Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018-2023, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <generated/utsrelease.h>
9#include <linux/crash_dump.h>
10#include "ice.h"
11#include "ice_base.h"
12#include "ice_lib.h"
13#include "ice_fltr.h"
14#include "ice_dcb_lib.h"
15#include "ice_dcb_nl.h"
16#include "devlink/devlink.h"
17#include "devlink/devlink_port.h"
18#include "ice_sf_eth.h"
19#include "ice_hwmon.h"
20/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21 * ice tracepoint functions. This must be done exactly once across the
22 * ice driver.
23 */
24#define CREATE_TRACE_POINTS
25#include "ice_trace.h"
26#include "ice_eswitch.h"
27#include "ice_tc_lib.h"
28#include "ice_vsi_vlan_ops.h"
29#include <net/xdp_sock_drv.h>
30
31#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
32static const char ice_driver_string[] = DRV_SUMMARY;
33static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34
35/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36#define ICE_DDP_PKG_PATH "intel/ice/ddp/"
37#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
38
39MODULE_DESCRIPTION(DRV_SUMMARY);
40MODULE_IMPORT_NS("LIBIE");
41MODULE_LICENSE("GPL v2");
42MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
43
44static int debug = -1;
45module_param(debug, int, 0644);
46#ifndef CONFIG_DYNAMIC_DEBUG
47MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
48#else
49MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
50#endif /* !CONFIG_DYNAMIC_DEBUG */
51
52DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
53EXPORT_SYMBOL(ice_xdp_locking_key);
54
55/**
56 * ice_hw_to_dev - Get device pointer from the hardware structure
57 * @hw: pointer to the device HW structure
58 *
59 * Used to access the device pointer from compilation units which can't easily
60 * include the definition of struct ice_pf without leading to circular header
61 * dependencies.
62 */
63struct device *ice_hw_to_dev(struct ice_hw *hw)
64{
65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
66
67 return &pf->pdev->dev;
68}
69
70static struct workqueue_struct *ice_wq;
71struct workqueue_struct *ice_lag_wq;
72static const struct net_device_ops ice_netdev_safe_mode_ops;
73static const struct net_device_ops ice_netdev_ops;
74
75static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
76
77static void ice_vsi_release_all(struct ice_pf *pf);
78
79static int ice_rebuild_channels(struct ice_pf *pf);
80static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
81
82static int
83ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
84 void *cb_priv, enum tc_setup_type type, void *type_data,
85 void *data,
86 void (*cleanup)(struct flow_block_cb *block_cb));
87
88bool netif_is_ice(const struct net_device *dev)
89{
90 return dev && (dev->netdev_ops == &ice_netdev_ops ||
91 dev->netdev_ops == &ice_netdev_safe_mode_ops);
92}
93
94/**
95 * ice_get_tx_pending - returns number of Tx descriptors not processed
96 * @ring: the ring of descriptors
97 */
98static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
99{
100 u16 head, tail;
101
102 head = ring->next_to_clean;
103 tail = ring->next_to_use;
104
105 if (head != tail)
106 return (head < tail) ?
107 tail - head : (tail + ring->count - head);
108 return 0;
109}
110
111/**
112 * ice_check_for_hang_subtask - check for and recover hung queues
113 * @pf: pointer to PF struct
114 */
115static void ice_check_for_hang_subtask(struct ice_pf *pf)
116{
117 struct ice_vsi *vsi = NULL;
118 struct ice_hw *hw;
119 unsigned int i;
120 int packets;
121 u32 v;
122
123 ice_for_each_vsi(pf, v)
124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
125 vsi = pf->vsi[v];
126 break;
127 }
128
129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
130 return;
131
132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
133 return;
134
135 hw = &vsi->back->hw;
136
137 ice_for_each_txq(vsi, i) {
138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
139 struct ice_ring_stats *ring_stats;
140
141 if (!tx_ring)
142 continue;
143 if (ice_ring_ch_enabled(tx_ring))
144 continue;
145
146 ring_stats = tx_ring->ring_stats;
147 if (!ring_stats)
148 continue;
149
150 if (tx_ring->desc) {
151 /* If packet counter has not changed the queue is
152 * likely stalled, so force an interrupt for this
153 * queue.
154 *
155 * prev_pkt would be negative if there was no
156 * pending work.
157 */
158 packets = ring_stats->stats.pkts & INT_MAX;
159 if (ring_stats->tx_stats.prev_pkt == packets) {
160 /* Trigger sw interrupt to revive the queue */
161 ice_trigger_sw_intr(hw, tx_ring->q_vector);
162 continue;
163 }
164
165 /* Memory barrier between read of packet count and call
166 * to ice_get_tx_pending()
167 */
168 smp_rmb();
169 ring_stats->tx_stats.prev_pkt =
170 ice_get_tx_pending(tx_ring) ? packets : -1;
171 }
172 }
173}
174
175/**
176 * ice_init_mac_fltr - Set initial MAC filters
177 * @pf: board private structure
178 *
179 * Set initial set of MAC filters for PF VSI; configure filters for permanent
180 * address and broadcast address. If an error is encountered, netdevice will be
181 * unregistered.
