Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_vf_lib_private.h"
   6#include "ice_base.h"
   7#include "ice_lib.h"
   8#include "ice_fltr.h"
   9#include "ice_dcb_lib.h"
  10#include "ice_flow.h"
  11#include "ice_eswitch.h"
  12#include "ice_virtchnl_allowlist.h"
  13#include "ice_flex_pipe.h"
  14#include "ice_vf_vsi_vlan_ops.h"
  15#include "ice_vlan.h"
  16
  17/**
  18 * ice_free_vf_entries - Free all VF entries from the hash table
  19 * @pf: pointer to the PF structure
  20 *
  21 * Iterate over the VF hash table, removing and releasing all VF entries.
  22 * Called during VF teardown or as cleanup during failed VF initialization.
  23 */
  24static void ice_free_vf_entries(struct ice_pf *pf)
  25{
  26	struct ice_vfs *vfs = &pf->vfs;
  27	struct hlist_node *tmp;
  28	struct ice_vf *vf;
  29	unsigned int bkt;
  30
  31	/* Remove all VFs from the hash table and release their main
  32	 * reference. Once all references to the VF are dropped, ice_put_vf()
  33	 * will call ice_release_vf which will remove the VF memory.
  34	 */
  35	lockdep_assert_held(&vfs->table_lock);
  36
  37	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
  38		hash_del_rcu(&vf->entry);
  39		ice_deinitialize_vf_entry(vf);
  40		ice_put_vf(vf);
  41	}
  42}
  43
  44/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45 * ice_free_vf_res - Free a VF's resources
  46 * @vf: pointer to the VF info
  47 */
  48static void ice_free_vf_res(struct ice_vf *vf)
  49{
  50	struct ice_pf *pf = vf->pf;
  51	int i, last_vector_idx;
  52
  53	/* First, disable VF's configuration API to prevent OS from
  54	 * accessing the VF's VSI after it's freed or invalidated.
  55	 */
  56	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
  57	ice_vf_fdir_exit(vf);
  58	/* free VF control VSI */
  59	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
  60		ice_vf_ctrl_vsi_release(vf);
  61
  62	/* free VSI and disconnect it from the parent uplink */
  63	if (vf->lan_vsi_idx != ICE_NO_VSI) {
  64		ice_vf_vsi_release(vf);
  65		vf->num_mac = 0;
  66	}
  67
  68	last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
  69
  70	/* clear VF MDD event information */
  71	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
  72	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
  73
  74	/* Disable interrupts so that VF starts in a known state */
  75	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
  76		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
  77		ice_flush(&pf->hw);
  78	}
  79	/* reset some of the state variables keeping track of the resources */
  80	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
  81	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
  82}
  83
  84/**
  85 * ice_dis_vf_mappings
  86 * @vf: pointer to the VF structure
  87 */
  88static void ice_dis_vf_mappings(struct ice_vf *vf)
  89{
  90	struct ice_pf *pf = vf->pf;
  91	struct ice_vsi *vsi;
  92	struct device *dev;
  93	int first, last, v;
  94	struct ice_hw *hw;
  95
  96	hw = &pf->hw;
  97	vsi = ice_get_vf_vsi(vf);
  98	if (WARN_ON(!vsi))
  99		return;
 100
 101	dev = ice_pf_to_dev(pf);
 102	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
 103	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
 104
 105	first = vf->first_vector_idx;
 106	last = first + vf->num_msix - 1;
 107	for (v = first; v <= last; v++) {
 108		u32 reg;
 109
 110		reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) |
 111		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
 
 
 112		wr32(hw, GLINT_VECT2FUNC(v), reg);
 113	}
 114
 115	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
 116		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
 117	else
 118		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
 119
 120	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
 121		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
 122	else
 123		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
 124}
 125
 126/**
 127 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
 128 * @pf: pointer to the PF structure
 129 *
 130 * Since no MSIX entries are taken from the pf->irq_tracker then just clear
 131 * the pf->sriov_base_vector.
 132 *
 133 * Returns 0 on success, and -EINVAL on error.
 134 */
 135static int ice_sriov_free_msix_res(struct ice_pf *pf)
 136{
 
 
 137	if (!pf)
 138		return -EINVAL;
 139
 140	bitmap_free(pf->sriov_irq_bm);
 141	pf->sriov_irq_size = 0;
 
 
 
 
 
 142	pf->sriov_base_vector = 0;
 143
 144	return 0;
 145}
 146
 147/**
 148 * ice_free_vfs - Free all VFs
 149 * @pf: pointer to the PF structure
 150 */
 151void ice_free_vfs(struct ice_pf *pf)
 152{
 153	struct device *dev = ice_pf_to_dev(pf);
 154	struct ice_vfs *vfs = &pf->vfs;
 155	struct ice_hw *hw = &pf->hw;
 156	struct ice_vf *vf;
 157	unsigned int bkt;
 158
 159	if (!ice_has_vfs(pf))
 160		return;
 161
 162	while (test_and_set_bit(ICE_VF_DIS, pf->state))
 163		usleep_range(1000, 2000);
 164
 165	/* Disable IOV before freeing resources. This lets any VF drivers
 166	 * running in the host get themselves cleaned up before we yank
 167	 * the carpet out from underneath their feet.
 168	 */
 169	if (!pci_vfs_assigned(pf->pdev))
 170		pci_disable_sriov(pf->pdev);
 171	else
 172		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
 173
 174	mutex_lock(&vfs->table_lock);
 175
 
 
 176	ice_for_each_vf(pf, bkt, vf) {
 177		mutex_lock(&vf->cfg_lock);
 178
 179		ice_eswitch_detach_vf(pf, vf);
 180		ice_dis_vf_qs(vf);
 181
 182		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
 183			/* disable VF qp mappings and set VF disable state */
 184			ice_dis_vf_mappings(vf);
 185			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
 186			ice_free_vf_res(vf);
 187		}
 188
 189		if (!pci_vfs_assigned(pf->pdev)) {
 190			u32 reg_idx, bit_idx;
 191
 192			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
 193			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
 194			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
 195		}
 196
 
 
 
 
 
 
 197		mutex_unlock(&vf->cfg_lock);
 198	}
 199
 200	if (ice_sriov_free_msix_res(pf))
 201		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
 202
 203	vfs->num_qps_per = 0;
 204	ice_free_vf_entries(pf);
 205
 206	mutex_unlock(&vfs->table_lock);
 207
 208	clear_bit(ICE_VF_DIS, pf->state);
 209	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
 210}
 211
 212/**
 213 * ice_vf_vsi_setup - Set up a VF VSI
 214 * @vf: VF to setup VSI for
 215 *
 216 * Returns pointer to the successfully allocated VSI struct on success,
 217 * otherwise returns NULL on failure.
 218 */
 219static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
 220{
 221	struct ice_vsi_cfg_params params = {};
 222	struct ice_pf *pf = vf->pf;
 223	struct ice_vsi *vsi;
 224
 225	params.type = ICE_VSI_VF;
 226	params.port_info = ice_vf_get_port_info(vf);
 227	params.vf = vf;
 228	params.flags = ICE_VSI_FLAG_INIT;
 229
 230	vsi = ice_vsi_setup(pf, &params);
 231
 232	if (!vsi) {
 233		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
 234		ice_vf_invalidate_vsi(vf);
 235		return NULL;
 236	}
 237
 238	vf->lan_vsi_idx = vsi->idx;
 
 239
 240	return vsi;
 241}
 242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243
 244/**
 245 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
 246 * @vf: VF to enable MSIX mappings for
 247 *
 248 * Some of the registers need to be indexed/configured using hardware global
 249 * device values and other registers need 0-based values, which represent PF
 250 * based values.
 251 */
 252static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
 253{
 254	int device_based_first_msix, device_based_last_msix;
 255	int pf_based_first_msix, pf_based_last_msix, v;
 256	struct ice_pf *pf = vf->pf;
 257	int device_based_vf_id;
 258	struct ice_hw *hw;
 259	u32 reg;
 260
 261	hw = &pf->hw;
 262	pf_based_first_msix = vf->first_vector_idx;
 263	pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
 264
 265	device_based_first_msix = pf_based_first_msix +
 266		pf->hw.func_caps.common_cap.msix_vector_first_id;
 267	device_based_last_msix =
 268		(device_based_first_msix + vf->num_msix) - 1;
 269	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
 270
 271	reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) |
 272	      FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) |
 273	      VPINT_ALLOC_VALID_M;
 
 274	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
 275
 276	reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) |
 277	      FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) |
 278	      VPINT_ALLOC_PCI_VALID_M;
 
 279	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
 280
 281	/* map the interrupts to its functions */
 282	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
 283		reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) |
 284		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
 
 
 285		wr32(hw, GLINT_VECT2FUNC(v), reg);
 286	}
 287
 288	/* Map mailbox interrupt to VF MSI-X vector 0 */
 289	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
 290}
 291
 292/**
 293 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
 294 * @vf: VF to enable the mappings for
 295 * @max_txq: max Tx queues allowed on the VF's VSI
 296 * @max_rxq: max Rx queues allowed on the VF's VSI
 297 */
 298static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
 299{
 300	struct device *dev = ice_pf_to_dev(vf->pf);
 301	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
 302	struct ice_hw *hw = &vf->pf->hw;
 303	u32 reg;
 304
 305	if (WARN_ON(!vsi))
 306		return;
 307
 308	/* set regardless of mapping mode */
 309	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
 310
 311	/* VF Tx queues allocation */
 312	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
 313		/* set the VF PF Tx queue range
 314		 * VFNUMQ value should be set to (number of queues - 1). A value
 315		 * of 0 means 1 queue and a value of 255 means 256 queues
 316		 */
 317		reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) |
 318		      FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1);
 
 
 319		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
 320	} else {
 321		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
 322	}
 323
 324	/* set regardless of mapping mode */
 325	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
 326
 327	/* VF Rx queues allocation */
 328	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
 329		/* set the VF PF Rx queue range
 330		 * VFNUMQ value should be set to (number of queues - 1). A value
 331		 * of 0 means 1 queue and a value of 255 means 256 queues
 332		 */
 333		reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) |
 334		      FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1);
 
 
 335		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
 336	} else {
 337		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
 338	}
 339}
 340
 341/**
 342 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
 343 * @vf: pointer to the VF structure
 344 */
 345static void ice_ena_vf_mappings(struct ice_vf *vf)
 346{
 347	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
 348
 349	if (WARN_ON(!vsi))
 350		return;
 351
 352	ice_ena_vf_msix_mappings(vf);
 353	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
 354}
 355
 356/**
 357 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
 358 * @vf: VF to calculate the register index for
 359 * @q_vector: a q_vector associated to the VF
 360 */
 361void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
 362{
 
 
 363	if (!vf || !q_vector)
 364		return;
 
 
 365
 366	/* always add one to account for the OICR being the first MSIX */
 367	q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF;
 368	q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369}
 370
 371/**
 372 * ice_sriov_set_msix_res - Set any used MSIX resources
 373 * @pf: pointer to PF structure
 374 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
 375 *
 376 * This function allows SR-IOV resources to be taken from the end of the PF's
 377 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
 378 * just set the pf->sriov_base_vector and return success.
 379 *
 380 * If there are not enough resources available, return an error. This should
 381 * always be caught by ice_set_per_vf_res().
 382 *
 383 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
 384 * in the PF's space available for SR-IOV.
 385 */
 386static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
 387{
 388	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
 389	int vectors_used = ice_get_max_used_msix_vector(pf);
 390	int sriov_base_vector;
 391
 392	sriov_base_vector = total_vectors - num_msix_needed;
 393
 394	/* make sure we only grab irq_tracker entries from the list end and
 395	 * that we have enough available MSIX vectors
 396	 */
 397	if (sriov_base_vector < vectors_used)
 398		return -EINVAL;
 399
 400	pf->sriov_base_vector = sriov_base_vector;
 401
 402	return 0;
 403}
 404
 405/**
 406 * ice_set_per_vf_res - check if vectors and queues are available
 407 * @pf: pointer to the PF structure
 408 * @num_vfs: the number of SR-IOV VFs being configured
 409 *
 410 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
 411 * get more vectors and can enable more queues per VF. Note that this does not
 412 * grab any vectors from the SW pool already allocated. Also note, that all
 413 * vector counts include one for each VF's miscellaneous interrupt vector
 414 * (i.e. OICR).
 415 *
 416 * Minimum VFs - 2 vectors, 1 queue pair
 417 * Small VFs - 5 vectors, 4 queue pairs
 418 * Medium VFs - 17 vectors, 16 queue pairs
 419 *
 420 * Second, determine number of queue pairs per VF by starting with a pre-defined
 421 * maximum each VF supports. If this is not possible, then we adjust based on
 422 * queue pairs available on the device.
 423 *
 424 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
 425 * by each VF during VF initialization and reset.
 426 */
 427static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
 428{
 429	int vectors_used = ice_get_max_used_msix_vector(pf);
 430	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
 431	int msix_avail_per_vf, msix_avail_for_sriov;
 432	struct device *dev = ice_pf_to_dev(pf);
 433	int err;
 434
 435	lockdep_assert_held(&pf->vfs.table_lock);
 436
 437	if (!num_vfs)
 438		return -EINVAL;
 439
 
 
 
