Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/bitfield.h>
5#include <linux/delay.h>
6
7#include "igc_hw.h"
8
9/**
10 * igc_acquire_nvm_i225 - Acquire exclusive access to EEPROM
11 * @hw: pointer to the HW structure
12 *
13 * Acquire the necessary semaphores for exclusive access to the EEPROM.
14 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
15 * Return successful if access grant bit set, else clear the request for
16 * EEPROM access and return -IGC_ERR_NVM (-1).
17 */
18static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
19{
20 return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
21}
22
23/**
24 * igc_release_nvm_i225 - Release exclusive access to EEPROM
25 * @hw: pointer to the HW structure
26 *
27 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
28 * then release the semaphores acquired.
29 */
30static void igc_release_nvm_i225(struct igc_hw *hw)
31{
32 igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
33}
34
35/**
36 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
37 * @hw: pointer to the HW structure
38 *
39 * Acquire the HW semaphore to access the PHY or NVM
40 */
41static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
42{
43 s32 timeout = hw->nvm.word_size + 1;
44 s32 i = 0;
45 u32 swsm;
46
47 /* Get the SW semaphore */
48 while (i < timeout) {
49 swsm = rd32(IGC_SWSM);
50 if (!(swsm & IGC_SWSM_SMBI))
51 break;
52
53 usleep_range(500, 600);
54 i++;
55 }
56
57 if (i == timeout) {
58 /* In rare circumstances, the SW semaphore may already be held
59 * unintentionally. Clear the semaphore once before giving up.
60 */
61 if (hw->dev_spec._base.clear_semaphore_once) {
62 hw->dev_spec._base.clear_semaphore_once = false;
63 igc_put_hw_semaphore(hw);
64 for (i = 0; i < timeout; i++) {
65 swsm = rd32(IGC_SWSM);
66 if (!(swsm & IGC_SWSM_SMBI))
67 break;
68
69 usleep_range(500, 600);
70 }
71 }
72
73 /* If we do not have the semaphore here, we have to give up. */
74 if (i == timeout) {
75 hw_dbg("Driver can't access device - SMBI bit is set.\n");
76 return -IGC_ERR_NVM;
77 }
78 }
79
80 /* Get the FW semaphore. */
81 for (i = 0; i < timeout; i++) {
82 swsm = rd32(IGC_SWSM);
83 wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
84
85 /* Semaphore acquired if bit latched */
86 if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
87 break;
88
89 usleep_range(500, 600);
90 }
91
92 if (i == timeout) {
93 /* Release semaphores */
94 igc_put_hw_semaphore(hw);
95 hw_dbg("Driver can't access the NVM\n");
96 return -IGC_ERR_NVM;
97 }
98
99 return 0;
100}
101
102/**
103 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
104 * @hw: pointer to the HW structure
105 * @mask: specifies which semaphore to acquire
106 *
107 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
108 * will also specify which port we're acquiring the lock for.
109 */
110s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
111{
112 s32 i = 0, timeout = 200;
113 u32 fwmask = mask << 16;
114 u32 swmask = mask;
115 s32 ret_val = 0;
116 u32 swfw_sync;
117
118 while (i < timeout) {
119 if (igc_get_hw_semaphore_i225(hw)) {
120 ret_val = -IGC_ERR_SWFW_SYNC;
121 goto out;
122 }
123
124 swfw_sync = rd32(IGC_SW_FW_SYNC);
125 if (!(swfw_sync & (fwmask | swmask)))
126 break;
127
128 /* Firmware currently using resource (fwmask) */
129 igc_put_hw_semaphore(hw);
130 mdelay(5);
131 i++;
132 }
133
134 if (i == timeout) {
135 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
136 ret_val = -IGC_ERR_SWFW_SYNC;
137 goto out;
138 }
139
140 swfw_sync |= swmask;
141 wr32(IGC_SW_FW_SYNC, swfw_sync);
142
143 igc_put_hw_semaphore(hw);
144out:
145 return ret_val;
146}
147
148/**
149 * igc_release_swfw_sync_i225 - Release SW/FW semaphore
150 * @hw: pointer to the HW structure
151 * @mask: specifies which semaphore to acquire
152 *
153 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
154 * will also specify which port we're releasing the lock for.
155 */
156void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
157{
158 u32 swfw_sync;
159
160 /* Releasing the resource requires first getting the HW semaphore.
161 * If we fail to get the semaphore, there is nothing we can do,
162 * except log an error and quit. We are not allowed to hang here
163 * indefinitely, as it may cause denial of service or system crash.