182 */
183static int ice_init_mac_fltr(struct ice_pf *pf)
184{
185 struct ice_vsi *vsi;
186 u8 *perm_addr;
187
188 vsi = ice_get_main_vsi(pf);
189 if (!vsi)
190 return -EINVAL;
191
192 perm_addr = vsi->port_info->mac.perm_addr;
193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
194}
195
196/**
197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
198 * @netdev: the net device on which the sync is happening
199 * @addr: MAC address to sync
200 *
201 * This is a callback function which is called by the in kernel device sync
202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
204 * MAC filters from the hardware.
205 */
206static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
207{
208 struct ice_netdev_priv *np = netdev_priv(netdev);
209 struct ice_vsi *vsi = np->vsi;
210
211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
212 ICE_FWD_TO_VSI))
213 return -EINVAL;
214
215 return 0;
216}
217
218/**
219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
220 * @netdev: the net device on which the unsync is happening
221 * @addr: MAC address to unsync
222 *
223 * This is a callback function which is called by the in kernel device unsync
224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
226 * delete the MAC filters from the hardware.
227 */
228static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
229{
230 struct ice_netdev_priv *np = netdev_priv(netdev);
231 struct ice_vsi *vsi = np->vsi;
232
233 /* Under some circumstances, we might receive a request to delete our
234 * own device address from our uc list. Because we store the device
235 * address in the VSI's MAC filter list, we need to ignore such
236 * requests and not delete our device address from this list.
237 */
238 if (ether_addr_equal(addr, netdev->dev_addr))
239 return 0;
240
241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
242 ICE_FWD_TO_VSI))
243 return -EINVAL;
244
245 return 0;
246}
247
248/**
249 * ice_vsi_fltr_changed - check if filter state changed
250 * @vsi: VSI to be checked
251 *
252 * returns true if filter state has changed, false otherwise.
253 */
254static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
255{
256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
258}
259
260/**
261 * ice_set_promisc - Enable promiscuous mode for a given PF
262 * @vsi: the VSI being configured
263 * @promisc_m: mask of promiscuous config bits
264 *
265 */
266static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
267{
268 int status;
269
270 if (vsi->type != ICE_VSI_PF)
271 return 0;
272
273 if (ice_vsi_has_non_zero_vlans(vsi)) {
274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
276 promisc_m);
277 } else {
278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
279 promisc_m, 0);
280 }
281 if (status && status != -EEXIST)
282 return status;
283
284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
285 vsi->vsi_num, promisc_m);
286 return 0;
287}
288
289/**
290 * ice_clear_promisc - Disable promiscuous mode for a given PF
291 * @vsi: the VSI being configured
292 * @promisc_m: mask of promiscuous config bits
293 *
294 */
295static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
296{
297 int status;
298
299 if (vsi->type != ICE_VSI_PF)
300 return 0;
301
302 if (ice_vsi_has_non_zero_vlans(vsi)) {
303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
305 promisc_m);
306 } else {
307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
308 promisc_m, 0);
309 }
310
311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
312 vsi->vsi_num, promisc_m);
313 return status;
314}
315
316/**
317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
318 * @vsi: ptr to the VSI
319 *
320 * Push any outstanding VSI filter changes through the AdminQ.
321 */
322static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
323{
324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
325 struct device *dev = ice_pf_to_dev(vsi->back);
326 struct net_device *netdev = vsi->netdev;
327 bool promisc_forced_on = false;
328 struct ice_pf *pf = vsi->back;
329 struct ice_hw *hw = &pf->hw;
330 u32 changed_flags = 0;
331 int err;
332
333 if (!vsi->netdev)
334 return -EINVAL;
335
336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
337 usleep_range(1000, 2000);
338
339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
340 vsi->current_netdev_flags = vsi->netdev->flags;
341
342 INIT_LIST_HEAD(&vsi->tmp_sync_list);
343 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
344
345 if (ice_vsi_fltr_changed(vsi)) {
346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
348
349 /* grab the netdev's addr_list_lock */
350 netif_addr_lock_bh(netdev);
351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
352 ice_add_mac_to_unsync_list);
353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
354 ice_add_mac_to_unsync_list);
355 /* our temp lists are populated. release lock */
356 netif_addr_unlock_bh(netdev);
357 }
358
359 /* Remove MAC addresses in the unsync list */
360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
362 if (err) {
363 netdev_err(netdev, "Failed to delete MAC filters\n");
364 /* if we failed because of alloc failures, just bail */
365 if (err == -ENOMEM)
366 goto out;
367 }
368
369 /* Add MAC addresses in the sync list */
370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
371 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
372 /* If filter is added successfully or already exists, do not go into
373 * 'if' condition and report it as error. Instead continue processing
374 * rest of the function.
375 */
376 if (err && err != -EEXIST) {
377 netdev_err(netdev, "Failed to add MAC filters\n");
378 /* If there is no more space for new umac filters, VSI
379 * should go into promiscuous mode. There should be some
380 * space reserved for promiscuous filters.
