Linux Audio

Check our new training course

Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/* Copyright (c) 2018, Intel Corporation. */
  3
  4#ifndef _ICE_TXRX_H_
  5#define _ICE_TXRX_H_
  6
  7#include "ice_type.h"
  8
  9#define ICE_DFLT_IRQ_WORK	256
 10#define ICE_RXBUF_3072		3072
 11#define ICE_RXBUF_2048		2048
 12#define ICE_RXBUF_1664		1664
 13#define ICE_RXBUF_1536		1536
 14#define ICE_MAX_CHAINED_RX_BUFS	5
 15#define ICE_MAX_BUF_TXD		8
 16#define ICE_MIN_TX_LEN		17
 17#define ICE_MAX_FRAME_LEGACY_RX 8320
 18
 19/* The size limit for a transmit buffer in a descriptor is (16K - 1).
 20 * In order to align with the read requests we will align the value to
 21 * the nearest 4K which represents our maximum read request size.
 22 */
 23#define ICE_MAX_READ_REQ_SIZE	4096
 24#define ICE_MAX_DATA_PER_TXD	(16 * 1024 - 1)
 25#define ICE_MAX_DATA_PER_TXD_ALIGNED \
 26	(~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD)
 27
 28#define ICE_MAX_TXQ_PER_TXQG	128
 29
 30/* Attempt to maximize the headroom available for incoming frames. We use a 2K
 31 * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame.
 32 * This leaves us with 512 bytes of room.  From that we need to deduct the
 33 * space needed for the shared info and the padding needed to IP align the
 34 * frame.
 35 *
 36 * Note: For cache line sizes 256 or larger this value is going to end
 37 *	 up negative.  In these cases we should fall back to the legacy
 38 *	 receive path.
 39 */
 40#if (PAGE_SIZE < 8192)
 41#define ICE_2K_TOO_SMALL_WITH_PADDING \
 42	((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \
 43			SKB_WITH_OVERHEAD(ICE_RXBUF_2048))
 44
 45/**
 46 * ice_compute_pad - compute the padding
 47 * @rx_buf_len: buffer length
 48 *
 49 * Figure out the size of half page based on given buffer length and
 50 * then subtract the skb_shared_info followed by subtraction of the
 51 * actual buffer length; this in turn results in the actual space that
 52 * is left for padding usage
 53 */
 54static inline int ice_compute_pad(int rx_buf_len)
 55{
 56	int half_page_size;
 57
 58	half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
 59	return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len;
 60}
 61
 62/**
 63 * ice_skb_pad - determine the padding that we can supply
 64 *
 65 * Figure out the right Rx buffer size and based on that calculate the
 66 * padding
 67 */
 68static inline int ice_skb_pad(void)
 69{
 70	int rx_buf_len;
 71
 72	/* If a 2K buffer cannot handle a standard Ethernet frame then
 73	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
 74	 *
 75	 * For a 3K buffer we need to add enough padding to allow for
 76	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
 77	 * cache-line alignment.
 78	 */
 79	if (ICE_2K_TOO_SMALL_WITH_PADDING)
 80		rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
 81	else
 82		rx_buf_len = ICE_RXBUF_1536;
 83
 84	/* if needed make room for NET_IP_ALIGN */
 85	rx_buf_len -= NET_IP_ALIGN;
 86
 87	return ice_compute_pad(rx_buf_len);
 88}
 89
 90#define ICE_SKB_PAD ice_skb_pad()
 91#else
 92#define ICE_2K_TOO_SMALL_WITH_PADDING false
 93#define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
 94#endif
 95
 96/* We are assuming that the cache line is always 64 Bytes here for ice.
 97 * In order to make sure that is a correct assumption there is a check in probe
 98 * to print a warning if the read from GLPCI_CNF2 tells us that the cache line
 99 * size is 128 bytes. We do it this way because we do not want to read the
100 * GLPCI_CNF2 register or a variable containing the value on every pass through
101 * the Tx path.
102 */
103#define ICE_CACHE_LINE_BYTES		64
104#define ICE_DESCS_PER_CACHE_LINE	(ICE_CACHE_LINE_BYTES / \
105					 sizeof(struct ice_tx_desc))
106#define ICE_DESCS_FOR_CTX_DESC		1
107#define ICE_DESCS_FOR_SKB_DATA_PTR	1
108/* Tx descriptors needed, worst case */
109#define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \
110		     ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR)
111#define ICE_DESC_UNUSED(R)	\
112	(u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
113	      (R)->next_to_clean - (R)->next_to_use - 1)
114
115#define ICE_RX_DESC_UNUSED(R)	\
116	((((R)->first_desc > (R)->next_to_use) ? 0 : (R)->count) + \
117	      (R)->first_desc - (R)->next_to_use - 1)
118
119#define ICE_RING_QUARTER(R) ((R)->count >> 2)
120
121#define ICE_TX_FLAGS_TSO	BIT(0)
122#define ICE_TX_FLAGS_HW_VLAN	BIT(1)
123#define ICE_TX_FLAGS_SW_VLAN	BIT(2)
124/* Free, was ICE_TX_FLAGS_DUMMY_PKT */
 