164 */
165 if (igc_get_hw_semaphore_i225(hw)) {
166 hw_dbg("Failed to release SW_FW_SYNC.\n");
167 return;
168 }
169
170 swfw_sync = rd32(IGC_SW_FW_SYNC);
171 swfw_sync &= ~mask;
172 wr32(IGC_SW_FW_SYNC, swfw_sync);
173
174 igc_put_hw_semaphore(hw);
175}
176
177/**
178 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
179 * @hw: pointer to the HW structure
180 * @offset: offset of word in the Shadow Ram to read
181 * @words: number of words to read
182 * @data: word read from the Shadow Ram
183 *
184 * Reads a 16 bit word from the Shadow Ram using the EERD register.
185 * Uses necessary synchronization semaphores.
186 */
187static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
188 u16 *data)
189{
190 s32 status = 0;
191 u16 i, count;
192
193 /* We cannot hold synchronization semaphores for too long,
194 * because of forceful takeover procedure. However it is more efficient
195 * to read in bursts than synchronizing access for each word.
196 */
197 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
198 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
199 IGC_EERD_EEWR_MAX_COUNT : (words - i);
200
201 status = hw->nvm.ops.acquire(hw);
202 if (status)
203 break;
204
205 status = igc_read_nvm_eerd(hw, offset, count, data + i);
206 hw->nvm.ops.release(hw);
207 if (status)
208 break;
209 }
210
211 return status;
212}
213
214/**
215 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
216 * @hw: pointer to the HW structure
217 * @offset: offset within the Shadow Ram to be written to
218 * @words: number of words to write
219 * @data: 16 bit word(s) to be written to the Shadow Ram
220 *
221 * Writes data to Shadow Ram at offset using EEWR register.
222 *
223 * If igc_update_nvm_checksum is not called after this function , the
224 * Shadow Ram will most likely contain an invalid checksum.
225 */
226static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
227 u16 *data)
228{
229 struct igc_nvm_info *nvm = &hw->nvm;
230 s32 ret_val = -IGC_ERR_NVM;
231 u32 attempts = 100000;
232 u32 i, k, eewr = 0;
233
234 /* A check for invalid values: offset too large, too many words,
235 * too many words for the offset, and not enough words.
236 */
237 if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
238 words == 0) {
239 hw_dbg("nvm parameter(s) out of bounds\n");
240 return ret_val;
241 }
242
243 for (i = 0; i < words; i++) {
244 ret_val = -IGC_ERR_NVM;
245 eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
246 (data[i] << IGC_NVM_RW_REG_DATA) |
247 IGC_NVM_RW_REG_START;
248
249 wr32(IGC_SRWR, eewr);
250
251 for (k = 0; k < attempts; k++) {
252 if (IGC_NVM_RW_REG_DONE &
253 rd32(IGC_SRWR)) {
254 ret_val = 0;
255 break;
256 }
257 udelay(5);
258 }
259
260 if (ret_val) {
261 hw_dbg("Shadow RAM write EEWR timed out\n");
262 break;
263 }
264 }
265
266 return ret_val;
267}
268
269/**
270 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
271 * @hw: pointer to the HW structure
272 * @offset: offset within the Shadow RAM to be written to
273 * @words: number of words to write
274 * @data: 16 bit word(s) to be written to the Shadow RAM
275 *
276 * Writes data to Shadow RAM at offset using EEWR register.
277 *
278 * If igc_update_nvm_checksum is not called after this function , the
279 * data will not be committed to FLASH and also Shadow RAM will most likely
280 * contain an invalid checksum.
281 *
282 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
283 * partially written.
284 */
285static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
286 u16 *data)
287{
288 s32 status = 0;
289 u16 i, count;
290
291 /* We cannot hold synchronization semaphores for too long,
292 * because of forceful takeover procedure. However it is more efficient
293 * to write in bursts than synchronizing access for each word.
294 */
295 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
296 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
297 IGC_EERD_EEWR_MAX_COUNT : (words - i);
298
299 status = hw->nvm.ops.acquire(hw);
300 if (status)
301 break;
302
303 status = igc_write_nvm_srwr(hw, offset, count, data + i);
304 hw->nvm.ops.release(hw);
305 if (status)
306 break;
307 }
308
309 return status;
310}
311
312/**
313 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
314 * @hw: pointer to the HW structure
315 *
316 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
317 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
318 */
319static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
320{
321 s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
322 u16 *data);
323 s32 status = 0;
324
325 status = hw->nvm.ops.acquire(hw);
326 if (status)
327 goto out;
328
329 /* Replace the read function with semaphore grabbing with
330 * the one that skips this for a while.
331 * We have semaphore taken already here.