381 */
382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
384 vsi->state)) {
385 promisc_forced_on = true;
386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
387 vsi->vsi_num);
388 } else {
389 goto out;
390 }
391 }
392 err = 0;
393 /* check for changes in promiscuous modes */
394 if (changed_flags & IFF_ALLMULTI) {
395 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
397 if (err) {
398 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
399 goto out_promisc;
400 }
401 } else {
402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
404 if (err) {
405 vsi->current_netdev_flags |= IFF_ALLMULTI;
406 goto out_promisc;
407 }
408 }
409 }
410
411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
414 if (vsi->current_netdev_flags & IFF_PROMISC) {
415 /* Apply Rx filter rule to get traffic from wire */
416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
417 err = ice_set_dflt_vsi(vsi);
418 if (err && err != -EEXIST) {
419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
420 err, vsi->vsi_num);
421 vsi->current_netdev_flags &=
422 ~IFF_PROMISC;
423 goto out_promisc;
424 }
425 err = 0;
426 vlan_ops->dis_rx_filtering(vsi);
427
428 /* promiscuous mode implies allmulticast so
429 * that VSIs that are in promiscuous mode are
430 * subscribed to multicast packets coming to
431 * the port
432 */
433 err = ice_set_promisc(vsi,
434 ICE_MCAST_PROMISC_BITS);
435 if (err)
436 goto out_promisc;
437 }
438 } else {
439 /* Clear Rx filter to remove traffic from wire */
440 if (ice_is_vsi_dflt_vsi(vsi)) {
441 err = ice_clear_dflt_vsi(vsi);
442 if (err) {
443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
444 err, vsi->vsi_num);
445 vsi->current_netdev_flags |=
446 IFF_PROMISC;
447 goto out_promisc;
448 }
449 if (vsi->netdev->features &
450 NETIF_F_HW_VLAN_CTAG_FILTER)
451 vlan_ops->ena_rx_filtering(vsi);
452 }
453
454 /* disable allmulti here, but only if allmulti is not
455 * still enabled for the netdev
456 */
457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
458 err = ice_clear_promisc(vsi,
459 ICE_MCAST_PROMISC_BITS);
460 if (err) {
461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
462 err, vsi->vsi_num);
463 }
464 }
465 }
466 }
467 goto exit;
468
469out_promisc:
470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
471 goto exit;
472out:
473 /* if something went wrong then set the changed flag so we try again */
474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
476exit:
477 clear_bit(ICE_CFG_BUSY, vsi->state);
478 return err;
479}
480
481/**
482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
483 * @pf: board private structure
484 */
485static void ice_sync_fltr_subtask(struct ice_pf *pf)
486{
487 int v;
488
489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
490 return;
491
492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
493
494 ice_for_each_vsi(pf, v)
495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
496 ice_vsi_sync_fltr(pf->vsi[v])) {
497 /* come back and try again later */
498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
499 break;
500 }
501}
502
503/**
504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
505 * @pf: the PF
506 * @locked: is the rtnl_lock already held
507 */
508static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
509{
510 int node;
511 int v;
512
513 ice_for_each_vsi(pf, v)
514 if (pf->vsi[v])
515 ice_dis_vsi(pf->vsi[v], locked);
516
517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
518 pf->pf_agg_node[node].num_vsis = 0;
519
520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
521 pf->vf_agg_node[node].num_vsis = 0;
522}
523
524/**
525 * ice_prepare_for_reset - prep for reset
526 * @pf: board private structure
527 * @reset_type: reset type requested
528 *
529 * Inform or close all dependent features in prep for reset.
530 */
531static void
532ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
533{
534 struct ice_hw *hw = &pf->hw;
535 struct ice_vsi *vsi;
536 struct ice_vf *vf;
537 unsigned int bkt;
538
539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
540
541 /* already prepared for reset */
542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
543 return;
544
545 synchronize_irq(pf->oicr_irq.virq);
546
547 ice_unplug_aux_dev(pf);
548
549 /* Notify VFs of impending reset */
550 if (ice_check_sq_alive(hw, &hw->mailboxq))
551 ice_vc_notify_reset(pf);
552
553 /* Disable VFs until reset is completed */
554 mutex_lock(&pf->vfs.table_lock);
555 ice_for_each_vf(pf, bkt, vf)
556 ice_set_vf_state_dis(vf);
557 mutex_unlock(&pf->vfs.table_lock);
558
559 if (ice_is_eswitch_mode_switchdev(pf)) {
560 rtnl_lock();
561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
562 rtnl_unlock();
563 }
564
565 /* release ADQ specific HW and SW resources */
566 vsi = ice_get_main_vsi(pf);
567 if (!vsi)
568 goto skip;
569
570 /* to be on safe side, reset orig_rss_size so that normal flow
571 * of deciding rss_size can take precedence
572 */
573 vsi->orig_rss_size = 0;
574
575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
576 if (reset_type == ICE_RESET_PFR) {
577 vsi->old_ena_tc = vsi->all_enatc;
578 vsi->old_numtc = vsi->all_numtc;
579 } else {
580 ice_remove_q_channels(vsi, true);
581
582 /* for other reset type, do not support channel rebuild
583 * hence reset needed info
584 */
585 vsi->old_ena_tc = 0;
586 vsi->all_enatc = 0;
587 vsi->old_numtc = 0;
588 vsi->all_numtc = 0;
589 vsi->req_txq = 0;
590 vsi->req_rxq = 0;
591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
593 }
594 }
595
596 if (vsi->netdev)
597 netif_device_detach(vsi->netdev);
598skip:
599
600 /* clear SW filtering DB */
601 ice_clear_hw_tbls(hw);
602 /* disable the VSIs and their queues that are not already DOWN */
603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
604 ice_pf_dis_all_vsi(pf, false);
605
606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
607 ice_ptp_prepare_for_reset(pf, reset_type);
608
609 if (ice_is_feature_supported(pf, ICE_F_GNSS))
610 ice_gnss_exit(pf);
611
612 if (hw->port_info)
613 ice_sched_clear_port(hw->port_info);
614
615 ice_shutdown_all_ctrlq(hw, false);
616
617 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
618}
619
620/**
621 * ice_do_reset - Initiate one of many types of resets
622 * @pf: board private structure
623 * @reset_type: reset type requested before this function was called.
