 15; i >= 0; i--) {
2677		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2678		udelay(EEPROM_DELAY);
2679
2680		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
2681
2682		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2683		udelay(EEPROM_DELAY);
2684	}
2685	return temp;
2686}
2687
2688static void spi_w(struct ksz_hw *hw, u16 data)
2689{
2690	int i;
2691
2692	for (i = 15; i >= 0; i--) {
2693		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2694			drop_gpio(hw, EEPROM_DATA_OUT);
2695		eeprom_clk(hw);
2696	}
2697}
2698
2699static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
2700{
2701	int i;
2702
2703	/* Initial start bit */
2704	raise_gpio(hw, EEPROM_DATA_OUT);
2705	eeprom_clk(hw);
2706
2707	/* AT93C operation */
2708	for (i = 1; i >= 0; i--) {
2709		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2710			drop_gpio(hw, EEPROM_DATA_OUT);
2711		eeprom_clk(hw);
2712	}
2713
2714	/* Address location */
2715	for (i = 5; i >= 0; i--) {
2716		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2717			drop_gpio(hw, EEPROM_DATA_OUT);
2718		eeprom_clk(hw);
2719	}
2720}
2721
2722#define EEPROM_DATA_RESERVED		0
2723#define EEPROM_DATA_MAC_ADDR_0		1
2724#define EEPROM_DATA_MAC_ADDR_1		2
2725#define EEPROM_DATA_MAC_ADDR_2		3
2726#define EEPROM_DATA_SUBSYS_ID		4
2727#define EEPROM_DATA_SUBSYS_VEN_ID	5
2728#define EEPROM_DATA_PM_CAP		6
2729
2730/* User defined EEPROM data */
2731#define EEPROM_DATA_OTHER_MAC_ADDR	9
2732
2733/**
2734 * eeprom_read - read from AT93C46 EEPROM
2735 * @hw: 	The hardware instance.
2736 * @reg:	The register offset.
2737 *
2738 * This function reads a word from the AT93C46 EEPROM.
2739 *
2740 * Return the data value.
2741 */
2742static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
2743{
2744	u16 data;
2745
2746	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2747
2748	spi_reg(hw, AT93C_READ, reg);
2749	data = spi_r(hw);
2750
2751	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2752
2753	return data;
2754}
2755
2756/**
2757 * eeprom_write - write to AT93C46 EEPROM
2758 * @hw: 	The hardware instance.
2759 * @reg:	The register offset.
2760 * @data:	The data value.
2761 *
2762 * This procedure writes a word to the AT93C46 EEPROM.
2763 */
2764static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
2765{
2766	int timeout;
2767
2768	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2769
2770	/* Enable write. */
2771	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
2772	drop_gpio(hw, EEPROM_CHIP_SELECT);
2773	udelay(1);
2774
2775	/* Erase the register. */
2776	raise_gpio(hw, EEPROM_CHIP_SELECT);
2777	spi_reg(hw, AT93C_ERASE, reg);
2778	drop_gpio(hw, EEPROM_CHIP_SELECT);
2779	udelay(1);
2780
2781	/* Check operation complete. */
2782	raise_gpio(hw, EEPROM_CHIP_SELECT);
2783	timeout = 8;
2784	mdelay(2);
2785	do {
2786		mdelay(1);
2787	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
2788	drop_gpio(hw, EEPROM_CHIP_SELECT);
2789	udelay(1);
2790
2791	/* Write the register. */
2792	raise_gpio(hw, EEPROM_CHIP_SELECT);
2793	spi_reg(hw, AT93C_WRITE, reg);
2794	spi_w(hw, data);
2795	drop_gpio(hw, EEPROM_CHIP_SELECT);
2796	udelay(1);
2797
2798	/* Check operation complete. */
2799	raise_gpio(hw, EEPROM_CHIP_SELECT);
2800	timeout = 8;
2801	mdelay(2);
2802	do {
2803		mdelay(1);
2804	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
2805	drop_gpio(hw, EEPROM_CHIP_SELECT);
2806	udelay(1);
2807
2808	/* Disable write. */
2809	raise_gpio(hw, EEPROM_CHIP_SELECT);
2810	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
2811
2812	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2813}
2814
2815/*
2816 * Link detection routines
2817 */
2818
2819static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
2820{
2821	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
2822	switch (port->flow_ctrl) {
2823	case PHY_FLOW_CTRL:
2824		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
2825		break;
2826	/* Not supported. */
2827	case PHY_TX_ONLY:
2828	case PHY_RX_ONLY:
2829	default:
2830		break;
2831	}
2832	return ctrl;
2833}
2834
2835static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
2836{
2837	u32 rx_cfg;
2838	u32 tx_cfg;
2839
2840	rx_cfg = hw->rx_cfg;
2841	tx_cfg = hw->tx_cfg;
2842	if (rx)
2843		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
2844	else
2845		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
2846	if (tx)
2847		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
2848	else
2849		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
2850	if (hw->enabled) {
2851		if (rx_cfg != hw->rx_cfg)
2852			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
2853		if (tx_cfg != hw->tx_cfg)
2854			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
2855	}
2856}
2857
2858static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
2859	u16 local, u16 remote)
2860{
2861	int rx;
2862	int tx;
2863
2864	if (hw->overrides & PAUSE_FLOW_CTRL)
2865		return;
2866
2867	rx = tx = 0;
2868	if (port->force_link)
2869		rx = tx = 1;
2870	if (remote & LPA_PAUSE_CAP) {
2871		if (local & ADVERTISE_PAUSE_CAP) {
2872			rx = tx = 1;
2873		} else if ((remote & LPA_PAUSE_ASYM) &&
2874			   (local &
2875			    (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) ==
2876			   ADVERTISE_PAUSE_ASYM) {
2877			tx = 1;
2878		}
2879	} else if (remote & LPA_PAUSE_ASYM) {
2880		if ((local & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
2881		    == (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
2882			rx = 1;
2883	}
2884	if (!hw->ksz_switch)
2885		set_flow_ctrl(hw, rx, tx);
2886}
2887
2888static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
2889	struct ksz_port_info *info, u16 link_status)
2890{
2891	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
2892			!(hw->overrides & PAUSE_FLOW_CTRL)) {
2893		u32 cfg = hw->tx_cfg;
2894
2895		/* Disable flow control in the half duplex mode. */
2896		if (1 == info->duplex)
2897			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
2898		if (hw->enabled && cfg != hw->tx_cfg)
2899			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
2900	}
2901}
2902
2903/**
2904 * port_get_link_speed - get current link status
2905 * @port: 	The port instance.
2906 *
2907 * This routine reads PHY registers to determine the current link status of the
2908 * switch ports.
2909 */
2910static void port_get_link_speed(struct ksz_port *port)
2911{
2912	uint interrupt;
2913	struct ksz_port_info *info;
2914	struct ksz_port_info *linked = NULL;
2915	struct ksz_hw *hw = port->hw;
2916	u16 data;
2917	u16 status;
2918	u8 local;
2919	u8 remote;
2920	int i;
2921	int p;
 
2922
2923	interrupt = hw_block_intr(hw);
2924
2925	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
2926		info = &hw->port_info[p];
2927		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
2928		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
2929
2930		/*
2931		 * Link status is changing all the time even when there is no
2932		 * cable connection!
2933		 */
2934		remote = status & (PORT_AUTO_NEG_COMPLETE |
2935			PORT_STATUS_LINK_GOOD);
2936		local = (u8) data;
2937
2938		/* No change to status. */
2939		if (local == info->advertised && remote == info->partner)
2940			continue;
2941
2942		info->advertised = local;
2943		info->partner = remote;
2944		if (status & PORT_STATUS_LINK_GOOD) {
2945
2946			/* Remember the first linked port. */
2947			if (!linked)
2948				linked = info;
2949
2950			info->tx_rate = 10 * TX_RATE_UNIT;
2951			if (status & PORT_STATUS_SPEED_100MBIT)
2952				info->tx_rate = 100 * TX_RATE_UNIT;
2953
2954			info->duplex = 1;
2955			if (status & PORT_STATUS_FULL_DUPLEX)
2956				info->duplex = 2;
2957
2958			if (media_connected != info->state) {
2959				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
2960					&data);
2961				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
2962					&status);
2963				determine_flow_ctrl(hw, port, data, status);
2964				if (hw->ksz_switch) {
2965					port_cfg_back_pressure(hw, p,
2966						(1 == info->duplex));
2967				}
 
2968				port_cfg_change(hw, port, info, status);
2969			}
2970			info->state = media_connected;
2971		} else {
2972			/* Indicate the link just goes down. */
2973			if (media_disconnected != info->state)
2974				hw->port_mib[p].link_down = 1;
2975
 
 
 
2976			info->state = media_disconnected;
2977		}
2978		hw->port_mib[p].state = (u8) info->state;
2979	}
2980
2981	if (linked && media_disconnected == port->linked->state)
2982		port->linked = linked;
2983
2984	hw_restore_intr(hw, interrupt);
2985}
2986
2987#define PHY_RESET_TIMEOUT		10
2988
2989/**
2990 * port_set_link_speed - set port speed
2991 * @port: 	The port instance.
2992 *
2993 * This routine sets the link speed of the switch ports.
2994 */
2995static void port_set_link_speed(struct ksz_port *port)
2996{
2997	struct ksz_hw *hw = port->hw;
2998	u16 data;
2999	u16 cfg;
3000	u8 status;
3001	int i;
3002	int p;
3003
3004	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3005		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3006		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3007
3008		cfg = 0;
3009		if (status & PORT_STATUS_LINK_GOOD)
3010			cfg = data;
3011
3012		data |= PORT_AUTO_NEG_ENABLE;
3013		data = advertised_flow_ctrl(port, data);
3014
3015		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3016			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3017
3018		/* Check if manual configuration is specified by the user. */
3019		if (port->speed || port->duplex) {
3020			if (10 == port->speed)
3021				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3022					PORT_AUTO_NEG_100BTX);
3023			else if (100 == port->speed)
3024				data &= ~(PORT_AUTO_NEG_10BT_FD |
3025					PORT_AUTO_NEG_10BT);
3026			if (1 == port->duplex)
3027				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3028					PORT_AUTO_NEG_10BT_FD);
3029			else if (2 == port->duplex)
3030				data &= ~(PORT_AUTO_NEG_100BTX |
3031					PORT_AUTO_NEG_10BT);
3032		}
3033		if (data != cfg) {
3034			data |= PORT_AUTO_NEG_RESTART;
3035			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3036		}
3037	}
3038}
3039
3040/**
3041 * port_force_link_speed - force port speed
3042 * @port: 	The port instance.
3043 *
3044 * This routine forces the link speed of the switch ports.
3045 */
3046static void port_force_link_speed(struct ksz_port *port)
3047{
3048	struct ksz_hw *hw = port->hw;
3049	u16 data;
3050	int i;
3051	int phy;
3052	int p;
3053
3054	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3055		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3056		hw_r_phy_ctrl(hw, phy, &data);
3057
3058		data &= ~BMCR_ANENABLE;
3059
3060		if (10 == port->speed)
3061			data &= ~BMCR_SPEED100;
3062		else if (100 == port->speed)
3063			data |= BMCR_SPEED100;
3064		if (1 == port->duplex)
3065			data &= ~BMCR_FULLDPLX;
3066		else if (2 == port->duplex)
3067			data |= BMCR_FULLDPLX;
3068		hw_w_phy_ctrl(hw, phy, data);
3069	}
3070}
3071
3072static void port_set_power_saving(struct ksz_port *port, int enable)
3073{
3074	struct ksz_hw *hw = port->hw;
3075	int i;
3076	int p;
3077
3078	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3079		port_cfg(hw, p,
3080			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3081}
3082
3083/*
3084 * KSZ8841 power management functions
3085 */
3086
3087/**
3088 * hw_chk_wol_pme_status - check PMEN pin
3089 * @hw: 	The hardware instance.
3090 *
3091 * This function is used to check PMEN pin is asserted.
3092 *
3093 * Return 1 if PMEN pin is asserted; otherwise, 0.
3094 */
3095static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3096{
3097	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3098	struct pci_dev *pdev = hw_priv->pdev;
3099	u16 data;
3100
3101	if (!pdev->pm_cap)
3102		return 0;
3103	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3104	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3105}
3106
3107/**
3108 * hw_clr_wol_pme_status - clear PMEN pin
3109 * @hw: 	The hardware instance.
3110 *
3111 * This routine is used to clear PME_Status to deassert PMEN pin.
3112 */
3113static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3114{
3115	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3116	struct pci_dev *pdev = hw_priv->pdev;
3117	u16 data;
3118
3119	if (!pdev->pm_cap)
3120		return;
3121
3122	/* Clear PME_Status to deassert PMEN pin. */
3123	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3124	data |= PCI_PM_CTRL_PME_STATUS;
3125	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3126}
3127
3128/**
3129 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3130 * @hw: 	The hardware instance.
3131 * @set:	The flag indicating whether to enable or disable.
3132 *
3133 * This routine is used to enable or disable Wake-on-LAN.
3134 */
3135static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3136{
3137	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3138	struct pci_dev *pdev = hw_priv->pdev;
3139	u16 data;
3140
3141	if (!pdev->pm_cap)
3142		return;
3143	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3144	data &= ~PCI_PM_CTRL_STATE_MASK;
3145	if (set)
3146		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3147	else
3148		data &= ~PCI_PM_CTRL_PME_ENABLE;
3149	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3150}
3151
3152/**
3153 * hw_cfg_wol - configure Wake-on-LAN features
3154 * @hw: 	The hardware instance.
3155 * @frame:	The pattern frame bit.
3156 * @set:	The flag indicating whether to enable or disable.
3157 *
3158 * This routine is used to enable or disable certain Wake-on-LAN features.
3159 */
3160static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3161{
3162	u16 data;
3163
3164	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3165	if (set)
3166		data |= frame;
3167	else
3168		data &= ~frame;
3169	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3170}
3171
3172/**
3173 * hw_set_wol_frame - program Wake-on-LAN pattern
3174 * @hw: 	The hardware instance.
3175 * @i:		The frame index.
3176 * @mask_size:	The size of the mask.
3177 * @mask:	Mask to ignore certain bytes in the pattern.
3178 * @frame_size:	The size of the frame.
3179 * @pattern:	The frame data.
3180 *
3181 * This routine is used to program Wake-on-LAN pattern.
3182 */
3183static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3184	const u8 *mask, uint frame_size, const u8 *pattern)
3185{
3186	int bits;
3187	int from;
3188	int len;
3189	int to;
3190	u32 crc;
3191	u8 data[64];
3192	u8 val = 0;
3193
3194	if (frame_size > mask_size * 8)
3195		frame_size = mask_size * 8;
3196	if (frame_size > 64)
3197		frame_size = 64;
3198
3199	i *= 0x10;
3200	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3201	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3202
3203	bits = len = from = to = 0;
3204	do {
3205		if (bits) {
3206			if ((val & 1))
3207				data[to++] = pattern[from];
3208			val >>= 1;
3209			++from;
3210			--bits;
3211		} else {
3212			val = mask[len];
3213			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3214				+ len);
3215			++len;
3216			if (val)
3217				bits = 8;
3218			else
3219				from += 8;
3220		}
3221	} while (from < (int) frame_size);
3222	if (val) {
3223		bits = mask[len - 1];
3224		val <<= (from % 8);
3225		bits &= ~val;
3226		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3227			1);
3228	}
3229	crc = ether_crc(to, data);
3230	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3231}
3232
3233/**
3234 * hw_add_wol_arp - add ARP pattern
3235 * @hw: 	The hardware instance.
3236 * @ip_addr:	The IPv4 address assigned to the device.
3237 *
3238 * This routine is used to add ARP pattern for waking up the host.
3239 */
3240static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3241{
3242	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3243	u8 pattern[42] = {
3244		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3245		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3246		0x08, 0x06,
3247		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3248		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3249		0x00, 0x00, 0x00, 0x00,
3250		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3251		0x00, 0x00, 0x00, 0x00 };
3252
3253	memcpy(&pattern[38], ip_addr, 4);
3254	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3255}
3256
3257/**
3258 * hw_add_wol_bcast - add broadcast pattern
3259 * @hw: 	The hardware instance.
3260 *
3261 * This routine is used to add broadcast pattern for waking up the host.
3262 */
3263static void hw_add_wol_bcast(struct ksz_hw *hw)
3264{
3265	static const u8 mask[] = { 0x3F };
3266	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3267
3268	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3269}
3270
3271/**
3272 * hw_add_wol_mcast - add multicast pattern
3273 * @hw: 	The hardware instance.
3274 *
3275 * This routine is used to add multicast pattern for waking up the host.
3276 *
3277 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3278 * by IPv6 ping command.  Note that multicast packets are filtred through the
3279 * multicast hash table, so not all multicast packets can wake up the host.
3280 */
3281static void hw_add_wol_mcast(struct ksz_hw *hw)
3282{
3283	static const u8 mask[] = { 0x3F };
3284	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3285
3286	memcpy(&pattern[3], &hw->override_addr[3], 3);
3287	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3288}
3289
3290/**
3291 * hw_add_wol_ucast - add unicast pattern
3292 * @hw: 	The hardware instance.
3293 *
3294 * This routine is used to add unicast pattern to wakeup the host.
3295 *
3296 * It is assumed the unicast packet is directed to the device, as the hardware
3297 * can only receive them in normal case.
3298 */
3299static void hw_add_wol_ucast(struct ksz_hw *hw)
3300{
3301	static const u8 mask[] = { 0x3F };
3302
3303	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3304}
3305
3306/**
3307 * hw_enable_wol - enable Wake-on-LAN
3308 * @hw: 	The hardware instance.
3309 * @wol_enable:	The Wake-on-LAN settings.
3310 * @net_addr:	The IPv4 address assigned to the device.
3311 *
3312 * This routine is used to enable Wake-on-LAN depending on driver settings.
3313 */
3314static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3315{
3316	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3317	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3318	hw_add_wol_ucast(hw);
3319	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3320	hw_add_wol_mcast(hw);
3321	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3322	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3323	hw_add_wol_arp(hw, net_addr);
3324}
3325
3326/**
3327 * hw_init - check driver is correct for the hardware
3328 * @hw: 	The hardware instance.
3329 *
3330 * This function checks the hardware is correct for this driver and sets the
3331 * hardware up for proper initialization.
3332 *
3333 * Return number of ports or 0 if not right.
3334 */
3335static int hw_init(struct ksz_hw *hw)
3336{
3337	int rc = 0;
3338	u16 data;
3339	u16 revision;
3340
3341	/* Set bus speed to 125MHz. */
3342	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3343
3344	/* Check KSZ884x chip ID. */
3345	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3346
3347	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3348	data &= KS884X_CHIP_ID_MASK_41;
3349	if (REG_CHIP_ID_41 == data)
3350		rc = 1;
3351	else if (REG_CHIP_ID_42 == data)
3352		rc = 2;
3353	else
3354		return 0;
3355
3356	/* Setup hardware features or bug workarounds. */
3357	if (revision <= 1) {
3358		hw->features |= SMALL_PACKET_TX_BUG;
3359		if (1 == rc)
3360			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3361	}
3362	return rc;
3363}
3364
3365/**
3366 * hw_reset - reset the hardware
3367 * @hw: 	The hardware instance.
3368 *
3369 * This routine resets the hardware.
3370 */
3371static void hw_reset(struct ksz_hw *hw)
3372{
3373	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3374
3375	/* Wait for device to reset. */
3376	mdelay(10);
3377
3378	/* Write 0 to clear device reset. */
3379	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3380}
3381
3382/**
3383 * hw_setup - setup the hardware
3384 * @hw: 	The hardware instance.
3385 *
3386 * This routine setup the hardware for proper operation.
3387 */
3388static void hw_setup(struct ksz_hw *hw)
3389{
3390#if SET_DEFAULT_LED
3391	u16 data;
3392
3393	/* Change default LED mode. */
3394	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3395	data &= ~LED_MODE;
3396	data |= SET_DEFAULT_LED;
3397	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3398#endif
3399
3400	/* Setup transmit control. */
3401	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3402		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3403
3404	/* Setup receive control. */
3405	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3406		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3407	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3408
3409	/* Hardware cannot handle UDP packet in IP fragments. */
3410	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3411
3412	if (hw->all_multi)
3413		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3414	if (hw->promiscuous)
3415		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3416}
3417
3418/**
3419 * hw_setup_intr - setup interrupt mask
3420 * @hw: 	The hardware instance.
3421 *
3422 * This routine setup the interrupt mask for proper operation.
3423 */
3424static void hw_setup_intr(struct ksz_hw *hw)
3425{
3426	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3427}
3428
3429static void ksz_check_desc_num(struct ksz_desc_info *info)
3430{
3431#define MIN_DESC_SHIFT  2
3432
3433	int alloc = info->alloc;
3434	int shift;
3435
3436	shift = 0;
3437	while (!(alloc & 1)) {
3438		shift++;
3439		alloc >>= 1;
3440	}
3441	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3442		pr_alert("Hardware descriptor numbers not right!\n");
3443		while (alloc) {
3444			shift++;
3445			alloc >>= 1;
3446		}
3447		if (shift < MIN_DESC_SHIFT)
3448			shift = MIN_DESC_SHIFT;
3449		alloc = 1 << shift;
3450		info->alloc = alloc;
3451	}
3452	info->mask = info->alloc - 1;
3453}
3454
3455static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3456{
3457	int i;
3458	u32 phys = desc_info->ring_phys;
3459	struct ksz_hw_desc *desc = desc_info->ring_virt;
3460	struct ksz_desc *cur = desc_info->ring;
3461	struct ksz_desc *previous = NULL;
3462
3463	for (i = 0; i < desc_info->alloc; i++) {
3464		cur->phw = desc++;
3465		phys += desc_info->size;
3466		previous = cur++;
3467		previous->phw->next = cpu_to_le32(phys);
3468	}
3469	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3470	previous->sw.buf.rx.end_of_ring = 1;
3471	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3472
3473	desc_info->avail = desc_info->alloc;
3474	desc_info->last = desc_info->next = 0;
3475
3476	desc_info->cur = desc_info->ring;
3477}
3478
3479/**
3480 * hw_set_desc_base - set descriptor base addresses
3481 * @hw: 	The hardware instance.
3482 * @tx_addr:	The transmit descriptor base.
3483 * @rx_addr:	The receive descriptor base.
3484 *
3485 * This routine programs the descriptor base addresses after reset.
3486 */
3487static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3488{
3489	/* Set base address of Tx/Rx descriptors. */
3490	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3491	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3492}
3493
3494static void hw_reset_pkts(struct ksz_desc_info *info)
3495{
3496	info->cur = info->ring;
3497	info->avail = info->alloc;
3498	info->last = info->next = 0;
3499}
3500
3501static inline void hw_resume_rx(struct ksz_hw *hw)
3502{
3503	writel(DMA_START, hw->io + KS_DMA_RX_START);
3504}
3505
3506/**
3507 * hw_start_rx - start receiving
3508 * @hw: 	The hardware instance.
3509 *
3510 * This routine starts the receive function of the hardware.
3511 */
3512static void hw_start_rx(struct ksz_hw *hw)
3513{
3514	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3515
3516	/* Notify when the receive stops. */
3517	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3518
3519	writel(DMA_START, hw->io + KS_DMA_RX_START);
3520	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3521	hw->rx_stop++;
3522
3523	/* Variable overflows. */
3524	if (0 == hw->rx_stop)
3525		hw->rx_stop = 2;
3526}
3527
3528/**
3529 * hw_stop_rx - stop receiving
3530 * @hw: 	The hardware instance.
3531 *
3532 * This routine stops the receive function of the hardware.
3533 */
3534static void hw_stop_rx(struct ksz_hw *hw)
3535{
3536	hw->rx_stop = 0;
3537	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3538	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3539}
3540
3541/**
3542 * hw_start_tx - start transmitting
3543 * @hw: 	The hardware instance.
3544 *
3545 * This routine starts the transmit function of the hardware.
3546 */
3547static void hw_start_tx(struct ksz_hw *hw)
3548{
3549	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3550}
3551
3552/**
3553 * hw_stop_tx - stop transmitting
3554 * @hw: 	The hardware instance.
3555 *
3556 * This routine stops the transmit function of the hardware.
3557 */
3558static void hw_stop_tx(struct ksz_hw *hw)
3559{
3560	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3561}
3562
3563/**
3564 * hw_disable - disable hardware
3565 * @hw: 	The hardware instance.
3566 *
3567 * This routine disables the hardware.
3568 */
3569static void hw_disable(struct ksz_hw *hw)
3570{
3571	hw_stop_rx(hw);
3572	hw_stop_tx(hw);
3573	hw->enabled = 0;
3574}
3575
3576/**
3577 * hw_enable - enable hardware
3578 * @hw: 	The hardware instance.
3579 *
3580 * This routine enables the hardware.
3581 */
3582static void hw_enable(struct ksz_hw *hw)
3583{
3584	hw_start_tx(hw);
3585	hw_start_rx(hw);
3586	hw->enabled = 1;
3587}
3588
3589/**
3590 * hw_alloc_pkt - allocate enough descriptors for transmission
3591 * @hw: 	The hardware instance.
3592 * @length:	The length of the packet.
3593 * @physical:	Number of descriptors required.
3594 *
3595 * This function allocates descriptors for transmission.
3596 *
3597 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3598 */
3599static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3600{
3601	/* Always leave one descriptor free. */
3602	if (hw->tx_desc_info.avail <= 1)
3603		return 0;
3604
3605	/* Allocate a descriptor for transmission and mark it current. */
3606	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3607	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3608
3609	/* Keep track of number of transmit descriptors used so far. */
3610	++hw->tx_int_cnt;
3611	hw->tx_size += length;
3612
3613	/* Cannot hold on too much data. */
3614	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3615		hw->tx_int_cnt = hw->tx_int_mask + 1;
3616
3617	if (physical > hw->tx_desc_info.avail)
3618		return 1;
3619
3620	return hw->tx_desc_info.avail;
3621}
3622
3623/**
3624 * hw_send_pkt - mark packet for transmission
3625 * @hw: 	The hardware instance.
3626 *
3627 * This routine marks the packet for transmission in PCI version.
3628 */
3629static void hw_send_pkt(struct ksz_hw *hw)
3630{
3631	struct ksz_desc *cur = hw->tx_desc_info.cur;
3632
3633	cur->sw.buf.tx.last_seg = 1;
3634
3635	/* Interrupt only after specified number of descriptors used. */
3636	if (hw->tx_int_cnt > hw->tx_int_mask) {
3637		cur->sw.buf.tx.intr = 1;
3638		hw->tx_int_cnt = 0;
3639		hw->tx_size = 0;
3640	}
3641
3642	/* KSZ8842 supports port directed transmission. */
3643	cur->sw.buf.tx.dest_port = hw->dst_ports;
3644
3645	release_desc(cur);
3646
3647	writel(0, hw->io + KS_DMA_TX_START);
3648}
3649
3650static int empty_addr(u8 *addr)
3651{
3652	u32 *addr1 = (u32 *) addr;
3653	u16 *addr2 = (u16 *) &addr[4];
3654
3655	return 0 == *addr1 && 0 == *addr2;
3656}
3657
3658/**
3659 * hw_set_addr - set MAC address
3660 * @hw: 	The hardware instance.
3661 *
3662 * This routine programs the MAC address of the hardware when the address is
3663 * overridden.
3664 */
3665static void hw_set_addr(struct ksz_hw *hw)
3666{
3667	int i;
3668
3669	for (i = 0; i < ETH_ALEN; i++)
3670		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
3671			hw->io + KS884X_ADDR_0_OFFSET + i);
3672
3673	sw_set_addr(hw, hw->override_addr);
3674}
3675
3676/**
3677 * hw_read_addr - read MAC address
3678 * @hw: 	The hardware instance.
3679 *
3680 * This routine retrieves the MAC address of the hardware.
3681 */
3682static void hw_read_addr(struct ksz_hw *hw)
3683{
3684	int i;
3685
3686	for (i = 0; i < ETH_ALEN; i++)
3687		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
3688			KS884X_ADDR_0_OFFSET + i);
3689
3690	if (!hw->mac_override) {
3691		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
3692		if (empty_addr(hw->override_addr)) {
3693			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
3694			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
3695			       ETH_ALEN);
3696			hw->override_addr[5] += hw->id;
3697			hw_set_addr(hw);
3698		}
3699	}
3700}
3701
3702static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
3703{
3704	int i;
3705	u32 mac_addr_lo;
3706	u32 mac_addr_hi;
3707
3708	mac_addr_hi = 0;
3709	for (i = 0; i < 2; i++) {
3710		mac_addr_hi <<= 8;
3711		mac_addr_hi |= mac_addr[i];
3712	}
3713	mac_addr_hi |= ADD_ADDR_ENABLE;
3714	mac_addr_lo = 0;
3715	for (i = 2; i < 6; i++) {
3716		mac_addr_lo <<= 8;
3717		mac_addr_lo |= mac_addr[i];
3718	}
3719	index *= ADD_ADDR_INCR;
3720
3721	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
3722	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
3723}
3724
3725static void hw_set_add_addr(struct ksz_hw *hw)
3726{
3727	int i;
3728
3729	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
3730		if (empty_addr(hw->address[i]))
3731			writel(0, hw->io + ADD_ADDR_INCR * i +
3732				KS_ADD_ADDR_0_HI);
3733		else
3734			hw_ena_add_addr(hw, i, hw->address[i]);
3735	}
3736}
3737
3738static int hw_add_addr(struct ksz_hw *hw, const u8 *mac_addr)
3739{
3740	int i;
3741	int j = ADDITIONAL_ENTRIES;
3742
3743	if (ether_addr_equal(hw->override_addr, mac_addr))
3744		return 0;
3745	for (i = 0; i < hw->addr_list_size; i++) {
3746		if (ether_addr_equal(hw->address[i], mac_addr))
3747			return 0;
3748		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
3749			j = i;
3750	}
3751	if (j < ADDITIONAL_ENTRIES) {
3752		memcpy(hw->address[j], mac_addr, ETH_ALEN);
3753		hw_ena_add_addr(hw, j, hw->address[j]);
3754		return 0;
3755	}
3756	return -1;
3757}
3758
3759static int hw_del_addr(struct ksz_hw *hw, const u8 *mac_addr)
3760{
3761	int i;
3762
3763	for (i = 0; i < hw->addr_list_size; i++) {
3764		if (ether_addr_equal(hw->address[i], mac_addr)) {
3765			eth_zero_addr(hw->address[i]);
3766			writel(0, hw->io + ADD_ADDR_INCR * i +
3767				KS_ADD_ADDR_0_HI);
3768			return 0;
3769		}
3770	}
3771	return -1;
3772}
3773
3774/**
3775 * hw_clr_multicast - clear multicast addresses
3776 * @hw: 	The hardware instance.
3777 *
3778 * This routine removes all multicast addresses set in the hardware.
3779 */
3780static void hw_clr_multicast(struct ksz_hw *hw)
3781{
3782	int i;
3783
3784	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
3785		hw->multi_bits[i] = 0;
3786
3787		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
3788	}
3789}
3790
3791/**
3792 * hw_set_grp_addr - set multicast addresses
3793 * @hw: 	The hardware instance.
3794 *
3795 * This routine programs multicast addresses for the hardware to accept those
3796 * addresses.
3797 */
3798static void hw_set_grp_addr(struct ksz_hw *hw)
3799{
3800	int i;
3801	int index;
3802	int position;
3803	int value;
3804
3805	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
3806
3807	for (i = 0; i < hw->multi_list_size; i++) {
3808		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
3809		index = position >> 3;
3810		value = 1 << (position & 7);
3811		hw->multi_bits[index] |= (u8) value;
3812	}
3813
3814	for (i = 0; i < HW_MULTICAST_SIZE; i++)
3815		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
3816			i);
3817}
3818
3819/**
3820 * hw_set_multicast - enable or disable all multicast receiving
3821 * @hw: 	The hardware instance.
3822 * @multicast:	To turn on or off the all multicast feature.
3823 *
3824 * This routine enables/disables the hardware to accept all multicast packets.
3825 */
3826static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
3827{
3828	/* Stop receiving for reconfiguration. */
3829	hw_stop_rx(hw);
3830
3831	if (multicast)
3832		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3833	else
3834		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
3835
3836	if (hw->enabled)
3837		hw_start_rx(hw);
3838}
3839
3840/**
3841 * hw_set_promiscuous - enable or disable promiscuous receiving
3842 * @hw: 	The hardware instance.
3843 * @prom:	To turn on or off the promiscuous feature.
3844 *
3845 * This routine enables/disables the hardware to accept all packets.
3846 */
3847static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
3848{
3849	/* Stop receiving for reconfiguration. */
3850	hw_stop_rx(hw);
3851
3852	if (prom)
3853		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3854	else
3855		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
3856
3857	if (hw->enabled)
3858		hw_start_rx(hw);
3859}
3860
3861/**
3862 * sw_enable - enable the switch
3863 * @hw: 	The hardware instance.
3864 * @enable:	The flag to enable or disable the switch
3865 *
3866 * This routine is used to enable/disable the switch in KSZ8842.
3867 */
3868static void sw_enable(struct ksz_hw *hw, int enable)
3869{
3870	int port;
3871
3872	for (port = 0; port < SWITCH_PORT_NUM; port++) {
3873		if (hw->dev_count > 1) {
3874			/* Set port-base vlan membership with host port. */
3875			sw_cfg_port_base_vlan(hw, port,
3876				HOST_MASK | (1 << port));
3877			port_set_stp_state(hw, port, STP_STATE_DISABLED);
3878		} else {
3879			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
3880			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
3881		}
3882	}
3883	if (hw->dev_count > 1)
3884		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
3885	else
3886		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
3887
3888	if (enable)
3889		enable = KS8842_START;
3890	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
3891}
3892
3893/**
3894 * sw_setup - setup the switch
3895 * @hw: 	The hardware instance.
3896 *
3897 * This routine setup the hardware switch engine for default operation.
3898 */
3899static void sw_setup(struct ksz_hw *hw)
3900{
3901	int port;
3902
3903	sw_set_global_ctrl(hw);
3904
3905	/* Enable switch broadcast storm protection at 10% percent rate. */
3906	sw_init_broad_storm(hw);
3907	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
3908	for (port = 0; port < SWITCH_PORT_NUM; port++)
3909		sw_ena_broad_storm(hw, port);
3910
3911	sw_init_prio(hw);
3912
3913	sw_init_mirror(hw);
3914
3915	sw_init_prio_rate(hw);
3916
3917	sw_init_vlan(hw);
3918
3919	if (hw->features & STP_SUPPORT)
3920		sw_init_stp(hw);
3921	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
3922			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
3923		hw->overrides |= PAUSE_FLOW_CTRL;
3924	sw_enable(hw, 1);
3925}
3926
3927/**
3928 * ksz_start_timer - start kernel timer
3929 * @info:	Kernel timer information.
3930 * @time:	The time tick.
3931 *
3932 * This routine starts the kernel timer after the specified time tick.
3933 */
3934static void ksz_start_timer(struct ksz_timer_info *info, int time)
3935{
3936	info->cnt = 0;
3937	info->timer.expires = jiffies + time;
3938	add_timer(&info->timer);
3939
3940	/* infinity */
3941	info->max = -1;
3942}
3943
3944/**
3945 * ksz_stop_timer - stop kernel timer
3946 * @info:	Kernel timer information.
3947 *
3948 * This routine stops the kernel timer.
3949 */
3950static void ksz_stop_timer(struct ksz_timer_info *info)
3951{
3952	if (info->max) {
3953		info->max = 0;
3954		del_timer_sync(&info->timer);
3955	}
3956}
3957
3958static void ksz_init_timer(struct ksz_timer_info *info, int period,
3959	void (*function)(struct timer_list *))
3960{
3961	info->max = 0;
3962	info->period = period;
3963	timer_setup(&info->timer, function, 0);
3964}
3965
3966static void ksz_update_timer(struct ksz_timer_info *info)
3967{
3968	++info->cnt;
3969	if (info->max > 0) {
3970		if (info->cnt < info->max) {
3971			info->timer.expires = jiffies + info->period;
3972			add_timer(&info->timer);
3973		} else
3974			info->max = 0;
3975	} else if (info->max < 0) {
3976		info->timer.expires = jiffies + info->period;
3977		add_timer(&info->timer);
3978	}
3979}
3980
3981/**
3982 * ksz_alloc_soft_desc - allocate software descriptors
3983 * @desc_info:	Descriptor information structure.
3984 * @transmit:	Indication that descriptors are for transmit.
3985 *
3986 * This local function allocates software descriptors for manipulation in
3987 * memory.
3988 *
3989 * Return 0 if successful.
3990 */
3991static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
3992{
3993	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
3994				  GFP_KERNEL);
3995	if (!desc_info->ring)
3996		return 1;
3997	hw_init_desc(desc_info, transmit);
3998	return 0;
3999}
4000
4001/**
4002 * ksz_alloc_desc - allocate hardware descriptors
4003 * @adapter:	Adapter information structure.
4004 *
4005 * This local function allocates hardware descriptors for receiving and
4006 * transmitting.
4007 *
4008 * Return 0 if successful.
4009 */
4010static int ksz_alloc_desc(struct dev_info *adapter)
4011{
4012	struct ksz_hw *hw = &adapter->hw;
4013	int offset;
4014
4015	/* Allocate memory for RX & TX descriptors. */
4016	adapter->desc_pool.alloc_size =
4017		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4018		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4019		DESC_ALIGNMENT;
4020
4021	adapter->desc_pool.alloc_virt =
4022		dma_alloc_coherent(&adapter->pdev->dev,
4023				   adapter->desc_pool.alloc_size,
4024				   &adapter->desc_pool.dma_addr, GFP_KERNEL);
4025	if (adapter->desc_pool.alloc_virt == NULL) {
4026		adapter->desc_pool.alloc_size = 0;
4027		return 1;
4028	}
4029
4030	/* Align to the next cache line boundary. */
4031	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4032		(DESC_ALIGNMENT -
4033		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4034	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4035	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4036
4037	/* Allocate receive/transmit descriptors. */
4038	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4039		adapter->desc_pool.virt;
4040	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4041	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4042	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4043		(adapter->desc_pool.virt + offset);
4044	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4045
4046	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4047		return 1;
4048	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4049		return 1;
4050
4051	return 0;
4052}
4053
4054/**
4055 * free_dma_buf - release DMA buffer resources
4056 * @adapter:	Adapter information structure.
4057 * @dma_buf:	pointer to buf
4058 * @direction:	to or from device
4059 *
4060 * This routine is just a helper function to release the DMA buffer resources.
4061 */
4062static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4063	int direction)
4064{
4065	dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4066			 direction);
4067	dev_kfree_skb(dma_buf->skb);
4068	dma_buf->skb = NULL;
4069	dma_buf->dma = 0;
4070}
4071
4072/**
4073 * ksz_init_rx_buffers - initialize receive descriptors
4074 * @adapter:	Adapter information structure.
4075 *
4076 * This routine initializes DMA buffers for receiving.
4077 */
4078static void ksz_init_rx_buffers(struct dev_info *adapter)
4079{
4080	int i;
4081	struct ksz_desc *desc;
4082	struct ksz_dma_buf *dma_buf;
4083	struct ksz_hw *hw = &adapter->hw;
4084	struct ksz_desc_info *info = &hw->rx_desc_info;
4085
4086	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4087		get_rx_pkt(info, &desc);
4088
4089		dma_buf = DMA_BUFFER(desc);
4090		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4091			free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4092		dma_buf->len = adapter->mtu;
4093		if (!dma_buf->skb)
4094			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4095		if (dma_buf->skb && !dma_buf->dma)
4096			dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4097						skb_tail_pointer(dma_buf->skb),
4098						dma_buf->len,
4099						DMA_FROM_DEVICE);
4100
4101		/* Set descriptor. */
4102		set_rx_buf(desc, dma_buf->dma);
4103		set_rx_len(desc, dma_buf->len);
4104		release_desc(desc);
4105	}
4106}
4107
4108/**
4109 * ksz_alloc_mem - allocate memory for hardware descriptors
4110 * @adapter:	Adapter information structure.
4111 *
4112 * This function allocates memory for use by hardware descriptors for receiving
4113 * and transmitting.
4114 *
4115 * Return 0 if successful.
4116 */
4117static int ksz_alloc_mem(struct dev_info *adapter)
4118{
4119	struct ksz_hw *hw = &adapter->hw;
4120
4121	/* Determine the number of receive and transmit descriptors. */
4122	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4123	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4124
4125	/* Determine how many descriptors to skip transmit interrupt. */
4126	hw->tx_int_cnt = 0;
4127	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4128	if (hw->tx_int_mask > 8)
4129		hw->tx_int_mask = 8;
4130	while (hw->tx_int_mask) {
4131		hw->tx_int_cnt++;
4132		hw->tx_int_mask >>= 1;
4133	}
4134	if (hw->tx_int_cnt) {
4135		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4136		hw->tx_int_cnt = 0;
4137	}
4138
4139	/* Determine the descriptor size. */
4140	hw->rx_desc_info.size =
4141		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4142		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4143	hw->tx_desc_info.size =
4144		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4145		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4146	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4147		pr_alert("Hardware descriptor size not right!\n");
4148	ksz_check_desc_num(&hw->rx_desc_info);
4149	ksz_check_desc_num(&hw->tx_desc_info);
4150
4151	/* Allocate descriptors. */
4152	if (ksz_alloc_desc(adapter))
4153		return 1;
4154
4155	return 0;
4156}
4157
4158/**
4159 * ksz_free_desc - free software and hardware descriptors
4160 * @adapter:	Adapter information structure.
4161 *
4162 * This local routine frees the software and hardware descriptors allocated by
4163 * ksz_alloc_desc().
4164 */
4165static void ksz_free_desc(struct dev_info *adapter)
4166{
4167	struct ksz_hw *hw = &adapter->hw;
4168
4169	/* Reset descriptor. */
4170	hw->rx_desc_info.ring_virt = NULL;
4171	hw->tx_desc_info.ring_virt = NULL;
4172	hw->rx_desc_info.ring_phys = 0;
4173	hw->tx_desc_info.ring_phys = 0;
4174
4175	/* Free memory. */
4176	if (adapter->desc_pool.alloc_virt)
4177		dma_free_coherent(&adapter->pdev->dev,
4178				  adapter->desc_pool.alloc_size,
4179				  adapter->desc_pool.alloc_virt,
4180				  adapter->desc_pool.dma_addr);
4181
4182	/* Reset resource pool. */
4183	adapter->desc_pool.alloc_size = 0;
4184	adapter->desc_pool.alloc_virt = NULL;
4185
4186	kfree(hw->rx_desc_info.ring);
4187	hw->rx_desc_info.ring = NULL;
4188	kfree(hw->tx_desc_info.ring);
4189	hw->tx_desc_info.ring = NULL;
4190}
4191
4192/**
4193 * ksz_free_buffers - free buffers used in the descriptors
4194 * @adapter:	Adapter information structure.
4195 * @desc_info:	Descriptor information structure.
4196 * @direction:	to or from device
4197 *
4198 * This local routine frees buffers used in the DMA buffers.
4199 */
4200static void ksz_free_buffers(struct dev_info *adapter,
4201	struct ksz_desc_info *desc_info, int direction)
4202{
4203	int i;
4204	struct ksz_dma_buf *dma_buf;
4205	struct ksz_desc *desc = desc_info->ring;
4206
4207	for (i = 0; i < desc_info->alloc; i++) {
4208		dma_buf = DMA_BUFFER(desc);
4209		if (dma_buf->skb)
4210			free_dma_buf(adapter, dma_buf, direction);
4211		desc++;
4212	}
4213}
4214
4215/**
4216 * ksz_free_mem - free all resources used by descriptors
4217 * @adapter:	Adapter information structure.