332 */
333 read_op_ptr = hw->nvm.ops.read;
334 hw->nvm.ops.read = igc_read_nvm_eerd;
335
336 status = igc_validate_nvm_checksum(hw);
337
338 /* Revert original read operation. */
339 hw->nvm.ops.read = read_op_ptr;
340
341 hw->nvm.ops.release(hw);
342
343out:
344 return status;
345}
346
347/**
348 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
349 * @hw: pointer to the HW structure
350 */
351static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
352{
353 s32 ret_val = -IGC_ERR_NVM;
354 u32 i, reg;
355
356 for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
357 reg = rd32(IGC_EECD);
358 if (reg & IGC_EECD_FLUDONE_I225) {
359 ret_val = 0;
360 break;
361 }
362 udelay(5);
363 }
364
365 return ret_val;
366}
367
368/**
369 * igc_update_flash_i225 - Commit EEPROM to the flash
370 * @hw: pointer to the HW structure
371 */
372static s32 igc_update_flash_i225(struct igc_hw *hw)
373{
374 s32 ret_val = 0;
375 u32 flup;
376
377 ret_val = igc_pool_flash_update_done_i225(hw);
378 if (ret_val == -IGC_ERR_NVM) {
379 hw_dbg("Flash update time out\n");
380 goto out;
381 }
382
383 flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
384 wr32(IGC_EECD, flup);
385
386 ret_val = igc_pool_flash_update_done_i225(hw);
387 if (ret_val)
388 hw_dbg("Flash update time out\n");
389 else
390 hw_dbg("Flash update complete\n");
391
392out:
393 return ret_val;
394}
395
396/**
397 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
398 * @hw: pointer to the HW structure
399 *
400 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
401 * up to the checksum. Then calculates the EEPROM checksum and writes the
402 * value to the EEPROM. Next commit EEPROM data onto the Flash.
403 */
404static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
405{
406 u16 checksum = 0;
407 s32 ret_val = 0;
408 u16 i, nvm_data;
409
410 /* Read the first word from the EEPROM. If this times out or fails, do
411 * not continue or we could be in for a very long wait while every
412 * EEPROM read fails
413 */
414 ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
415 if (ret_val) {
416 hw_dbg("EEPROM read failed\n");
417 goto out;
418 }
419
420 ret_val = hw->nvm.ops.acquire(hw);
421 if (ret_val)
422 goto out;
423
424 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
425 * because we do not want to take the synchronization
426 * semaphores twice here.
427 */
428
429 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
430 ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
431 if (ret_val) {
432 hw->nvm.ops.release(hw);
433 hw_dbg("NVM Read Error while updating checksum.\n");
434 goto out;
435 }
436 checksum += nvm_data;
437 }
438 checksum = (u16)NVM_SUM - checksum;
439 ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
440 &checksum);
441 if (ret_val) {
442 hw->nvm.ops.release(hw);
443 hw_dbg("NVM Write Error while updating checksum.\n");
444 goto out;
445 }
446
447 hw->nvm.ops.release(hw);
448
449 ret_val = igc_update_flash_i225(hw);
450
451out:
452 return ret_val;
453}
454
455/**
456 * igc_get_flash_presence_i225 - Check if flash device is detected
457 * @hw: pointer to the HW structure
458 */
459bool igc_get_flash_presence_i225(struct igc_hw *hw)
460{
461 bool ret_val = false;
462 u32 eec = 0;
463
464 eec = rd32(IGC_EECD);
465 if (eec & IGC_EECD_FLASH_DETECTED_I225)
466 ret_val = true;
467
468 return ret_val;
469}
470
471/**
472 * igc_init_nvm_params_i225 - Init NVM func ptrs.
473 * @hw: pointer to the HW structure
474 */
475s32 igc_init_nvm_params_i225(struct igc_hw *hw)
476{
477 struct igc_nvm_info *nvm = &hw->nvm;
478
479 nvm->ops.acquire = igc_acquire_nvm_i225;
480 nvm->ops.release = igc_release_nvm_i225;
481
482 /* NVM Function Pointers */
483 if (igc_get_flash_presence_i225(hw)) {
484 nvm->ops.read = igc_read_nvm_srrd_i225;
485 nvm->ops.write = igc_write_nvm_srwr_i225;
486 nvm->ops.validate = igc_validate_nvm_checksum_i225;
487 nvm->ops.update = igc_update_nvm_checksum_i225;
488 } else {
489 nvm->ops.read = igc_read_nvm_eerd;
490 nvm->ops.write = NULL;
491 nvm->ops.validate = NULL;
492 nvm->ops.update = NULL;
493 }
494 return 0;
495}
496
497/**
498 * igc_set_eee_i225 - Enable/disable EEE support
499 * @hw: pointer to the HW structure
500 * @adv2p5G: boolean flag enabling 2.5G EEE advertisement
501 * @adv1G: boolean flag enabling 1G EEE advertisement
502 * @adv100M: boolean flag enabling 100M EEE advertisement
503 *
504 * Enable/disable EEE based on setting in dev_spec structure.
