Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c)  2018 Intel Corporation */
  3
  4#include <linux/bitfield.h>
  5#include "igc_phy.h"
  6
  7/**
  8 * igc_check_reset_block - Check if PHY reset is blocked
  9 * @hw: pointer to the HW structure
 10 *
 11 * Read the PHY management control register and check whether a PHY reset
 12 * is blocked.  If a reset is not blocked return 0, otherwise
 13 * return IGC_ERR_BLK_PHY_RESET (12).
 14 */
 15s32 igc_check_reset_block(struct igc_hw *hw)
 16{
 17	u32 manc;
 18
 19	manc = rd32(IGC_MANC);
 20
 21	return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
 22		IGC_ERR_BLK_PHY_RESET : 0;
 23}
 24
 25/**
 26 * igc_get_phy_id - Retrieve the PHY ID and revision
 27 * @hw: pointer to the HW structure
 28 *
 29 * Reads the PHY registers and stores the PHY ID and possibly the PHY
 30 * revision in the hardware structure.
 31 */
 32s32 igc_get_phy_id(struct igc_hw *hw)
 33{
 34	struct igc_phy_info *phy = &hw->phy;
 35	s32 ret_val = 0;
 36	u16 phy_id;
 37
 38	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
 39	if (ret_val)
 40		goto out;
 41
 42	phy->id = (u32)(phy_id << 16);
 43	usleep_range(200, 500);
 44	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
 45	if (ret_val)
 46		goto out;
 47
 48	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 49	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 50
 51out:
 52	return ret_val;
 53}
 54
 55/**
 56 * igc_phy_has_link - Polls PHY for link
 57 * @hw: pointer to the HW structure
 58 * @iterations: number of times to poll for link
 59 * @usec_interval: delay between polling attempts
 60 * @success: pointer to whether polling was successful or not
 61 *
 62 * Polls the PHY status register for link, 'iterations' number of times.
 63 */
 64s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
 65		     u32 usec_interval, bool *success)
 66{
 67	u16 i, phy_status;
 68	s32 ret_val = 0;
 69
 70	for (i = 0; i < iterations; i++) {
 71		/* Some PHYs require the PHY_STATUS register to be read
 72		 * twice due to the link bit being sticky.  No harm doing
 73		 * it across the board.
 74		 */
 75		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
 76		if (ret_val && usec_interval > 0) {
 77			/* If the first read fails, another entity may have
 78			 * ownership of the resources, wait and try again to
 79			 * see if they have relinquished the resources yet.
 80			 */
 81			if (usec_interval >= 1000)
 82				mdelay(usec_interval / 1000);
 83			else
 84				udelay(usec_interval);
 85		}
 86		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
 87		if (ret_val)
 88			break;
 89		if (phy_status & MII_SR_LINK_STATUS)
 90			break;
 91		if (usec_interval >= 1000)
 92			mdelay(usec_interval / 1000);
 93		else
 94			udelay(usec_interval);
 95	}
 96
 97	*success = (i < iterations) ? true : false;
 98
 99	return ret_val;
100}
101
102/**
103 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
104 * @hw: pointer to the HW structure
105 *
106 * In the case of a PHY power down to save power, or to turn off link during a
107 * driver unload, restore the link to previous settings.
108 */
109void igc_power_up_phy_copper(struct igc_hw *hw)
110{
111	u16 mii_reg = 0;
112
113	/* The PHY will retain its settings across a power down/up cycle */
114	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
115	mii_reg &= ~MII_CR_POWER_DOWN;
116	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
117}
118
119/**
120 * igc_power_down_phy_copper - Power down copper PHY
121 * @hw: pointer to the HW structure
122 *
123 * Power down PHY to save power when interface is down and wake on lan
124 * is not enabled.
125 */
126void igc_power_down_phy_copper(struct igc_hw *hw)
127{
128	u16 mii_reg = 0;
129
130	/* The PHY will retain its settings across a power down/up cycle */
131	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
132	mii_reg |= MII_CR_POWER_DOWN;
133	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
 
 
 
 
134	usleep_range(1000, 2000);
135}
136
137/**
138 * igc_check_downshift - Checks whether a downshift in speed occurred
139 * @hw: pointer to the HW structure
140 *
141 * A downshift is detected by querying the PHY link health.
142 */
143void igc_check_downshift(struct igc_hw *hw)
144{
145	struct igc_phy_info *phy = &hw->phy;
146
147	/* speed downshift not supported */
148	phy->speed_downgraded = false;
149}
150
151/**
152 * igc_phy_hw_reset - PHY hardware reset
153 * @hw: pointer to the HW structure
154 *
155 * Verify the reset block is not blocking us from resetting.  Acquire
156 * semaphore (if necessary) and read/set/write the device control reset
157 * bit in the PHY.  Wait the appropriate delay time for the device to
158 * reset and release the semaphore (if necessary).
159 */
160s32 igc_phy_hw_reset(struct igc_hw *hw)
161{
162	struct igc_phy_info *phy = &hw->phy;
163	u32 phpm = 0, timeout = 10000;
164	s32  ret_val;
165	u32 ctrl;
166
167	ret_val = igc_check_reset_block(hw);
168	if (ret_val) {
169		ret_val = 0;
170		goto out;
171	}
172
173	ret_val = phy->ops.acquire(hw);
174	if (ret_val)
175		goto out;
176
177	phpm = rd32(IGC_I225_PHPM);
178
179	ctrl = rd32(IGC_CTRL);
180	wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
181	wrfl();
182
183	udelay(phy->reset_delay_us);
184
185	wr32(IGC_CTRL, ctrl);
186	wrfl();
187
188	/* SW should guarantee 100us for the completion of the PHY reset */
189	usleep_range(100, 150);
190	do {
191		phpm = rd32(IGC_I225_PHPM);
192		timeout--;
193		udelay(1);
194	} while (!(phpm & IGC_PHY_RST_COMP) && timeout);
195
196	if (!timeout)
197		hw_dbg("Timeout is expired after a phy reset\n");
198
199	usleep_range(100, 150);
200
201	phy->ops.release(hw);
202
203out:
204	return ret_val;
205}
206
207/**
208 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
209 * @hw: pointer to the HW structure
210 *
211 * Reads the MII auto-neg advertisement register and/or the 1000T control
212 * register and if the PHY is already setup for auto-negotiation, then
213 * return successful.  Otherwise, setup advertisement and flow control to
214 * the appropriate values for the wanted auto-negotiation.