4218 *
4219 * This local routine frees all the resources allocated by ksz_alloc_mem().
4220 */
4221static void ksz_free_mem(struct dev_info *adapter)
4222{
4223	/* Free transmit buffers. */
4224	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
4225
4226	/* Free receive buffers. */
4227	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
4228
4229	/* Free descriptors. */
4230	ksz_free_desc(adapter);
4231}
4232
4233static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4234	u64 *counter)
4235{
4236	int i;
4237	int mib;
4238	int port;
4239	struct ksz_port_mib *port_mib;
4240
4241	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4242	for (i = 0, port = first; i < cnt; i++, port++) {
4243		port_mib = &hw->port_mib[port];
4244		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4245			counter[mib] += port_mib->counter[mib];
4246	}
4247}
4248
4249/**
4250 * send_packet - send packet
4251 * @skb:	Socket buffer.
4252 * @dev:	Network device.
4253 *
4254 * This routine is used to send a packet out to the network.
4255 */
4256static void send_packet(struct sk_buff *skb, struct net_device *dev)
4257{
4258	struct ksz_desc *desc;
4259	struct ksz_desc *first;
4260	struct dev_priv *priv = netdev_priv(dev);
4261	struct dev_info *hw_priv = priv->adapter;
4262	struct ksz_hw *hw = &hw_priv->hw;
4263	struct ksz_desc_info *info = &hw->tx_desc_info;
4264	struct ksz_dma_buf *dma_buf;
4265	int len;
4266	int last_frag = skb_shinfo(skb)->nr_frags;
4267
4268	/*
4269	 * KSZ8842 with multiple device interfaces needs to be told which port
4270	 * to send.
4271	 */
4272	if (hw->dev_count > 1)
4273		hw->dst_ports = 1 << priv->port.first_port;
4274
4275	/* Hardware will pad the length to 60. */
4276	len = skb->len;
4277
4278	/* Remember the very first descriptor. */
4279	first = info->cur;
4280	desc = first;
4281
4282	dma_buf = DMA_BUFFER(desc);
4283	if (last_frag) {
4284		int frag;
4285		skb_frag_t *this_frag;
4286
4287		dma_buf->len = skb_headlen(skb);
4288
4289		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4290					      dma_buf->len, DMA_TO_DEVICE);
4291		set_tx_buf(desc, dma_buf->dma);
4292		set_tx_len(desc, dma_buf->len);
4293
4294		frag = 0;
4295		do {
4296			this_frag = &skb_shinfo(skb)->frags[frag];
4297
4298			/* Get a new descriptor. */
4299			get_tx_pkt(info, &desc);
4300
4301			/* Keep track of descriptors used so far. */
4302			++hw->tx_int_cnt;
4303
4304			dma_buf = DMA_BUFFER(desc);
4305			dma_buf->len = skb_frag_size(this_frag);
4306
4307			dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4308						      skb_frag_address(this_frag),
4309						      dma_buf->len,
4310						      DMA_TO_DEVICE);
4311			set_tx_buf(desc, dma_buf->dma);
4312			set_tx_len(desc, dma_buf->len);
4313
4314			frag++;
4315			if (frag == last_frag)
4316				break;
4317
4318			/* Do not release the last descriptor here. */
4319			release_desc(desc);
4320		} while (1);
4321
4322		/* current points to the last descriptor. */
4323		info->cur = desc;
4324
4325		/* Release the first descriptor. */
4326		release_desc(first);
4327	} else {
4328		dma_buf->len = len;
4329
4330		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4331					      dma_buf->len, DMA_TO_DEVICE);
4332		set_tx_buf(desc, dma_buf->dma);
4333		set_tx_len(desc, dma_buf->len);
4334	}
4335
4336	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4337		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4338		(desc)->sw.buf.tx.csum_gen_udp = 1;
4339	}
4340
4341	/*
4342	 * The last descriptor holds the packet so that it can be returned to
4343	 * network subsystem after all descriptors are transmitted.
4344	 */
4345	dma_buf->skb = skb;
4346
4347	hw_send_pkt(hw);
4348
4349	/* Update transmit statistics. */
4350	dev->stats.tx_packets++;
4351	dev->stats.tx_bytes += len;
4352}
4353
4354/**
4355 * transmit_cleanup - clean up transmit descriptors
4356 * @hw_priv:	Network device.
4357 * @normal:	break if owned
4358 *
4359 * This routine is called to clean up the transmitted buffers.
4360 */
4361static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4362{
4363	int last;
4364	union desc_stat status;
4365	struct ksz_hw *hw = &hw_priv->hw;
4366	struct ksz_desc_info *info = &hw->tx_desc_info;
4367	struct ksz_desc *desc;
4368	struct ksz_dma_buf *dma_buf;
4369	struct net_device *dev = NULL;
4370
4371	spin_lock_irq(&hw_priv->hwlock);
4372	last = info->last;
4373
4374	while (info->avail < info->alloc) {
4375		/* Get next descriptor which is not hardware owned. */
4376		desc = &info->ring[last];
4377		status.data = le32_to_cpu(desc->phw->ctrl.data);
4378		if (status.tx.hw_owned) {
4379			if (normal)
4380				break;
4381			else
4382				reset_desc(desc, status);
4383		}
4384
4385		dma_buf = DMA_BUFFER(desc);
4386		dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4387				 dma_buf->len, DMA_TO_DEVICE);
4388
4389		/* This descriptor contains the last buffer in the packet. */
4390		if (dma_buf->skb) {
4391			dev = dma_buf->skb->dev;
4392
4393			/* Release the packet back to network subsystem. */
4394			dev_kfree_skb_irq(dma_buf->skb);
4395			dma_buf->skb = NULL;
4396		}
4397
4398		/* Free the transmitted descriptor. */
4399		last++;
4400		last &= info->mask;
4401		info->avail++;
4402	}
4403	info->last = last;
4404	spin_unlock_irq(&hw_priv->hwlock);
4405
4406	/* Notify the network subsystem that the packet has been sent. */
4407	if (dev)
4408		netif_trans_update(dev);
4409}
4410
4411/**
4412 * tx_done - transmit done processing
4413 * @hw_priv:	Network device.
4414 *
4415 * This routine is called when the transmit interrupt is triggered, indicating
4416 * either a packet is sent successfully or there are transmit errors.
4417 */
4418static void tx_done(struct dev_info *hw_priv)
4419{
4420	struct ksz_hw *hw = &hw_priv->hw;
4421	int port;
4422
4423	transmit_cleanup(hw_priv, 1);
4424
4425	for (port = 0; port < hw->dev_count; port++) {
4426		struct net_device *dev = hw->port_info[port].pdev;
4427
4428		if (netif_running(dev) && netif_queue_stopped(dev))
4429			netif_wake_queue(dev);
4430	}
4431}
4432
4433static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4434{
4435	skb->dev = old->dev;
4436	skb->protocol = old->protocol;
4437	skb->ip_summed = old->ip_summed;
4438	skb->csum = old->csum;
4439	skb_set_network_header(skb, ETH_HLEN);
4440
4441	dev_consume_skb_any(old);
4442}
4443
4444/**
4445 * netdev_tx - send out packet
4446 * @skb:	Socket buffer.
4447 * @dev:	Network device.
4448 *
4449 * This function is used by the upper network layer to send out a packet.
4450 *
4451 * Return 0 if successful; otherwise an error code indicating failure.
4452 */
4453static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4454{
4455	struct dev_priv *priv = netdev_priv(dev);
4456	struct dev_info *hw_priv = priv->adapter;
4457	struct ksz_hw *hw = &hw_priv->hw;
4458	int left;
4459	int num = 1;
4460	int rc = 0;
4461
4462	if (hw->features & SMALL_PACKET_TX_BUG) {
4463		struct sk_buff *org_skb = skb;
4464
4465		if (skb->len <= 48) {
4466			if (skb_end_pointer(skb) - skb->data >= 50) {
4467				memset(&skb->data[skb->len], 0, 50 - skb->len);
4468				skb->len = 50;
4469			} else {
4470				skb = netdev_alloc_skb(dev, 50);
4471				if (!skb)
4472					return NETDEV_TX_BUSY;
4473				memcpy(skb->data, org_skb->data, org_skb->len);
4474				memset(&skb->data[org_skb->len], 0,
4475					50 - org_skb->len);
4476				skb->len = 50;
4477				copy_old_skb(org_skb, skb);
4478			}
4479		}
4480	}
4481
4482	spin_lock_irq(&hw_priv->hwlock);
4483
4484	num = skb_shinfo(skb)->nr_frags + 1;
4485	left = hw_alloc_pkt(hw, skb->len, num);
4486	if (left) {
4487		if (left < num ||
4488		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4489		     skb->protocol == htons(ETH_P_IPV6))) {
4490			struct sk_buff *org_skb = skb;
4491
4492			skb = netdev_alloc_skb(dev, org_skb->len);
4493			if (!skb) {
4494				rc = NETDEV_TX_BUSY;
4495				goto unlock;
4496			}
4497			skb_copy_and_csum_dev(org_skb, skb->data);
4498			org_skb->ip_summed = CHECKSUM_NONE;
4499			skb->len = org_skb->len;
4500			copy_old_skb(org_skb, skb);
4501		}
4502		send_packet(skb, dev);
4503		if (left <= num)
4504			netif_stop_queue(dev);
4505	} else {
4506		/* Stop the transmit queue until packet is allocated. */
4507		netif_stop_queue(dev);
4508		rc = NETDEV_TX_BUSY;
4509	}
4510unlock:
4511	spin_unlock_irq(&hw_priv->hwlock);
4512
4513	return rc;
4514}
4515
4516/**
4517 * netdev_tx_timeout - transmit timeout processing
4518 * @dev:	Network device.
4519 * @txqueue:	index of hanging queue
4520 *
4521 * This routine is called when the transmit timer expires.  That indicates the
4522 * hardware is not running correctly because transmit interrupts are not
4523 * triggered to free up resources so that the transmit routine can continue
4524 * sending out packets.  The hardware is reset to correct the problem.
4525 */
4526static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4527{
4528	static unsigned long last_reset;
4529
4530	struct dev_priv *priv = netdev_priv(dev);
4531	struct dev_info *hw_priv = priv->adapter;
4532	struct ksz_hw *hw = &hw_priv->hw;
4533	int port;
4534
4535	if (hw->dev_count > 1) {
4536		/*
4537		 * Only reset the hardware if time between calls is long
4538		 * enough.
4539		 */
4540		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4541			hw_priv = NULL;
4542	}
4543
4544	last_reset = jiffies;
4545	if (hw_priv) {
4546		hw_dis_intr(hw);
4547		hw_disable(hw);
4548
4549		transmit_cleanup(hw_priv, 0);
4550		hw_reset_pkts(&hw->rx_desc_info);
4551		hw_reset_pkts(&hw->tx_desc_info);
4552		ksz_init_rx_buffers(hw_priv);
4553
4554		hw_reset(hw);
4555
4556		hw_set_desc_base(hw,
4557			hw->tx_desc_info.ring_phys,
4558			hw->rx_desc_info.ring_phys);
4559		hw_set_addr(hw);
4560		if (hw->all_multi)
4561			hw_set_multicast(hw, hw->all_multi);
4562		else if (hw->multi_list_size)
4563			hw_set_grp_addr(hw);
4564
4565		if (hw->dev_count > 1) {
4566			hw_set_add_addr(hw);
4567			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4568				struct net_device *port_dev;
4569
4570				port_set_stp_state(hw, port,
4571					STP_STATE_DISABLED);
4572
4573				port_dev = hw->port_info[port].pdev;
4574				if (netif_running(port_dev))
4575					port_set_stp_state(hw, port,
4576						STP_STATE_SIMPLE);
4577			}
4578		}
4579
4580		hw_enable(hw);
4581		hw_ena_intr(hw);
4582	}
4583
4584	netif_trans_update(dev);
4585	netif_wake_queue(dev);
4586}
4587
4588static inline void csum_verified(struct sk_buff *skb)
4589{
4590	unsigned short protocol;
4591	struct iphdr *iph;
4592
4593	protocol = skb->protocol;
4594	skb_reset_network_header(skb);
4595	iph = (struct iphdr *) skb_network_header(skb);
4596	if (protocol == htons(ETH_P_8021Q)) {
4597		protocol = iph->tot_len;
4598		skb_set_network_header(skb, VLAN_HLEN);
4599		iph = (struct iphdr *) skb_network_header(skb);
4600	}
4601	if (protocol == htons(ETH_P_IP)) {
4602		if (iph->protocol == IPPROTO_TCP)
4603			skb->ip_summed = CHECKSUM_UNNECESSARY;
4604	}
4605}
4606
4607static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4608	struct ksz_desc *desc, union desc_stat status)
4609{
4610	int packet_len;
4611	struct dev_priv *priv = netdev_priv(dev);
4612	struct dev_info *hw_priv = priv->adapter;
4613	struct ksz_dma_buf *dma_buf;
4614	struct sk_buff *skb;
4615
4616	/* Received length includes 4-byte CRC. */
4617	packet_len = status.rx.frame_len - 4;
4618
4619	dma_buf = DMA_BUFFER(desc);
4620	dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4621				packet_len + 4, DMA_FROM_DEVICE);
4622
4623	do {
4624		/* skb->data != skb->head */
4625		skb = netdev_alloc_skb(dev, packet_len + 2);
4626		if (!skb) {
4627			dev->stats.rx_dropped++;
4628			return -ENOMEM;
4629		}
4630
4631		/*
4632		 * Align socket buffer in 4-byte boundary for better
4633		 * performance.
4634		 */
4635		skb_reserve(skb, 2);
4636
4637		skb_put_data(skb, dma_buf->skb->data, packet_len);
4638	} while (0);
4639
4640	skb->protocol = eth_type_trans(skb, dev);
4641
4642	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
4643		csum_verified(skb);
4644
4645	/* Update receive statistics. */
4646	dev->stats.rx_packets++;
4647	dev->stats.rx_bytes += packet_len;
4648
4649	/* Notify upper layer for received packet. */
4650	netif_rx(skb);
4651
4652	return 0;
4653}
4654
4655static int dev_rcv_packets(struct dev_info *hw_priv)
4656{
4657	int next;
4658	union desc_stat status;
4659	struct ksz_hw *hw = &hw_priv->hw;
4660	struct net_device *dev = hw->port_info[0].pdev;
4661	struct ksz_desc_info *info = &hw->rx_desc_info;
4662	int left = info->alloc;
4663	struct ksz_desc *desc;
4664	int received = 0;
4665
4666	next = info->next;
4667	while (left--) {
4668		/* Get next descriptor which is not hardware owned. */
4669		desc = &info->ring[next];
4670		status.data = le32_to_cpu(desc->phw->ctrl.data);
4671		if (status.rx.hw_owned)
4672			break;
4673
4674		/* Status valid only when last descriptor bit is set. */
4675		if (status.rx.last_desc && status.rx.first_desc) {
4676			if (rx_proc(dev, hw, desc, status))
4677				goto release_packet;
4678			received++;
4679		}
4680
4681release_packet:
4682		release_desc(desc);
4683		next++;
4684		next &= info->mask;
4685	}
4686	info->next = next;
4687
4688	return received;
4689}
4690
4691static int port_rcv_packets(struct dev_info *hw_priv)
4692{
4693	int next;
4694	union desc_stat status;
4695	struct ksz_hw *hw = &hw_priv->hw;
4696	struct net_device *dev = hw->port_info[0].pdev;
4697	struct ksz_desc_info *info = &hw->rx_desc_info;
4698	int left = info->alloc;
4699	struct ksz_desc *desc;
4700	int received = 0;
4701
4702	next = info->next;
4703	while (left--) {
4704		/* Get next descriptor which is not hardware owned. */
4705		desc = &info->ring[next];
4706		status.data = le32_to_cpu(desc->phw->ctrl.data);
4707		if (status.rx.hw_owned)
4708			break;
4709
4710		if (hw->dev_count > 1) {
4711			/* Get received port number. */
4712			int p = HW_TO_DEV_PORT(status.rx.src_port);
4713
4714			dev = hw->port_info[p].pdev;
4715			if (!netif_running(dev))
4716				goto release_packet;
4717		}
4718
4719		/* Status valid only when last descriptor bit is set. */
4720		if (status.rx.last_desc && status.rx.first_desc) {
4721			if (rx_proc(dev, hw, desc, status))
4722				goto release_packet;
4723			received++;
4724		}
4725
4726release_packet:
4727		release_desc(desc);
4728		next++;
4729		next &= info->mask;
4730	}
4731	info->next = next;
4732
4733	return received;
4734}
4735
4736static int dev_rcv_special(struct dev_info *hw_priv)
4737{
4738	int next;
4739	union desc_stat status;
4740	struct ksz_hw *hw = &hw_priv->hw;
4741	struct net_device *dev = hw->port_info[0].pdev;
4742	struct ksz_desc_info *info = &hw->rx_desc_info;
4743	int left = info->alloc;
4744	struct ksz_desc *desc;
4745	int received = 0;
4746
4747	next = info->next;
4748	while (left--) {
4749		/* Get next descriptor which is not hardware owned. */
4750		desc = &info->ring[next];
4751		status.data = le32_to_cpu(desc->phw->ctrl.data);
4752		if (status.rx.hw_owned)
4753			break;
4754
4755		if (hw->dev_count > 1) {
4756			/* Get received port number. */
4757			int p = HW_TO_DEV_PORT(status.rx.src_port);
4758
4759			dev = hw->port_info[p].pdev;
4760			if (!netif_running(dev))
4761				goto release_packet;
4762		}
4763
4764		/* Status valid only when last descriptor bit is set. */
4765		if (status.rx.last_desc && status.rx.first_desc) {
4766			/*
4767			 * Receive without error.  With receive errors
4768			 * disabled, packets with receive errors will be
4769			 * dropped, so no need to check the error bit.
4770			 */
4771			if (!status.rx.error || (status.data &
4772					KS_DESC_RX_ERROR_COND) ==
4773					KS_DESC_RX_ERROR_TOO_LONG) {
4774				if (rx_proc(dev, hw, desc, status))
4775					goto release_packet;
4776				received++;
4777			} else {
4778				struct dev_priv *priv = netdev_priv(dev);
4779
4780				/* Update receive error statistics. */
4781				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
4782			}
4783		}
4784
4785release_packet:
4786		release_desc(desc);
4787		next++;
4788		next &= info->mask;
4789	}
4790	info->next = next;
4791
4792	return received;
4793}
4794
4795static void rx_proc_task(struct tasklet_struct *t)
4796{
4797	struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
4798	struct ksz_hw *hw = &hw_priv->hw;
4799
4800	if (!hw->enabled)
4801		return;
4802	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
4803
4804		/* In case receive process is suspended because of overrun. */
4805		hw_resume_rx(hw);
4806
4807		/* tasklets are interruptible. */
4808		spin_lock_irq(&hw_priv->hwlock);
4809		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
4810		spin_unlock_irq(&hw_priv->hwlock);
4811	} else {
4812		hw_ack_intr(hw, KS884X_INT_RX);
4813		tasklet_schedule(&hw_priv->rx_tasklet);
4814	}
4815}
4816
4817static void tx_proc_task(struct tasklet_struct *t)
4818{
4819	struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
4820	struct ksz_hw *hw = &hw_priv->hw;
4821
4822	hw_ack_intr(hw, KS884X_INT_TX_MASK);
4823
4824	tx_done(hw_priv);
4825
4826	/* tasklets are interruptible. */
4827	spin_lock_irq(&hw_priv->hwlock);
4828	hw_turn_on_intr(hw, KS884X_INT_TX);
4829	spin_unlock_irq(&hw_priv->hwlock);
4830}
4831
4832static inline void handle_rx_stop(struct ksz_hw *hw)
4833{
4834	/* Receive just has been stopped. */
4835	if (0 == hw->rx_stop)
4836		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
4837	else if (hw->rx_stop > 1) {
4838		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
4839			hw_start_rx(hw);
4840		} else {
4841			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
4842			hw->rx_stop = 0;
4843		}
4844	} else
4845		/* Receive just has been started. */
4846		hw->rx_stop++;
4847}
4848
4849/**
4850 * netdev_intr - interrupt handling
4851 * @irq:	Interrupt number.
4852 * @dev_id:	Network device.
4853 *
4854 * This function is called by upper network layer to signal interrupt.
4855 *
4856 * Return IRQ_HANDLED if interrupt is handled.
4857 */
4858static irqreturn_t netdev_intr(int irq, void *dev_id)
4859{
4860	uint int_enable = 0;
4861	struct net_device *dev = (struct net_device *) dev_id;
4862	struct dev_priv *priv = netdev_priv(dev);
4863	struct dev_info *hw_priv = priv->adapter;
4864	struct ksz_hw *hw = &hw_priv->hw;
4865
4866	spin_lock(&hw_priv->hwlock);
4867
4868	hw_read_intr(hw, &int_enable);
4869
4870	/* Not our interrupt! */
4871	if (!int_enable) {
4872		spin_unlock(&hw_priv->hwlock);
4873		return IRQ_NONE;
4874	}
4875
4876	do {
4877		hw_ack_intr(hw, int_enable);
4878		int_enable &= hw->intr_mask;
4879
4880		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
4881			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
4882			tasklet_schedule(&hw_priv->tx_tasklet);
4883		}
4884
4885		if (likely(int_enable & KS884X_INT_RX)) {
4886			hw_dis_intr_bit(hw, KS884X_INT_RX);
4887			tasklet_schedule(&hw_priv->rx_tasklet);
4888		}
4889
4890		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
4891			dev->stats.rx_fifo_errors++;
4892			hw_resume_rx(hw);
4893		}
4894
4895		if (unlikely(int_enable & KS884X_INT_PHY)) {
4896			struct ksz_port *port = &priv->port;
4897
4898			hw->features |= LINK_INT_WORKING;
4899			port_get_link_speed(port);
4900		}
4901
4902		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
4903			handle_rx_stop(hw);
4904			break;
4905		}
4906
4907		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
4908			u32 data;
4909
4910			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
4911			pr_info("Tx stopped\n");
4912			data = readl(hw->io + KS_DMA_TX_CTRL);
4913			if (!(data & DMA_TX_ENABLE))
4914				pr_info("Tx disabled\n");
4915			break;
4916		}
4917	} while (0);
4918
4919	hw_ena_intr(hw);
4920
4921	spin_unlock(&hw_priv->hwlock);
4922
4923	return IRQ_HANDLED;
4924}
4925
4926/*
4927 * Linux network device functions
4928 */
4929
4930
4931#ifdef CONFIG_NET_POLL_CONTROLLER
4932static void netdev_netpoll(struct net_device *dev)
4933{
4934	struct dev_priv *priv = netdev_priv(dev);
4935	struct dev_info *hw_priv = priv->adapter;
4936
4937	hw_dis_intr(&hw_priv->hw);
4938	netdev_intr(dev->irq, dev);
4939}
4940#endif
4941
4942static void bridge_change(struct ksz_hw *hw)
4943{
4944	int port;
4945	u8  member;
4946	struct ksz_switch *sw = hw->ksz_switch;
4947
4948	/* No ports in forwarding state. */
4949	if (!sw->member) {
4950		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4951		sw_block_addr(hw);
4952	}
4953	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4954		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
4955			member = HOST_MASK | sw->member;
4956		else
4957			member = HOST_MASK | (1 << port);
4958		if (member != sw->port_cfg[port].member)
4959			sw_cfg_port_base_vlan(hw, port, member);
4960	}
4961}
4962
4963/**
4964 * netdev_close - close network device
4965 * @dev:	Network device.
4966 *
4967 * This function process the close operation of network device.  This is caused
4968 * by the user command "ifconfig ethX down."
4969 *
4970 * Return 0 if successful; otherwise an error code indicating failure.
4971 */
4972static int netdev_close(struct net_device *dev)
4973{
4974	struct dev_priv *priv = netdev_priv(dev);
4975	struct dev_info *hw_priv = priv->adapter;
4976	struct ksz_port *port = &priv->port;
4977	struct ksz_hw *hw = &hw_priv->hw;
4978	int pi;
4979
4980	netif_stop_queue(dev);
4981
4982	ksz_stop_timer(&priv->monitor_timer_info);
4983
4984	/* Need to shut the port manually in multiple device interfaces mode. */
4985	if (hw->dev_count > 1) {
4986		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
4987
4988		/* Port is closed.  Need to change bridge setting. */
4989		if (hw->features & STP_SUPPORT) {
4990			pi = 1 << port->first_port;
4991			if (hw->ksz_switch->member & pi) {
4992				hw->ksz_switch->member &= ~pi;
4993				bridge_change(hw);
4994			}
4995		}
4996	}
4997	if (port->first_port > 0)
4998		hw_del_addr(hw, dev->dev_addr);
4999	if (!hw_priv->wol_enable)
5000		port_set_power_saving(port, true);
5001
5002	if (priv->multicast)
5003		--hw->all_multi;
5004	if (priv->promiscuous)
5005		--hw->promiscuous;
5006
5007	hw_priv->opened--;
5008	if (!(hw_priv->opened)) {
5009		ksz_stop_timer(&hw_priv->mib_timer_info);
5010		flush_work(&hw_priv->mib_read);
5011
5012		hw_dis_intr(hw);
5013		hw_disable(hw);
5014		hw_clr_multicast(hw);
5015
5016		/* Delay for receive task to stop scheduling itself. */
5017		msleep(2000 / HZ);
5018
5019		tasklet_kill(&hw_priv->rx_tasklet);
5020		tasklet_kill(&hw_priv->tx_tasklet);
5021		free_irq(dev->irq, hw_priv->dev);
5022
5023		transmit_cleanup(hw_priv, 0);
5024		hw_reset_pkts(&hw->rx_desc_info);
5025		hw_reset_pkts(&hw->tx_desc_info);
5026
5027		/* Clean out static MAC table when the switch is shutdown. */
5028		if (hw->features & STP_SUPPORT)
5029			sw_clr_sta_mac_table(hw);
5030	}
5031
5032	return 0;
5033}
5034
5035static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5036{
5037	if (hw->ksz_switch) {
5038		u32 data;
5039
5040		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5041		if (hw->features & RX_HUGE_FRAME)
5042			data |= SWITCH_HUGE_PACKET;
5043		else
5044			data &= ~SWITCH_HUGE_PACKET;
5045		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5046	}
5047	if (hw->features & RX_HUGE_FRAME) {
5048		hw->rx_cfg |= DMA_RX_ERROR;
5049		hw_priv->dev_rcv = dev_rcv_special;
5050	} else {
5051		hw->rx_cfg &= ~DMA_RX_ERROR;
5052		if (hw->dev_count > 1)
5053			hw_priv->dev_rcv = port_rcv_packets;
5054		else
5055			hw_priv->dev_rcv = dev_rcv_packets;
5056	}
5057}
5058
5059static int prepare_hardware(struct net_device *dev)
5060{
5061	struct dev_priv *priv = netdev_priv(dev);
5062	struct dev_info *hw_priv = priv->adapter;
5063	struct ksz_hw *hw = &hw_priv->hw;
5064	int rc = 0;
5065
5066	/* Remember the network device that requests interrupts. */
5067	hw_priv->dev = dev;
5068	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5069	if (rc)
5070		return rc;
5071	tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
5072	tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
5073
5074	hw->promiscuous = 0;
5075	hw->all_multi = 0;
5076	hw->multi_list_size = 0;
5077
5078	hw_reset(hw);
5079
5080	hw_set_desc_base(hw,
5081		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5082	hw_set_addr(hw);
5083	hw_cfg_huge_frame(hw_priv, hw);
5084	ksz_init_rx_buffers(hw_priv);
5085	return 0;
5086}
5087
5088static void set_media_state(struct net_device *dev, int media_state)
5089{
5090	struct dev_priv *priv = netdev_priv(dev);
5091
5092	if (media_state == priv->media_state)
5093		netif_carrier_on(dev);
5094	else
5095		netif_carrier_off(dev);
5096	netif_info(priv, link, dev, "link %s\n",
5097		   media_state == priv->media_state ? "on" : "off");
5098}
5099
5100/**
5101 * netdev_open - open network device
5102 * @dev:	Network device.
5103 *
5104 * This function process the open operation of network device.  This is caused
5105 * by the user command "ifconfig ethX up."
5106 *
5107 * Return 0 if successful; otherwise an error code indicating failure.
5108 */
5109static int netdev_open(struct net_device *dev)
5110{
5111	struct dev_priv *priv = netdev_priv(dev);
5112	struct dev_info *hw_priv = priv->adapter;
5113	struct ksz_hw *hw = &hw_priv->hw;
5114	struct ksz_port *port = &priv->port;
5115	unsigned long next_jiffies;
5116	int i;
5117	int p;
5118	int rc = 0;
5119
5120	next_jiffies = jiffies + HZ * 2;
5121	priv->multicast = 0;
5122	priv->promiscuous = 0;
5123
5124	/* Reset device statistics. */
5125	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5126	memset((void *) port->counter, 0,
5127		(sizeof(u64) * OID_COUNTER_LAST));
5128
5129	if (!(hw_priv->opened)) {
5130		rc = prepare_hardware(dev);
5131		if (rc)
5132			return rc;
5133		for (i = 0; i < hw->mib_port_cnt; i++) {
5134			next_jiffies += HZ * 1;
5135			hw_priv->counter[i].time = next_jiffies;
5136			hw->port_mib[i].state = media_disconnected;
5137			port_init_cnt(hw, i);
5138		}
5139		if (hw->ksz_switch)
5140			hw->port_mib[HOST_PORT].state = media_connected;
5141		else {
5142			hw_add_wol_bcast(hw);
5143			hw_cfg_wol_pme(hw, 0);
5144			hw_clr_wol_pme_status(&hw_priv->hw);
5145		}
5146	}
5147	port_set_power_saving(port, false);
5148
5149	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5150		/*
5151		 * Initialize to invalid value so that link detection
5152		 * is done.
5153		 */
5154		hw->port_info[p].partner = 0xFF;
5155		hw->port_info[p].state = media_disconnected;
5156	}
5157
5158	/* Need to open the port in multiple device interfaces mode. */
5159	if (hw->dev_count > 1) {
5160		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5161		if (port->first_port > 0)
5162			hw_add_addr(hw, dev->dev_addr);
5163	}
5164
5165	port_get_link_speed(port);
5166	if (port->force_link)
5167		port_force_link_speed(port);
5168	else
5169		port_set_link_speed(port);
5170
5171	if (!(hw_priv->opened)) {
5172		hw_setup_intr(hw);
5173		hw_enable(hw);
5174		hw_ena_intr(hw);
5175
5176		if (hw->mib_port_cnt)
5177			ksz_start_timer(&hw_priv->mib_timer_info,
5178				hw_priv->mib_timer_info.period);
5179	}
5180
5181	hw_priv->opened++;
5182
5183	ksz_start_timer(&priv->monitor_timer_info,
5184		priv->monitor_timer_info.period);
5185
5186	priv->media_state = port->linked->state;
5187
5188	set_media_state(dev, media_connected);
5189	netif_start_queue(dev);
5190
5191	return 0;
5192}
5193
5194/* RX errors = rx_errors */
5195/* RX dropped = rx_dropped */
5196/* RX overruns = rx_fifo_errors */
5197/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5198/* TX errors = tx_errors */
5199/* TX dropped = tx_dropped */
5200/* TX overruns = tx_fifo_errors */
5201/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5202/* collisions = collisions */
5203
5204/**
5205 * netdev_query_statistics - query network device statistics
5206 * @dev:	Network device.
5207 *
5208 * This function returns the statistics of the network device.  The device
5209 * needs not be opened.
5210 *
5211 * Return network device statistics.
5212 */
5213static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5214{
5215	struct dev_priv *priv = netdev_priv(dev);
5216	struct ksz_port *port = &priv->port;
5217	struct ksz_hw *hw = &priv->adapter->hw;
5218	struct ksz_port_mib *mib;
5219	int i;
5220	int p;
5221
5222	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5223	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5224
5225	/* Reset to zero to add count later. */
5226	dev->stats.multicast = 0;
5227	dev->stats.collisions = 0;
5228	dev->stats.rx_length_errors = 0;
5229	dev->stats.rx_crc_errors = 0;
5230	dev->stats.rx_frame_errors = 0;
5231	dev->stats.tx_window_errors = 0;
5232
5233	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5234		mib = &hw->port_mib[p];
5235
5236		dev->stats.multicast += (unsigned long)
5237			mib->counter[MIB_COUNTER_RX_MULTICAST];
5238
5239		dev->stats.collisions += (unsigned long)
5240			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5241
5242		dev->stats.rx_length_errors += (unsigned long)(
5243			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5244			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5245			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5246			mib->counter[MIB_COUNTER_RX_JABBER]);
5247		dev->stats.rx_crc_errors += (unsigned long)
5248			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5249		dev->stats.rx_frame_errors += (unsigned long)(
5250			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5251			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5252
5253		dev->stats.tx_window_errors += (unsigned long)
5254			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5255	}
5256
5257	return &dev->stats;
5258}
5259
5260/**
5261 * netdev_set_mac_address - set network device MAC address
5262 * @dev:	Network device.
5263 * @addr:	Buffer of MAC address.
5264 *
5265 * This function is used to set the MAC address of the network device.
5266 *
5267 * Return 0 to indicate success.
5268 */
5269static int netdev_set_mac_address(struct net_device *dev, void *addr)
5270{
5271	struct dev_priv *priv = netdev_priv(dev);
5272	struct dev_info *hw_priv = priv->adapter;
5273	struct ksz_hw *hw = &hw_priv->hw;
5274	struct sockaddr *mac = addr;
5275	uint interrupt;
5276
5277	if (priv->port.first_port > 0)
5278		hw_del_addr(hw, dev->dev_addr);
5279	else {
5280		hw->mac_override = 1;
5281		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5282	}
5283
5284	eth_hw_addr_set(dev, mac->sa_data);
5285
5286	interrupt = hw_block_intr(hw);
5287
5288	if (priv->port.first_port > 0)
5289		hw_add_addr(hw, dev->dev_addr);
5290	else
5291		hw_set_addr(hw);
5292	hw_restore_intr(hw, interrupt);
5293
5294	return 0;
5295}
5296
5297static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5298	struct ksz_hw *hw, int promiscuous)
5299{
5300	if (promiscuous != priv->promiscuous) {
5301		u8 prev_state = hw->promiscuous;
5302
5303		if (promiscuous)
5304			++hw->promiscuous;
5305		else
5306			--hw->promiscuous;
5307		priv->promiscuous = promiscuous;
5308
5309		/* Turn on/off promiscuous mode. */
5310		if (hw->promiscuous <= 1 && prev_state <= 1)
5311			hw_set_promiscuous(hw, hw->promiscuous);
5312
5313		/*
5314		 * Port is not in promiscuous mode, meaning it is released
5315		 * from the bridge.
5316		 */
5317		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5318		    netif_is_bridge_port(dev)) {
5319			struct ksz_switch *sw = hw->ksz_switch;
5320			int port = priv->port.first_port;
5321
5322			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5323			port = 1 << port;
5324			if (sw->member & port) {
5325				sw->member &= ~port;
5326				bridge_change(hw);
5327			}
5328		}
5329	}
5330}
5331
5332static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5333	int multicast)
5334{
5335	if (multicast != priv->multicast) {
5336		u8 all_multi = hw->all_multi;
5337
5338		if (multicast)
5339			++hw->all_multi;
5340		else
5341			--hw->all_multi;
5342		priv->multicast = multicast;
5343
5344		/* Turn on/off all multicast mode. */
5345		if (hw->all_multi <= 1 && all_multi <= 1)
5346			hw_set_multicast(hw, hw->all_multi);
5347	}
5348}
5349
5350/**
5351 * netdev_set_rx_mode
5352 * @dev:	Network device.
5353 *
5354 * This routine is used to set multicast addresses or put the network device
5355 * into promiscuous mode.
5356 */
5357static void netdev_set_rx_mode(struct net_device *dev)
5358{
5359	struct dev_priv *priv = netdev_priv(dev);
5360	struct dev_info *hw_priv = priv->adapter;
5361	struct ksz_hw *hw = &hw_priv->hw;
5362	struct netdev_hw_addr *ha;
5363	int multicast = (dev->flags & IFF_ALLMULTI);
5364
5365	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5366
5367	if (hw_priv->hw.dev_count > 1)
5368		multicast |= (dev->flags & IFF_MULTICAST);
5369	dev_set_multicast(priv, hw, multicast);
5370
5371	/* Cannot use different hashes in multiple device interfaces mode. */
5372	if (hw_priv->hw.dev_count > 1)
5373		return;
5374
5375	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5376		int i = 0;
5377
5378		/* List too big to support so turn on all multicast mode. */
5379		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5380			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5381				hw->multi_list_size = MAX_MULTICAST_LIST;
5382				++hw->all_multi;
5383				hw_set_multicast(hw, hw->all_multi);
5384			}
5385			return;
5386		}
5387
5388		netdev_for_each_mc_addr(ha, dev) {
5389			if (i >= MAX_MULTICAST_LIST)
5390				break;
5391			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5392		}
5393		hw->multi_list_size = (u8) i;
5394		hw_set_grp_addr(hw);
5395	} else {
5396		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5397			--hw->all_multi;
5398			hw_set_multicast(hw, hw->all_multi);
5399		}
5400		hw->multi_list_size = 0;
5401		hw_clr_multicast(hw);
5402	}
5403}
5404
5405static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5406{
5407	struct dev_priv *priv = netdev_priv(dev);
5408	struct dev_info *hw_priv = priv->adapter;
5409	struct ksz_hw *hw = &hw_priv->hw;
5410	int hw_mtu;
5411
5412	if (netif_running(dev))
5413		return -EBUSY;
5414
5415	/* Cannot use different MTU in multiple device interfaces mode. */
5416	if (hw->dev_count > 1)
5417		if (dev != hw_priv->dev)
5418			return 0;
5419
5420	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5421	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5422		hw->features |= RX_HUGE_FRAME;
5423		hw_mtu = MAX_RX_BUF_SIZE;
5424	} else {
5425		hw->features &= ~RX_HUGE_FRAME;
5426		hw_mtu = REGULAR_RX_BUF_SIZE;
5427	}
5428	hw_mtu = (hw_mtu + 3) & ~3;
5429	hw_priv->mtu = hw_mtu;
5430	WRITE_ONCE(dev->mtu, new_mtu);
5431
5432	return 0;
5433}
5434
5435/**
5436 * netdev_ioctl - I/O control processing
5437 * @dev:	Network device.
5438 * @ifr:	Interface request structure.
5439 * @cmd:	I/O control code.
5440 *
5441 * This function is used to process I/O control calls.
5442 *
5443 * Return 0 to indicate success.
5444 */
5445static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5446{
5447	struct dev_priv *priv = netdev_priv(dev);
5448	struct dev_info *hw_priv = priv->adapter;
5449	struct ksz_hw *hw = &hw_priv->hw;
5450	struct ksz_port *port = &priv->port;
5451	int result = 0;
5452	struct mii_ioctl_data *data = if_mii(ifr);
5453
5454	if (down_interruptible(&priv->proc_sem))
5455		return -ERESTARTSYS;
5456
5457	switch (cmd) {
5458	/* Get address of MII PHY in use. */
5459	case SIOCGMIIPHY:
5460		data->phy_id = priv->id;
5461		fallthrough;
5462
5463	/* Read MII PHY register. */
5464	case SIOCGMIIREG:
5465		if (data->phy_id != priv->id || data->reg_num >= 6)
5466			result = -EIO;
5467		else
5468			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5469				&data->val_out);
5470		break;
5471
5472	/* Write MII PHY register. */
5473	case SIOCSMIIREG:
5474		if (!capable(CAP_NET_ADMIN))
5475			result = -EPERM;
5476		else if (data->phy_id != priv->id || data->reg_num >= 6)
5477			result = -EIO;
5478		else
5479			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5480				data->val_in);
5481		break;
5482
5483	default:
5484		result = -EOPNOTSUPP;
5485	}
5486
5487	up(&priv->proc_sem);
5488
5489	return result;
5490}
5491
5492/*
5493 * MII support
5494 */
5495
5496/**
5497 * mdio_read - read PHY register
5498 * @dev:	Network device.
5499 * @phy_id:	The PHY id.
5500 * @reg_num:	The register number.
5501 *
5502 * This function returns the PHY register value.
5503 *
5504 * Return the register value.
5505 */
5506static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5507{
5508	struct dev_priv *priv = netdev_priv(dev);
5509	struct ksz_port *port = &priv->port;
5510	struct ksz_hw *hw = port->hw;
5511	u16 val_out;
5512
5513	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5514	return val_out;
5515}
5516
5517/**
5518 * mdio_write - set PHY register
5519 * @dev:	Network device.
5520 * @phy_id:	The PHY id.
5521 * @reg_num:	The register number.
5522 * @val:	The register value.
5523 *
5524 * This procedure sets the PHY register value.
5525 */
5526static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5527{
5528	struct dev_priv *priv = netdev_priv(dev);
5529	struct ksz_port *port = &priv->port;
5530	struct ksz_hw *hw = port->hw;
5531	int i;
5532	int pi;
5533
5534	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5535		hw_w_phy(hw, pi, reg_num << 1, val);
5536}
5537
5538/*
5539 * ethtool support
5540 */
5541
5542#define EEPROM_SIZE			0x40
5543
5544static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5545
5546#define ADVERTISED_ALL			\
5547	(ADVERTISED_10baseT_Half |	\
5548	ADVERTISED_10baseT_Full |	\
5549	ADVERTISED_100baseT_Half |	\
5550	ADVERTISED_100baseT_Full)
5551
5552/* These functions use the MII functions in mii.c. */
5553
5554/**
5555 * netdev_get_link_ksettings - get network device settings
5556 * @dev:	Network device.
5557 * @cmd:	Ethtool command.
5558 *
5559 * This function queries the PHY and returns its state in the ethtool command.
5560 *
5561 * Return 0 if successful; otherwise an error code.
5562 */
5563static int netdev_get_link_ksettings(struct net_device *dev,
5564				     struct ethtool_link_ksettings *cmd)
5565{
5566	struct dev_priv *priv = netdev_priv(dev);
5567	struct dev_info *hw_priv = priv->adapter;
5568
5569	mutex_lock(&hw_priv->lock);
5570	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5571	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5572	mutex_unlock(&hw_priv->lock);
5573
5574	/* Save advertised settings for workaround in next function. */
5575	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5576						cmd->link_modes.advertising);
5577
5578	return 0;
5579}
5580
5581/**
5582 * netdev_set_link_ksettings - set network device settings
5583 * @dev:	Network device.
5584 * @cmd:	Ethtool command.
5585 *
5586 * This function sets the PHY according to the ethtool command.
5587 *
5588 * Return 0 if successful; otherwise an error code.
5589 */
5590static int netdev_set_link_ksettings(struct net_device *dev,
5591				     const struct ethtool_link_ksettings *cmd)
5592{
5593	struct dev_priv *priv = netdev_priv(dev);
5594	struct dev_info *hw_priv = priv->adapter;
5595	struct ksz_port *port = &priv->port;
5596	struct ethtool_link_ksettings copy_cmd;
5597	u32 speed = cmd->base.speed;
5598	u32 advertising;
5599	int rc;
5600
5601	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5602						cmd->link_modes.advertising);
5603
5604	/*
5605	 * ethtool utility does not change advertised setting if auto
5606	 * negotiation is not specified explicitly.