 440	/* determine MSI-X resources per VF */
 441	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
 442		vectors_used;
 443	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
 444	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
 445		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
 446	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
 447		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
 448	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
 449		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
 450	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
 451		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
 452	} else {
 453		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
 454			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
 455			num_vfs);
 456		return -ENOSPC;
 457	}
 458
 459	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
 460			ICE_MAX_RSS_QS_PER_VF);
 461	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
 462	if (!avail_qs)
 463		num_txq = 0;
 464	else if (num_txq > avail_qs)
 465		num_txq = rounddown_pow_of_two(avail_qs);
 466
 467	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
 468			ICE_MAX_RSS_QS_PER_VF);
 469	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
 470	if (!avail_qs)
 471		num_rxq = 0;
 472	else if (num_rxq > avail_qs)
 473		num_rxq = rounddown_pow_of_two(avail_qs);
 474
 475	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
 476		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
 477			ICE_MIN_QS_PER_VF, num_vfs);
 478		return -ENOSPC;
 479	}
 480
 481	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
 482	if (err) {
 483		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
 484			num_vfs, err);
 485		return err;
 486	}
 487
 488	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
 489	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
 490	pf->vfs.num_msix_per = num_msix_per_vf;
 491	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
 492		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
 493
 494	return 0;
 495}
 496
 497/**
 498 * ice_sriov_get_irqs - get irqs for SR-IOV usacase
 499 * @pf: pointer to PF structure
 500 * @needed: number of irqs to get
 501 *
 502 * This returns the first MSI-X vector index in PF space that is used by this
 503 * VF. This index is used when accessing PF relative registers such as
 504 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
 505 * This will always be the OICR index in the AVF driver so any functionality
 506 * using vf->first_vector_idx for queue configuration_id: id of VF which will
 507 * use this irqs
 508 *
 509 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are
 510 * allocated from the end of global irq index. First bit in sriov_irq_bm means
 511 * last irq index etc. It simplifies extension of SRIOV vectors.
 512 * They will be always located from sriov_base_vector to the last irq
 513 * index. While increasing/decreasing sriov_base_vector can be moved.
 514 */
 515static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed)
 516{
 517	int res = bitmap_find_next_zero_area(pf->sriov_irq_bm,
 518					     pf->sriov_irq_size, 0, needed, 0);
 519	/* conversion from number in bitmap to global irq index */
 520	int index = pf->sriov_irq_size - res - needed;
 521
 522	if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector)
 523		return -ENOENT;
 524
 525	bitmap_set(pf->sriov_irq_bm, res, needed);
 526	return index;
 527}
 528
 529/**
 530 * ice_sriov_free_irqs - free irqs used by the VF
 531 * @pf: pointer to PF structure
 532 * @vf: pointer to VF structure
 533 */
 534static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf)
 535{
 536	/* Move back from first vector index to first index in bitmap */
 537	int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix;
 538
 539	bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix);
 540	vf->first_vector_idx = 0;
 541}
 542
 543/**
 544 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
 545 * @vf: VF to initialize/setup the VSI for
 546 *
 547 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
 548 * VF VSI's broadcast filter and is only used during initial VF creation.
 549 */
 550static int ice_init_vf_vsi_res(struct ice_vf *vf)
 551{
 
 552	struct ice_pf *pf = vf->pf;
 
 553	struct ice_vsi *vsi;
 
 554	int err;
 555
 556	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
 557	if (vf->first_vector_idx < 0)
 558		return -ENOMEM;
 559
 
 560	vsi = ice_vf_vsi_setup(vf);
 561	if (!vsi)
 562		return -ENOMEM;
 563
 564	err = ice_vf_init_host_cfg(vf, vsi);
 565	if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566		goto release_vsi;
 
 
 
 567
 568	return 0;
 569
 570release_vsi:
 571	ice_vf_vsi_release(vf);
 572	return err;
 573}
 574
 575/**
 576 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
 577 * @pf: PF the VFs are associated with
 578 */
 579static int ice_start_vfs(struct ice_pf *pf)
 580{
 581	struct ice_hw *hw = &pf->hw;
 582	unsigned int bkt, it_cnt;
 583	struct ice_vf *vf;
 584	int retval;
 585
 586	lockdep_assert_held(&pf->vfs.table_lock);
 587
 588	it_cnt = 0;
 589	ice_for_each_vf(pf, bkt, vf) {
 590		vf->vf_ops->clear_reset_trigger(vf);
 591
 592		retval = ice_init_vf_vsi_res(vf);
 593		if (retval) {
 594			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
 595				vf->vf_id, retval);
 596			goto teardown;
 597		}
 598
 599		retval = ice_eswitch_attach_vf(pf, vf);
 600		if (retval) {
 601			dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d",
 602				vf->vf_id, retval);
 603			ice_vf_vsi_release(vf);
 604			goto teardown;
 605		}
 606
 607		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
 608		ice_ena_vf_mappings(vf);
 609		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
 610		it_cnt++;
 611	}
 612
 613	ice_flush(hw);
 614	return 0;
 615
 616teardown:
 617	ice_for_each_vf(pf, bkt, vf) {
 618		if (it_cnt == 0)
 619			break;
 620
 621		ice_dis_vf_mappings(vf);
 622		ice_vf_vsi_release(vf);
 623		it_cnt--;
 624	}
 625
 626	return retval;
 627}
 628
 629/**
 630 * ice_sriov_free_vf - Free VF memory after all references are dropped
 631 * @vf: pointer to VF to free
 632 *
 633 * Called by ice_put_vf through ice_release_vf once the last reference to a VF
 634 * structure has been dropped.
 635 */
 636static void ice_sriov_free_vf(struct ice_vf *vf)
 637{
 638	mutex_destroy(&vf->cfg_lock);
 639
 640	kfree_rcu(vf, rcu);
 641}
 642
 643/**
 644 * ice_sriov_clear_reset_state - clears VF Reset status register
 645 * @vf: the vf to configure
 646 */
 647static void ice_sriov_clear_reset_state(struct ice_vf *vf)
 648{
 649	struct ice_hw *hw = &vf->pf->hw;
 650
 651	/* Clear the reset status register so that VF immediately sees that
 652	 * the device is resetting, even if hardware hasn't yet gotten around
 653	 * to clearing VFGEN_RSTAT for us.
 654	 */
 655	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
 656}
 657
 658/**
 659 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
 660 * @vf: the vf to configure
 661 */
 662static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
 663{
 664	struct ice_pf *pf = vf->pf;
 665
 666	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
 667	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
 668}
 669
 670/**
 671 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
 672 * @vf: pointer to VF structure
 673 * @is_vflr: true if reset occurred due to VFLR
 674 *
 675 * Trigger and cleanup after a VF reset for a SR-IOV VF.
 676 */
 677static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
 678{
 679	struct ice_pf *pf = vf->pf;
 680	u32 reg, reg_idx, bit_idx;
 681	unsigned int vf_abs_id, i;
 682	struct device *dev;
 683	struct ice_hw *hw;
 684
 685	dev = ice_pf_to_dev(pf);
 686	hw = &pf->hw;
 687	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
 688
 689	/* In the case of a VFLR, HW has already reset the VF and we just need
 690	 * to clean up. Otherwise we must first trigger the reset using the
 691	 * VFRTRIG register.
 692	 */
 693	if (!is_vflr) {
 694		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
 695		reg |= VPGEN_VFRTRIG_VFSWR_M;
 696		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
 697	}
 698
 699	/* clear the VFLR bit in GLGEN_VFLRSTAT */
 700	reg_idx = (vf_abs_id) / 32;
 701	bit_idx = (vf_abs_id) % 32;
 702	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
 703	ice_flush(hw);
 704
 705	wr32(hw, PF_PCI_CIAA,
 706	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
 707	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
 708		reg = rd32(hw, PF_PCI_CIAD);
 709		/* no transactions pending so stop polling */
 710		if ((reg & VF_TRANS_PENDING_M) == 0)
 711			break;
 712
 713		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
 714		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
 715	}
 716}
 717
 718/**
 719 * ice_sriov_poll_reset_status - poll SRIOV VF reset status
 720 * @vf: pointer to VF structure
 721 *
 722 * Returns true when reset is successful, else returns false
 723 */
 724static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
 725{
 726	struct ice_pf *pf = vf->pf;
 727	unsigned int i;
 728	u32 reg;
 729
 730	for (i = 0; i < 10; i++) {
 731		/* VF reset requires driver to first reset the VF and then
 732		 * poll the status register to make sure that the reset
 733		 * completed successfully.
 734		 */
 735		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
 736		if (reg & VPGEN_VFRSTAT_VFRD_M)
 737			return true;
 738
 739		/* only sleep if the reset is not done */
 740		usleep_range(10, 20);
 741	}
 742	return false;
 743}
 744
 745/**
 746 * ice_sriov_clear_reset_trigger - enable VF to access hardware
 747 * @vf: VF to enabled hardware access for
 748 */
 749static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
 750{
 751	struct ice_hw *hw = &vf->pf->hw;
 752	u32 reg;
 753
 754	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
 755	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
 756	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
 757	ice_flush(hw);
 758}
 759
 760/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
 762 * @vf: VF to perform tasks on
 763 */
 764static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
 765{
 
 
 766	ice_ena_vf_mappings(vf);
 767	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
 768}
 769
 770static const struct ice_vf_ops ice_sriov_vf_ops = {
 771	.reset_type = ICE_VF_RESET,
 772	.free = ice_sriov_free_vf,
 773	.clear_reset_state = ice_sriov_clear_reset_state,
 774	.clear_mbx_register = ice_sriov_clear_mbx_register,
 775	.trigger_reset_register = ice_sriov_trigger_reset_register,
 776	.poll_reset_status = ice_sriov_poll_reset_status,
 777	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
 778	.irq_close = NULL,
 779	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
 780};
 781
 782/**
 783 * ice_create_vf_entries - Allocate and insert VF entries
 784 * @pf: pointer to the PF structure
 785 * @num_vfs: the number of VFs to allocate
 786 *
 787 * Allocate new VF entries and insert them into the hash table. Set some
 788 * basic default fields for initializing the new VFs.
 789 *
 790 * After this function exits, the hash table will have num_vfs entries
 791 * inserted.
 792 *
 793 * Returns 0 on success or an integer error code on failure.
 794 */
 795static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
 796{
 797	struct pci_dev *pdev = pf->pdev;
 798	struct ice_vfs *vfs = &pf->vfs;
 799	struct pci_dev *vfdev = NULL;
 800	struct ice_vf *vf;
 801	u16 vf_pdev_id;
 802	int err, pos;
 803
 804	lockdep_assert_held(&vfs->table_lock);
 805
 806	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
 807	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
 808
 809	for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
 810		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
 811		if (!vf) {
 812			err = -ENOMEM;
 813			goto err_free_entries;
 814		}
 815		kref_init(&vf->refcnt);
 816
 817		vf->pf = pf;
 818		vf->vf_id = vf_id;
 819
 820		/* set sriov vf ops for VFs created during SRIOV flow */
 821		vf->vf_ops = &ice_sriov_vf_ops;
 822
 823		ice_initialize_vf_entry(vf);
 824
 825		do {
 826			vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
 827		} while (vfdev && vfdev->physfn != pdev);
 828		vf->vfdev = vfdev;
 829		vf->vf_sw_id = pf->first_sw;
 
 
 
 
 
 
 
 
 
 
 
 
 830
 831		pci_dev_get(vfdev);
 832
 833		hash_add_rcu(vfs->table, &vf->entry, vf_id);
 834	}
 835
 836	/* Decrement of refcount done by pci_get_device() inside the loop does
 837	 * not touch the last iteration's vfdev, so it has to be done manually
 838	 * to balance pci_dev_get() added within the loop.
 839	 */
 840	pci_dev_put(vfdev);
 841
 842	return 0;
 843
 844err_free_entries:
 845	ice_free_vf_entries(pf);
 846	return err;
 847}
 848
 849/**
 850 * ice_ena_vfs - enable VFs so they are ready to be used
 851 * @pf: pointer to the PF structure
 852 * @num_vfs: number of VFs to enable
 853 */
 854static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
 855{
 856	int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
 857	struct device *dev = ice_pf_to_dev(pf);
 858	struct ice_hw *hw = &pf->hw;
 859	int ret;
 860
 861	pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL);
 862	if (!pf->sriov_irq_bm)
 863		return -ENOMEM;
 864	pf->sriov_irq_size = total_vectors;
 865
 866	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
 867	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
 868	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
 869	set_bit(ICE_OICR_INTR_DIS, pf->state);
 870	ice_flush(hw);
 871
 872	ret = pci_enable_sriov(pf->pdev, num_vfs);
 873	if (ret)
 874		goto err_unroll_intr;
 875
 876	mutex_lock(&pf->vfs.table_lock);
 877
 878	ret = ice_set_per_vf_res(pf, num_vfs);
 879	if (ret) {
 880		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
 881			num_vfs, ret);
 882		goto err_unroll_sriov;
 883	}
 884
 885	ret = ice_create_vf_entries(pf, num_vfs);
 886	if (ret) {
 887		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
 888			num_vfs);
 889		goto err_unroll_sriov;
 890	}
 891
 892	ret = ice_start_vfs(pf);
 893	if (ret) {
 894		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
 895		ret = -EAGAIN;
 896		goto err_unroll_vf_entries;
 897	}
 898
 899	clear_bit(ICE_VF_DIS, pf->state);
 900
 
 
 
 
 
 
 901	/* rearm global interrupts */
 902	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
 903		ice_irq_dynamic_ena(hw, NULL, NULL);
 904
 905	mutex_unlock(&pf->vfs.table_lock);
 906
 907	return 0;
 908
 909err_unroll_vf_entries:
 910	ice_free_vf_entries(pf);
 911err_unroll_sriov:
 912	mutex_unlock(&pf->vfs.table_lock);
 913	pci_disable_sriov(pf->pdev);
 914err_unroll_intr:
 915	/* rearm interrupts here */
 916	ice_irq_dynamic_ena(hw, NULL, NULL);
 917	clear_bit(ICE_OICR_INTR_DIS, pf->state);
 918	bitmap_free(pf->sriov_irq_bm);
 919	return ret;
 920}
 921
 922/**
 923 * ice_pci_sriov_ena - Enable or change number of VFs
 924 * @pf: pointer to the PF structure
 925 * @num_vfs: number of VFs to allocate
 926 *
 927 * Returns 0 on success and negative on failure
 928 */
 929static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
 930{
 
 931	struct device *dev = ice_pf_to_dev(pf);
 932	int err;
 933
 934	if (!num_vfs) {
 935		ice_free_vfs(pf);
 