215 */
216static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
217{
218	struct igc_phy_info *phy = &hw->phy;
219	u16 aneg_multigbt_an_ctrl = 0;
220	u16 mii_1000t_ctrl_reg = 0;
221	u16 mii_autoneg_adv_reg;
222	s32 ret_val;
223
224	phy->autoneg_advertised &= phy->autoneg_mask;
225
226	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
227	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
228	if (ret_val)
229		return ret_val;
230
231	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
232		/* Read the MII 1000Base-T Control Register (Address 9). */
233		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
234					    &mii_1000t_ctrl_reg);
235		if (ret_val)
236			return ret_val;
237	}
238
239	if (phy->autoneg_mask & ADVERTISE_2500_FULL) {
240		/* Read the MULTI GBT AN Control Register - reg 7.32 */
241		ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
242					    MMD_DEVADDR_SHIFT) |
243					    IGC_ANEG_MULTIGBT_AN_CTRL,
244					    &aneg_multigbt_an_ctrl);
245
246		if (ret_val)
247			return ret_val;
248	}
249
250	/* Need to parse both autoneg_advertised and fc and set up
251	 * the appropriate PHY registers.  First we will parse for
252	 * autoneg_advertised software override.  Since we can advertise
253	 * a plethora of combinations, we need to check each bit
254	 * individually.
255	 */
256
257	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
258	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
259	 * the  1000Base-T Control Register (Address 9).
260	 */
261	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
262				 NWAY_AR_100TX_HD_CAPS |
263				 NWAY_AR_10T_FD_CAPS   |
264				 NWAY_AR_10T_HD_CAPS);
265	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
266
267	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
268
269	/* Do we want to advertise 10 Mb Half Duplex? */
270	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
271		hw_dbg("Advertise 10mb Half duplex\n");
272		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
273	}
274
275	/* Do we want to advertise 10 Mb Full Duplex? */
276	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
277		hw_dbg("Advertise 10mb Full duplex\n");
278		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
279	}
280
281	/* Do we want to advertise 100 Mb Half Duplex? */
282	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
283		hw_dbg("Advertise 100mb Half duplex\n");
284		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
285	}
286
287	/* Do we want to advertise 100 Mb Full Duplex? */
288	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
289		hw_dbg("Advertise 100mb Full duplex\n");
290		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
291	}
292
293	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
294	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
295		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
296
297	/* Do we want to advertise 1000 Mb Full Duplex? */
298	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
299		hw_dbg("Advertise 1000mb Full duplex\n");
300		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
301	}
302
303	/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
304	if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
305		hw_dbg("Advertise 2500mb Half duplex request denied!\n");
306
307	/* Do we want to advertise 2500 Mb Full Duplex? */
308	if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
309		hw_dbg("Advertise 2500mb Full duplex\n");
310		aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
311	} else {
312		aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
313	}
314
315	/* Check for a software override of the flow control settings, and
316	 * setup the PHY advertisement registers accordingly.  If
317	 * auto-negotiation is enabled, then software will have to set the
318	 * "PAUSE" bits to the correct value in the Auto-Negotiation
319	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
320	 * negotiation.
321	 *
322	 * The possible values of the "fc" parameter are:
323	 *      0:  Flow control is completely disabled
324	 *      1:  Rx flow control is enabled (we can receive pause frames
325	 *          but not send pause frames).
326	 *      2:  Tx flow control is enabled (we can send pause frames
327	 *          but we do not support receiving pause frames).
328	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
329	 *  other:  No software override.  The flow control configuration
330	 *          in the EEPROM is used.
331	 */
332	switch (hw->fc.current_mode) {
333	case igc_fc_none:
334		/* Flow control (Rx & Tx) is completely disabled by a
335		 * software over-ride.
336		 */
337		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
338		break;
339	case igc_fc_rx_pause:
340		/* Rx Flow control is enabled, and Tx Flow control is
341		 * disabled, by a software over-ride.
342		 *
343		 * Since there really isn't a way to advertise that we are
344		 * capable of Rx Pause ONLY, we will advertise that we
345		 * support both symmetric and asymmetric Rx PAUSE.  Later
346		 * (in igc_config_fc_after_link_up) we will disable the
347		 * hw's ability to send PAUSE frames.
348		 */
349		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
350		break;
351	case igc_fc_tx_pause:
352		/* Tx Flow control is enabled, and Rx Flow control is
353		 * disabled, by a software over-ride.
354		 */
355		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
356		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
357		break;
358	case igc_fc_full:
359		/* Flow control (both Rx and Tx) is enabled by a software
360		 * over-ride.
361		 */
362		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
363		break;
364	default:
365		hw_dbg("Flow control param set incorrectly\n");
366		return -IGC_ERR_CONFIG;
367	}
368
369	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
370	if (ret_val)
371		return ret_val;
372
373	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
374
375	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
376		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
377					     mii_1000t_ctrl_reg);
378
379	if (phy->autoneg_mask & ADVERTISE_2500_FULL)
380		ret_val = phy->ops.write_reg(hw,
381					     (STANDARD_AN_REG_MASK <<
382					     MMD_DEVADDR_SHIFT) |
383					     IGC_ANEG_MULTIGBT_AN_CTRL,
384					     aneg_multigbt_an_ctrl);
385
386	return ret_val;
387}
388
389/**
390 * igc_wait_autoneg - Wait for auto-neg completion
391 * @hw: pointer to the HW structure
392 *
393 * Waits for auto-negotiation to complete or for the auto-negotiation time
394 * limit to expire, which ever happens first.