624 */
625static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
626{
627 struct device *dev = ice_pf_to_dev(pf);
628 struct ice_hw *hw = &pf->hw;
629
630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
631
632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
634 reset_type = ICE_RESET_CORER;
635 }
636
637 ice_prepare_for_reset(pf, reset_type);
638
639 /* trigger the reset */
640 if (ice_reset(hw, reset_type)) {
641 dev_err(dev, "reset %d failed\n", reset_type);
642 set_bit(ICE_RESET_FAILED, pf->state);
643 clear_bit(ICE_RESET_OICR_RECV, pf->state);
644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
645 clear_bit(ICE_PFR_REQ, pf->state);
646 clear_bit(ICE_CORER_REQ, pf->state);
647 clear_bit(ICE_GLOBR_REQ, pf->state);
648 wake_up(&pf->reset_wait_queue);
649 return;
650 }
651
652 /* PFR is a bit of a special case because it doesn't result in an OICR
653 * interrupt. So for PFR, rebuild after the reset and clear the reset-
654 * associated state bits.
655 */
656 if (reset_type == ICE_RESET_PFR) {
657 pf->pfr_count++;
658 ice_rebuild(pf, reset_type);
659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
660 clear_bit(ICE_PFR_REQ, pf->state);
661 wake_up(&pf->reset_wait_queue);
662 ice_reset_all_vfs(pf);
663 }
664}
665
666/**
667 * ice_reset_subtask - Set up for resetting the device and driver
668 * @pf: board private structure
669 */
670static void ice_reset_subtask(struct ice_pf *pf)
671{
672 enum ice_reset_req reset_type = ICE_RESET_INVAL;
673
674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
676 * of reset is pending and sets bits in pf->state indicating the reset
677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
678 * prepare for pending reset if not already (for PF software-initiated
679 * global resets the software should already be prepared for it as
680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
681 * by firmware or software on other PFs, that bit is not set so prepare
682 * for the reset now), poll for reset done, rebuild and return.
683 */
684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
685 /* Perform the largest reset requested */
686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
687 reset_type = ICE_RESET_CORER;
688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
689 reset_type = ICE_RESET_GLOBR;
690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
691 reset_type = ICE_RESET_EMPR;
692 /* return if no valid reset type requested */
693 if (reset_type == ICE_RESET_INVAL)
694 return;
695 ice_prepare_for_reset(pf, reset_type);
696
697 /* make sure we are ready to rebuild */
698 if (ice_check_reset(&pf->hw)) {
699 set_bit(ICE_RESET_FAILED, pf->state);
700 } else {
701 /* done with reset. start rebuild */
702 pf->hw.reset_ongoing = false;
703 ice_rebuild(pf, reset_type);
704 /* clear bit to resume normal operations, but
705 * ICE_NEEDS_RESTART bit is set in case rebuild failed
706 */
707 clear_bit(ICE_RESET_OICR_RECV, pf->state);
708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
709 clear_bit(ICE_PFR_REQ, pf->state);
710 clear_bit(ICE_CORER_REQ, pf->state);
711 clear_bit(ICE_GLOBR_REQ, pf->state);
712 wake_up(&pf->reset_wait_queue);
713 ice_reset_all_vfs(pf);
714 }
715
716 return;
717 }
718
719 /* No pending resets to finish processing. Check for new resets */
720 if (test_bit(ICE_PFR_REQ, pf->state)) {
721 reset_type = ICE_RESET_PFR;
722 if (pf->lag && pf->lag->bonded) {
723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
724 reset_type = ICE_RESET_CORER;
725 }
726 }
727 if (test_bit(ICE_CORER_REQ, pf->state))
728 reset_type = ICE_RESET_CORER;
729 if (test_bit(ICE_GLOBR_REQ, pf->state))
730 reset_type = ICE_RESET_GLOBR;
731 /* If no valid reset type requested just return */
732 if (reset_type == ICE_RESET_INVAL)
733 return;
734
735 /* reset if not already down or busy */
736 if (!test_bit(ICE_DOWN, pf->state) &&
737 !test_bit(ICE_CFG_BUSY, pf->state)) {
738 ice_do_reset(pf, reset_type);
739 }
740}
741
742/**
743 * ice_print_topo_conflict - print topology conflict message
744 * @vsi: the VSI whose topology status is being checked
745 */
746static void ice_print_topo_conflict(struct ice_vsi *vsi)
747{
748 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
749 case ICE_AQ_LINK_TOPO_CONFLICT:
750 case ICE_AQ_LINK_MEDIA_CONFLICT:
751 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
755 break;
756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
759 else