 936		return 0;
 937	}
 938
 939	if (num_vfs > pf->vfs.num_supported) {
 940		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
 941			num_vfs, pf->vfs.num_supported);
 942		return -EOPNOTSUPP;
 943	}
 944
 945	dev_info(dev, "Enabling %d VFs\n", num_vfs);
 946	err = ice_ena_vfs(pf, num_vfs);
 947	if (err) {
 948		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
 949		return err;
 950	}
 951
 952	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
 953	return 0;
 954}
 955
 956/**
 957 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
 958 * @pf: PF to enabled SR-IOV on
 959 */
 960static int ice_check_sriov_allowed(struct ice_pf *pf)
 961{
 962	struct device *dev = ice_pf_to_dev(pf);
 963
 964	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
 965		dev_err(dev, "This device is not capable of SR-IOV\n");
 966		return -EOPNOTSUPP;
 967	}
 968
 969	if (ice_is_safe_mode(pf)) {
 970		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
 971		return -EOPNOTSUPP;
 972	}
 973
 974	if (!ice_pf_state_is_nominal(pf)) {
 975		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
 976		return -EBUSY;
 977	}
 978
 979	return 0;
 980}
 981
 982/**
 983 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
 984 * @pdev: pointer to pci_dev struct
 985 *
 986 * The function is called via sysfs ops
 987 */
 988u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
 989{
 990	struct ice_pf *pf = pci_get_drvdata(pdev);
 991
 992	return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf);
 993}
 994
 995static int ice_sriov_move_base_vector(struct ice_pf *pf, int move)
 996{
 997	if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf))
 998		return -ENOMEM;
 999
1000	pf->sriov_base_vector -= move;
1001	return 0;
1002}
1003
1004static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
1005{
1006	u16 vf_ids[ICE_MAX_SRIOV_VFS];
1007	struct ice_vf *tmp_vf;
1008	int to_remap = 0, bkt;
1009
1010	/* For better irqs usage try to remap irqs of VFs
1011	 * that aren't running yet
1012	 */
1013	ice_for_each_vf(pf, bkt, tmp_vf) {
1014		/* skip VF which is changing the number of MSI-X */
1015		if (restricted_id == tmp_vf->vf_id ||
1016		    test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
1017			continue;
1018
1019		ice_dis_vf_mappings(tmp_vf);
1020		ice_sriov_free_irqs(pf, tmp_vf);
1021
1022		vf_ids[to_remap] = tmp_vf->vf_id;
1023		to_remap += 1;
1024	}
1025
1026	for (int i = 0; i < to_remap; i++) {
1027		tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
1028		if (!tmp_vf)
1029			continue;
1030
1031		tmp_vf->first_vector_idx =
1032			ice_sriov_get_irqs(pf, tmp_vf->num_msix);
1033		/* there is no need to rebuild VSI as we are only changing the
1034		 * vector indexes not amount of MSI-X or queues
1035		 */
1036		ice_ena_vf_mappings(tmp_vf);
1037		ice_put_vf(tmp_vf);
1038	}
1039}
1040
1041/**
1042 * ice_sriov_set_msix_vec_count
1043 * @vf_dev: pointer to pci_dev struct of VF device
1044 * @msix_vec_count: new value for MSI-X amount on this VF
1045 *
1046 * Set requested MSI-X, queues and registers for @vf_dev.
1047 *
1048 * First do some sanity checks like if there are any VFs, if the new value
1049 * is correct etc. Then disable old mapping (MSI-X and queues registers), change
1050 * MSI-X and queues, rebuild VSI and enable new mapping.
1051 *
1052 * If it is possible (driver not binded to VF) try to remap also other VFs to
1053 * linearize irqs register usage.
1054 */
1055int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
1056{
1057	struct pci_dev *pdev = pci_physfn(vf_dev);
1058	struct ice_pf *pf = pci_get_drvdata(pdev);
1059	u16 prev_msix, prev_queues, queues;
1060	bool needs_rebuild = false;
1061	struct ice_vsi *vsi;
1062	struct ice_vf *vf;
1063	int id;
1064
1065	if (!ice_get_num_vfs(pf))
1066		return -ENOENT;
1067
1068	if (!msix_vec_count)
1069		return 0;
1070
1071	queues = msix_vec_count;
1072	/* add 1 MSI-X for OICR */
1073	msix_vec_count += 1;
1074
1075	if (queues > min(ice_get_avail_txq_count(pf),
1076			 ice_get_avail_rxq_count(pf)))
1077		return -EINVAL;
1078
1079	if (msix_vec_count < ICE_MIN_INTR_PER_VF)
1080		return -EINVAL;
1081
1082	/* Transition of PCI VF function number to function_id */
1083	for (id = 0; id < pci_num_vf(pdev); id++) {
1084		if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
1085			break;
1086	}
1087
1088	if (id == pci_num_vf(pdev))
1089		return -ENOENT;
1090
1091	vf = ice_get_vf_by_id(pf, id);
1092
1093	if (!vf)
1094		return -ENOENT;
1095
1096	vsi = ice_get_vf_vsi(vf);
1097	if (!vsi) {
1098		ice_put_vf(vf);
1099		return -ENOENT;
1100	}
1101
1102	prev_msix = vf->num_msix;
1103	prev_queues = vf->num_vf_qs;
1104
1105	if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) {
1106		ice_put_vf(vf);
1107		return -ENOSPC;
1108	}
1109
1110	ice_dis_vf_mappings(vf);
1111	ice_sriov_free_irqs(pf, vf);
1112
1113	/* Remap all VFs beside the one is now configured */
1114	ice_sriov_remap_vectors(pf, vf->vf_id);
1115
1116	vf->num_msix = msix_vec_count;
1117	vf->num_vf_qs = queues;
1118	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1119	if (vf->first_vector_idx < 0)
1120		goto unroll;
1121
1122	vsi->req_txq = queues;
1123	vsi->req_rxq = queues;
1124
1125	if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
1126		/* Try to rebuild with previous values */
1127		needs_rebuild = true;
1128		goto unroll;
1129	}
1130
1131	dev_info(ice_pf_to_dev(pf),
1132		 "Changing VF %d resources to %d vectors and %d queues\n",
1133		 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1134
1135	ice_ena_vf_mappings(vf);
1136	ice_put_vf(vf);
1137
1138	return 0;
1139
1140unroll:
1141	dev_info(ice_pf_to_dev(pf),
1142		 "Can't set %d vectors on VF %d, falling back to %d\n",
1143		 vf->num_msix, vf->vf_id, prev_msix);
1144
1145	vf->num_msix = prev_msix;
1146	vf->num_vf_qs = prev_queues;
1147	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1148	if (vf->first_vector_idx < 0) {
1149		ice_put_vf(vf);
1150		return -EINVAL;
1151	}
1152
1153	if (needs_rebuild) {
1154		vsi->req_txq = prev_queues;
1155		vsi->req_rxq = prev_queues;
1156
1157		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
1158	}
1159
1160	ice_ena_vf_mappings(vf);
1161	ice_put_vf(vf);
1162
1163	return -EINVAL;
1164}
1165
1166/**
1167 * ice_sriov_configure - Enable or change number of VFs via sysfs
1168 * @pdev: pointer to a pci_dev structure
1169 * @num_vfs: number of VFs to allocate or 0 to free VFs
1170 *
1171 * This function is called when the user updates the number of VFs in sysfs. On
1172 * success return whatever num_vfs was set to by the caller. Return negative on
1173 * failure.
1174 */
1175int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1176{
1177	struct ice_pf *pf = pci_get_drvdata(pdev);
1178	struct device *dev = ice_pf_to_dev(pf);
1179	int err;
1180
1181	err = ice_check_sriov_allowed(pf);
1182	if (err)
1183		return err;
1184
1185	if (!num_vfs) {
1186		if (!pci_vfs_assigned(pdev)) {
1187			ice_free_vfs(pf);
 
 
 
1188			return 0;
1189		}
1190
1191		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1192		return -EBUSY;
1193	}
1194
1195	err = ice_pci_sriov_ena(pf, num_vfs);
1196	if (err)
1197		return err;
1198
 
 
 
 
 
 
 
 
1199	return num_vfs;
1200}
1201
1202/**
1203 * ice_process_vflr_event - Free VF resources via IRQ calls
1204 * @pf: pointer to the PF structure
1205 *
1206 * called from the VFLR IRQ handler to
1207 * free up VF resources and state variables
1208 */
1209void ice_process_vflr_event(struct ice_pf *pf)
1210{
1211	struct ice_hw *hw = &pf->hw;
1212	struct ice_vf *vf;
1213	unsigned int bkt;
1214	u32 reg;
1215
1216	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1217	    !ice_has_vfs(pf))
1218		return;
1219
1220	mutex_lock(&pf->vfs.table_lock);
1221	ice_for_each_vf(pf, bkt, vf) {
1222		u32 reg_idx, bit_idx;
1223
1224		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1225		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1226		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1227		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1228		if (reg & BIT(bit_idx))
1229			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1230			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1231	}
1232	mutex_unlock(&pf->vfs.table_lock);
1233}
1234
1235/**
1236 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1237 * @pf: PF used to index all VFs
1238 * @pfq: queue index relative to the PF's function space
1239 *
1240 * If no VF is found who owns the pfq then return NULL, otherwise return a
1241 * pointer to the VF who owns the pfq
1242 *
1243 * If this function returns non-NULL, it acquires a reference count of the VF
1244 * structure. The caller is responsible for calling ice_put_vf() to drop this
1245 * reference.
1246 */
1247static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1248{
1249	struct ice_vf *vf;
1250	unsigned int bkt;
1251
1252	rcu_read_lock();
1253	ice_for_each_vf_rcu(pf, bkt, vf) {
1254		struct ice_vsi *vsi;
1255		u16 rxq_idx;
1256
1257		vsi = ice_get_vf_vsi(vf);
1258		if (!vsi)
1259			continue;
1260
1261		ice_for_each_rxq(vsi, rxq_idx)
1262			if (vsi->rxq_map[rxq_idx] == pfq) {
1263				struct ice_vf *found;
1264
1265				if (kref_get_unless_zero(&vf->refcnt))
1266					found = vf;
1267				else
1268					found = NULL;
1269				rcu_read_unlock();
1270				return found;
1271			}
1272	}
1273	rcu_read_unlock();
1274
1275	return NULL;
1276}
1277
1278/**
1279 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1280 * @pf: PF used for conversion
1281 * @globalq: global queue index used to convert to PF space queue index
1282 */
1283static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1284{
1285	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1286}
1287
1288/**
1289 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1290 * @pf: PF that the LAN overflow event happened on
1291 * @event: structure holding the event information for the LAN overflow event
1292 *
1293 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1294 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1295 * reset on the offending VF.
1296 */
1297void
1298ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1299{
1300	u32 gldcb_rtctq, queue;
1301	struct ice_vf *vf;
1302
1303	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1304	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1305
1306	/* event returns device global Rx queue number */
1307	queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq);
 
1308
1309	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1310	if (!vf)
1311		return;
1312
1313	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1314	ice_put_vf(vf);
1315}
1316
1317/**
1318 * ice_set_vf_spoofchk
1319 * @netdev: network interface device structure
1320 * @vf_id: VF identifier
1321 * @ena: flag to enable or disable feature
1322 *
1323 * Enable or disable VF spoof checking
1324 */
1325int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1326{
1327	struct ice_netdev_priv *np = netdev_priv(netdev);
1328	struct ice_pf *pf = np->vsi->back;
1329	struct ice_vsi *vf_vsi;
1330	struct device *dev;
1331	struct ice_vf *vf;
1332	int ret;
1333
1334	dev = ice_pf_to_dev(pf);
1335
1336	vf = ice_get_vf_by_id(pf, vf_id);
1337	if (!vf)
1338		return -EINVAL;
1339
1340	ret = ice_check_vf_ready_for_cfg(vf);
1341	if (ret)
1342		goto out_put_vf;
1343
1344	vf_vsi = ice_get_vf_vsi(vf);
1345	if (!vf_vsi) {
1346		netdev_err(netdev, "VSI %d for VF %d is null\n",
1347			   vf->lan_vsi_idx, vf->vf_id);
1348		ret = -EINVAL;
1349		goto out_put_vf;
1350	}
1351
1352	if (vf_vsi->type != ICE_VSI_VF) {
1353		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1354			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1355		ret = -ENODEV;
1356		goto out_put_vf;
1357	}
1358
1359	if (ena == vf->spoofchk) {
1360		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1361		ret = 0;
1362		goto out_put_vf;
1363	}
1364
1365	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1366	if (ret)
1367		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1368			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1369	else
1370		vf->spoofchk = ena;
1371
1372out_put_vf:
1373	ice_put_vf(vf);
1374	return ret;
1375}
1376
1377/**
1378 * ice_get_vf_cfg
1379 * @netdev: network interface device structure
1380 * @vf_id: VF identifier
1381 * @ivi: VF configuration structure
1382 *
1383 * return VF configuration
1384 */
1385int
1386ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1387{
1388	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1389	struct ice_vf *vf;
1390	int ret;
1391
1392	vf = ice_get_vf_by_id(pf, vf_id);
1393	if (!vf)
1394		return -EINVAL;
1395
1396	ret = ice_check_vf_ready_for_cfg(vf);
1397	if (ret)
1398		goto out_put_vf;
1399
1400	ivi->vf = vf_id;
1401	ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1402
1403	/* VF configuration for VLAN and applicable QoS */
1404	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1405	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1406	if (ice_vf_is_port_vlan_ena(vf))
1407		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1408
1409	ivi->trusted = vf->trusted;
1410	ivi->spoofchk = vf->spoofchk;
1411	if (!vf->link_forced)
1412		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1413	else if (vf->link_up)
1414		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1415	else
1416		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1417	ivi->max_tx_rate = vf->max_tx_rate;
1418	ivi->min_tx_rate = vf->min_tx_rate;
1419
1420out_put_vf:
1421	ice_put_vf(vf);
1422	return ret;
1423}
1424
1425/**
1426 * __ice_set_vf_mac - program VF MAC address
1427 * @pf: PF to be configure
1428 * @vf_id: VF identifier
1429 * @mac: MAC address
1430 *
1431 * program VF MAC address
1432 * Return: zero on success or an error code on failure
1433 */
1434int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac)
1435{
1436	struct device *dev;
1437	struct ice_vf *vf;
1438	int ret;
1439
1440	dev = ice_pf_to_dev(pf);
1441	if (is_multicast_ether_addr(mac)) {
1442		dev_err(dev, "%pM not a valid unicast address\n", mac);
1443		return -EINVAL;
1444	}
1445
1446	vf = ice_get_vf_by_id(pf, vf_id);
1447	if (!vf)
1448		return -EINVAL;
1449
1450	/* nothing left to do, unicast MAC already set */
1451	if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1452	    ether_addr_equal(vf->hw_lan_addr, mac)) {
1453		ret = 0;
1454		goto out_put_vf;
1455	}
1456
1457	ret = ice_check_vf_ready_for_cfg(vf);
1458	if (ret)
1459		goto out_put_vf;
1460
1461	mutex_lock(&vf->cfg_lock);
1462
1463	/* VF is notified of its new MAC via the PF's response to the
1464	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1465	 */
1466	ether_addr_copy(vf->dev_lan_addr, mac);
1467	ether_addr_copy(vf->hw_lan_addr, mac);
1468	if (is_zero_ether_addr(mac)) {
1469		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1470		vf->pf_set_mac = false;
1471		dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1472			 vf->vf_id);
1473	} else {
1474		/* PF will add MAC rule for the VF */
1475		vf->pf_set_mac = true;
1476		dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1477			 mac, vf_id);
1478	}
1479
1480	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1481	mutex_unlock(&vf->cfg_lock);
1482
1483out_put_vf:
1484	ice_put_vf(vf);
1485	return ret;
1486}
1487
1488/**
1489 * ice_set_vf_mac - .ndo_set_vf_mac handler
1490 * @netdev: network interface device structure
1491 * @vf_id: VF identifier
1492 * @mac: MAC address
1493 *
1494 * program VF MAC address
1495 * Return: zero on success or an error code on failure
1496 */
1497int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1498{
1499	return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac);
1500}
1501
1502/**
1503 * ice_set_vf_trust
1504 * @netdev: network interface device structure
1505 * @vf_id: VF identifier
1506 * @trusted: Boolean value to enable/disable trusted VF
1507 *
1508 * Enable or disable a given VF as trusted
1509 */
1510int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1511{
1512	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1513	struct ice_vf *vf;
1514	int ret;
1515
1516	vf = ice_get_vf_by_id(pf, vf_id);
1517	if (!vf)
1518		return -EINVAL;
1519
1520	if (ice_is_eswitch_mode_switchdev(pf)) {
1521		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1522		return -EOPNOTSUPP;
1523	}
1524
 
