Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019, Intel Corporation. */
3
4#include <linux/bpf_trace.h>
5#include <net/xdp_sock_drv.h>
6#include <net/xdp.h>
7#include "ice.h"
8#include "ice_base.h"
9#include "ice_type.h"
10#include "ice_xsk.h"
11#include "ice_txrx.h"
12#include "ice_txrx_lib.h"
13#include "ice_lib.h"
14
15static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16{
17 return &rx_ring->xdp_buf[idx];
18}
19
20/**
21 * ice_qp_reset_stats - Resets all stats for rings of given index
22 * @vsi: VSI that contains rings of interest
23 * @q_idx: ring index in array
24 */
25static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26{
27 struct ice_vsi_stats *vsi_stat;
28 struct ice_pf *pf;
29
30 pf = vsi->back;
31 if (!pf->vsi_stats)
32 return;
33
34 vsi_stat = pf->vsi_stats[vsi->idx];
35 if (!vsi_stat)
36 return;
37
38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42 if (vsi->xdp_rings)
43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45}
46
47/**
48 * ice_qp_clean_rings - Cleans all the rings of a given index
49 * @vsi: VSI that contains rings of interest
50 * @q_idx: ring index in array
51 */
52static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53{
54 ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55 if (vsi->xdp_rings)
56 ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
57 ice_clean_rx_ring(vsi->rx_rings[q_idx]);
58}
59
60/**
61 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
62 * @vsi: VSI that has netdev
63 * @q_vector: q_vector that has NAPI context
64 * @enable: true for enable, false for disable
65 */
66static void
67ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
68 bool enable)
69{
70 if (!vsi->netdev || !q_vector)
71 return;
72
73 if (enable)
74 napi_enable(&q_vector->napi);
75 else
76 napi_disable(&q_vector->napi);
77}
78
79/**
80 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
81 * @vsi: the VSI that contains queue vector being un-configured
82 * @rx_ring: Rx ring that will have its IRQ disabled
83 * @q_vector: queue vector
84 */
85static void
86ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
87 struct ice_q_vector *q_vector)
88{
89 struct ice_pf *pf = vsi->back;
90 struct ice_hw *hw = &pf->hw;
91 u16 reg;
92 u32 val;
93
94 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
95 * here only QINT_RQCTL
96 */
97 reg = rx_ring->reg_idx;
98 val = rd32(hw, QINT_RQCTL(reg));
99 val &= ~QINT_RQCTL_CAUSE_ENA_M;
100 wr32(hw, QINT_RQCTL(reg), val);
101
102 if (q_vector) {
103 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
104 ice_flush(hw);
105 synchronize_irq(q_vector->irq.virq);
106 }
107}
108
109/**
110 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
111 * @vsi: the VSI that contains queue vector
112 * @q_vector: queue vector
113 * @qid: queue index
114 */
115static void
116ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector, u16 qid)
117{
118 u16 reg_idx = q_vector->reg_idx;
119 struct ice_pf *pf = vsi->back;
120 struct ice_hw *hw = &pf->hw;
121 int q, _qid = qid;
122
123 ice_cfg_itr(hw, q_vector);
124
125 for (q = 0; q < q_vector->num_ring_tx; q++) {
126 ice_cfg_txq_interrupt(vsi, _qid, reg_idx, q_vector->tx.itr_idx);
127 _qid++;
128 }
129
130 _qid = qid;
131
132 for (q = 0; q < q_vector->num_ring_rx; q++) {
133 ice_cfg_rxq_interrupt(vsi, _qid, reg_idx, q_vector->rx.itr_idx);
134 _qid++;
135 }
136
137 ice_flush(hw);
138}
139
140/**
141 * ice_qvec_ena_irq - Enable IRQ for given queue vector
142 * @vsi: the VSI that contains queue vector
143 * @q_vector: queue vector
144 */
145static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
146{
147 struct ice_pf *pf = vsi->back;
148 struct ice_hw *hw = &pf->hw;
149
150 ice_irq_dynamic_ena(hw, vsi, q_vector);
151
152 ice_flush(hw);
153}
154
155/**
156 * ice_qp_dis - Disables a queue pair
157 * @vsi: VSI of interest
158 * @q_idx: ring index in array
159 *
160 * Returns 0 on success, negative on failure.
161 */
162static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
163{
164 struct ice_txq_meta txq_meta = { };
165 struct ice_q_vector *q_vector;
166 struct ice_tx_ring *tx_ring;
167 struct ice_rx_ring *rx_ring;
168 int fail = 0;
169 int err;
170
171 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
172 return -EINVAL;
173
174 tx_ring = vsi->tx_rings[q_idx];
175 rx_ring = vsi->rx_rings[q_idx];
176 q_vector = rx_ring->q_vector;
177
178 synchronize_net();
179 netif_carrier_off(vsi->netdev);
180 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
181
182 ice_qvec_dis_irq(vsi, rx_ring, q_vector);
183 ice_qvec_toggle_napi(vsi, q_vector, false);
184
185 ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
186 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
187 if (!fail)
188 fail = err;
189 if (vsi->xdp_rings) {
190 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
191
192 memset(&txq_meta, 0, sizeof(txq_meta));
193 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
194 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
195 &txq_meta);
196 if (!fail)
197 fail = err;
198 }
199
200 ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, false);
201 ice_qp_clean_rings(vsi, q_idx);
202 ice_qp_reset_stats(vsi, q_idx);
203
204 return fail;
205}
206
207/**
208 * ice_qp_ena - Enables a queue pair
209 * @vsi: VSI of interest
210 * @q_idx: ring index in array
211 *
212 * Returns 0 on success, negative on failure.
213 */
214static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
215{
216 struct ice_q_vector *q_vector;
217 int fail = 0;
218 bool link_up;
219 int err;
220
221 err = ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx);
222 if (!fail)
223 fail = err;
224
225 if (ice_is_xdp_ena_vsi(vsi)) {
226 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
227
228 err = ice_vsi_cfg_single_txq(vsi, vsi->xdp_rings, q_idx);
229 if (!fail)
230 fail = err;
231 ice_set_ring_xdp(xdp_ring);
232 ice_tx_xsk_pool(vsi, q_idx);
233 }
234
235 err = ice_vsi_cfg_single_rxq(vsi, q_idx);
236 if (!fail)
237 fail = err;
238
239 q_vector = vsi->rx_rings[q_idx]->q_vector;
240 ice_qvec_cfg_msix(vsi, q_vector, q_idx);
241
242 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
243 if (!fail)
244 fail = err;
245
246 ice_qvec_toggle_napi(vsi, q_vector, true);
247 ice_qvec_ena_irq(vsi, q_vector);
248
249 /* make sure NAPI sees updated ice_{t,x}_ring::xsk_pool */
250 synchronize_net();
251 ice_get_link_status(vsi->port_info, &link_up);
252 if (link_up) {
253 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
254 netif_carrier_on(vsi->netdev);
255 }
256
257 return fail;
258}
259
260/**
261 * ice_xsk_pool_disable - disable a buffer pool region
262 * @vsi: Current VSI
263 * @qid: queue ID
264 *
265 * Returns 0 on success, negative on failure
266 */
267static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
268{
269 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
270
271 if (!pool)
272 return -EINVAL;
273
274 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
275
276 return 0;
277}
278
279/**
280 * ice_xsk_pool_enable - enable a buffer pool region
281 * @vsi: Current VSI
282 * @pool: pointer to a requested buffer pool region
283 * @qid: queue ID
284 *
285 * Returns 0 on success, negative on failure
286 */
287static int
288ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
289{
290 int err;
291
292 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF)
293 return -EINVAL;
294
295 if (qid >= vsi->netdev->real_num_rx_queues ||
296 qid >= vsi->netdev->real_num_tx_queues)
297 return -EINVAL;
298
299 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
300 ICE_RX_DMA_ATTR);
301 if (err)
302 return err;
303
304 return 0;
305}
306
307/**
308 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
309 * @rx_ring: Rx ring
310 * @pool_present: is pool for XSK present
311 *
312 * Try allocating memory and return ENOMEM, if failed to allocate.