505 **/
506s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
507 bool adv100M)
508{
509 u32 ipcnfg, eeer;
510
511 ipcnfg = rd32(IGC_IPCNFG);
512 eeer = rd32(IGC_EEER);
513
514 /* enable or disable per user setting */
515 if (hw->dev_spec._base.eee_enable) {
516 u32 eee_su = rd32(IGC_EEE_SU);
517
518 if (adv100M)
519 ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
520 else
521 ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
522
523 if (adv1G)
524 ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
525 else
526 ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
527
528 if (adv2p5G)
529 ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
530 else
531 ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
532
533 eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
534 IGC_EEER_LPI_FC);
535
536 /* This bit should not be set in normal operation. */
537 if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
538 hw_dbg("LPI Clock Stop Bit should not be set!\n");
539 } else {
540 ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
541 IGC_IPCNFG_EEE_100M_AN);
542 eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
543 IGC_EEER_LPI_FC);
544 }
545 wr32(IGC_IPCNFG, ipcnfg);
546 wr32(IGC_EEER, eeer);
547 rd32(IGC_IPCNFG);
548 rd32(IGC_EEER);
549
550 return IGC_SUCCESS;
551}
552
553/* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
554 * @hw: pointer to the HW structure
555 * @link: bool indicating link status
556 *
557 * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
558 * settings, otherwise specify that there is no LTR requirement.
559 */
560s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
561{
562 u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
563 u16 speed, duplex;
564 s32 size;
565
566 /* If we do not have link, LTR thresholds are zero. */
567 if (link) {
568 hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
569
570 /* Check if using copper interface with EEE enabled or if the
571 * link speed is 10 Mbps.
572 */
573 if (hw->dev_spec._base.eee_enable &&
574 speed != SPEED_10) {
575 /* EEE enabled, so send LTRMAX threshold. */
576 ltrc = rd32(IGC_LTRC) |
577 IGC_LTRC_EEEMS_EN;
578 wr32(IGC_LTRC, ltrc);
579
580 /* Calculate tw_system (nsec). */
581 if (speed == SPEED_100) {
582 tw_system = FIELD_GET(IGC_TW_SYSTEM_100_MASK,
583 rd32(IGC_EEE_SU)) * 500;
584 } else {
585 tw_system = (rd32(IGC_EEE_SU) &
586 IGC_TW_SYSTEM_1000_MASK) * 500;
587 }
588 } else {
589 tw_system = 0;
590 }
591
592 /* Get the Rx packet buffer size. */
593 size = rd32(IGC_RXPBS) &
594 IGC_RXPBS_SIZE_I225_MASK;
595
596 /* Convert size to bytes, subtract the MTU, and then
597 * convert the size to bits.
598 */
599 size *= 1024;
600 size *= 8;
601
602 if (size < 0) {
603 hw_dbg("Invalid effective Rx buffer size %d\n",
604 size);
605 return -IGC_ERR_CONFIG;
606 }
607
608 /* Calculate the thresholds. Since speed is in Mbps, simplify
609 * the calculation by multiplying size/speed by 1000 for result
610 * to be in nsec before dividing by the scale in nsec. Set the
611 * scale such that the LTR threshold fits in the register.
612 */
613 ltr_min = (1000 * size) / speed;
614 ltr_max = ltr_min + tw_system;
615 scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
616 IGC_LTRMINV_SCALE_32768;
617 scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
618 IGC_LTRMAXV_SCALE_32768;
619 ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
620 ltr_min -= 1;
621 ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
622 ltr_max -= 1;
623
624 /* Only write the LTR thresholds if they differ from before. */
625 ltrv = rd32(IGC_LTRMINV);
626 if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
627 ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
628 (scale_min << IGC_LTRMINV_SCALE_SHIFT);
629 wr32(IGC_LTRMINV, ltrv);
630 }
631
632 ltrv = rd32(IGC_LTRMAXV);
633 if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
634 ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
635 (scale_max << IGC_LTRMAXV_SCALE_SHIFT);
636 wr32(IGC_LTRMAXV, ltrv);
637 }
638 }
639
640 return IGC_SUCCESS;
641}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/delay.h>
5
6#include "igc_hw.h"
7
8/**
9 * igc_acquire_nvm_i225 - Acquire exclusive access to EEPROM
10 * @hw: pointer to the HW structure
11 *
12 * Acquire the necessary semaphores for exclusive access to the EEPROM.