 
 
 
1525	ret = ice_check_vf_ready_for_cfg(vf);
1526	if (ret)
1527		goto out_put_vf;
1528
1529	/* Check if already trusted */
1530	if (trusted == vf->trusted) {
1531		ret = 0;
1532		goto out_put_vf;
1533	}
1534
1535	mutex_lock(&vf->cfg_lock);
1536
1537	vf->trusted = trusted;
1538	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1539	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1540		 vf_id, trusted ? "" : "un");
1541
1542	mutex_unlock(&vf->cfg_lock);
1543
1544out_put_vf:
1545	ice_put_vf(vf);
1546	return ret;
1547}
1548
1549/**
1550 * ice_set_vf_link_state
1551 * @netdev: network interface device structure
1552 * @vf_id: VF identifier
1553 * @link_state: required link state
1554 *
1555 * Set VF's link state, irrespective of physical link state status
1556 */
1557int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1558{
1559	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1560	struct ice_vf *vf;
1561	int ret;
1562
1563	vf = ice_get_vf_by_id(pf, vf_id);
1564	if (!vf)
1565		return -EINVAL;
1566
1567	ret = ice_check_vf_ready_for_cfg(vf);
1568	if (ret)
1569		goto out_put_vf;
1570
1571	switch (link_state) {
1572	case IFLA_VF_LINK_STATE_AUTO:
1573		vf->link_forced = false;
1574		break;
1575	case IFLA_VF_LINK_STATE_ENABLE:
1576		vf->link_forced = true;
1577		vf->link_up = true;
1578		break;
1579	case IFLA_VF_LINK_STATE_DISABLE:
1580		vf->link_forced = true;
1581		vf->link_up = false;
1582		break;
1583	default:
1584		ret = -EINVAL;
1585		goto out_put_vf;
1586	}
1587
1588	ice_vc_notify_vf_link_state(vf);
1589
1590out_put_vf:
1591	ice_put_vf(vf);
1592	return ret;
1593}
1594
1595/**
1596 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1597 * @pf: PF associated with VFs
1598 */
1599static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1600{
1601	struct ice_vf *vf;
1602	unsigned int bkt;
1603	int rate = 0;
1604
1605	rcu_read_lock();
1606	ice_for_each_vf_rcu(pf, bkt, vf)
1607		rate += vf->min_tx_rate;
1608	rcu_read_unlock();
1609
1610	return rate;
1611}
1612
1613/**
1614 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1615 * @vf: VF trying to configure min_tx_rate
1616 * @min_tx_rate: min Tx rate in Mbps
1617 *
1618 * Check if the min_tx_rate being passed in will cause oversubscription of total
1619 * min_tx_rate based on the current link speed and all other VFs configured
1620 * min_tx_rate
1621 *
1622 * Return true if the passed min_tx_rate would cause oversubscription, else
1623 * return false
1624 */
1625static bool
1626ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1627{
1628	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1629	int all_vfs_min_tx_rate;
1630	int link_speed_mbps;
1631
1632	if (WARN_ON(!vsi))
1633		return false;
1634
1635	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1636	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1637
1638	/* this VF's previous rate is being overwritten */
1639	all_vfs_min_tx_rate -= vf->min_tx_rate;
1640
1641	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1642		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1643			min_tx_rate, vf->vf_id,
1644			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1645			link_speed_mbps);
1646		return true;
1647	}
1648
1649	return false;
1650}
1651
1652/**
1653 * ice_set_vf_bw - set min/max VF bandwidth
1654 * @netdev: network interface device structure
1655 * @vf_id: VF identifier
1656 * @min_tx_rate: Minimum Tx rate in Mbps
1657 * @max_tx_rate: Maximum Tx rate in Mbps
1658 */
1659int
1660ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1661	      int max_tx_rate)
1662{
1663	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1664	struct ice_vsi *vsi;
1665	struct device *dev;
1666	struct ice_vf *vf;
1667	int ret;
1668
1669	dev = ice_pf_to_dev(pf);
1670
1671	vf = ice_get_vf_by_id(pf, vf_id);
1672	if (!vf)
1673		return -EINVAL;
1674
1675	ret = ice_check_vf_ready_for_cfg(vf);
1676	if (ret)
1677		goto out_put_vf;
1678
1679	vsi = ice_get_vf_vsi(vf);
1680	if (!vsi) {
1681		ret = -EINVAL;
1682		goto out_put_vf;
1683	}
1684
1685	if (min_tx_rate && ice_is_dcb_active(pf)) {
1686		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1687		ret = -EOPNOTSUPP;
1688		goto out_put_vf;
1689	}
1690
1691	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1692		ret = -EINVAL;
1693		goto out_put_vf;
1694	}
1695
1696	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1697		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1698		if (ret) {
1699			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1700				vf->vf_id);
1701			goto out_put_vf;
1702		}
1703
1704		vf->min_tx_rate = min_tx_rate;
1705	}
1706
1707	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1708		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1709		if (ret) {
1710			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1711				vf->vf_id);
1712			goto out_put_vf;
1713		}
1714
1715		vf->max_tx_rate = max_tx_rate;
1716	}
1717
1718out_put_vf:
1719	ice_put_vf(vf);
1720	return ret;
1721}
1722
1723/**
1724 * ice_get_vf_stats - populate some stats for the VF
1725 * @netdev: the netdev of the PF
1726 * @vf_id: the host OS identifier (0-255)
1727 * @vf_stats: pointer to the OS memory to be initialized
1728 */
1729int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1730		     struct ifla_vf_stats *vf_stats)
1731{
1732	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1733	struct ice_eth_stats *stats;
1734	struct ice_vsi *vsi;
1735	struct ice_vf *vf;
1736	int ret;
1737
1738	vf = ice_get_vf_by_id(pf, vf_id);
1739	if (!vf)
1740		return -EINVAL;
1741
1742	ret = ice_check_vf_ready_for_cfg(vf);
1743	if (ret)
1744		goto out_put_vf;
1745
1746	vsi = ice_get_vf_vsi(vf);
1747	if (!vsi) {
1748		ret = -EINVAL;
1749		goto out_put_vf;
1750	}
1751
1752	ice_update_eth_stats(vsi);
1753	stats = &vsi->eth_stats;
1754
1755	memset(vf_stats, 0, sizeof(*vf_stats));
1756
1757	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1758		stats->rx_multicast;
1759	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1760		stats->tx_multicast;
1761	vf_stats->rx_bytes   = stats->rx_bytes;
1762	vf_stats->tx_bytes   = stats->tx_bytes;
1763	vf_stats->broadcast  = stats->rx_broadcast;
1764	vf_stats->multicast  = stats->rx_multicast;
1765	vf_stats->rx_dropped = stats->rx_discards;
1766	vf_stats->tx_dropped = stats->tx_discards;
1767
1768out_put_vf:
1769	ice_put_vf(vf);
1770	return ret;
1771}
1772
1773/**
1774 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1775 * @hw: hardware structure used to check the VLAN mode
1776 * @vlan_proto: VLAN TPID being checked
1777 *
1778 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1779 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1780 * Mode (SVM), then only ETH_P_8021Q is supported.
1781 */
1782static bool
1783ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1784{
1785	bool is_supported = false;
1786
1787	switch (vlan_proto) {
1788	case ETH_P_8021Q:
1789		is_supported = true;
1790		break;
1791	case ETH_P_8021AD:
1792		if (ice_is_dvm_ena(hw))
1793			is_supported = true;
1794		break;
1795	}
1796
1797	return is_supported;
1798}
1799
1800/**
1801 * ice_set_vf_port_vlan
1802 * @netdev: network interface device structure
1803 * @vf_id: VF identifier
1804 * @vlan_id: VLAN ID being set
1805 * @qos: priority setting
1806 * @vlan_proto: VLAN protocol
1807 *
1808 * program VF Port VLAN ID and/or QoS
1809 */
1810int
1811ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1812		     __be16 vlan_proto)
1813{
1814	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1815	u16 local_vlan_proto = ntohs(vlan_proto);
1816	struct device *dev;
1817	struct ice_vf *vf;
1818	int ret;
1819
1820	dev = ice_pf_to_dev(pf);
1821
1822	if (vlan_id >= VLAN_N_VID || qos > 7) {
1823		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1824			vf_id, vlan_id, qos);
1825		return -EINVAL;
1826	}
1827
1828	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1829		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1830			local_vlan_proto);
1831		return -EPROTONOSUPPORT;
1832	}
1833
1834	vf = ice_get_vf_by_id(pf, vf_id);
1835	if (!vf)
1836		return -EINVAL;
1837
1838	ret = ice_check_vf_ready_for_cfg(vf);
1839	if (ret)
1840		goto out_put_vf;
1841
1842	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1843	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1844	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1845		/* duplicate request, so just return success */
1846		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1847			vlan_id, qos, local_vlan_proto);
1848		ret = 0;
1849		goto out_put_vf;
1850	}
1851
1852	mutex_lock(&vf->cfg_lock);
1853
1854	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1855	if (ice_vf_is_port_vlan_ena(vf))
1856		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1857			 vlan_id, qos, local_vlan_proto, vf_id);
1858	else
1859		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1860
1861	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1862	mutex_unlock(&vf->cfg_lock);
1863
1864out_put_vf:
1865	ice_put_vf(vf);
1866	return ret;
1867}
1868
1869/**
1870 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1871 * @vf: pointer to the VF structure
1872 */
1873void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1874{
1875	struct ice_pf *pf = vf->pf;
1876	struct device *dev;
1877
1878	dev = ice_pf_to_dev(pf);
1879
1880	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1881		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1882		 vf->dev_lan_addr,
1883		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1884			  ? "on" : "off");
1885}
1886
1887/**
1888 * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event
1889 * @vf: pointer to the VF structure
1890 */
1891void ice_print_vf_tx_mdd_event(struct ice_vf *vf)
1892{
1893	struct ice_pf *pf = vf->pf;
1894	struct device *dev;
1895
1896	dev = ice_pf_to_dev(pf);
1897
1898	dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1899		 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id,
1900		 vf->dev_lan_addr,
1901		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1902			  ? "on" : "off");
1903}
1904
1905/**
1906 * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1907 * @pf: pointer to the PF structure
1908 *
1909 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1910 */
1911void ice_print_vfs_mdd_events(struct ice_pf *pf)
1912{
 
 
1913	struct ice_vf *vf;
1914	unsigned int bkt;
1915
1916	/* check that there are pending MDD events to print */
1917	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1918		return;
1919
1920	/* VF MDD event logs are rate limited to one second intervals */
1921	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1922		return;
1923
1924	pf->vfs.last_printed_mdd_jiffies = jiffies;
1925
1926	mutex_lock(&pf->vfs.table_lock);
1927	ice_for_each_vf(pf, bkt, vf) {
1928		/* only print Rx MDD event message if there are new events */
1929		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1930			vf->mdd_rx_events.last_printed =
1931							vf->mdd_rx_events.count;
1932			ice_print_vf_rx_mdd_event(vf);
1933		}
1934
1935		/* only print Tx MDD event message if there are new events */
1936		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1937			vf->mdd_tx_events.last_printed =
1938							vf->mdd_tx_events.count;
1939			ice_print_vf_tx_mdd_event(vf);
 