 
 
125#define ICE_TX_FLAGS_TSYN	BIT(4)
126#define ICE_TX_FLAGS_IPV4	BIT(5)
127#define ICE_TX_FLAGS_IPV6	BIT(6)
128#define ICE_TX_FLAGS_TUNNEL	BIT(7)
129#define ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN	BIT(8)
 
 
 
 
130
131#define ICE_XDP_PASS		0
132#define ICE_XDP_CONSUMED	BIT(0)
133#define ICE_XDP_TX		BIT(1)
134#define ICE_XDP_REDIR		BIT(2)
135#define ICE_XDP_EXIT		BIT(3)
136#define ICE_SKB_CONSUMED	ICE_XDP_CONSUMED
137
138#define ICE_RX_DMA_ATTR \
139	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
140
141#define ICE_ETH_PKT_HDR_PAD	(ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
142
143#define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS)
144
145/**
146 * enum ice_tx_buf_type - type of &ice_tx_buf to act on Tx completion
147 * @ICE_TX_BUF_EMPTY: unused OR XSk frame, no action required
148 * @ICE_TX_BUF_DUMMY: dummy Flow Director packet, unmap and kfree()
149 * @ICE_TX_BUF_FRAG: mapped skb OR &xdp_buff frag, only unmap DMA
150 * @ICE_TX_BUF_SKB: &sk_buff, unmap and consume_skb(), update stats
151 * @ICE_TX_BUF_XDP_TX: &xdp_buff, unmap and page_frag_free(), stats
152 * @ICE_TX_BUF_XDP_XMIT: &xdp_frame, unmap and xdp_return_frame(), stats
153 * @ICE_TX_BUF_XSK_TX: &xdp_buff on XSk queue, xsk_buff_free(), stats
154 */
155enum ice_tx_buf_type {
156	ICE_TX_BUF_EMPTY	= 0U,
157	ICE_TX_BUF_DUMMY,
158	ICE_TX_BUF_FRAG,
159	ICE_TX_BUF_SKB,
160	ICE_TX_BUF_XDP_TX,
161	ICE_TX_BUF_XDP_XMIT,
162	ICE_TX_BUF_XSK_TX,
163};
164
165struct ice_tx_buf {
 