313 * If allocation was successful, substitute buffer with allocated one.
314 * Returns 0 on success, negative on failure
315 */
316static int
317ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
318{
319 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
320 sizeof(*rx_ring->rx_buf);
321 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
322
323 if (!sw_ring)
324 return -ENOMEM;
325
326 if (pool_present) {
327 kfree(rx_ring->rx_buf);
328 rx_ring->rx_buf = NULL;
329 rx_ring->xdp_buf = sw_ring;
330 } else {
331 kfree(rx_ring->xdp_buf);
332 rx_ring->xdp_buf = NULL;
333 rx_ring->rx_buf = sw_ring;
334 }
335
336 return 0;
337}
338
339/**
340 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
341 * @vsi: Current VSI
342 * @zc: is zero copy set
343 *
344 * Reallocate buffer for rx_rings that might be used by XSK.
345 * XDP requires more memory, than rx_buf provides.
346 * Returns 0 on success, negative on failure
347 */
348int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
349{
350 struct ice_rx_ring *rx_ring;
351 uint i;
352
353 ice_for_each_rxq(vsi, i) {
354 rx_ring = vsi->rx_rings[i];
355 if (!rx_ring->xsk_pool)
356 continue;
357
358 if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
359 return -ENOMEM;
360 }
361
362 return 0;
363}
364
365/**
366 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
367 * @vsi: Current VSI
368 * @pool: buffer pool to enable/associate to a ring, NULL to disable
369 * @qid: queue ID
370 *
371 * Returns 0 on success, negative on failure
372 */
373int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
374{
375 bool if_running, pool_present = !!pool;
376 int ret = 0, pool_failure = 0;
377
378 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
379 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
380 pool_failure = -EINVAL;
381 goto failure;
382 }
383
384 if_running = !test_bit(ICE_VSI_DOWN, vsi->state) &&
385 ice_is_xdp_ena_vsi(vsi);
386
387 if (if_running) {
388 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
389
390 ret = ice_qp_dis(vsi, qid);
391 if (ret) {
392 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
393 goto xsk_pool_if_up;
394 }
395
396 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
397 if (ret)
398 goto xsk_pool_if_up;
399 }
400
401 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
402 ice_xsk_pool_disable(vsi, qid);
403
404xsk_pool_if_up:
405 if (if_running) {
406 ret = ice_qp_ena(vsi, qid);
407 if (!ret && pool_present)
408 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
409 else if (ret)
410 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
411 }
412
413failure:
414 if (pool_failure) {
415 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
416 pool_present ? "en" : "dis", pool_failure);
417 return pool_failure;
418 }
419
420 return ret;
421}
422
423/**
424 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
425 * @pool: XSK Buffer pool to pull the buffers from
426 * @xdp: SW ring of xdp_buff that will hold the buffers
427 * @rx_desc: Pointer to Rx descriptors that will be filled
428 * @count: The number of buffers to allocate
429 *
430 * This function allocates a number of Rx buffers from the fill ring
431 * or the internal recycle mechanism and places them on the Rx ring.
432 *
433 * Note that ring wrap should be handled by caller of this function.
434 *
435 * Returns the amount of allocated Rx descriptors
436 */
437static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
438 union ice_32b_rx_flex_desc *rx_desc, u16 count)
439{
440 dma_addr_t dma;
441 u16 buffs;
442 int i;
443
444 buffs = xsk_buff_alloc_batch(pool, xdp, count);
445 for (i = 0; i < buffs; i++) {
446 dma = xsk_buff_xdp_get_dma(*xdp);
447 rx_desc->read.pkt_addr = cpu_to_le64(dma);
448 rx_desc->wb.status_error0 = 0;
449
450 /* Put private info that changes on a per-packet basis
451 * into xdp_buff_xsk->cb.
452 */
453 ice_xdp_meta_set_desc(*xdp, rx_desc);
454
455 rx_desc++;
456 xdp++;
457 }
458
459 return buffs;
460}
461
462/**
463 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
464 * @rx_ring: Rx ring
465 * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW
466 * @count: The number of buffers to allocate
467 *
468 * Place the @count of descriptors onto Rx ring. Handle the ring wrap
469 * for case where space from next_to_use up to the end of ring is less
470 * than @count. Finally do a tail bump.
471 *
472 * Returns true if all allocations were successful, false if any fail.
473 */
474static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring,
475 struct xsk_buff_pool *xsk_pool, u16 count)
476{
477 u32 nb_buffs_extra = 0, nb_buffs = 0;
478 union ice_32b_rx_flex_desc *rx_desc;
479 u16 ntu = rx_ring->next_to_use;
480 u16 total_count = count;
481 struct xdp_buff **xdp;
482
483 rx_desc = ICE_RX_DESC(rx_ring, ntu);
484 xdp = ice_xdp_buf(rx_ring, ntu);
485
486 if (ntu + count >= rx_ring->count) {
487 nb_buffs_extra = ice_fill_rx_descs(xsk_pool, xdp, rx_desc,
488 rx_ring->count - ntu);
489 if (nb_buffs_extra != rx_ring->count - ntu) {
490 ntu += nb_buffs_extra;
491 goto exit;
492 }
493 rx_desc = ICE_RX_DESC(rx_ring, 0);
494 xdp = ice_xdp_buf(rx_ring, 0);
495 ntu = 0;
496 count -= nb_buffs_extra;
497 ice_release_rx_desc(rx_ring, 0);
498 }
499
500 nb_buffs = ice_fill_rx_descs(xsk_pool, xdp, rx_desc, count);
501
502 ntu += nb_buffs;
503 if (ntu == rx_ring->count)
504 ntu = 0;
505
506exit:
507 if (rx_ring->next_to_use != ntu)
508 ice_release_rx_desc(rx_ring, ntu);
509
510 return total_count == (nb_buffs_extra + nb_buffs);
511}
512
513/**
514 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
515 * @rx_ring: Rx ring
516 * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW
517 * @count: The number of buffers to allocate
518 *
519 * Wrapper for internal allocation routine; figure out how many tail
520 * bumps should take place based on the given threshold
521 *
522 * Returns true if all calls to internal alloc routine succeeded
523 */
524bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring,
525 struct xsk_buff_pool *xsk_pool, u16 count)
526{
527 u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
528 u16 leftover, i, tail_bumps;
529
530 tail_bumps = count / rx_thresh;
531 leftover = count - (tail_bumps * rx_thresh);
532
533 for (i = 0; i < tail_bumps; i++)
534 if (!__ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, rx_thresh))
535 return false;
536 return __ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, leftover);
537}
538
539/**
540 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
541 * @rx_ring: Rx ring
542 * @xdp: Pointer to XDP buffer
543 *
544 * This function allocates a new skb from a zero-copy Rx buffer.
545 *
546 * Returns the skb on success, NULL on failure.