 
 
1940		}
1941	}
1942	mutex_unlock(&pf->vfs.table_lock);
1943}
1944
1945/**
1946 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1947 * @pf: pointer to the PF structure
1948 *
1949 * Called when recovering from a PF FLR to restore interrupt capability to
1950 * the VFs.
1951 */
1952void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1953{
 
 
 
 
1954	struct ice_vf *vf;
1955	u32 bkt;
 
 
 
 
 
 
 
1956
1957	ice_for_each_vf(pf, bkt, vf)
1958		pci_restore_msi_state(vf->vfdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1959}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_vf_lib_private.h"
   6#include "ice_base.h"
   7#include "ice_lib.h"
   8#include "ice_fltr.h"
   9#include "ice_dcb_lib.h"
  10#include "ice_flow.h"
  11#include "ice_eswitch.h"
  12#include "ice_virtchnl_allowlist.h"
  13#include "ice_flex_pipe.h"
  14#include "ice_vf_vsi_vlan_ops.h"
  15#include "ice_vlan.h"
  16
  17/**
  18 * ice_free_vf_entries - Free all VF entries from the hash table
  19 * @pf: pointer to the PF structure
  20 *
  21 * Iterate over the VF hash table, removing and releasing all VF entries.
  22 * Called during VF teardown or as cleanup during failed VF initialization.
  23 */
  24static void ice_free_vf_entries(struct ice_pf *pf)
  25{
  26	struct ice_vfs *vfs = &pf->vfs;
  27	struct hlist_node *tmp;
  28	struct ice_vf *vf;
  29	unsigned int bkt;
  30
  31	/* Remove all VFs from the hash table and release their main
  32	 * reference. Once all references to the VF are dropped, ice_put_vf()
  33	 * will call ice_release_vf which will remove the VF memory.
  34	 */
  35	lockdep_assert_held(&vfs->table_lock);
  36
  37	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
  38		hash_del_rcu(&vf->entry);
 
  39		ice_put_vf(vf);
  40	}
  41}
  42
  43/**
  44 * ice_vf_vsi_release - invalidate the VF's VSI after freeing it
  45 * @vf: invalidate this VF's VSI after freeing it
  46 */
  47static void ice_vf_vsi_release(struct ice_vf *vf)
  48{
  49	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
  50
  51	if (WARN_ON(!vsi))
  52		return;
  53
  54	ice_vsi_release(vsi);
  55	ice_vf_invalidate_vsi(vf);
  56}
  57
  58/**
  59 * ice_free_vf_res - Free a VF's resources
  60 * @vf: pointer to the VF info
  61 */
  62static void ice_free_vf_res(struct ice_vf *vf)
  63{
  64	struct ice_pf *pf = vf->pf;
  65	int i, last_vector_idx;
  66
  67	/* First, disable VF's configuration API to prevent OS from
  68	 * accessing the VF's VSI after it's freed or invalidated.
  69	 */
  70	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
  71	ice_vf_fdir_exit(vf);
  72	/* free VF control VSI */
  73	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
  74		ice_vf_ctrl_vsi_release(vf);
  75
  76	/* free VSI and disconnect it from the parent uplink */
  77	if (vf->lan_vsi_idx != ICE_NO_VSI) {
  78		ice_vf_vsi_release(vf);
  79		vf->num_mac = 0;
  80	}
  81
  82	last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1;
  83
  84	/* clear VF MDD event information */
  85	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
  86	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
  87
  88	/* Disable interrupts so that VF starts in a known state */
  89	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
  90		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
  91		ice_flush(&pf->hw);
  92	}
  93	/* reset some of the state variables keeping track of the resources */
  94	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
  95	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
  96}
  97
  98/**
  99 * ice_dis_vf_mappings
 100 * @vf: pointer to the VF structure
 101 */
 102static void ice_dis_vf_mappings(struct ice_vf *vf)
 103{
 104	struct ice_pf *pf = vf->pf;
 105	struct ice_vsi *vsi;
 106	struct device *dev;
 107	int first, last, v;
 108	struct ice_hw *hw;
 109
 110	hw = &pf->hw;
 111	vsi = ice_get_vf_vsi(vf);
 112	if (WARN_ON(!vsi))
 113		return;
 114
 115	dev = ice_pf_to_dev(pf);
 116	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
 117	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
 118
 119	first = vf->first_vector_idx;
 120	last = first + pf->vfs.num_msix_per - 1;
 121	for (v = first; v <= last; v++) {
 122		u32 reg;
 123
 124		reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
 125			GLINT_VECT2FUNC_IS_PF_M) |
 126		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
 127			GLINT_VECT2FUNC_PF_NUM_M));
 128		wr32(hw, GLINT_VECT2FUNC(v), reg);
 129	}
 130
 131	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
 132		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
 133	else
 134		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
 135
 136	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
 137		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
 138	else
 139		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
 140}
 141
 142/**
 143 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
 144 * @pf: pointer to the PF structure
 145 *
 146 * Since no MSIX entries are taken from the pf->irq_tracker then just clear
 147 * the pf->sriov_base_vector.
 148 *
 149 * Returns 0 on success, and -EINVAL on error.
 150 */
 151static int ice_sriov_free_msix_res(struct ice_pf *pf)
 152{
 153	struct ice_res_tracker *res;
 154
 155	if (!pf)
 156		return -EINVAL;
 157
 158	res = pf->irq_tracker;
 159	if (!res)
 160		return -EINVAL;
 161
 162	/* give back irq_tracker resources used */
 163	WARN_ON(pf->sriov_base_vector < res->num_entries);
 164
 165	pf->sriov_base_vector = 0;
 166
 167	return 0;
 168}
 169
 170/**
 171 * ice_free_vfs - Free all VFs
 172 * @pf: pointer to the PF structure
 173 */
 174void ice_free_vfs(struct ice_pf *pf)
 175{
 176	struct device *dev = ice_pf_to_dev(pf);
 177	struct ice_vfs *vfs = &pf->vfs;
 178	struct ice_hw *hw = &pf->hw;
 179	struct ice_vf *vf;
 180	unsigned int bkt;
 181
 182	if (!ice_has_vfs(pf))
 183		return;
 184
 185	while (test_and_set_bit(ICE_VF_DIS, pf->state))
 186		usleep_range(1000, 2000);
 187
 188	/* Disable IOV before freeing resources. This lets any VF drivers
 189	 * running in the host get themselves cleaned up before we yank
 190	 * the carpet out from underneath their feet.
 191	 */
 192	if (!pci_vfs_assigned(pf->pdev))
 193		pci_disable_sriov(pf->pdev);
 194	else
 195		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
 196
 197	mutex_lock(&vfs->table_lock);
 198
 199	ice_eswitch_release(pf);
 200
 201	ice_for_each_vf(pf, bkt, vf) {
 202		mutex_lock(&vf->cfg_lock);
 203
 
 204		ice_dis_vf_qs(vf);
 205
 206		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
 207			/* disable VF qp mappings and set VF disable state */
 208			ice_dis_vf_mappings(vf);
 209			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
 210			ice_free_vf_res(vf);
 211		}
 212
 213		if (!pci_vfs_assigned(pf->pdev)) {
 214			u32 reg_idx, bit_idx;
 215
 216			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
 217			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
 218			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
 219		}
 220
 221		/* clear malicious info since the VF is getting released */
 222		if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->vfs.malvfs,
 223					ICE_MAX_SRIOV_VFS, vf->vf_id))
 224			dev_dbg(dev, "failed to clear malicious VF state for VF %u\n",
 225				vf->vf_id);
 226
 227		mutex_unlock(&vf->cfg_lock);
 228	}
 229
 230	if (ice_sriov_free_msix_res(pf))
 231		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
 232
 233	vfs->num_qps_per = 0;
 234	ice_free_vf_entries(pf);
 235
 236	mutex_unlock(&vfs->table_lock);
 237
 238	clear_bit(ICE_VF_DIS, pf->state);
 239	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
 240}
 241
 242/**
 243 * ice_vf_vsi_setup - Set up a VF VSI
 244 * @vf: VF to setup VSI for
 245 *
 246 * Returns pointer to the successfully allocated VSI struct on success,
 247 * otherwise returns NULL on failure.
 248 */
 249static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
 250{
 251	struct ice_port_info *pi = ice_vf_get_port_info(vf);
 252	struct ice_pf *pf = vf->pf;
 253	struct ice_vsi *vsi;
 254
 255	vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf, NULL);
 
 
 
 
 
 256
 257	if (!vsi) {
 258		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
 259		ice_vf_invalidate_vsi(vf);
 260		return NULL;
 261	}
 262
 263	vf->lan_vsi_idx = vsi->idx;
 264	vf->lan_vsi_num = vsi->vsi_num;
 265
 266	return vsi;
 267}
 268
 269/**
 270 * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
 271 * @pf: pointer to PF structure
 272 * @vf: pointer to VF that the first MSIX vector index is being calculated for
 273 *
 274 * This returns the first MSIX vector index in PF space that is used by this VF.
 275 * This index is used when accessing PF relative registers such as
 276 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
 277 * This will always be the OICR index in the AVF driver so any functionality
 278 * using vf->first_vector_idx for queue configuration will have to increment by
 279 * 1 to avoid meddling with the OICR index.
 280 */
 281static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
 282{
 283	return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per;
 284}
 285
 286/**
 287 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
 288 * @vf: VF to enable MSIX mappings for
 289 *
 290 * Some of the registers need to be indexed/configured using hardware global
 291 * device values and other registers need 0-based values, which represent PF
 292 * based values.
 293 */
 294static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
 295{
 296	int device_based_first_msix, device_based_last_msix;
 297	int pf_based_first_msix, pf_based_last_msix, v;
 298	struct ice_pf *pf = vf->pf;
 299	int device_based_vf_id;
 300	struct ice_hw *hw;
 301	u32 reg;
 302
 303	hw = &pf->hw;
 304	pf_based_first_msix = vf->first_vector_idx;
 305	pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1;
 306
 307	device_based_first_msix = pf_based_first_msix +
 308		pf->hw.func_caps.common_cap.msix_vector_first_id;
 309	device_based_last_msix =
 310		(device_based_first_msix + pf->vfs.num_msix_per) - 1;
 311	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
 312
 313	reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
 314		VPINT_ALLOC_FIRST_M) |
 315	       ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
 316		VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
 317	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
 318
 319	reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
 320		 & VPINT_ALLOC_PCI_FIRST_M) |
 321	       ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
 322		VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
 323	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
 324
 325	/* map the interrupts to its functions */
 326	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
 327		reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
 328			GLINT_VECT2FUNC_VF_NUM_M) |
 329		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
 330			GLINT_VECT2FUNC_PF_NUM_M));
 331		wr32(hw, GLINT_VECT2FUNC(v), reg);
 332	}
 333
 334	/* Map mailbox interrupt to VF MSI-X vector 0 */
 335	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
 336}
 337
 338/**
 339 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
 340 * @vf: VF to enable the mappings for
 341 * @max_txq: max Tx queues allowed on the VF's VSI
 342 * @max_rxq: max Rx queues allowed on the VF's VSI
 343 */
 344static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
 345{
 346	struct device *dev = ice_pf_to_dev(vf->pf);
 347	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
 348	struct ice_hw *hw = &vf->pf->hw;
 349	u32 reg;
 350
 351	if (WARN_ON(!vsi))
 352		return;
 353
 354	/* set regardless of mapping mode */
 355	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
 356
 357	/* VF Tx queues allocation */
 358	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
 359		/* set the VF PF Tx queue range
 360		 * VFNUMQ value should be set to (number of queues - 1). A value
 361		 * of 0 means 1 queue and a value of 255 means 256 queues
 362		 */
 363		reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
 364			VPLAN_TX_QBASE_VFFIRSTQ_M) |
 365		       (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
 366			VPLAN_TX_QBASE_VFNUMQ_M));
 367		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
 368	} else {
 369		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
 370	}
 371
 372	/* set regardless of mapping mode */
 373	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
 374
 375	/* VF Rx queues allocation */
 376	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
 377		/* set the VF PF Rx queue range
 378		 * VFNUMQ value should be set to (number of queues - 1). A value
 379		 * of 0 means 1 queue and a value of 255 means 256 queues
 380		 */
 381		reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
 382			VPLAN_RX_QBASE_VFFIRSTQ_M) |
 383		       (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
 384			VPLAN_RX_QBASE_VFNUMQ_M));
 385		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
 386	} else {
 387		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
 388	}
 389}
 390
 391/**
 392 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
 393 * @vf: pointer to the VF structure
 394 */
 395static void ice_ena_vf_mappings(struct ice_vf *vf)
 396{
 397	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
 398
 399	if (WARN_ON(!vsi))
 400		return;
 401
 402	ice_ena_vf_msix_mappings(vf);
 403	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
 404}
 405
 406/**
 407 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
 408 * @vf: VF to calculate the register index for
 409 * @q_vector: a q_vector associated to the VF
 410 */
 411int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
 412{
 413	struct ice_pf *pf;
 414
 415	if (!vf || !q_vector)
 416		return -EINVAL;
 417
 418	pf = vf->pf;
 419
 420	/* always add one to account for the OICR being the first MSIX */
 421	return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id +
 422		q_vector->v_idx + 1;
 423}
 424
 425/**
 426 * ice_get_max_valid_res_idx - Get the max valid resource index
 427 * @res: pointer to the resource to find the max valid index for
 428 *
 429 * Start from the end of the ice_res_tracker and return right when we find the
 430 * first res->list entry with the ICE_RES_VALID_BIT set. This function is only
 431 * valid for SR-IOV because it is the only consumer that manipulates the
 432 * res->end and this is always called when res->end is set to res->num_entries.
 433 */
 434static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
 435{
 436	int i;
 437
 438	if (!res)
 439		return -EINVAL;
 440
 441	for (i = res->num_entries - 1; i >= 0; i--)
 442		if (res->list[i] & ICE_RES_VALID_BIT)
 443			return i;
 444
 445	return 0;
 446}
 447
 448/**
 449 * ice_sriov_set_msix_res - Set any used MSIX resources
 450 * @pf: pointer to PF structure
 451 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
 452 *
 453 * This function allows SR-IOV resources to be taken from the end of the PF's
 454 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
 455 * just set the pf->sriov_base_vector and return success.
 456 *
 457 * If there are not enough resources available, return an error. This should
 458 * always be caught by ice_set_per_vf_res().
 459 *
 460 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
 461 * in the PF's space available for SR-IOV.
 462 */
 463static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
 464{
 465	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
 466	int vectors_used = pf->irq_tracker->num_entries;
 467	int sriov_base_vector;
 468
 469	sriov_base_vector = total_vectors - num_msix_needed;
 470
 471	/* make sure we only grab irq_tracker entries from the list end and
 472	 * that we have enough available MSIX vectors
 473	 */
 474	if (sriov_base_vector < vectors_used)
 475		return -EINVAL;
 476
 477	pf->sriov_base_vector = sriov_base_vector;
 478
 479	return 0;
 480}
 481
 482/**
 483 * ice_set_per_vf_res - check if vectors and queues are available
 484 * @pf: pointer to the PF structure
 485 * @num_vfs: the number of SR-IOV VFs being configured
 486 *
 487 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
 488 * get more vectors and can enable more queues per VF. Note that this does not
 489 * grab any vectors from the SW pool already allocated. Also note, that all
 490 * vector counts include one for each VF's miscellaneous interrupt vector
 491 * (i.e. OICR).
 492 *
 493 * Minimum VFs - 2 vectors, 1 queue pair
 494 * Small VFs - 5 vectors, 4 queue pairs
 495 * Medium VFs - 17 vectors, 16 queue pairs
 496 *
 497 * Second, determine number of queue pairs per VF by starting with a pre-defined
 498 * maximum each VF supports. If this is not possible, then we adjust based on
 499 * queue pairs available on the device.
 500 *
 501 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
 502 * by each VF during VF initialization and reset.
 503 */
 504static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
 505{
 506	int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
 507	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
 508	int msix_avail_per_vf, msix_avail_for_sriov;
 509	struct device *dev = ice_pf_to_dev(pf);
 510	int err;
 511
 512	lockdep_assert_held(&pf->vfs.table_lock);
 513
 514	if (!num_vfs)
 515		return -EINVAL;
 516
 517	if (max_valid_res_idx < 0)
 518		return -ENOSPC;
 519
 520	/* determine MSI-X resources per VF */
 521	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
 522		pf->irq_tracker->num_entries;
 523	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
 524	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
 525		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
 526	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
 527		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
 528	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
 529		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
 530	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
 531		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
 532	} else {
 533		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
 534			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
 535			num_vfs);
 536		return -ENOSPC;
 537	}
 538
 539	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
 540			ICE_MAX_RSS_QS_PER_VF);
 541	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
 542	if (!avail_qs)
 543		num_txq = 0;
 544	else if (num_txq > avail_qs)
 545		num_txq = rounddown_pow_of_two(avail_qs);
 546
 547	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
 548			ICE_MAX_RSS_QS_PER_VF);
 549	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
 550	if (!avail_qs)
 551		num_rxq = 0;
 552	else if (num_rxq > avail_qs)
 553		num_rxq = rounddown_pow_of_two(avail_qs);
 554
 555	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
 556		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
 557			ICE_MIN_QS_PER_VF, num_vfs);
 558		return -ENOSPC;
 559	}
 560
 561	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
 562	if (err) {
 563		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
 564			num_vfs, err);
 565		return err;
 566	}
 567
 568	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
 569	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
 570	pf->vfs.num_msix_per = num_msix_per_vf;
 571	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
 572		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
 573
 574	return 0;
 575}
 576
 577/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
 579 * @vf: VF to initialize/setup the VSI for
 580 *
 581 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
 582 * VF VSI's broadcast filter and is only used during initial VF creation.
 583 */
 584static int ice_init_vf_vsi_res(struct ice_vf *vf)
 585{
 586	struct ice_vsi_vlan_ops *vlan_ops;
 587	struct ice_pf *pf = vf->pf;
 588	u8 broadcast[ETH_ALEN];
 589	struct ice_vsi *vsi;
 590	struct device *dev;
 591	int err;
 592
 593	vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
 