166	union {
167		struct ice_tx_desc *next_to_watch;
168		u32 rs_idx;
169	};
170	union {
171		void *raw_buf;		/* used for XDP_TX and FDir rules */
172		struct sk_buff *skb;	/* used for .ndo_start_xmit() */
173		struct xdp_frame *xdpf;	/* used for .ndo_xdp_xmit() */
174		struct xdp_buff *xdp;	/* used for XDP_TX ZC */
175	};
176	unsigned int bytecount;
177	union {
178		unsigned int gso_segs;
179		unsigned int nr_frags;	/* used for mbuf XDP */
180	};
181	u32 tx_flags:12;
182	u32 type:4;			/* &ice_tx_buf_type */
183	u32 vid:16;
184	DEFINE_DMA_UNMAP_LEN(len);
185	DEFINE_DMA_UNMAP_ADDR(dma);
186};
187
188struct ice_tx_offload_params {
189	u64 cd_qw1;
190	struct ice_tx_ring *tx_ring;
191	u32 td_cmd;
192	u32 td_offset;
193	u32 td_l2tag1;
194	u32 cd_tunnel_params;
195	u16 cd_l2tag2;
196	u8 header_len;
197};
198
199struct ice_rx_buf {
200	dma_addr_t dma;
201	struct page *page;
202	unsigned int page_offset;
203	unsigned int pgcnt;
204	unsigned int pagecnt_bias;
205};
206
207struct ice_q_stats {
208	u64 pkts;
209	u64 bytes;
210};
211
212struct ice_txq_stats {
213	u64 restart_q;
214	u64 tx_busy;
215	u64 tx_linearize;
216	int prev_pkt; /* negative if no pending Tx descriptors */
217};
218
219struct ice_rxq_stats {
220	u64 non_eop_descs;
221	u64 alloc_page_failed;
222	u64 alloc_buf_failed;
223};
224
225struct ice_ring_stats {
226	struct rcu_head rcu;	/* to avoid race on free */
227	struct ice_q_stats stats;
228	struct u64_stats_sync syncp;
229	union {
230		struct ice_txq_stats tx_stats;
231		struct ice_rxq_stats rx_stats;
232	};
233};
234
235enum ice_ring_state_t {
236	ICE_TX_XPS_INIT_DONE,
237	ICE_TX_NBITS,
238};
239
240/* this enum matches hardware bits and is meant to be used by DYN_CTLN
241 * registers and QINT registers or more generally anywhere in the manual
242 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
243 * register but instead is a special value meaning "don't update" ITR0/1/2.
244 */
245enum ice_dyn_idx_t {
246	ICE_IDX_ITR0 = 0,
247	ICE_IDX_ITR1 = 1,
248	ICE_IDX_ITR2 = 2,
249	ICE_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
250};
251
252/* Header split modes defined by DTYPE field of Rx RLAN context */
253enum ice_rx_dtype {
254	ICE_RX_DTYPE_NO_SPLIT		= 0,
255	ICE_RX_DTYPE_HEADER_SPLIT	= 1,
256	ICE_RX_DTYPE_SPLIT_ALWAYS	= 2,
257};
258
259struct ice_pkt_ctx {
260	u64 cached_phctime;
261	__be16 vlan_proto;
262};
263
264struct ice_xdp_buff {
265	struct xdp_buff xdp_buff;
266	const union ice_32b_rx_flex_desc *eop_desc;
267	const struct ice_pkt_ctx *pkt_ctx;
268};
269
270/* Required for compatibility with xdp_buffs from xsk_pool */
271static_assert(offsetof(struct ice_xdp_buff, xdp_buff) == 0);
272
273/* indices into GLINT_ITR registers */
274#define ICE_RX_ITR	ICE_IDX_ITR0
275#define ICE_TX_ITR	ICE_IDX_ITR1
276#define ICE_ITR_8K	124
277#define ICE_ITR_20K	50
278#define ICE_ITR_MAX	8160 /* 0x1FE0 */
279#define ICE_DFLT_TX_ITR	ICE_ITR_20K
280#define ICE_DFLT_RX_ITR	ICE_ITR_20K
281enum ice_dynamic_itr {
282	ITR_STATIC = 0,
283	ITR_DYNAMIC = 1
284};
285
286#define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC)
287#define ICE_ITR_GRAN_S		1	/* ITR granularity is always 2us */
288#define ICE_ITR_GRAN_US		BIT(ICE_ITR_GRAN_S)
289#define ICE_ITR_MASK		0x1FFE	/* ITR register value alignment mask */
290#define ITR_REG_ALIGN(setting)	((setting) & ICE_ITR_MASK)
291
292#define ICE_DFLT_INTRL	0
293#define ICE_MAX_INTRL	236
294
295#define ICE_IN_WB_ON_ITR_MODE	255
296/* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows
297 * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also,
298 * set the write-back latency to the usecs passed in.
299 */
300#define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx)	\
301	((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \
302	  GLINT_DYN_CTL_INTERVAL_M) | \
303	 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \
304	  GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \
305	 GLINT_DYN_CTL_WB_ON_ITR_M)
306
307/* Legacy or Advanced Mode Queue */
308#define ICE_TX_ADVANCED	0
309#define ICE_TX_LEGACY	1
310
311/* descriptor ring, associated with a VSI */
312struct ice_rx_ring {
313	/* CL1 - 1st cacheline starts here */
 
314	void *desc;			/* Descriptor ring memory */
315	struct device *dev;		/* Used for DMA mapping */
316	struct net_device *netdev;	/* netdev ring maps to */
317	struct ice_vsi *vsi;		/* Backreference to associated VSI */
318	struct ice_q_vector *q_vector;	/* Backreference to associated vector */
319	u8 __iomem *tail;
320	u16 q_index;			/* Queue number of ring */
321
322	u16 count;			/* Number of descriptors */
323	u16 reg_idx;			/* HW register index of the ring */
324	u16 next_to_alloc;
325
326	union {
327		struct ice_rx_buf *rx_buf;
328		struct xdp_buff **xdp_buf;
329	};
330	/* CL2 - 2nd cacheline starts here */
331	union {
332		struct ice_xdp_buff xdp_ext;
333		struct xdp_buff xdp;
334	};
335	/* CL3 - 3rd cacheline starts here */
336	union {
337		struct ice_pkt_ctx pkt_ctx;
338		struct {
339			u64 cached_phctime;
340			__be16 vlan_proto;
341		};
342	};
343	struct bpf_prog *xdp_prog;
344	u16 rx_offset;
345
346	/* used in interrupt processing */
347	u16 next_to_use;
348	u16 next_to_clean;
349	u16 first_desc;
 
 
350
351	/* stats structs */
352	struct ice_ring_stats *ring_stats;
353
354	struct rcu_head rcu;		/* to avoid race on free */
355	/* CL4 - 4th cacheline starts here */
356	struct ice_channel *ch;
 