13 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
14 * Return successful if access grant bit set, else clear the request for
15 * EEPROM access and return -IGC_ERR_NVM (-1).
16 */
17static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
18{
19 return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
20}
21
22/**
23 * igc_release_nvm_i225 - Release exclusive access to EEPROM
24 * @hw: pointer to the HW structure
25 *
26 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
27 * then release the semaphores acquired.
28 */
29static void igc_release_nvm_i225(struct igc_hw *hw)
30{
31 igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
32}
33
34/**
35 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
36 * @hw: pointer to the HW structure
37 *
38 * Acquire the HW semaphore to access the PHY or NVM
39 */
40static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
41{
42 s32 timeout = hw->nvm.word_size + 1;
43 s32 i = 0;
44 u32 swsm;
45
46 /* Get the SW semaphore */
47 while (i < timeout) {
48 swsm = rd32(IGC_SWSM);
49 if (!(swsm & IGC_SWSM_SMBI))
50 break;
51
52 usleep_range(500, 600);
53 i++;
54 }
55
56 if (i == timeout) {
57 /* In rare circumstances, the SW semaphore may already be held
58 * unintentionally. Clear the semaphore once before giving up.
59 */
60 if (hw->dev_spec._base.clear_semaphore_once) {
61 hw->dev_spec._base.clear_semaphore_once = false;
62 igc_put_hw_semaphore(hw);
63 for (i = 0; i < timeout; i++) {
64 swsm = rd32(IGC_SWSM);
65 if (!(swsm & IGC_SWSM_SMBI))
66 break;
67
68 usleep_range(500, 600);
69 }
70 }
71
72 /* If we do not have the semaphore here, we have to give up. */
73 if (i == timeout) {
74 hw_dbg("Driver can't access device - SMBI bit is set.\n");
75 return -IGC_ERR_NVM;
76 }
77 }
78
79 /* Get the FW semaphore. */
80 for (i = 0; i < timeout; i++) {
81 swsm = rd32(IGC_SWSM);
82 wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
83
84 /* Semaphore acquired if bit latched */
85 if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
86 break;
87
88 usleep_range(500, 600);
89 }
90
91 if (i == timeout) {
92 /* Release semaphores */
93 igc_put_hw_semaphore(hw);
94 hw_dbg("Driver can't access the NVM\n");
95 return -IGC_ERR_NVM;
96 }
97
98 return 0;
99}
100
101/**
102 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
103 * @hw: pointer to the HW structure
104 * @mask: specifies which semaphore to acquire
105 *
106 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
107 * will also specify which port we're acquiring the lock for.
108 */
109s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
110{
111 s32 i = 0, timeout = 200;
112 u32 fwmask = mask << 16;
113 u32 swmask = mask;
114 s32 ret_val = 0;
115 u32 swfw_sync;
116
117 while (i < timeout) {
118 if (igc_get_hw_semaphore_i225(hw)) {
119 ret_val = -IGC_ERR_SWFW_SYNC;
120 goto out;
121 }
122
123 swfw_sync = rd32(IGC_SW_FW_SYNC);
124 if (!(swfw_sync & (fwmask | swmask)))
125 break;
126
127 /* Firmware currently using resource (fwmask) */
128 igc_put_hw_semaphore(hw);
129 mdelay(5);
130 i++;
131 }
132
133 if (i == timeout) {
134 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
135 ret_val = -IGC_ERR_SWFW_SYNC;
136 goto out;
137 }
138
139 swfw_sync |= swmask;
140 wr32(IGC_SW_FW_SYNC, swfw_sync);
141
142 igc_put_hw_semaphore(hw);
143out:
144 return ret_val;
145}
146
147/**
148 * igc_release_swfw_sync_i225 - Release SW/FW semaphore
149 * @hw: pointer to the HW structure
150 * @mask: specifies which semaphore to acquire
151 *
152 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
153 * will also specify which port we're releasing the lock for.
154 */
155void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
156{
157 u32 swfw_sync;
158
159 /* Releasing the resource requires first getting the HW semaphore.
160 * If we fail to get the semaphore, there is nothing we can do,
161 * except log an error and quit. We are not allowed to hang here
162 * indefinitely, as it may cause denial of service or system crash.