760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
761 break;
762 default:
763 break;
764 }
765}
766
767/**
768 * ice_print_link_msg - print link up or down message
769 * @vsi: the VSI whose link status is being queried
770 * @isup: boolean for if the link is now up or down
771 */
772void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
773{
774 struct ice_aqc_get_phy_caps_data *caps;
775 const char *an_advertised;
776 const char *fec_req;
777 const char *speed;
778 const char *fec;
779 const char *fc;
780 const char *an;
781 int status;
782
783 if (!vsi)
784 return;
785
786 if (vsi->current_isup == isup)
787 return;
788
789 vsi->current_isup = isup;
790
791 if (!isup) {
792 netdev_info(vsi->netdev, "NIC Link is Down\n");
793 return;
794 }
795
796 switch (vsi->port_info->phy.link_info.link_speed) {
797 case ICE_AQ_LINK_SPEED_200GB:
798 speed = "200 G";
799 break;
800 case ICE_AQ_LINK_SPEED_100GB:
801 speed = "100 G";
802 break;
803 case ICE_AQ_LINK_SPEED_50GB:
804 speed = "50 G";
805 break;
806 case ICE_AQ_LINK_SPEED_40GB:
807 speed = "40 G";
808 break;
809 case ICE_AQ_LINK_SPEED_25GB:
810 speed = "25 G";
811 break;
812 case ICE_AQ_LINK_SPEED_20GB:
813 speed = "20 G";
814 break;
815 case ICE_AQ_LINK_SPEED_10GB:
816 speed = "10 G";
817 break;
818 case ICE_AQ_LINK_SPEED_5GB:
819 speed = "5 G";
820 break;
821 case ICE_AQ_LINK_SPEED_2500MB:
822 speed = "2.5 G";
823 break;
824 case ICE_AQ_LINK_SPEED_1000MB:
825 speed = "1 G";
826 break;
827 case ICE_AQ_LINK_SPEED_100MB:
828 speed = "100 M";
829 break;
830 default:
831 speed = "Unknown ";
832 break;
833 }
834
835 switch (vsi->port_info->fc.current_mode) {
836 case ICE_FC_FULL:
837 fc = "Rx/Tx";
838 break;
839 case ICE_FC_TX_PAUSE:
840 fc = "Tx";
841 break;
842 case ICE_FC_RX_PAUSE:
843 fc = "Rx";
844 break;
845 case ICE_FC_NONE:
846 fc = "None";
847 break;
848 default:
849 fc = "Unknown";
850 break;
851 }
852
853 /* Get FEC mode based on negotiated link info */
854 switch (vsi->port_info->phy.link_info.fec_info) {
855 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
856 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
857 fec = "RS-FEC";
858 break;
859 case ICE_AQ_LINK_25G_KR_FEC_EN:
860 fec = "FC-FEC/BASE-R";
861 break;
862 default:
863 fec = "NONE";
864 break;
865 }
866
867 /* check if autoneg completed, might be false due to not supported */
868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
869 an = "True";
870 else
871 an = "False";
872
873 /* Get FEC mode requested based on PHY caps last SW configuration */
874 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
875 if (!caps) {
876 fec_req = "Unknown";
877 an_advertised = "Unknown";
878 goto done;
879 }
880
881 status = ice_aq_get_phy_caps(vsi->port_info, false,
882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
883 if (status)
884 netdev_info(vsi->netdev, "Get phy capability failed.\n");
885
886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
887
888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
890 fec_req = "RS-FEC";
891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
893 fec_req = "FC-FEC/BASE-R";
894 else
895 fec_req = "NONE";
896
897 kfree(caps);
898
899done:
900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
901 speed, fec_req, fec, an_advertised, an, fc);
902 ice_print_topo_conflict(vsi);
903}
904
905/**
906 * ice_vsi_link_event - update the VSI's netdev
907 * @vsi: the VSI on which the link event occurred
908 * @link_up: whether or not the VSI needs to be set up or down
909 */
910static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
911{
912 if (!vsi)
913 return;
914
915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
916 return;
917
918 if (vsi->type == ICE_VSI_PF) {
919 if (link_up == netif_carrier_ok(vsi->netdev))
920 return;
921
922 if (link_up) {
923 netif_carrier_on(vsi->netdev);
924 netif_tx_wake_all_queues(vsi->netdev);
925 } else {
926 netif_carrier_off(vsi->netdev);
927 netif_tx_stop_all_queues(vsi->netdev);
928 }
929 }
930}
931
932/**
933 * ice_set_dflt_mib - send a default config MIB to the FW
934 * @pf: private PF struct
935 *
936 * This function sends a default configuration MIB to the FW.
937 *
938 * If this function errors out at any point, the driver is still able to
939 * function. The main impact is that LFC may not operate as expected.
940 * Therefore an error state in this function should be treated with a DBG
941 * message and continue on with driver rebuild/reenable.