 
 594
 595	dev = ice_pf_to_dev(pf);
 596	vsi = ice_vf_vsi_setup(vf);
 597	if (!vsi)
 598		return -ENOMEM;
 599
 600	err = ice_vsi_add_vlan_zero(vsi);
 601	if (err) {
 602		dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n",
 603			 vf->vf_id);
 604		goto release_vsi;
 605	}
 606
 607	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
 608	err = vlan_ops->ena_rx_filtering(vsi);
 609	if (err) {
 610		dev_warn(dev, "Failed to enable Rx VLAN filtering for VF %d\n",
 611			 vf->vf_id);
 612		goto release_vsi;
 613	}
 614
 615	eth_broadcast_addr(broadcast);
 616	err = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
 617	if (err) {
 618		dev_err(dev, "Failed to add broadcast MAC filter for VF %d, error %d\n",
 619			vf->vf_id, err);
 620		goto release_vsi;
 621	}
 622
 623	err = ice_vsi_apply_spoofchk(vsi, vf->spoofchk);
 624	if (err) {
 625		dev_warn(dev, "Failed to initialize spoofchk setting for VF %d\n",
 626			 vf->vf_id);
 627		goto release_vsi;
 628	}
 629
 630	vf->num_mac = 1;
 631
 632	return 0;
 633
 634release_vsi:
 635	ice_vf_vsi_release(vf);
 636	return err;
 637}
 638
 639/**
 640 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
 641 * @pf: PF the VFs are associated with
 642 */
 643static int ice_start_vfs(struct ice_pf *pf)
 644{
 645	struct ice_hw *hw = &pf->hw;
 646	unsigned int bkt, it_cnt;
 647	struct ice_vf *vf;
 648	int retval;
 649
 650	lockdep_assert_held(&pf->vfs.table_lock);
 651
 652	it_cnt = 0;
 653	ice_for_each_vf(pf, bkt, vf) {
 654		vf->vf_ops->clear_reset_trigger(vf);
 655
 656		retval = ice_init_vf_vsi_res(vf);
 657		if (retval) {
 658			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
 659				vf->vf_id, retval);
 660			goto teardown;
 661		}
 662
 
 
 
 
 
 
 
 
 663		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
 664		ice_ena_vf_mappings(vf);
 665		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
 666		it_cnt++;
 667	}
 668
 669	ice_flush(hw);
 670	return 0;
 671
 672teardown:
 673	ice_for_each_vf(pf, bkt, vf) {
 674		if (it_cnt == 0)
 675			break;
 676
 677		ice_dis_vf_mappings(vf);
 678		ice_vf_vsi_release(vf);
 679		it_cnt--;
 680	}
 681
 682	return retval;
 683}
 684
 685/**
 686 * ice_sriov_free_vf - Free VF memory after all references are dropped
 687 * @vf: pointer to VF to free
 688 *
 689 * Called by ice_put_vf through ice_release_vf once the last reference to a VF
 690 * structure has been dropped.
 691 */
 692static void ice_sriov_free_vf(struct ice_vf *vf)
 693{
 694	mutex_destroy(&vf->cfg_lock);
 695
 696	kfree_rcu(vf, rcu);
 697}
 698
 699/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
 701 * @vf: the vf to configure
 702 */
 703static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
 704{
 705	struct ice_pf *pf = vf->pf;
 706
 707	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
 708	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
 709}
 710
 711/**
 712 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
 713 * @vf: pointer to VF structure
 714 * @is_vflr: true if reset occurred due to VFLR
 715 *
 716 * Trigger and cleanup after a VF reset for a SR-IOV VF.
 717 */
 718static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
 719{
 720	struct ice_pf *pf = vf->pf;
 721	u32 reg, reg_idx, bit_idx;
 722	unsigned int vf_abs_id, i;
 723	struct device *dev;
 724	struct ice_hw *hw;
 725
 726	dev = ice_pf_to_dev(pf);
 727	hw = &pf->hw;
 728	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
 729
 730	/* In the case of a VFLR, HW has already reset the VF and we just need
 731	 * to clean up. Otherwise we must first trigger the reset using the
 732	 * VFRTRIG register.
 733	 */
 734	if (!is_vflr) {
 735		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
 736		reg |= VPGEN_VFRTRIG_VFSWR_M;
 737		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
 738	}
 739
 740	/* clear the VFLR bit in GLGEN_VFLRSTAT */
 741	reg_idx = (vf_abs_id) / 32;
 742	bit_idx = (vf_abs_id) % 32;
 743	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
 744	ice_flush(hw);
 745
 746	wr32(hw, PF_PCI_CIAA,
 747	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
 748	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
 749		reg = rd32(hw, PF_PCI_CIAD);
 750		/* no transactions pending so stop polling */
 751		if ((reg & VF_TRANS_PENDING_M) == 0)
 752			break;
 753
 754		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
 755		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
 756	}
 757}
 758
 759/**
 760 * ice_sriov_poll_reset_status - poll SRIOV VF reset status
 761 * @vf: pointer to VF structure
 762 *
 763 * Returns true when reset is successful, else returns false
 764 */
 765static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
 766{
 767	struct ice_pf *pf = vf->pf;
 768	unsigned int i;
 769	u32 reg;
 770
 771	for (i = 0; i < 10; i++) {
 772		/* VF reset requires driver to first reset the VF and then
 773		 * poll the status register to make sure that the reset
 774		 * completed successfully.
 775		 */
 776		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
 777		if (reg & VPGEN_VFRSTAT_VFRD_M)
 778			return true;
 779
 780		/* only sleep if the reset is not done */
 781		usleep_range(10, 20);
 782	}
 783	return false;
 784}
 785
 786/**
 787 * ice_sriov_clear_reset_trigger - enable VF to access hardware
 788 * @vf: VF to enabled hardware access for
 789 */
 790static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
 791{
 792	struct ice_hw *hw = &vf->pf->hw;
 793	u32 reg;
 794
 795	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
 796	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
 797	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
 798	ice_flush(hw);
 799}
 800
 801/**
 802 * ice_sriov_vsi_rebuild - release and rebuild VF's VSI
 803 * @vf: VF to release and setup the VSI for
 804 *
 805 * This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF
 806 * configuration change, etc.).
 807 */
 808static int ice_sriov_vsi_rebuild(struct ice_vf *vf)
 809{
 810	struct ice_pf *pf = vf->pf;
 811
 812	ice_vf_vsi_release(vf);
 813	if (!ice_vf_vsi_setup(vf)) {
 814		dev_err(ice_pf_to_dev(pf),
 815			"Failed to release and setup the VF%u's VSI\n",
 816			vf->vf_id);
 817		return -ENOMEM;
 818	}
 819
 820	return 0;
 821}
 822
 823/**
 824 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
 825 * @vf: VF to perform tasks on
 826 */
 827static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
 828{
 829	ice_vf_rebuild_host_cfg(vf);
 830	ice_vf_set_initialized(vf);
 831	ice_ena_vf_mappings(vf);
 832	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
 833}
 834
 835static const struct ice_vf_ops ice_sriov_vf_ops = {
 836	.reset_type = ICE_VF_RESET,
 837	.free = ice_sriov_free_vf,
 
 838	.clear_mbx_register = ice_sriov_clear_mbx_register,
 839	.trigger_reset_register = ice_sriov_trigger_reset_register,
 840	.poll_reset_status = ice_sriov_poll_reset_status,
 841	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
 842	.vsi_rebuild = ice_sriov_vsi_rebuild,
 843	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
 844};
 845
 846/**
 847 * ice_create_vf_entries - Allocate and insert VF entries
 848 * @pf: pointer to the PF structure
 849 * @num_vfs: the number of VFs to allocate
 850 *
 851 * Allocate new VF entries and insert them into the hash table. Set some
 852 * basic default fields for initializing the new VFs.
 853 *
 854 * After this function exits, the hash table will have num_vfs entries
 855 * inserted.
 856 *
 857 * Returns 0 on success or an integer error code on failure.
 858 */
 859static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
 860{
 
 861	struct ice_vfs *vfs = &pf->vfs;
 
 862	struct ice_vf *vf;
 863	u16 vf_id;
 864	int err;
 865
 866	lockdep_assert_held(&vfs->table_lock);
 867
 868	for (vf_id = 0; vf_id < num_vfs; vf_id++) {
 
 
 
 869		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
 870		if (!vf) {
 871			err = -ENOMEM;
 872			goto err_free_entries;
 873		}
 874		kref_init(&vf->refcnt);
 875
 876		vf->pf = pf;
 877		vf->vf_id = vf_id;
 878
 879		/* set sriov vf ops for VFs created during SRIOV flow */
 880		vf->vf_ops = &ice_sriov_vf_ops;
 881
 
 
 
 
 
 
 882		vf->vf_sw_id = pf->first_sw;
 883		/* assign default capabilities */
 884		vf->spoofchk = true;
 885		vf->num_vf_qs = pf->vfs.num_qps_per;
 886		ice_vc_set_default_allowlist(vf);
 887
 888		/* ctrl_vsi_idx will be set to a valid value only when VF
 889		 * creates its first fdir rule.
 890		 */
 891		ice_vf_ctrl_invalidate_vsi(vf);
 892		ice_vf_fdir_init(vf);
 893
 894		ice_virtchnl_set_dflt_ops(vf);
 895
 896		mutex_init(&vf->cfg_lock);
 897
 898		hash_add_rcu(vfs->table, &vf->entry, vf_id);
 899	}
 900
 
 
 
 
 