395 */
396static s32 igc_wait_autoneg(struct igc_hw *hw)
397{
398	u16 i, phy_status;
399	s32 ret_val = 0;
400
401	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
402	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
403		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
404		if (ret_val)
405			break;
406		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
407		if (ret_val)
408			break;
409		if (phy_status & MII_SR_AUTONEG_COMPLETE)
410			break;
411		msleep(100);
412	}
413
414	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
415	 * has completed.
416	 */
417	return ret_val;
418}
419
420/**
421 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
422 * @hw: pointer to the HW structure
423 *
424 * Performs initial bounds checking on autoneg advertisement parameter, then
425 * configure to advertise the full capability.  Setup the PHY to autoneg
426 * and restart the negotiation process between the link partner.  If
427 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
428 */
429static s32 igc_copper_link_autoneg(struct igc_hw *hw)
430{
431	struct igc_phy_info *phy = &hw->phy;
432	u16 phy_ctrl;
433	s32 ret_val;
434
435	/* Perform some bounds checking on the autoneg advertisement
436	 * parameter.
437	 */
438	phy->autoneg_advertised &= phy->autoneg_mask;
439
440	/* If autoneg_advertised is zero, we assume it was not defaulted
441	 * by the calling code so we set to advertise full capability.
442	 */
443	if (phy->autoneg_advertised == 0)
444		phy->autoneg_advertised = phy->autoneg_mask;
445
446	hw_dbg("Reconfiguring auto-neg advertisement params\n");
447	ret_val = igc_phy_setup_autoneg(hw);
448	if (ret_val) {
449		hw_dbg("Error Setting up Auto-Negotiation\n");
450		goto out;
451	}
452	hw_dbg("Restarting Auto-Neg\n");
453
454	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
455	 * the Auto Neg Restart bit in the PHY control register.
456	 */
457	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
458	if (ret_val)
459		goto out;
460
461	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
462	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
463	if (ret_val)
464		goto out;
465
466	/* Does the user want to wait for Auto-Neg to complete here, or
467	 * check at a later time (for example, callback routine).
468	 */
469	if (phy->autoneg_wait_to_complete) {
470		ret_val = igc_wait_autoneg(hw);
471		if (ret_val) {
472			hw_dbg("Error while waiting for autoneg to complete\n");
473			goto out;
474		}
475	}
476
477	hw->mac.get_link_status = true;
478
479out:
480	return ret_val;
481}
482
483/**
484 * igc_setup_copper_link - Configure copper link settings
485 * @hw: pointer to the HW structure
486 *
487 * Calls the appropriate function to configure the link for auto-neg or forced
488 * speed and duplex.  Then we check for link, once link is established calls
489 * to configure collision distance and flow control are called.  If link is
490 * not established, we return -IGC_ERR_PHY (-2).
491 */
492s32 igc_setup_copper_link(struct igc_hw *hw)
493{
494	s32 ret_val = 0;
495	bool link;
496
497	/* Setup autoneg and flow control advertisement and perform
498	 * autonegotiation.
499	 */
500	ret_val = igc_copper_link_autoneg(hw);
501	if (ret_val)
502		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
503
504	/* Check link status. Wait up to 100 microseconds for link to become
505	 * valid.
506	 */
507	ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
508	if (ret_val)
509		goto out;
510
511	if (link) {
512		hw_dbg("Valid link established!!!\n");
513		igc_config_collision_dist(hw);
514		ret_val = igc_config_fc_after_link_up(hw);
515	} else {
516		hw_dbg("Unable to establish link!!!\n");
517	}
518
519out:
520	return ret_val;
521}
522
523/**
524 * igc_read_phy_reg_mdic - Read MDI control register
525 * @hw: pointer to the HW structure
526 * @offset: register offset to be read
527 * @data: pointer to the read data
528 *
529 * Reads the MDI control register in the PHY at offset and stores the
530 * information read to data.
531 */
532static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
533{
534	struct igc_phy_info *phy = &hw->phy;
535	u32 i, mdic = 0;
536	s32 ret_val = 0;
537
538	if (offset > MAX_PHY_REG_ADDRESS) {
539		hw_dbg("PHY Address %d is out of range\n", offset);
540		ret_val = -IGC_ERR_PARAM;
541		goto out;
542	}
543
544	/* Set up Op-code, Phy Address, and register offset in the MDI
545	 * Control register.  The MAC will take care of interfacing with the
546	 * PHY to retrieve the desired data.
547	 */
548	mdic = ((offset << IGC_MDIC_REG_SHIFT) |
549		(phy->addr << IGC_MDIC_PHY_SHIFT) |
550		(IGC_MDIC_OP_READ));
551
552	wr32(IGC_MDIC, mdic);
553
554	/* Poll the ready bit to see if the MDI read completed
555	 * Increasing the time out as testing showed failures with
556	 * the lower time out
557	 */
558	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
559		udelay(50);
560		mdic = rd32(IGC_MDIC);
561		if (mdic & IGC_MDIC_READY)
562			break;
563	}
564	if (!(mdic & IGC_MDIC_READY)) {
565		hw_dbg("MDI Read did not complete\n");
566		ret_val = -IGC_ERR_PHY;
567		goto out;
568	}
569	if (mdic & IGC_MDIC_ERROR) {
570		hw_dbg("MDI Error\n");
571		ret_val = -IGC_ERR_PHY;
572		goto out;
573	}
574	*data = (u16)mdic;
575
576out:
577	return ret_val;
578}
579
580/**
581 * igc_write_phy_reg_mdic - Write MDI control register
582 * @hw: pointer to the HW structure
583 * @offset: register offset to write to
584 * @data: data to write to register at offset
585 *
586 * Writes data to MDI control register in the PHY at offset.