357	struct ice_tx_ring *xdp_ring;
358	struct ice_rx_ring *next;	/* pointer to next ring in q_vector */
359	struct xsk_buff_pool *xsk_pool;
360	u32 nr_frags;
361	u16 max_frame;
362	u16 rx_buf_len;
363	dma_addr_t dma;			/* physical address of ring */
 
364	u8 dcb_tc;			/* Traffic class of ring */
365	u8 ptp_rx;
366#define ICE_RX_FLAGS_RING_BUILD_SKB	BIT(1)
367#define ICE_RX_FLAGS_CRC_STRIP_DIS	BIT(2)
368#define ICE_RX_FLAGS_MULTIDEV		BIT(3)
369	u8 flags;
370	/* CL5 - 5th cacheline starts here */
371	struct xdp_rxq_info xdp_rxq;
372} ____cacheline_internodealigned_in_smp;
373
374struct ice_tx_ring {
375	/* CL1 - 1st cacheline starts here */
376	struct ice_tx_ring *next;	/* pointer to next ring in q_vector */
377	void *desc;			/* Descriptor ring memory */
378	struct device *dev;		/* Used for DMA mapping */
379	u8 __iomem *tail;
380	struct ice_tx_buf *tx_buf;
381	struct ice_q_vector *q_vector;	/* Backreference to associated vector */
382	struct net_device *netdev;	/* netdev ring maps to */
383	struct ice_vsi *vsi;		/* Backreference to associated VSI */
384	/* CL2 - 2nd cacheline starts here */
385	dma_addr_t dma;			/* physical address of ring */
386	struct xsk_buff_pool *xsk_pool;
387	u16 next_to_use;
388	u16 next_to_clean;
 
 
389	u16 q_handle;			/* Queue handle per TC */
390	u16 reg_idx;			/* HW register index of the ring */
391	u16 count;			/* Number of descriptors */
392	u16 q_index;			/* Queue number of ring */
393	u16 xdp_tx_active;
394	/* stats structs */
395	struct ice_ring_stats *ring_stats;
396	/* CL3 - 3rd cacheline starts here */
397	struct rcu_head rcu;		/* to avoid race on free */
398	DECLARE_BITMAP(xps_state, ICE_TX_NBITS);	/* XPS Config State */
399	struct ice_channel *ch;
400	struct ice_ptp_tx *tx_tstamps;
401	spinlock_t tx_lock;
402	u32 txq_teid;			/* Added Tx queue TEID */
403	/* CL4 - 4th cacheline starts here */
 
404#define ICE_TX_FLAGS_RING_XDP		BIT(0)
405#define ICE_TX_FLAGS_RING_VLAN_L2TAG1	BIT(1)
406#define ICE_TX_FLAGS_RING_VLAN_L2TAG2	BIT(2)
407	u8 flags;
408	u8 dcb_tc;			/* Traffic class of ring */
409	u16 quanta_prof_id;
410} ____cacheline_internodealigned_in_smp;
411
412static inline bool ice_ring_uses_build_skb(struct ice_rx_ring *ring)
413{
414	return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB);
415}
416
417static inline void ice_set_ring_build_skb_ena(struct ice_rx_ring *ring)
418{
419	ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB;
420}
421
422static inline void ice_clear_ring_build_skb_ena(struct ice_rx_ring *ring)
423{
424	ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB;
425}
426
427static inline bool ice_ring_ch_enabled(struct ice_tx_ring *ring)
428{
429	return !!ring->ch;
430}
431
432static inline bool ice_ring_is_xdp(struct ice_tx_ring *ring)
433{
434	return !!(ring->flags & ICE_TX_FLAGS_RING_XDP);
435}
436
437enum ice_container_type {
438	ICE_RX_CONTAINER,
439	ICE_TX_CONTAINER,
440};
441
442struct ice_ring_container {
443	/* head of linked-list of rings */
444	union {
445		struct ice_rx_ring *rx_ring;
446		struct ice_tx_ring *tx_ring;
447	};
448	struct dim dim;		/* data for net_dim algorithm */
449	u16 itr_idx;		/* index in the interrupt vector */
450	/* this matches the maximum number of ITR bits, but in usec
451	 * values, so it is shifted left one bit (bit zero is ignored)
452	 */
453	union {
454		struct {
455			u16 itr_setting:13;
456			u16 itr_reserved:2;
457			u16 itr_mode:1;
458		};
459		u16 itr_settings;
460	};
461	enum ice_container_type type;
462};
463
464struct ice_coalesce_stored {
465	u16 itr_tx;
466	u16 itr_rx;
467	u8 intrl;
468	u8 tx_valid;
469	u8 rx_valid;
470};
471
472/* iterator for handling rings in ring container */
473#define ice_for_each_rx_ring(pos, head) \
474	for (pos = (head).rx_ring; pos; pos = pos->next)
475
476#define ice_for_each_tx_ring(pos, head) \
477	for (pos = (head).tx_ring; pos; pos = pos->next)
478
479static inline unsigned int ice_rx_pg_order(struct ice_rx_ring *ring)
480{
481#if (PAGE_SIZE < 8192)
482	if (ring->rx_buf_len > (PAGE_SIZE / 2))
483		return 1;
484#endif
485	return 0;
486}
487
488#define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring))
489
490union ice_32b_rx_flex_desc;
491
492bool ice_alloc_rx_bufs(struct ice_rx_ring *rxr, unsigned int cleaned_count);
493netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev);
494u16
495ice_select_queue(struct net_device *dev, struct sk_buff *skb,
496		 struct net_device *sb_dev);
497void ice_clean_tx_ring(struct ice_tx_ring *tx_ring);
498void ice_clean_rx_ring(struct ice_rx_ring *rx_ring);
499int ice_setup_tx_ring(struct ice_tx_ring *tx_ring);
500int ice_setup_rx_ring(struct ice_rx_ring *rx_ring);
501void ice_free_tx_ring(struct ice_tx_ring *tx_ring);
502void ice_free_rx_ring(struct ice_rx_ring *rx_ring);
503int ice_napi_poll(struct napi_struct *napi, int budget);
504int
505ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
506		   u8 *raw_packet);
507int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget);
508void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring);
509#endif /* _ICE_TXRX_H_ */
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/* Copyright (c) 2018, Intel Corporation. */
  3
  4#ifndef _ICE_TXRX_H_
  5#define _ICE_TXRX_H_
  6
  7#include "ice_type.h"
  8
  9#define ICE_DFLT_IRQ_WORK	256
 10#define ICE_RXBUF_3072		3072
 11#define ICE_RXBUF_2048		2048
 