163 */
164 if (igc_get_hw_semaphore_i225(hw)) {
165 hw_dbg("Failed to release SW_FW_SYNC.\n");
166 return;
167 }
168
169 swfw_sync = rd32(IGC_SW_FW_SYNC);
170 swfw_sync &= ~mask;
171 wr32(IGC_SW_FW_SYNC, swfw_sync);
172
173 igc_put_hw_semaphore(hw);
174}
175
176/**
177 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
178 * @hw: pointer to the HW structure
179 * @offset: offset of word in the Shadow Ram to read
180 * @words: number of words to read
181 * @data: word read from the Shadow Ram
182 *
183 * Reads a 16 bit word from the Shadow Ram using the EERD register.
184 * Uses necessary synchronization semaphores.
185 */
186static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
187 u16 *data)
188{
189 s32 status = 0;
190 u16 i, count;
191
192 /* We cannot hold synchronization semaphores for too long,
193 * because of forceful takeover procedure. However it is more efficient
194 * to read in bursts than synchronizing access for each word.
195 */
196 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
197 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
198 IGC_EERD_EEWR_MAX_COUNT : (words - i);
199
200 status = hw->nvm.ops.acquire(hw);
201 if (status)
202 break;
203
204 status = igc_read_nvm_eerd(hw, offset, count, data + i);
205 hw->nvm.ops.release(hw);
206 if (status)
207 break;
208 }
209
210 return status;
211}
212
213/**
214 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
215 * @hw: pointer to the HW structure
216 * @offset: offset within the Shadow Ram to be written to
217 * @words: number of words to write
218 * @data: 16 bit word(s) to be written to the Shadow Ram
219 *
220 * Writes data to Shadow Ram at offset using EEWR register.
221 *
222 * If igc_update_nvm_checksum is not called after this function , the
223 * Shadow Ram will most likely contain an invalid checksum.
224 */
225static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
226 u16 *data)
227{
228 struct igc_nvm_info *nvm = &hw->nvm;
229 s32 ret_val = -IGC_ERR_NVM;
230 u32 attempts = 100000;
231 u32 i, k, eewr = 0;
232
233 /* A check for invalid values: offset too large, too many words,
234 * too many words for the offset, and not enough words.
235 */
236 if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
237 words == 0) {
238 hw_dbg("nvm parameter(s) out of bounds\n");
239 return ret_val;
240 }
241
242 for (i = 0; i < words; i++) {
243 ret_val = -IGC_ERR_NVM;
244 eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
245 (data[i] << IGC_NVM_RW_REG_DATA) |
246 IGC_NVM_RW_REG_START;
247
248 wr32(IGC_SRWR, eewr);
249
250 for (k = 0; k < attempts; k++) {
251 if (IGC_NVM_RW_REG_DONE &
252 rd32(IGC_SRWR)) {
253 ret_val = 0;
254 break;
255 }
256 udelay(5);
257 }
258
259 if (ret_val) {
260 hw_dbg("Shadow RAM write EEWR timed out\n");
261 break;
262 }
263 }
264
265 return ret_val;
266}
267
268/**
269 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
270 * @hw: pointer to the HW structure
271 * @offset: offset within the Shadow RAM to be written to
272 * @words: number of words to write
273 * @data: 16 bit word(s) to be written to the Shadow RAM
274 *
275 * Writes data to Shadow RAM at offset using EEWR register.
276 *
277 * If igc_update_nvm_checksum is not called after this function , the
278 * data will not be committed to FLASH and also Shadow RAM will most likely
279 * contain an invalid checksum.
280 *
281 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
282 * partially written.
283 */
284static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
285 u16 *data)
286{
287 s32 status = 0;
288 u16 i, count;
289
290 /* We cannot hold synchronization semaphores for too long,
291 * because of forceful takeover procedure. However it is more efficient
292 * to write in bursts than synchronizing access for each word.
293 */
294 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
295 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
296 IGC_EERD_EEWR_MAX_COUNT : (words - i);
297
298 status = hw->nvm.ops.acquire(hw);
299 if (status)
300 break;
301
302 status = igc_write_nvm_srwr(hw, offset, count, data + i);
303 hw->nvm.ops.release(hw);
304 if (status)
305 break;
306 }
307
308 return status;
309}
310
311/**
312 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
313 * @hw: pointer to the HW structure
314 *
315 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
316 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
317 */
318static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
319{
320 s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
321 u16 *data);
322 s32 status = 0;
323
324 status = hw->nvm.ops.acquire(hw);
325 if (status)
326 goto out;
327
328 /* Replace the read function with semaphore grabbing with
329 * the one that skips this for a while.
330 * We have semaphore taken already here.