587 */
588static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
589{
590	struct igc_phy_info *phy = &hw->phy;
591	u32 i, mdic = 0;
592	s32 ret_val = 0;
593
594	if (offset > MAX_PHY_REG_ADDRESS) {
595		hw_dbg("PHY Address %d is out of range\n", offset);
596		ret_val = -IGC_ERR_PARAM;
597		goto out;
598	}
599
600	/* Set up Op-code, Phy Address, and register offset in the MDI
601	 * Control register.  The MAC will take care of interfacing with the
602	 * PHY to write the desired data.
603	 */
604	mdic = (((u32)data) |
605		(offset << IGC_MDIC_REG_SHIFT) |
606		(phy->addr << IGC_MDIC_PHY_SHIFT) |
607		(IGC_MDIC_OP_WRITE));
608
609	wr32(IGC_MDIC, mdic);
610
611	/* Poll the ready bit to see if the MDI read completed
612	 * Increasing the time out as testing showed failures with
613	 * the lower time out
614	 */
615	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
616		udelay(50);
617		mdic = rd32(IGC_MDIC);
618		if (mdic & IGC_MDIC_READY)
619			break;
620	}
621	if (!(mdic & IGC_MDIC_READY)) {
622		hw_dbg("MDI Write did not complete\n");
623		ret_val = -IGC_ERR_PHY;
624		goto out;
625	}
626	if (mdic & IGC_MDIC_ERROR) {
627		hw_dbg("MDI Error\n");
628		ret_val = -IGC_ERR_PHY;
629		goto out;
630	}
631
632out:
633	return ret_val;
634}
635
636/**
637 * __igc_access_xmdio_reg - Read/write XMDIO register
638 * @hw: pointer to the HW structure
639 * @address: XMDIO address to program
640 * @dev_addr: device address to program
641 * @data: pointer to value to read/write from/to the XMDIO address
642 * @read: boolean flag to indicate read or write
643 */
644static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
645				  u8 dev_addr, u16 *data, bool read)
646{
647	s32 ret_val;
648
649	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
650	if (ret_val)
651		return ret_val;
652
653	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
654	if (ret_val)
655		return ret_val;
656
657	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
658					dev_addr);
659	if (ret_val)
660		return ret_val;
661
662	if (read)
663		ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
664	else
665		ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
666	if (ret_val)
667		return ret_val;
668
669	/* Recalibrate the device back to 0 */
670	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
671	if (ret_val)
672		return ret_val;
673
674	return ret_val;
675}
676
677/**
678 * igc_read_xmdio_reg - Read XMDIO register
679 * @hw: pointer to the HW structure
680 * @addr: XMDIO address to program
681 * @dev_addr: device address to program
682 * @data: value to be read from the EMI address
683 */
684static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
685			      u8 dev_addr, u16 *data)
686{
687	return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
688}
689
690/**
691 * igc_write_xmdio_reg - Write XMDIO register
692 * @hw: pointer to the HW structure
693 * @addr: XMDIO address to program
694 * @dev_addr: device address to program
695 * @data: value to be written to the XMDIO address
696 */
697static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
698			       u8 dev_addr, u16 data)
699{
700	return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
701}
702
703/**
704 * igc_write_phy_reg_gpy - Write GPY PHY register
705 * @hw: pointer to the HW structure
706 * @offset: register offset to write to
707 * @data: data to write at register offset
708 *
709 * Acquires semaphore, if necessary, then writes the data to PHY register
710 * at the offset. Release any acquired semaphores before exiting.
711 */
712s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
713{
714	u8 dev_addr = FIELD_GET(GPY_MMD_MASK, offset);
715	s32 ret_val;
716
717	offset = offset & GPY_REG_MASK;
718
719	if (!dev_addr) {
720		ret_val = hw->phy.ops.acquire(hw);
721		if (ret_val)
722			return ret_val;
723		ret_val = igc_write_phy_reg_mdic(hw, offset, data);
724		hw->phy.ops.release(hw);
725	} else {
726		ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
727					      data);
728	}
729
730	return ret_val;
731}
732
733/**
734 * igc_read_phy_reg_gpy - Read GPY PHY register
735 * @hw: pointer to the HW structure
736 * @offset: lower half is register offset to read to
737 * upper half is MMD to use.
738 * @data: data to read at register offset
739 *
740 * Acquires semaphore, if necessary, then reads the data in the PHY register
741 * at the offset. Release any acquired semaphores before exiting.
742 */
743s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
744{
745	u8 dev_addr = FIELD_GET(GPY_MMD_MASK, offset);
746	s32 ret_val;
747
748	offset = offset & GPY_REG_MASK;
749
750	if (!dev_addr) {
751		ret_val = hw->phy.ops.acquire(hw);
752		if (ret_val)
753			return ret_val;
754		ret_val = igc_read_phy_reg_mdic(hw, offset, data);
755		hw->phy.ops.release(hw);
756	} else {
757		ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
758					     data);
759	}
760
761	return ret_val;
762}
763
764/**
765 * igc_read_phy_fw_version - Read gPHY firmware version
766 * @hw: pointer to the HW structure
767 */
768u16 igc_read_phy_fw_version(struct igc_hw *hw)
769{
770	struct igc_phy_info *phy = &hw->phy;
771	u16 gphy_version = 0;
772	u16 ret_val;
773
774	/* NVM image version is reported as firmware version for i225 device */
775	ret_val = phy->ops.read_reg(hw, IGC_GPHY_VERSION, &gphy_version);
776	if (ret_val)
777		hw_dbg("igc_phy: read wrong gphy version\n");
778
779	return gphy_version;
780}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c)  2018 Intel Corporation */
  3
 
  4#include "igc_phy.h"
  5
  6/**
  7 * igc_check_reset_block - Check if PHY reset is blocked
  8 * @hw: pointer to the HW structure
  9 *
 10 * Read the PHY management control register and check whether a PHY reset
 11 * is blocked.  If a reset is not blocked return 0, otherwise
 12 * return IGC_ERR_BLK_PHY_RESET (12).