942 */
943static void ice_set_dflt_mib(struct ice_pf *pf)
944{
945 struct device *dev = ice_pf_to_dev(pf);
946 u8 mib_type, *buf, *lldpmib = NULL;
947 u16 len, typelen, offset = 0;
948 struct ice_lldp_org_tlv *tlv;
949 struct ice_hw *hw = &pf->hw;
950 u32 ouisubtype;
951
952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
954 if (!lldpmib) {
955 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
956 __func__);
957 return;
958 }
959
960 /* Add ETS CFG TLV */
961 tlv = (struct ice_lldp_org_tlv *)lldpmib;
962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
963 ICE_IEEE_ETS_TLV_LEN);
964 tlv->typelen = htons(typelen);
965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
966 ICE_IEEE_SUBTYPE_ETS_CFG);
967 tlv->ouisubtype = htonl(ouisubtype);
968
969 buf = tlv->tlvinfo;
970 buf[0] = 0;
971
972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
974 * Octets 13 - 20 are TSA values - leave as zeros
975 */
976 buf[5] = 0x64;
977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
978 offset += len + 2;
979 tlv = (struct ice_lldp_org_tlv *)
980 ((char *)tlv + sizeof(tlv->typelen) + len);
981
982 /* Add ETS REC TLV */
983 buf = tlv->tlvinfo;
984 tlv->typelen = htons(typelen);
985
986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
987 ICE_IEEE_SUBTYPE_ETS_REC);
988 tlv->ouisubtype = htonl(ouisubtype);
989
990 /* First octet of buf is reserved
991 * Octets 1 - 4 map UP to TC - all UPs map to zero
992 * Octets 5 - 12 are BW values - set TC 0 to 100%.
993 * Octets 13 - 20 are TSA value - leave as zeros
994 */
995 buf[5] = 0x64;
996 offset += len + 2;
997 tlv = (struct ice_lldp_org_tlv *)
998 ((char *)tlv + sizeof(tlv->typelen) + len);
999
1000 /* Add PFC CFG TLV */
1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1002 ICE_IEEE_PFC_TLV_LEN);
1003 tlv->typelen = htons(typelen);
1004
1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1006 ICE_IEEE_SUBTYPE_PFC_CFG);
1007 tlv->ouisubtype = htonl(ouisubtype);
1008
1009 /* Octet 1 left as all zeros - PFC disabled */
1010 buf[0] = 0x08;
1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1012 offset += len + 2;
1013
1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1016
1017 kfree(lldpmib);
1018}
1019
1020/**
1021 * ice_check_phy_fw_load - check if PHY FW load failed
1022 * @pf: pointer to PF struct
1023 * @link_cfg_err: bitmap from the link info structure
1024 *
1025 * check if external PHY FW load failed and print an error message if it did
1026 */
1027static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1028{
1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1031 return;
1032 }
1033
1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1035 return;
1036
1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1040 }
1041}
1042
1043/**
1044 * ice_check_module_power
1045 * @pf: pointer to PF struct
1046 * @link_cfg_err: bitmap from the link info structure
1047 *
1048 * check module power level returned by a previous call to aq_get_link_info
1049 * and print error messages if module power level is not supported
1050 */
1051static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1052{
1053 /* if module power level is supported, clear the flag */
1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1057 return;
1058 }
1059
1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1061 * above block didn't clear this bit, there's nothing to do
1062 */
1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1064 return;
1065
1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1072 }
1073}
1074
1075/**
1076 * ice_check_link_cfg_err - check if link configuration failed
1077 * @pf: pointer to the PF struct
1078 * @link_cfg_err: bitmap from the link info structure
1079 *
1080 * print if any link configuration failure happens due to the value in the
1081 * link_cfg_err parameter in the link info structure
1082 */
1083static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1084{
1085 ice_check_module_power(pf, link_cfg_err);
1086 ice_check_phy_fw_load(pf, link_cfg_err);
1087}
1088
1089/**
1090 * ice_link_event - process the link event
1091 * @pf: PF that the link event is associated with
1092 * @pi: port_info for the port that the link event is associated with
1093 * @link_up: true if the physical link is up and false if it is down
1094 * @link_speed: current link speed received from the link event
1095 *
1096 * Returns 0 on success and negative on failure
1097 */
1098static int
1099ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1100 u16 link_speed)
1101{
1102 struct device *dev = ice_pf_to_dev(pf);
1103 struct ice_phy_info *phy_info;
1104 struct ice_vsi *vsi;
1105 u16 old_link_speed;
1106 bool old_link;
1107 int status;
1108
1109 phy_info = &pi->phy;
1110 phy_info->link_info_old = phy_info->link_info;
1111
1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1113 old_link_speed = phy_info->link_info_old.link_speed;
1114
1115 /* update the link info structures and re-enable link events,
1116 * don't bail on failure due to other book keeping needed
1117 */
1118 status = ice_update_link_info(pi);
1119 if (status)
1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1121 pi->lport, status,
1122 ice_aq_str(pi->hw->adminq.sq_last_status));
1123
1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1125
1126 /* Check if the link state is up after updating link info, and treat
1127 * this event as an UP event since the link is actually UP now.