331 */
332 read_op_ptr = hw->nvm.ops.read;
333 hw->nvm.ops.read = igc_read_nvm_eerd;
334
335 status = igc_validate_nvm_checksum(hw);
336
337 /* Revert original read operation. */
338 hw->nvm.ops.read = read_op_ptr;
339
340 hw->nvm.ops.release(hw);
341
342out:
343 return status;
344}
345
346/**
347 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
348 * @hw: pointer to the HW structure
349 */
350static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
351{
352 s32 ret_val = -IGC_ERR_NVM;
353 u32 i, reg;
354
355 for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
356 reg = rd32(IGC_EECD);
357 if (reg & IGC_EECD_FLUDONE_I225) {
358 ret_val = 0;
359 break;
360 }
361 udelay(5);
362 }
363
364 return ret_val;
365}
366
367/**
368 * igc_update_flash_i225 - Commit EEPROM to the flash
369 * @hw: pointer to the HW structure
370 */
371static s32 igc_update_flash_i225(struct igc_hw *hw)
372{
373 s32 ret_val = 0;
374 u32 flup;
375
376 ret_val = igc_pool_flash_update_done_i225(hw);
377 if (ret_val == -IGC_ERR_NVM) {
378 hw_dbg("Flash update time out\n");
379 goto out;
380 }
381
382 flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
383 wr32(IGC_EECD, flup);
384
385 ret_val = igc_pool_flash_update_done_i225(hw);
386 if (ret_val)
387 hw_dbg("Flash update time out\n");
388 else
389 hw_dbg("Flash update complete\n");
390
391out:
392 return ret_val;
393}
394
395/**
396 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
397 * @hw: pointer to the HW structure
398 *
399 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
400 * up to the checksum. Then calculates the EEPROM checksum and writes the
401 * value to the EEPROM. Next commit EEPROM data onto the Flash.
402 */
403static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
404{
405 u16 checksum = 0;
406 s32 ret_val = 0;
407 u16 i, nvm_data;
408
409 /* Read the first word from the EEPROM. If this times out or fails, do
410 * not continue or we could be in for a very long wait while every
411 * EEPROM read fails
412 */
413 ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
414 if (ret_val) {
415 hw_dbg("EEPROM read failed\n");
416 goto out;
417 }
418
419 ret_val = hw->nvm.ops.acquire(hw);
420 if (ret_val)
421 goto out;
422
423 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
424 * because we do not want to take the synchronization
425 * semaphores twice here.
426 */
427
428 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
429 ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
430 if (ret_val) {
431 hw->nvm.ops.release(hw);
432 hw_dbg("NVM Read Error while updating checksum.\n");
433 goto out;
434 }
435 checksum += nvm_data;
436 }
437 checksum = (u16)NVM_SUM - checksum;
438 ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
439 &checksum);
440 if (ret_val) {
441 hw->nvm.ops.release(hw);
442 hw_dbg("NVM Write Error while updating checksum.\n");
443 goto out;
444 }
445
446 hw->nvm.ops.release(hw);
447
448 ret_val = igc_update_flash_i225(hw);
449
450out:
451 return ret_val;
452}
453
454/**
455 * igc_get_flash_presence_i225 - Check if flash device is detected
456 * @hw: pointer to the HW structure
457 */
458bool igc_get_flash_presence_i225(struct igc_hw *hw)
459{
460 bool ret_val = false;
461 u32 eec = 0;
462
463 eec = rd32(IGC_EECD);
464 if (eec & IGC_EECD_FLASH_DETECTED_I225)
465 ret_val = true;
466
467 return ret_val;
468}
469
470/**
471 * igc_init_nvm_params_i225 - Init NVM func ptrs.
472 * @hw: pointer to the HW structure
473 */
474s32 igc_init_nvm_params_i225(struct igc_hw *hw)
475{
476 struct igc_nvm_info *nvm = &hw->nvm;
477
478 nvm->ops.acquire = igc_acquire_nvm_i225;
479 nvm->ops.release = igc_release_nvm_i225;
480
481 /* NVM Function Pointers */
482 if (igc_get_flash_presence_i225(hw)) {
483 nvm->ops.read = igc_read_nvm_srrd_i225;
484 nvm->ops.write = igc_write_nvm_srwr_i225;
485 nvm->ops.validate = igc_validate_nvm_checksum_i225;
486 nvm->ops.update = igc_update_nvm_checksum_i225;
487 } else {
488 nvm->ops.read = igc_read_nvm_eerd;
489 nvm->ops.write = NULL;
490 nvm->ops.validate = NULL;
491 nvm->ops.update = NULL;
492 }
493 return 0;
494}
495
496/**
497 * igc_set_eee_i225 - Enable/disable EEE support
498 * @hw: pointer to the HW structure
499 * @adv2p5G: boolean flag enabling 2.5G EEE advertisement
500 * @adv1G: boolean flag enabling 1G EEE advertisement
501 * @adv100M: boolean flag enabling 100M EEE advertisement
502 *
503 * Enable/disable EEE based on setting in dev_spec structure.