 13 */
 14s32 igc_check_reset_block(struct igc_hw *hw)
 15{
 16	u32 manc;
 17
 18	manc = rd32(IGC_MANC);
 19
 20	return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
 21		IGC_ERR_BLK_PHY_RESET : 0;
 22}
 23
 24/**
 25 * igc_get_phy_id - Retrieve the PHY ID and revision
 26 * @hw: pointer to the HW structure
 27 *
 28 * Reads the PHY registers and stores the PHY ID and possibly the PHY
 29 * revision in the hardware structure.
 30 */
 31s32 igc_get_phy_id(struct igc_hw *hw)
 32{
 33	struct igc_phy_info *phy = &hw->phy;
 34	s32 ret_val = 0;
 35	u16 phy_id;
 36
 37	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
 38	if (ret_val)
 39		goto out;
 40
 41	phy->id = (u32)(phy_id << 16);
 42	usleep_range(200, 500);
 43	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
 44	if (ret_val)
 45		goto out;
 46
 47	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 48	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 49
 50out:
 51	return ret_val;
 52}
 53
 54/**
 55 * igc_phy_has_link - Polls PHY for link
 56 * @hw: pointer to the HW structure
 57 * @iterations: number of times to poll for link
 58 * @usec_interval: delay between polling attempts
 59 * @success: pointer to whether polling was successful or not
 60 *
 61 * Polls the PHY status register for link, 'iterations' number of times.
 62 */
 63s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
 64		     u32 usec_interval, bool *success)
 65{
 66	u16 i, phy_status;
 67	s32 ret_val = 0;
 68
 69	for (i = 0; i < iterations; i++) {
 70		/* Some PHYs require the PHY_STATUS register to be read
 71		 * twice due to the link bit being sticky.  No harm doing
 72		 * it across the board.
 73		 */
 74		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
 75		if (ret_val && usec_interval > 0) {
 76			/* If the first read fails, another entity may have
 77			 * ownership of the resources, wait and try again to
 78			 * see if they have relinquished the resources yet.
 79			 */
 80			if (usec_interval >= 1000)
 81				mdelay(usec_interval / 1000);
 82			else
 83				udelay(usec_interval);
 84		}
 85		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
 86		if (ret_val)
 87			break;
 88		if (phy_status & MII_SR_LINK_STATUS)
 89			break;
 90		if (usec_interval >= 1000)
 91			mdelay(usec_interval / 1000);
 92		else
 93			udelay(usec_interval);
 94	}
 95
 96	*success = (i < iterations) ? true : false;
 97
 98	return ret_val;
 99}
100
101/**
102 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
103 * @hw: pointer to the HW structure
104 *
105 * In the case of a PHY power down to save power, or to turn off link during a
106 * driver unload, restore the link to previous settings.
107 */
108void igc_power_up_phy_copper(struct igc_hw *hw)
109{
110	u16 mii_reg = 0;
111
112	/* The PHY will retain its settings across a power down/up cycle */
113	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
114	mii_reg &= ~MII_CR_POWER_DOWN;
115	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
116}
117
118/**
119 * igc_power_down_phy_copper - Power down copper PHY
120 * @hw: pointer to the HW structure
121 *
122 * Power down PHY to save power when interface is down and wake on lan
123 * is not enabled.
124 */
125void igc_power_down_phy_copper(struct igc_hw *hw)
126{
127	u16 mii_reg = 0;
128
129	/* The PHY will retain its settings across a power down/up cycle */
130	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
131	mii_reg |= MII_CR_POWER_DOWN;
132
133	/* Temporary workaround - should be removed when PHY will implement
134	 * IEEE registers as properly
135	 */
136	/* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/
137	usleep_range(1000, 2000);
138}
139
140/**
141 * igc_check_downshift - Checks whether a downshift in speed occurred
142 * @hw: pointer to the HW structure
143 *
144 * A downshift is detected by querying the PHY link health.
145 */
146void igc_check_downshift(struct igc_hw *hw)
147{
148	struct igc_phy_info *phy = &hw->phy;
149
150	/* speed downshift not supported */
151	phy->speed_downgraded = false;
152}
153
154/**
155 * igc_phy_hw_reset - PHY hardware reset
156 * @hw: pointer to the HW structure
157 *
158 * Verify the reset block is not blocking us from resetting.  Acquire
159 * semaphore (if necessary) and read/set/write the device control reset
160 * bit in the PHY.  Wait the appropriate delay time for the device to
161 * reset and release the semaphore (if necessary).
162 */
163s32 igc_phy_hw_reset(struct igc_hw *hw)
164{
165	struct igc_phy_info *phy = &hw->phy;
166	u32 phpm = 0, timeout = 10000;
167	s32  ret_val;
168	u32 ctrl;
169
170	ret_val = igc_check_reset_block(hw);
171	if (ret_val) {
172		ret_val = 0;
173		goto out;
174	}
175
176	ret_val = phy->ops.acquire(hw);
177	if (ret_val)
178		goto out;
179
180	phpm = rd32(IGC_I225_PHPM);
181
182	ctrl = rd32(IGC_CTRL);
183	wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
184	wrfl();
185
186	udelay(phy->reset_delay_us);
187
188	wr32(IGC_CTRL, ctrl);
189	wrfl();
190
191	/* SW should guarantee 100us for the completion of the PHY reset */
192	usleep_range(100, 150);
193	do {
194		phpm = rd32(IGC_I225_PHPM);
195		timeout--;
196		udelay(1);
197	} while (!(phpm & IGC_PHY_RST_COMP) && timeout);
198
199	if (!timeout)
200		hw_dbg("Timeout is expired after a phy reset\n");
201
202	usleep_range(100, 150);
203
204	phy->ops.release(hw);
205
206out:
207	return ret_val;
208}
209
210/**
211 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
212 * @hw: pointer to the HW structure
213 *
214 * Reads the MII auto-neg advertisement register and/or the 1000T control
215 * register and if the PHY is already setup for auto-negotiation, then
216 * return successful.  Otherwise, setup advertisement and flow control to
217 * the appropriate values for the wanted auto-negotiation.