547 */
548static struct sk_buff *
549ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
550{
551 unsigned int totalsize = xdp->data_end - xdp->data_meta;
552 unsigned int metasize = xdp->data - xdp->data_meta;
553 struct skb_shared_info *sinfo = NULL;
554 struct sk_buff *skb;
555 u32 nr_frags = 0;
556
557 if (unlikely(xdp_buff_has_frags(xdp))) {
558 sinfo = xdp_get_shared_info_from_buff(xdp);
559 nr_frags = sinfo->nr_frags;
560 }
561 net_prefetch(xdp->data_meta);
562
563 skb = napi_alloc_skb(&rx_ring->q_vector->napi, totalsize);
564 if (unlikely(!skb))
565 return NULL;
566
567 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
568 ALIGN(totalsize, sizeof(long)));
569
570 if (metasize) {
571 skb_metadata_set(skb, metasize);
572 __skb_pull(skb, metasize);
573 }
574
575 if (likely(!xdp_buff_has_frags(xdp)))
576 goto out;
577
578 for (int i = 0; i < nr_frags; i++) {
579 struct skb_shared_info *skinfo = skb_shinfo(skb);
580 skb_frag_t *frag = &sinfo->frags[i];
581 struct page *page;
582 void *addr;
583
584 page = dev_alloc_page();
585 if (!page) {
586 dev_kfree_skb(skb);
587 return NULL;
588 }
589 addr = page_to_virt(page);
590
591 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
592
593 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
594 addr, 0, skb_frag_size(frag));
595 }
596
597out:
598 xsk_buff_free(xdp);
599 return skb;
600}
601
602/**
603 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
604 * @xdp_ring: XDP Tx ring
605 * @xsk_pool: AF_XDP buffer pool pointer
606 */
607static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring,
608 struct xsk_buff_pool *xsk_pool)
609{
610 u16 ntc = xdp_ring->next_to_clean;
611 struct ice_tx_desc *tx_desc;
612 u16 cnt = xdp_ring->count;
613 struct ice_tx_buf *tx_buf;
614 u16 completed_frames = 0;
615 u16 xsk_frames = 0;
616 u16 last_rs;
617 int i;
618
619 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
620 tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
621 if (tx_desc->cmd_type_offset_bsz &
622 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
623 if (last_rs >= ntc)
624 completed_frames = last_rs - ntc + 1;
625 else
626 completed_frames = last_rs + cnt - ntc + 1;
627 }
628
629 if (!completed_frames)
630 return 0;
631
632 if (likely(!xdp_ring->xdp_tx_active)) {
633 xsk_frames = completed_frames;
634 goto skip;
635 }
636
637 ntc = xdp_ring->next_to_clean;
638 for (i = 0; i < completed_frames; i++) {
639 tx_buf = &xdp_ring->tx_buf[ntc];
640
641 if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
642 tx_buf->type = ICE_TX_BUF_EMPTY;
643 xsk_buff_free(tx_buf->xdp);
644 xdp_ring->xdp_tx_active--;
645 } else {
646 xsk_frames++;
647 }
648
649 ntc++;
650 if (ntc >= xdp_ring->count)
651 ntc = 0;
652 }
653skip:
654 tx_desc->cmd_type_offset_bsz = 0;
655 xdp_ring->next_to_clean += completed_frames;
656 if (xdp_ring->next_to_clean >= cnt)
657 xdp_ring->next_to_clean -= cnt;
658 if (xsk_frames)
659 xsk_tx_completed(xsk_pool, xsk_frames);
660
661 return completed_frames;
662}
663
664/**
665 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
666 * @xdp: XDP buffer to xmit
667 * @xdp_ring: XDP ring to produce descriptor onto
668 * @xsk_pool: AF_XDP buffer pool pointer
669 *
670 * note that this function works directly on xdp_buff, no need to convert
671 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
672 * side will be able to xsk_buff_free() it.
673 *
674 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
675 * was not enough space on XDP ring
676 */
677static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
678 struct ice_tx_ring *xdp_ring,
679 struct xsk_buff_pool *xsk_pool)
680{
681 struct skb_shared_info *sinfo = NULL;
682 u32 size = xdp->data_end - xdp->data;
683 u32 ntu = xdp_ring->next_to_use;
684 struct ice_tx_desc *tx_desc;
685 struct ice_tx_buf *tx_buf;
686 struct xdp_buff *head;
687 u32 nr_frags = 0;
688 u32 free_space;
689 u32 frag = 0;
690
691 free_space = ICE_DESC_UNUSED(xdp_ring);
692 if (free_space < ICE_RING_QUARTER(xdp_ring))
693 free_space += ice_clean_xdp_irq_zc(xdp_ring, xsk_pool);
694
695 if (unlikely(!free_space))
696 goto busy;
697
698 if (unlikely(xdp_buff_has_frags(xdp))) {
699 sinfo = xdp_get_shared_info_from_buff(xdp);
700 nr_frags = sinfo->nr_frags;
701 if (free_space < nr_frags + 1)
702 goto busy;
703 }
704
705 tx_desc = ICE_TX_DESC(xdp_ring, ntu);
706 tx_buf = &xdp_ring->tx_buf[ntu];
707 head = xdp;
708
709 for (;;) {
710 dma_addr_t dma;
711
712 dma = xsk_buff_xdp_get_dma(xdp);
713 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, size);
714
715 tx_buf->xdp = xdp;
716 tx_buf->type = ICE_TX_BUF_XSK_TX;
717 tx_desc->buf_addr = cpu_to_le64(dma);
718 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
719 /* account for each xdp_buff from xsk_buff_pool */
720 xdp_ring->xdp_tx_active++;
721
722 if (++ntu == xdp_ring->count)
723 ntu = 0;
724
725 if (frag == nr_frags)
726 break;
727
728 tx_desc = ICE_TX_DESC(xdp_ring, ntu);
729 tx_buf = &xdp_ring->tx_buf[ntu];
730
731 xdp = xsk_buff_get_frag(head);
732 size = skb_frag_size(&sinfo->frags[frag]);
733 frag++;
734 }
735
736 xdp_ring->next_to_use = ntu;
737 /* update last descriptor from a frame with EOP */
738 tx_desc->cmd_type_offset_bsz |=
739 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
740
741 return ICE_XDP_TX;
742
743busy:
744 xdp_ring->ring_stats->tx_stats.tx_busy++;
745
746 return ICE_XDP_CONSUMED;
747}
748
749/**
750 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
751 * @rx_ring: Rx ring
752 * @xdp: xdp_buff used as input to the XDP program
753 * @xdp_prog: XDP program to run
754 * @xdp_ring: ring to be used for XDP_TX action
755 * @xsk_pool: AF_XDP buffer pool pointer
756 *
757 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
758 */
759static int
760ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
761 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
762 struct xsk_buff_pool *xsk_pool)
763{
764 int err, result = ICE_XDP_PASS;
765 u32 act;
766
767 act = bpf_prog_run_xdp(xdp_prog, xdp);
768
769 if (likely(act == XDP_REDIRECT)) {
770 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
771 if (!err)
772 return ICE_XDP_REDIR;
773 if (xsk_uses_need_wakeup(xsk_pool) && err == -ENOBUFS)
774 result = ICE_XDP_EXIT;
775 else
776 result = ICE_XDP_CONSUMED;
777 goto out_failure;
778 }
779
780 switch (act) {
781 case XDP_PASS:
782 break;
783 case XDP_TX:
784 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring, xsk_pool);
785 if (result == ICE_XDP_CONSUMED)
786 goto out_failure;
787 break;
788 case XDP_DROP:
789 result = ICE_XDP_CONSUMED;
790 break;
791 default:
792 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
793 fallthrough;
794 case XDP_ABORTED:
795 result = ICE_XDP_CONSUMED;
796out_failure:
797 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
798 break;
799 }
800
801 return result;
802}
803
804static int
805ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
806 struct xdp_buff *xdp, const unsigned int size)
807{
808 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
809
810 if (!size)
811 return 0;
812
813 if (!xdp_buff_has_frags(first)) {
814 sinfo->nr_frags = 0;
815 sinfo->xdp_frags_size = 0;
816 xdp_buff_set_frags_flag(first);
817 }
818
819 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
820 xsk_buff_free(first);
821 return -ENOMEM;
822 }
823
824 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
825 virt_to_page(xdp->data_hard_start),
826 XDP_PACKET_HEADROOM, size);
827 sinfo->xdp_frags_size += size;
828 xsk_buff_add_frag(xdp);
829
830 return 0;
831}
832
833/**
834 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
835 * @rx_ring: AF_XDP Rx ring
836 * @xsk_pool: AF_XDP buffer pool pointer
837 * @budget: NAPI budget
838 *
839 * Returns number of processed packets on success, remaining budget on failure.