 12#define ICE_RXBUF_1536		1536
 13#define ICE_MAX_CHAINED_RX_BUFS	5
 14#define ICE_MAX_BUF_TXD		8
 15#define ICE_MIN_TX_LEN		17
 
 16
 17/* The size limit for a transmit buffer in a descriptor is (16K - 1).
 18 * In order to align with the read requests we will align the value to
 19 * the nearest 4K which represents our maximum read request size.
 20 */
 21#define ICE_MAX_READ_REQ_SIZE	4096
 22#define ICE_MAX_DATA_PER_TXD	(16 * 1024 - 1)
 23#define ICE_MAX_DATA_PER_TXD_ALIGNED \
 24	(~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD)
 25
 26#define ICE_MAX_TXQ_PER_TXQG	128
 27
 28/* Attempt to maximize the headroom available for incoming frames. We use a 2K
 29 * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame.
 30 * This leaves us with 512 bytes of room.  From that we need to deduct the
 31 * space needed for the shared info and the padding needed to IP align the
 32 * frame.
 33 *
 34 * Note: For cache line sizes 256 or larger this value is going to end
 35 *	 up negative.  In these cases we should fall back to the legacy
 36 *	 receive path.
 37 */
 38#if (PAGE_SIZE < 8192)
 39#define ICE_2K_TOO_SMALL_WITH_PADDING \
 40	((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \
 41			SKB_WITH_OVERHEAD(ICE_RXBUF_2048))
 42
 43/**
 44 * ice_compute_pad - compute the padding
 45 * @rx_buf_len: buffer length
 46 *
 47 * Figure out the size of half page based on given buffer length and
 48 * then subtract the skb_shared_info followed by subtraction of the
 49 * actual buffer length; this in turn results in the actual space that
 50 * is left for padding usage
 51 */
 52static inline int ice_compute_pad(int rx_buf_len)
 53{
 54	int half_page_size;
 55
 56	half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
 57	return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len;
 58}
 59
 60/**
 61 * ice_skb_pad - determine the padding that we can supply
 62 *
 63 * Figure out the right Rx buffer size and based on that calculate the
 64 * padding
 65 */
 66static inline int ice_skb_pad(void)
 67{
 68	int rx_buf_len;
 69
 70	/* If a 2K buffer cannot handle a standard Ethernet frame then
 71	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
 72	 *
 73	 * For a 3K buffer we need to add enough padding to allow for
 74	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
 75	 * cache-line alignment.
 76	 */
 77	if (ICE_2K_TOO_SMALL_WITH_PADDING)
 78		rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
 79	else
 80		rx_buf_len = ICE_RXBUF_1536;
 81
 82	/* if needed make room for NET_IP_ALIGN */
 83	rx_buf_len -= NET_IP_ALIGN;
 84
 85	return ice_compute_pad(rx_buf_len);
 86}
 87
 88#define ICE_SKB_PAD ice_skb_pad()
 89#else
 90#define ICE_2K_TOO_SMALL_WITH_PADDING false
 91#define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
 92#endif
 93
 94/* We are assuming that the cache line is always 64 Bytes here for ice.
 95 * In order to make sure that is a correct assumption there is a check in probe
 96 * to print a warning if the read from GLPCI_CNF2 tells us that the cache line
 97 * size is 128 bytes. We do it this way because we do not want to read the
 98 * GLPCI_CNF2 register or a variable containing the value on every pass through
 99 * the Tx path.
100 */
101#define ICE_CACHE_LINE_BYTES		64
102#define ICE_DESCS_PER_CACHE_LINE	(ICE_CACHE_LINE_BYTES / \
103					 sizeof(struct ice_tx_desc))
104#define ICE_DESCS_FOR_CTX_DESC		1
105#define ICE_DESCS_FOR_SKB_DATA_PTR	1
106/* Tx descriptors needed, worst case */
107#define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \
108		     ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR)
109#define ICE_DESC_UNUSED(R)	\
110	(u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
111	      (R)->next_to_clean - (R)->next_to_use - 1)
112
 