218 */
219static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
220{
221	struct igc_phy_info *phy = &hw->phy;
222	u16 aneg_multigbt_an_ctrl = 0;
223	u16 mii_1000t_ctrl_reg = 0;
224	u16 mii_autoneg_adv_reg;
225	s32 ret_val;
226
227	phy->autoneg_advertised &= phy->autoneg_mask;
228
229	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
230	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
231	if (ret_val)
232		return ret_val;
233
234	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
235		/* Read the MII 1000Base-T Control Register (Address 9). */
236		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
237					    &mii_1000t_ctrl_reg);
238		if (ret_val)
239			return ret_val;
240	}
241
242	if (phy->autoneg_mask & ADVERTISE_2500_FULL) {
243		/* Read the MULTI GBT AN Control Register - reg 7.32 */
244		ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
245					    MMD_DEVADDR_SHIFT) |
246					    ANEG_MULTIGBT_AN_CTRL,
247					    &aneg_multigbt_an_ctrl);
248
249		if (ret_val)
250			return ret_val;
251	}
252
253	/* Need to parse both autoneg_advertised and fc and set up
254	 * the appropriate PHY registers.  First we will parse for
255	 * autoneg_advertised software override.  Since we can advertise
256	 * a plethora of combinations, we need to check each bit
257	 * individually.
258	 */
259
260	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
261	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
262	 * the  1000Base-T Control Register (Address 9).
263	 */
264	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
265				 NWAY_AR_100TX_HD_CAPS |
266				 NWAY_AR_10T_FD_CAPS   |
267				 NWAY_AR_10T_HD_CAPS);
268	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
269
270	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
271
272	/* Do we want to advertise 10 Mb Half Duplex? */
273	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
274		hw_dbg("Advertise 10mb Half duplex\n");
275		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
276	}
277
278	/* Do we want to advertise 10 Mb Full Duplex? */
279	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
280		hw_dbg("Advertise 10mb Full duplex\n");
281		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
282	}
283
284	/* Do we want to advertise 100 Mb Half Duplex? */
285	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
286		hw_dbg("Advertise 100mb Half duplex\n");
287		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
288	}
289
290	/* Do we want to advertise 100 Mb Full Duplex? */
291	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
292		hw_dbg("Advertise 100mb Full duplex\n");
293		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
294	}
295
296	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
297	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
298		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
299
300	/* Do we want to advertise 1000 Mb Full Duplex? */
301	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
302		hw_dbg("Advertise 1000mb Full duplex\n");
303		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
304	}
305
306	/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
307	if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
308		hw_dbg("Advertise 2500mb Half duplex request denied!\n");
309
310	/* Do we want to advertise 2500 Mb Full Duplex? */
311	if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
312		hw_dbg("Advertise 2500mb Full duplex\n");
313		aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
314	} else {
315		aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
316	}
317
318	/* Check for a software override of the flow control settings, and
319	 * setup the PHY advertisement registers accordingly.  If
320	 * auto-negotiation is enabled, then software will have to set the
321	 * "PAUSE" bits to the correct value in the Auto-Negotiation
322	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
323	 * negotiation.
324	 *
325	 * The possible values of the "fc" parameter are:
326	 *      0:  Flow control is completely disabled
327	 *      1:  Rx flow control is enabled (we can receive pause frames
328	 *          but not send pause frames).
329	 *      2:  Tx flow control is enabled (we can send pause frames
330	 *          but we do not support receiving pause frames).
331	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
332	 *  other:  No software override.  The flow control configuration
333	 *          in the EEPROM is used.
334	 */
335	switch (hw->fc.current_mode) {
336	case igc_fc_none:
337		/* Flow control (Rx & Tx) is completely disabled by a
338		 * software over-ride.
339		 */
340		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
341		break;
342	case igc_fc_rx_pause:
343		/* Rx Flow control is enabled, and Tx Flow control is
344		 * disabled, by a software over-ride.
345		 *
346		 * Since there really isn't a way to advertise that we are
347		 * capable of Rx Pause ONLY, we will advertise that we
348		 * support both symmetric and asymmetric Rx PAUSE.  Later
349		 * (in igc_config_fc_after_link_up) we will disable the
350		 * hw's ability to send PAUSE frames.
351		 */
352		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
353		break;
354	case igc_fc_tx_pause:
355		/* Tx Flow control is enabled, and Rx Flow control is
356		 * disabled, by a software over-ride.
357		 */
358		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
359		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
360		break;
361	case igc_fc_full:
362		/* Flow control (both Rx and Tx) is enabled by a software
363		 * over-ride.
364		 */
365		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
366		break;
367	default:
368		hw_dbg("Flow control param set incorrectly\n");
369		return -IGC_ERR_CONFIG;
370	}
371
372	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
373	if (ret_val)
374		return ret_val;
375
376	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
377
378	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
379		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
380					     mii_1000t_ctrl_reg);
381
382	if (phy->autoneg_mask & ADVERTISE_2500_FULL)
383		ret_val = phy->ops.write_reg(hw,
384					     (STANDARD_AN_REG_MASK <<
385					     MMD_DEVADDR_SHIFT) |
386					     ANEG_MULTIGBT_AN_CTRL,
387					     aneg_multigbt_an_ctrl);
388
389	return ret_val;
390}
391
392/**
393 * igc_wait_autoneg - Wait for auto-neg completion
394 * @hw: pointer to the HW structure
395 *
396 * Waits for auto-negotiation to complete or for the auto-negotiation time
397 * limit to expire, which ever happens first.