840 */
841int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring,
842 struct xsk_buff_pool *xsk_pool,
843 int budget)
844{
845 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
846 u32 ntc = rx_ring->next_to_clean;
847 u32 ntu = rx_ring->next_to_use;
848 struct xdp_buff *first = NULL;
849 struct ice_tx_ring *xdp_ring;
850 unsigned int xdp_xmit = 0;
851 struct bpf_prog *xdp_prog;
852 u32 cnt = rx_ring->count;
853 bool failure = false;
854 int entries_to_alloc;
855
856 /* ZC patch is enabled only when XDP program is set,
857 * so here it can not be NULL
858 */
859 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
860 xdp_ring = rx_ring->xdp_ring;
861
862 if (ntc != rx_ring->first_desc)
863 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
864
865 while (likely(total_rx_packets < (unsigned int)budget)) {
866 union ice_32b_rx_flex_desc *rx_desc;
867 unsigned int size, xdp_res = 0;
868 struct xdp_buff *xdp;
869 struct sk_buff *skb;
870 u16 stat_err_bits;
871 u16 vlan_tci;
872
873 rx_desc = ICE_RX_DESC(rx_ring, ntc);
874
875 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
876 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
877 break;
878
879 /* This memory barrier is needed to keep us from reading
880 * any other fields out of the rx_desc until we have
881 * verified the descriptor has been written back.
882 */
883 dma_rmb();
884
885 if (unlikely(ntc == ntu))
886 break;
887
888 xdp = *ice_xdp_buf(rx_ring, ntc);
889
890 size = le16_to_cpu(rx_desc->wb.pkt_len) &
891 ICE_RX_FLX_DESC_PKT_LEN_M;
892
893 xsk_buff_set_size(xdp, size);
894 xsk_buff_dma_sync_for_cpu(xdp);
895
896 if (!first) {
897 first = xdp;
898 } else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
899 break;
900 }
901
902 if (++ntc == cnt)
903 ntc = 0;
904
905 if (ice_is_non_eop(rx_ring, rx_desc))
906 continue;
907
908 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring,
909 xsk_pool);
910 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
911 xdp_xmit |= xdp_res;
912 } else if (xdp_res == ICE_XDP_EXIT) {
913 failure = true;
914 first = NULL;
915 rx_ring->first_desc = ntc;
916 break;
917 } else if (xdp_res == ICE_XDP_CONSUMED) {
918 xsk_buff_free(first);
919 } else if (xdp_res == ICE_XDP_PASS) {
920 goto construct_skb;
921 }
922
923 total_rx_bytes += xdp_get_buff_len(first);
924 total_rx_packets++;
925
926 first = NULL;
927 rx_ring->first_desc = ntc;
928 continue;
929
930construct_skb:
931 /* XDP_PASS path */
932 skb = ice_construct_skb_zc(rx_ring, first);
933 if (!skb) {
934 rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
935 break;
936 }
937
938 first = NULL;
939 rx_ring->first_desc = ntc;
940
941 if (eth_skb_pad(skb)) {
942 skb = NULL;
943 continue;
944 }
945
946 total_rx_bytes += skb->len;
947 total_rx_packets++;
948
949 vlan_tci = ice_get_vlan_tci(rx_desc);
950
951 ice_process_skb_fields(rx_ring, rx_desc, skb);
952 ice_receive_skb(rx_ring, skb, vlan_tci);
953 }
954
955 rx_ring->next_to_clean = ntc;
956 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
957 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
958 failure |= !ice_alloc_rx_bufs_zc(rx_ring, xsk_pool,
959 entries_to_alloc);
960
961 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
962 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
963
964 if (xsk_uses_need_wakeup(xsk_pool)) {
965 /* ntu could have changed when allocating entries above, so
966 * use rx_ring value instead of stack based one
967 */
968 if (failure || ntc == rx_ring->next_to_use)
969 xsk_set_rx_need_wakeup(xsk_pool);
970 else
971 xsk_clear_rx_need_wakeup(xsk_pool);
972
973 return (int)total_rx_packets;
974 }
975
976 return failure ? budget : (int)total_rx_packets;
977}
978
979/**
980 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
981 * @xdp_ring: XDP ring to produce the HW Tx descriptor on
982 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW
983 * @desc: AF_XDP descriptor to pull the DMA address and length from
984 * @total_bytes: bytes accumulator that will be used for stats update
985 */
986static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring,
987 struct xsk_buff_pool *xsk_pool, struct xdp_desc *desc,
988 unsigned int *total_bytes)
989{
990 struct ice_tx_desc *tx_desc;
991 dma_addr_t dma;
992
993 dma = xsk_buff_raw_get_dma(xsk_pool, desc->addr);
994 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, desc->len);
995
996 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
997 tx_desc->buf_addr = cpu_to_le64(dma);
998 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
999 0, desc->len, 0);
1000
1001 *total_bytes += desc->len;
1002}
1003
1004/**
1005 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
1006 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1007 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW
1008 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1009 * @total_bytes: bytes accumulator that will be used for stats update
1010 */
1011static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring,
1012 struct xsk_buff_pool *xsk_pool,
1013 struct xdp_desc *descs,
1014 unsigned int *total_bytes)
1015{
1016 u16 ntu = xdp_ring->next_to_use;
1017 struct ice_tx_desc *tx_desc;
1018 u32 i;
1019
1020 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
1021 dma_addr_t dma;
1022
1023 dma = xsk_buff_raw_get_dma(xsk_pool, descs[i].addr);
1024 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, descs[i].len);
1025
1026 tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
1027 tx_desc->buf_addr = cpu_to_le64(dma);
1028 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
1029 0, descs[i].len, 0);
1030
1031 *total_bytes += descs[i].len;
1032 }
1033
1034 xdp_ring->next_to_use = ntu;
1035}
1036
1037/**
1038 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
1039 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1040 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW
1041 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1042 * @nb_pkts: count of packets to be send
1043 * @total_bytes: bytes accumulator that will be used for stats update
1044 */
1045static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring,
1046 struct xsk_buff_pool *xsk_pool,
1047 struct xdp_desc *descs, u32 nb_pkts,
1048 unsigned int *total_bytes)
1049{
1050 u32 batched, leftover, i;
1051
1052 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
1053 leftover = nb_pkts & (PKTS_PER_BATCH - 1);
1054 for (i = 0; i < batched; i += PKTS_PER_BATCH)
1055 ice_xmit_pkt_batch(xdp_ring, xsk_pool, &descs[i], total_bytes);
1056 for (; i < batched + leftover; i++)
1057 ice_xmit_pkt(xdp_ring, xsk_pool, &descs[i], total_bytes);
1058}
1059
1060/**
1061 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
1062 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1063 * @xsk_pool: AF_XDP buffer pool pointer
1064 *
1065 * Returns true if there is no more work that needs to be done, false otherwise
1066 */
1067bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, struct xsk_buff_pool *xsk_pool)
1068{
1069 struct xdp_desc *descs = xsk_pool->tx_descs;
1070 u32 nb_pkts, nb_processed = 0;
1071 unsigned int total_bytes = 0;
1072 int budget;
1073
1074 ice_clean_xdp_irq_zc(xdp_ring, xsk_pool);
1075
1076 if (!netif_carrier_ok(xdp_ring->vsi->netdev) ||
1077 !netif_running(xdp_ring->vsi->netdev))
1078 return true;
1079
1080 budget = ICE_DESC_UNUSED(xdp_ring);
1081 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
1082
1083 nb_pkts = xsk_tx_peek_release_desc_batch(xsk_pool, budget);
1084 if (!nb_pkts)
1085 return true;
1086
1087 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
1088 nb_processed = xdp_ring->count - xdp_ring->next_to_use;
1089 ice_fill_tx_hw_ring(xdp_ring, xsk_pool, descs, nb_processed,
1090 &total_bytes);
1091 xdp_ring->next_to_use = 0;
1092 }
1093
1094 ice_fill_tx_hw_ring(xdp_ring, xsk_pool, &descs[nb_processed],
1095 nb_pkts - nb_processed, &total_bytes);
1096
1097 ice_set_rs_bit(xdp_ring);
1098 ice_xdp_ring_update_tail(xdp_ring);
1099 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
1100
1101 if (xsk_uses_need_wakeup(xsk_pool))
1102 xsk_set_tx_need_wakeup(xsk_pool);
1103
1104 return nb_pkts < budget;
1105}
1106
1107/**
1108 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1109 * @netdev: net_device
1110 * @queue_id: queue to wake up
1111 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1112 *
1113 * Returns negative on error, zero otherwise.