 
 
 
113#define ICE_RING_QUARTER(R) ((R)->count >> 2)
114
115#define ICE_TX_FLAGS_TSO	BIT(0)
116#define ICE_TX_FLAGS_HW_VLAN	BIT(1)
117#define ICE_TX_FLAGS_SW_VLAN	BIT(2)
118/* ICE_TX_FLAGS_DUMMY_PKT is used to mark dummy packets that should be
119 * freed instead of returned like skb packets.
120 */
121#define ICE_TX_FLAGS_DUMMY_PKT	BIT(3)
122#define ICE_TX_FLAGS_TSYN	BIT(4)
123#define ICE_TX_FLAGS_IPV4	BIT(5)
124#define ICE_TX_FLAGS_IPV6	BIT(6)
125#define ICE_TX_FLAGS_TUNNEL	BIT(7)
126#define ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN	BIT(8)
127#define ICE_TX_FLAGS_VLAN_M	0xffff0000
128#define ICE_TX_FLAGS_VLAN_PR_M	0xe0000000
129#define ICE_TX_FLAGS_VLAN_PR_S	29
130#define ICE_TX_FLAGS_VLAN_S	16
131
132#define ICE_XDP_PASS		0
133#define ICE_XDP_CONSUMED	BIT(0)
134#define ICE_XDP_TX		BIT(1)
135#define ICE_XDP_REDIR		BIT(2)
136#define ICE_XDP_EXIT		BIT(3)
 
137
138#define ICE_RX_DMA_ATTR \
139	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
140
141#define ICE_ETH_PKT_HDR_PAD	(ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
142
143#define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS)
144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145struct ice_tx_buf {
146	struct ice_tx_desc *next_to_watch;
147	union {
148		struct sk_buff *skb;
149		void *raw_buf; /* used for XDP */
 
 
 
 
 
 
150	};
151	unsigned int bytecount;
152	unsigned short gso_segs;
153	u32 tx_flags;
 
 
 
 
 
154	DEFINE_DMA_UNMAP_LEN(len);
155	DEFINE_DMA_UNMAP_ADDR(dma);
156};
157
158struct ice_tx_offload_params {
159	u64 cd_qw1;
160	struct ice_tx_ring *tx_ring;
161	u32 td_cmd;
162	u32 td_offset;
163	u32 td_l2tag1;
164	u32 cd_tunnel_params;
165	u16 cd_l2tag2;
166	u8 header_len;
167};
168
169struct ice_rx_buf {
170	dma_addr_t dma;
171	struct page *page;
172	unsigned int page_offset;
173	u16 pagecnt_bias;
 