1128 */
1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1130 link_up = true;
1131
1132 vsi = ice_get_main_vsi(pf);
1133 if (!vsi || !vsi->port_info)
1134 return -EINVAL;
1135
1136 /* turn off PHY if media was removed */
1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1140 ice_set_link(vsi, false);
1141 }
1142
1143 /* if the old link up/down and speed is the same as the new */
1144 if (link_up == old_link && link_speed == old_link_speed)
1145 return 0;
1146
1147 ice_ptp_link_change(pf, link_up);
1148
1149 if (ice_is_dcb_active(pf)) {
1150 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1151 ice_dcb_rebuild(pf);
1152 } else {
1153 if (link_up)
1154 ice_set_dflt_mib(pf);
1155 }
1156 ice_vsi_link_event(vsi, link_up);
1157 ice_print_link_msg(vsi, link_up);
1158
1159 ice_vc_notify_link_state(pf);
1160
1161 return 0;
1162}
1163
1164/**
1165 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1166 * @pf: board private structure
1167 */
1168static void ice_watchdog_subtask(struct ice_pf *pf)
1169{
1170 int i;
1171
1172 /* if interface is down do nothing */
1173 if (test_bit(ICE_DOWN, pf->state) ||
1174 test_bit(ICE_CFG_BUSY, pf->state))
1175 return;
1176
1177 /* make sure we don't do these things too often */
1178 if (time_before(jiffies,
1179 pf->serv_tmr_prev + pf->serv_tmr_period))
1180 return;
1181
1182 pf->serv_tmr_prev = jiffies;
1183
1184 /* Update the stats for active netdevs so the network stack
1185 * can look at updated numbers whenever it cares to
1186 */
1187 ice_update_pf_stats(pf);
1188 ice_for_each_vsi(pf, i)
1189 if (pf->vsi[i] && pf->vsi[i]->netdev)
1190 ice_update_vsi_stats(pf->vsi[i]);
1191}
1192
1193/**
1194 * ice_init_link_events - enable/initialize link events
1195 * @pi: pointer to the port_info instance
1196 *
1197 * Returns -EIO on failure, 0 on success
1198 */
1199static int ice_init_link_events(struct ice_port_info *pi)
1200{
1201 u16 mask;
1202
1203 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1204 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1205 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1206
1207 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1209 pi->lport);
1210 return -EIO;
1211 }
1212
1213 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1215 pi->lport);
1216 return -EIO;
1217 }
1218
1219 return 0;
1220}
1221
1222/**
1223 * ice_handle_link_event - handle link event via ARQ
1224 * @pf: PF that the link event is associated with
1225 * @event: event structure containing link status info
1226 */
1227static int
1228ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1229{
1230 struct ice_aqc_get_link_status_data *link_data;
1231 struct ice_port_info *port_info;
1232 int status;
1233
1234 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1235 port_info = pf->hw.port_info;
1236 if (!port_info)
1237 return -EINVAL;
1238
1239 status = ice_link_event(pf, port_info,
1240 !!(link_data->link_info & ICE_AQ_LINK_UP),
1241 le16_to_cpu(link_data->link_speed));
1242 if (status)
1243 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1244 status);
1245
1246 return status;
1247}
1248
1249/**
1250 * ice_get_fwlog_data - copy the FW log data from ARQ event
1251 * @pf: PF that the FW log event is associated with
1252 * @event: event structure containing FW log data
1253 */
1254static void
1255ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1256{
1257 struct ice_fwlog_data *fwlog;
1258 struct ice_hw *hw = &pf->hw;
1259
1260 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1261
1262 memset(fwlog->data, 0, PAGE_SIZE);
1263 fwlog->data_size = le16_to_cpu(event->desc.datalen);
1264
1265 memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1266 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1267
1268 if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1269 /* the rings are full so bump the head to create room */
1270 ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1271 hw->fwlog_ring.size);
1272 }
1273}
1274
1275/**
1276 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1277 * @pf: pointer to the PF private structure
1278 * @task: intermediate helper storage and identifier for waiting
1279 * @opcode: the opcode to wait for
1280 *
1281 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1282 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1283 *
1284 * Calls are separated to allow caller registering for event before sending
1285 * the command, which mitigates a race between registering and FW responding.
1286 *
1287 * To obtain only the descriptor contents, pass an task->event with null
1288 * msg_buf. If the complete data buffer is desired, allocate the
1289 * task->event.msg_buf with enough space ahead of time.
1290 */
1291void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1292 u16 opcode)
1293{
1294 INIT_HLIST_NODE(&task->entry);
1295 task->opcode = opcode;
1296 task->state = ICE_AQ_TASK_WAITING;
1297
1298 spin_lock_bh(&pf->aq_wait_lock);
1299 hlist_add_head(&task->entry, &pf->aq_wait_list);
1300 spin_unlock_bh(&pf->aq_wait_lock);
1301}
1302
1303/**
1304 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1305 * @pf: pointer to the PF private structure
1306 * @task: ptr prepared by ice_aq_prep_for_event()
1307 * @timeout: how long to wait, in jiffies
1308 *
1309 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1310 * current thread will be put to sleep until the specified event occurs or
1311 * until the given timeout is reached.
1312 *
1313 * Returns: zero on success, or a negative error code on failure.
1314 */
1315int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1316 unsigned long timeout)
1317{
1318 enum ice_aq_task_state *state = &task->state;
1319 struct device *dev = ice_pf_to_dev(pf);
1320 unsigned long start = jiffies;
1321 long ret;
1322 int err;
1323
1324 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1325 *state != ICE_AQ_TASK_WAITING,
1326 timeout);
1327 switch (*state) {
1328 case ICE_AQ_TASK_NOT_PREPARED:
1329 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1330 err = -EINVAL;
1331 break;
1332 case ICE_AQ_TASK_WAITING:
1333 err = ret < 0 ? ret : -ETIMEDOUT;
1334 break;
1335 case ICE_AQ_TASK_CANCELED:
1336 err = ret < 0 ? ret : -ECANCELED;
1337 break;
1338 case ICE_AQ_TASK_COMPLETE:
1339 err = ret < 0 ? ret : 0;
1340 break;
1341 default:
1342 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1343 err = -EINVAL;
1344 break;
1345 }
1346
1347 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1348 jiffies_to_msecs(jiffies - start),
1349 jiffies_to_msecs(timeout),
1350 task->opcode);
1351
1352 spin_lock_bh(&pf->aq_wait_lock);
1353 hlist_del(&task->entry);
1354 spin_unlock_bh(&pf->aq_wait_lock);
1355
1356 return err;
1357}
1358
1359/**
1360 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1361 * @pf: pointer to the PF private structure
1362 * @opcode: the opcode of the event
1363 * @event: the event to check
1364 *
1365 * Loops over the current list of pending threads waiting for an AdminQ event.