5607	 */
5608	if (cmd->base.autoneg && priv->advertising == advertising) {
5609		advertising |= ADVERTISED_ALL;
5610		if (10 == speed)
5611			advertising &=
5612				~(ADVERTISED_100baseT_Full |
5613				ADVERTISED_100baseT_Half);
5614		else if (100 == speed)
5615			advertising &=
5616				~(ADVERTISED_10baseT_Full |
5617				ADVERTISED_10baseT_Half);
5618		if (0 == cmd->base.duplex)
5619			advertising &=
5620				~(ADVERTISED_100baseT_Full |
5621				ADVERTISED_10baseT_Full);
5622		else if (1 == cmd->base.duplex)
5623			advertising &=
5624				~(ADVERTISED_100baseT_Half |
5625				ADVERTISED_10baseT_Half);
5626	}
5627	mutex_lock(&hw_priv->lock);
5628	if (cmd->base.autoneg &&
5629	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
5630		port->duplex = 0;
5631		port->speed = 0;
5632		port->force_link = 0;
5633	} else {
5634		port->duplex = cmd->base.duplex + 1;
5635		if (1000 != speed)
5636			port->speed = speed;
5637		if (cmd->base.autoneg)
5638			port->force_link = 0;
5639		else
5640			port->force_link = 1;
5641	}
5642
5643	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
5644	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
5645						advertising);
5646	rc = mii_ethtool_set_link_ksettings(
5647		&priv->mii_if,
5648		(const struct ethtool_link_ksettings *)&copy_cmd);
5649	mutex_unlock(&hw_priv->lock);
5650	return rc;
5651}
5652
5653/**
5654 * netdev_nway_reset - restart auto-negotiation
5655 * @dev:	Network device.
5656 *
5657 * This function restarts the PHY for auto-negotiation.
5658 *
5659 * Return 0 if successful; otherwise an error code.
5660 */
5661static int netdev_nway_reset(struct net_device *dev)
5662{
5663	struct dev_priv *priv = netdev_priv(dev);
5664	struct dev_info *hw_priv = priv->adapter;
5665	int rc;
5666
5667	mutex_lock(&hw_priv->lock);
5668	rc = mii_nway_restart(&priv->mii_if);
5669	mutex_unlock(&hw_priv->lock);
5670	return rc;
5671}
5672
5673/**
5674 * netdev_get_link - get network device link status
5675 * @dev:	Network device.
5676 *
5677 * This function gets the link status from the PHY.
5678 *
5679 * Return true if PHY is linked and false otherwise.
5680 */
5681static u32 netdev_get_link(struct net_device *dev)
5682{
5683	struct dev_priv *priv = netdev_priv(dev);
5684	int rc;
5685
5686	rc = mii_link_ok(&priv->mii_if);
5687	return rc;
5688}
5689
5690/**
5691 * netdev_get_drvinfo - get network driver information
5692 * @dev:	Network device.
5693 * @info:	Ethtool driver info data structure.
5694 *
5695 * This procedure returns the driver information.
5696 */
5697static void netdev_get_drvinfo(struct net_device *dev,
5698	struct ethtool_drvinfo *info)
5699{
5700	struct dev_priv *priv = netdev_priv(dev);
5701	struct dev_info *hw_priv = priv->adapter;
5702
5703	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
5704	strscpy(info->version, DRV_VERSION, sizeof(info->version));
5705	strscpy(info->bus_info, pci_name(hw_priv->pdev),
5706		sizeof(info->bus_info));
5707}
5708
5709static struct hw_regs {
5710	int start;
5711	int end;
5712} hw_regs_range[] = {
5713	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
5714	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
5715	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
5716	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
5717	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
5718	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
5719	{ 0, 0 }
5720};
5721
5722/**
5723 * netdev_get_regs_len - get length of register dump
5724 * @dev:	Network device.
5725 *
5726 * This function returns the length of the register dump.
5727 *
5728 * Return length of the register dump.
5729 */
5730static int netdev_get_regs_len(struct net_device *dev)
5731{
5732	struct hw_regs *range = hw_regs_range;
5733	int regs_len = 0x10 * sizeof(u32);
5734
5735	while (range->end > range->start) {
5736		regs_len += (range->end - range->start + 3) / 4 * 4;
5737		range++;
5738	}
5739	return regs_len;
5740}
5741
5742/**
5743 * netdev_get_regs - get register dump
5744 * @dev:	Network device.
5745 * @regs:	Ethtool registers data structure.
5746 * @ptr:	Buffer to store the register values.
5747 *
5748 * This procedure dumps the register values in the provided buffer.
5749 */
5750static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
5751	void *ptr)
5752{
5753	struct dev_priv *priv = netdev_priv(dev);
5754	struct dev_info *hw_priv = priv->adapter;
5755	struct ksz_hw *hw = &hw_priv->hw;
5756	int *buf = (int *) ptr;
5757	struct hw_regs *range = hw_regs_range;
5758	int len;
5759
5760	mutex_lock(&hw_priv->lock);
5761	regs->version = 0;
5762	for (len = 0; len < 0x40; len += 4) {
5763		pci_read_config_dword(hw_priv->pdev, len, buf);
5764		buf++;
5765	}
5766	while (range->end > range->start) {
5767		for (len = range->start; len < range->end; len += 4) {
5768			*buf = readl(hw->io + len);
5769			buf++;
5770		}
5771		range++;
5772	}
5773	mutex_unlock(&hw_priv->lock);
5774}
5775
5776#define WOL_SUPPORT			\
5777	(WAKE_PHY | WAKE_MAGIC |	\
5778	WAKE_UCAST | WAKE_MCAST |	\
5779	WAKE_BCAST | WAKE_ARP)
5780
5781/**
5782 * netdev_get_wol - get Wake-on-LAN support
5783 * @dev:	Network device.
5784 * @wol:	Ethtool Wake-on-LAN data structure.
5785 *
5786 * This procedure returns Wake-on-LAN support.
5787 */
5788static void netdev_get_wol(struct net_device *dev,
5789	struct ethtool_wolinfo *wol)
5790{
5791	struct dev_priv *priv = netdev_priv(dev);
5792	struct dev_info *hw_priv = priv->adapter;
5793
5794	wol->supported = hw_priv->wol_support;
5795	wol->wolopts = hw_priv->wol_enable;
5796	memset(&wol->sopass, 0, sizeof(wol->sopass));
5797}
5798
5799/**
5800 * netdev_set_wol - set Wake-on-LAN support
5801 * @dev:	Network device.
5802 * @wol:	Ethtool Wake-on-LAN data structure.
5803 *
5804 * This function sets Wake-on-LAN support.
5805 *
5806 * Return 0 if successful; otherwise an error code.
5807 */
5808static int netdev_set_wol(struct net_device *dev,
5809	struct ethtool_wolinfo *wol)
5810{
5811	struct dev_priv *priv = netdev_priv(dev);
5812	struct dev_info *hw_priv = priv->adapter;
5813
5814	/* Need to find a way to retrieve the device IP address. */
5815	static const u8 net_addr[] = { 192, 168, 1, 1 };
5816
5817	if (wol->wolopts & ~hw_priv->wol_support)
5818		return -EINVAL;
5819
5820	hw_priv->wol_enable = wol->wolopts;
5821
5822	/* Link wakeup cannot really be disabled. */
5823	if (wol->wolopts)
5824		hw_priv->wol_enable |= WAKE_PHY;
5825	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
5826	return 0;
5827}
5828
5829/**
5830 * netdev_get_msglevel - get debug message level
5831 * @dev:	Network device.
5832 *
5833 * This function returns current debug message level.
5834 *
5835 * Return current debug message flags.
5836 */
5837static u32 netdev_get_msglevel(struct net_device *dev)
5838{
5839	struct dev_priv *priv = netdev_priv(dev);
5840
5841	return priv->msg_enable;
5842}
5843
5844/**
5845 * netdev_set_msglevel - set debug message level
5846 * @dev:	Network device.
5847 * @value:	Debug message flags.
5848 *
5849 * This procedure sets debug message level.
5850 */
5851static void netdev_set_msglevel(struct net_device *dev, u32 value)
5852{
5853	struct dev_priv *priv = netdev_priv(dev);
5854
5855	priv->msg_enable = value;
5856}
5857
5858/**
5859 * netdev_get_eeprom_len - get EEPROM length
5860 * @dev:	Network device.
5861 *
5862 * This function returns the length of the EEPROM.
5863 *
5864 * Return length of the EEPROM.
5865 */
5866static int netdev_get_eeprom_len(struct net_device *dev)
5867{
5868	return EEPROM_SIZE * 2;
5869}
5870
5871#define EEPROM_MAGIC			0x10A18842
5872
5873/**
5874 * netdev_get_eeprom - get EEPROM data
5875 * @dev:	Network device.
5876 * @eeprom:	Ethtool EEPROM data structure.
5877 * @data:	Buffer to store the EEPROM data.
5878 *
5879 * This function dumps the EEPROM data in the provided buffer.
5880 *
5881 * Return 0 if successful; otherwise an error code.
5882 */
5883static int netdev_get_eeprom(struct net_device *dev,
5884	struct ethtool_eeprom *eeprom, u8 *data)
5885{
5886	struct dev_priv *priv = netdev_priv(dev);
5887	struct dev_info *hw_priv = priv->adapter;
5888	u8 *eeprom_byte = (u8 *) eeprom_data;
5889	int i;
5890	int len;
5891
5892	len = (eeprom->offset + eeprom->len + 1) / 2;
5893	for (i = eeprom->offset / 2; i < len; i++)
5894		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
5895	eeprom->magic = EEPROM_MAGIC;
5896	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
5897
5898	return 0;
5899}
5900
5901/**
5902 * netdev_set_eeprom - write EEPROM data
5903 * @dev:	Network device.
5904 * @eeprom:	Ethtool EEPROM data structure.
5905 * @data:	Data buffer.
5906 *
5907 * This function modifies the EEPROM data one byte at a time.
5908 *
5909 * Return 0 if successful; otherwise an error code.
5910 */
5911static int netdev_set_eeprom(struct net_device *dev,
5912	struct ethtool_eeprom *eeprom, u8 *data)
5913{
5914	struct dev_priv *priv = netdev_priv(dev);
5915	struct dev_info *hw_priv = priv->adapter;
5916	u16 eeprom_word[EEPROM_SIZE];
5917	u8 *eeprom_byte = (u8 *) eeprom_word;
5918	int i;
5919	int len;
5920
5921	if (eeprom->magic != EEPROM_MAGIC)
5922		return -EINVAL;
5923
5924	len = (eeprom->offset + eeprom->len + 1) / 2;
5925	for (i = eeprom->offset / 2; i < len; i++)
5926		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
5927	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
5928	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
5929	for (i = 0; i < EEPROM_SIZE; i++)
5930		if (eeprom_word[i] != eeprom_data[i]) {
5931			eeprom_data[i] = eeprom_word[i];
5932			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
5933	}
5934
5935	return 0;
5936}
5937
5938/**
5939 * netdev_get_pauseparam - get flow control parameters
5940 * @dev:	Network device.
5941 * @pause:	Ethtool PAUSE settings data structure.
5942 *
5943 * This procedure returns the PAUSE control flow settings.
5944 */
5945static void netdev_get_pauseparam(struct net_device *dev,
5946	struct ethtool_pauseparam *pause)
5947{
5948	struct dev_priv *priv = netdev_priv(dev);
5949	struct dev_info *hw_priv = priv->adapter;
5950	struct ksz_hw *hw = &hw_priv->hw;
5951
5952	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
5953	if (!hw->ksz_switch) {
5954		pause->rx_pause =
5955			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
5956		pause->tx_pause =
5957			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
5958	} else {
5959		pause->rx_pause =
5960			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5961				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
5962		pause->tx_pause =
5963			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5964				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
5965	}
5966}
5967
5968/**
5969 * netdev_set_pauseparam - set flow control parameters
5970 * @dev:	Network device.
5971 * @pause:	Ethtool PAUSE settings data structure.
5972 *
5973 * This function sets the PAUSE control flow settings.
5974 * Not implemented yet.
5975 *
5976 * Return 0 if successful; otherwise an error code.
5977 */
5978static int netdev_set_pauseparam(struct net_device *dev,
5979	struct ethtool_pauseparam *pause)
5980{
5981	struct dev_priv *priv = netdev_priv(dev);
5982	struct dev_info *hw_priv = priv->adapter;
5983	struct ksz_hw *hw = &hw_priv->hw;
5984	struct ksz_port *port = &priv->port;
5985
5986	mutex_lock(&hw_priv->lock);
5987	if (pause->autoneg) {
5988		if (!pause->rx_pause && !pause->tx_pause)
5989			port->flow_ctrl = PHY_NO_FLOW_CTRL;
5990		else
5991			port->flow_ctrl = PHY_FLOW_CTRL;
5992		hw->overrides &= ~PAUSE_FLOW_CTRL;
5993		port->force_link = 0;
5994		if (hw->ksz_switch) {
5995			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5996				SWITCH_RX_FLOW_CTRL, 1);
5997			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5998				SWITCH_TX_FLOW_CTRL, 1);
5999		}
6000		port_set_link_speed(port);
6001	} else {
6002		hw->overrides |= PAUSE_FLOW_CTRL;
6003		if (hw->ksz_switch) {
6004			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6005				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6006			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6007				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6008		} else
6009			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6010	}
6011	mutex_unlock(&hw_priv->lock);
6012
6013	return 0;
6014}
6015
6016/**
6017 * netdev_get_ringparam - get tx/rx ring parameters
6018 * @dev:	Network device.
6019 * @ring:	Ethtool RING settings data structure.
6020 * @kernel_ring:	Ethtool external RING settings data structure.
6021 * @extack:	Netlink handle.
6022 *
6023 * This procedure returns the TX/RX ring settings.
6024 */
6025static void netdev_get_ringparam(struct net_device *dev,
6026				 struct ethtool_ringparam *ring,
6027				 struct kernel_ethtool_ringparam *kernel_ring,
6028				 struct netlink_ext_ack *extack)
6029{
6030	struct dev_priv *priv = netdev_priv(dev);
6031	struct dev_info *hw_priv = priv->adapter;
6032	struct ksz_hw *hw = &hw_priv->hw;
6033
6034	ring->tx_max_pending = (1 << 9);
6035	ring->tx_pending = hw->tx_desc_info.alloc;
6036	ring->rx_max_pending = (1 << 9);
6037	ring->rx_pending = hw->rx_desc_info.alloc;
6038}
6039
6040#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6041
6042static struct {
6043	char string[ETH_GSTRING_LEN];
6044} ethtool_stats_keys[STATS_LEN] = {
6045	{ "rx_lo_priority_octets" },
6046	{ "rx_hi_priority_octets" },
6047	{ "rx_undersize_packets" },
6048	{ "rx_fragments" },
6049	{ "rx_oversize_packets" },
6050	{ "rx_jabbers" },
6051	{ "rx_symbol_errors" },
6052	{ "rx_crc_errors" },
6053	{ "rx_align_errors" },
6054	{ "rx_mac_ctrl_packets" },
6055	{ "rx_pause_packets" },
6056	{ "rx_bcast_packets" },
6057	{ "rx_mcast_packets" },
6058	{ "rx_ucast_packets" },
6059	{ "rx_64_or_less_octet_packets" },
6060	{ "rx_65_to_127_octet_packets" },
6061	{ "rx_128_to_255_octet_packets" },
6062	{ "rx_256_to_511_octet_packets" },
6063	{ "rx_512_to_1023_octet_packets" },
6064	{ "rx_1024_to_1522_octet_packets" },
6065
6066	{ "tx_lo_priority_octets" },
6067	{ "tx_hi_priority_octets" },
6068	{ "tx_late_collisions" },
6069	{ "tx_pause_packets" },
6070	{ "tx_bcast_packets" },
6071	{ "tx_mcast_packets" },
6072	{ "tx_ucast_packets" },
6073	{ "tx_deferred" },
6074	{ "tx_total_collisions" },
6075	{ "tx_excessive_collisions" },
6076	{ "tx_single_collisions" },
6077	{ "tx_mult_collisions" },
6078
6079	{ "rx_discards" },
6080	{ "tx_discards" },
6081};
6082
6083/**
6084 * netdev_get_strings - get statistics identity strings
6085 * @dev:	Network device.
6086 * @stringset:	String set identifier.
6087 * @buf:	Buffer to store the strings.
6088 *
6089 * This procedure returns the strings used to identify the statistics.
6090 */
6091static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6092{
6093	struct dev_priv *priv = netdev_priv(dev);
6094	struct dev_info *hw_priv = priv->adapter;
6095	struct ksz_hw *hw = &hw_priv->hw;
6096
6097	if (ETH_SS_STATS == stringset)
6098		memcpy(buf, &ethtool_stats_keys,
6099			ETH_GSTRING_LEN * hw->mib_cnt);
6100}
6101
6102/**
6103 * netdev_get_sset_count - get statistics size
6104 * @dev:	Network device.
6105 * @sset:	The statistics set number.
6106 *
6107 * This function returns the size of the statistics to be reported.
6108 *
6109 * Return size of the statistics to be reported.
6110 */
6111static int netdev_get_sset_count(struct net_device *dev, int sset)
6112{
6113	struct dev_priv *priv = netdev_priv(dev);
6114	struct dev_info *hw_priv = priv->adapter;
6115	struct ksz_hw *hw = &hw_priv->hw;
6116
6117	switch (sset) {
6118	case ETH_SS_STATS:
6119		return hw->mib_cnt;
6120	default:
6121		return -EOPNOTSUPP;
6122	}
6123}
6124
6125/**
6126 * netdev_get_ethtool_stats - get network device statistics
6127 * @dev:	Network device.
6128 * @stats:	Ethtool statistics data structure.
6129 * @data:	Buffer to store the statistics.
6130 *
6131 * This procedure returns the statistics.
6132 */
6133static void netdev_get_ethtool_stats(struct net_device *dev,
6134	struct ethtool_stats *stats, u64 *data)
6135{
6136	struct dev_priv *priv = netdev_priv(dev);
6137	struct dev_info *hw_priv = priv->adapter;
6138	struct ksz_hw *hw = &hw_priv->hw;
6139	struct ksz_port *port = &priv->port;
6140	int n_stats = stats->n_stats;
6141	int i;
6142	int n;
6143	int p;
6144	u64 counter[TOTAL_PORT_COUNTER_NUM];
6145
6146	mutex_lock(&hw_priv->lock);
6147	n = SWITCH_PORT_NUM;
6148	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6149		if (media_connected == hw->port_mib[p].state) {
6150			hw_priv->counter[p].read = 1;
6151
6152			/* Remember first port that requests read. */
6153			if (n == SWITCH_PORT_NUM)
6154				n = p;
6155		}
6156	}
6157	mutex_unlock(&hw_priv->lock);
6158
6159	if (n < SWITCH_PORT_NUM)
6160		schedule_work(&hw_priv->mib_read);
6161
6162	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6163		p = n;
6164		wait_event_interruptible_timeout(
6165			hw_priv->counter[p].counter,
6166			2 == hw_priv->counter[p].read,
6167			HZ * 1);
6168	} else
6169		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6170			if (0 == i) {
6171				wait_event_interruptible_timeout(
6172					hw_priv->counter[p].counter,
6173					2 == hw_priv->counter[p].read,
6174					HZ * 2);
6175			} else if (hw->port_mib[p].cnt_ptr) {
6176				wait_event_interruptible_timeout(
6177					hw_priv->counter[p].counter,
6178					2 == hw_priv->counter[p].read,
6179					HZ * 1);
6180			}
6181		}
6182
6183	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6184	n = hw->mib_cnt;
6185	if (n > n_stats)
6186		n = n_stats;
6187	n_stats -= n;
6188	for (i = 0; i < n; i++)
6189		*data++ = counter[i];
6190}
6191
6192/**
6193 * netdev_set_features - set receive checksum support
6194 * @dev:	Network device.
6195 * @features:	New device features (offloads).
6196 *
6197 * This function sets receive checksum support setting.
6198 *
6199 * Return 0 if successful; otherwise an error code.
6200 */
6201static int netdev_set_features(struct net_device *dev,
6202	netdev_features_t features)
6203{
6204	struct dev_priv *priv = netdev_priv(dev);
6205	struct dev_info *hw_priv = priv->adapter;
6206	struct ksz_hw *hw = &hw_priv->hw;
6207
6208	mutex_lock(&hw_priv->lock);
6209
6210	/* see note in hw_setup() */
6211	if (features & NETIF_F_RXCSUM)
6212		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6213	else
6214		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6215
6216	if (hw->enabled)
6217		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6218
6219	mutex_unlock(&hw_priv->lock);
6220
6221	return 0;
6222}
6223
6224static const struct ethtool_ops netdev_ethtool_ops = {
6225	.nway_reset		= netdev_nway_reset,
6226	.get_link		= netdev_get_link,
6227	.get_drvinfo		= netdev_get_drvinfo,
6228	.get_regs_len		= netdev_get_regs_len,
6229	.get_regs		= netdev_get_regs,
6230	.get_wol		= netdev_get_wol,
6231	.set_wol		= netdev_set_wol,
6232	.get_msglevel		= netdev_get_msglevel,
6233	.set_msglevel		= netdev_set_msglevel,
6234	.get_eeprom_len		= netdev_get_eeprom_len,
6235	.get_eeprom		= netdev_get_eeprom,
6236	.set_eeprom		= netdev_set_eeprom,
6237	.get_pauseparam		= netdev_get_pauseparam,
6238	.set_pauseparam		= netdev_set_pauseparam,
6239	.get_ringparam		= netdev_get_ringparam,
6240	.get_strings		= netdev_get_strings,
6241	.get_sset_count		= netdev_get_sset_count,
6242	.get_ethtool_stats	= netdev_get_ethtool_stats,
6243	.get_link_ksettings	= netdev_get_link_ksettings,
6244	.set_link_ksettings	= netdev_set_link_ksettings,
6245};
6246
6247/*
6248 * Hardware monitoring
6249 */
6250
6251static void update_link(struct net_device *dev, struct dev_priv *priv,
6252	struct ksz_port *port)
6253{
6254	if (priv->media_state != port->linked->state) {
6255		priv->media_state = port->linked->state;
6256		if (netif_running(dev))
6257			set_media_state(dev, media_connected);
6258	}
6259}
6260
6261static void mib_read_work(struct work_struct *work)
6262{
6263	struct dev_info *hw_priv =
6264		container_of(work, struct dev_info, mib_read);
6265	struct ksz_hw *hw = &hw_priv->hw;
6266	unsigned long next_jiffies;
6267	struct ksz_port_mib *mib;
6268	int i;
6269
6270	next_jiffies = jiffies;
6271	for (i = 0; i < hw->mib_port_cnt; i++) {
6272		mib = &hw->port_mib[i];
6273
6274		/* Reading MIB counters or requested to read. */
6275		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6276
6277			/* Need to process receive interrupt. */
6278			if (port_r_cnt(hw, i))
6279				break;
6280			hw_priv->counter[i].read = 0;
6281
6282			/* Finish reading counters. */
6283			if (0 == mib->cnt_ptr) {
6284				hw_priv->counter[i].read = 2;
6285				wake_up_interruptible(
6286					&hw_priv->counter[i].counter);
6287			}
6288		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6289			/* Only read MIB counters when the port is connected. */
6290			if (media_connected == mib->state)
6291				hw_priv->counter[i].read = 1;
6292			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6293			hw_priv->counter[i].time = next_jiffies;
6294
6295		/* Port is just disconnected. */
6296		} else if (mib->link_down) {
6297			mib->link_down = 0;
6298
6299			/* Read counters one last time after link is lost. */
6300			hw_priv->counter[i].read = 1;
6301		}
6302	}
6303}
6304
6305static void mib_monitor(struct timer_list *t)
6306{
6307	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6308
6309	mib_read_work(&hw_priv->mib_read);
6310
6311	/* This is used to verify Wake-on-LAN is working. */
6312	if (hw_priv->pme_wait) {
6313		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6314			hw_clr_wol_pme_status(&hw_priv->hw);
6315			hw_priv->pme_wait = 0;
6316		}
6317	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6318
6319		/* PME is asserted.  Wait 2 seconds to clear it. */
6320		hw_priv->pme_wait = jiffies + HZ * 2;
6321	}
6322
6323	ksz_update_timer(&hw_priv->mib_timer_info);
6324}
6325
6326/**
6327 * dev_monitor - periodic monitoring
6328 * @t:	timer list containing a network device pointer.
6329 *
6330 * This routine is run in a kernel timer to monitor the network device.
6331 */
6332static void dev_monitor(struct timer_list *t)
6333{
6334	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6335	struct net_device *dev = priv->mii_if.dev;
6336	struct dev_info *hw_priv = priv->adapter;
6337	struct ksz_hw *hw = &hw_priv->hw;
6338	struct ksz_port *port = &priv->port;
6339
6340	if (!(hw->features & LINK_INT_WORKING))
6341		port_get_link_speed(port);
6342	update_link(dev, priv, port);
6343
6344	ksz_update_timer(&priv->monitor_timer_info);
6345}
6346
6347/*
6348 * Linux network device interface functions
6349 */
6350
6351/* Driver exported variables */
6352
6353static int msg_enable;
6354
6355static char *macaddr = ":";
6356static char *mac1addr = ":";
6357
6358/*
6359 * This enables multiple network device mode for KSZ8842, which contains a
6360 * switch with two physical ports.  Some users like to take control of the
6361 * ports for running Spanning Tree Protocol.  The driver will create an
6362 * additional eth? device for the other port.
6363 *
6364 * Some limitations are the network devices cannot have different MTU and
6365 * multicast hash tables.
6366 */
6367static int multi_dev;
6368
6369/*
6370 * As most users select multiple network device mode to use Spanning Tree
6371 * Protocol, this enables a feature in which most unicast and multicast packets
6372 * are forwarded inside the switch and not passed to the host.  Only packets
6373 * that need the host's attention are passed to it.  This prevents the host
6374 * wasting CPU time to examine each and every incoming packets and do the
6375 * forwarding itself.
6376 *
6377 * As the hack requires the private bridge header, the driver cannot compile
6378 * with just the kernel headers.
6379 *
6380 * Enabling STP support also turns on multiple network device mode.
6381 */
6382static int stp;
6383
6384/*
6385 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6386 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6387 * STP support is enabled.
6388 */
6389static int fast_aging;
6390
6391/**
6392 * netdev_init - initialize network device.
6393 * @dev:	Network device.
6394 *
6395 * This function initializes the network device.
6396 *
6397 * Return 0 if successful; otherwise an error code indicating failure.
6398 */
6399static int __init netdev_init(struct net_device *dev)
6400{
6401	struct dev_priv *priv = netdev_priv(dev);
6402
6403	/* 500 ms timeout */
6404	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6405		dev_monitor);
6406
6407	/* 500 ms timeout */
6408	dev->watchdog_timeo = HZ / 2;
6409
6410	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6411
6412	/*
6413	 * Hardware does not really support IPv6 checksum generation, but
6414	 * driver actually runs faster with this on.
6415	 */
6416	dev->hw_features |= NETIF_F_IPV6_CSUM;
6417
6418	dev->features |= dev->hw_features;
6419
6420	sema_init(&priv->proc_sem, 1);
6421
6422	priv->mii_if.phy_id_mask = 0x1;
6423	priv->mii_if.reg_num_mask = 0x7;
6424	priv->mii_if.dev = dev;
6425	priv->mii_if.mdio_read = mdio_read;
6426	priv->mii_if.mdio_write = mdio_write;
6427	priv->mii_if.phy_id = priv->port.first_port + 1;
6428
6429	priv->msg_enable = netif_msg_init(msg_enable,
6430		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6431
6432	return 0;
6433}
6434
6435static const struct net_device_ops netdev_ops = {
6436	.ndo_init		= netdev_init,
6437	.ndo_open		= netdev_open,
6438	.ndo_stop		= netdev_close,
6439	.ndo_get_stats		= netdev_query_statistics,
6440	.ndo_start_xmit		= netdev_tx,
6441	.ndo_tx_timeout		= netdev_tx_timeout,
6442	.ndo_change_mtu		= netdev_change_mtu,
6443	.ndo_set_features	= netdev_set_features,
6444	.ndo_set_mac_address	= netdev_set_mac_address,
6445	.ndo_validate_addr	= eth_validate_addr,
6446	.ndo_eth_ioctl		= netdev_ioctl,
6447	.ndo_set_rx_mode	= netdev_set_rx_mode,
6448#ifdef CONFIG_NET_POLL_CONTROLLER
6449	.ndo_poll_controller	= netdev_netpoll,
6450#endif
6451};
6452
6453static void netdev_free(struct net_device *dev)
6454{
6455	if (dev->watchdog_timeo)
6456		unregister_netdev(dev);
6457
6458	free_netdev(dev);
6459}
6460
6461struct platform_info {
6462	struct dev_info dev_info;
6463	struct net_device *netdev[SWITCH_PORT_NUM];
6464};
6465
6466static int net_device_present;
6467
6468static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6469{
6470	int i;
6471	int j;
6472	int got_num;
6473	int num;
6474
6475	i = j = num = got_num = 0;
6476	while (j < ETH_ALEN) {
6477		if (macaddr[i]) {
6478			int digit;
6479
6480			got_num = 1;
6481			digit = hex_to_bin(macaddr[i]);
6482			if (digit >= 0)
6483				num = num * 16 + digit;
6484			else if (':' == macaddr[i])
6485				got_num = 2;
6486			else
6487				break;
6488		} else if (got_num)
6489			got_num = 2;
6490		else
6491			break;
6492		if (2 == got_num) {
6493			if (MAIN_PORT == port) {
6494				hw_priv->hw.override_addr[j++] = (u8) num;
6495				hw_priv->hw.override_addr[5] +=
6496					hw_priv->hw.id;
6497			} else {
6498				hw_priv->hw.ksz_switch->other_addr[j++] =
6499					(u8) num;
6500				hw_priv->hw.ksz_switch->other_addr[5] +=
6501					hw_priv->hw.id;
6502			}
6503			num = got_num = 0;
6504		}
6505		i++;
6506	}
6507	if (ETH_ALEN == j) {
6508		if (MAIN_PORT == port)
6509			hw_priv->hw.mac_override = 1;
6510	}
6511}
6512
6513#define KS884X_DMA_MASK			(~0x0UL)
6514
6515static void read_other_addr(struct ksz_hw *hw)
6516{
6517	int i;
6518	u16 data[3];
6519	struct ksz_switch *sw = hw->ksz_switch;
6520
6521	for (i = 0; i < 3; i++)
6522		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6523	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6524		sw->other_addr[5] = (u8) data[0];
6525		sw->other_addr[4] = (u8)(data[0] >> 8);
6526		sw->other_addr[3] = (u8) data[1];
6527		sw->other_addr[2] = (u8)(data[1] >> 8);
6528		sw->other_addr[1] = (u8) data[2];
6529		sw->other_addr[0] = (u8)(data[2] >> 8);
6530	}
6531}
6532
6533#ifndef PCI_VENDOR_ID_MICREL_KS
6534#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6535#endif
6536
6537static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6538{
6539	struct net_device *dev;
6540	struct dev_priv *priv;
6541	struct dev_info *hw_priv;
6542	struct ksz_hw *hw;
6543	struct platform_info *info;
6544	struct ksz_port *port;
6545	unsigned long reg_base;
6546	unsigned long reg_len;
6547	int cnt;
6548	int i;
6549	int mib_port_count;
6550	int pi;
6551	int port_count;
6552	int result;
6553	char banner[sizeof(version)];
6554	struct ksz_switch *sw = NULL;
6555
6556	result = pcim_enable_device(pdev);
6557	if (result)
6558		return result;
6559
6560	result = -ENODEV;
6561
6562	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6563	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6564		return result;
6565
6566	reg_base = pci_resource_start(pdev, 0);
6567	reg_len = pci_resource_len(pdev, 0);
6568	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6569		return result;
6570
6571	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6572		return result;
6573	pci_set_master(pdev);
6574
6575	result = -ENOMEM;
6576
6577	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6578	if (!info)
6579		goto pcidev_init_dev_err;
6580
6581	hw_priv = &info->dev_info;
6582	hw_priv->pdev = pdev;
6583
6584	hw = &hw_priv->hw;
6585
6586	hw->io = ioremap(reg_base, reg_len);
6587	if (!hw->io)
6588		goto pcidev_init_io_err;
6589
6590	cnt = hw_init(hw);
6591	if (!cnt) {
6592		if (msg_enable & NETIF_MSG_PROBE)
6593			pr_alert("chip not detected\n");
6594		result = -ENODEV;
6595		goto pcidev_init_alloc_err;
6596	}
6597
6598	snprintf(banner, sizeof(banner), "%s", version);
6599	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6600	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6601	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6602
6603	/* Assume device is KSZ8841. */
6604	hw->dev_count = 1;
6605	port_count = 1;
6606	mib_port_count = 1;
6607	hw->addr_list_size = 0;
6608	hw->mib_cnt = PORT_COUNTER_NUM;
6609	hw->mib_port_cnt = 1;
6610
6611	/* KSZ8842 has a switch with multiple ports. */
6612	if (2 == cnt) {
6613		if (fast_aging)
6614			hw->overrides |= FAST_AGING;
6615
6616		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6617
6618		/* Multiple network device interfaces are required. */
6619		if (multi_dev) {
6620			hw->dev_count = SWITCH_PORT_NUM;
6621			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6622		}
6623
6624		/* Single network device has multiple ports. */
6625		if (1 == hw->dev_count) {
6626			port_count = SWITCH_PORT_NUM;
6627			mib_port_count = SWITCH_PORT_NUM;
6628		}
6629		hw->mib_port_cnt = TOTAL_PORT_NUM;
6630		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
6631		if (!hw->ksz_switch)
6632			goto pcidev_init_alloc_err;
6633
6634		sw = hw->ksz_switch;
6635	}
6636	for (i = 0; i < hw->mib_port_cnt; i++)
6637		hw->port_mib[i].mib_start = 0;
6638
6639	hw->parent = hw_priv;
6640
6641	/* Default MTU is 1500. */
6642	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
6643
6644	if (ksz_alloc_mem(hw_priv))
6645		goto pcidev_init_mem_err;
6646
6647	hw_priv->hw.id = net_device_present;
6648
6649	spin_lock_init(&hw_priv->hwlock);
6650	mutex_init(&hw_priv->lock);
6651
6652	for (i = 0; i < TOTAL_PORT_NUM; i++)
6653		init_waitqueue_head(&hw_priv->counter[i].counter);
6654
6655	if (macaddr[0] != ':')
6656		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
6657
6658	/* Read MAC address and initialize override address if not overridden. */
6659	hw_read_addr(hw);
6660
6661	/* Multiple device interfaces mode requires a second MAC address. */
6662	if (hw->dev_count > 1) {
6663		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
6664		read_other_addr(hw);
6665		if (mac1addr[0] != ':')
6666			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
6667	}
6668
6669	hw_setup(hw);
6670	if (hw->ksz_switch)
6671		sw_setup(hw);
6672	else {
6673		hw_priv->wol_support = WOL_SUPPORT;
6674		hw_priv->wol_enable = 0;
6675	}
6676
6677	INIT_WORK(&hw_priv->mib_read, mib_read_work);
6678
6679	/* 500 ms timeout */
6680	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
6681		mib_monitor);
6682
6683	for (i = 0; i < hw->dev_count; i++) {
6684		dev = alloc_etherdev(sizeof(struct dev_priv));
6685		if (!dev)
6686			goto pcidev_init_reg_err;
6687		SET_NETDEV_DEV(dev, &pdev->dev);
6688		info->netdev[i] = dev;
6689
6690		priv = netdev_priv(dev);
6691		priv->adapter = hw_priv;
6692		priv->id = net_device_present++;
6693
6694		port = &priv->port;
6695		port->port_cnt = port_count;
6696		port->mib_port_cnt = mib_port_count;
6697		port->first_port = i;
6698		port->flow_ctrl = PHY_FLOW_CTRL;
6699
6700		port->hw = hw;
6701		port->linked = &hw->port_info[port->first_port];
6702
6703		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
6704			hw->port_info[pi].port_id = pi;
6705			hw->port_info[pi].pdev = dev;
6706			hw->port_info[pi].state = media_disconnected;
6707		}
6708
6709		dev->mem_start = (unsigned long) hw->io;
6710		dev->mem_end = dev->mem_start + reg_len - 1;
6711		dev->irq = pdev->irq;
6712		if (MAIN_PORT == i)
6713			eth_hw_addr_set(dev, hw_priv->hw.override_addr);
6714		else {
6715			u8 addr[ETH_ALEN];
6716
6717			ether_addr_copy(addr, sw->other_addr);
6718			if (ether_addr_equal(sw->other_addr, hw->override_addr))
6719				addr[5] += port->first_port;
6720			eth_hw_addr_set(dev, addr);
6721		}
6722
6723		dev->netdev_ops = &netdev_ops;
6724		dev->ethtool_ops = &netdev_ethtool_ops;
6725
6726		/* MTU range: 60 - 1894 */
6727		dev->min_mtu = ETH_ZLEN;
6728		dev->max_mtu = MAX_RX_BUF_SIZE -
6729			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
6730
6731		if (register_netdev(dev))
6732			goto pcidev_init_reg_err;
6733		port_set_power_saving(port, true);
6734	}
6735
6736	pci_dev_get(hw_priv->pdev);
6737	pci_set_drvdata(pdev, info);
6738	return 0;
6739
6740pcidev_init_reg_err:
6741	for (i = 0; i < hw->dev_count; i++) {
6742		if (info->netdev[i]) {
6743			netdev_free(info->netdev[i]);
6744			info->netdev[i] = NULL;
6745		}
6746	}
6747
6748pcidev_init_mem_err:
6749	ksz_free_mem(hw_priv);
6750	kfree(hw->ksz_switch);
6751
6752pcidev_init_alloc_err:
6753	iounmap(hw->io);
6754
6755pcidev_init_io_err:
6756	kfree(info);
6757
6758pcidev_init_dev_err:
6759	release_mem_region(reg_base, reg_len);
6760
6761	return result;
6762}
6763
6764static void pcidev_exit(struct pci_dev *pdev)
6765{
6766	int i;
6767	struct platform_info *info = pci_get_drvdata(pdev);
6768	struct dev_info *hw_priv = &info->dev_info;
6769
6770	release_mem_region(pci_resource_start(pdev, 0),
6771		pci_resource_len(pdev, 0));
6772	for (i = 0; i < hw_priv->hw.dev_count; i++) {
6773		if (info->netdev[i])
6774			netdev_free(info->netdev[i]);
6775	}
6776	if (hw_priv->hw.io)
6777		iounmap(hw_priv->hw.io);
6778	ksz_free_mem(hw_priv);
6779	kfree(hw_priv->hw.ksz_switch);
6780	pci_dev_put(hw_priv->pdev);
6781	kfree(info);
6782}
6783
6784static int __maybe_unused pcidev_resume(struct device *dev_d)
6785{
6786	int i;
6787	struct platform_info *info = dev_get_drvdata(dev_d);
6788	struct dev_info *hw_priv = &info->dev_info;
6789	struct ksz_hw *hw = &hw_priv->hw;
6790
6791	device_wakeup_disable(dev_d);
6792
6793	if (hw_priv->wol_enable)
6794		hw_cfg_wol_pme(hw, 0);
6795	for (i = 0; i < hw->dev_count; i++) {
6796		if (info->netdev[i]) {
6797			struct net_device *dev = info->netdev[i];
6798
6799			if (netif_running(dev)) {
6800				netdev_open(dev);
6801				netif_device_attach(dev);
6802			}
6803		}
6804	}
6805	return 0;
6806}
6807
6808static int __maybe_unused pcidev_suspend(struct device *dev_d)
6809{
6810	int i;
6811	struct platform_info *info = dev_get_drvdata(dev_d);
6812	struct dev_info *hw_priv = &info->dev_info;
6813	struct ksz_hw *hw = &hw_priv->hw;
6814
6815	/* Need to find a way to retrieve the device IP address. */
6816	static const u8 net_addr[] = { 192, 168, 1, 1 };
6817
6818	for (i = 0; i < hw->dev_count; i++) {
6819		if (info->netdev[i]) {
6820			struct net_device *dev = info->netdev[i];
6821
6822			if (netif_running(dev)) {
6823				netif_device_detach(dev);
6824				netdev_close(dev);
6825			}
6826		}
6827	}
6828	if (hw_priv->wol_enable) {
6829		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
6830		hw_cfg_wol_pme(hw, 1);
6831	}
6832
6833	device_wakeup_enable(dev_d);
6834	return 0;
6835}
6836
6837static char pcidev_name[] = "ksz884xp";
6838
6839static const struct pci_device_id pcidev_table[] = {
6840	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
6841		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
6842	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
6843		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
6844	{ 0 }
6845};
6846
6847MODULE_DEVICE_TABLE(pci, pcidev_table);
6848
6849static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
6850
6851static struct pci_driver pci_device_driver = {
6852	.driver.pm	= &pcidev_pm_ops,
6853	.name		= pcidev_name,
6854	.id_table	= pcidev_table,
6855	.probe		= pcidev_init,
6856	.remove		= pcidev_exit
6857};
6858
6859module_pci_driver(pci_device_driver);
6860
6861MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
6862MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
6863MODULE_LICENSE("GPL");
6864
6865module_param_named(message, msg_enable, int, 0);
6866MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
6867
6868module_param(macaddr, charp, 0);
6869module_param(mac1addr, charp, 0);
6870module_param(fast_aging, int, 0);
6871module_param(multi_dev, int, 0);
6872module_param(stp, int, 0);
6873MODULE_PARM_DESC(macaddr, "MAC address");
6874MODULE_PARM_DESC(mac1addr, "Second MAC address");
6875MODULE_PARM_DESC(fast_aging, "Fast aging");
6876MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
6877MODULE_PARM_DESC(stp, "STP support");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   4 *
   5 * Copyright (c) 2009-2010 Micrel, Inc.