174};
175
176struct ice_q_stats {
177	u64 pkts;
178	u64 bytes;
179};
180
181struct ice_txq_stats {
182	u64 restart_q;
183	u64 tx_busy;
184	u64 tx_linearize;
185	int prev_pkt; /* negative if no pending Tx descriptors */
186};
187
188struct ice_rxq_stats {
189	u64 non_eop_descs;
190	u64 alloc_page_failed;
191	u64 alloc_buf_failed;
192};
193
194struct ice_ring_stats {
195	struct rcu_head rcu;	/* to avoid race on free */
196	struct ice_q_stats stats;
197	struct u64_stats_sync syncp;
198	union {
199		struct ice_txq_stats tx_stats;
200		struct ice_rxq_stats rx_stats;
201	};
202};
203
204enum ice_ring_state_t {
205	ICE_TX_XPS_INIT_DONE,
206	ICE_TX_NBITS,
207};
208
209/* this enum matches hardware bits and is meant to be used by DYN_CTLN
210 * registers and QINT registers or more generally anywhere in the manual
211 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
212 * register but instead is a special value meaning "don't update" ITR0/1/2.
213 */
214enum ice_dyn_idx_t {
215	ICE_IDX_ITR0 = 0,
216	ICE_IDX_ITR1 = 1,
217	ICE_IDX_ITR2 = 2,
218	ICE_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
219};
220
221/* Header split modes defined by DTYPE field of Rx RLAN context */
222enum ice_rx_dtype {
223	ICE_RX_DTYPE_NO_SPLIT		= 0,
224	ICE_RX_DTYPE_HEADER_SPLIT	= 1,
225	ICE_RX_DTYPE_SPLIT_ALWAYS	= 2,
226};
227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228/* indices into GLINT_ITR registers */
229#define ICE_RX_ITR	ICE_IDX_ITR0
230#define ICE_TX_ITR	ICE_IDX_ITR1
231#define ICE_ITR_8K	124
232#define ICE_ITR_20K	50
233#define ICE_ITR_MAX	8160 /* 0x1FE0 */
234#define ICE_DFLT_TX_ITR	ICE_ITR_20K
235#define ICE_DFLT_RX_ITR	ICE_ITR_20K
236enum ice_dynamic_itr {
237	ITR_STATIC = 0,
238	ITR_DYNAMIC = 1
239};
240
241#define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC)
242#define ICE_ITR_GRAN_S		1	/* ITR granularity is always 2us */
243#define ICE_ITR_GRAN_US		BIT(ICE_ITR_GRAN_S)
244#define ICE_ITR_MASK		0x1FFE	/* ITR register value alignment mask */
245#define ITR_REG_ALIGN(setting)	((setting) & ICE_ITR_MASK)
246
247#define ICE_DFLT_INTRL	0
248#define ICE_MAX_INTRL	236
249
250#define ICE_IN_WB_ON_ITR_MODE	255
251/* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows
252 * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also,
253 * set the write-back latency to the usecs passed in.
254 */
255#define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx)	\
256	((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \
257	  GLINT_DYN_CTL_INTERVAL_M) | \
258	 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \
259	  GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \
260	 GLINT_DYN_CTL_WB_ON_ITR_M)
261
262/* Legacy or Advanced Mode Queue */
263#define ICE_TX_ADVANCED	0
264#define ICE_TX_LEGACY	1
265
266/* descriptor ring, associated with a VSI */
267struct ice_rx_ring {
268	/* CL1 - 1st cacheline starts here */
269	struct ice_rx_ring *next;	/* pointer to next ring in q_vector */
270	void *desc;			/* Descriptor ring memory */
271	struct device *dev;		/* Used for DMA mapping */
272	struct net_device *netdev;	/* netdev ring maps to */
273	struct ice_vsi *vsi;		/* Backreference to associated VSI */
274	struct ice_q_vector *q_vector;	/* Backreference to associated vector */
275	u8 __iomem *tail;
 
 
 
 
 
 
276	union {
277		struct ice_rx_buf *rx_buf;
278		struct xdp_buff **xdp_buf;
279	};
280	/* CL2 - 2nd cacheline starts here */
281	struct xdp_rxq_info xdp_rxq;
 
 
 
282	/* CL3 - 3rd cacheline starts here */
283	u16 q_index;			/* Queue number of ring */
284
285	u16 count;			/* Number of descriptors */
286	u16 reg_idx;			/* HW register index of the ring */
 
 
 
 
 
287
288	/* used in interrupt processing */
289	u16 next_to_use;
290	u16 next_to_clean;
291	u16 next_to_alloc;
292	u16 rx_offset;
293	u16 rx_buf_len;
294
295	/* stats structs */
296	struct ice_ring_stats *ring_stats;
297
298	struct rcu_head rcu;		/* to avoid race on free */
299	/* CL4 - 3rd cacheline starts here */
300	struct ice_channel *ch;
301	struct bpf_prog *xdp_prog;
302	struct ice_tx_ring *xdp_ring;
 
303	struct xsk_buff_pool *xsk_pool;
304	struct sk_buff *skb;
 
 
305	dma_addr_t dma;			/* physical address of ring */
306	u64 cached_phctime;
307	u8 dcb_tc;			/* Traffic class of ring */
308	u8 ptp_rx;
309#define ICE_RX_FLAGS_RING_BUILD_SKB	BIT(1)
310#define ICE_RX_FLAGS_CRC_STRIP_DIS	BIT(2)
 
311	u8 flags;
 
 
312} ____cacheline_internodealigned_in_smp;
313
314struct ice_tx_ring {
315	/* CL1 - 1st cacheline starts here */
316	struct ice_tx_ring *next;	/* pointer to next ring in q_vector */
317	void *desc;			/* Descriptor ring memory */
318	struct device *dev;		/* Used for DMA mapping */
319	u8 __iomem *tail;
320	struct ice_tx_buf *tx_buf;
321	struct ice_q_vector *q_vector;	/* Backreference to associated vector */
322	struct net_device *netdev;	/* netdev ring maps to */
323	struct ice_vsi *vsi;		/* Backreference to associated VSI */
324	/* CL2 - 2nd cacheline starts here */
325	dma_addr_t dma;			/* physical address of ring */
326	struct xsk_buff_pool *xsk_pool;
327	u16 next_to_use;
328	u16 next_to_clean;
329	u16 next_rs;
330	u16 next_dd;
331	u16 q_handle;			/* Queue handle per TC */
332	u16 reg_idx;			/* HW register index of the ring */
333	u16 count;			/* Number of descriptors */
334	u16 q_index;			/* Queue number of ring */
 