1114 */
1115int
1116ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1117 u32 __always_unused flags)
1118{
1119 struct ice_netdev_priv *np = netdev_priv(netdev);
1120 struct ice_q_vector *q_vector;
1121 struct ice_vsi *vsi = np->vsi;
1122 struct ice_tx_ring *ring;
1123
1124 if (test_bit(ICE_VSI_DOWN, vsi->state) || !netif_carrier_ok(netdev))
1125 return -ENETDOWN;
1126
1127 if (!ice_is_xdp_ena_vsi(vsi))
1128 return -EINVAL;
1129
1130 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1131 return -EINVAL;
1132
1133 ring = vsi->rx_rings[queue_id]->xdp_ring;
1134
1135 if (!READ_ONCE(ring->xsk_pool))
1136 return -EINVAL;
1137
1138 /* The idea here is that if NAPI is running, mark a miss, so
1139 * it will run again. If not, trigger an interrupt and
1140 * schedule the NAPI from interrupt context. If NAPI would be
1141 * scheduled here, the interrupt affinity would not be
1142 * honored.
1143 */
1144 q_vector = ring->q_vector;
1145 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1146 ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1147
1148 return 0;
1149}
1150
1151/**
1152 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1153 * @vsi: VSI to be checked
1154 *
1155 * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1156 */
1157bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1158{
1159 int i;
1160
1161 ice_for_each_rxq(vsi, i) {
1162 if (xsk_get_pool_from_qid(vsi->netdev, i))
1163 return true;
1164 }
1165
1166 return false;
1167}
1168
1169/**
1170 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1171 * @rx_ring: ring to be cleaned
1172 */
1173void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1174{
1175 u16 ntc = rx_ring->next_to_clean;
1176 u16 ntu = rx_ring->next_to_use;
1177
1178 while (ntc != ntu) {
1179 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1180
1181 xsk_buff_free(xdp);
1182 ntc++;
1183 if (ntc >= rx_ring->count)
1184 ntc = 0;
1185 }
1186}
1187
1188/**
1189 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1190 * @xdp_ring: XDP_Tx ring
1191 */
1192void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1193{
1194 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1195 u32 xsk_frames = 0;
1196
1197 while (ntc != ntu) {
1198 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1199
1200 if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
1201 tx_buf->type = ICE_TX_BUF_EMPTY;
1202 xsk_buff_free(tx_buf->xdp);
1203 } else {
1204 xsk_frames++;
1205 }
1206
1207 ntc++;
1208 if (ntc >= xdp_ring->count)
1209 ntc = 0;
1210 }
1211
1212 if (xsk_frames)
1213 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1214}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019, Intel Corporation. */
3
4#include <linux/bpf_trace.h>
5#include <net/xdp_sock_drv.h>
6#include <net/xdp.h>
7#include "ice.h"
8#include "ice_base.h"
9#include "ice_type.h"
10#include "ice_xsk.h"
11#include "ice_txrx.h"
12#include "ice_txrx_lib.h"
13#include "ice_lib.h"
14
15static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16{
17 return &rx_ring->xdp_buf[idx];
18}
19
20/**
21 * ice_qp_reset_stats - Resets all stats for rings of given index
22 * @vsi: VSI that contains rings of interest
23 * @q_idx: ring index in array
24 */
25static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26{
27 struct ice_vsi_stats *vsi_stat;
28 struct ice_pf *pf;
29
30 pf = vsi->back;
31 if (!pf->vsi_stats)
32 return;
33
34 vsi_stat = pf->vsi_stats[vsi->idx];
35 if (!vsi_stat)
36 return;
37
38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42 if (ice_is_xdp_ena_vsi(vsi))
43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45}
46
47/**
48 * ice_qp_clean_rings - Cleans all the rings of a given index
49 * @vsi: VSI that contains rings of interest
50 * @q_idx: ring index in array
51 */
52static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53{
54 ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55 if (ice_is_xdp_ena_vsi(vsi)) {
56 synchronize_rcu();
57 ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
58 }
59 ice_clean_rx_ring(vsi->rx_rings[q_idx]);
60}
61
62/**
63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
64 * @vsi: VSI that has netdev
65 * @q_vector: q_vector that has NAPI context
66 * @enable: true for enable, false for disable
67 */
68static void
69ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
70 bool enable)
71{
72 if (!vsi->netdev || !q_vector)
73 return;
74
75 if (enable)
76 napi_enable(&q_vector->napi);
77 else
78 napi_disable(&q_vector->napi);
79}
80
81/**
82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
83 * @vsi: the VSI that contains queue vector being un-configured
84 * @rx_ring: Rx ring that will have its IRQ disabled
85 * @q_vector: queue vector
86 */
87static void
88ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
89 struct ice_q_vector *q_vector)
90{
91 struct ice_pf *pf = vsi->back;
92 struct ice_hw *hw = &pf->hw;
93 int base = vsi->base_vector;
94 u16 reg;
95 u32 val;
96
97 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
98 * here only QINT_RQCTL
99 */
100 reg = rx_ring->reg_idx;
101 val = rd32(hw, QINT_RQCTL(reg));
102 val &= ~QINT_RQCTL_CAUSE_ENA_M;
103 wr32(hw, QINT_RQCTL(reg), val);
104
105 if (q_vector) {
106 u16 v_idx = q_vector->v_idx;
107
108 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
109 ice_flush(hw);
110 synchronize_irq(pf->msix_entries[v_idx + base].vector);
111 }
112}
113
114/**
115 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
116 * @vsi: the VSI that contains queue vector
117 * @q_vector: queue vector
118 */
119static void
120ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
121{
122 u16 reg_idx = q_vector->reg_idx;
123 struct ice_pf *pf = vsi->back;
124 struct ice_hw *hw = &pf->hw;
125 struct ice_tx_ring *tx_ring;
126 struct ice_rx_ring *rx_ring;
127
128 ice_cfg_itr(hw, q_vector);
129
130 ice_for_each_tx_ring(tx_ring, q_vector->tx)
131 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
132 q_vector->tx.itr_idx);
133
134 ice_for_each_rx_ring(rx_ring, q_vector->rx)
135 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
136 q_vector->rx.itr_idx);
137
138 ice_flush(hw);
139}
140
141/**
142 * ice_qvec_ena_irq - Enable IRQ for given queue vector
143 * @vsi: the VSI that contains queue vector
144 * @q_vector: queue vector
145 */
146static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
147{
148 struct ice_pf *pf = vsi->back;
149 struct ice_hw *hw = &pf->hw;
150
151 ice_irq_dynamic_ena(hw, vsi, q_vector);
152
153 ice_flush(hw);
154}
155
156/**
157 * ice_qp_dis - Disables a queue pair
158 * @vsi: VSI of interest
159 * @q_idx: ring index in array
160 *
161 * Returns 0 on success, negative on failure.