   6 * 	Tristram Ha <Tristram.Ha@micrel.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/ioport.h>
  16#include <linux/pci.h>
  17#include <linux/proc_fs.h>
  18#include <linux/mii.h>
  19#include <linux/platform_device.h>
  20#include <linux/ethtool.h>
  21#include <linux/etherdevice.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/if_vlan.h>
  25#include <linux/crc32.h>
  26#include <linux/sched.h>
  27#include <linux/slab.h>
  28#include <linux/micrel_phy.h>
  29
  30
  31/* DMA Registers */
  32
  33#define KS_DMA_TX_CTRL			0x0000
  34#define DMA_TX_ENABLE			0x00000001
  35#define DMA_TX_CRC_ENABLE		0x00000002
  36#define DMA_TX_PAD_ENABLE		0x00000004
  37#define DMA_TX_LOOPBACK			0x00000100
  38#define DMA_TX_FLOW_ENABLE		0x00000200
  39#define DMA_TX_CSUM_IP			0x00010000
  40#define DMA_TX_CSUM_TCP			0x00020000
  41#define DMA_TX_CSUM_UDP			0x00040000
  42#define DMA_TX_BURST_SIZE		0x3F000000
  43
  44#define KS_DMA_RX_CTRL			0x0004
  45#define DMA_RX_ENABLE			0x00000001
  46#define KS884X_DMA_RX_MULTICAST		0x00000002
  47#define DMA_RX_PROMISCUOUS		0x00000004
  48#define DMA_RX_ERROR			0x00000008
  49#define DMA_RX_UNICAST			0x00000010
  50#define DMA_RX_ALL_MULTICAST		0x00000020
  51#define DMA_RX_BROADCAST		0x00000040
  52#define DMA_RX_FLOW_ENABLE		0x00000200
  53#define DMA_RX_CSUM_IP			0x00010000
  54#define DMA_RX_CSUM_TCP			0x00020000
  55#define DMA_RX_CSUM_UDP			0x00040000
  56#define DMA_RX_BURST_SIZE		0x3F000000
  57
  58#define DMA_BURST_SHIFT			24
  59#define DMA_BURST_DEFAULT		8
  60
  61#define KS_DMA_TX_START			0x0008
  62#define KS_DMA_RX_START			0x000C
  63#define DMA_START			0x00000001
  64
  65#define KS_DMA_TX_ADDR			0x0010
  66#define KS_DMA_RX_ADDR			0x0014
  67
  68#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  69#define DMA_ADDR_LIST_SHIFT		2
  70
  71/* MTR0 */
  72#define KS884X_MULTICAST_0_OFFSET	0x0020
  73#define KS884X_MULTICAST_1_OFFSET	0x0021
  74#define KS884X_MULTICAST_2_OFFSET	0x0022
  75#define KS884x_MULTICAST_3_OFFSET	0x0023
  76/* MTR1 */
  77#define KS884X_MULTICAST_4_OFFSET	0x0024
  78#define KS884X_MULTICAST_5_OFFSET	0x0025
  79#define KS884X_MULTICAST_6_OFFSET	0x0026
  80#define KS884X_MULTICAST_7_OFFSET	0x0027
  81
  82/* Interrupt Registers */
  83
  84/* INTEN */
  85#define KS884X_INTERRUPTS_ENABLE	0x0028
  86/* INTST */
  87#define KS884X_INTERRUPTS_STATUS	0x002C
  88
  89#define KS884X_INT_RX_STOPPED		0x02000000
  90#define KS884X_INT_TX_STOPPED		0x04000000
  91#define KS884X_INT_RX_OVERRUN		0x08000000
  92#define KS884X_INT_TX_EMPTY		0x10000000
  93#define KS884X_INT_RX			0x20000000
  94#define KS884X_INT_TX			0x40000000
  95#define KS884X_INT_PHY			0x80000000
  96
  97#define KS884X_INT_RX_MASK		\
  98	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
  99#define KS884X_INT_TX_MASK		\
 100	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 101#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 102
 103/* MAC Additional Station Address */
 104
 105/* MAAL0 */
 106#define KS_ADD_ADDR_0_LO		0x0080
 107/* MAAH0 */
 108#define KS_ADD_ADDR_0_HI		0x0084
 109/* MAAL1 */
 110#define KS_ADD_ADDR_1_LO		0x0088
 111/* MAAH1 */
 112#define KS_ADD_ADDR_1_HI		0x008C
 113/* MAAL2 */
 114#define KS_ADD_ADDR_2_LO		0x0090
 115/* MAAH2 */
 116#define KS_ADD_ADDR_2_HI		0x0094
 117/* MAAL3 */
 118#define KS_ADD_ADDR_3_LO		0x0098
 119/* MAAH3 */
 120#define KS_ADD_ADDR_3_HI		0x009C
 121/* MAAL4 */
 122#define KS_ADD_ADDR_4_LO		0x00A0
 123/* MAAH4 */
 124#define KS_ADD_ADDR_4_HI		0x00A4
 125/* MAAL5 */
 126#define KS_ADD_ADDR_5_LO		0x00A8
 127/* MAAH5 */
 128#define KS_ADD_ADDR_5_HI		0x00AC
 129/* MAAL6 */
 130#define KS_ADD_ADDR_6_LO		0x00B0
 131/* MAAH6 */
 132#define KS_ADD_ADDR_6_HI		0x00B4
 133/* MAAL7 */
 134#define KS_ADD_ADDR_7_LO		0x00B8
 135/* MAAH7 */
 136#define KS_ADD_ADDR_7_HI		0x00BC
 137/* MAAL8 */
 138#define KS_ADD_ADDR_8_LO		0x00C0
 139/* MAAH8 */
 140#define KS_ADD_ADDR_8_HI		0x00C4
 141/* MAAL9 */
 142#define KS_ADD_ADDR_9_LO		0x00C8
 143/* MAAH9 */
 144#define KS_ADD_ADDR_9_HI		0x00CC
 145/* MAAL10 */
 146#define KS_ADD_ADDR_A_LO		0x00D0
 147/* MAAH10 */
 148#define KS_ADD_ADDR_A_HI		0x00D4
 149/* MAAL11 */
 150#define KS_ADD_ADDR_B_LO		0x00D8
 151/* MAAH11 */
 152#define KS_ADD_ADDR_B_HI		0x00DC
 153/* MAAL12 */
 154#define KS_ADD_ADDR_C_LO		0x00E0
 155/* MAAH12 */
 156#define KS_ADD_ADDR_C_HI		0x00E4
 157/* MAAL13 */
 158#define KS_ADD_ADDR_D_LO		0x00E8
 159/* MAAH13 */
 160#define KS_ADD_ADDR_D_HI		0x00EC
 161/* MAAL14 */
 162#define KS_ADD_ADDR_E_LO		0x00F0
 163/* MAAH14 */
 164#define KS_ADD_ADDR_E_HI		0x00F4
 165/* MAAL15 */
 166#define KS_ADD_ADDR_F_LO		0x00F8
 167/* MAAH15 */
 168#define KS_ADD_ADDR_F_HI		0x00FC
 169
 170#define ADD_ADDR_HI_MASK		0x0000FFFF
 171#define ADD_ADDR_ENABLE			0x80000000
 172#define ADD_ADDR_INCR			8
 173
 174/* Miscellaneous Registers */
 175
 176/* MARL */
 177#define KS884X_ADDR_0_OFFSET		0x0200
 178#define KS884X_ADDR_1_OFFSET		0x0201
 179/* MARM */
 180#define KS884X_ADDR_2_OFFSET		0x0202
 181#define KS884X_ADDR_3_OFFSET		0x0203
 182/* MARH */
 183#define KS884X_ADDR_4_OFFSET		0x0204
 184#define KS884X_ADDR_5_OFFSET		0x0205
 185
 186/* OBCR */
 187#define KS884X_BUS_CTRL_OFFSET		0x0210
 188
 189#define BUS_SPEED_125_MHZ		0x0000
 190#define BUS_SPEED_62_5_MHZ		0x0001
 191#define BUS_SPEED_41_66_MHZ		0x0002
 192#define BUS_SPEED_25_MHZ		0x0003
 193
 194/* EEPCR */
 195#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 196
 197#define EEPROM_CHIP_SELECT		0x0001
 198#define EEPROM_SERIAL_CLOCK		0x0002
 199#define EEPROM_DATA_OUT			0x0004
 200#define EEPROM_DATA_IN			0x0008
 201#define EEPROM_ACCESS_ENABLE		0x0010
 202
 203/* MBIR */
 204#define KS884X_MEM_INFO_OFFSET		0x0214
 205
 206#define RX_MEM_TEST_FAILED		0x0008
 207#define RX_MEM_TEST_FINISHED		0x0010
 208#define TX_MEM_TEST_FAILED		0x0800
 209#define TX_MEM_TEST_FINISHED		0x1000
 210
 211/* GCR */
 212#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 213#define GLOBAL_SOFTWARE_RESET		0x0001
 214
 215#define KS8841_POWER_MANAGE_OFFSET	0x0218
 216
 217/* WFCR */
 218#define KS8841_WOL_CTRL_OFFSET		0x021A
 219#define KS8841_WOL_MAGIC_ENABLE		0x0080
 220#define KS8841_WOL_FRAME3_ENABLE	0x0008
 221#define KS8841_WOL_FRAME2_ENABLE	0x0004
 222#define KS8841_WOL_FRAME1_ENABLE	0x0002
 223#define KS8841_WOL_FRAME0_ENABLE	0x0001
 224
 225/* WF0 */
 226#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 227#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 228#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 229
 230/* IACR */
 231#define KS884X_IACR_P			0x04A0
 232#define KS884X_IACR_OFFSET		KS884X_IACR_P
 233
 234/* IADR1 */
 235#define KS884X_IADR1_P			0x04A2
 236#define KS884X_IADR2_P			0x04A4
 237#define KS884X_IADR3_P			0x04A6
 238#define KS884X_IADR4_P			0x04A8
 239#define KS884X_IADR5_P			0x04AA
 240
 241#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 242#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 243
 244#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 245#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 246#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 247#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 248#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 249#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 250#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 251#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 252#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 253
 254/* P1MBCR */
 255#define KS884X_P1MBCR_P			0x04D0
 256#define KS884X_P1MBSR_P			0x04D2
 257#define KS884X_PHY1ILR_P		0x04D4
 258#define KS884X_PHY1IHR_P		0x04D6
 259#define KS884X_P1ANAR_P			0x04D8
 260#define KS884X_P1ANLPR_P		0x04DA
 261
 262/* P2MBCR */
 263#define KS884X_P2MBCR_P			0x04E0
 264#define KS884X_P2MBSR_P			0x04E2
 265#define KS884X_PHY2ILR_P		0x04E4
 266#define KS884X_PHY2IHR_P		0x04E6
 267#define KS884X_P2ANAR_P			0x04E8
 268#define KS884X_P2ANLPR_P		0x04EA
 269
 270#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 271#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 272
 273#define KS884X_PHY_CTRL_OFFSET		0x00
 274
 275#define KS884X_PHY_STATUS_OFFSET	0x02
 276
 277#define KS884X_PHY_ID_1_OFFSET		0x04
 278#define KS884X_PHY_ID_2_OFFSET		0x06
 279
 280#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 281
 282#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 283
 284/* P1VCT */
 285#define KS884X_P1VCT_P			0x04F0
 286#define KS884X_P1PHYCTRL_P		0x04F2
 287
 288/* P2VCT */
 289#define KS884X_P2VCT_P			0x04F4
 290#define KS884X_P2PHYCTRL_P		0x04F6
 291
 292#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 293#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 294
 295#define KS884X_PHY_LINK_MD_OFFSET	0x00
 296
 297#define PHY_START_CABLE_DIAG		0x8000
 298#define PHY_CABLE_DIAG_RESULT		0x6000
 299#define PHY_CABLE_STAT_NORMAL		0x0000
 300#define PHY_CABLE_STAT_OPEN		0x2000
 301#define PHY_CABLE_STAT_SHORT		0x4000
 302#define PHY_CABLE_STAT_FAILED		0x6000
 303#define PHY_CABLE_10M_SHORT		0x1000
 304#define PHY_CABLE_FAULT_COUNTER		0x01FF
 305
 306#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 307
 308#define PHY_STAT_REVERSED_POLARITY	0x0020
 309#define PHY_STAT_MDIX			0x0010
 310#define PHY_FORCE_LINK			0x0008
 311#define PHY_POWER_SAVING_DISABLE	0x0004
 312#define PHY_REMOTE_LOOPBACK		0x0002
 313
 314/* SIDER */
 315#define KS884X_SIDER_P			0x0400
 316#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 317#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 318
 319#define REG_FAMILY_ID			0x88
 320
 321#define REG_CHIP_ID_41			0x8810
 322#define REG_CHIP_ID_42			0x8800
 323
 324#define KS884X_CHIP_ID_MASK_41		0xFF10
 325#define KS884X_CHIP_ID_MASK		0xFFF0
 326#define KS884X_CHIP_ID_SHIFT		4
 327#define KS884X_REVISION_MASK		0x000E
 328#define KS884X_REVISION_SHIFT		1
 329#define KS8842_START			0x0001
 330
 331#define CHIP_IP_41_M			0x8810
 332#define CHIP_IP_42_M			0x8800
 333#define CHIP_IP_61_M			0x8890
 334#define CHIP_IP_62_M			0x8880
 335
 336#define CHIP_IP_41_P			0x8850
 337#define CHIP_IP_42_P			0x8840
 338#define CHIP_IP_61_P			0x88D0
 339#define CHIP_IP_62_P			0x88C0
 340
 341/* SGCR1 */
 342#define KS8842_SGCR1_P			0x0402
 343#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 344
 345#define SWITCH_PASS_ALL			0x8000
 346#define SWITCH_TX_FLOW_CTRL		0x2000
 347#define SWITCH_RX_FLOW_CTRL		0x1000
 348#define SWITCH_CHECK_LENGTH		0x0800
 349#define SWITCH_AGING_ENABLE		0x0400
 350#define SWITCH_FAST_AGING		0x0200
 351#define SWITCH_AGGR_BACKOFF		0x0100
 352#define SWITCH_PASS_PAUSE		0x0008
 353#define SWITCH_LINK_AUTO_AGING		0x0001
 354
 355/* SGCR2 */
 356#define KS8842_SGCR2_P			0x0404
 357#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 358
 359#define SWITCH_VLAN_ENABLE		0x8000
 360#define SWITCH_IGMP_SNOOP		0x4000
 361#define IPV6_MLD_SNOOP_ENABLE		0x2000
 362#define IPV6_MLD_SNOOP_OPTION		0x1000
 363#define PRIORITY_SCHEME_SELECT		0x0800
 364#define SWITCH_MIRROR_RX_TX		0x0100
 365#define UNICAST_VLAN_BOUNDARY		0x0080
 366#define MULTICAST_STORM_DISABLE		0x0040
 367#define SWITCH_BACK_PRESSURE		0x0020
 368#define FAIR_FLOW_CTRL			0x0010
 369#define NO_EXC_COLLISION_DROP		0x0008
 370#define SWITCH_HUGE_PACKET		0x0004
 371#define SWITCH_LEGAL_PACKET		0x0002
 372#define SWITCH_BUF_RESERVE		0x0001
 373
 374/* SGCR3 */
 375#define KS8842_SGCR3_P			0x0406
 376#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 377
 378#define BROADCAST_STORM_RATE_LO		0xFF00
 379#define SWITCH_REPEATER			0x0080
 380#define SWITCH_HALF_DUPLEX		0x0040
 381#define SWITCH_FLOW_CTRL		0x0020
 382#define SWITCH_10_MBIT			0x0010
 383#define SWITCH_REPLACE_NULL_VID		0x0008
 384#define BROADCAST_STORM_RATE_HI		0x0007
 385
 386#define BROADCAST_STORM_RATE		0x07FF
 387
 388/* SGCR4 */
 389#define KS8842_SGCR4_P			0x0408
 390
 391/* SGCR5 */
 392#define KS8842_SGCR5_P			0x040A
 393#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 394
 395#define LED_MODE			0x8200
 396#define LED_SPEED_DUPLEX_ACT		0x0000
 397#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 398#define LED_DUPLEX_10_100		0x0200
 399
 400/* SGCR6 */
 401#define KS8842_SGCR6_P			0x0410
 402#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 403
 404#define KS8842_PRIORITY_MASK		3
 405#define KS8842_PRIORITY_SHIFT		2
 406
 407/* SGCR7 */
 408#define KS8842_SGCR7_P			0x0412
 409#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 410
 411#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 412#define SWITCH_UNK_DEF_PORT_3		0x0004
 413#define SWITCH_UNK_DEF_PORT_2		0x0002
 414#define SWITCH_UNK_DEF_PORT_1		0x0001
 415
 416/* MACAR1 */
 417#define KS8842_MACAR1_P			0x0470
 418#define KS8842_MACAR2_P			0x0472
 419#define KS8842_MACAR3_P			0x0474
 420#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 421#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 422#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 423#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 424#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 425#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 426
 427/* TOSR1 */
 428#define KS8842_TOSR1_P			0x0480
 429#define KS8842_TOSR2_P			0x0482
 430#define KS8842_TOSR3_P			0x0484
 431#define KS8842_TOSR4_P			0x0486
 432#define KS8842_TOSR5_P			0x0488
 433#define KS8842_TOSR6_P			0x048A
 434#define KS8842_TOSR7_P			0x0490
 435#define KS8842_TOSR8_P			0x0492
 436#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 437#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 438#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 439#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 440#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 441#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 442
 443#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 444#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 445
 446/* P1CR1 */
 447#define KS8842_P1CR1_P			0x0500
 448#define KS8842_P1CR2_P			0x0502
 449#define KS8842_P1VIDR_P			0x0504
 450#define KS8842_P1CR3_P			0x0506
 451#define KS8842_P1IRCR_P			0x0508
 452#define KS8842_P1ERCR_P			0x050A
 453#define KS884X_P1SCSLMD_P		0x0510
 454#define KS884X_P1CR4_P			0x0512
 455#define KS884X_P1SR_P			0x0514
 456
 457/* P2CR1 */
 458#define KS8842_P2CR1_P			0x0520
 459#define KS8842_P2CR2_P			0x0522
 460#define KS8842_P2VIDR_P			0x0524
 461#define KS8842_P2CR3_P			0x0526
 462#define KS8842_P2IRCR_P			0x0528
 463#define KS8842_P2ERCR_P			0x052A
 464#define KS884X_P2SCSLMD_P		0x0530
 465#define KS884X_P2CR4_P			0x0532
 466#define KS884X_P2SR_P			0x0534
 467
 468/* P3CR1 */
 469#define KS8842_P3CR1_P			0x0540
 470#define KS8842_P3CR2_P			0x0542
 471#define KS8842_P3VIDR_P			0x0544
 472#define KS8842_P3CR3_P			0x0546
 473#define KS8842_P3IRCR_P			0x0548
 474#define KS8842_P3ERCR_P			0x054A
 475
 476#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 477#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 478#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 479
 480#define PORT_CTRL_ADDR(port, addr)		\
 481	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 482		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 483
 484#define KS8842_PORT_CTRL_1_OFFSET	0x00
 485
 486#define PORT_BROADCAST_STORM		0x0080
 487#define PORT_DIFFSERV_ENABLE		0x0040
 488#define PORT_802_1P_ENABLE		0x0020
 489#define PORT_BASED_PRIORITY_MASK	0x0018
 490#define PORT_BASED_PRIORITY_BASE	0x0003
 491#define PORT_BASED_PRIORITY_SHIFT	3
 492#define PORT_BASED_PRIORITY_0		0x0000
 493#define PORT_BASED_PRIORITY_1		0x0008
 494#define PORT_BASED_PRIORITY_2		0x0010
 495#define PORT_BASED_PRIORITY_3		0x0018
 496#define PORT_INSERT_TAG			0x0004
 497#define PORT_REMOVE_TAG			0x0002
 498#define PORT_PRIO_QUEUE_ENABLE		0x0001
 499
 500#define KS8842_PORT_CTRL_2_OFFSET	0x02
 501
 502#define PORT_INGRESS_VLAN_FILTER	0x4000
 503#define PORT_DISCARD_NON_VID		0x2000
 504#define PORT_FORCE_FLOW_CTRL		0x1000
 505#define PORT_BACK_PRESSURE		0x0800
 506#define PORT_TX_ENABLE			0x0400
 507#define PORT_RX_ENABLE			0x0200
 508#define PORT_LEARN_DISABLE		0x0100
 509#define PORT_MIRROR_SNIFFER		0x0080
 510#define PORT_MIRROR_RX			0x0040
 511#define PORT_MIRROR_TX			0x0020
 512#define PORT_USER_PRIORITY_CEILING	0x0008
 513#define PORT_VLAN_MEMBERSHIP		0x0007
 514
 515#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 516
 517#define PORT_DEFAULT_VID		0x0001
 518
 519#define KS8842_PORT_CTRL_3_OFFSET	0x06
 520
 521#define PORT_INGRESS_LIMIT_MODE		0x000C
 522#define PORT_INGRESS_ALL		0x0000
 523#define PORT_INGRESS_UNICAST		0x0004
 524#define PORT_INGRESS_MULTICAST		0x0008
 525#define PORT_INGRESS_BROADCAST		0x000C
 526#define PORT_COUNT_IFG			0x0002
 527#define PORT_COUNT_PREAMBLE		0x0001
 528
 529#define KS8842_PORT_IN_RATE_OFFSET	0x08
 530#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 531
 532#define PORT_PRIORITY_RATE		0x0F
 533#define PORT_PRIORITY_RATE_SHIFT	4
 534
 535#define KS884X_PORT_LINK_MD		0x10
 536
 537#define PORT_CABLE_10M_SHORT		0x8000
 538#define PORT_CABLE_DIAG_RESULT		0x6000
 539#define PORT_CABLE_STAT_NORMAL		0x0000
 540#define PORT_CABLE_STAT_OPEN		0x2000
 541#define PORT_CABLE_STAT_SHORT		0x4000
 542#define PORT_CABLE_STAT_FAILED		0x6000
 543#define PORT_START_CABLE_DIAG		0x1000
 544#define PORT_FORCE_LINK			0x0800
 545#define PORT_POWER_SAVING_DISABLE	0x0400
 546#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 547#define PORT_CABLE_FAULT_COUNTER	0x01FF
 548
 549#define KS884X_PORT_CTRL_4_OFFSET	0x12
 550
 551#define PORT_LED_OFF			0x8000
 552#define PORT_TX_DISABLE			0x4000
 553#define PORT_AUTO_NEG_RESTART		0x2000
 554#define PORT_REMOTE_FAULT_DISABLE	0x1000
 555#define PORT_POWER_DOWN			0x0800
 556#define PORT_AUTO_MDIX_DISABLE		0x0400
 557#define PORT_FORCE_MDIX			0x0200
 558#define PORT_LOOPBACK			0x0100
 559#define PORT_AUTO_NEG_ENABLE		0x0080
 560#define PORT_FORCE_100_MBIT		0x0040
 561#define PORT_FORCE_FULL_DUPLEX		0x0020
 562#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 563#define PORT_AUTO_NEG_100BTX_FD		0x0008
 564#define PORT_AUTO_NEG_100BTX		0x0004
 565#define PORT_AUTO_NEG_10BT_FD		0x0002
 566#define PORT_AUTO_NEG_10BT		0x0001
 567
 568#define KS884X_PORT_STATUS_OFFSET	0x14
 569
 570#define PORT_HP_MDIX			0x8000
 571#define PORT_REVERSED_POLARITY		0x2000
 572#define PORT_RX_FLOW_CTRL		0x0800
 573#define PORT_TX_FLOW_CTRL		0x1000
 574#define PORT_STATUS_SPEED_100MBIT	0x0400
 575#define PORT_STATUS_FULL_DUPLEX		0x0200
 576#define PORT_REMOTE_FAULT		0x0100
 577#define PORT_MDIX_STATUS		0x0080
 578#define PORT_AUTO_NEG_COMPLETE		0x0040
 579#define PORT_STATUS_LINK_GOOD		0x0020
 580#define PORT_REMOTE_SYM_PAUSE		0x0010
 581#define PORT_REMOTE_100BTX_FD		0x0008
 582#define PORT_REMOTE_100BTX		0x0004
 583#define PORT_REMOTE_10BT_FD		0x0002
 584#define PORT_REMOTE_10BT		0x0001
 585
 586/*
 587#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 588#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 589#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 590#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 591#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 592#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 593*/
 594
 595#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 596#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 597#define STATIC_MAC_TABLE_VALID		0x00080000
 598#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 599#define STATIC_MAC_TABLE_USE_FID	0x00200000
 600#define STATIC_MAC_TABLE_FID		0x03C00000
 601
 602#define STATIC_MAC_FWD_PORTS_SHIFT	16
 603#define STATIC_MAC_FID_SHIFT		22
 604
 605/*
 606#define VLAN_TABLE_VID			00-00000000-00000FFF
 607#define VLAN_TABLE_FID			00-00000000-0000F000
 608#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 609#define VLAN_TABLE_VALID		00-00000000-00080000
 610*/
 611
 612#define VLAN_TABLE_VID			0x00000FFF
 613#define VLAN_TABLE_FID			0x0000F000
 614#define VLAN_TABLE_MEMBERSHIP		0x00070000
 615#define VLAN_TABLE_VALID		0x00080000
 616
 617#define VLAN_TABLE_FID_SHIFT		12
 618#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 619
 620/*
 621#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 622#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 623#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 624#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 625#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 626#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 627#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 628#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 629*/
 630
 631#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 632#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 633#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 634#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 635#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 636
 637#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 638#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 639#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 640#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 641
 642#define DYNAMIC_MAC_FID_SHIFT		16
 643#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 644#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 645#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 646#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 647
 648/*
 649#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 650#define MIB_COUNTER_VALID		00-00000000-40000000
 651#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 652*/
 653
 654#define MIB_COUNTER_VALUE		0x3FFFFFFF
 655#define MIB_COUNTER_VALID		0x40000000
 656#define MIB_COUNTER_OVERFLOW		0x80000000
 657
 658#define MIB_PACKET_DROPPED		0x0000FFFF
 659
 660#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 661#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 662#define KS_MIB_PACKET_DROPPED_TX	0x102
 663#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 664#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 665#define KS_MIB_PACKET_DROPPED_RX	0x105
 666
 667/* Change default LED mode. */
 668#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 669
 670#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 671
 672#define MAX_ETHERNET_BODY_SIZE		1500
 673#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 674
 675#define MAX_ETHERNET_PACKET_SIZE	\
 676	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 677
 678#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 679#define MAX_RX_BUF_SIZE			(1912 + 4)
 680
 681#define ADDITIONAL_ENTRIES		16
 682#define MAX_MULTICAST_LIST		32
 683
 684#define HW_MULTICAST_SIZE		8
 685
 686#define HW_TO_DEV_PORT(port)		(port - 1)
 687
 688enum {
 689	media_connected,
 690	media_disconnected
 691};
 692
 693enum {
 694	OID_COUNTER_UNKOWN,
 695
 696	OID_COUNTER_FIRST,
 697
 698	/* total transmit errors */
 699	OID_COUNTER_XMIT_ERROR,
 700
 701	/* total receive errors */
 702	OID_COUNTER_RCV_ERROR,
 703
 704	OID_COUNTER_LAST
 705};
 706
 707/*
 708 * Hardware descriptor definitions
 709 */
 710
 711#define DESC_ALIGNMENT			16
 712#define BUFFER_ALIGNMENT		8
 713
 714#define NUM_OF_RX_DESC			64
 715#define NUM_OF_TX_DESC			64
 716
 717#define KS_DESC_RX_FRAME_LEN		0x000007FF
 718#define KS_DESC_RX_FRAME_TYPE		0x00008000
 719#define KS_DESC_RX_ERROR_CRC		0x00010000
 720#define KS_DESC_RX_ERROR_RUNT		0x00020000
 721#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 722#define KS_DESC_RX_ERROR_PHY		0x00080000
 723#define KS884X_DESC_RX_PORT_MASK	0x00300000
 724#define KS_DESC_RX_MULTICAST		0x01000000
 725#define KS_DESC_RX_ERROR		0x02000000
 726#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 727#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 728#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 729#define KS_DESC_RX_LAST			0x20000000
 730#define KS_DESC_RX_FIRST		0x40000000
 731#define KS_DESC_RX_ERROR_COND		\
 732	(KS_DESC_RX_ERROR_CRC |		\
 733	KS_DESC_RX_ERROR_RUNT |		\
 734	KS_DESC_RX_ERROR_PHY |		\
 735	KS_DESC_RX_ERROR_TOO_LONG)
 736
 737#define KS_DESC_HW_OWNED		0x80000000
 738
 739#define KS_DESC_BUF_SIZE		0x000007FF
 740#define KS884X_DESC_TX_PORT_MASK	0x00300000
 741#define KS_DESC_END_OF_RING		0x02000000
 742#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 743#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 744#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 745#define KS_DESC_TX_LAST			0x20000000
 746#define KS_DESC_TX_FIRST		0x40000000
 747#define KS_DESC_TX_INTERRUPT		0x80000000
 748
 749#define KS_DESC_PORT_SHIFT		20
 750
 751#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 752
 753#define KS_DESC_TX_MASK			\
 754	(KS_DESC_TX_INTERRUPT |		\
 755	KS_DESC_TX_FIRST |		\
 756	KS_DESC_TX_LAST |		\
 757	KS_DESC_TX_CSUM_GEN_IP |	\
 758	KS_DESC_TX_CSUM_GEN_TCP |	\
 759	KS_DESC_TX_CSUM_GEN_UDP |	\
 760	KS_DESC_BUF_SIZE)
 761
 762struct ksz_desc_rx_stat {
 763#ifdef __BIG_ENDIAN_BITFIELD
 764	u32 hw_owned:1;
 765	u32 first_desc:1;
 766	u32 last_desc:1;
 767	u32 csum_err_ip:1;
 768	u32 csum_err_tcp:1;
 769	u32 csum_err_udp:1;
 770	u32 error:1;
 771	u32 multicast:1;
 772	u32 src_port:4;
 773	u32 err_phy:1;
 774	u32 err_too_long:1;
 775	u32 err_runt:1;
 776	u32 err_crc:1;
 777	u32 frame_type:1;
 778	u32 reserved1:4;
 779	u32 frame_len:11;
 780#else
 781	u32 frame_len:11;
 782	u32 reserved1:4;
 783	u32 frame_type:1;
 784	u32 err_crc:1;
 785	u32 err_runt:1;
 786	u32 err_too_long:1;
 787	u32 err_phy:1;
 788	u32 src_port:4;
 789	u32 multicast:1;
 790	u32 error:1;
 791	u32 csum_err_udp:1;
 792	u32 csum_err_tcp:1;
 793	u32 csum_err_ip:1;
 794	u32 last_desc:1;
 795	u32 first_desc:1;
 796	u32 hw_owned:1;
 797#endif
 798};
 799
 800struct ksz_desc_tx_stat {
 801#ifdef __BIG_ENDIAN_BITFIELD
 802	u32 hw_owned:1;
 803	u32 reserved1:31;
 804#else
 805	u32 reserved1:31;
 806	u32 hw_owned:1;
 807#endif
 808};
 809
 810struct ksz_desc_rx_buf {
 811#ifdef __BIG_ENDIAN_BITFIELD
 812	u32 reserved4:6;
 813	u32 end_of_ring:1;
 814	u32 reserved3:14;
 815	u32 buf_size:11;
 816#else
 817	u32 buf_size:11;
 818	u32 reserved3:14;
 819	u32 end_of_ring:1;
 820	u32 reserved4:6;
 821#endif
 822};
 823
 824struct ksz_desc_tx_buf {
 825#ifdef __BIG_ENDIAN_BITFIELD
 826	u32 intr:1;
 827	u32 first_seg:1;
 828	u32 last_seg:1;
 829	u32 csum_gen_ip:1;
 830	u32 csum_gen_tcp:1;
 831	u32 csum_gen_udp:1;
 832	u32 end_of_ring:1;
 833	u32 reserved4:1;
 834	u32 dest_port:4;
 835	u32 reserved3:9;
 836	u32 buf_size:11;
 837#else
 838	u32 buf_size:11;
 839	u32 reserved3:9;
 840	u32 dest_port:4;
 841	u32 reserved4:1;
 842	u32 end_of_ring:1;
 843	u32 csum_gen_udp:1;
 844	u32 csum_gen_tcp:1;
 845	u32 csum_gen_ip:1;
 846	u32 last_seg:1;
 847	u32 first_seg:1;
 848	u32 intr:1;
 849#endif
 850};
 851
 852union desc_stat {
 853	struct ksz_desc_rx_stat rx;
 854	struct ksz_desc_tx_stat tx;
 855	u32 data;
 856};
 857
 858union desc_buf {
 859	struct ksz_desc_rx_buf rx;
 860	struct ksz_desc_tx_buf tx;
 861	u32 data;
 862};
 863
 864/**
 865 * struct ksz_hw_desc - Hardware descriptor data structure
 866 * @ctrl:	Descriptor control value.
 867 * @buf:	Descriptor buffer value.
 868 * @addr:	Physical address of memory buffer.
 869 * @next:	Pointer to next hardware descriptor.
 870 */
 871struct ksz_hw_desc {
 872	union desc_stat ctrl;
 873	union desc_buf buf;
 874	u32 addr;
 875	u32 next;
 876};
 877
 878/**
 879 * struct ksz_sw_desc - Software descriptor data structure
 880 * @ctrl:	Descriptor control value.
 881 * @buf:	Descriptor buffer value.
 882 * @buf_size:	Current buffers size value in hardware descriptor.
 883 */
 884struct ksz_sw_desc {
 885	union desc_stat ctrl;
 886	union desc_buf buf;
 887	u32 buf_size;
 888};
 889
 890/**
 891 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 892 * @skb:	Associated socket buffer.
 893 * @dma:	Associated physical DMA address.
 894 * @len:	Actual len used.
 895 */
 896struct ksz_dma_buf {
 897	struct sk_buff *skb;
 898	dma_addr_t dma;
 899	int len;
 900};
 901
 902/**
 903 * struct ksz_desc - Descriptor structure
 904 * @phw:	Hardware descriptor pointer to uncached physical memory.
 905 * @sw:		Cached memory to hold hardware descriptor values for
 906 * 		manipulation.
 907 * @dma_buf:	Operating system dependent data structure to hold physical
 908 * 		memory buffer allocation information.
 909 */
 910struct ksz_desc {
 911	struct ksz_hw_desc *phw;
 912	struct ksz_sw_desc sw;
 913	struct ksz_dma_buf dma_buf;
 914};
 915
 916#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 917
 918/**
 919 * struct ksz_desc_info - Descriptor information data structure
 920 * @ring:	First descriptor in the ring.
 921 * @cur:	Current descriptor being manipulated.
 922 * @ring_virt:	First hardware descriptor in the ring.
 923 * @ring_phys:	The physical address of the first descriptor of the ring.
 924 * @size:	Size of hardware descriptor.
 925 * @alloc:	Number of descriptors allocated.
 926 * @avail:	Number of descriptors available for use.
 927 * @last:	Index for last descriptor released to hardware.
 928 * @next:	Index for next descriptor available for use.
 929 * @mask:	Mask for index wrapping.
 930 */
 931struct ksz_desc_info {
 932	struct ksz_desc *ring;
 933	struct ksz_desc *cur;
 934	struct ksz_hw_desc *ring_virt;
 935	u32 ring_phys;
 936	int size;
 937	int alloc;
 938	int avail;
 939	int last;
 940	int next;
 941	int mask;
 942};
 943
 944/*
 945 * KSZ8842 switch definitions
 946 */
 947
 948enum {
 949	TABLE_STATIC_MAC = 0,
 950	TABLE_VLAN,
 951	TABLE_DYNAMIC_MAC,
 952	TABLE_MIB
 953};
 954
 955#define LEARNED_MAC_TABLE_ENTRIES	1024
 956#define STATIC_MAC_TABLE_ENTRIES	8
 957
 958/**
 959 * struct ksz_mac_table - Static MAC table data structure
 960 * @mac_addr:	MAC address to filter.
 961 * @vid:	VID value.
 962 * @fid:	FID value.
 963 * @ports:	Port membership.
 964 * @override:	Override setting.
 965 * @use_fid:	FID use setting.
 966 * @valid:	Valid setting indicating the entry is being used.
 967 */
 968struct ksz_mac_table {
 969	u8 mac_addr[ETH_ALEN];
 970	u16 vid;
 971	u8 fid;
 972	u8 ports;
 973	u8 override:1;
 974	u8 use_fid:1;
 975	u8 valid:1;
 976};
 977
 978#define VLAN_TABLE_ENTRIES		16
 979
 980/**
 981 * struct ksz_vlan_table - VLAN table data structure
 982 * @vid:	VID value.
 983 * @fid:	FID value.
 984 * @member:	Port membership.
 985 */
 986struct ksz_vlan_table {
 987	u16 vid;
 988	u8 fid;
 989	u8 member;
 990};
 991
 992#define DIFFSERV_ENTRIES		64
 993#define PRIO_802_1P_ENTRIES		8
 994#define PRIO_QUEUES			4
 995
 996#define SWITCH_PORT_NUM			2
 997#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
 998#define HOST_MASK			(1 << SWITCH_PORT_NUM)
 999#define PORT_MASK			7
1000
1001#define MAIN_PORT			0
1002#define OTHER_PORT			1
1003#define HOST_PORT			SWITCH_PORT_NUM
1004
1005#define PORT_COUNTER_NUM		0x20
1006#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1007
1008#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1009#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1010#define MIB_COUNTER_RX_UNDERSIZE	0x02
1011#define MIB_COUNTER_RX_FRAGMENT		0x03
1012#define MIB_COUNTER_RX_OVERSIZE		0x04
1013#define MIB_COUNTER_RX_JABBER		0x05
1014#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1015#define MIB_COUNTER_RX_CRC_ERR		0x07
1016#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1017#define MIB_COUNTER_RX_CTRL_8808	0x09
1018#define MIB_COUNTER_RX_PAUSE		0x0A
1019#define MIB_COUNTER_RX_BROADCAST	0x0B
1020#define MIB_COUNTER_RX_MULTICAST	0x0C
1021#define MIB_COUNTER_RX_UNICAST		0x0D
1022#define MIB_COUNTER_RX_OCTET_64		0x0E
1023#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1024#define MIB_COUNTER_RX_OCTET_128_255	0x10
1025#define MIB_COUNTER_RX_OCTET_256_511	0x11
1026#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1027#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1028#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1029#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1030#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1031#define MIB_COUNTER_TX_PAUSE		0x17
1032#define MIB_COUNTER_TX_BROADCAST	0x18
1033#define MIB_COUNTER_TX_MULTICAST	0x19
1034#define MIB_COUNTER_TX_UNICAST		0x1A
1035#define MIB_COUNTER_TX_DEFERRED		0x1B
1036#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1037#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1038#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1039#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1040
1041#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1042#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1043
1044/**
1045 * struct ksz_port_mib - Port MIB data structure
1046 * @cnt_ptr:	Current pointer to MIB counter index.
1047 * @link_down:	Indication the link has just gone down.
1048 * @state:	Connection status of the port.
1049 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1050 * @counter:	64-bit MIB counter value.
1051 * @dropped:	Temporary buffer to remember last read packet dropped values.
1052 *
1053 * MIB counters needs to be read periodically so that counters do not get
1054 * overflowed and give incorrect values.  A right balance is needed to
1055 * satisfy this condition and not waste too much CPU time.
1056 *
1057 * It is pointless to read MIB counters when the port is disconnected.  The
1058 * @state provides the connection status so that MIB counters are read only
1059 * when the port is connected.  The @link_down indicates the port is just
1060 * disconnected so that all MIB counters are read one last time to update the
1061 * information.
1062 */
1063struct ksz_port_mib {
1064	u8 cnt_ptr;
1065	u8 link_down;
1066	u8 state;
1067	u8 mib_start;
1068
1069	u64 counter[TOTAL_PORT_COUNTER_NUM];
1070	u32 dropped[2];
1071};
1072
1073/**
1074 * struct ksz_port_cfg - Port configuration data structure
1075 * @vid:	VID value.
1076 * @member:	Port membership.
1077 * @port_prio:	Port priority.
1078 * @rx_rate:	Receive priority rate.
1079 * @tx_rate:	Transmit priority rate.
1080 * @stp_state:	Current Spanning Tree Protocol state.
1081 */
1082struct ksz_port_cfg {
1083	u16 vid;
1084	u8 member;
1085	u8 port_prio;
1086	u32 rx_rate[PRIO_QUEUES];
1087	u32 tx_rate[PRIO_QUEUES];
1088	int stp_state;
1089};
1090
1091/**
1092 * struct ksz_switch - KSZ8842 switch data structure
1093 * @mac_table:	MAC table entries information.
1094 * @vlan_table:	VLAN table entries information.
1095 * @port_cfg:	Port configuration information.
1096 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1097 * 		(bit7 ~ bit2) field.
1098 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1099 * 		Tag priority field.
1100 * @br_addr:	Bridge address.  Used for STP.
1101 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1102 * @broad_per:	Broadcast storm percentage.
1103 * @member:	Current port membership.  Used for STP.
1104 */
1105struct ksz_switch {
1106	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1107	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1108	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1109
1110	u8 diffserv[DIFFSERV_ENTRIES];
1111	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1112
1113	u8 br_addr[ETH_ALEN];
1114	u8 other_addr[ETH_ALEN];
1115
1116	u8 broad_per;
1117	u8 member;
1118};
1119
1120#define TX_RATE_UNIT			10000
1121
1122/**
1123 * struct ksz_port_info - Port information data structure
1124 * @state:	Connection status of the port.
1125 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1126 * @duplex:	Duplex mode.
1127 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1128 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1129 * @port_id:	Port index to access actual hardware register.
1130 * @pdev:	Pointer to OS dependent network device.
1131 */
1132struct ksz_port_info {
1133	uint state;
1134	uint tx_rate;
1135	u8 duplex;
1136	u8 advertised;
1137	u8 partner;
1138	u8 port_id;
1139	void *pdev;
1140};
1141
1142#define MAX_TX_HELD_SIZE		52000
1143
1144/* Hardware features and bug fixes. */
1145#define LINK_INT_WORKING		(1 << 0)
1146#define SMALL_PACKET_TX_BUG		(1 << 1)
1147#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1148#define RX_HUGE_FRAME			(1 << 4)
1149#define STP_SUPPORT			(1 << 8)
1150
1151/* Software overrides. */
1152#define PAUSE_FLOW_CTRL			(1 << 0)
1153#define FAST_AGING			(1 << 1)
1154
1155/**
1156 * struct ksz_hw - KSZ884X hardware data structure
1157 * @io:			Virtual address assigned.
1158 * @ksz_switch:		Pointer to KSZ8842 switch.
1159 * @port_info:		Port information.
1160 * @port_mib:		Port MIB information.
1161 * @dev_count:		Number of network devices this hardware supports.
1162 * @dst_ports:		Destination ports in switch for transmission.
1163 * @id:			Hardware ID.  Used for display only.
1164 * @mib_cnt:		Number of MIB counters this hardware has.
1165 * @mib_port_cnt:	Number of ports with MIB counters.
1166 * @tx_cfg:		Cached transmit control settings.
1167 * @rx_cfg:		Cached receive control settings.
1168 * @intr_mask:		Current interrupt mask.
1169 * @intr_set:		Current interrup set.
1170 * @intr_blocked:	Interrupt blocked.
1171 * @rx_desc_info:	Receive descriptor information.
1172 * @tx_desc_info:	Transmit descriptor information.
1173 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1174 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1175 * @tx_size:		Transmit data size.  Used for TX optimization.
1176 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1177 * @perm_addr:		Permanent MAC address.
1178 * @override_addr:	Overridden MAC address.
1179 * @address:		Additional MAC address entries.
1180 * @addr_list_size:	Additional MAC address list size.
1181 * @mac_override:	Indication of MAC address overridden.
1182 * @promiscuous:	Counter to keep track of promiscuous mode set.
1183 * @all_multi:		Counter to keep track of all multicast mode set.
1184 * @multi_list:		Multicast address entries.
1185 * @multi_bits:		Cached multicast hash table settings.
1186 * @multi_list_size:	Multicast address list size.
1187 * @enabled:		Indication of hardware enabled.
1188 * @rx_stop:		Indication of receive process stop.
1189 * @reserved2:		none
1190 * @features:		Hardware features to enable.
1191 * @overrides:		Hardware features to override.
1192 * @parent:		Pointer to parent, network device private structure.