 
 901	return 0;
 902
 903err_free_entries:
 904	ice_free_vf_entries(pf);
 905	return err;
 906}
 907
 908/**
 909 * ice_ena_vfs - enable VFs so they are ready to be used
 910 * @pf: pointer to the PF structure
 911 * @num_vfs: number of VFs to enable
 912 */
 913static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
 914{
 
 915	struct device *dev = ice_pf_to_dev(pf);
 916	struct ice_hw *hw = &pf->hw;
 917	int ret;
 918
 
 
 
 
 
 919	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
 920	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
 921	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
 922	set_bit(ICE_OICR_INTR_DIS, pf->state);
 923	ice_flush(hw);
 924
 925	ret = pci_enable_sriov(pf->pdev, num_vfs);
 926	if (ret)
 927		goto err_unroll_intr;
 928
 929	mutex_lock(&pf->vfs.table_lock);
 930
 931	ret = ice_set_per_vf_res(pf, num_vfs);
 932	if (ret) {
 933		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
 934			num_vfs, ret);
 935		goto err_unroll_sriov;
 936	}
 937
 938	ret = ice_create_vf_entries(pf, num_vfs);
 939	if (ret) {
 940		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
 941			num_vfs);
 942		goto err_unroll_sriov;
 943	}
 944
 945	ret = ice_start_vfs(pf);
 946	if (ret) {
 947		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
 948		ret = -EAGAIN;
 949		goto err_unroll_vf_entries;
 950	}
 951
 952	clear_bit(ICE_VF_DIS, pf->state);
 953
 954	ret = ice_eswitch_configure(pf);
 955	if (ret) {
 956		dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
 957		goto err_unroll_sriov;
 958	}
 959
 960	/* rearm global interrupts */
 961	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
 962		ice_irq_dynamic_ena(hw, NULL, NULL);
 963
 964	mutex_unlock(&pf->vfs.table_lock);
 965
 966	return 0;
 967
 968err_unroll_vf_entries:
 969	ice_free_vf_entries(pf);
 970err_unroll_sriov:
 971	mutex_unlock(&pf->vfs.table_lock);
 972	pci_disable_sriov(pf->pdev);
 973err_unroll_intr:
 974	/* rearm interrupts here */
 975	ice_irq_dynamic_ena(hw, NULL, NULL);
 976	clear_bit(ICE_OICR_INTR_DIS, pf->state);
 
 977	return ret;
 978}
 979
 980/**
 981 * ice_pci_sriov_ena - Enable or change number of VFs
 982 * @pf: pointer to the PF structure
 983 * @num_vfs: number of VFs to allocate
 984 *
 985 * Returns 0 on success and negative on failure
 986 */
 987static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
 988{
 989	int pre_existing_vfs = pci_num_vf(pf->pdev);
 990	struct device *dev = ice_pf_to_dev(pf);
 991	int err;
 992
 993	if (pre_existing_vfs && pre_existing_vfs != num_vfs)
 994		ice_free_vfs(pf);
 995	else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
 996		return 0;
 
 997
 998	if (num_vfs > pf->vfs.num_supported) {
 999		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
1000			num_vfs, pf->vfs.num_supported);
1001		return -EOPNOTSUPP;
1002	}
1003
1004	dev_info(dev, "Enabling %d VFs\n", num_vfs);
1005	err = ice_ena_vfs(pf, num_vfs);
1006	if (err) {
1007		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1008		return err;
1009	}
1010
1011	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
1012	return 0;
1013}
1014
1015/**
1016 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
1017 * @pf: PF to enabled SR-IOV on
1018 */
1019static int ice_check_sriov_allowed(struct ice_pf *pf)
1020{
1021	struct device *dev = ice_pf_to_dev(pf);
1022
1023	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
1024		dev_err(dev, "This device is not capable of SR-IOV\n");
1025		return -EOPNOTSUPP;
1026	}
1027
1028	if (ice_is_safe_mode(pf)) {
1029		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
1030		return -EOPNOTSUPP;
1031	}
1032
1033	if (!ice_pf_state_is_nominal(pf)) {
1034		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
1035		return -EBUSY;
1036	}
1037
1038	return 0;
1039}
1040
1041/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042 * ice_sriov_configure - Enable or change number of VFs via sysfs
1043 * @pdev: pointer to a pci_dev structure
1044 * @num_vfs: number of VFs to allocate or 0 to free VFs
1045 *
1046 * This function is called when the user updates the number of VFs in sysfs. On
1047 * success return whatever num_vfs was set to by the caller. Return negative on
1048 * failure.
1049 */
1050int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1051{
1052	struct ice_pf *pf = pci_get_drvdata(pdev);
1053	struct device *dev = ice_pf_to_dev(pf);
1054	int err;
1055
1056	err = ice_check_sriov_allowed(pf);
1057	if (err)
1058		return err;
1059
1060	if (!num_vfs) {
1061		if (!pci_vfs_assigned(pdev)) {
1062			ice_free_vfs(pf);
1063			ice_mbx_deinit_snapshot(&pf->hw);
1064			if (pf->lag)
1065				ice_enable_lag(pf->lag);
1066			return 0;
1067		}
1068
1069		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1070		return -EBUSY;
1071	}
1072
1073	err = ice_mbx_init_snapshot(&pf->hw, num_vfs);
1074	if (err)
1075		return err;
1076
1077	err = ice_pci_sriov_ena(pf, num_vfs);
1078	if (err) {
1079		ice_mbx_deinit_snapshot(&pf->hw);
1080		return err;
1081	}
1082
1083	if (pf->lag)
1084		ice_disable_lag(pf->lag);
1085	return num_vfs;
1086}
1087
1088/**
1089 * ice_process_vflr_event - Free VF resources via IRQ calls
1090 * @pf: pointer to the PF structure
1091 *
1092 * called from the VFLR IRQ handler to
1093 * free up VF resources and state variables
1094 */
1095void ice_process_vflr_event(struct ice_pf *pf)
1096{
1097	struct ice_hw *hw = &pf->hw;
1098	struct ice_vf *vf;
1099	unsigned int bkt;
1100	u32 reg;
1101
1102	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1103	    !ice_has_vfs(pf))
1104		return;
1105
1106	mutex_lock(&pf->vfs.table_lock);
1107	ice_for_each_vf(pf, bkt, vf) {
1108		u32 reg_idx, bit_idx;
1109
1110		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1111		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1112		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1113		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1114		if (reg & BIT(bit_idx))
1115			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1116			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1117	}
1118	mutex_unlock(&pf->vfs.table_lock);
1119}
1120
1121/**
1122 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1123 * @pf: PF used to index all VFs
1124 * @pfq: queue index relative to the PF's function space
1125 *
1126 * If no VF is found who owns the pfq then return NULL, otherwise return a
1127 * pointer to the VF who owns the pfq
1128 *
1129 * If this function returns non-NULL, it acquires a reference count of the VF
1130 * structure. The caller is responsible for calling ice_put_vf() to drop this
1131 * reference.
1132 */
1133static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1134{
1135	struct ice_vf *vf;
1136	unsigned int bkt;
1137
1138	rcu_read_lock();
1139	ice_for_each_vf_rcu(pf, bkt, vf) {
1140		struct ice_vsi *vsi;
1141		u16 rxq_idx;
1142
1143		vsi = ice_get_vf_vsi(vf);
1144		if (!vsi)
1145			continue;
1146
1147		ice_for_each_rxq(vsi, rxq_idx)
1148			if (vsi->rxq_map[rxq_idx] == pfq) {
1149				struct ice_vf *found;
1150
1151				if (kref_get_unless_zero(&vf->refcnt))
1152					found = vf;
1153				else
1154					found = NULL;
1155				rcu_read_unlock();
1156				return found;
1157			}
1158	}
1159	rcu_read_unlock();
1160
1161	return NULL;
1162}
1163
1164/**
1165 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1166 * @pf: PF used for conversion
1167 * @globalq: global queue index used to convert to PF space queue index
1168 */
1169static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1170{
1171	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1172}
1173
1174/**
1175 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1176 * @pf: PF that the LAN overflow event happened on
1177 * @event: structure holding the event information for the LAN overflow event
1178 *
1179 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1180 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1181 * reset on the offending VF.
1182 */
1183void
1184ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1185{
1186	u32 gldcb_rtctq, queue;
1187	struct ice_vf *vf;
1188
1189	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1190	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1191
1192	/* event returns device global Rx queue number */
1193	queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1194		GLDCB_RTCTQ_RXQNUM_S;
1195
1196	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1197	if (!vf)
1198		return;
1199
1200	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1201	ice_put_vf(vf);
1202}
1203
1204/**
1205 * ice_set_vf_spoofchk
1206 * @netdev: network interface device structure
1207 * @vf_id: VF identifier
1208 * @ena: flag to enable or disable feature
1209 *
1210 * Enable or disable VF spoof checking
1211 */
1212int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1213{
1214	struct ice_netdev_priv *np = netdev_priv(netdev);
1215	struct ice_pf *pf = np->vsi->back;
1216	struct ice_vsi *vf_vsi;
1217	struct device *dev;
1218	struct ice_vf *vf;
1219	int ret;
1220
1221	dev = ice_pf_to_dev(pf);
1222
1223	vf = ice_get_vf_by_id(pf, vf_id);
1224	if (!vf)
1225		return -EINVAL;
1226
1227	ret = ice_check_vf_ready_for_cfg(vf);
1228	if (ret)
1229		goto out_put_vf;
1230
1231	vf_vsi = ice_get_vf_vsi(vf);
1232	if (!vf_vsi) {
1233		netdev_err(netdev, "VSI %d for VF %d is null\n",
1234			   vf->lan_vsi_idx, vf->vf_id);
1235		ret = -EINVAL;
1236		goto out_put_vf;
1237	}
1238
1239	if (vf_vsi->type != ICE_VSI_VF) {
1240		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1241			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1242		ret = -ENODEV;
1243		goto out_put_vf;
1244	}
1245
1246	if (ena == vf->spoofchk) {
1247		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1248		ret = 0;
1249		goto out_put_vf;
1250	}
1251
1252	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1253	if (ret)
1254		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1255			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1256	else
1257		vf->spoofchk = ena;
1258
1259out_put_vf:
1260	ice_put_vf(vf);
1261	return ret;
1262}
1263
1264/**
1265 * ice_get_vf_cfg
1266 * @netdev: network interface device structure
1267 * @vf_id: VF identifier
1268 * @ivi: VF configuration structure
1269 *
1270 * return VF configuration
1271 */
1272int
1273ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1274{
1275	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1276	struct ice_vf *vf;
1277	int ret;
1278
1279	vf = ice_get_vf_by_id(pf, vf_id);
1280	if (!vf)
1281		return -EINVAL;
1282
1283	ret = ice_check_vf_ready_for_cfg(vf);
1284	if (ret)
1285		goto out_put_vf;
1286
1287	ivi->vf = vf_id;
1288	ether_addr_copy(ivi->mac, vf->hw_lan_addr.addr);
1289
1290	/* VF configuration for VLAN and applicable QoS */
1291	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1292	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1293	if (ice_vf_is_port_vlan_ena(vf))
1294		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1295
1296	ivi->trusted = vf->trusted;
1297	ivi->spoofchk = vf->spoofchk;
1298	if (!vf->link_forced)
1299		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1300	else if (vf->link_up)
1301		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1302	else
1303		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1304	ivi->max_tx_rate = vf->max_tx_rate;
1305	ivi->min_tx_rate = vf->min_tx_rate;
1306
1307out_put_vf:
1308	ice_put_vf(vf);
1309	return ret;
1310}
1311
1312/**
1313 * ice_set_vf_mac
1314 * @netdev: network interface device structure
1315 * @vf_id: VF identifier
1316 * @mac: MAC address
1317 *
1318 * program VF MAC address
 
1319 */
1320int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1321{
1322	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1323	struct ice_vf *vf;
1324	int ret;
1325
 
1326	if (is_multicast_ether_addr(mac)) {
1327		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1328		return -EINVAL;
1329	}
1330
1331	vf = ice_get_vf_by_id(pf, vf_id);
1332	if (!vf)
1333		return -EINVAL;
1334
1335	/* nothing left to do, unicast MAC already set */
1336	if (ether_addr_equal(vf->dev_lan_addr.addr, mac) &&
1337	    ether_addr_equal(vf->hw_lan_addr.addr, mac)) {
1338		ret = 0;
1339		goto out_put_vf;
1340	}
1341
1342	ret = ice_check_vf_ready_for_cfg(vf);
1343	if (ret)
1344		goto out_put_vf;
1345
1346	mutex_lock(&vf->cfg_lock);
1347
1348	/* VF is notified of its new MAC via the PF's response to the
1349	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1350	 */
1351	ether_addr_copy(vf->dev_lan_addr.addr, mac);
1352	ether_addr_copy(vf->hw_lan_addr.addr, mac);
1353	if (is_zero_ether_addr(mac)) {
1354		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1355		vf->pf_set_mac = false;
1356		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1357			    vf->vf_id);
1358	} else {
1359		/* PF will add MAC rule for the VF */
1360		vf->pf_set_mac = true;
1361		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1362			    mac, vf_id);
1363	}
1364
1365	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1366	mutex_unlock(&vf->cfg_lock);
1367
1368out_put_vf:
1369	ice_put_vf(vf);
1370	return ret;
1371}
1372
1373/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374 * ice_set_vf_trust
1375 * @netdev: network interface device structure
1376 * @vf_id: VF identifier
1377 * @trusted: Boolean value to enable/disable trusted VF
1378 *
1379 * Enable or disable a given VF as trusted
1380 */
1381int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1382{
1383	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1384	struct ice_vf *vf;
1385	int ret;
1386
 
 
 