162 */
163static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
164{
165 struct ice_txq_meta txq_meta = { };
166 struct ice_q_vector *q_vector;
167 struct ice_tx_ring *tx_ring;
168 struct ice_rx_ring *rx_ring;
169 int timeout = 50;
170 int err;
171
172 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
173 return -EINVAL;
174
175 tx_ring = vsi->tx_rings[q_idx];
176 rx_ring = vsi->rx_rings[q_idx];
177 q_vector = rx_ring->q_vector;
178
179 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
180 timeout--;
181 if (!timeout)
182 return -EBUSY;
183 usleep_range(1000, 2000);
184 }
185 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
186
187 ice_qvec_dis_irq(vsi, rx_ring, q_vector);
188
189 ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
190 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
191 if (err)
192 return err;
193 if (ice_is_xdp_ena_vsi(vsi)) {
194 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
195
196 memset(&txq_meta, 0, sizeof(txq_meta));
197 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
198 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
199 &txq_meta);
200 if (err)
201 return err;
202 }
203 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
204 if (err)
205 return err;
206 ice_clean_rx_ring(rx_ring);
207
208 ice_qvec_toggle_napi(vsi, q_vector, false);
209 ice_qp_clean_rings(vsi, q_idx);
210 ice_qp_reset_stats(vsi, q_idx);
211
212 return 0;
213}
214
215/**
216 * ice_qp_ena - Enables a queue pair
217 * @vsi: VSI of interest
218 * @q_idx: ring index in array
219 *
220 * Returns 0 on success, negative on failure.
221 */
222static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
223{
224 struct ice_aqc_add_tx_qgrp *qg_buf;
225 struct ice_q_vector *q_vector;
226 struct ice_tx_ring *tx_ring;
227 struct ice_rx_ring *rx_ring;
228 u16 size;
229 int err;
230
231 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
232 return -EINVAL;
233
234 size = struct_size(qg_buf, txqs, 1);
235 qg_buf = kzalloc(size, GFP_KERNEL);
236 if (!qg_buf)
237 return -ENOMEM;
238
239 qg_buf->num_txqs = 1;
240
241 tx_ring = vsi->tx_rings[q_idx];
242 rx_ring = vsi->rx_rings[q_idx];
243 q_vector = rx_ring->q_vector;
244
245 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
246 if (err)
247 goto free_buf;
248
249 if (ice_is_xdp_ena_vsi(vsi)) {
250 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
251
252 memset(qg_buf, 0, size);
253 qg_buf->num_txqs = 1;
254 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
255 if (err)
256 goto free_buf;
257 ice_set_ring_xdp(xdp_ring);
258 ice_tx_xsk_pool(vsi, q_idx);
259 }
260
261 err = ice_vsi_cfg_rxq(rx_ring);
262 if (err)
263 goto free_buf;
264
265 ice_qvec_cfg_msix(vsi, q_vector);
266
267 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
268 if (err)
269 goto free_buf;
270
271 clear_bit(ICE_CFG_BUSY, vsi->state);
272 ice_qvec_toggle_napi(vsi, q_vector, true);
273 ice_qvec_ena_irq(vsi, q_vector);
274
275 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
276free_buf:
277 kfree(qg_buf);
278 return err;
279}
280
281/**
282 * ice_xsk_pool_disable - disable a buffer pool region
283 * @vsi: Current VSI
284 * @qid: queue ID
285 *
286 * Returns 0 on success, negative on failure
287 */
288static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
289{
290 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
291
292 if (!pool)
293 return -EINVAL;
294
295 clear_bit(qid, vsi->af_xdp_zc_qps);
296 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
297
298 return 0;
299}
300
301/**
302 * ice_xsk_pool_enable - enable a buffer pool region
303 * @vsi: Current VSI
304 * @pool: pointer to a requested buffer pool region
305 * @qid: queue ID
306 *
307 * Returns 0 on success, negative on failure
308 */
309static int
310ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
311{
312 int err;
313
314 if (vsi->type != ICE_VSI_PF)
315 return -EINVAL;
316
317 if (qid >= vsi->netdev->real_num_rx_queues ||
318 qid >= vsi->netdev->real_num_tx_queues)
319 return -EINVAL;
320
321 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
322 ICE_RX_DMA_ATTR);
323 if (err)
324 return err;
325
326 set_bit(qid, vsi->af_xdp_zc_qps);
327
328 return 0;
329}
330
331/**
332 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
333 * @rx_ring: Rx ring
334 * @pool_present: is pool for XSK present
335 *
336 * Try allocating memory and return ENOMEM, if failed to allocate.
337 * If allocation was successful, substitute buffer with allocated one.
338 * Returns 0 on success, negative on failure
339 */
340static int
341ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
342{
343 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
344 sizeof(*rx_ring->rx_buf);
345 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
346
347 if (!sw_ring)
348 return -ENOMEM;
349
350 if (pool_present) {
351 kfree(rx_ring->rx_buf);
352 rx_ring->rx_buf = NULL;
353 rx_ring->xdp_buf = sw_ring;
354 } else {
355 kfree(rx_ring->xdp_buf);
356 rx_ring->xdp_buf = NULL;
357 rx_ring->rx_buf = sw_ring;
358 }
359
360 return 0;
361}
362
363/**
364 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
365 * @vsi: Current VSI
366 * @zc: is zero copy set
367 *
368 * Reallocate buffer for rx_rings that might be used by XSK.
369 * XDP requires more memory, than rx_buf provides.
370 * Returns 0 on success, negative on failure
371 */
372int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
373{
374 struct ice_rx_ring *rx_ring;
375 unsigned long q;
376
377 for_each_set_bit(q, vsi->af_xdp_zc_qps,
378 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) {
379 rx_ring = vsi->rx_rings[q];
380 if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
381 return -ENOMEM;
382 }
383
384 return 0;
385}
386
387/**
388 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
389 * @vsi: Current VSI
390 * @pool: buffer pool to enable/associate to a ring, NULL to disable
391 * @qid: queue ID
392 *
393 * Returns 0 on success, negative on failure
394 */
395int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
396{
397 bool if_running, pool_present = !!pool;
398 int ret = 0, pool_failure = 0;
399
400 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
401 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
402 pool_failure = -EINVAL;
403 goto failure;
404 }
405
406 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
407
408 if (if_running) {
409 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
410
411 ret = ice_qp_dis(vsi, qid);
412 if (ret) {
413 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
414 goto xsk_pool_if_up;
415 }
416
417 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
418 if (ret)
419 goto xsk_pool_if_up;
420 }
421
422 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
423 ice_xsk_pool_disable(vsi, qid);
424
425xsk_pool_if_up:
426 if (if_running) {
427 ret = ice_qp_ena(vsi, qid);
428 if (!ret && pool_present)
429 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
430 else if (ret)
431 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
432 }
433
434failure:
435 if (pool_failure) {
436 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
437 pool_present ? "en" : "dis", pool_failure);
438 return pool_failure;
439 }
440
441 return ret;
442}
443
444/**
445 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
446 * @pool: XSK Buffer pool to pull the buffers from
447 * @xdp: SW ring of xdp_buff that will hold the buffers
448 * @rx_desc: Pointer to Rx descriptors that will be filled
449 * @count: The number of buffers to allocate
450 *
451 * This function allocates a number of Rx buffers from the fill ring
452 * or the internal recycle mechanism and places them on the Rx ring.
453 *
454 * Note that ring wrap should be handled by caller of this function.
455 *
456 * Returns the amount of allocated Rx descriptors
457 */
458static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
459 union ice_32b_rx_flex_desc *rx_desc, u16 count)
460{
461 dma_addr_t dma;
462 u16 buffs;
463 int i;
464
465 buffs = xsk_buff_alloc_batch(pool, xdp, count);
466 for (i = 0; i < buffs; i++) {
467 dma = xsk_buff_xdp_get_dma(*xdp);
468 rx_desc->read.pkt_addr = cpu_to_le64(dma);
469 rx_desc->wb.status_error0 = 0;
470
471 rx_desc++;
472 xdp++;
473 }
474
475 return buffs;
476}
477
478/**
479 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
480 * @rx_ring: Rx ring
481 * @count: The number of buffers to allocate
482 *
483 * Place the @count of descriptors onto Rx ring. Handle the ring wrap
484 * for case where space from next_to_use up to the end of ring is less
485 * than @count. Finally do a tail bump.