1193 */
1194struct ksz_hw {
1195	void __iomem *io;
1196
1197	struct ksz_switch *ksz_switch;
1198	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1199	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1200	int dev_count;
1201	int dst_ports;
1202	int id;
1203	int mib_cnt;
1204	int mib_port_cnt;
1205
1206	u32 tx_cfg;
1207	u32 rx_cfg;
1208	u32 intr_mask;
1209	u32 intr_set;
1210	uint intr_blocked;
1211
1212	struct ksz_desc_info rx_desc_info;
1213	struct ksz_desc_info tx_desc_info;
1214
1215	int tx_int_cnt;
1216	int tx_int_mask;
1217	int tx_size;
1218
1219	u8 perm_addr[ETH_ALEN];
1220	u8 override_addr[ETH_ALEN];
1221	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1222	u8 addr_list_size;
1223	u8 mac_override;
1224	u8 promiscuous;
1225	u8 all_multi;
1226	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1227	u8 multi_bits[HW_MULTICAST_SIZE];
1228	u8 multi_list_size;
1229
1230	u8 enabled;
1231	u8 rx_stop;
1232	u8 reserved2[1];
1233
1234	uint features;
1235	uint overrides;
1236
1237	void *parent;
1238};
1239
1240enum {
1241	PHY_NO_FLOW_CTRL,
1242	PHY_FLOW_CTRL,
1243	PHY_TX_ONLY,
1244	PHY_RX_ONLY
1245};
1246
1247/**
1248 * struct ksz_port - Virtual port data structure
1249 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1250 * 			duplex, and 0 for auto, which normally results in full
1251 * 			duplex.
1252 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1253 * 			0 for auto, which normally results in 100 Mbit.
1254 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1255 * 			force.
1256 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1257 * 			control, and PHY_FLOW_CTRL for flow control.
1258 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1259 * 			Mbit PHY.
1260 * @first_port:		Index of first port this port supports.
1261 * @mib_port_cnt:	Number of ports with MIB counters.
1262 * @port_cnt:		Number of ports this port supports.
1263 * @counter:		Port statistics counter.
1264 * @hw:			Pointer to hardware structure.
1265 * @linked:		Pointer to port information linked to this port.
1266 */
1267struct ksz_port {
1268	u8 duplex;
1269	u8 speed;
1270	u8 force_link;
1271	u8 flow_ctrl;
1272
1273	int first_port;
1274	int mib_port_cnt;
1275	int port_cnt;
1276	u64 counter[OID_COUNTER_LAST];
1277
1278	struct ksz_hw *hw;
1279	struct ksz_port_info *linked;
1280};
1281
1282/**
1283 * struct ksz_timer_info - Timer information data structure
1284 * @timer:	Kernel timer.
1285 * @cnt:	Running timer counter.
1286 * @max:	Number of times to run timer; -1 for infinity.
1287 * @period:	Timer period in jiffies.
1288 */
1289struct ksz_timer_info {
1290	struct timer_list timer;
1291	int cnt;
1292	int max;
1293	int period;
1294};
1295
1296/**
1297 * struct ksz_shared_mem - OS dependent shared memory data structure
1298 * @dma_addr:	Physical DMA address allocated.
1299 * @alloc_size:	Allocation size.
1300 * @phys:	Actual physical address used.
1301 * @alloc_virt:	Virtual address allocated.
1302 * @virt:	Actual virtual address used.
1303 */
1304struct ksz_shared_mem {
1305	dma_addr_t dma_addr;
1306	uint alloc_size;
1307	uint phys;
1308	u8 *alloc_virt;
1309	u8 *virt;
1310};
1311
1312/**
1313 * struct ksz_counter_info - OS dependent counter information data structure
1314 * @counter:	Wait queue to wakeup after counters are read.
1315 * @time:	Next time in jiffies to read counter.
1316 * @read:	Indication of counters read in full or not.
1317 */
1318struct ksz_counter_info {
1319	wait_queue_head_t counter;
1320	unsigned long time;
1321	int read;
1322};
1323
1324/**
1325 * struct dev_info - Network device information data structure
1326 * @dev:		Pointer to network device.
1327 * @pdev:		Pointer to PCI device.
1328 * @hw:			Hardware structure.
1329 * @desc_pool:		Physical memory used for descriptor pool.
1330 * @hwlock:		Spinlock to prevent hardware from accessing.
1331 * @lock:		Mutex lock to prevent device from accessing.
1332 * @dev_rcv:		Receive process function used.
1333 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1334 * @skb_index:		Buffer index for receiving fragments.
1335 * @skb_len:		Buffer length for receiving fragments.
1336 * @mib_read:		Workqueue to read MIB counters.
1337 * @mib_timer_info:	Timer to read MIB counters.
1338 * @counter:		Used for MIB reading.
1339 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1340 * 			the maximum is MAX_RX_BUF_SIZE.
1341 * @opened:		Counter to keep track of device open.
1342 * @rx_tasklet:		Receive processing tasklet.
1343 * @tx_tasklet:		Transmit processing tasklet.
1344 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1345 * @wol_support:	Wake-on-LAN support used by ethtool.
1346 * @pme_wait:		Used for KSZ8841 power management.
1347 */
1348struct dev_info {
1349	struct net_device *dev;
1350	struct pci_dev *pdev;
1351
1352	struct ksz_hw hw;
1353	struct ksz_shared_mem desc_pool;
1354
1355	spinlock_t hwlock;
1356	struct mutex lock;
1357
1358	int (*dev_rcv)(struct dev_info *);
1359
1360	struct sk_buff *last_skb;
1361	int skb_index;
1362	int skb_len;
1363
1364	struct work_struct mib_read;
1365	struct ksz_timer_info mib_timer_info;
1366	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1367
1368	int mtu;
1369	int opened;
1370
1371	struct tasklet_struct rx_tasklet;
1372	struct tasklet_struct tx_tasklet;
1373
1374	int wol_enable;
1375	int wol_support;
1376	unsigned long pme_wait;
1377};
1378
1379/**
1380 * struct dev_priv - Network device private data structure
1381 * @adapter:		Adapter device information.
1382 * @port:		Port information.
1383 * @monitor_timer_info:	Timer to monitor ports.
1384 * @proc_sem:		Semaphore for proc accessing.
1385 * @id:			Device ID.
1386 * @mii_if:		MII interface information.
1387 * @advertising:	Temporary variable to store advertised settings.
1388 * @msg_enable:		The message flags controlling driver output.
1389 * @media_state:	The connection status of the device.
1390 * @multicast:		The all multicast state of the device.
1391 * @promiscuous:	The promiscuous state of the device.
1392 */
1393struct dev_priv {
1394	struct dev_info *adapter;
1395	struct ksz_port port;
1396	struct ksz_timer_info monitor_timer_info;
1397
1398	struct semaphore proc_sem;
1399	int id;
1400
1401	struct mii_if_info mii_if;
1402	u32 advertising;
1403
1404	u32 msg_enable;
1405	int media_state;
1406	int multicast;
1407	int promiscuous;
1408};
1409
1410#define DRV_NAME		"KSZ884X PCI"
1411#define DEVICE_NAME		"KSZ884x PCI"
1412#define DRV_VERSION		"1.0.0"
1413#define DRV_RELDATE		"Feb 8, 2010"
1414
1415static char version[] =
1416	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1417
1418static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1419
1420/*
1421 * Interrupt processing primary routines
1422 */
1423
1424static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1425{
1426	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1427}
1428
1429static inline void hw_dis_intr(struct ksz_hw *hw)
1430{
1431	hw->intr_blocked = hw->intr_mask;
1432	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1433	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1434}
1435
1436static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1437{
1438	hw->intr_set = interrupt;
1439	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1440}
1441
1442static inline void hw_ena_intr(struct ksz_hw *hw)
1443{
1444	hw->intr_blocked = 0;
1445	hw_set_intr(hw, hw->intr_mask);
1446}
1447
1448static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1449{
1450	hw->intr_mask &= ~(bit);
1451}
1452
1453static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1454{
1455	u32 read_intr;
1456
1457	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1458	hw->intr_set = read_intr & ~interrupt;
1459	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1460	hw_dis_intr_bit(hw, interrupt);
1461}
1462
1463/**
1464 * hw_turn_on_intr - turn on specified interrupts
1465 * @hw: 	The hardware instance.
1466 * @bit:	The interrupt bits to be on.
1467 *
1468 * This routine turns on the specified interrupts in the interrupt mask so that
1469 * those interrupts will be enabled.
1470 */
1471static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1472{
1473	hw->intr_mask |= bit;
1474
1475	if (!hw->intr_blocked)
1476		hw_set_intr(hw, hw->intr_mask);
1477}
1478
1479static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1480{
1481	u32 read_intr;
1482
1483	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1484	hw->intr_set = read_intr | interrupt;
1485	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1486}
1487
1488static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1489{
1490	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1491	*status = *status & hw->intr_set;
1492}
1493
1494static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1495{
1496	if (interrupt)
1497		hw_ena_intr(hw);
1498}
1499
1500/**
1501 * hw_block_intr - block hardware interrupts
1502 * @hw: The hardware instance.
1503 *
1504 * This function blocks all interrupts of the hardware and returns the current
1505 * interrupt enable mask so that interrupts can be restored later.
1506 *
1507 * Return the current interrupt enable mask.
1508 */
1509static uint hw_block_intr(struct ksz_hw *hw)
1510{
1511	uint interrupt = 0;
1512
1513	if (!hw->intr_blocked) {
1514		hw_dis_intr(hw);
1515		interrupt = hw->intr_blocked;
1516	}
1517	return interrupt;
1518}
1519
1520/*
1521 * Hardware descriptor routines
1522 */
1523
1524static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1525{
1526	status.rx.hw_owned = 0;
1527	desc->phw->ctrl.data = cpu_to_le32(status.data);
1528}
1529
1530static inline void release_desc(struct ksz_desc *desc)
1531{
1532	desc->sw.ctrl.tx.hw_owned = 1;
1533	if (desc->sw.buf_size != desc->sw.buf.data) {
1534		desc->sw.buf_size = desc->sw.buf.data;
1535		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1536	}
1537	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1538}
1539
1540static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1541{
1542	*desc = &info->ring[info->last];
1543	info->last++;
1544	info->last &= info->mask;
1545	info->avail--;
1546	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1547}
1548
1549static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1550{
1551	desc->phw->addr = cpu_to_le32(addr);
1552}
1553
1554static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1555{
1556	desc->sw.buf.rx.buf_size = len;
1557}
1558
1559static inline void get_tx_pkt(struct ksz_desc_info *info,
1560	struct ksz_desc **desc)
1561{
1562	*desc = &info->ring[info->next];
1563	info->next++;
1564	info->next &= info->mask;
1565	info->avail--;
1566	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1567}
1568
1569static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1570{
1571	desc->phw->addr = cpu_to_le32(addr);
1572}
1573
1574static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1575{
1576	desc->sw.buf.tx.buf_size = len;
1577}
1578
1579/* Switch functions */
1580
1581#define TABLE_READ			0x10
1582#define TABLE_SEL_SHIFT			2
1583
1584#define HW_DELAY(hw, reg)			\
1585	do {					\
1586		readw(hw->io + reg);		\
1587	} while (0)
1588
1589/**
1590 * sw_r_table - read 4 bytes of data from switch table
1591 * @hw:		The hardware instance.
1592 * @table:	The table selector.
1593 * @addr:	The address of the table entry.
1594 * @data:	Buffer to store the read data.
1595 *
1596 * This routine reads 4 bytes of data from the table of the switch.
1597 * Hardware interrupts are disabled to minimize corruption of read data.
1598 */
1599static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1600{
1601	u16 ctrl_addr;
1602	uint interrupt;
1603
1604	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1605
1606	interrupt = hw_block_intr(hw);
1607
1608	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1609	HW_DELAY(hw, KS884X_IACR_OFFSET);
1610	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1611
1612	hw_restore_intr(hw, interrupt);
1613}
1614
1615/**
1616 * sw_w_table_64 - write 8 bytes of data to the switch table
1617 * @hw:		The hardware instance.
1618 * @table:	The table selector.
1619 * @addr:	The address of the table entry.
1620 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1621 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1622 *
1623 * This routine writes 8 bytes of data to the table of the switch.
1624 * Hardware interrupts are disabled to minimize corruption of written data.
1625 */
1626static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1627	u32 data_lo)
1628{
1629	u16 ctrl_addr;
1630	uint interrupt;
1631
1632	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1633
1634	interrupt = hw_block_intr(hw);
1635
1636	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1637	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1638
1639	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1640	HW_DELAY(hw, KS884X_IACR_OFFSET);
1641
1642	hw_restore_intr(hw, interrupt);
1643}
1644
1645/**
1646 * sw_w_sta_mac_table - write to the static MAC table
1647 * @hw: 	The hardware instance.
1648 * @addr:	The address of the table entry.
1649 * @mac_addr:	The MAC address.
1650 * @ports:	The port members.
1651 * @override:	The flag to override the port receive/transmit settings.
1652 * @valid:	The flag to indicate entry is valid.
1653 * @use_fid:	The flag to indicate the FID is valid.
1654 * @fid:	The FID value.
1655 *
1656 * This routine writes an entry of the static MAC table of the switch.  It
1657 * calls sw_w_table_64() to write the data.
1658 */
1659static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1660	u8 ports, int override, int valid, int use_fid, u8 fid)
1661{
1662	u32 data_hi;
1663	u32 data_lo;
1664
1665	data_lo = ((u32) mac_addr[2] << 24) |
1666		((u32) mac_addr[3] << 16) |
1667		((u32) mac_addr[4] << 8) | mac_addr[5];
1668	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1669	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1670
1671	if (override)
1672		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1673	if (use_fid) {
1674		data_hi |= STATIC_MAC_TABLE_USE_FID;
1675		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1676	}
1677	if (valid)
1678		data_hi |= STATIC_MAC_TABLE_VALID;
1679
1680	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1681}
1682
1683/**
1684 * sw_r_vlan_table - read from the VLAN table
1685 * @hw: 	The hardware instance.
1686 * @addr:	The address of the table entry.
1687 * @vid:	Buffer to store the VID.
1688 * @fid:	Buffer to store the VID.
1689 * @member:	Buffer to store the port membership.
1690 *
1691 * This function reads an entry of the VLAN table of the switch.  It calls
1692 * sw_r_table() to get the data.
1693 *
1694 * Return 0 if the entry is valid; otherwise -1.
1695 */
1696static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1697	u8 *member)
1698{
1699	u32 data;
1700
1701	sw_r_table(hw, TABLE_VLAN, addr, &data);
1702	if (data & VLAN_TABLE_VALID) {
1703		*vid = (u16)(data & VLAN_TABLE_VID);
1704		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1705		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1706			VLAN_TABLE_MEMBERSHIP_SHIFT);
1707		return 0;
1708	}
1709	return -1;
1710}
1711
1712/**
1713 * port_r_mib_cnt - read MIB counter
1714 * @hw: 	The hardware instance.
1715 * @port:	The port index.
1716 * @addr:	The address of the counter.
1717 * @cnt:	Buffer to store the counter.
1718 *
1719 * This routine reads a MIB counter of the port.
1720 * Hardware interrupts are disabled to minimize corruption of read data.
1721 */
1722static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1723{
1724	u32 data;
1725	u16 ctrl_addr;
1726	uint interrupt;
1727	int timeout;
1728
1729	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1730
1731	interrupt = hw_block_intr(hw);
1732
1733	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1734	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1735	HW_DELAY(hw, KS884X_IACR_OFFSET);
1736
1737	for (timeout = 100; timeout > 0; timeout--) {
1738		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1739
1740		if (data & MIB_COUNTER_VALID) {
1741			if (data & MIB_COUNTER_OVERFLOW)
1742				*cnt += MIB_COUNTER_VALUE + 1;
1743			*cnt += data & MIB_COUNTER_VALUE;
1744			break;
1745		}
1746	}
1747
1748	hw_restore_intr(hw, interrupt);
1749}
1750
1751/**
1752 * port_r_mib_pkt - read dropped packet counts
1753 * @hw: 	The hardware instance.
1754 * @port:	The port index.
1755 * @last:	last one
1756 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1757 *
1758 * This routine reads the dropped packet counts of the port.
1759 * Hardware interrupts are disabled to minimize corruption of read data.
1760 */
1761static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1762{
1763	u32 cur;
1764	u32 data;
1765	u16 ctrl_addr;
1766	uint interrupt;
1767	int index;
1768
1769	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1770	do {
1771		interrupt = hw_block_intr(hw);
1772
1773		ctrl_addr = (u16) index;
1774		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1775			<< 8);
1776		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1777		HW_DELAY(hw, KS884X_IACR_OFFSET);
1778		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1779
1780		hw_restore_intr(hw, interrupt);
1781
1782		data &= MIB_PACKET_DROPPED;
1783		cur = *last;
1784		if (data != cur) {
1785			*last = data;
1786			if (data < cur)
1787				data += MIB_PACKET_DROPPED + 1;
1788			data -= cur;
1789			*cnt += data;
1790		}
1791		++last;
1792		++cnt;
1793		index -= KS_MIB_PACKET_DROPPED_TX -
1794			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1795	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1796}
1797
1798/**
1799 * port_r_cnt - read MIB counters periodically
1800 * @hw: 	The hardware instance.
1801 * @port:	The port index.
1802 *
1803 * This routine is used to read the counters of the port periodically to avoid
1804 * counter overflow.  The hardware should be acquired first before calling this
1805 * routine.
1806 *
1807 * Return non-zero when not all counters not read.
1808 */
1809static int port_r_cnt(struct ksz_hw *hw, int port)
1810{
1811	struct ksz_port_mib *mib = &hw->port_mib[port];
1812
1813	if (mib->mib_start < PORT_COUNTER_NUM)
1814		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1815			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1816				&mib->counter[mib->cnt_ptr]);
1817			++mib->cnt_ptr;
1818		}
1819	if (hw->mib_cnt > PORT_COUNTER_NUM)
1820		port_r_mib_pkt(hw, port, mib->dropped,
1821			&mib->counter[PORT_COUNTER_NUM]);
1822	mib->cnt_ptr = 0;
1823	return 0;
1824}
1825
1826/**
1827 * port_init_cnt - initialize MIB counter values
1828 * @hw: 	The hardware instance.
1829 * @port:	The port index.
1830 *
1831 * This routine is used to initialize all counters to zero if the hardware
1832 * cannot do it after reset.
1833 */
1834static void port_init_cnt(struct ksz_hw *hw, int port)
1835{
1836	struct ksz_port_mib *mib = &hw->port_mib[port];
1837
1838	mib->cnt_ptr = 0;
1839	if (mib->mib_start < PORT_COUNTER_NUM)
1840		do {
1841			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1842				&mib->counter[mib->cnt_ptr]);
1843			++mib->cnt_ptr;
1844		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1845	if (hw->mib_cnt > PORT_COUNTER_NUM)
1846		port_r_mib_pkt(hw, port, mib->dropped,
1847			&mib->counter[PORT_COUNTER_NUM]);
1848	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1849	mib->cnt_ptr = 0;
1850}
1851
1852/*
1853 * Port functions
1854 */
1855
1856/**
1857 * port_chk - check port register bits
1858 * @hw: 	The hardware instance.
1859 * @port:	The port index.
1860 * @offset:	The offset of the port register.
1861 * @bits:	The data bits to check.
1862 *
1863 * This function checks whether the specified bits of the port register are set
1864 * or not.
1865 *
1866 * Return 0 if the bits are not set.
1867 */
1868static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1869{
1870	u32 addr;
1871	u16 data;
1872
1873	PORT_CTRL_ADDR(port, addr);
1874	addr += offset;
1875	data = readw(hw->io + addr);
1876	return (data & bits) == bits;
1877}
1878
1879/**
1880 * port_cfg - set port register bits
1881 * @hw: 	The hardware instance.
1882 * @port:	The port index.
1883 * @offset:	The offset of the port register.
1884 * @bits:	The data bits to set.
1885 * @set:	The flag indicating whether the bits are to be set or not.
1886 *
1887 * This routine sets or resets the specified bits of the port register.
1888 */
1889static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1890	int set)
1891{
1892	u32 addr;
1893	u16 data;
1894
1895	PORT_CTRL_ADDR(port, addr);
1896	addr += offset;
1897	data = readw(hw->io + addr);
1898	if (set)
1899		data |= bits;
1900	else
1901		data &= ~bits;
1902	writew(data, hw->io + addr);
1903}
1904
1905/**
1906 * port_chk_shift - check port bit
1907 * @hw: 	The hardware instance.
1908 * @port:	The port index.
1909 * @addr:	The offset of the register.
1910 * @shift:	Number of bits to shift.
1911 *
1912 * This function checks whether the specified port is set in the register or
1913 * not.
1914 *
1915 * Return 0 if the port is not set.
1916 */
1917static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1918{
1919	u16 data;
1920	u16 bit = 1 << port;
1921
1922	data = readw(hw->io + addr);
1923	data >>= shift;
1924	return (data & bit) == bit;
1925}
1926
1927/**
1928 * port_cfg_shift - set port bit
1929 * @hw: 	The hardware instance.
1930 * @port:	The port index.
1931 * @addr:	The offset of the register.
1932 * @shift:	Number of bits to shift.
1933 * @set:	The flag indicating whether the port is to be set or not.
1934 *
1935 * This routine sets or resets the specified port in the register.
1936 */
1937static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
1938	int set)
1939{
1940	u16 data;
1941	u16 bits = 1 << port;
1942
1943	data = readw(hw->io + addr);
1944	bits <<= shift;
1945	if (set)
1946		data |= bits;
1947	else
1948		data &= ~bits;
1949	writew(data, hw->io + addr);
1950}
1951
1952/**
1953 * port_r8 - read byte from port register
1954 * @hw: 	The hardware instance.
1955 * @port:	The port index.
1956 * @offset:	The offset of the port register.
1957 * @data:	Buffer to store the data.
1958 *
1959 * This routine reads a byte from the port register.
1960 */
1961static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
1962{
1963	u32 addr;
1964
1965	PORT_CTRL_ADDR(port, addr);
1966	addr += offset;
1967	*data = readb(hw->io + addr);
1968}
1969
1970/**
1971 * port_r16 - read word from port register.
1972 * @hw: 	The hardware instance.
1973 * @port:	The port index.
1974 * @offset:	The offset of the port register.
1975 * @data:	Buffer to store the data.
1976 *
1977 * This routine reads a word from the port register.
1978 */
1979static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
1980{
1981	u32 addr;
1982
1983	PORT_CTRL_ADDR(port, addr);
1984	addr += offset;
1985	*data = readw(hw->io + addr);
1986}
1987
1988/**
1989 * port_w16 - write word to port register.
1990 * @hw: 	The hardware instance.
1991 * @port:	The port index.
1992 * @offset:	The offset of the port register.
1993 * @data:	Data to write.
1994 *
1995 * This routine writes a word to the port register.
1996 */
1997static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
1998{
1999	u32 addr;
2000
2001	PORT_CTRL_ADDR(port, addr);
2002	addr += offset;
2003	writew(data, hw->io + addr);
2004}
2005
2006/**
2007 * sw_chk - check switch register bits
2008 * @hw: 	The hardware instance.
2009 * @addr:	The address of the switch register.
2010 * @bits:	The data bits to check.
2011 *
2012 * This function checks whether the specified bits of the switch register are
2013 * set or not.
2014 *
2015 * Return 0 if the bits are not set.
2016 */
2017static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2018{
2019	u16 data;
2020
2021	data = readw(hw->io + addr);
2022	return (data & bits) == bits;
2023}
2024
2025/**
2026 * sw_cfg - set switch register bits
2027 * @hw: 	The hardware instance.
2028 * @addr:	The address of the switch register.
2029 * @bits:	The data bits to set.
2030 * @set:	The flag indicating whether the bits are to be set or not.
2031 *
2032 * This function sets or resets the specified bits of the switch register.
2033 */
2034static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2035{
2036	u16 data;
2037
2038	data = readw(hw->io + addr);
2039	if (set)
2040		data |= bits;
2041	else
2042		data &= ~bits;
2043	writew(data, hw->io + addr);
2044}
2045
2046/* Bandwidth */
2047
2048static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2049{
2050	port_cfg(hw, p,
2051		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2052}
2053
2054static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2055{
2056	return port_chk(hw, p,
2057		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2058}
2059
2060/* Driver set switch broadcast storm protection at 10% rate. */
2061#define BROADCAST_STORM_PROTECTION_RATE	10
2062
2063/* 148,800 frames * 67 ms / 100 */
2064#define BROADCAST_STORM_VALUE		9969
2065
2066/**
2067 * sw_cfg_broad_storm - configure broadcast storm threshold
2068 * @hw: 	The hardware instance.
2069 * @percent:	Broadcast storm threshold in percent of transmit rate.
2070 *
2071 * This routine configures the broadcast storm threshold of the switch.
2072 */
2073static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2074{
2075	u16 data;
2076	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2077
2078	if (value > BROADCAST_STORM_RATE)
2079		value = BROADCAST_STORM_RATE;
2080
2081	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2082	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2083	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2084	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2085}
2086
2087/**
2088 * sw_get_broad_storm - get broadcast storm threshold
2089 * @hw: 	The hardware instance.
2090 * @percent:	Buffer to store the broadcast storm threshold percentage.
2091 *
2092 * This routine retrieves the broadcast storm threshold of the switch.
2093 */
2094static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2095{
2096	int num;
2097	u16 data;
2098
2099	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2100	num = (data & BROADCAST_STORM_RATE_HI);
2101	num <<= 8;
2102	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2103	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2104	*percent = (u8) num;
2105}
2106
2107/**
2108 * sw_dis_broad_storm - disable broadstorm
2109 * @hw: 	The hardware instance.
2110 * @port:	The port index.
2111 *
2112 * This routine disables the broadcast storm limit function of the switch.
2113 */
2114static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2115{
2116	port_cfg_broad_storm(hw, port, 0);
2117}
2118
2119/**
2120 * sw_ena_broad_storm - enable broadcast storm
2121 * @hw: 	The hardware instance.
2122 * @port:	The port index.
2123 *
2124 * This routine enables the broadcast storm limit function of the switch.
2125 */
2126static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2127{
2128	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2129	port_cfg_broad_storm(hw, port, 1);
2130}
2131
2132/**
2133 * sw_init_broad_storm - initialize broadcast storm
2134 * @hw: 	The hardware instance.
2135 *
2136 * This routine initializes the broadcast storm limit function of the switch.
2137 */
2138static void sw_init_broad_storm(struct ksz_hw *hw)
2139{
2140	int port;
2141
2142	hw->ksz_switch->broad_per = 1;
2143	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2144	for (port = 0; port < TOTAL_PORT_NUM; port++)
2145		sw_dis_broad_storm(hw, port);
2146	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2147}
2148
2149/**
2150 * hw_cfg_broad_storm - configure broadcast storm
2151 * @hw: 	The hardware instance.
2152 * @percent:	Broadcast storm threshold in percent of transmit rate.
2153 *
2154 * This routine configures the broadcast storm threshold of the switch.
2155 * It is called by user functions.  The hardware should be acquired first.
2156 */
2157static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2158{
2159	if (percent > 100)
2160		percent = 100;
2161
2162	sw_cfg_broad_storm(hw, percent);
2163	sw_get_broad_storm(hw, &percent);
2164	hw->ksz_switch->broad_per = percent;
2165}
2166
2167/**
2168 * sw_dis_prio_rate - disable switch priority rate
2169 * @hw: 	The hardware instance.
2170 * @port:	The port index.
2171 *
2172 * This routine disables the priority rate function of the switch.
2173 */
2174static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2175{
2176	u32 addr;
2177
2178	PORT_CTRL_ADDR(port, addr);
2179	addr += KS8842_PORT_IN_RATE_OFFSET;
2180	writel(0, hw->io + addr);
2181}
2182
2183/**
2184 * sw_init_prio_rate - initialize switch prioirty rate
2185 * @hw: 	The hardware instance.
2186 *
2187 * This routine initializes the priority rate function of the switch.
2188 */
2189static void sw_init_prio_rate(struct ksz_hw *hw)
2190{
2191	int port;
2192	int prio;
2193	struct ksz_switch *sw = hw->ksz_switch;
2194
2195	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2196		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2197			sw->port_cfg[port].rx_rate[prio] =
2198			sw->port_cfg[port].tx_rate[prio] = 0;
2199		}
2200		sw_dis_prio_rate(hw, port);
2201	}
2202}
2203
2204/* Communication */
2205
2206static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2207{
2208	port_cfg(hw, p,
2209		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2210}
2211
2212static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2213{
2214	port_cfg(hw, p,
2215		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2216}
2217
2218static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2219{
2220	return port_chk(hw, p,
2221		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2222}
2223
2224static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2225{
2226	return port_chk(hw, p,
2227		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2228}
2229
2230/* Spanning Tree */
2231
2232static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2233{
2234	port_cfg(hw, p,
2235		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2236}
2237
2238static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2239{
2240	port_cfg(hw, p,
2241		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2242}
2243
2244static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2245{
2246	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2247}
2248
2249static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2250{
2251	if (!(hw->overrides & FAST_AGING)) {
2252		sw_cfg_fast_aging(hw, 1);
2253		mdelay(1);
2254		sw_cfg_fast_aging(hw, 0);
2255	}
2256}
2257
2258/* VLAN */
2259
2260static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2261{
2262	port_cfg(hw, p,
2263		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2264}
2265
2266static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2267{
2268	port_cfg(hw, p,
2269		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2270}
2271
2272static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2273{
2274	return port_chk(hw, p,
2275		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2276}
2277
2278static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2279{
2280	return port_chk(hw, p,
2281		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2282}
2283
2284static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2285{
2286	port_cfg(hw, p,
2287		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2288}
2289
2290static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2291{
2292	port_cfg(hw, p,
2293		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2294}
2295
2296static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2297{
2298	return port_chk(hw, p,
2299		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2300}
2301
2302static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2303{
2304	return port_chk(hw, p,
2305		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2306}
2307
2308/* Mirroring */
2309
2310static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2311{
2312	port_cfg(hw, p,
2313		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2314}
2315
2316static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2317{
2318	port_cfg(hw, p,
2319		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2320}
2321
2322static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2323{
2324	port_cfg(hw, p,
2325		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2326}
2327
2328static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2329{
2330	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2331}
2332
2333static void sw_init_mirror(struct ksz_hw *hw)
2334{
2335	int port;
2336
2337	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2338		port_cfg_mirror_sniffer(hw, port, 0);
2339		port_cfg_mirror_rx(hw, port, 0);
2340		port_cfg_mirror_tx(hw, port, 0);
2341	}
2342	sw_cfg_mirror_rx_tx(hw, 0);
2343}
2344
2345static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2346{
2347	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2348		SWITCH_UNK_DEF_PORT_ENABLE, set);
2349}
2350
2351static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2352{
2353	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2354		SWITCH_UNK_DEF_PORT_ENABLE);
2355}
2356
2357static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2358{
2359	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2360}
2361
2362static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2363{
2364	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2365}
2366
2367/* Priority */
2368
2369static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2370{
2371	port_cfg(hw, p,
2372		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2373}
2374
2375static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2376{
2377	port_cfg(hw, p,
2378		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2379}
2380
2381static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2382{
2383	port_cfg(hw, p,
2384		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2385}
2386
2387static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2388{
2389	port_cfg(hw, p,
2390		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2391}
2392
2393static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2394{
2395	return port_chk(hw, p,
2396		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2397}
2398
2399static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2400{
2401	return port_chk(hw, p,
2402		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2403}
2404
2405static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2406{
2407	return port_chk(hw, p,
2408		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2409}
2410
2411static inline int port_chk_prio(struct ksz_hw *hw, int p)
2412{
2413	return port_chk(hw, p,
2414		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2415}
2416
2417/**
2418 * sw_dis_diffserv - disable switch DiffServ priority
2419 * @hw: 	The hardware instance.
2420 * @port:	The port index.
2421 *
2422 * This routine disables the DiffServ priority function of the switch.
2423 */
2424static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2425{
2426	port_cfg_diffserv(hw, port, 0);
2427}
2428
2429/**
2430 * sw_dis_802_1p - disable switch 802.1p priority
2431 * @hw: 	The hardware instance.
2432 * @port:	The port index.
2433 *
2434 * This routine disables the 802.1p priority function of the switch.
2435 */
2436static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2437{
2438	port_cfg_802_1p(hw, port, 0);
2439}
2440
2441/**
2442 * sw_cfg_replace_null_vid -
2443 * @hw: 	The hardware instance.
2444 * @set:	The flag to disable or enable.
2445 *
2446 */
2447static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2448{
2449	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2450}
2451
2452/**
2453 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2454 * @hw: 	The hardware instance.
2455 * @port:	The port index.
2456 * @set:	The flag to disable or enable.
2457 *
2458 * This routine enables the 802.1p priority re-mapping function of the switch.
2459 * That allows 802.1p priority field to be replaced with the port's default
2460 * tag's priority value if the ingress packet's 802.1p priority has a higher
2461 * priority than port's default tag's priority.
2462 */
2463static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2464{
2465	port_cfg_replace_vid(hw, port, set);
2466}
2467
2468/**
2469 * sw_cfg_port_based - configure switch port based priority
2470 * @hw: 	The hardware instance.
2471 * @port:	The port index.
2472 * @prio:	The priority to set.
2473 *
2474 * This routine configures the port based priority of the switch.
2475 */
2476static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2477{
2478	u16 data;
2479
2480	if (prio > PORT_BASED_PRIORITY_BASE)
2481		prio = PORT_BASED_PRIORITY_BASE;
2482
2483	hw->ksz_switch->port_cfg[port].port_prio = prio;
2484
2485	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2486	data &= ~PORT_BASED_PRIORITY_MASK;
2487	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2488	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2489}
2490
2491/**
2492 * sw_dis_multi_queue - disable transmit multiple queues
2493 * @hw: 	The hardware instance.
2494 * @port:	The port index.
2495 *
2496 * This routine disables the transmit multiple queues selection of the switch
2497 * port.  Only single transmit queue on the port.
2498 */
2499static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2500{
2501	port_cfg_prio(hw, port, 0);
2502}
2503
2504/**
2505 * sw_init_prio - initialize switch priority
2506 * @hw: 	The hardware instance.
2507 *
2508 * This routine initializes the switch QoS priority functions.
2509 */
2510static void sw_init_prio(struct ksz_hw *hw)
2511{
2512	int port;
2513	int tos;
2514	struct ksz_switch *sw = hw->ksz_switch;
2515
2516	/*
2517	 * Init all the 802.1p tag priority value to be assigned to different
2518	 * priority queue.
2519	 */
2520	sw->p_802_1p[0] = 0;
2521	sw->p_802_1p[1] = 0;
2522	sw->p_802_1p[2] = 1;
2523	sw->p_802_1p[3] = 1;
2524	sw->p_802_1p[4] = 2;
2525	sw->p_802_1p[5] = 2;
2526	sw->p_802_1p[6] = 3;
2527	sw->p_802_1p[7] = 3;
2528
2529	/*
2530	 * Init all the DiffServ priority value to be assigned to priority
2531	 * queue 0.
2532	 */
2533	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2534		sw->diffserv[tos] = 0;
2535
2536	/* All QoS functions disabled. */
2537	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2538		sw_dis_multi_queue(hw, port);
2539		sw_dis_diffserv(hw, port);
2540		sw_dis_802_1p(hw, port);
2541		sw_cfg_replace_vid(hw, port, 0);
2542
2543		sw->port_cfg[port].port_prio = 0;
2544		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2545	}
2546	sw_cfg_replace_null_vid(hw, 0);
2547}
2548
2549/**
2550 * port_get_def_vid - get port default VID.
2551 * @hw: 	The hardware instance.
2552 * @port:	The port index.
2553 * @vid:	Buffer to store the VID.
2554 *
2555 * This routine retrieves the default VID of the port.
2556 */
2557static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2558{
2559	u32 addr;
2560
2561	PORT_CTRL_ADDR(port, addr);
2562	addr += KS8842_PORT_CTRL_VID_OFFSET;
2563	*vid = readw(hw->io + addr);
2564}
2565
2566/**
2567 * sw_init_vlan - initialize switch VLAN
2568 * @hw: 	The hardware instance.
2569 *
2570 * This routine initializes the VLAN function of the switch.
2571 */
2572static void sw_init_vlan(struct ksz_hw *hw)
2573{
2574	int port;
2575	int entry;
2576	struct ksz_switch *sw = hw->ksz_switch;
2577
2578	/* Read 16 VLAN entries from device's VLAN table. */
2579	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2580		sw_r_vlan_table(hw, entry,
2581			&sw->vlan_table[entry].vid,
2582			&sw->vlan_table[entry].fid,
2583			&sw->vlan_table[entry].member);
2584	}
2585
2586	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2587		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2588		sw->port_cfg[port].member = PORT_MASK;
2589	}
2590}
2591
2592/**
2593 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2594 * @hw: 	The hardware instance.
2595 * @port:	The port index.
2596 * @member:	The port-based VLAN membership.
2597 *
2598 * This routine configures the port-based VLAN membership of the port.
2599 */
2600static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2601{
2602	u32 addr;
2603	u8 data;
2604
2605	PORT_CTRL_ADDR(port, addr);
2606	addr += KS8842_PORT_CTRL_2_OFFSET;
2607
2608	data = readb(hw->io + addr);
2609	data &= ~PORT_VLAN_MEMBERSHIP;
2610	data |= (member & PORT_MASK);
2611	writeb(data, hw->io + addr);
2612
2613	hw->ksz_switch->port_cfg[port].member = member;
2614}
2615
2616/**
2617 * sw_get_addr - get the switch MAC address.
2618 * @hw: 	The hardware instance.
2619 * @mac_addr:	Buffer to store the MAC address.
2620 *
2621 * This function retrieves the MAC address of the switch.
2622 */
2623static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2624{
2625	int i;
2626
2627	for (i = 0; i < 6; i += 2) {
2628		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2629		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2630	}
2631}
2632
2633/**
2634 * sw_set_addr - configure switch MAC address
2635 * @hw: 	The hardware instance.
2636 * @mac_addr:	The MAC address.
2637 *
2638 * This function configures the MAC address of the switch.
2639 */
2640static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2641{
2642	int i;
2643
2644	for (i = 0; i < 6; i += 2) {
2645		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2646		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2647	}
2648}
2649
2650/**
2651 * sw_set_global_ctrl - set switch global control
2652 * @hw: 	The hardware instance.
2653 *
2654 * This routine sets the global control of the switch function.
2655 */
2656static void sw_set_global_ctrl(struct ksz_hw *hw)
2657{
2658	u16 data;
2659
2660	/* Enable switch MII flow control. */
2661	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2662	data |= SWITCH_FLOW_CTRL;
2663	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2664
2665	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2666
2667	/* Enable aggressive back off algorithm in half duplex mode. */
2668	data |= SWITCH_AGGR_BACKOFF;
2669
2670	/* Enable automatic fast aging when link changed detected. */
2671	data |= SWITCH_AGING_ENABLE;
2672	data |= SWITCH_LINK_AUTO_AGING;
2673
2674	if (hw->overrides & FAST_AGING)
2675		data |= SWITCH_FAST_AGING;
2676	else
2677		data &= ~SWITCH_FAST_AGING;
2678	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2679
2680	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2681
2682	/* Enable no excessive collision drop. */
2683	data |= NO_EXC_COLLISION_DROP;
2684	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2685}
2686
2687enum {
2688	STP_STATE_DISABLED = 0,
2689	STP_STATE_LISTENING,
2690	STP_STATE_LEARNING,
2691	STP_STATE_FORWARDING,
2692	STP_STATE_BLOCKED,
2693	STP_STATE_SIMPLE
2694};
2695
2696/**
2697 * port_set_stp_state - configure port spanning tree state
2698 * @hw: 	The hardware instance.
2699 * @port:	The port index.
2700 * @state:	The spanning tree state.
2701 *
2702 * This routine configures the spanning tree state of the port.
2703 */
2704static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2705{
2706	u16 data;
2707
2708	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2709	switch (state) {
2710	case STP_STATE_DISABLED:
2711		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2712		data |= PORT_LEARN_DISABLE;
2713		break;
2714	case STP_STATE_LISTENING:
2715/*
2716 * No need to turn on transmit because of port direct mode.
2717 * Turning on receive is required if static MAC table is not setup.
2718 */
2719		data &= ~PORT_TX_ENABLE;
2720		data |= PORT_RX_ENABLE;
2721		data |= PORT_LEARN_DISABLE;
2722		break;
2723	case STP_STATE_LEARNING:
2724		data &= ~PORT_TX_ENABLE;
2725		data |= PORT_RX_ENABLE;
2726		data &= ~PORT_LEARN_DISABLE;
2727		break;
2728	case STP_STATE_FORWARDING:
2729		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2730		data &= ~PORT_LEARN_DISABLE;
2731		break;
2732	case STP_STATE_BLOCKED:
2733/*
2734 * Need to setup static MAC table with override to keep receiving BPDU
2735 * messages.  See sw_init_stp routine.
2736 */
2737		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2738		data |= PORT_LEARN_DISABLE;
2739		break;
2740	case STP_STATE_SIMPLE:
2741		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2742		data |= PORT_LEARN_DISABLE;
2743		break;
2744	}
2745	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2746	hw->ksz_switch->port_cfg[port].stp_state = state;
2747}
2748
2749#define STP_ENTRY			0
2750#define BROADCAST_ENTRY			1
2751#define BRIDGE_ADDR_ENTRY		2
2752#define IPV6_ADDR_ENTRY			3
2753
2754/**
2755 * sw_clr_sta_mac_table - clear static MAC table
2756 * @hw: 	The hardware instance.
2757 *
2758 * This routine clears the static MAC table.
2759 */
2760static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2761{
2762	struct ksz_mac_table *entry;
2763	int i;
2764
2765	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2766		entry = &hw->ksz_switch->mac_table[i];
2767		sw_w_sta_mac_table(hw, i,
2768			entry->mac_addr, entry->ports,
2769			entry->override, 0,
2770			entry->use_fid, entry->fid);
2771	}
2772}
2773
2774/**
2775 * sw_init_stp - initialize switch spanning tree support
2776 * @hw: 	The hardware instance.
2777 *
2778 * This routine initializes the spanning tree support of the switch.
2779 */
2780static void sw_init_stp(struct ksz_hw *hw)
2781{
2782	struct ksz_mac_table *entry;
2783
2784	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2785	entry->mac_addr[0] = 0x01;
2786	entry->mac_addr[1] = 0x80;
2787	entry->mac_addr[2] = 0xC2;
2788	entry->mac_addr[3] = 0x00;
2789	entry->mac_addr[4] = 0x00;
2790	entry->mac_addr[5] = 0x00;
2791	entry->ports = HOST_MASK;
2792	entry->override = 1;
2793	entry->valid = 1;
2794	sw_w_sta_mac_table(hw, STP_ENTRY,
2795		entry->mac_addr, entry->ports,
2796		entry->override, entry->valid,
2797		entry->use_fid, entry->fid);
2798}
2799
2800/**
2801 * sw_block_addr - block certain packets from the host port
2802 * @hw: 	The hardware instance.
2803 *
2804 * This routine blocks certain packets from reaching to the host port.
2805 */
2806static void sw_block_addr(struct ksz_hw *hw)
2807{
2808	struct ksz_mac_table *entry;
2809	int i;
2810
2811	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2812		entry = &hw->ksz_switch->mac_table[i];
2813		entry->valid = 0;
2814		sw_w_sta_mac_table(hw, i,
2815			entry->mac_addr, entry->ports,
2816			entry->override, entry->valid,
2817			entry->use_fid, entry->fid);
2818	}
2819}
2820
2821static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2822{
2823	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2824}
2825
2826static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2827{
2828	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2829}
2830
2831static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2832{
2833	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2834}
2835
2836static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2837{
2838	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2839}
2840
2841static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2842{
2843	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2844}
2845
2846static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2847{
2848	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2849}
2850
2851static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2852{
2853	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2854}
2855
2856static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2857{
2858	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2859}
2860
2861static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2862{
2863	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2864}
2865
2866static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2867{
2868	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2869}
2870
2871static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2872{
2873	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2874}
2875
2876static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2877{
2878	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2879}
2880
2881/**
2882 * hw_r_phy - read data from PHY register
2883 * @hw: 	The hardware instance.