335	/* stats structs */
336	struct ice_ring_stats *ring_stats;
337	/* CL3 - 3rd cacheline starts here */
338	struct rcu_head rcu;		/* to avoid race on free */
339	DECLARE_BITMAP(xps_state, ICE_TX_NBITS);	/* XPS Config State */
340	struct ice_channel *ch;
341	struct ice_ptp_tx *tx_tstamps;
342	spinlock_t tx_lock;
343	u32 txq_teid;			/* Added Tx queue TEID */
344	/* CL4 - 4th cacheline starts here */
345	u16 xdp_tx_active;
346#define ICE_TX_FLAGS_RING_XDP		BIT(0)
347#define ICE_TX_FLAGS_RING_VLAN_L2TAG1	BIT(1)
348#define ICE_TX_FLAGS_RING_VLAN_L2TAG2	BIT(2)
349	u8 flags;
350	u8 dcb_tc;			/* Traffic class of ring */
351	u8 ptp_tx;
352} ____cacheline_internodealigned_in_smp;
353
354static inline bool ice_ring_uses_build_skb(struct ice_rx_ring *ring)
355{
356	return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB);
357}
358
359static inline void ice_set_ring_build_skb_ena(struct ice_rx_ring *ring)
360{
361	ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB;
362}
363
364static inline void ice_clear_ring_build_skb_ena(struct ice_rx_ring *ring)
365{
366	ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB;
367}
368
369static inline bool ice_ring_ch_enabled(struct ice_tx_ring *ring)
370{
371	return !!ring->ch;
372}
373
374static inline bool ice_ring_is_xdp(struct ice_tx_ring *ring)
375{
376	return !!(ring->flags & ICE_TX_FLAGS_RING_XDP);
377}
378
379enum ice_container_type {
380	ICE_RX_CONTAINER,
381	ICE_TX_CONTAINER,
382};
383
384struct ice_ring_container {
385	/* head of linked-list of rings */
386	union {
387		struct ice_rx_ring *rx_ring;
388		struct ice_tx_ring *tx_ring;
389	};
390	struct dim dim;		/* data for net_dim algorithm */
391	u16 itr_idx;		/* index in the interrupt vector */
392	/* this matches the maximum number of ITR bits, but in usec
393	 * values, so it is shifted left one bit (bit zero is ignored)
394	 */
395	union {
396		struct {
397			u16 itr_setting:13;
398			u16 itr_reserved:2;
399			u16 itr_mode:1;
400		};
401		u16 itr_settings;
402	};
403	enum ice_container_type type;
404};
405
406struct ice_coalesce_stored {
407	u16 itr_tx;
408	u16 itr_rx;
409	u8 intrl;
410	u8 tx_valid;
411	u8 rx_valid;
412};
413
414/* iterator for handling rings in ring container */
415#define ice_for_each_rx_ring(pos, head) \
416	for (pos = (head).rx_ring; pos; pos = pos->next)
417
418#define ice_for_each_tx_ring(pos, head) \
419	for (pos = (head).tx_ring; pos; pos = pos->next)
420
421static inline unsigned int ice_rx_pg_order(struct ice_rx_ring *ring)
422{
423#if (PAGE_SIZE < 8192)
424	if (ring->rx_buf_len > (PAGE_SIZE / 2))
425		return 1;
426#endif
427	return 0;
428}
429
430#define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring))
431
432union ice_32b_rx_flex_desc;
433
434bool ice_alloc_rx_bufs(struct ice_rx_ring *rxr, u16 cleaned_count);
435netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev);
436u16
437ice_select_queue(struct net_device *dev, struct sk_buff *skb,
438		 struct net_device *sb_dev);
439void ice_clean_tx_ring(struct ice_tx_ring *tx_ring);
440void ice_clean_rx_ring(struct ice_rx_ring *rx_ring);
441int ice_setup_tx_ring(struct ice_tx_ring *tx_ring);
442int ice_setup_rx_ring(struct ice_rx_ring *rx_ring);
443void ice_free_tx_ring(struct ice_tx_ring *tx_ring);
444void ice_free_rx_ring(struct ice_rx_ring *rx_ring);
445int ice_napi_poll(struct napi_struct *napi, int budget);
446int
447ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
448		   u8 *raw_packet);
449int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget);
450void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring);
451#endif /* _ICE_TXRX_H_ */