486 *
487 * Returns true if all allocations were successful, false if any fail.
488 */
489static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
490{
491 u32 nb_buffs_extra = 0, nb_buffs = 0;
492 union ice_32b_rx_flex_desc *rx_desc;
493 u16 ntu = rx_ring->next_to_use;
494 u16 total_count = count;
495 struct xdp_buff **xdp;
496
497 rx_desc = ICE_RX_DESC(rx_ring, ntu);
498 xdp = ice_xdp_buf(rx_ring, ntu);
499
500 if (ntu + count >= rx_ring->count) {
501 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
502 rx_desc,
503 rx_ring->count - ntu);
504 if (nb_buffs_extra != rx_ring->count - ntu) {
505 ntu += nb_buffs_extra;
506 goto exit;
507 }
508 rx_desc = ICE_RX_DESC(rx_ring, 0);
509 xdp = ice_xdp_buf(rx_ring, 0);
510 ntu = 0;
511 count -= nb_buffs_extra;
512 ice_release_rx_desc(rx_ring, 0);
513 }
514
515 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
516
517 ntu += nb_buffs;
518 if (ntu == rx_ring->count)
519 ntu = 0;
520
521exit:
522 if (rx_ring->next_to_use != ntu)
523 ice_release_rx_desc(rx_ring, ntu);
524
525 return total_count == (nb_buffs_extra + nb_buffs);
526}
527
528/**
529 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
530 * @rx_ring: Rx ring
531 * @count: The number of buffers to allocate
532 *
533 * Wrapper for internal allocation routine; figure out how many tail
534 * bumps should take place based on the given threshold
535 *
536 * Returns true if all calls to internal alloc routine succeeded
537 */
538bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
539{
540 u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
541 u16 leftover, i, tail_bumps;
542
543 tail_bumps = count / rx_thresh;
544 leftover = count - (tail_bumps * rx_thresh);
545
546 for (i = 0; i < tail_bumps; i++)
547 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
548 return false;
549 return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
550}
551
552/**
553 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
554 * @rx_ring: Rx ring
555 */
556static void ice_bump_ntc(struct ice_rx_ring *rx_ring)
557{
558 int ntc = rx_ring->next_to_clean + 1;
559
560 ntc = (ntc < rx_ring->count) ? ntc : 0;
561 rx_ring->next_to_clean = ntc;
562 prefetch(ICE_RX_DESC(rx_ring, ntc));
563}
564
565/**
566 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
567 * @rx_ring: Rx ring
568 * @xdp: Pointer to XDP buffer
569 *
570 * This function allocates a new skb from a zero-copy Rx buffer.
571 *
572 * Returns the skb on success, NULL on failure.
573 */
574static struct sk_buff *
575ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
576{
577 unsigned int totalsize = xdp->data_end - xdp->data_meta;
578 unsigned int metasize = xdp->data - xdp->data_meta;
579 struct sk_buff *skb;
580
581 net_prefetch(xdp->data_meta);
582
583 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
584 GFP_ATOMIC | __GFP_NOWARN);
585 if (unlikely(!skb))
586 return NULL;
587
588 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
589 ALIGN(totalsize, sizeof(long)));
590
591 if (metasize) {
592 skb_metadata_set(skb, metasize);
593 __skb_pull(skb, metasize);
594 }
595
596 xsk_buff_free(xdp);
597 return skb;
598}
599
600/**
601 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
602 * @rx_ring: Rx ring
603 * @xdp: xdp_buff used as input to the XDP program
604 * @xdp_prog: XDP program to run
605 * @xdp_ring: ring to be used for XDP_TX action
606 *
607 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
608 */
609static int
610ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
611 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
612{
613 int err, result = ICE_XDP_PASS;
614 u32 act;
615
616 act = bpf_prog_run_xdp(xdp_prog, xdp);
617
618 if (likely(act == XDP_REDIRECT)) {
619 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
620 if (!err)
621 return ICE_XDP_REDIR;
622 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
623 result = ICE_XDP_EXIT;
624 else
625 result = ICE_XDP_CONSUMED;
626 goto out_failure;
627 }
628
629 switch (act) {
630 case XDP_PASS:
631 break;
632 case XDP_TX:
633 result = ice_xmit_xdp_buff(xdp, xdp_ring);
634 if (result == ICE_XDP_CONSUMED)
635 goto out_failure;
636 break;
637 case XDP_DROP:
638 result = ICE_XDP_CONSUMED;
639 break;
640 default:
641 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
642 fallthrough;
643 case XDP_ABORTED:
644 result = ICE_XDP_CONSUMED;
645out_failure:
646 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
647 break;
648 }
649
650 return result;
651}
652
653/**
654 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
655 * @rx_ring: AF_XDP Rx ring
656 * @budget: NAPI budget
657 *
658 * Returns number of processed packets on success, remaining budget on failure.
659 */
660int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
661{
662 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
663 struct ice_tx_ring *xdp_ring;
664 unsigned int xdp_xmit = 0;
665 struct bpf_prog *xdp_prog;
666 bool failure = false;
667 int entries_to_alloc;
668
669 /* ZC patch is enabled only when XDP program is set,
670 * so here it can not be NULL
671 */
672 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
673 xdp_ring = rx_ring->xdp_ring;
674
675 while (likely(total_rx_packets < (unsigned int)budget)) {
676 union ice_32b_rx_flex_desc *rx_desc;
677 unsigned int size, xdp_res = 0;
678 struct xdp_buff *xdp;
679 struct sk_buff *skb;
680 u16 stat_err_bits;
681 u16 vlan_tag = 0;
682 u16 rx_ptype;
683
684 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
685
686 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
687 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
688 break;
689
690 /* This memory barrier is needed to keep us from reading
691 * any other fields out of the rx_desc until we have
692 * verified the descriptor has been written back.