2884 * @port:	Port to read.
2885 * @reg:	PHY register to read.
2886 * @val:	Buffer to store the read data.
2887 *
2888 * This routine reads data from the PHY register.
2889 */
2890static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2891{
2892	int phy;
2893
2894	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2895	*val = readw(hw->io + phy);
2896}
2897
2898/**
2899 * hw_w_phy - write data to PHY register
2900 * @hw: 	The hardware instance.
2901 * @port:	Port to write.
2902 * @reg:	PHY register to write.
2903 * @val:	Word data to write.
2904 *
2905 * This routine writes data to the PHY register.
2906 */
2907static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2908{
2909	int phy;
2910
2911	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2912	writew(val, hw->io + phy);
2913}
2914
2915/*
2916 * EEPROM access functions
2917 */
2918
2919#define AT93C_CODE			0
2920#define AT93C_WR_OFF			0x00
2921#define AT93C_WR_ALL			0x10
2922#define AT93C_ER_ALL			0x20
2923#define AT93C_WR_ON			0x30
2924
2925#define AT93C_WRITE			1
2926#define AT93C_READ			2
2927#define AT93C_ERASE			3
2928
2929#define EEPROM_DELAY			4
2930
2931static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
2932{
2933	u16 data;
2934
2935	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2936	data &= ~gpio;
2937	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2938}
2939
2940static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
2941{
2942	u16 data;
2943
2944	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2945	data |= gpio;
2946	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2947}
2948
2949static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
2950{
2951	u16 data;
2952
2953	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2954	return (u8)(data & gpio);
2955}
2956
2957static void eeprom_clk(struct ksz_hw *hw)
2958{
2959	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2960	udelay(EEPROM_DELAY);
2961	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2962	udelay(EEPROM_DELAY);
2963}
2964
2965static u16 spi_r(struct ksz_hw *hw)
2966{
2967	int i;
2968	u16 temp = 0;
2969
2970	for (i = 15; i >= 0; i--) {
2971		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2972		udelay(EEPROM_DELAY);
2973
2974		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
2975
2976		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2977		udelay(EEPROM_DELAY);
2978	}
2979	return temp;
2980}
2981
2982static void spi_w(struct ksz_hw *hw, u16 data)
2983{
2984	int i;
2985
2986	for (i = 15; i >= 0; i--) {
2987		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2988			drop_gpio(hw, EEPROM_DATA_OUT);
2989		eeprom_clk(hw);
2990	}
2991}
2992
2993static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
2994{
2995	int i;
2996
2997	/* Initial start bit */
2998	raise_gpio(hw, EEPROM_DATA_OUT);
2999	eeprom_clk(hw);
3000
3001	/* AT93C operation */
3002	for (i = 1; i >= 0; i--) {
3003		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3004			drop_gpio(hw, EEPROM_DATA_OUT);
3005		eeprom_clk(hw);
3006	}
3007
3008	/* Address location */
3009	for (i = 5; i >= 0; i--) {
3010		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3011			drop_gpio(hw, EEPROM_DATA_OUT);
3012		eeprom_clk(hw);
3013	}
3014}
3015
3016#define EEPROM_DATA_RESERVED		0
3017#define EEPROM_DATA_MAC_ADDR_0		1
3018#define EEPROM_DATA_MAC_ADDR_1		2
3019#define EEPROM_DATA_MAC_ADDR_2		3
3020#define EEPROM_DATA_SUBSYS_ID		4
3021#define EEPROM_DATA_SUBSYS_VEN_ID	5
3022#define EEPROM_DATA_PM_CAP		6
3023
3024/* User defined EEPROM data */
3025#define EEPROM_DATA_OTHER_MAC_ADDR	9
3026
3027/**
3028 * eeprom_read - read from AT93C46 EEPROM
3029 * @hw: 	The hardware instance.
3030 * @reg:	The register offset.
3031 *
3032 * This function reads a word from the AT93C46 EEPROM.
3033 *
3034 * Return the data value.
3035 */
3036static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3037{
3038	u16 data;
3039
3040	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3041
3042	spi_reg(hw, AT93C_READ, reg);
3043	data = spi_r(hw);
3044
3045	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3046
3047	return data;
3048}
3049
3050/**
3051 * eeprom_write - write to AT93C46 EEPROM
3052 * @hw: 	The hardware instance.
3053 * @reg:	The register offset.
3054 * @data:	The data value.
3055 *
3056 * This procedure writes a word to the AT93C46 EEPROM.
3057 */
3058static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3059{
3060	int timeout;
3061
3062	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3063
3064	/* Enable write. */
3065	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3066	drop_gpio(hw, EEPROM_CHIP_SELECT);
3067	udelay(1);
3068
3069	/* Erase the register. */
3070	raise_gpio(hw, EEPROM_CHIP_SELECT);
3071	spi_reg(hw, AT93C_ERASE, reg);
3072	drop_gpio(hw, EEPROM_CHIP_SELECT);
3073	udelay(1);
3074
3075	/* Check operation complete. */
3076	raise_gpio(hw, EEPROM_CHIP_SELECT);
3077	timeout = 8;
3078	mdelay(2);
3079	do {
3080		mdelay(1);
3081	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3082	drop_gpio(hw, EEPROM_CHIP_SELECT);
3083	udelay(1);
3084
3085	/* Write the register. */
3086	raise_gpio(hw, EEPROM_CHIP_SELECT);
3087	spi_reg(hw, AT93C_WRITE, reg);
3088	spi_w(hw, data);
3089	drop_gpio(hw, EEPROM_CHIP_SELECT);
3090	udelay(1);
3091
3092	/* Check operation complete. */
3093	raise_gpio(hw, EEPROM_CHIP_SELECT);
3094	timeout = 8;
3095	mdelay(2);
3096	do {
3097		mdelay(1);
3098	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3099	drop_gpio(hw, EEPROM_CHIP_SELECT);
3100	udelay(1);
3101
3102	/* Disable write. */
3103	raise_gpio(hw, EEPROM_CHIP_SELECT);
3104	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3105
3106	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3107}
3108
3109/*
3110 * Link detection routines
3111 */
3112
3113static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3114{
3115	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3116	switch (port->flow_ctrl) {
3117	case PHY_FLOW_CTRL:
3118		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3119		break;
3120	/* Not supported. */
3121	case PHY_TX_ONLY:
3122	case PHY_RX_ONLY:
3123	default:
3124		break;
3125	}
3126	return ctrl;
3127}
3128
3129static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3130{
3131	u32 rx_cfg;
3132	u32 tx_cfg;
3133
3134	rx_cfg = hw->rx_cfg;
3135	tx_cfg = hw->tx_cfg;
3136	if (rx)
3137		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3138	else
3139		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3140	if (tx)
3141		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3142	else
3143		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3144	if (hw->enabled) {
3145		if (rx_cfg != hw->rx_cfg)
3146			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3147		if (tx_cfg != hw->tx_cfg)
3148			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3149	}
3150}
3151
3152static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3153	u16 local, u16 remote)
3154{
3155	int rx;
3156	int tx;
3157
3158	if (hw->overrides & PAUSE_FLOW_CTRL)
3159		return;
3160
3161	rx = tx = 0;
3162	if (port->force_link)
3163		rx = tx = 1;
3164	if (remote & LPA_PAUSE_CAP) {
3165		if (local & ADVERTISE_PAUSE_CAP) {
3166			rx = tx = 1;
3167		} else if ((remote & LPA_PAUSE_ASYM) &&
3168			   (local &
3169			    (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) ==
3170			   ADVERTISE_PAUSE_ASYM) {
3171			tx = 1;
3172		}
3173	} else if (remote & LPA_PAUSE_ASYM) {
3174		if ((local & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
3175		    == (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
3176			rx = 1;
3177	}
3178	if (!hw->ksz_switch)
3179		set_flow_ctrl(hw, rx, tx);
3180}
3181
3182static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3183	struct ksz_port_info *info, u16 link_status)
3184{
3185	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3186			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3187		u32 cfg = hw->tx_cfg;
3188
3189		/* Disable flow control in the half duplex mode. */
3190		if (1 == info->duplex)
3191			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3192		if (hw->enabled && cfg != hw->tx_cfg)
3193			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3194	}
3195}
3196
3197/**
3198 * port_get_link_speed - get current link status
3199 * @port: 	The port instance.
3200 *
3201 * This routine reads PHY registers to determine the current link status of the
3202 * switch ports.
3203 */
3204static void port_get_link_speed(struct ksz_port *port)
3205{
3206	uint interrupt;
3207	struct ksz_port_info *info;
3208	struct ksz_port_info *linked = NULL;
3209	struct ksz_hw *hw = port->hw;
3210	u16 data;
3211	u16 status;
3212	u8 local;
3213	u8 remote;
3214	int i;
3215	int p;
3216	int change = 0;
3217
3218	interrupt = hw_block_intr(hw);
3219
3220	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3221		info = &hw->port_info[p];
3222		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3223		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3224
3225		/*
3226		 * Link status is changing all the time even when there is no
3227		 * cable connection!
3228		 */
3229		remote = status & (PORT_AUTO_NEG_COMPLETE |
3230			PORT_STATUS_LINK_GOOD);
3231		local = (u8) data;
3232
3233		/* No change to status. */
3234		if (local == info->advertised && remote == info->partner)
3235			continue;
3236
3237		info->advertised = local;
3238		info->partner = remote;
3239		if (status & PORT_STATUS_LINK_GOOD) {
3240
3241			/* Remember the first linked port. */
3242			if (!linked)
3243				linked = info;
3244
3245			info->tx_rate = 10 * TX_RATE_UNIT;
3246			if (status & PORT_STATUS_SPEED_100MBIT)
3247				info->tx_rate = 100 * TX_RATE_UNIT;
3248
3249			info->duplex = 1;
3250			if (status & PORT_STATUS_FULL_DUPLEX)
3251				info->duplex = 2;
3252
3253			if (media_connected != info->state) {
3254				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3255					&data);
3256				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3257					&status);
3258				determine_flow_ctrl(hw, port, data, status);
3259				if (hw->ksz_switch) {
3260					port_cfg_back_pressure(hw, p,
3261						(1 == info->duplex));
3262				}
3263				change |= 1 << i;
3264				port_cfg_change(hw, port, info, status);
3265			}
3266			info->state = media_connected;
3267		} else {
3268			if (media_disconnected != info->state) {
3269				change |= 1 << i;
 
3270
3271				/* Indicate the link just goes down. */
3272				hw->port_mib[p].link_down = 1;
3273			}
3274			info->state = media_disconnected;
3275		}
3276		hw->port_mib[p].state = (u8) info->state;
3277	}
3278
3279	if (linked && media_disconnected == port->linked->state)
3280		port->linked = linked;
3281
3282	hw_restore_intr(hw, interrupt);
3283}
3284
3285#define PHY_RESET_TIMEOUT		10
3286
3287/**
3288 * port_set_link_speed - set port speed
3289 * @port: 	The port instance.
3290 *
3291 * This routine sets the link speed of the switch ports.
3292 */
3293static void port_set_link_speed(struct ksz_port *port)
3294{
3295	struct ksz_hw *hw = port->hw;
3296	u16 data;
3297	u16 cfg;
3298	u8 status;
3299	int i;
3300	int p;
3301
3302	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3303		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305
3306		cfg = 0;
3307		if (status & PORT_STATUS_LINK_GOOD)
3308			cfg = data;
3309
3310		data |= PORT_AUTO_NEG_ENABLE;
3311		data = advertised_flow_ctrl(port, data);
3312
3313		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3314			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3315
3316		/* Check if manual configuration is specified by the user. */
3317		if (port->speed || port->duplex) {
3318			if (10 == port->speed)
3319				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3320					PORT_AUTO_NEG_100BTX);
3321			else if (100 == port->speed)
3322				data &= ~(PORT_AUTO_NEG_10BT_FD |
3323					PORT_AUTO_NEG_10BT);
3324			if (1 == port->duplex)
3325				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3326					PORT_AUTO_NEG_10BT_FD);
3327			else if (2 == port->duplex)
3328				data &= ~(PORT_AUTO_NEG_100BTX |
3329					PORT_AUTO_NEG_10BT);
3330		}
3331		if (data != cfg) {
3332			data |= PORT_AUTO_NEG_RESTART;
3333			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3334		}
3335	}
3336}
3337
3338/**
3339 * port_force_link_speed - force port speed
3340 * @port: 	The port instance.
3341 *
3342 * This routine forces the link speed of the switch ports.
3343 */
3344static void port_force_link_speed(struct ksz_port *port)
3345{
3346	struct ksz_hw *hw = port->hw;
3347	u16 data;
3348	int i;
3349	int phy;
3350	int p;
3351
3352	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3353		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3354		hw_r_phy_ctrl(hw, phy, &data);
3355
3356		data &= ~BMCR_ANENABLE;
3357
3358		if (10 == port->speed)
3359			data &= ~BMCR_SPEED100;
3360		else if (100 == port->speed)
3361			data |= BMCR_SPEED100;
3362		if (1 == port->duplex)
3363			data &= ~BMCR_FULLDPLX;
3364		else if (2 == port->duplex)
3365			data |= BMCR_FULLDPLX;
3366		hw_w_phy_ctrl(hw, phy, data);
3367	}
3368}
3369
3370static void port_set_power_saving(struct ksz_port *port, int enable)
3371{
3372	struct ksz_hw *hw = port->hw;
3373	int i;
3374	int p;
3375
3376	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3377		port_cfg(hw, p,
3378			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3379}
3380
3381/*
3382 * KSZ8841 power management functions
3383 */
3384
3385/**
3386 * hw_chk_wol_pme_status - check PMEN pin
3387 * @hw: 	The hardware instance.
3388 *
3389 * This function is used to check PMEN pin is asserted.
3390 *
3391 * Return 1 if PMEN pin is asserted; otherwise, 0.
3392 */
3393static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3394{
3395	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3396	struct pci_dev *pdev = hw_priv->pdev;
3397	u16 data;
3398
3399	if (!pdev->pm_cap)
3400		return 0;
3401	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3402	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3403}
3404
3405/**
3406 * hw_clr_wol_pme_status - clear PMEN pin
3407 * @hw: 	The hardware instance.
3408 *
3409 * This routine is used to clear PME_Status to deassert PMEN pin.
3410 */
3411static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3412{
3413	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3414	struct pci_dev *pdev = hw_priv->pdev;
3415	u16 data;
3416
3417	if (!pdev->pm_cap)
3418		return;
3419
3420	/* Clear PME_Status to deassert PMEN pin. */
3421	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3422	data |= PCI_PM_CTRL_PME_STATUS;
3423	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3424}
3425
3426/**
3427 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3428 * @hw: 	The hardware instance.
3429 * @set:	The flag indicating whether to enable or disable.
3430 *
3431 * This routine is used to enable or disable Wake-on-LAN.
3432 */
3433static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3434{
3435	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3436	struct pci_dev *pdev = hw_priv->pdev;
3437	u16 data;
3438
3439	if (!pdev->pm_cap)
3440		return;
3441	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3442	data &= ~PCI_PM_CTRL_STATE_MASK;
3443	if (set)
3444		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3445	else
3446		data &= ~PCI_PM_CTRL_PME_ENABLE;
3447	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3448}
3449
3450/**
3451 * hw_cfg_wol - configure Wake-on-LAN features
3452 * @hw: 	The hardware instance.
3453 * @frame:	The pattern frame bit.
3454 * @set:	The flag indicating whether to enable or disable.
3455 *
3456 * This routine is used to enable or disable certain Wake-on-LAN features.
3457 */
3458static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3459{
3460	u16 data;
3461
3462	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3463	if (set)
3464		data |= frame;
3465	else
3466		data &= ~frame;
3467	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3468}
3469
3470/**
3471 * hw_set_wol_frame - program Wake-on-LAN pattern
3472 * @hw: 	The hardware instance.
3473 * @i:		The frame index.
3474 * @mask_size:	The size of the mask.
3475 * @mask:	Mask to ignore certain bytes in the pattern.
3476 * @frame_size:	The size of the frame.
3477 * @pattern:	The frame data.
3478 *
3479 * This routine is used to program Wake-on-LAN pattern.
3480 */
3481static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3482	const u8 *mask, uint frame_size, const u8 *pattern)
3483{
3484	int bits;
3485	int from;
3486	int len;
3487	int to;
3488	u32 crc;
3489	u8 data[64];
3490	u8 val = 0;
3491
3492	if (frame_size > mask_size * 8)
3493		frame_size = mask_size * 8;
3494	if (frame_size > 64)
3495		frame_size = 64;
3496
3497	i *= 0x10;
3498	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3499	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3500
3501	bits = len = from = to = 0;
3502	do {
3503		if (bits) {
3504			if ((val & 1))
3505				data[to++] = pattern[from];
3506			val >>= 1;
3507			++from;
3508			--bits;
3509		} else {
3510			val = mask[len];
3511			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3512				+ len);
3513			++len;
3514			if (val)
3515				bits = 8;
3516			else
3517				from += 8;
3518		}
3519	} while (from < (int) frame_size);
3520	if (val) {
3521		bits = mask[len - 1];
3522		val <<= (from % 8);
3523		bits &= ~val;
3524		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3525			1);
3526	}
3527	crc = ether_crc(to, data);
3528	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3529}
3530
3531/**
3532 * hw_add_wol_arp - add ARP pattern
3533 * @hw: 	The hardware instance.
3534 * @ip_addr:	The IPv4 address assigned to the device.
3535 *
3536 * This routine is used to add ARP pattern for waking up the host.
3537 */
3538static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3539{
3540	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3541	u8 pattern[42] = {
3542		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3543		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3544		0x08, 0x06,
3545		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3546		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3547		0x00, 0x00, 0x00, 0x00,
3548		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3549		0x00, 0x00, 0x00, 0x00 };
3550
3551	memcpy(&pattern[38], ip_addr, 4);
3552	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3553}
3554
3555/**
3556 * hw_add_wol_bcast - add broadcast pattern
3557 * @hw: 	The hardware instance.
3558 *
3559 * This routine is used to add broadcast pattern for waking up the host.
3560 */
3561static void hw_add_wol_bcast(struct ksz_hw *hw)
3562{
3563	static const u8 mask[] = { 0x3F };
3564	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3565
3566	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3567}
3568
3569/**
3570 * hw_add_wol_mcast - add multicast pattern
3571 * @hw: 	The hardware instance.
3572 *
3573 * This routine is used to add multicast pattern for waking up the host.
3574 *
3575 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3576 * by IPv6 ping command.  Note that multicast packets are filtred through the
3577 * multicast hash table, so not all multicast packets can wake up the host.
3578 */
3579static void hw_add_wol_mcast(struct ksz_hw *hw)
3580{
3581	static const u8 mask[] = { 0x3F };
3582	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3583
3584	memcpy(&pattern[3], &hw->override_addr[3], 3);
3585	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3586}
3587
3588/**
3589 * hw_add_wol_ucast - add unicast pattern
3590 * @hw: 	The hardware instance.
3591 *
3592 * This routine is used to add unicast pattern to wakeup the host.
3593 *
3594 * It is assumed the unicast packet is directed to the device, as the hardware
3595 * can only receive them in normal case.
3596 */
3597static void hw_add_wol_ucast(struct ksz_hw *hw)
3598{
3599	static const u8 mask[] = { 0x3F };
3600
3601	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3602}
3603
3604/**
3605 * hw_enable_wol - enable Wake-on-LAN
3606 * @hw: 	The hardware instance.
3607 * @wol_enable:	The Wake-on-LAN settings.
3608 * @net_addr:	The IPv4 address assigned to the device.
3609 *
3610 * This routine is used to enable Wake-on-LAN depending on driver settings.
3611 */
3612static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3613{
3614	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3615	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3616	hw_add_wol_ucast(hw);
3617	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3618	hw_add_wol_mcast(hw);
3619	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3620	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3621	hw_add_wol_arp(hw, net_addr);
3622}
3623
3624/**
3625 * hw_init - check driver is correct for the hardware
3626 * @hw: 	The hardware instance.
3627 *
3628 * This function checks the hardware is correct for this driver and sets the
3629 * hardware up for proper initialization.
3630 *
3631 * Return number of ports or 0 if not right.
3632 */
3633static int hw_init(struct ksz_hw *hw)
3634{
3635	int rc = 0;
3636	u16 data;
3637	u16 revision;
3638
3639	/* Set bus speed to 125MHz. */
3640	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3641
3642	/* Check KSZ884x chip ID. */
3643	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3644
3645	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3646	data &= KS884X_CHIP_ID_MASK_41;
3647	if (REG_CHIP_ID_41 == data)
3648		rc = 1;
3649	else if (REG_CHIP_ID_42 == data)
3650		rc = 2;
3651	else
3652		return 0;
3653
3654	/* Setup hardware features or bug workarounds. */
3655	if (revision <= 1) {
3656		hw->features |= SMALL_PACKET_TX_BUG;
3657		if (1 == rc)
3658			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3659	}
3660	return rc;
3661}
3662
3663/**
3664 * hw_reset - reset the hardware
3665 * @hw: 	The hardware instance.
3666 *
3667 * This routine resets the hardware.
3668 */
3669static void hw_reset(struct ksz_hw *hw)
3670{
3671	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3672
3673	/* Wait for device to reset. */
3674	mdelay(10);
3675
3676	/* Write 0 to clear device reset. */
3677	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3678}
3679
3680/**
3681 * hw_setup - setup the hardware
3682 * @hw: 	The hardware instance.
3683 *
3684 * This routine setup the hardware for proper operation.
3685 */
3686static void hw_setup(struct ksz_hw *hw)
3687{
3688#if SET_DEFAULT_LED
3689	u16 data;
3690
3691	/* Change default LED mode. */
3692	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3693	data &= ~LED_MODE;
3694	data |= SET_DEFAULT_LED;
3695	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3696#endif
3697
3698	/* Setup transmit control. */
3699	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3700		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3701
3702	/* Setup receive control. */
3703	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3704		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3705	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3706
3707	/* Hardware cannot handle UDP packet in IP fragments. */
3708	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3709
3710	if (hw->all_multi)
3711		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3712	if (hw->promiscuous)
3713		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3714}
3715
3716/**
3717 * hw_setup_intr - setup interrupt mask
3718 * @hw: 	The hardware instance.
3719 *
3720 * This routine setup the interrupt mask for proper operation.
3721 */
3722static void hw_setup_intr(struct ksz_hw *hw)
3723{
3724	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3725}
3726
3727static void ksz_check_desc_num(struct ksz_desc_info *info)
3728{
3729#define MIN_DESC_SHIFT  2
3730
3731	int alloc = info->alloc;
3732	int shift;
3733
3734	shift = 0;
3735	while (!(alloc & 1)) {
3736		shift++;
3737		alloc >>= 1;
3738	}
3739	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3740		pr_alert("Hardware descriptor numbers not right!\n");
3741		while (alloc) {
3742			shift++;
3743			alloc >>= 1;
3744		}
3745		if (shift < MIN_DESC_SHIFT)
3746			shift = MIN_DESC_SHIFT;
3747		alloc = 1 << shift;
3748		info->alloc = alloc;
3749	}
3750	info->mask = info->alloc - 1;
3751}
3752
3753static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3754{
3755	int i;
3756	u32 phys = desc_info->ring_phys;
3757	struct ksz_hw_desc *desc = desc_info->ring_virt;
3758	struct ksz_desc *cur = desc_info->ring;
3759	struct ksz_desc *previous = NULL;
3760
3761	for (i = 0; i < desc_info->alloc; i++) {
3762		cur->phw = desc++;
3763		phys += desc_info->size;
3764		previous = cur++;
3765		previous->phw->next = cpu_to_le32(phys);
3766	}
3767	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3768	previous->sw.buf.rx.end_of_ring = 1;
3769	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3770
3771	desc_info->avail = desc_info->alloc;
3772	desc_info->last = desc_info->next = 0;
3773
3774	desc_info->cur = desc_info->ring;
3775}
3776
3777/**
3778 * hw_set_desc_base - set descriptor base addresses
3779 * @hw: 	The hardware instance.
3780 * @tx_addr:	The transmit descriptor base.
3781 * @rx_addr:	The receive descriptor base.
3782 *
3783 * This routine programs the descriptor base addresses after reset.
3784 */
3785static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3786{
3787	/* Set base address of Tx/Rx descriptors. */
3788	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3789	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3790}
3791
3792static void hw_reset_pkts(struct ksz_desc_info *info)
3793{
3794	info->cur = info->ring;
3795	info->avail = info->alloc;
3796	info->last = info->next = 0;
3797}
3798
3799static inline void hw_resume_rx(struct ksz_hw *hw)
3800{
3801	writel(DMA_START, hw->io + KS_DMA_RX_START);
3802}
3803
3804/**
3805 * hw_start_rx - start receiving
3806 * @hw: 	The hardware instance.
3807 *
3808 * This routine starts the receive function of the hardware.
3809 */
3810static void hw_start_rx(struct ksz_hw *hw)
3811{
3812	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3813
3814	/* Notify when the receive stops. */
3815	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3816
3817	writel(DMA_START, hw->io + KS_DMA_RX_START);
3818	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3819	hw->rx_stop++;
3820
3821	/* Variable overflows. */
3822	if (0 == hw->rx_stop)
3823		hw->rx_stop = 2;
3824}
3825
3826/**
3827 * hw_stop_rx - stop receiving
3828 * @hw: 	The hardware instance.
3829 *
3830 * This routine stops the receive function of the hardware.
3831 */
3832static void hw_stop_rx(struct ksz_hw *hw)
3833{
3834	hw->rx_stop = 0;
3835	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3836	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3837}
3838
3839/**
3840 * hw_start_tx - start transmitting
3841 * @hw: 	The hardware instance.
3842 *
3843 * This routine starts the transmit function of the hardware.
3844 */
3845static void hw_start_tx(struct ksz_hw *hw)
3846{
3847	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3848}
3849
3850/**
3851 * hw_stop_tx - stop transmitting
3852 * @hw: 	The hardware instance.
3853 *
3854 * This routine stops the transmit function of the hardware.
3855 */
3856static void hw_stop_tx(struct ksz_hw *hw)
3857{
3858	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3859}
3860
3861/**
3862 * hw_disable - disable hardware
3863 * @hw: 	The hardware instance.
3864 *
3865 * This routine disables the hardware.
3866 */
3867static void hw_disable(struct ksz_hw *hw)
3868{
3869	hw_stop_rx(hw);
3870	hw_stop_tx(hw);
3871	hw->enabled = 0;
3872}
3873
3874/**
3875 * hw_enable - enable hardware
3876 * @hw: 	The hardware instance.
3877 *
3878 * This routine enables the hardware.
3879 */
3880static void hw_enable(struct ksz_hw *hw)
3881{
3882	hw_start_tx(hw);
3883	hw_start_rx(hw);
3884	hw->enabled = 1;
3885}
3886
3887/**
3888 * hw_alloc_pkt - allocate enough descriptors for transmission
3889 * @hw: 	The hardware instance.
3890 * @length:	The length of the packet.
3891 * @physical:	Number of descriptors required.
3892 *
3893 * This function allocates descriptors for transmission.
3894 *
3895 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3896 */
3897static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3898{
3899	/* Always leave one descriptor free. */
3900	if (hw->tx_desc_info.avail <= 1)
3901		return 0;
3902
3903	/* Allocate a descriptor for transmission and mark it current. */
3904	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3905	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3906
3907	/* Keep track of number of transmit descriptors used so far. */
3908	++hw->tx_int_cnt;
3909	hw->tx_size += length;
3910
3911	/* Cannot hold on too much data. */
3912	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3913		hw->tx_int_cnt = hw->tx_int_mask + 1;
3914
3915	if (physical > hw->tx_desc_info.avail)
3916		return 1;
3917
3918	return hw->tx_desc_info.avail;
3919}
3920
3921/**
3922 * hw_send_pkt - mark packet for transmission
3923 * @hw: 	The hardware instance.
3924 *
3925 * This routine marks the packet for transmission in PCI version.
3926 */
3927static void hw_send_pkt(struct ksz_hw *hw)
3928{
3929	struct ksz_desc *cur = hw->tx_desc_info.cur;
3930
3931	cur->sw.buf.tx.last_seg = 1;
3932
3933	/* Interrupt only after specified number of descriptors used. */
3934	if (hw->tx_int_cnt > hw->tx_int_mask) {
3935		cur->sw.buf.tx.intr = 1;
3936		hw->tx_int_cnt = 0;
3937		hw->tx_size = 0;
3938	}
3939
3940	/* KSZ8842 supports port directed transmission. */
3941	cur->sw.buf.tx.dest_port = hw->dst_ports;
3942
3943	release_desc(cur);
3944
3945	writel(0, hw->io + KS_DMA_TX_START);
3946}
3947
3948static int empty_addr(u8 *addr)
3949{
3950	u32 *addr1 = (u32 *) addr;
3951	u16 *addr2 = (u16 *) &addr[4];
3952
3953	return 0 == *addr1 && 0 == *addr2;
3954}
3955
3956/**
3957 * hw_set_addr - set MAC address
3958 * @hw: 	The hardware instance.
3959 *
3960 * This routine programs the MAC address of the hardware when the address is
3961 * overridden.
3962 */
3963static void hw_set_addr(struct ksz_hw *hw)
3964{
3965	int i;
3966
3967	for (i = 0; i < ETH_ALEN; i++)
3968		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
3969			hw->io + KS884X_ADDR_0_OFFSET + i);
3970
3971	sw_set_addr(hw, hw->override_addr);
3972}
3973
3974/**
3975 * hw_read_addr - read MAC address
3976 * @hw: 	The hardware instance.
3977 *
3978 * This routine retrieves the MAC address of the hardware.
3979 */
3980static void hw_read_addr(struct ksz_hw *hw)
3981{
3982	int i;
3983
3984	for (i = 0; i < ETH_ALEN; i++)
3985		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
3986			KS884X_ADDR_0_OFFSET + i);
3987
3988	if (!hw->mac_override) {
3989		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
3990		if (empty_addr(hw->override_addr)) {
3991			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
3992			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
3993			       ETH_ALEN);
3994			hw->override_addr[5] += hw->id;
3995			hw_set_addr(hw);
3996		}
3997	}
3998}
3999
4000static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4001{
4002	int i;
4003	u32 mac_addr_lo;
4004	u32 mac_addr_hi;
4005
4006	mac_addr_hi = 0;
4007	for (i = 0; i < 2; i++) {
4008		mac_addr_hi <<= 8;
4009		mac_addr_hi |= mac_addr[i];
4010	}
4011	mac_addr_hi |= ADD_ADDR_ENABLE;
4012	mac_addr_lo = 0;
4013	for (i = 2; i < 6; i++) {
4014		mac_addr_lo <<= 8;
4015		mac_addr_lo |= mac_addr[i];
4016	}
4017	index *= ADD_ADDR_INCR;
4018
4019	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4020	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4021}
4022
4023static void hw_set_add_addr(struct ksz_hw *hw)
4024{
4025	int i;
4026
4027	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4028		if (empty_addr(hw->address[i]))
4029			writel(0, hw->io + ADD_ADDR_INCR * i +
4030				KS_ADD_ADDR_0_HI);
4031		else
4032			hw_ena_add_addr(hw, i, hw->address[i]);
4033	}
4034}
4035
4036static int hw_add_addr(struct ksz_hw *hw, const u8 *mac_addr)
4037{
4038	int i;
4039	int j = ADDITIONAL_ENTRIES;
4040
4041	if (ether_addr_equal(hw->override_addr, mac_addr))
4042		return 0;
4043	for (i = 0; i < hw->addr_list_size; i++) {
4044		if (ether_addr_equal(hw->address[i], mac_addr))
4045			return 0;
4046		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4047			j = i;
4048	}
4049	if (j < ADDITIONAL_ENTRIES) {
4050		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4051		hw_ena_add_addr(hw, j, hw->address[j]);
4052		return 0;
4053	}
4054	return -1;
4055}
4056
4057static int hw_del_addr(struct ksz_hw *hw, const u8 *mac_addr)
4058{
4059	int i;
4060
4061	for (i = 0; i < hw->addr_list_size; i++) {
4062		if (ether_addr_equal(hw->address[i], mac_addr)) {
4063			eth_zero_addr(hw->address[i]);
4064			writel(0, hw->io + ADD_ADDR_INCR * i +
4065				KS_ADD_ADDR_0_HI);
4066			return 0;
4067		}
4068	}
4069	return -1;
4070}
4071
4072/**
4073 * hw_clr_multicast - clear multicast addresses
4074 * @hw: 	The hardware instance.
4075 *
4076 * This routine removes all multicast addresses set in the hardware.
4077 */
4078static void hw_clr_multicast(struct ksz_hw *hw)
4079{
4080	int i;
4081
4082	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4083		hw->multi_bits[i] = 0;
4084
4085		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4086	}
4087}
4088
4089/**
4090 * hw_set_grp_addr - set multicast addresses
4091 * @hw: 	The hardware instance.
4092 *
4093 * This routine programs multicast addresses for the hardware to accept those
4094 * addresses.
4095 */
4096static void hw_set_grp_addr(struct ksz_hw *hw)
4097{
4098	int i;
4099	int index;
4100	int position;
4101	int value;
4102
4103	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4104
4105	for (i = 0; i < hw->multi_list_size; i++) {
4106		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4107		index = position >> 3;
4108		value = 1 << (position & 7);
4109		hw->multi_bits[index] |= (u8) value;
4110	}
4111
4112	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4113		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4114			i);
4115}
4116
4117/**
4118 * hw_set_multicast - enable or disable all multicast receiving
4119 * @hw: 	The hardware instance.
4120 * @multicast:	To turn on or off the all multicast feature.
4121 *
4122 * This routine enables/disables the hardware to accept all multicast packets.
4123 */
4124static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4125{
4126	/* Stop receiving for reconfiguration. */
4127	hw_stop_rx(hw);
4128
4129	if (multicast)
4130		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4131	else
4132		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4133
4134	if (hw->enabled)
4135		hw_start_rx(hw);
4136}
4137
4138/**
4139 * hw_set_promiscuous - enable or disable promiscuous receiving
4140 * @hw: 	The hardware instance.
4141 * @prom:	To turn on or off the promiscuous feature.
4142 *
4143 * This routine enables/disables the hardware to accept all packets.
4144 */
4145static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4146{
4147	/* Stop receiving for reconfiguration. */
4148	hw_stop_rx(hw);
4149
4150	if (prom)
4151		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4152	else
4153		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4154
4155	if (hw->enabled)
4156		hw_start_rx(hw);
4157}
4158
4159/**
4160 * sw_enable - enable the switch
4161 * @hw: 	The hardware instance.
4162 * @enable:	The flag to enable or disable the switch
4163 *
4164 * This routine is used to enable/disable the switch in KSZ8842.
4165 */
4166static void sw_enable(struct ksz_hw *hw, int enable)
4167{
4168	int port;
4169
4170	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4171		if (hw->dev_count > 1) {
4172			/* Set port-base vlan membership with host port. */
4173			sw_cfg_port_base_vlan(hw, port,
4174				HOST_MASK | (1 << port));
4175			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4176		} else {
4177			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4178			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4179		}
4180	}
4181	if (hw->dev_count > 1)
4182		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4183	else
4184		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4185
4186	if (enable)
4187		enable = KS8842_START;
4188	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4189}
4190
4191/**
4192 * sw_setup - setup the switch
4193 * @hw: 	The hardware instance.
4194 *
4195 * This routine setup the hardware switch engine for default operation.
4196 */
4197static void sw_setup(struct ksz_hw *hw)
4198{
4199	int port;
4200
4201	sw_set_global_ctrl(hw);
4202
4203	/* Enable switch broadcast storm protection at 10% percent rate. */
4204	sw_init_broad_storm(hw);
4205	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4206	for (port = 0; port < SWITCH_PORT_NUM; port++)
4207		sw_ena_broad_storm(hw, port);
4208
4209	sw_init_prio(hw);
4210
4211	sw_init_mirror(hw);
4212
4213	sw_init_prio_rate(hw);
4214
4215	sw_init_vlan(hw);
4216
4217	if (hw->features & STP_SUPPORT)
4218		sw_init_stp(hw);
4219	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4220			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4221		hw->overrides |= PAUSE_FLOW_CTRL;
4222	sw_enable(hw, 1);
4223}
4224
4225/**
4226 * ksz_start_timer - start kernel timer
4227 * @info:	Kernel timer information.
4228 * @time:	The time tick.
4229 *
4230 * This routine starts the kernel timer after the specified time tick.
4231 */
4232static void ksz_start_timer(struct ksz_timer_info *info, int time)
4233{
4234	info->cnt = 0;
4235	info->timer.expires = jiffies + time;
4236	add_timer(&info->timer);
4237
4238	/* infinity */
4239	info->max = -1;
4240}
4241
4242/**
4243 * ksz_stop_timer - stop kernel timer
4244 * @info:	Kernel timer information.
4245 *
4246 * This routine stops the kernel timer.
4247 */
4248static void ksz_stop_timer(struct ksz_timer_info *info)
4249{
4250	if (info->max) {
4251		info->max = 0;
4252		del_timer_sync(&info->timer);
4253	}
4254}
4255
4256static void ksz_init_timer(struct ksz_timer_info *info, int period,
4257	void (*function)(struct timer_list *))
4258{
4259	info->max = 0;
4260	info->period = period;
4261	timer_setup(&info->timer, function, 0);
4262}
4263
4264static void ksz_update_timer(struct ksz_timer_info *info)
4265{
4266	++info->cnt;
4267	if (info->max > 0) {
4268		if (info->cnt < info->max) {
4269			info->timer.expires = jiffies + info->period;
4270			add_timer(&info->timer);
4271		} else
4272			info->max = 0;
4273	} else if (info->max < 0) {
4274		info->timer.expires = jiffies + info->period;
4275		add_timer(&info->timer);
4276	}
4277}
4278
4279/**
4280 * ksz_alloc_soft_desc - allocate software descriptors
4281 * @desc_info:	Descriptor information structure.
4282 * @transmit:	Indication that descriptors are for transmit.
4283 *
4284 * This local function allocates software descriptors for manipulation in
4285 * memory.
4286 *
4287 * Return 0 if successful.
4288 */
4289static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4290{
4291	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4292				  GFP_KERNEL);
4293	if (!desc_info->ring)
4294		return 1;
4295	hw_init_desc(desc_info, transmit);
4296	return 0;
4297}
4298
4299/**
4300 * ksz_alloc_desc - allocate hardware descriptors
4301 * @adapter:	Adapter information structure.
4302 *
4303 * This local function allocates hardware descriptors for receiving and
4304 * transmitting.
4305 *
4306 * Return 0 if successful.
4307 */
4308static int ksz_alloc_desc(struct dev_info *adapter)
4309{
4310	struct ksz_hw *hw = &adapter->hw;
4311	int offset;
4312
4313	/* Allocate memory for RX & TX descriptors. */
4314	adapter->desc_pool.alloc_size =
4315		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4316		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4317		DESC_ALIGNMENT;
4318
4319	adapter->desc_pool.alloc_virt =
4320		dma_alloc_coherent(&adapter->pdev->dev,
4321				   adapter->desc_pool.alloc_size,
4322				   &adapter->desc_pool.dma_addr, GFP_KERNEL);
4323	if (adapter->desc_pool.alloc_virt == NULL) {
4324		adapter->desc_pool.alloc_size = 0;
4325		return 1;
4326	}
4327
4328	/* Align to the next cache line boundary. */
4329	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4330		(DESC_ALIGNMENT -
4331		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4332	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4333	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4334
4335	/* Allocate receive/transmit descriptors. */
4336	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4337		adapter->desc_pool.virt;
4338	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4339	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4340	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4341		(adapter->desc_pool.virt + offset);
4342	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4343
4344	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4345		return 1;
4346	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4347		return 1;
4348
4349	return 0;
4350}
4351
4352/**
4353 * free_dma_buf - release DMA buffer resources
4354 * @adapter:	Adapter information structure.
4355 * @dma_buf:	pointer to buf
4356 * @direction:	to or from device
4357 *
4358 * This routine is just a helper function to release the DMA buffer resources.
4359 */
4360static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4361	int direction)
4362{
4363	dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4364			 direction);
4365	dev_kfree_skb(dma_buf->skb);
4366	dma_buf->skb = NULL;
4367	dma_buf->dma = 0;
4368}
4369
4370/**
4371 * ksz_init_rx_buffers - initialize receive descriptors
4372 * @adapter:	Adapter information structure.
4373 *
4374 * This routine initializes DMA buffers for receiving.
4375 */
4376static void ksz_init_rx_buffers(struct dev_info *adapter)
4377{
4378	int i;
4379	struct ksz_desc *desc;
4380	struct ksz_dma_buf *dma_buf;
4381	struct ksz_hw *hw = &adapter->hw;
4382	struct ksz_desc_info *info = &hw->rx_desc_info;
4383
4384	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4385		get_rx_pkt(info, &desc);
4386
4387		dma_buf = DMA_BUFFER(desc);
4388		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4389			free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4390		dma_buf->len = adapter->mtu;
4391		if (!dma_buf->skb)
4392			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4393		if (dma_buf->skb && !dma_buf->dma)
4394			dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4395						skb_tail_pointer(dma_buf->skb),
4396						dma_buf->len,
4397						DMA_FROM_DEVICE);
4398
4399		/* Set descriptor. */
4400		set_rx_buf(desc, dma_buf->dma);
4401		set_rx_len(desc, dma_buf->len);
4402		release_desc(desc);
4403	}
4404}
4405
4406/**
4407 * ksz_alloc_mem - allocate memory for hardware descriptors
4408 * @adapter:	Adapter information structure.
4409 *
4410 * This function allocates memory for use by hardware descriptors for receiving
4411 * and transmitting.
4412 *
4413 * Return 0 if successful.
4414 */
4415static int ksz_alloc_mem(struct dev_info *adapter)
4416{
4417	struct ksz_hw *hw = &adapter->hw;
4418
4419	/* Determine the number of receive and transmit descriptors. */
4420	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4421	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4422
4423	/* Determine how many descriptors to skip transmit interrupt. */
4424	hw->tx_int_cnt = 0;
4425	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4426	if (hw->tx_int_mask > 8)
4427		hw->tx_int_mask = 8;
4428	while (hw->tx_int_mask) {
4429		hw->tx_int_cnt++;
4430		hw->tx_int_mask >>= 1;
4431	}
4432	if (hw->tx_int_cnt) {
4433		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4434		hw->tx_int_cnt = 0;
4435	}
4436
4437	/* Determine the descriptor size. */
4438	hw->rx_desc_info.size =
4439		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4440		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4441	hw->tx_desc_info.size =
4442		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4443		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4444	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4445		pr_alert("Hardware descriptor size not right!\n");
4446	ksz_check_desc_num(&hw->rx_desc_info);
4447	ksz_check_desc_num(&hw->tx_desc_info);
4448
4449	/* Allocate descriptors. */
4450	if (ksz_alloc_desc(adapter))
4451		return 1;
4452
4453	return 0;
4454}
4455
4456/**
4457 * ksz_free_desc - free software and hardware descriptors
4458 * @adapter:	Adapter information structure.