398 */
399static s32 igc_wait_autoneg(struct igc_hw *hw)
400{
401	u16 i, phy_status;
402	s32 ret_val = 0;
403
404	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
405	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
406		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
407		if (ret_val)
408			break;
409		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
410		if (ret_val)
411			break;
412		if (phy_status & MII_SR_AUTONEG_COMPLETE)
413			break;
414		msleep(100);
415	}
416
417	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
418	 * has completed.
419	 */
420	return ret_val;
421}
422
423/**
424 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
425 * @hw: pointer to the HW structure
426 *
427 * Performs initial bounds checking on autoneg advertisement parameter, then
428 * configure to advertise the full capability.  Setup the PHY to autoneg
429 * and restart the negotiation process between the link partner.  If
430 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
431 */
432static s32 igc_copper_link_autoneg(struct igc_hw *hw)
433{
434	struct igc_phy_info *phy = &hw->phy;
435	u16 phy_ctrl;
436	s32 ret_val;
437
438	/* Perform some bounds checking on the autoneg advertisement
439	 * parameter.
440	 */
441	phy->autoneg_advertised &= phy->autoneg_mask;
442
443	/* If autoneg_advertised is zero, we assume it was not defaulted
444	 * by the calling code so we set to advertise full capability.
445	 */
446	if (phy->autoneg_advertised == 0)
447		phy->autoneg_advertised = phy->autoneg_mask;
448
449	hw_dbg("Reconfiguring auto-neg advertisement params\n");
450	ret_val = igc_phy_setup_autoneg(hw);
451	if (ret_val) {
452		hw_dbg("Error Setting up Auto-Negotiation\n");
453		goto out;
454	}
455	hw_dbg("Restarting Auto-Neg\n");
456
457	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
458	 * the Auto Neg Restart bit in the PHY control register.
459	 */
460	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
461	if (ret_val)
462		goto out;
463
464	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
465	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
466	if (ret_val)
467		goto out;
468
469	/* Does the user want to wait for Auto-Neg to complete here, or
470	 * check at a later time (for example, callback routine).
471	 */
472	if (phy->autoneg_wait_to_complete) {
473		ret_val = igc_wait_autoneg(hw);
474		if (ret_val) {
475			hw_dbg("Error while waiting for autoneg to complete\n");
476			goto out;
477		}
478	}
479
480	hw->mac.get_link_status = true;
481
482out:
483	return ret_val;
484}
485
486/**
487 * igc_setup_copper_link - Configure copper link settings
488 * @hw: pointer to the HW structure
489 *
490 * Calls the appropriate function to configure the link for auto-neg or forced
491 * speed and duplex.  Then we check for link, once link is established calls
492 * to configure collision distance and flow control are called.  If link is
493 * not established, we return -IGC_ERR_PHY (-2).
494 */
495s32 igc_setup_copper_link(struct igc_hw *hw)
496{
497	s32 ret_val = 0;
498	bool link;
499
500	if (hw->mac.autoneg) {
501		/* Setup autoneg and flow control advertisement and perform
502		 * autonegotiation.
503		 */
504		ret_val = igc_copper_link_autoneg(hw);
505		if (ret_val)
506			goto out;
507	} else {
508		/* PHY will be set to 10H, 10F, 100H or 100F
509		 * depending on user settings.
510		 */
511		hw_dbg("Forcing Speed and Duplex\n");
512		ret_val = hw->phy.ops.force_speed_duplex(hw);
513		if (ret_val) {
514			hw_dbg("Error Forcing Speed and Duplex\n");
515			goto out;
516		}
517	}
518
519	/* Check link status. Wait up to 100 microseconds for link to become
520	 * valid.
521	 */
522	ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
523	if (ret_val)
524		goto out;
525
526	if (link) {
527		hw_dbg("Valid link established!!!\n");
528		igc_config_collision_dist(hw);
529		ret_val = igc_config_fc_after_link_up(hw);
530	} else {
531		hw_dbg("Unable to establish link!!!\n");
532	}
533
534out:
535	return ret_val;
536}
537
538/**
539 * igc_read_phy_reg_mdic - Read MDI control register
540 * @hw: pointer to the HW structure
541 * @offset: register offset to be read
542 * @data: pointer to the read data
543 *
544 * Reads the MDI control register in the PHY at offset and stores the
545 * information read to data.
546 */
547static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
548{
549	struct igc_phy_info *phy = &hw->phy;
550	u32 i, mdic = 0;
551	s32 ret_val = 0;
552
553	if (offset > MAX_PHY_REG_ADDRESS) {
554		hw_dbg("PHY Address %d is out of range\n", offset);
555		ret_val = -IGC_ERR_PARAM;
556		goto out;
557	}
558
559	/* Set up Op-code, Phy Address, and register offset in the MDI
560	 * Control register.  The MAC will take care of interfacing with the
561	 * PHY to retrieve the desired data.
562	 */
563	mdic = ((offset << IGC_MDIC_REG_SHIFT) |
564		(phy->addr << IGC_MDIC_PHY_SHIFT) |
565		(IGC_MDIC_OP_READ));
566
567	wr32(IGC_MDIC, mdic);
568
569	/* Poll the ready bit to see if the MDI read completed
570	 * Increasing the time out as testing showed failures with
571	 * the lower time out
572	 */
573	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
574		udelay(50);
575		mdic = rd32(IGC_MDIC);
576		if (mdic & IGC_MDIC_READY)
577			break;
578	}
579	if (!(mdic & IGC_MDIC_READY)) {
580		hw_dbg("MDI Read did not complete\n");
581		ret_val = -IGC_ERR_PHY;
582		goto out;
583	}
584	if (mdic & IGC_MDIC_ERROR) {
585		hw_dbg("MDI Error\n");
586		ret_val = -IGC_ERR_PHY;
587		goto out;
588	}
589	*data = (u16)mdic;
590
591out:
592	return ret_val;
593}
594
595/**
596 * igc_write_phy_reg_mdic - Write MDI control register
597 * @hw: pointer to the HW structure
598 * @offset: register offset to write to
599 * @data: data to write to register at offset
600 *
601 * Writes data to MDI control register in the PHY at offset.