693 */
694 dma_rmb();
695
696 if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use))
697 break;
698
699 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean);
700
701 size = le16_to_cpu(rx_desc->wb.pkt_len) &
702 ICE_RX_FLX_DESC_PKT_LEN_M;
703 if (!size) {
704 xdp->data = NULL;
705 xdp->data_end = NULL;
706 xdp->data_hard_start = NULL;
707 xdp->data_meta = NULL;
708 goto construct_skb;
709 }
710
711 xsk_buff_set_size(xdp, size);
712 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool);
713
714 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring);
715 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
716 xdp_xmit |= xdp_res;
717 } else if (xdp_res == ICE_XDP_EXIT) {
718 failure = true;
719 break;
720 } else if (xdp_res == ICE_XDP_CONSUMED) {
721 xsk_buff_free(xdp);
722 } else if (xdp_res == ICE_XDP_PASS) {
723 goto construct_skb;
724 }
725
726 total_rx_bytes += size;
727 total_rx_packets++;
728
729 ice_bump_ntc(rx_ring);
730 continue;
731
732construct_skb:
733 /* XDP_PASS path */
734 skb = ice_construct_skb_zc(rx_ring, xdp);
735 if (!skb) {
736 rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
737 break;
738 }
739
740 ice_bump_ntc(rx_ring);
741
742 if (eth_skb_pad(skb)) {
743 skb = NULL;
744 continue;
745 }
746
747 total_rx_bytes += skb->len;
748 total_rx_packets++;
749
750 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
751
752 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
753 ICE_RX_FLEX_DESC_PTYPE_M;
754
755 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
756 ice_receive_skb(rx_ring, skb, vlan_tag);
757 }
758
759 entries_to_alloc = ICE_DESC_UNUSED(rx_ring);
760 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
761 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
762
763 ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
764 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
765
766 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
767 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
768 xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
769 else
770 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
771
772 return (int)total_rx_packets;
773 }
774
775 return failure ? budget : (int)total_rx_packets;
776}
777
778/**
779 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
780 * @xdp_ring: XDP Tx ring
781 * @tx_buf: Tx buffer to clean
782 */
783static void
784ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf)
785{
786 page_frag_free(tx_buf->raw_buf);
787 xdp_ring->xdp_tx_active--;
788 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
789 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
790 dma_unmap_len_set(tx_buf, len, 0);
791}
792
793/**
794 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
795 * @xdp_ring: XDP Tx ring
796 */
797static void ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)
798{
799 u16 ntc = xdp_ring->next_to_clean;
800 struct ice_tx_desc *tx_desc;
801 u16 cnt = xdp_ring->count;
802 struct ice_tx_buf *tx_buf;
803 u16 completed_frames = 0;
804 u16 xsk_frames = 0;
805 u16 last_rs;
806 int i;
807
808 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
809 tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
810 if ((tx_desc->cmd_type_offset_bsz &
811 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
812 if (last_rs >= ntc)
813 completed_frames = last_rs - ntc + 1;
814 else
815 completed_frames = last_rs + cnt - ntc + 1;
816 }
817
818 if (!completed_frames)
819 return;
820
821 if (likely(!xdp_ring->xdp_tx_active)) {
822 xsk_frames = completed_frames;
823 goto skip;
824 }
825
826 ntc = xdp_ring->next_to_clean;
827 for (i = 0; i < completed_frames; i++) {
828 tx_buf = &xdp_ring->tx_buf[ntc];
829
830 if (tx_buf->raw_buf) {
831 ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
832 tx_buf->raw_buf = NULL;
833 } else {
834 xsk_frames++;
835 }
836
837 ntc++;
838 if (ntc >= xdp_ring->count)
839 ntc = 0;
840 }
841skip:
842 tx_desc->cmd_type_offset_bsz = 0;
843 xdp_ring->next_to_clean += completed_frames;
844 if (xdp_ring->next_to_clean >= cnt)
845 xdp_ring->next_to_clean -= cnt;
846 if (xsk_frames)
847 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
848}
849
850/**
851 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
852 * @xdp_ring: XDP ring to produce the HW Tx descriptor on
853 * @desc: AF_XDP descriptor to pull the DMA address and length from
854 * @total_bytes: bytes accumulator that will be used for stats update
855 */
856static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
857 unsigned int *total_bytes)
858{
859 struct ice_tx_desc *tx_desc;
860 dma_addr_t dma;
861
862 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
863 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
864
865 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
866 tx_desc->buf_addr = cpu_to_le64(dma);
867 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP,
868 0, desc->len, 0);
869
870 *total_bytes += desc->len;
871}
872
873/**
874 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
875 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
876 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
877 * @total_bytes: bytes accumulator that will be used for stats update
878 */
879static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
880 unsigned int *total_bytes)
881{
882 u16 ntu = xdp_ring->next_to_use;
883 struct ice_tx_desc *tx_desc;
884 u32 i;
885
886 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
887 dma_addr_t dma;
888
889 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
890 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
891
892 tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
893 tx_desc->buf_addr = cpu_to_le64(dma);
894 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP,
895 0, descs[i].len, 0);
896
897 *total_bytes += descs[i].len;
898 }
899
900 xdp_ring->next_to_use = ntu;
901}
902
903/**
904 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
905 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
906 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
907 * @nb_pkts: count of packets to be send
908 * @total_bytes: bytes accumulator that will be used for stats update
909 */
910static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
911 u32 nb_pkts, unsigned int *total_bytes)
912{
913 u32 batched, leftover, i;
914
915 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
916 leftover = nb_pkts & (PKTS_PER_BATCH - 1);
917 for (i = 0; i < batched; i += PKTS_PER_BATCH)
918 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
919 for (; i < batched + leftover; i++)
920 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
921}
922
923/**
924 * ice_set_rs_bit - set RS bit on last produced descriptor (one behind current NTU)
925 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
926 */
927static void ice_set_rs_bit(struct ice_tx_ring *xdp_ring)
928{
929 u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1;
930 struct ice_tx_desc *tx_desc;
931
932 tx_desc = ICE_TX_DESC(xdp_ring, ntu);
933 tx_desc->cmd_type_offset_bsz |=
934 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
935}
936
937/**
938 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
939 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
940 *
941 * Returns true if there is no more work that needs to be done, false otherwise
942 */
943bool ice_xmit_zc(struct ice_tx_ring *xdp_ring)
944{
945 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
946 u32 nb_pkts, nb_processed = 0;
947 unsigned int total_bytes = 0;
948 int budget;
949
950 ice_clean_xdp_irq_zc(xdp_ring);
951
952 budget = ICE_DESC_UNUSED(xdp_ring);
953 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
954
955 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
956 if (!nb_pkts)
957 return true;
958
959 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
960 nb_processed = xdp_ring->count - xdp_ring->next_to_use;
961 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
962 xdp_ring->next_to_use = 0;
963 }
964
965 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
966 &total_bytes);
967
968 ice_set_rs_bit(xdp_ring);
969 ice_xdp_ring_update_tail(xdp_ring);
970 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
971
972 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
973 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
974
975 return nb_pkts < budget;
976}
977
978/**
979 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
980 * @netdev: net_device
981 * @queue_id: queue to wake up
982 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
983 *
984 * Returns negative on error, zero otherwise.
985 */
986int
987ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
988 u32 __always_unused flags)
989{
990 struct ice_netdev_priv *np = netdev_priv(netdev);
991 struct ice_q_vector *q_vector;
992 struct ice_vsi *vsi = np->vsi;
993 struct ice_tx_ring *ring;
994
995 if (test_bit(ICE_VSI_DOWN, vsi->state))
996 return -ENETDOWN;
997
998 if (!ice_is_xdp_ena_vsi(vsi))
999 return -EINVAL;
1000
1001 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1002 return -EINVAL;
1003
1004 ring = vsi->rx_rings[queue_id]->xdp_ring;
1005
1006 if (!ring->xsk_pool)
1007 return -EINVAL;
1008
1009 /* The idea here is that if NAPI is running, mark a miss, so
1010 * it will run again. If not, trigger an interrupt and
1011 * schedule the NAPI from interrupt context. If NAPI would be
1012 * scheduled here, the interrupt affinity would not be
1013 * honored.
1014 */
1015 q_vector = ring->q_vector;
1016 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1017 ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1018
1019 return 0;
1020}
1021
1022/**
1023 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1024 * @vsi: VSI to be checked
1025 *
1026 * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1027 */
1028bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1029{
1030 int i;
1031
1032 ice_for_each_rxq(vsi, i) {
1033 if (xsk_get_pool_from_qid(vsi->netdev, i))
1034 return true;
1035 }
1036
1037 return false;
1038}
1039
1040/**
1041 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1042 * @rx_ring: ring to be cleaned
1043 */
1044void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1045{
1046 u16 ntc = rx_ring->next_to_clean;
1047 u16 ntu = rx_ring->next_to_use;
1048
1049 while (ntc != ntu) {
1050 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1051
1052 xsk_buff_free(xdp);
1053 ntc++;
1054 if (ntc >= rx_ring->count)
1055 ntc = 0;
1056 }
1057}
1058
1059/**
1060 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1061 * @xdp_ring: XDP_Tx ring
1062 */
1063void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1064{
1065 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1066 u32 xsk_frames = 0;
1067
1068 while (ntc != ntu) {
1069 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1070
1071 if (tx_buf->raw_buf)
1072 ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
1073 else
1074 xsk_frames++;
1075
1076 tx_buf->raw_buf = NULL;
1077
1078 ntc++;
1079 if (ntc >= xdp_ring->count)
1080 ntc = 0;
1081 }
1082
1083 if (xsk_frames)
1084 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1085}