 
1387	if (ice_is_eswitch_mode_switchdev(pf)) {
1388		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1389		return -EOPNOTSUPP;
1390	}
1391
1392	vf = ice_get_vf_by_id(pf, vf_id);
1393	if (!vf)
1394		return -EINVAL;
1395
1396	ret = ice_check_vf_ready_for_cfg(vf);
1397	if (ret)
1398		goto out_put_vf;
1399
1400	/* Check if already trusted */
1401	if (trusted == vf->trusted) {
1402		ret = 0;
1403		goto out_put_vf;
1404	}
1405
1406	mutex_lock(&vf->cfg_lock);
1407
1408	vf->trusted = trusted;
1409	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1410	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1411		 vf_id, trusted ? "" : "un");
1412
1413	mutex_unlock(&vf->cfg_lock);
1414
1415out_put_vf:
1416	ice_put_vf(vf);
1417	return ret;
1418}
1419
1420/**
1421 * ice_set_vf_link_state
1422 * @netdev: network interface device structure
1423 * @vf_id: VF identifier
1424 * @link_state: required link state
1425 *
1426 * Set VF's link state, irrespective of physical link state status
1427 */
1428int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1429{
1430	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1431	struct ice_vf *vf;
1432	int ret;
1433
1434	vf = ice_get_vf_by_id(pf, vf_id);
1435	if (!vf)
1436		return -EINVAL;
1437
1438	ret = ice_check_vf_ready_for_cfg(vf);
1439	if (ret)
1440		goto out_put_vf;
1441
1442	switch (link_state) {
1443	case IFLA_VF_LINK_STATE_AUTO:
1444		vf->link_forced = false;
1445		break;
1446	case IFLA_VF_LINK_STATE_ENABLE:
1447		vf->link_forced = true;
1448		vf->link_up = true;
1449		break;
1450	case IFLA_VF_LINK_STATE_DISABLE:
1451		vf->link_forced = true;
1452		vf->link_up = false;
1453		break;
1454	default:
1455		ret = -EINVAL;
1456		goto out_put_vf;
1457	}
1458
1459	ice_vc_notify_vf_link_state(vf);
1460
1461out_put_vf:
1462	ice_put_vf(vf);
1463	return ret;
1464}
1465
1466/**
1467 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1468 * @pf: PF associated with VFs
1469 */
1470static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1471{
1472	struct ice_vf *vf;
1473	unsigned int bkt;
1474	int rate = 0;
1475
1476	rcu_read_lock();
1477	ice_for_each_vf_rcu(pf, bkt, vf)
1478		rate += vf->min_tx_rate;
1479	rcu_read_unlock();
1480
1481	return rate;
1482}
1483
1484/**
1485 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1486 * @vf: VF trying to configure min_tx_rate
1487 * @min_tx_rate: min Tx rate in Mbps
1488 *
1489 * Check if the min_tx_rate being passed in will cause oversubscription of total
1490 * min_tx_rate based on the current link speed and all other VFs configured
1491 * min_tx_rate
1492 *
1493 * Return true if the passed min_tx_rate would cause oversubscription, else
1494 * return false
1495 */
1496static bool
1497ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1498{
1499	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1500	int all_vfs_min_tx_rate;
1501	int link_speed_mbps;
1502
1503	if (WARN_ON(!vsi))
1504		return false;
1505
1506	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1507	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1508
1509	/* this VF's previous rate is being overwritten */
1510	all_vfs_min_tx_rate -= vf->min_tx_rate;
1511
1512	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1513		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1514			min_tx_rate, vf->vf_id,
1515			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1516			link_speed_mbps);
1517		return true;
1518	}
1519
1520	return false;
1521}
1522
1523/**
1524 * ice_set_vf_bw - set min/max VF bandwidth
1525 * @netdev: network interface device structure
1526 * @vf_id: VF identifier
1527 * @min_tx_rate: Minimum Tx rate in Mbps
1528 * @max_tx_rate: Maximum Tx rate in Mbps
1529 */
1530int
1531ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1532	      int max_tx_rate)
1533{
1534	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1535	struct ice_vsi *vsi;
1536	struct device *dev;
1537	struct ice_vf *vf;
1538	int ret;
1539
1540	dev = ice_pf_to_dev(pf);
1541
1542	vf = ice_get_vf_by_id(pf, vf_id);
1543	if (!vf)
1544		return -EINVAL;
1545
1546	ret = ice_check_vf_ready_for_cfg(vf);
1547	if (ret)
1548		goto out_put_vf;
1549
1550	vsi = ice_get_vf_vsi(vf);
1551	if (!vsi) {
1552		ret = -EINVAL;
1553		goto out_put_vf;
1554	}
1555
1556	if (min_tx_rate && ice_is_dcb_active(pf)) {
1557		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1558		ret = -EOPNOTSUPP;
1559		goto out_put_vf;
1560	}
1561
1562	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1563		ret = -EINVAL;
1564		goto out_put_vf;
1565	}
1566
1567	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1568		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1569		if (ret) {
1570			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1571				vf->vf_id);
1572			goto out_put_vf;
1573		}
1574
1575		vf->min_tx_rate = min_tx_rate;
1576	}
1577
1578	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1579		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1580		if (ret) {
1581			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1582				vf->vf_id);
1583			goto out_put_vf;
1584		}
1585
1586		vf->max_tx_rate = max_tx_rate;
1587	}
1588
1589out_put_vf:
1590	ice_put_vf(vf);
1591	return ret;
1592}
1593
1594/**
1595 * ice_get_vf_stats - populate some stats for the VF
1596 * @netdev: the netdev of the PF
1597 * @vf_id: the host OS identifier (0-255)
1598 * @vf_stats: pointer to the OS memory to be initialized
1599 */
1600int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1601		     struct ifla_vf_stats *vf_stats)
1602{
1603	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1604	struct ice_eth_stats *stats;
1605	struct ice_vsi *vsi;
1606	struct ice_vf *vf;
1607	int ret;
1608
1609	vf = ice_get_vf_by_id(pf, vf_id);
1610	if (!vf)
1611		return -EINVAL;
1612
1613	ret = ice_check_vf_ready_for_cfg(vf);
1614	if (ret)
1615		goto out_put_vf;
1616
1617	vsi = ice_get_vf_vsi(vf);
1618	if (!vsi) {
1619		ret = -EINVAL;
1620		goto out_put_vf;
1621	}
1622
1623	ice_update_eth_stats(vsi);
1624	stats = &vsi->eth_stats;
1625
1626	memset(vf_stats, 0, sizeof(*vf_stats));
1627
1628	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1629		stats->rx_multicast;
1630	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1631		stats->tx_multicast;
1632	vf_stats->rx_bytes   = stats->rx_bytes;
1633	vf_stats->tx_bytes   = stats->tx_bytes;
1634	vf_stats->broadcast  = stats->rx_broadcast;
1635	vf_stats->multicast  = stats->rx_multicast;
1636	vf_stats->rx_dropped = stats->rx_discards;
1637	vf_stats->tx_dropped = stats->tx_discards;
1638
1639out_put_vf:
1640	ice_put_vf(vf);
1641	return ret;
1642}
1643
1644/**
1645 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1646 * @hw: hardware structure used to check the VLAN mode
1647 * @vlan_proto: VLAN TPID being checked
1648 *
1649 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1650 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1651 * Mode (SVM), then only ETH_P_8021Q is supported.
1652 */
1653static bool
1654ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1655{
1656	bool is_supported = false;
1657
1658	switch (vlan_proto) {
1659	case ETH_P_8021Q:
1660		is_supported = true;
1661		break;
1662	case ETH_P_8021AD:
1663		if (ice_is_dvm_ena(hw))
1664			is_supported = true;
1665		break;
1666	}
1667
1668	return is_supported;
1669}
1670
1671/**
1672 * ice_set_vf_port_vlan
1673 * @netdev: network interface device structure
1674 * @vf_id: VF identifier
1675 * @vlan_id: VLAN ID being set
1676 * @qos: priority setting
1677 * @vlan_proto: VLAN protocol
1678 *
1679 * program VF Port VLAN ID and/or QoS
1680 */
1681int
1682ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1683		     __be16 vlan_proto)
1684{
1685	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1686	u16 local_vlan_proto = ntohs(vlan_proto);
1687	struct device *dev;
1688	struct ice_vf *vf;
1689	int ret;
1690
1691	dev = ice_pf_to_dev(pf);
1692
1693	if (vlan_id >= VLAN_N_VID || qos > 7) {
1694		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1695			vf_id, vlan_id, qos);
1696		return -EINVAL;
1697	}
1698
1699	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1700		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1701			local_vlan_proto);
1702		return -EPROTONOSUPPORT;
1703	}
1704
1705	vf = ice_get_vf_by_id(pf, vf_id);
1706	if (!vf)
1707		return -EINVAL;
1708
1709	ret = ice_check_vf_ready_for_cfg(vf);
1710	if (ret)
1711		goto out_put_vf;
1712
1713	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1714	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1715	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1716		/* duplicate request, so just return success */
1717		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1718			vlan_id, qos, local_vlan_proto);
1719		ret = 0;
1720		goto out_put_vf;
1721	}
1722
1723	mutex_lock(&vf->cfg_lock);
1724
1725	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1726	if (ice_vf_is_port_vlan_ena(vf))
1727		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1728			 vlan_id, qos, local_vlan_proto, vf_id);
1729	else
1730		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1731
1732	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1733	mutex_unlock(&vf->cfg_lock);
1734
1735out_put_vf:
1736	ice_put_vf(vf);
1737	return ret;
1738}
1739
1740/**
1741 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1742 * @vf: pointer to the VF structure
1743 */
1744void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1745{
1746	struct ice_pf *pf = vf->pf;
1747	struct device *dev;
1748
1749	dev = ice_pf_to_dev(pf);
1750
1751	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1752		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1753		 vf->dev_lan_addr.addr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1754		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1755			  ? "on" : "off");
1756}
1757
1758/**
1759 * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1760 * @pf: pointer to the PF structure
1761 *
1762 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1763 */
1764void ice_print_vfs_mdd_events(struct ice_pf *pf)
1765{
1766	struct device *dev = ice_pf_to_dev(pf);
1767	struct ice_hw *hw = &pf->hw;
1768	struct ice_vf *vf;
1769	unsigned int bkt;
1770
1771	/* check that there are pending MDD events to print */
1772	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1773		return;
1774
1775	/* VF MDD event logs are rate limited to one second intervals */
1776	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1777		return;
1778
1779	pf->vfs.last_printed_mdd_jiffies = jiffies;
1780
1781	mutex_lock(&pf->vfs.table_lock);
1782	ice_for_each_vf(pf, bkt, vf) {
1783		/* only print Rx MDD event message if there are new events */
1784		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1785			vf->mdd_rx_events.last_printed =
1786							vf->mdd_rx_events.count;
1787			ice_print_vf_rx_mdd_event(vf);
1788		}
1789
1790		/* only print Tx MDD event message if there are new events */
1791		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1792			vf->mdd_tx_events.last_printed =
1793							vf->mdd_tx_events.count;
1794
1795			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1796				 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1797				 vf->dev_lan_addr.addr);
1798		}
1799	}
1800	mutex_unlock(&pf->vfs.table_lock);
1801}
1802
1803/**
1804 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1805 * @pdev: pointer to a pci_dev structure
1806 *
1807 * Called when recovering from a PF FLR to restore interrupt capability to
1808 * the VFs.
1809 */
1810void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
1811{
1812	u16 vf_id;
1813	int pos;
1814
1815	if (!pci_num_vf(pdev))
1816		return;
1817
1818	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1819	if (pos) {
1820		struct pci_dev *vfdev;
1821
1822		pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
1823				     &vf_id);
1824		vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
1825		while (vfdev) {
1826			if (vfdev->is_virtfn && vfdev->physfn == pdev)
1827				pci_restore_msi_state(vfdev);
1828			vfdev = pci_get_device(pdev->vendor, vf_id,
1829					       vfdev);
1830		}
1831	}
1832}
1833
1834/**
1835 * ice_is_malicious_vf - helper function to detect a malicious VF
1836 * @pf: ptr to struct ice_pf
1837 * @event: pointer to the AQ event
1838 * @num_msg_proc: the number of messages processed so far
1839 * @num_msg_pending: the number of messages peinding in admin queue
1840 */
1841bool
1842ice_is_malicious_vf(struct ice_pf *pf, struct ice_rq_event_info *event,
1843		    u16 num_msg_proc, u16 num_msg_pending)
1844{
1845	s16 vf_id = le16_to_cpu(event->desc.retval);
1846	struct device *dev = ice_pf_to_dev(pf);
1847	struct ice_mbx_data mbxdata;
1848	bool malvf = false;
1849	struct ice_vf *vf;
1850	int status;
1851
1852	vf = ice_get_vf_by_id(pf, vf_id);
1853	if (!vf)
1854		return false;
1855
1856	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
1857		goto out_put_vf;
1858
1859	mbxdata.num_msg_proc = num_msg_proc;
1860	mbxdata.num_pending_arq = num_msg_pending;
1861	mbxdata.max_num_msgs_mbx = pf->hw.mailboxq.num_rq_entries;
1862#define ICE_MBX_OVERFLOW_WATERMARK 64
1863	mbxdata.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1864
1865	/* check to see if we have a malicious VF */
1866	status = ice_mbx_vf_state_handler(&pf->hw, &mbxdata, vf_id, &malvf);
1867	if (status)
1868		goto out_put_vf;
1869
1870	if (malvf) {
1871		bool report_vf = false;
1872
1873		/* if the VF is malicious and we haven't let the user
1874		 * know about it, then let them know now
1875		 */
1876		status = ice_mbx_report_malvf(&pf->hw, pf->vfs.malvfs,
1877					      ICE_MAX_SRIOV_VFS, vf_id,
1878					      &report_vf);
1879		if (status)
1880			dev_dbg(dev, "Error reporting malicious VF\n");
1881
1882		if (report_vf) {
1883			struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
1884
1885			if (pf_vsi)
1886				dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
1887					 &vf->dev_lan_addr.addr[0],
1888					 pf_vsi->netdev->dev_addr);
1889		}
1890	}
1891
1892out_put_vf:
1893	ice_put_vf(vf);
1894	return malvf;
1895}