504 **/
505s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
506 bool adv100M)
507{
508 u32 ipcnfg, eeer;
509
510 ipcnfg = rd32(IGC_IPCNFG);
511 eeer = rd32(IGC_EEER);
512
513 /* enable or disable per user setting */
514 if (hw->dev_spec._base.eee_enable) {
515 u32 eee_su = rd32(IGC_EEE_SU);
516
517 if (adv100M)
518 ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
519 else
520 ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
521
522 if (adv1G)
523 ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
524 else
525 ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
526
527 if (adv2p5G)
528 ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
529 else
530 ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
531
532 eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
533 IGC_EEER_LPI_FC);
534
535 /* This bit should not be set in normal operation. */
536 if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
537 hw_dbg("LPI Clock Stop Bit should not be set!\n");
538 } else {
539 ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
540 IGC_IPCNFG_EEE_100M_AN);
541 eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
542 IGC_EEER_LPI_FC);
543 }
544 wr32(IGC_IPCNFG, ipcnfg);
545 wr32(IGC_EEER, eeer);
546 rd32(IGC_IPCNFG);
547 rd32(IGC_EEER);
548
549 return IGC_SUCCESS;
550}
551
552/* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
553 * @hw: pointer to the HW structure
554 * @link: bool indicating link status
555 *
556 * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
557 * settings, otherwise specify that there is no LTR requirement.
558 */
559s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
560{
561 u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
562 u16 speed, duplex;
563 s32 size;
564
565 /* If we do not have link, LTR thresholds are zero. */
566 if (link) {
567 hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
568
569 /* Check if using copper interface with EEE enabled or if the
570 * link speed is 10 Mbps.
571 */
572 if (hw->dev_spec._base.eee_enable &&
573 speed != SPEED_10) {
574 /* EEE enabled, so send LTRMAX threshold. */
575 ltrc = rd32(IGC_LTRC) |
576 IGC_LTRC_EEEMS_EN;
577 wr32(IGC_LTRC, ltrc);
578
579 /* Calculate tw_system (nsec). */
580 if (speed == SPEED_100) {
581 tw_system = ((rd32(IGC_EEE_SU) &
582 IGC_TW_SYSTEM_100_MASK) >>
583 IGC_TW_SYSTEM_100_SHIFT) * 500;
584 } else {
585 tw_system = (rd32(IGC_EEE_SU) &
586 IGC_TW_SYSTEM_1000_MASK) * 500;
587 }
588 } else {
589 tw_system = 0;
590 }
591
592 /* Get the Rx packet buffer size. */
593 size = rd32(IGC_RXPBS) &
594 IGC_RXPBS_SIZE_I225_MASK;
595
596 /* Calculations vary based on DMAC settings. */
597 if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) {
598 size -= (rd32(IGC_DMACR) &
599 IGC_DMACR_DMACTHR_MASK) >>
600 IGC_DMACR_DMACTHR_SHIFT;
601 /* Convert size to bits. */
602 size *= 1024 * 8;
603 } else {
604 /* Convert size to bytes, subtract the MTU, and then
605 * convert the size to bits.
606 */
607 size *= 1024;
608 size *= 8;
609 }
610
611 if (size < 0) {
612 hw_dbg("Invalid effective Rx buffer size %d\n",
613 size);
614 return -IGC_ERR_CONFIG;
615 }
616
617 /* Calculate the thresholds. Since speed is in Mbps, simplify
618 * the calculation by multiplying size/speed by 1000 for result
619 * to be in nsec before dividing by the scale in nsec. Set the
620 * scale such that the LTR threshold fits in the register.
621 */
622 ltr_min = (1000 * size) / speed;
623 ltr_max = ltr_min + tw_system;
624 scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
625 IGC_LTRMINV_SCALE_32768;
626 scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
627 IGC_LTRMAXV_SCALE_32768;
628 ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
629 ltr_min -= 1;
630 ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
631 ltr_max -= 1;
632
633 /* Only write the LTR thresholds if they differ from before. */
634 ltrv = rd32(IGC_LTRMINV);
635 if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
636 ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
637 (scale_min << IGC_LTRMINV_SCALE_SHIFT);
638 wr32(IGC_LTRMINV, ltrv);
639 }
640
641 ltrv = rd32(IGC_LTRMAXV);
642 if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
643 ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
644 (scale_max << IGC_LTRMAXV_SCALE_SHIFT);
645 wr32(IGC_LTRMAXV, ltrv);
646 }
647 }
648
649 return IGC_SUCCESS;
650}