4459 *
4460 * This local routine frees the software and hardware descriptors allocated by
4461 * ksz_alloc_desc().
4462 */
4463static void ksz_free_desc(struct dev_info *adapter)
4464{
4465	struct ksz_hw *hw = &adapter->hw;
4466
4467	/* Reset descriptor. */
4468	hw->rx_desc_info.ring_virt = NULL;
4469	hw->tx_desc_info.ring_virt = NULL;
4470	hw->rx_desc_info.ring_phys = 0;
4471	hw->tx_desc_info.ring_phys = 0;
4472
4473	/* Free memory. */
4474	if (adapter->desc_pool.alloc_virt)
4475		dma_free_coherent(&adapter->pdev->dev,
4476				  adapter->desc_pool.alloc_size,
4477				  adapter->desc_pool.alloc_virt,
4478				  adapter->desc_pool.dma_addr);
4479
4480	/* Reset resource pool. */
4481	adapter->desc_pool.alloc_size = 0;
4482	adapter->desc_pool.alloc_virt = NULL;
4483
4484	kfree(hw->rx_desc_info.ring);
4485	hw->rx_desc_info.ring = NULL;
4486	kfree(hw->tx_desc_info.ring);
4487	hw->tx_desc_info.ring = NULL;
4488}
4489
4490/**
4491 * ksz_free_buffers - free buffers used in the descriptors
4492 * @adapter:	Adapter information structure.
4493 * @desc_info:	Descriptor information structure.
4494 * @direction:	to or from device
4495 *
4496 * This local routine frees buffers used in the DMA buffers.
4497 */
4498static void ksz_free_buffers(struct dev_info *adapter,
4499	struct ksz_desc_info *desc_info, int direction)
4500{
4501	int i;
4502	struct ksz_dma_buf *dma_buf;
4503	struct ksz_desc *desc = desc_info->ring;
4504
4505	for (i = 0; i < desc_info->alloc; i++) {
4506		dma_buf = DMA_BUFFER(desc);
4507		if (dma_buf->skb)
4508			free_dma_buf(adapter, dma_buf, direction);
4509		desc++;
4510	}
4511}
4512
4513/**
4514 * ksz_free_mem - free all resources used by descriptors
4515 * @adapter:	Adapter information structure.
4516 *
4517 * This local routine frees all the resources allocated by ksz_alloc_mem().
4518 */
4519static void ksz_free_mem(struct dev_info *adapter)
4520{
4521	/* Free transmit buffers. */
4522	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
4523
4524	/* Free receive buffers. */
4525	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
4526
4527	/* Free descriptors. */
4528	ksz_free_desc(adapter);
4529}
4530
4531static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4532	u64 *counter)
4533{
4534	int i;
4535	int mib;
4536	int port;
4537	struct ksz_port_mib *port_mib;
4538
4539	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4540	for (i = 0, port = first; i < cnt; i++, port++) {
4541		port_mib = &hw->port_mib[port];
4542		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4543			counter[mib] += port_mib->counter[mib];
4544	}
4545}
4546
4547/**
4548 * send_packet - send packet
4549 * @skb:	Socket buffer.
4550 * @dev:	Network device.
4551 *
4552 * This routine is used to send a packet out to the network.
4553 */
4554static void send_packet(struct sk_buff *skb, struct net_device *dev)
4555{
4556	struct ksz_desc *desc;
4557	struct ksz_desc *first;
4558	struct dev_priv *priv = netdev_priv(dev);
4559	struct dev_info *hw_priv = priv->adapter;
4560	struct ksz_hw *hw = &hw_priv->hw;
4561	struct ksz_desc_info *info = &hw->tx_desc_info;
4562	struct ksz_dma_buf *dma_buf;
4563	int len;
4564	int last_frag = skb_shinfo(skb)->nr_frags;
4565
4566	/*
4567	 * KSZ8842 with multiple device interfaces needs to be told which port
4568	 * to send.
4569	 */
4570	if (hw->dev_count > 1)
4571		hw->dst_ports = 1 << priv->port.first_port;
4572
4573	/* Hardware will pad the length to 60. */
4574	len = skb->len;
4575
4576	/* Remember the very first descriptor. */
4577	first = info->cur;
4578	desc = first;
4579
4580	dma_buf = DMA_BUFFER(desc);
4581	if (last_frag) {
4582		int frag;
4583		skb_frag_t *this_frag;
4584
4585		dma_buf->len = skb_headlen(skb);
4586
4587		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4588					      dma_buf->len, DMA_TO_DEVICE);
4589		set_tx_buf(desc, dma_buf->dma);
4590		set_tx_len(desc, dma_buf->len);
4591
4592		frag = 0;
4593		do {
4594			this_frag = &skb_shinfo(skb)->frags[frag];
4595
4596			/* Get a new descriptor. */
4597			get_tx_pkt(info, &desc);
4598
4599			/* Keep track of descriptors used so far. */
4600			++hw->tx_int_cnt;
4601
4602			dma_buf = DMA_BUFFER(desc);
4603			dma_buf->len = skb_frag_size(this_frag);
4604
4605			dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4606						      skb_frag_address(this_frag),
4607						      dma_buf->len,
4608						      DMA_TO_DEVICE);
4609			set_tx_buf(desc, dma_buf->dma);
4610			set_tx_len(desc, dma_buf->len);
4611
4612			frag++;
4613			if (frag == last_frag)
4614				break;
4615
4616			/* Do not release the last descriptor here. */
4617			release_desc(desc);
4618		} while (1);
4619
4620		/* current points to the last descriptor. */
4621		info->cur = desc;
4622
4623		/* Release the first descriptor. */
4624		release_desc(first);
4625	} else {
4626		dma_buf->len = len;
4627
4628		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4629					      dma_buf->len, DMA_TO_DEVICE);
4630		set_tx_buf(desc, dma_buf->dma);
4631		set_tx_len(desc, dma_buf->len);
4632	}
4633
4634	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4635		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4636		(desc)->sw.buf.tx.csum_gen_udp = 1;
4637	}
4638
4639	/*
4640	 * The last descriptor holds the packet so that it can be returned to
4641	 * network subsystem after all descriptors are transmitted.
4642	 */
4643	dma_buf->skb = skb;
4644
4645	hw_send_pkt(hw);
4646
4647	/* Update transmit statistics. */
4648	dev->stats.tx_packets++;
4649	dev->stats.tx_bytes += len;
4650}
4651
4652/**
4653 * transmit_cleanup - clean up transmit descriptors
4654 * @hw_priv:	Network device.
4655 * @normal:	break if owned
4656 *
4657 * This routine is called to clean up the transmitted buffers.
4658 */
4659static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4660{
4661	int last;
4662	union desc_stat status;
4663	struct ksz_hw *hw = &hw_priv->hw;
4664	struct ksz_desc_info *info = &hw->tx_desc_info;
4665	struct ksz_desc *desc;
4666	struct ksz_dma_buf *dma_buf;
4667	struct net_device *dev = NULL;
4668
4669	spin_lock_irq(&hw_priv->hwlock);
4670	last = info->last;
4671
4672	while (info->avail < info->alloc) {
4673		/* Get next descriptor which is not hardware owned. */
4674		desc = &info->ring[last];
4675		status.data = le32_to_cpu(desc->phw->ctrl.data);
4676		if (status.tx.hw_owned) {
4677			if (normal)
4678				break;
4679			else
4680				reset_desc(desc, status);
4681		}
4682
4683		dma_buf = DMA_BUFFER(desc);
4684		dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4685				 dma_buf->len, DMA_TO_DEVICE);
4686
4687		/* This descriptor contains the last buffer in the packet. */
4688		if (dma_buf->skb) {
4689			dev = dma_buf->skb->dev;
4690
4691			/* Release the packet back to network subsystem. */
4692			dev_kfree_skb_irq(dma_buf->skb);
4693			dma_buf->skb = NULL;
4694		}
4695
4696		/* Free the transmitted descriptor. */
4697		last++;
4698		last &= info->mask;
4699		info->avail++;
4700	}
4701	info->last = last;
4702	spin_unlock_irq(&hw_priv->hwlock);
4703
4704	/* Notify the network subsystem that the packet has been sent. */
4705	if (dev)
4706		netif_trans_update(dev);
4707}
4708
4709/**
4710 * tx_done - transmit done processing
4711 * @hw_priv:	Network device.
4712 *
4713 * This routine is called when the transmit interrupt is triggered, indicating
4714 * either a packet is sent successfully or there are transmit errors.
4715 */
4716static void tx_done(struct dev_info *hw_priv)
4717{
4718	struct ksz_hw *hw = &hw_priv->hw;
4719	int port;
4720
4721	transmit_cleanup(hw_priv, 1);
4722
4723	for (port = 0; port < hw->dev_count; port++) {
4724		struct net_device *dev = hw->port_info[port].pdev;
4725
4726		if (netif_running(dev) && netif_queue_stopped(dev))
4727			netif_wake_queue(dev);
4728	}
4729}
4730
4731static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4732{
4733	skb->dev = old->dev;
4734	skb->protocol = old->protocol;
4735	skb->ip_summed = old->ip_summed;
4736	skb->csum = old->csum;
4737	skb_set_network_header(skb, ETH_HLEN);
4738
4739	dev_consume_skb_any(old);
4740}
4741
4742/**
4743 * netdev_tx - send out packet
4744 * @skb:	Socket buffer.
4745 * @dev:	Network device.
4746 *
4747 * This function is used by the upper network layer to send out a packet.
4748 *
4749 * Return 0 if successful; otherwise an error code indicating failure.
4750 */
4751static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4752{
4753	struct dev_priv *priv = netdev_priv(dev);
4754	struct dev_info *hw_priv = priv->adapter;
4755	struct ksz_hw *hw = &hw_priv->hw;
4756	int left;
4757	int num = 1;
4758	int rc = 0;
4759
4760	if (hw->features & SMALL_PACKET_TX_BUG) {
4761		struct sk_buff *org_skb = skb;
4762
4763		if (skb->len <= 48) {
4764			if (skb_end_pointer(skb) - skb->data >= 50) {
4765				memset(&skb->data[skb->len], 0, 50 - skb->len);
4766				skb->len = 50;
4767			} else {
4768				skb = netdev_alloc_skb(dev, 50);
4769				if (!skb)
4770					return NETDEV_TX_BUSY;
4771				memcpy(skb->data, org_skb->data, org_skb->len);
4772				memset(&skb->data[org_skb->len], 0,
4773					50 - org_skb->len);
4774				skb->len = 50;
4775				copy_old_skb(org_skb, skb);
4776			}
4777		}
4778	}
4779
4780	spin_lock_irq(&hw_priv->hwlock);
4781
4782	num = skb_shinfo(skb)->nr_frags + 1;
4783	left = hw_alloc_pkt(hw, skb->len, num);
4784	if (left) {
4785		if (left < num ||
4786		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4787		     skb->protocol == htons(ETH_P_IPV6))) {
4788			struct sk_buff *org_skb = skb;
4789
4790			skb = netdev_alloc_skb(dev, org_skb->len);
4791			if (!skb) {
4792				rc = NETDEV_TX_BUSY;
4793				goto unlock;
4794			}
4795			skb_copy_and_csum_dev(org_skb, skb->data);
4796			org_skb->ip_summed = CHECKSUM_NONE;
4797			skb->len = org_skb->len;
4798			copy_old_skb(org_skb, skb);
4799		}
4800		send_packet(skb, dev);
4801		if (left <= num)
4802			netif_stop_queue(dev);
4803	} else {
4804		/* Stop the transmit queue until packet is allocated. */
4805		netif_stop_queue(dev);
4806		rc = NETDEV_TX_BUSY;
4807	}
4808unlock:
4809	spin_unlock_irq(&hw_priv->hwlock);
4810
4811	return rc;
4812}
4813
4814/**
4815 * netdev_tx_timeout - transmit timeout processing
4816 * @dev:	Network device.
4817 * @txqueue:	index of hanging queue
4818 *
4819 * This routine is called when the transmit timer expires.  That indicates the
4820 * hardware is not running correctly because transmit interrupts are not
4821 * triggered to free up resources so that the transmit routine can continue
4822 * sending out packets.  The hardware is reset to correct the problem.
4823 */
4824static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4825{
4826	static unsigned long last_reset;
4827
4828	struct dev_priv *priv = netdev_priv(dev);
4829	struct dev_info *hw_priv = priv->adapter;
4830	struct ksz_hw *hw = &hw_priv->hw;
4831	int port;
4832
4833	if (hw->dev_count > 1) {
4834		/*
4835		 * Only reset the hardware if time between calls is long
4836		 * enough.
4837		 */
4838		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4839			hw_priv = NULL;
4840	}
4841
4842	last_reset = jiffies;
4843	if (hw_priv) {
4844		hw_dis_intr(hw);
4845		hw_disable(hw);
4846
4847		transmit_cleanup(hw_priv, 0);
4848		hw_reset_pkts(&hw->rx_desc_info);
4849		hw_reset_pkts(&hw->tx_desc_info);
4850		ksz_init_rx_buffers(hw_priv);
4851
4852		hw_reset(hw);
4853
4854		hw_set_desc_base(hw,
4855			hw->tx_desc_info.ring_phys,
4856			hw->rx_desc_info.ring_phys);
4857		hw_set_addr(hw);
4858		if (hw->all_multi)
4859			hw_set_multicast(hw, hw->all_multi);
4860		else if (hw->multi_list_size)
4861			hw_set_grp_addr(hw);
4862
4863		if (hw->dev_count > 1) {
4864			hw_set_add_addr(hw);
4865			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4866				struct net_device *port_dev;
4867
4868				port_set_stp_state(hw, port,
4869					STP_STATE_DISABLED);
4870
4871				port_dev = hw->port_info[port].pdev;
4872				if (netif_running(port_dev))
4873					port_set_stp_state(hw, port,
4874						STP_STATE_SIMPLE);
4875			}
4876		}
4877
4878		hw_enable(hw);
4879		hw_ena_intr(hw);
4880	}
4881
4882	netif_trans_update(dev);
4883	netif_wake_queue(dev);
4884}
4885
4886static inline void csum_verified(struct sk_buff *skb)
4887{
4888	unsigned short protocol;
4889	struct iphdr *iph;
4890
4891	protocol = skb->protocol;
4892	skb_reset_network_header(skb);
4893	iph = (struct iphdr *) skb_network_header(skb);
4894	if (protocol == htons(ETH_P_8021Q)) {
4895		protocol = iph->tot_len;
4896		skb_set_network_header(skb, VLAN_HLEN);
4897		iph = (struct iphdr *) skb_network_header(skb);
4898	}
4899	if (protocol == htons(ETH_P_IP)) {
4900		if (iph->protocol == IPPROTO_TCP)
4901			skb->ip_summed = CHECKSUM_UNNECESSARY;
4902	}
4903}
4904
4905static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4906	struct ksz_desc *desc, union desc_stat status)
4907{
4908	int packet_len;
4909	struct dev_priv *priv = netdev_priv(dev);
4910	struct dev_info *hw_priv = priv->adapter;
4911	struct ksz_dma_buf *dma_buf;
4912	struct sk_buff *skb;
4913
4914	/* Received length includes 4-byte CRC. */
4915	packet_len = status.rx.frame_len - 4;
4916
4917	dma_buf = DMA_BUFFER(desc);
4918	dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4919				packet_len + 4, DMA_FROM_DEVICE);
4920
4921	do {
4922		/* skb->data != skb->head */
4923		skb = netdev_alloc_skb(dev, packet_len + 2);
4924		if (!skb) {
4925			dev->stats.rx_dropped++;
4926			return -ENOMEM;
4927		}
4928
4929		/*
4930		 * Align socket buffer in 4-byte boundary for better
4931		 * performance.
4932		 */
4933		skb_reserve(skb, 2);
4934
4935		skb_put_data(skb, dma_buf->skb->data, packet_len);
4936	} while (0);
4937
4938	skb->protocol = eth_type_trans(skb, dev);
4939
4940	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
4941		csum_verified(skb);
4942
4943	/* Update receive statistics. */
4944	dev->stats.rx_packets++;
4945	dev->stats.rx_bytes += packet_len;
4946
4947	/* Notify upper layer for received packet. */
4948	netif_rx(skb);
4949
4950	return 0;
4951}
4952
4953static int dev_rcv_packets(struct dev_info *hw_priv)
4954{
4955	int next;
4956	union desc_stat status;
4957	struct ksz_hw *hw = &hw_priv->hw;
4958	struct net_device *dev = hw->port_info[0].pdev;
4959	struct ksz_desc_info *info = &hw->rx_desc_info;
4960	int left = info->alloc;
4961	struct ksz_desc *desc;
4962	int received = 0;
4963
4964	next = info->next;
4965	while (left--) {
4966		/* Get next descriptor which is not hardware owned. */
4967		desc = &info->ring[next];
4968		status.data = le32_to_cpu(desc->phw->ctrl.data);
4969		if (status.rx.hw_owned)
4970			break;
4971
4972		/* Status valid only when last descriptor bit is set. */
4973		if (status.rx.last_desc && status.rx.first_desc) {
4974			if (rx_proc(dev, hw, desc, status))
4975				goto release_packet;
4976			received++;
4977		}
4978
4979release_packet:
4980		release_desc(desc);
4981		next++;
4982		next &= info->mask;
4983	}
4984	info->next = next;
4985
4986	return received;
4987}
4988
4989static int port_rcv_packets(struct dev_info *hw_priv)
4990{
4991	int next;
4992	union desc_stat status;
4993	struct ksz_hw *hw = &hw_priv->hw;
4994	struct net_device *dev = hw->port_info[0].pdev;
4995	struct ksz_desc_info *info = &hw->rx_desc_info;
4996	int left = info->alloc;
4997	struct ksz_desc *desc;
4998	int received = 0;
4999
5000	next = info->next;
5001	while (left--) {
5002		/* Get next descriptor which is not hardware owned. */
5003		desc = &info->ring[next];
5004		status.data = le32_to_cpu(desc->phw->ctrl.data);
5005		if (status.rx.hw_owned)
5006			break;
5007
5008		if (hw->dev_count > 1) {
5009			/* Get received port number. */
5010			int p = HW_TO_DEV_PORT(status.rx.src_port);
5011
5012			dev = hw->port_info[p].pdev;
5013			if (!netif_running(dev))
5014				goto release_packet;
5015		}
5016
5017		/* Status valid only when last descriptor bit is set. */
5018		if (status.rx.last_desc && status.rx.first_desc) {
5019			if (rx_proc(dev, hw, desc, status))
5020				goto release_packet;
5021			received++;
5022		}
5023
5024release_packet:
5025		release_desc(desc);
5026		next++;
5027		next &= info->mask;
5028	}
5029	info->next = next;
5030
5031	return received;
5032}
5033
5034static int dev_rcv_special(struct dev_info *hw_priv)
5035{
5036	int next;
5037	union desc_stat status;
5038	struct ksz_hw *hw = &hw_priv->hw;
5039	struct net_device *dev = hw->port_info[0].pdev;
5040	struct ksz_desc_info *info = &hw->rx_desc_info;
5041	int left = info->alloc;
5042	struct ksz_desc *desc;
5043	int received = 0;
5044
5045	next = info->next;
5046	while (left--) {
5047		/* Get next descriptor which is not hardware owned. */
5048		desc = &info->ring[next];
5049		status.data = le32_to_cpu(desc->phw->ctrl.data);
5050		if (status.rx.hw_owned)
5051			break;
5052
5053		if (hw->dev_count > 1) {
5054			/* Get received port number. */
5055			int p = HW_TO_DEV_PORT(status.rx.src_port);
5056
5057			dev = hw->port_info[p].pdev;
5058			if (!netif_running(dev))
5059				goto release_packet;
5060		}
5061
5062		/* Status valid only when last descriptor bit is set. */
5063		if (status.rx.last_desc && status.rx.first_desc) {
5064			/*
5065			 * Receive without error.  With receive errors
5066			 * disabled, packets with receive errors will be
5067			 * dropped, so no need to check the error bit.
5068			 */
5069			if (!status.rx.error || (status.data &
5070					KS_DESC_RX_ERROR_COND) ==
5071					KS_DESC_RX_ERROR_TOO_LONG) {
5072				if (rx_proc(dev, hw, desc, status))
5073					goto release_packet;
5074				received++;
5075			} else {
5076				struct dev_priv *priv = netdev_priv(dev);
5077
5078				/* Update receive error statistics. */
5079				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5080			}
5081		}
5082
5083release_packet:
5084		release_desc(desc);
5085		next++;
5086		next &= info->mask;
5087	}
5088	info->next = next;
5089
5090	return received;
5091}
5092
5093static void rx_proc_task(struct tasklet_struct *t)
5094{
5095	struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
5096	struct ksz_hw *hw = &hw_priv->hw;
5097
5098	if (!hw->enabled)
5099		return;
5100	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5101
5102		/* In case receive process is suspended because of overrun. */
5103		hw_resume_rx(hw);
5104
5105		/* tasklets are interruptible. */
5106		spin_lock_irq(&hw_priv->hwlock);
5107		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5108		spin_unlock_irq(&hw_priv->hwlock);
5109	} else {
5110		hw_ack_intr(hw, KS884X_INT_RX);
5111		tasklet_schedule(&hw_priv->rx_tasklet);
5112	}
5113}
5114
5115static void tx_proc_task(struct tasklet_struct *t)
5116{
5117	struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
5118	struct ksz_hw *hw = &hw_priv->hw;
5119
5120	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5121
5122	tx_done(hw_priv);
5123
5124	/* tasklets are interruptible. */
5125	spin_lock_irq(&hw_priv->hwlock);
5126	hw_turn_on_intr(hw, KS884X_INT_TX);
5127	spin_unlock_irq(&hw_priv->hwlock);
5128}
5129
5130static inline void handle_rx_stop(struct ksz_hw *hw)
5131{
5132	/* Receive just has been stopped. */
5133	if (0 == hw->rx_stop)
5134		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5135	else if (hw->rx_stop > 1) {
5136		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5137			hw_start_rx(hw);
5138		} else {
5139			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5140			hw->rx_stop = 0;
5141		}
5142	} else
5143		/* Receive just has been started. */
5144		hw->rx_stop++;
5145}
5146
5147/**
5148 * netdev_intr - interrupt handling
5149 * @irq:	Interrupt number.
5150 * @dev_id:	Network device.
5151 *
5152 * This function is called by upper network layer to signal interrupt.
5153 *
5154 * Return IRQ_HANDLED if interrupt is handled.
5155 */
5156static irqreturn_t netdev_intr(int irq, void *dev_id)
5157{
5158	uint int_enable = 0;
5159	struct net_device *dev = (struct net_device *) dev_id;
5160	struct dev_priv *priv = netdev_priv(dev);
5161	struct dev_info *hw_priv = priv->adapter;
5162	struct ksz_hw *hw = &hw_priv->hw;
5163
5164	spin_lock(&hw_priv->hwlock);
5165
5166	hw_read_intr(hw, &int_enable);
5167
5168	/* Not our interrupt! */
5169	if (!int_enable) {
5170		spin_unlock(&hw_priv->hwlock);
5171		return IRQ_NONE;
5172	}
5173
5174	do {
5175		hw_ack_intr(hw, int_enable);
5176		int_enable &= hw->intr_mask;
5177
5178		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5179			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5180			tasklet_schedule(&hw_priv->tx_tasklet);
5181		}
5182
5183		if (likely(int_enable & KS884X_INT_RX)) {
5184			hw_dis_intr_bit(hw, KS884X_INT_RX);
5185			tasklet_schedule(&hw_priv->rx_tasklet);
5186		}
5187
5188		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5189			dev->stats.rx_fifo_errors++;
5190			hw_resume_rx(hw);
5191		}
5192
5193		if (unlikely(int_enable & KS884X_INT_PHY)) {
5194			struct ksz_port *port = &priv->port;
5195
5196			hw->features |= LINK_INT_WORKING;
5197			port_get_link_speed(port);
5198		}
5199
5200		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5201			handle_rx_stop(hw);
5202			break;
5203		}
5204
5205		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5206			u32 data;
5207
5208			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5209			pr_info("Tx stopped\n");
5210			data = readl(hw->io + KS_DMA_TX_CTRL);
5211			if (!(data & DMA_TX_ENABLE))
5212				pr_info("Tx disabled\n");
5213			break;
5214		}
5215	} while (0);
5216
5217	hw_ena_intr(hw);
5218
5219	spin_unlock(&hw_priv->hwlock);
5220
5221	return IRQ_HANDLED;
5222}
5223
5224/*
5225 * Linux network device functions
5226 */
5227
5228
5229#ifdef CONFIG_NET_POLL_CONTROLLER
5230static void netdev_netpoll(struct net_device *dev)
5231{
5232	struct dev_priv *priv = netdev_priv(dev);
5233	struct dev_info *hw_priv = priv->adapter;
5234
5235	hw_dis_intr(&hw_priv->hw);
5236	netdev_intr(dev->irq, dev);
5237}
5238#endif
5239
5240static void bridge_change(struct ksz_hw *hw)
5241{
5242	int port;
5243	u8  member;
5244	struct ksz_switch *sw = hw->ksz_switch;
5245
5246	/* No ports in forwarding state. */
5247	if (!sw->member) {
5248		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5249		sw_block_addr(hw);
5250	}
5251	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5252		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5253			member = HOST_MASK | sw->member;
5254		else
5255			member = HOST_MASK | (1 << port);
5256		if (member != sw->port_cfg[port].member)
5257			sw_cfg_port_base_vlan(hw, port, member);
5258	}
5259}
5260
5261/**
5262 * netdev_close - close network device
5263 * @dev:	Network device.
5264 *
5265 * This function process the close operation of network device.  This is caused
5266 * by the user command "ifconfig ethX down."
5267 *
5268 * Return 0 if successful; otherwise an error code indicating failure.
5269 */
5270static int netdev_close(struct net_device *dev)
5271{
5272	struct dev_priv *priv = netdev_priv(dev);
5273	struct dev_info *hw_priv = priv->adapter;
5274	struct ksz_port *port = &priv->port;
5275	struct ksz_hw *hw = &hw_priv->hw;
5276	int pi;
5277
5278	netif_stop_queue(dev);
5279
5280	ksz_stop_timer(&priv->monitor_timer_info);
5281
5282	/* Need to shut the port manually in multiple device interfaces mode. */
5283	if (hw->dev_count > 1) {
5284		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5285
5286		/* Port is closed.  Need to change bridge setting. */
5287		if (hw->features & STP_SUPPORT) {
5288			pi = 1 << port->first_port;
5289			if (hw->ksz_switch->member & pi) {
5290				hw->ksz_switch->member &= ~pi;
5291				bridge_change(hw);
5292			}
5293		}
5294	}
5295	if (port->first_port > 0)
5296		hw_del_addr(hw, dev->dev_addr);
5297	if (!hw_priv->wol_enable)
5298		port_set_power_saving(port, true);
5299
5300	if (priv->multicast)
5301		--hw->all_multi;
5302	if (priv->promiscuous)
5303		--hw->promiscuous;
5304
5305	hw_priv->opened--;
5306	if (!(hw_priv->opened)) {
5307		ksz_stop_timer(&hw_priv->mib_timer_info);
5308		flush_work(&hw_priv->mib_read);
5309
5310		hw_dis_intr(hw);
5311		hw_disable(hw);
5312		hw_clr_multicast(hw);
5313
5314		/* Delay for receive task to stop scheduling itself. */
5315		msleep(2000 / HZ);
5316
5317		tasklet_kill(&hw_priv->rx_tasklet);
5318		tasklet_kill(&hw_priv->tx_tasklet);
5319		free_irq(dev->irq, hw_priv->dev);
5320
5321		transmit_cleanup(hw_priv, 0);
5322		hw_reset_pkts(&hw->rx_desc_info);
5323		hw_reset_pkts(&hw->tx_desc_info);
5324
5325		/* Clean out static MAC table when the switch is shutdown. */
5326		if (hw->features & STP_SUPPORT)
5327			sw_clr_sta_mac_table(hw);
5328	}
5329
5330	return 0;
5331}
5332
5333static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5334{
5335	if (hw->ksz_switch) {
5336		u32 data;
5337
5338		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5339		if (hw->features & RX_HUGE_FRAME)
5340			data |= SWITCH_HUGE_PACKET;
5341		else
5342			data &= ~SWITCH_HUGE_PACKET;
5343		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5344	}
5345	if (hw->features & RX_HUGE_FRAME) {
5346		hw->rx_cfg |= DMA_RX_ERROR;
5347		hw_priv->dev_rcv = dev_rcv_special;
5348	} else {
5349		hw->rx_cfg &= ~DMA_RX_ERROR;
5350		if (hw->dev_count > 1)
5351			hw_priv->dev_rcv = port_rcv_packets;
5352		else
5353			hw_priv->dev_rcv = dev_rcv_packets;
5354	}
5355}
5356
5357static int prepare_hardware(struct net_device *dev)
5358{
5359	struct dev_priv *priv = netdev_priv(dev);
5360	struct dev_info *hw_priv = priv->adapter;
5361	struct ksz_hw *hw = &hw_priv->hw;
5362	int rc = 0;
5363
5364	/* Remember the network device that requests interrupts. */
5365	hw_priv->dev = dev;
5366	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5367	if (rc)
5368		return rc;
5369	tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
5370	tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
5371
5372	hw->promiscuous = 0;
5373	hw->all_multi = 0;
5374	hw->multi_list_size = 0;
5375
5376	hw_reset(hw);
5377
5378	hw_set_desc_base(hw,
5379		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5380	hw_set_addr(hw);
5381	hw_cfg_huge_frame(hw_priv, hw);
5382	ksz_init_rx_buffers(hw_priv);
5383	return 0;
5384}
5385
5386static void set_media_state(struct net_device *dev, int media_state)
5387{
5388	struct dev_priv *priv = netdev_priv(dev);
5389
5390	if (media_state == priv->media_state)
5391		netif_carrier_on(dev);
5392	else
5393		netif_carrier_off(dev);
5394	netif_info(priv, link, dev, "link %s\n",
5395		   media_state == priv->media_state ? "on" : "off");
5396}
5397
5398/**
5399 * netdev_open - open network device
5400 * @dev:	Network device.
5401 *
5402 * This function process the open operation of network device.  This is caused
5403 * by the user command "ifconfig ethX up."
5404 *
5405 * Return 0 if successful; otherwise an error code indicating failure.
5406 */
5407static int netdev_open(struct net_device *dev)
5408{
5409	struct dev_priv *priv = netdev_priv(dev);
5410	struct dev_info *hw_priv = priv->adapter;
5411	struct ksz_hw *hw = &hw_priv->hw;
5412	struct ksz_port *port = &priv->port;
5413	unsigned long next_jiffies;
5414	int i;
5415	int p;
5416	int rc = 0;
5417
5418	next_jiffies = jiffies + HZ * 2;
5419	priv->multicast = 0;
5420	priv->promiscuous = 0;
5421
5422	/* Reset device statistics. */
5423	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5424	memset((void *) port->counter, 0,
5425		(sizeof(u64) * OID_COUNTER_LAST));
5426
5427	if (!(hw_priv->opened)) {
5428		rc = prepare_hardware(dev);
5429		if (rc)
5430			return rc;
5431		for (i = 0; i < hw->mib_port_cnt; i++) {
5432			next_jiffies += HZ * 1;
5433			hw_priv->counter[i].time = next_jiffies;
5434			hw->port_mib[i].state = media_disconnected;
5435			port_init_cnt(hw, i);
5436		}
5437		if (hw->ksz_switch)
5438			hw->port_mib[HOST_PORT].state = media_connected;
5439		else {
5440			hw_add_wol_bcast(hw);
5441			hw_cfg_wol_pme(hw, 0);
5442			hw_clr_wol_pme_status(&hw_priv->hw);
5443		}
5444	}
5445	port_set_power_saving(port, false);
5446
5447	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5448		/*
5449		 * Initialize to invalid value so that link detection
5450		 * is done.
5451		 */
5452		hw->port_info[p].partner = 0xFF;
5453		hw->port_info[p].state = media_disconnected;
5454	}
5455
5456	/* Need to open the port in multiple device interfaces mode. */
5457	if (hw->dev_count > 1) {
5458		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5459		if (port->first_port > 0)
5460			hw_add_addr(hw, dev->dev_addr);
5461	}
5462
5463	port_get_link_speed(port);
5464	if (port->force_link)
5465		port_force_link_speed(port);
5466	else
5467		port_set_link_speed(port);
5468
5469	if (!(hw_priv->opened)) {
5470		hw_setup_intr(hw);
5471		hw_enable(hw);
5472		hw_ena_intr(hw);
5473
5474		if (hw->mib_port_cnt)
5475			ksz_start_timer(&hw_priv->mib_timer_info,
5476				hw_priv->mib_timer_info.period);
5477	}
5478
5479	hw_priv->opened++;
5480
5481	ksz_start_timer(&priv->monitor_timer_info,
5482		priv->monitor_timer_info.period);
5483
5484	priv->media_state = port->linked->state;
5485
5486	set_media_state(dev, media_connected);
5487	netif_start_queue(dev);
5488
5489	return 0;
5490}
5491
5492/* RX errors = rx_errors */
5493/* RX dropped = rx_dropped */
5494/* RX overruns = rx_fifo_errors */
5495/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5496/* TX errors = tx_errors */
5497/* TX dropped = tx_dropped */
5498/* TX overruns = tx_fifo_errors */
5499/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5500/* collisions = collisions */
5501
5502/**
5503 * netdev_query_statistics - query network device statistics
5504 * @dev:	Network device.
5505 *
5506 * This function returns the statistics of the network device.  The device
5507 * needs not be opened.
5508 *
5509 * Return network device statistics.
5510 */
5511static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5512{
5513	struct dev_priv *priv = netdev_priv(dev);
5514	struct ksz_port *port = &priv->port;
5515	struct ksz_hw *hw = &priv->adapter->hw;
5516	struct ksz_port_mib *mib;
5517	int i;
5518	int p;
5519
5520	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5521	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5522
5523	/* Reset to zero to add count later. */
5524	dev->stats.multicast = 0;
5525	dev->stats.collisions = 0;
5526	dev->stats.rx_length_errors = 0;
5527	dev->stats.rx_crc_errors = 0;
5528	dev->stats.rx_frame_errors = 0;
5529	dev->stats.tx_window_errors = 0;
5530
5531	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5532		mib = &hw->port_mib[p];
5533
5534		dev->stats.multicast += (unsigned long)
5535			mib->counter[MIB_COUNTER_RX_MULTICAST];
5536
5537		dev->stats.collisions += (unsigned long)
5538			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5539
5540		dev->stats.rx_length_errors += (unsigned long)(
5541			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5542			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5543			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5544			mib->counter[MIB_COUNTER_RX_JABBER]);
5545		dev->stats.rx_crc_errors += (unsigned long)
5546			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5547		dev->stats.rx_frame_errors += (unsigned long)(
5548			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5549			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5550
5551		dev->stats.tx_window_errors += (unsigned long)
5552			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5553	}
5554
5555	return &dev->stats;
5556}
5557
5558/**
5559 * netdev_set_mac_address - set network device MAC address
5560 * @dev:	Network device.
5561 * @addr:	Buffer of MAC address.
5562 *
5563 * This function is used to set the MAC address of the network device.
5564 *
5565 * Return 0 to indicate success.
5566 */
5567static int netdev_set_mac_address(struct net_device *dev, void *addr)
5568{
5569	struct dev_priv *priv = netdev_priv(dev);
5570	struct dev_info *hw_priv = priv->adapter;
5571	struct ksz_hw *hw = &hw_priv->hw;
5572	struct sockaddr *mac = addr;
5573	uint interrupt;
5574
5575	if (priv->port.first_port > 0)
5576		hw_del_addr(hw, dev->dev_addr);
5577	else {
5578		hw->mac_override = 1;
5579		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5580	}
5581
5582	eth_hw_addr_set(dev, mac->sa_data);
5583
5584	interrupt = hw_block_intr(hw);
5585
5586	if (priv->port.first_port > 0)
5587		hw_add_addr(hw, dev->dev_addr);
5588	else
5589		hw_set_addr(hw);
5590	hw_restore_intr(hw, interrupt);
5591
5592	return 0;
5593}
5594
5595static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5596	struct ksz_hw *hw, int promiscuous)
5597{
5598	if (promiscuous != priv->promiscuous) {
5599		u8 prev_state = hw->promiscuous;
5600
5601		if (promiscuous)
5602			++hw->promiscuous;
5603		else
5604			--hw->promiscuous;
5605		priv->promiscuous = promiscuous;
5606
5607		/* Turn on/off promiscuous mode. */
5608		if (hw->promiscuous <= 1 && prev_state <= 1)
5609			hw_set_promiscuous(hw, hw->promiscuous);
5610
5611		/*
5612		 * Port is not in promiscuous mode, meaning it is released
5613		 * from the bridge.
5614		 */
5615		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5616		    netif_is_bridge_port(dev)) {
5617			struct ksz_switch *sw = hw->ksz_switch;
5618			int port = priv->port.first_port;
5619
5620			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5621			port = 1 << port;
5622			if (sw->member & port) {
5623				sw->member &= ~port;
5624				bridge_change(hw);
5625			}
5626		}
5627	}
5628}
5629
5630static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5631	int multicast)
5632{
5633	if (multicast != priv->multicast) {
5634		u8 all_multi = hw->all_multi;
5635
5636		if (multicast)
5637			++hw->all_multi;
5638		else
5639			--hw->all_multi;
5640		priv->multicast = multicast;
5641
5642		/* Turn on/off all multicast mode. */
5643		if (hw->all_multi <= 1 && all_multi <= 1)
5644			hw_set_multicast(hw, hw->all_multi);
5645	}
5646}
5647
5648/**
5649 * netdev_set_rx_mode
5650 * @dev:	Network device.
5651 *
5652 * This routine is used to set multicast addresses or put the network device
5653 * into promiscuous mode.
5654 */
5655static void netdev_set_rx_mode(struct net_device *dev)
5656{
5657	struct dev_priv *priv = netdev_priv(dev);
5658	struct dev_info *hw_priv = priv->adapter;
5659	struct ksz_hw *hw = &hw_priv->hw;
5660	struct netdev_hw_addr *ha;
5661	int multicast = (dev->flags & IFF_ALLMULTI);
5662
5663	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5664
5665	if (hw_priv->hw.dev_count > 1)
5666		multicast |= (dev->flags & IFF_MULTICAST);
5667	dev_set_multicast(priv, hw, multicast);
5668
5669	/* Cannot use different hashes in multiple device interfaces mode. */
5670	if (hw_priv->hw.dev_count > 1)
5671		return;
5672
5673	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5674		int i = 0;
5675
5676		/* List too big to support so turn on all multicast mode. */
5677		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5678			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5679				hw->multi_list_size = MAX_MULTICAST_LIST;
5680				++hw->all_multi;
5681				hw_set_multicast(hw, hw->all_multi);
5682			}
5683			return;
5684		}
5685
5686		netdev_for_each_mc_addr(ha, dev) {
5687			if (i >= MAX_MULTICAST_LIST)
5688				break;
5689			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5690		}
5691		hw->multi_list_size = (u8) i;
5692		hw_set_grp_addr(hw);
5693	} else {
5694		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5695			--hw->all_multi;
5696			hw_set_multicast(hw, hw->all_multi);
5697		}
5698		hw->multi_list_size = 0;
5699		hw_clr_multicast(hw);
5700	}
5701}
5702
5703static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5704{
5705	struct dev_priv *priv = netdev_priv(dev);
5706	struct dev_info *hw_priv = priv->adapter;
5707	struct ksz_hw *hw = &hw_priv->hw;
5708	int hw_mtu;
5709
5710	if (netif_running(dev))
5711		return -EBUSY;
5712
5713	/* Cannot use different MTU in multiple device interfaces mode. */
5714	if (hw->dev_count > 1)
5715		if (dev != hw_priv->dev)
5716			return 0;
5717
5718	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5719	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5720		hw->features |= RX_HUGE_FRAME;
5721		hw_mtu = MAX_RX_BUF_SIZE;
5722	} else {
5723		hw->features &= ~RX_HUGE_FRAME;
5724		hw_mtu = REGULAR_RX_BUF_SIZE;
5725	}
5726	hw_mtu = (hw_mtu + 3) & ~3;
5727	hw_priv->mtu = hw_mtu;
5728	dev->mtu = new_mtu;
5729
5730	return 0;
5731}
5732
5733/**
5734 * netdev_ioctl - I/O control processing
5735 * @dev:	Network device.
5736 * @ifr:	Interface request structure.
5737 * @cmd:	I/O control code.
5738 *
5739 * This function is used to process I/O control calls.
5740 *
5741 * Return 0 to indicate success.
5742 */
5743static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5744{
5745	struct dev_priv *priv = netdev_priv(dev);
5746	struct dev_info *hw_priv = priv->adapter;
5747	struct ksz_hw *hw = &hw_priv->hw;
5748	struct ksz_port *port = &priv->port;
5749	int result = 0;
5750	struct mii_ioctl_data *data = if_mii(ifr);
5751
5752	if (down_interruptible(&priv->proc_sem))
5753		return -ERESTARTSYS;
5754
5755	switch (cmd) {
5756	/* Get address of MII PHY in use. */
5757	case SIOCGMIIPHY:
5758		data->phy_id = priv->id;
5759		fallthrough;
5760
5761	/* Read MII PHY register. */
5762	case SIOCGMIIREG:
5763		if (data->phy_id != priv->id || data->reg_num >= 6)
5764			result = -EIO;
5765		else
5766			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5767				&data->val_out);
5768		break;
5769
5770	/* Write MII PHY register. */
5771	case SIOCSMIIREG:
5772		if (!capable(CAP_NET_ADMIN))
5773			result = -EPERM;
5774		else if (data->phy_id != priv->id || data->reg_num >= 6)
5775			result = -EIO;
5776		else
5777			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5778				data->val_in);
5779		break;
5780
5781	default:
5782		result = -EOPNOTSUPP;
5783	}
5784
5785	up(&priv->proc_sem);
5786
5787	return result;
5788}
5789
5790/*
5791 * MII support
5792 */
5793
5794/**
5795 * mdio_read - read PHY register
5796 * @dev:	Network device.
5797 * @phy_id:	The PHY id.
5798 * @reg_num:	The register number.
5799 *
5800 * This function returns the PHY register value.
5801 *
5802 * Return the register value.
5803 */
5804static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5805{
5806	struct dev_priv *priv = netdev_priv(dev);
5807	struct ksz_port *port = &priv->port;
5808	struct ksz_hw *hw = port->hw;
5809	u16 val_out;
5810
5811	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5812	return val_out;
5813}
5814
5815/**
5816 * mdio_write - set PHY register
5817 * @dev:	Network device.
5818 * @phy_id:	The PHY id.
5819 * @reg_num:	The register number.
5820 * @val:	The register value.
5821 *
5822 * This procedure sets the PHY register value.
5823 */
5824static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5825{
5826	struct dev_priv *priv = netdev_priv(dev);
5827	struct ksz_port *port = &priv->port;
5828	struct ksz_hw *hw = port->hw;
5829	int i;
5830	int pi;
5831
5832	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5833		hw_w_phy(hw, pi, reg_num << 1, val);
5834}
5835
5836/*
5837 * ethtool support
5838 */
5839
5840#define EEPROM_SIZE			0x40
5841
5842static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5843
5844#define ADVERTISED_ALL			\
5845	(ADVERTISED_10baseT_Half |	\
5846	ADVERTISED_10baseT_Full |	\
5847	ADVERTISED_100baseT_Half |	\
5848	ADVERTISED_100baseT_Full)
5849
5850/* These functions use the MII functions in mii.c. */
5851
5852/**
5853 * netdev_get_link_ksettings - get network device settings
5854 * @dev:	Network device.