602 */
603static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
604{
605	struct igc_phy_info *phy = &hw->phy;
606	u32 i, mdic = 0;
607	s32 ret_val = 0;
608
609	if (offset > MAX_PHY_REG_ADDRESS) {
610		hw_dbg("PHY Address %d is out of range\n", offset);
611		ret_val = -IGC_ERR_PARAM;
612		goto out;
613	}
614
615	/* Set up Op-code, Phy Address, and register offset in the MDI
616	 * Control register.  The MAC will take care of interfacing with the
617	 * PHY to write the desired data.
618	 */
619	mdic = (((u32)data) |
620		(offset << IGC_MDIC_REG_SHIFT) |
621		(phy->addr << IGC_MDIC_PHY_SHIFT) |
622		(IGC_MDIC_OP_WRITE));
623
624	wr32(IGC_MDIC, mdic);
625
626	/* Poll the ready bit to see if the MDI read completed
627	 * Increasing the time out as testing showed failures with
628	 * the lower time out
629	 */
630	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
631		udelay(50);
632		mdic = rd32(IGC_MDIC);
633		if (mdic & IGC_MDIC_READY)
634			break;
635	}
636	if (!(mdic & IGC_MDIC_READY)) {
637		hw_dbg("MDI Write did not complete\n");
638		ret_val = -IGC_ERR_PHY;
639		goto out;
640	}
641	if (mdic & IGC_MDIC_ERROR) {
642		hw_dbg("MDI Error\n");
643		ret_val = -IGC_ERR_PHY;
644		goto out;
645	}
646
647out:
648	return ret_val;
649}
650
651/**
652 * __igc_access_xmdio_reg - Read/write XMDIO register
653 * @hw: pointer to the HW structure
654 * @address: XMDIO address to program
655 * @dev_addr: device address to program
656 * @data: pointer to value to read/write from/to the XMDIO address
657 * @read: boolean flag to indicate read or write
658 */
659static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
660				  u8 dev_addr, u16 *data, bool read)
661{
662	s32 ret_val;
663
664	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
665	if (ret_val)
666		return ret_val;
667
668	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
669	if (ret_val)
670		return ret_val;
671
672	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
673					dev_addr);
674	if (ret_val)
675		return ret_val;
676
677	if (read)
678		ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
679	else
680		ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
681	if (ret_val)
682		return ret_val;
683
684	/* Recalibrate the device back to 0 */
685	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
686	if (ret_val)
687		return ret_val;
688
689	return ret_val;
690}
691
692/**
693 * igc_read_xmdio_reg - Read XMDIO register
694 * @hw: pointer to the HW structure
695 * @addr: XMDIO address to program
696 * @dev_addr: device address to program
697 * @data: value to be read from the EMI address
698 */
699static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
700			      u8 dev_addr, u16 *data)
701{
702	return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
703}
704
705/**
706 * igc_write_xmdio_reg - Write XMDIO register
707 * @hw: pointer to the HW structure
708 * @addr: XMDIO address to program
709 * @dev_addr: device address to program
710 * @data: value to be written to the XMDIO address
711 */
712static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
713			       u8 dev_addr, u16 data)
714{
715	return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
716}
717
718/**
719 * igc_write_phy_reg_gpy - Write GPY PHY register
720 * @hw: pointer to the HW structure
721 * @offset: register offset to write to
722 * @data: data to write at register offset
723 *
724 * Acquires semaphore, if necessary, then writes the data to PHY register
725 * at the offset. Release any acquired semaphores before exiting.
726 */
727s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
728{
729	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
730	s32 ret_val;
731
732	offset = offset & GPY_REG_MASK;
733
734	if (!dev_addr) {
735		ret_val = hw->phy.ops.acquire(hw);
736		if (ret_val)
737			return ret_val;
738		ret_val = igc_write_phy_reg_mdic(hw, offset, data);
739		hw->phy.ops.release(hw);
740	} else {
741		ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
742					      data);
743	}
744
745	return ret_val;
746}
747
748/**
749 * igc_read_phy_reg_gpy - Read GPY PHY register
750 * @hw: pointer to the HW structure
751 * @offset: lower half is register offset to read to
752 * upper half is MMD to use.
753 * @data: data to read at register offset
754 *
755 * Acquires semaphore, if necessary, then reads the data in the PHY register
756 * at the offset. Release any acquired semaphores before exiting.
757 */
758s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
759{
760	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
761	s32 ret_val;
762
763	offset = offset & GPY_REG_MASK;
764
765	if (!dev_addr) {
766		ret_val = hw->phy.ops.acquire(hw);
767		if (ret_val)
768			return ret_val;
769		ret_val = igc_read_phy_reg_mdic(hw, offset, data);
770		hw->phy.ops.release(hw);
771	} else {
772		ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
773					     data);
774	}
775
776	return ret_val;
777}
778
779/**
780 * igc_read_phy_fw_version - Read gPHY firmware version
781 * @hw: pointer to the HW structure
782 */
783u16 igc_read_phy_fw_version(struct igc_hw *hw)
784{
785	struct igc_phy_info *phy = &hw->phy;
786	u16 gphy_version = 0;
787	u16 ret_val;
788
789	/* NVM image version is reported as firmware version for i225 device */
790	ret_val = phy->ops.read_reg(hw, IGC_GPHY_VERSION, &gphy_version);
791	if (ret_val)
792		hw_dbg("igc_phy: read wrong gphy version\n");
793
794	return gphy_version;
795}