5855 * @cmd:	Ethtool command.
5856 *
5857 * This function queries the PHY and returns its state in the ethtool command.
5858 *
5859 * Return 0 if successful; otherwise an error code.
5860 */
5861static int netdev_get_link_ksettings(struct net_device *dev,
5862				     struct ethtool_link_ksettings *cmd)
5863{
5864	struct dev_priv *priv = netdev_priv(dev);
5865	struct dev_info *hw_priv = priv->adapter;
5866
5867	mutex_lock(&hw_priv->lock);
5868	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5869	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5870	mutex_unlock(&hw_priv->lock);
5871
5872	/* Save advertised settings for workaround in next function. */
5873	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5874						cmd->link_modes.advertising);
5875
5876	return 0;
5877}
5878
5879/**
5880 * netdev_set_link_ksettings - set network device settings
5881 * @dev:	Network device.
5882 * @cmd:	Ethtool command.
5883 *
5884 * This function sets the PHY according to the ethtool command.
5885 *
5886 * Return 0 if successful; otherwise an error code.
5887 */
5888static int netdev_set_link_ksettings(struct net_device *dev,
5889				     const struct ethtool_link_ksettings *cmd)
5890{
5891	struct dev_priv *priv = netdev_priv(dev);
5892	struct dev_info *hw_priv = priv->adapter;
5893	struct ksz_port *port = &priv->port;
5894	struct ethtool_link_ksettings copy_cmd;
5895	u32 speed = cmd->base.speed;
5896	u32 advertising;
5897	int rc;
5898
5899	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5900						cmd->link_modes.advertising);
5901
5902	/*
5903	 * ethtool utility does not change advertised setting if auto
5904	 * negotiation is not specified explicitly.
5905	 */
5906	if (cmd->base.autoneg && priv->advertising == advertising) {
5907		advertising |= ADVERTISED_ALL;
5908		if (10 == speed)
5909			advertising &=
5910				~(ADVERTISED_100baseT_Full |
5911				ADVERTISED_100baseT_Half);
5912		else if (100 == speed)
5913			advertising &=
5914				~(ADVERTISED_10baseT_Full |
5915				ADVERTISED_10baseT_Half);
5916		if (0 == cmd->base.duplex)
5917			advertising &=
5918				~(ADVERTISED_100baseT_Full |
5919				ADVERTISED_10baseT_Full);
5920		else if (1 == cmd->base.duplex)
5921			advertising &=
5922				~(ADVERTISED_100baseT_Half |
5923				ADVERTISED_10baseT_Half);
5924	}
5925	mutex_lock(&hw_priv->lock);
5926	if (cmd->base.autoneg &&
5927	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
5928		port->duplex = 0;
5929		port->speed = 0;
5930		port->force_link = 0;
5931	} else {
5932		port->duplex = cmd->base.duplex + 1;
5933		if (1000 != speed)
5934			port->speed = speed;
5935		if (cmd->base.autoneg)
5936			port->force_link = 0;
5937		else
5938			port->force_link = 1;
5939	}
5940
5941	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
5942	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
5943						advertising);
5944	rc = mii_ethtool_set_link_ksettings(
5945		&priv->mii_if,
5946		(const struct ethtool_link_ksettings *)&copy_cmd);
5947	mutex_unlock(&hw_priv->lock);
5948	return rc;
5949}
5950
5951/**
5952 * netdev_nway_reset - restart auto-negotiation
5953 * @dev:	Network device.
5954 *
5955 * This function restarts the PHY for auto-negotiation.
5956 *
5957 * Return 0 if successful; otherwise an error code.
5958 */
5959static int netdev_nway_reset(struct net_device *dev)
5960{
5961	struct dev_priv *priv = netdev_priv(dev);
5962	struct dev_info *hw_priv = priv->adapter;
5963	int rc;
5964
5965	mutex_lock(&hw_priv->lock);
5966	rc = mii_nway_restart(&priv->mii_if);
5967	mutex_unlock(&hw_priv->lock);
5968	return rc;
5969}
5970
5971/**
5972 * netdev_get_link - get network device link status
5973 * @dev:	Network device.
5974 *
5975 * This function gets the link status from the PHY.
5976 *
5977 * Return true if PHY is linked and false otherwise.
5978 */
5979static u32 netdev_get_link(struct net_device *dev)
5980{
5981	struct dev_priv *priv = netdev_priv(dev);
5982	int rc;
5983
5984	rc = mii_link_ok(&priv->mii_if);
5985	return rc;
5986}
5987
5988/**
5989 * netdev_get_drvinfo - get network driver information
5990 * @dev:	Network device.
5991 * @info:	Ethtool driver info data structure.
5992 *
5993 * This procedure returns the driver information.
5994 */
5995static void netdev_get_drvinfo(struct net_device *dev,
5996	struct ethtool_drvinfo *info)
5997{
5998	struct dev_priv *priv = netdev_priv(dev);
5999	struct dev_info *hw_priv = priv->adapter;
6000
6001	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
6002	strscpy(info->version, DRV_VERSION, sizeof(info->version));
6003	strscpy(info->bus_info, pci_name(hw_priv->pdev),
6004		sizeof(info->bus_info));
6005}
6006
6007static struct hw_regs {
6008	int start;
6009	int end;
6010} hw_regs_range[] = {
6011	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6012	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6013	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6014	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6015	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6016	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6017	{ 0, 0 }
6018};
6019
6020/**
6021 * netdev_get_regs_len - get length of register dump
6022 * @dev:	Network device.
6023 *
6024 * This function returns the length of the register dump.
6025 *
6026 * Return length of the register dump.
6027 */
6028static int netdev_get_regs_len(struct net_device *dev)
6029{
6030	struct hw_regs *range = hw_regs_range;
6031	int regs_len = 0x10 * sizeof(u32);
6032
6033	while (range->end > range->start) {
6034		regs_len += (range->end - range->start + 3) / 4 * 4;
6035		range++;
6036	}
6037	return regs_len;
6038}
6039
6040/**
6041 * netdev_get_regs - get register dump
6042 * @dev:	Network device.
6043 * @regs:	Ethtool registers data structure.
6044 * @ptr:	Buffer to store the register values.
6045 *
6046 * This procedure dumps the register values in the provided buffer.
6047 */
6048static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6049	void *ptr)
6050{
6051	struct dev_priv *priv = netdev_priv(dev);
6052	struct dev_info *hw_priv = priv->adapter;
6053	struct ksz_hw *hw = &hw_priv->hw;
6054	int *buf = (int *) ptr;
6055	struct hw_regs *range = hw_regs_range;
6056	int len;
6057
6058	mutex_lock(&hw_priv->lock);
6059	regs->version = 0;
6060	for (len = 0; len < 0x40; len += 4) {
6061		pci_read_config_dword(hw_priv->pdev, len, buf);
6062		buf++;
6063	}
6064	while (range->end > range->start) {
6065		for (len = range->start; len < range->end; len += 4) {
6066			*buf = readl(hw->io + len);
6067			buf++;
6068		}
6069		range++;
6070	}
6071	mutex_unlock(&hw_priv->lock);
6072}
6073
6074#define WOL_SUPPORT			\
6075	(WAKE_PHY | WAKE_MAGIC |	\
6076	WAKE_UCAST | WAKE_MCAST |	\
6077	WAKE_BCAST | WAKE_ARP)
6078
6079/**
6080 * netdev_get_wol - get Wake-on-LAN support
6081 * @dev:	Network device.
6082 * @wol:	Ethtool Wake-on-LAN data structure.
6083 *
6084 * This procedure returns Wake-on-LAN support.
6085 */
6086static void netdev_get_wol(struct net_device *dev,
6087	struct ethtool_wolinfo *wol)
6088{
6089	struct dev_priv *priv = netdev_priv(dev);
6090	struct dev_info *hw_priv = priv->adapter;
6091
6092	wol->supported = hw_priv->wol_support;
6093	wol->wolopts = hw_priv->wol_enable;
6094	memset(&wol->sopass, 0, sizeof(wol->sopass));
6095}
6096
6097/**
6098 * netdev_set_wol - set Wake-on-LAN support
6099 * @dev:	Network device.
6100 * @wol:	Ethtool Wake-on-LAN data structure.
6101 *
6102 * This function sets Wake-on-LAN support.
6103 *
6104 * Return 0 if successful; otherwise an error code.
6105 */
6106static int netdev_set_wol(struct net_device *dev,
6107	struct ethtool_wolinfo *wol)
6108{
6109	struct dev_priv *priv = netdev_priv(dev);
6110	struct dev_info *hw_priv = priv->adapter;
6111
6112	/* Need to find a way to retrieve the device IP address. */
6113	static const u8 net_addr[] = { 192, 168, 1, 1 };
6114
6115	if (wol->wolopts & ~hw_priv->wol_support)
6116		return -EINVAL;
6117
6118	hw_priv->wol_enable = wol->wolopts;
6119
6120	/* Link wakeup cannot really be disabled. */
6121	if (wol->wolopts)
6122		hw_priv->wol_enable |= WAKE_PHY;
6123	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6124	return 0;
6125}
6126
6127/**
6128 * netdev_get_msglevel - get debug message level
6129 * @dev:	Network device.
6130 *
6131 * This function returns current debug message level.
6132 *
6133 * Return current debug message flags.
6134 */
6135static u32 netdev_get_msglevel(struct net_device *dev)
6136{
6137	struct dev_priv *priv = netdev_priv(dev);
6138
6139	return priv->msg_enable;
6140}
6141
6142/**
6143 * netdev_set_msglevel - set debug message level
6144 * @dev:	Network device.
6145 * @value:	Debug message flags.
6146 *
6147 * This procedure sets debug message level.
6148 */
6149static void netdev_set_msglevel(struct net_device *dev, u32 value)
6150{
6151	struct dev_priv *priv = netdev_priv(dev);
6152
6153	priv->msg_enable = value;
6154}
6155
6156/**
6157 * netdev_get_eeprom_len - get EEPROM length
6158 * @dev:	Network device.
6159 *
6160 * This function returns the length of the EEPROM.
6161 *
6162 * Return length of the EEPROM.
6163 */
6164static int netdev_get_eeprom_len(struct net_device *dev)
6165{
6166	return EEPROM_SIZE * 2;
6167}
6168
6169#define EEPROM_MAGIC			0x10A18842
6170
6171/**
6172 * netdev_get_eeprom - get EEPROM data
6173 * @dev:	Network device.
6174 * @eeprom:	Ethtool EEPROM data structure.
6175 * @data:	Buffer to store the EEPROM data.
6176 *
6177 * This function dumps the EEPROM data in the provided buffer.
6178 *
6179 * Return 0 if successful; otherwise an error code.
6180 */
6181static int netdev_get_eeprom(struct net_device *dev,
6182	struct ethtool_eeprom *eeprom, u8 *data)
6183{
6184	struct dev_priv *priv = netdev_priv(dev);
6185	struct dev_info *hw_priv = priv->adapter;
6186	u8 *eeprom_byte = (u8 *) eeprom_data;
6187	int i;
6188	int len;
6189
6190	len = (eeprom->offset + eeprom->len + 1) / 2;
6191	for (i = eeprom->offset / 2; i < len; i++)
6192		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6193	eeprom->magic = EEPROM_MAGIC;
6194	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6195
6196	return 0;
6197}
6198
6199/**
6200 * netdev_set_eeprom - write EEPROM data
6201 * @dev:	Network device.
6202 * @eeprom:	Ethtool EEPROM data structure.
6203 * @data:	Data buffer.
6204 *
6205 * This function modifies the EEPROM data one byte at a time.
6206 *
6207 * Return 0 if successful; otherwise an error code.
6208 */
6209static int netdev_set_eeprom(struct net_device *dev,
6210	struct ethtool_eeprom *eeprom, u8 *data)
6211{
6212	struct dev_priv *priv = netdev_priv(dev);
6213	struct dev_info *hw_priv = priv->adapter;
6214	u16 eeprom_word[EEPROM_SIZE];
6215	u8 *eeprom_byte = (u8 *) eeprom_word;
6216	int i;
6217	int len;
6218
6219	if (eeprom->magic != EEPROM_MAGIC)
6220		return -EINVAL;
6221
6222	len = (eeprom->offset + eeprom->len + 1) / 2;
6223	for (i = eeprom->offset / 2; i < len; i++)
6224		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6225	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6226	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6227	for (i = 0; i < EEPROM_SIZE; i++)
6228		if (eeprom_word[i] != eeprom_data[i]) {
6229			eeprom_data[i] = eeprom_word[i];
6230			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6231	}
6232
6233	return 0;
6234}
6235
6236/**
6237 * netdev_get_pauseparam - get flow control parameters
6238 * @dev:	Network device.
6239 * @pause:	Ethtool PAUSE settings data structure.
6240 *
6241 * This procedure returns the PAUSE control flow settings.
6242 */
6243static void netdev_get_pauseparam(struct net_device *dev,
6244	struct ethtool_pauseparam *pause)
6245{
6246	struct dev_priv *priv = netdev_priv(dev);
6247	struct dev_info *hw_priv = priv->adapter;
6248	struct ksz_hw *hw = &hw_priv->hw;
6249
6250	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6251	if (!hw->ksz_switch) {
6252		pause->rx_pause =
6253			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6254		pause->tx_pause =
6255			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6256	} else {
6257		pause->rx_pause =
6258			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6259				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6260		pause->tx_pause =
6261			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6262				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6263	}
6264}
6265
6266/**
6267 * netdev_set_pauseparam - set flow control parameters
6268 * @dev:	Network device.
6269 * @pause:	Ethtool PAUSE settings data structure.
6270 *
6271 * This function sets the PAUSE control flow settings.
6272 * Not implemented yet.
6273 *
6274 * Return 0 if successful; otherwise an error code.
6275 */
6276static int netdev_set_pauseparam(struct net_device *dev,
6277	struct ethtool_pauseparam *pause)
6278{
6279	struct dev_priv *priv = netdev_priv(dev);
6280	struct dev_info *hw_priv = priv->adapter;
6281	struct ksz_hw *hw = &hw_priv->hw;
6282	struct ksz_port *port = &priv->port;
6283
6284	mutex_lock(&hw_priv->lock);
6285	if (pause->autoneg) {
6286		if (!pause->rx_pause && !pause->tx_pause)
6287			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6288		else
6289			port->flow_ctrl = PHY_FLOW_CTRL;
6290		hw->overrides &= ~PAUSE_FLOW_CTRL;
6291		port->force_link = 0;
6292		if (hw->ksz_switch) {
6293			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6294				SWITCH_RX_FLOW_CTRL, 1);
6295			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6296				SWITCH_TX_FLOW_CTRL, 1);
6297		}
6298		port_set_link_speed(port);
6299	} else {
6300		hw->overrides |= PAUSE_FLOW_CTRL;
6301		if (hw->ksz_switch) {
6302			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6303				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6304			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6305				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6306		} else
6307			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6308	}
6309	mutex_unlock(&hw_priv->lock);
6310
6311	return 0;
6312}
6313
6314/**
6315 * netdev_get_ringparam - get tx/rx ring parameters
6316 * @dev:	Network device.
6317 * @ring:	Ethtool RING settings data structure.
6318 * @kernel_ring:	Ethtool external RING settings data structure.
6319 * @extack:	Netlink handle.
6320 *
6321 * This procedure returns the TX/RX ring settings.
6322 */
6323static void netdev_get_ringparam(struct net_device *dev,
6324				 struct ethtool_ringparam *ring,
6325				 struct kernel_ethtool_ringparam *kernel_ring,
6326				 struct netlink_ext_ack *extack)
6327{
6328	struct dev_priv *priv = netdev_priv(dev);
6329	struct dev_info *hw_priv = priv->adapter;
6330	struct ksz_hw *hw = &hw_priv->hw;
6331
6332	ring->tx_max_pending = (1 << 9);
6333	ring->tx_pending = hw->tx_desc_info.alloc;
6334	ring->rx_max_pending = (1 << 9);
6335	ring->rx_pending = hw->rx_desc_info.alloc;
6336}
6337
6338#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6339
6340static struct {
6341	char string[ETH_GSTRING_LEN];
6342} ethtool_stats_keys[STATS_LEN] = {
6343	{ "rx_lo_priority_octets" },
6344	{ "rx_hi_priority_octets" },
6345	{ "rx_undersize_packets" },
6346	{ "rx_fragments" },
6347	{ "rx_oversize_packets" },
6348	{ "rx_jabbers" },
6349	{ "rx_symbol_errors" },
6350	{ "rx_crc_errors" },
6351	{ "rx_align_errors" },
6352	{ "rx_mac_ctrl_packets" },
6353	{ "rx_pause_packets" },
6354	{ "rx_bcast_packets" },
6355	{ "rx_mcast_packets" },
6356	{ "rx_ucast_packets" },
6357	{ "rx_64_or_less_octet_packets" },
6358	{ "rx_65_to_127_octet_packets" },
6359	{ "rx_128_to_255_octet_packets" },
6360	{ "rx_256_to_511_octet_packets" },
6361	{ "rx_512_to_1023_octet_packets" },
6362	{ "rx_1024_to_1522_octet_packets" },
6363
6364	{ "tx_lo_priority_octets" },
6365	{ "tx_hi_priority_octets" },
6366	{ "tx_late_collisions" },
6367	{ "tx_pause_packets" },
6368	{ "tx_bcast_packets" },
6369	{ "tx_mcast_packets" },
6370	{ "tx_ucast_packets" },
6371	{ "tx_deferred" },
6372	{ "tx_total_collisions" },
6373	{ "tx_excessive_collisions" },
6374	{ "tx_single_collisions" },
6375	{ "tx_mult_collisions" },
6376
6377	{ "rx_discards" },
6378	{ "tx_discards" },
6379};
6380
6381/**
6382 * netdev_get_strings - get statistics identity strings
6383 * @dev:	Network device.
6384 * @stringset:	String set identifier.
6385 * @buf:	Buffer to store the strings.
6386 *
6387 * This procedure returns the strings used to identify the statistics.
6388 */
6389static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6390{
6391	struct dev_priv *priv = netdev_priv(dev);
6392	struct dev_info *hw_priv = priv->adapter;
6393	struct ksz_hw *hw = &hw_priv->hw;
6394
6395	if (ETH_SS_STATS == stringset)
6396		memcpy(buf, &ethtool_stats_keys,
6397			ETH_GSTRING_LEN * hw->mib_cnt);
6398}
6399
6400/**
6401 * netdev_get_sset_count - get statistics size
6402 * @dev:	Network device.
6403 * @sset:	The statistics set number.
6404 *
6405 * This function returns the size of the statistics to be reported.
6406 *
6407 * Return size of the statistics to be reported.
6408 */
6409static int netdev_get_sset_count(struct net_device *dev, int sset)
6410{
6411	struct dev_priv *priv = netdev_priv(dev);
6412	struct dev_info *hw_priv = priv->adapter;
6413	struct ksz_hw *hw = &hw_priv->hw;
6414
6415	switch (sset) {
6416	case ETH_SS_STATS:
6417		return hw->mib_cnt;
6418	default:
6419		return -EOPNOTSUPP;
6420	}
6421}
6422
6423/**
6424 * netdev_get_ethtool_stats - get network device statistics
6425 * @dev:	Network device.
6426 * @stats:	Ethtool statistics data structure.
6427 * @data:	Buffer to store the statistics.
6428 *
6429 * This procedure returns the statistics.
6430 */
6431static void netdev_get_ethtool_stats(struct net_device *dev,
6432	struct ethtool_stats *stats, u64 *data)
6433{
6434	struct dev_priv *priv = netdev_priv(dev);
6435	struct dev_info *hw_priv = priv->adapter;
6436	struct ksz_hw *hw = &hw_priv->hw;
6437	struct ksz_port *port = &priv->port;
6438	int n_stats = stats->n_stats;
6439	int i;
6440	int n;
6441	int p;
6442	u64 counter[TOTAL_PORT_COUNTER_NUM];
6443
6444	mutex_lock(&hw_priv->lock);
6445	n = SWITCH_PORT_NUM;
6446	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6447		if (media_connected == hw->port_mib[p].state) {
6448			hw_priv->counter[p].read = 1;
6449
6450			/* Remember first port that requests read. */
6451			if (n == SWITCH_PORT_NUM)
6452				n = p;
6453		}
6454	}
6455	mutex_unlock(&hw_priv->lock);
6456
6457	if (n < SWITCH_PORT_NUM)
6458		schedule_work(&hw_priv->mib_read);
6459
6460	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6461		p = n;
6462		wait_event_interruptible_timeout(
6463			hw_priv->counter[p].counter,
6464			2 == hw_priv->counter[p].read,
6465			HZ * 1);
6466	} else
6467		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6468			if (0 == i) {
6469				wait_event_interruptible_timeout(
6470					hw_priv->counter[p].counter,
6471					2 == hw_priv->counter[p].read,
6472					HZ * 2);
6473			} else if (hw->port_mib[p].cnt_ptr) {
6474				wait_event_interruptible_timeout(
6475					hw_priv->counter[p].counter,
6476					2 == hw_priv->counter[p].read,
6477					HZ * 1);
6478			}
6479		}
6480
6481	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6482	n = hw->mib_cnt;
6483	if (n > n_stats)
6484		n = n_stats;
6485	n_stats -= n;
6486	for (i = 0; i < n; i++)
6487		*data++ = counter[i];
6488}
6489
6490/**
6491 * netdev_set_features - set receive checksum support
6492 * @dev:	Network device.
6493 * @features:	New device features (offloads).
6494 *
6495 * This function sets receive checksum support setting.
6496 *
6497 * Return 0 if successful; otherwise an error code.
6498 */
6499static int netdev_set_features(struct net_device *dev,
6500	netdev_features_t features)
6501{
6502	struct dev_priv *priv = netdev_priv(dev);
6503	struct dev_info *hw_priv = priv->adapter;
6504	struct ksz_hw *hw = &hw_priv->hw;
6505
6506	mutex_lock(&hw_priv->lock);
6507
6508	/* see note in hw_setup() */
6509	if (features & NETIF_F_RXCSUM)
6510		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6511	else
6512		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6513
6514	if (hw->enabled)
6515		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6516
6517	mutex_unlock(&hw_priv->lock);
6518
6519	return 0;
6520}
6521
6522static const struct ethtool_ops netdev_ethtool_ops = {
6523	.nway_reset		= netdev_nway_reset,
6524	.get_link		= netdev_get_link,
6525	.get_drvinfo		= netdev_get_drvinfo,
6526	.get_regs_len		= netdev_get_regs_len,
6527	.get_regs		= netdev_get_regs,
6528	.get_wol		= netdev_get_wol,
6529	.set_wol		= netdev_set_wol,
6530	.get_msglevel		= netdev_get_msglevel,
6531	.set_msglevel		= netdev_set_msglevel,
6532	.get_eeprom_len		= netdev_get_eeprom_len,
6533	.get_eeprom		= netdev_get_eeprom,
6534	.set_eeprom		= netdev_set_eeprom,
6535	.get_pauseparam		= netdev_get_pauseparam,
6536	.set_pauseparam		= netdev_set_pauseparam,
6537	.get_ringparam		= netdev_get_ringparam,
6538	.get_strings		= netdev_get_strings,
6539	.get_sset_count		= netdev_get_sset_count,
6540	.get_ethtool_stats	= netdev_get_ethtool_stats,
6541	.get_link_ksettings	= netdev_get_link_ksettings,
6542	.set_link_ksettings	= netdev_set_link_ksettings,
6543};
6544
6545/*
6546 * Hardware monitoring
6547 */
6548
6549static void update_link(struct net_device *dev, struct dev_priv *priv,
6550	struct ksz_port *port)
6551{
6552	if (priv->media_state != port->linked->state) {
6553		priv->media_state = port->linked->state;
6554		if (netif_running(dev))
6555			set_media_state(dev, media_connected);
6556	}
6557}
6558
6559static void mib_read_work(struct work_struct *work)
6560{
6561	struct dev_info *hw_priv =
6562		container_of(work, struct dev_info, mib_read);
6563	struct ksz_hw *hw = &hw_priv->hw;
6564	unsigned long next_jiffies;
6565	struct ksz_port_mib *mib;
6566	int i;
6567
6568	next_jiffies = jiffies;
6569	for (i = 0; i < hw->mib_port_cnt; i++) {
6570		mib = &hw->port_mib[i];
6571
6572		/* Reading MIB counters or requested to read. */
6573		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6574
6575			/* Need to process receive interrupt. */
6576			if (port_r_cnt(hw, i))
6577				break;
6578			hw_priv->counter[i].read = 0;
6579
6580			/* Finish reading counters. */
6581			if (0 == mib->cnt_ptr) {
6582				hw_priv->counter[i].read = 2;
6583				wake_up_interruptible(
6584					&hw_priv->counter[i].counter);
6585			}
6586		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6587			/* Only read MIB counters when the port is connected. */
6588			if (media_connected == mib->state)
6589				hw_priv->counter[i].read = 1;
6590			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6591			hw_priv->counter[i].time = next_jiffies;
6592
6593		/* Port is just disconnected. */
6594		} else if (mib->link_down) {
6595			mib->link_down = 0;
6596
6597			/* Read counters one last time after link is lost. */
6598			hw_priv->counter[i].read = 1;
6599		}
6600	}
6601}
6602
6603static void mib_monitor(struct timer_list *t)
6604{
6605	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6606
6607	mib_read_work(&hw_priv->mib_read);
6608
6609	/* This is used to verify Wake-on-LAN is working. */
6610	if (hw_priv->pme_wait) {
6611		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6612			hw_clr_wol_pme_status(&hw_priv->hw);
6613			hw_priv->pme_wait = 0;
6614		}
6615	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6616
6617		/* PME is asserted.  Wait 2 seconds to clear it. */
6618		hw_priv->pme_wait = jiffies + HZ * 2;
6619	}
6620
6621	ksz_update_timer(&hw_priv->mib_timer_info);
6622}
6623
6624/**
6625 * dev_monitor - periodic monitoring
6626 * @t:	timer list containing a network device pointer.
6627 *
6628 * This routine is run in a kernel timer to monitor the network device.
6629 */
6630static void dev_monitor(struct timer_list *t)
6631{
6632	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6633	struct net_device *dev = priv->mii_if.dev;
6634	struct dev_info *hw_priv = priv->adapter;
6635	struct ksz_hw *hw = &hw_priv->hw;
6636	struct ksz_port *port = &priv->port;
6637
6638	if (!(hw->features & LINK_INT_WORKING))
6639		port_get_link_speed(port);
6640	update_link(dev, priv, port);
6641
6642	ksz_update_timer(&priv->monitor_timer_info);
6643}
6644
6645/*
6646 * Linux network device interface functions
6647 */
6648
6649/* Driver exported variables */
6650
6651static int msg_enable;
6652
6653static char *macaddr = ":";
6654static char *mac1addr = ":";
6655
6656/*
6657 * This enables multiple network device mode for KSZ8842, which contains a
6658 * switch with two physical ports.  Some users like to take control of the
6659 * ports for running Spanning Tree Protocol.  The driver will create an
6660 * additional eth? device for the other port.
6661 *
6662 * Some limitations are the network devices cannot have different MTU and
6663 * multicast hash tables.
6664 */
6665static int multi_dev;
6666
6667/*
6668 * As most users select multiple network device mode to use Spanning Tree
6669 * Protocol, this enables a feature in which most unicast and multicast packets
6670 * are forwarded inside the switch and not passed to the host.  Only packets
6671 * that need the host's attention are passed to it.  This prevents the host
6672 * wasting CPU time to examine each and every incoming packets and do the
6673 * forwarding itself.
6674 *
6675 * As the hack requires the private bridge header, the driver cannot compile
6676 * with just the kernel headers.
6677 *
6678 * Enabling STP support also turns on multiple network device mode.
6679 */
6680static int stp;
6681
6682/*
6683 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6684 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6685 * STP support is enabled.
6686 */
6687static int fast_aging;
6688
6689/**
6690 * netdev_init - initialize network device.
6691 * @dev:	Network device.
6692 *
6693 * This function initializes the network device.
6694 *
6695 * Return 0 if successful; otherwise an error code indicating failure.
6696 */
6697static int __init netdev_init(struct net_device *dev)
6698{
6699	struct dev_priv *priv = netdev_priv(dev);
6700
6701	/* 500 ms timeout */
6702	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6703		dev_monitor);
6704
6705	/* 500 ms timeout */
6706	dev->watchdog_timeo = HZ / 2;
6707
6708	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6709
6710	/*
6711	 * Hardware does not really support IPv6 checksum generation, but
6712	 * driver actually runs faster with this on.
6713	 */
6714	dev->hw_features |= NETIF_F_IPV6_CSUM;
6715
6716	dev->features |= dev->hw_features;
6717
6718	sema_init(&priv->proc_sem, 1);
6719
6720	priv->mii_if.phy_id_mask = 0x1;
6721	priv->mii_if.reg_num_mask = 0x7;
6722	priv->mii_if.dev = dev;
6723	priv->mii_if.mdio_read = mdio_read;
6724	priv->mii_if.mdio_write = mdio_write;
6725	priv->mii_if.phy_id = priv->port.first_port + 1;
6726
6727	priv->msg_enable = netif_msg_init(msg_enable,
6728		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6729
6730	return 0;
6731}
6732
6733static const struct net_device_ops netdev_ops = {
6734	.ndo_init		= netdev_init,
6735	.ndo_open		= netdev_open,
6736	.ndo_stop		= netdev_close,
6737	.ndo_get_stats		= netdev_query_statistics,
6738	.ndo_start_xmit		= netdev_tx,
6739	.ndo_tx_timeout		= netdev_tx_timeout,
6740	.ndo_change_mtu		= netdev_change_mtu,
6741	.ndo_set_features	= netdev_set_features,
6742	.ndo_set_mac_address	= netdev_set_mac_address,
6743	.ndo_validate_addr	= eth_validate_addr,
6744	.ndo_eth_ioctl		= netdev_ioctl,
6745	.ndo_set_rx_mode	= netdev_set_rx_mode,
6746#ifdef CONFIG_NET_POLL_CONTROLLER
6747	.ndo_poll_controller	= netdev_netpoll,
6748#endif
6749};
6750
6751static void netdev_free(struct net_device *dev)
6752{
6753	if (dev->watchdog_timeo)
6754		unregister_netdev(dev);
6755
6756	free_netdev(dev);
6757}
6758
6759struct platform_info {
6760	struct dev_info dev_info;
6761	struct net_device *netdev[SWITCH_PORT_NUM];
6762};
6763
6764static int net_device_present;
6765
6766static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6767{
6768	int i;
6769	int j;
6770	int got_num;
6771	int num;
6772
6773	i = j = num = got_num = 0;
6774	while (j < ETH_ALEN) {
6775		if (macaddr[i]) {
6776			int digit;
6777
6778			got_num = 1;
6779			digit = hex_to_bin(macaddr[i]);
6780			if (digit >= 0)
6781				num = num * 16 + digit;
6782			else if (':' == macaddr[i])
6783				got_num = 2;
6784			else
6785				break;
6786		} else if (got_num)
6787			got_num = 2;
6788		else
6789			break;
6790		if (2 == got_num) {
6791			if (MAIN_PORT == port) {
6792				hw_priv->hw.override_addr[j++] = (u8) num;
6793				hw_priv->hw.override_addr[5] +=
6794					hw_priv->hw.id;
6795			} else {
6796				hw_priv->hw.ksz_switch->other_addr[j++] =
6797					(u8) num;
6798				hw_priv->hw.ksz_switch->other_addr[5] +=
6799					hw_priv->hw.id;
6800			}
6801			num = got_num = 0;
6802		}
6803		i++;
6804	}
6805	if (ETH_ALEN == j) {
6806		if (MAIN_PORT == port)
6807			hw_priv->hw.mac_override = 1;
6808	}
6809}
6810
6811#define KS884X_DMA_MASK			(~0x0UL)
6812
6813static void read_other_addr(struct ksz_hw *hw)
6814{
6815	int i;
6816	u16 data[3];
6817	struct ksz_switch *sw = hw->ksz_switch;
6818
6819	for (i = 0; i < 3; i++)
6820		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6821	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6822		sw->other_addr[5] = (u8) data[0];
6823		sw->other_addr[4] = (u8)(data[0] >> 8);
6824		sw->other_addr[3] = (u8) data[1];
6825		sw->other_addr[2] = (u8)(data[1] >> 8);
6826		sw->other_addr[1] = (u8) data[2];
6827		sw->other_addr[0] = (u8)(data[2] >> 8);
6828	}
6829}
6830
6831#ifndef PCI_VENDOR_ID_MICREL_KS
6832#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6833#endif
6834
6835static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6836{
6837	struct net_device *dev;
6838	struct dev_priv *priv;
6839	struct dev_info *hw_priv;
6840	struct ksz_hw *hw;
6841	struct platform_info *info;
6842	struct ksz_port *port;
6843	unsigned long reg_base;
6844	unsigned long reg_len;
6845	int cnt;
6846	int i;
6847	int mib_port_count;
6848	int pi;
6849	int port_count;
6850	int result;
6851	char banner[sizeof(version)];
6852	struct ksz_switch *sw = NULL;
6853
6854	result = pcim_enable_device(pdev);
6855	if (result)
6856		return result;
6857
6858	result = -ENODEV;
6859
6860	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6861	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6862		return result;
6863
6864	reg_base = pci_resource_start(pdev, 0);
6865	reg_len = pci_resource_len(pdev, 0);
6866	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6867		return result;
6868
6869	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6870		return result;
6871	pci_set_master(pdev);
6872
6873	result = -ENOMEM;
6874
6875	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6876	if (!info)
6877		goto pcidev_init_dev_err;
6878
6879	hw_priv = &info->dev_info;
6880	hw_priv->pdev = pdev;
6881
6882	hw = &hw_priv->hw;
6883
6884	hw->io = ioremap(reg_base, reg_len);
6885	if (!hw->io)
6886		goto pcidev_init_io_err;
6887
6888	cnt = hw_init(hw);
6889	if (!cnt) {
6890		if (msg_enable & NETIF_MSG_PROBE)
6891			pr_alert("chip not detected\n");
6892		result = -ENODEV;
6893		goto pcidev_init_alloc_err;
6894	}
6895
6896	snprintf(banner, sizeof(banner), "%s", version);
6897	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6898	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6899	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6900
6901	/* Assume device is KSZ8841. */
6902	hw->dev_count = 1;
6903	port_count = 1;
6904	mib_port_count = 1;
6905	hw->addr_list_size = 0;
6906	hw->mib_cnt = PORT_COUNTER_NUM;
6907	hw->mib_port_cnt = 1;
6908
6909	/* KSZ8842 has a switch with multiple ports. */
6910	if (2 == cnt) {
6911		if (fast_aging)
6912			hw->overrides |= FAST_AGING;
6913
6914		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6915
6916		/* Multiple network device interfaces are required. */
6917		if (multi_dev) {
6918			hw->dev_count = SWITCH_PORT_NUM;
6919			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6920		}
6921
6922		/* Single network device has multiple ports. */
6923		if (1 == hw->dev_count) {
6924			port_count = SWITCH_PORT_NUM;
6925			mib_port_count = SWITCH_PORT_NUM;
6926		}
6927		hw->mib_port_cnt = TOTAL_PORT_NUM;
6928		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
6929		if (!hw->ksz_switch)
6930			goto pcidev_init_alloc_err;
6931
6932		sw = hw->ksz_switch;
6933	}
6934	for (i = 0; i < hw->mib_port_cnt; i++)
6935		hw->port_mib[i].mib_start = 0;
6936
6937	hw->parent = hw_priv;
6938
6939	/* Default MTU is 1500. */
6940	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
6941
6942	if (ksz_alloc_mem(hw_priv))
6943		goto pcidev_init_mem_err;
6944
6945	hw_priv->hw.id = net_device_present;
6946
6947	spin_lock_init(&hw_priv->hwlock);
6948	mutex_init(&hw_priv->lock);
6949
6950	for (i = 0; i < TOTAL_PORT_NUM; i++)
6951		init_waitqueue_head(&hw_priv->counter[i].counter);
6952
6953	if (macaddr[0] != ':')
6954		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
6955
6956	/* Read MAC address and initialize override address if not overridden. */
6957	hw_read_addr(hw);
6958
6959	/* Multiple device interfaces mode requires a second MAC address. */
6960	if (hw->dev_count > 1) {
6961		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
6962		read_other_addr(hw);
6963		if (mac1addr[0] != ':')
6964			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
6965	}
6966
6967	hw_setup(hw);
6968	if (hw->ksz_switch)
6969		sw_setup(hw);
6970	else {
6971		hw_priv->wol_support = WOL_SUPPORT;
6972		hw_priv->wol_enable = 0;
6973	}
6974
6975	INIT_WORK(&hw_priv->mib_read, mib_read_work);
6976
6977	/* 500 ms timeout */
6978	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
6979		mib_monitor);
6980
6981	for (i = 0; i < hw->dev_count; i++) {
6982		dev = alloc_etherdev(sizeof(struct dev_priv));
6983		if (!dev)
6984			goto pcidev_init_reg_err;
6985		SET_NETDEV_DEV(dev, &pdev->dev);
6986		info->netdev[i] = dev;
6987
6988		priv = netdev_priv(dev);
6989		priv->adapter = hw_priv;
6990		priv->id = net_device_present++;
6991
6992		port = &priv->port;
6993		port->port_cnt = port_count;
6994		port->mib_port_cnt = mib_port_count;
6995		port->first_port = i;
6996		port->flow_ctrl = PHY_FLOW_CTRL;
6997
6998		port->hw = hw;
6999		port->linked = &hw->port_info[port->first_port];
7000
7001		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7002			hw->port_info[pi].port_id = pi;
7003			hw->port_info[pi].pdev = dev;
7004			hw->port_info[pi].state = media_disconnected;
7005		}
7006
7007		dev->mem_start = (unsigned long) hw->io;
7008		dev->mem_end = dev->mem_start + reg_len - 1;
7009		dev->irq = pdev->irq;
7010		if (MAIN_PORT == i)
7011			eth_hw_addr_set(dev, hw_priv->hw.override_addr);
7012		else {
7013			u8 addr[ETH_ALEN];
7014
7015			ether_addr_copy(addr, sw->other_addr);
7016			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7017				addr[5] += port->first_port;
7018			eth_hw_addr_set(dev, addr);
7019		}
7020
7021		dev->netdev_ops = &netdev_ops;
7022		dev->ethtool_ops = &netdev_ethtool_ops;
7023
7024		/* MTU range: 60 - 1894 */
7025		dev->min_mtu = ETH_ZLEN;
7026		dev->max_mtu = MAX_RX_BUF_SIZE -
7027			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7028
7029		if (register_netdev(dev))
7030			goto pcidev_init_reg_err;
7031		port_set_power_saving(port, true);
7032	}
7033
7034	pci_dev_get(hw_priv->pdev);
7035	pci_set_drvdata(pdev, info);
7036	return 0;
7037
7038pcidev_init_reg_err:
7039	for (i = 0; i < hw->dev_count; i++) {
7040		if (info->netdev[i]) {
7041			netdev_free(info->netdev[i]);
7042			info->netdev[i] = NULL;
7043		}
7044	}
7045
7046pcidev_init_mem_err:
7047	ksz_free_mem(hw_priv);
7048	kfree(hw->ksz_switch);
7049
7050pcidev_init_alloc_err:
7051	iounmap(hw->io);
7052
7053pcidev_init_io_err:
7054	kfree(info);
7055
7056pcidev_init_dev_err:
7057	release_mem_region(reg_base, reg_len);
7058
7059	return result;
7060}
7061
7062static void pcidev_exit(struct pci_dev *pdev)
7063{
7064	int i;
7065	struct platform_info *info = pci_get_drvdata(pdev);
7066	struct dev_info *hw_priv = &info->dev_info;
7067
7068	release_mem_region(pci_resource_start(pdev, 0),
7069		pci_resource_len(pdev, 0));
7070	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7071		if (info->netdev[i])
7072			netdev_free(info->netdev[i]);
7073	}
7074	if (hw_priv->hw.io)
7075		iounmap(hw_priv->hw.io);
7076	ksz_free_mem(hw_priv);
7077	kfree(hw_priv->hw.ksz_switch);
7078	pci_dev_put(hw_priv->pdev);
7079	kfree(info);
7080}
7081
7082static int __maybe_unused pcidev_resume(struct device *dev_d)
7083{
7084	int i;
7085	struct platform_info *info = dev_get_drvdata(dev_d);
7086	struct dev_info *hw_priv = &info->dev_info;
7087	struct ksz_hw *hw = &hw_priv->hw;
7088
7089	device_wakeup_disable(dev_d);
7090
7091	if (hw_priv->wol_enable)
7092		hw_cfg_wol_pme(hw, 0);
7093	for (i = 0; i < hw->dev_count; i++) {
7094		if (info->netdev[i]) {
7095			struct net_device *dev = info->netdev[i];
7096
7097			if (netif_running(dev)) {
7098				netdev_open(dev);
7099				netif_device_attach(dev);
7100			}
7101		}
7102	}
7103	return 0;
7104}
7105
7106static int __maybe_unused pcidev_suspend(struct device *dev_d)
7107{
7108	int i;
7109	struct platform_info *info = dev_get_drvdata(dev_d);
7110	struct dev_info *hw_priv = &info->dev_info;
7111	struct ksz_hw *hw = &hw_priv->hw;
7112
7113	/* Need to find a way to retrieve the device IP address. */
7114	static const u8 net_addr[] = { 192, 168, 1, 1 };
7115
7116	for (i = 0; i < hw->dev_count; i++) {
7117		if (info->netdev[i]) {
7118			struct net_device *dev = info->netdev[i];
7119
7120			if (netif_running(dev)) {
7121				netif_device_detach(dev);
7122				netdev_close(dev);
7123			}
7124		}
7125	}
7126	if (hw_priv->wol_enable) {
7127		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7128		hw_cfg_wol_pme(hw, 1);
7129	}
7130
7131	device_wakeup_enable(dev_d);
7132	return 0;
7133}
7134
7135static char pcidev_name[] = "ksz884xp";
7136
7137static const struct pci_device_id pcidev_table[] = {
7138	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7139		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7140	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7141		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7142	{ 0 }
7143};
7144
7145MODULE_DEVICE_TABLE(pci, pcidev_table);
7146
7147static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
7148
7149static struct pci_driver pci_device_driver = {
7150	.driver.pm	= &pcidev_pm_ops,
7151	.name		= pcidev_name,
7152	.id_table	= pcidev_table,
7153	.probe		= pcidev_init,
7154	.remove		= pcidev_exit
7155};
7156
7157module_pci_driver(pci_device_driver);
7158
7159MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7160MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7161MODULE_LICENSE("GPL");
7162
7163module_param_named(message, msg_enable, int, 0);
7164MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7165
7166module_param(macaddr, charp, 0);
7167module_param(mac1addr, charp, 0);
7168module_param(fast_aging, int, 0);
7169module_param(multi_dev, int, 0);
7170module_param(stp, int, 0);
7171MODULE_PARM_DESC(macaddr, "MAC address");
7172MODULE_PARM_DESC(mac1addr, "Second MAC address");
7173MODULE_PARM_DESC(fast_aging, "Fast aging");
7174MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7175MODULE_PARM_DESC(stp, "STP support");