1366 * For each matching task, copy the contents of the event into the task
1367 * structure and wake up the thread.
1368 *
1369 * If multiple threads wait for the same opcode, they will all be woken up.
1370 *
1371 * Note that event->msg_buf will only be duplicated if the event has a buffer
1372 * with enough space already allocated. Otherwise, only the descriptor and
1373 * message length will be copied.
1374 *
1375 * Returns: true if an event was found, false otherwise
1376 */
1377static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1378 struct ice_rq_event_info *event)
1379{
1380 struct ice_rq_event_info *task_ev;
1381 struct ice_aq_task *task;
1382 bool found = false;
1383
1384 spin_lock_bh(&pf->aq_wait_lock);
1385 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1386 if (task->state != ICE_AQ_TASK_WAITING)
1387 continue;
1388 if (task->opcode != opcode)
1389 continue;
1390
1391 task_ev = &task->event;
1392 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1393 task_ev->msg_len = event->msg_len;
1394
1395 /* Only copy the data buffer if a destination was set */
1396 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1397 memcpy(task_ev->msg_buf, event->msg_buf,
1398 event->buf_len);
1399 task_ev->buf_len = event->buf_len;
1400 }
1401
1402 task->state = ICE_AQ_TASK_COMPLETE;
1403 found = true;
1404 }
1405 spin_unlock_bh(&pf->aq_wait_lock);
1406
1407 if (found)
1408 wake_up(&pf->aq_wait_queue);
1409}
1410
1411/**
1412 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1413 * @pf: the PF private structure
1414 *
1415 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1416 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1417 */
1418static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1419{
1420 struct ice_aq_task *task;
1421
1422 spin_lock_bh(&pf->aq_wait_lock);
1423 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1424 task->state = ICE_AQ_TASK_CANCELED;
1425 spin_unlock_bh(&pf->aq_wait_lock);
1426
1427 wake_up(&pf->aq_wait_queue);
1428}
1429
1430#define ICE_MBX_OVERFLOW_WATERMARK 64
1431
1432/**
1433 * __ice_clean_ctrlq - helper function to clean controlq rings
1434 * @pf: ptr to struct ice_pf
1435 * @q_type: specific Control queue type
1436 */
1437static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1438{
1439 struct device *dev = ice_pf_to_dev(pf);
1440 struct ice_rq_event_info event;
1441 struct ice_hw *hw = &pf->hw;
1442 struct ice_ctl_q_info *cq;
1443 u16 pending, i = 0;
1444 const char *qtype;
1445 u32 oldval, val;
1446
1447 /* Do not clean control queue if/when PF reset fails */
1448 if (test_bit(ICE_RESET_FAILED, pf->state))
1449 return 0;
1450
1451 switch (q_type) {
1452 case ICE_CTL_Q_ADMIN:
1453 cq = &hw->adminq;
1454 qtype = "Admin";
1455 break;
1456 case ICE_CTL_Q_SB:
1457 cq = &hw->sbq;
1458 qtype = "Sideband";
1459 break;
1460 case ICE_CTL_Q_MAILBOX:
1461 cq = &hw->mailboxq;
1462 qtype = "Mailbox";
1463 /* we are going to try to detect a malicious VF, so set the
1464 * state to begin detection
1465 */
1466 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1467 break;
1468 default:
1469 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1470 return 0;
1471 }
1472
1473 /* check for error indications - PF_xx_AxQLEN register layout for
1474 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1475 */
1476 val = rd32(hw, cq->rq.len);
1477 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1478 PF_FW_ARQLEN_ARQCRIT_M)) {
1479 oldval = val;
1480 if (val & PF_FW_ARQLEN_ARQVFE_M)
1481 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1482 qtype);
1483 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1484 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1485 qtype);
1486 }
1487 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1488 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1489 qtype);
1490 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1491 PF_FW_ARQLEN_ARQCRIT_M);
1492 if (oldval != val)
1493 wr32(hw, cq->rq.len, val);
1494 }
1495
1496 val = rd32(hw, cq->sq.len);
1497 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1498 PF_FW_ATQLEN_ATQCRIT_M)) {
1499 oldval = val;
1500 if (val & PF_FW_ATQLEN_ATQVFE_M)
1501 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1502 qtype);
1503 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1504 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1505 qtype);
1506 }
1507 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1508 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1509 qtype);
1510 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1511 PF_FW_ATQLEN_ATQCRIT_M);
1512 if (oldval != val)
1513 wr32(hw, cq->sq.len, val);
1514 }
1515
1516 event.buf_len = cq->rq_buf_size;
1517 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1518 if (!event.msg_buf)
1519 return 0;
1520
1521 do {
1522 struct ice_mbx_data data = {};
1523 u16 opcode;
1524 int ret;
1525
1526 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1527 if (ret == -EALREADY)
1528 break;
1529 if (ret) {
1530 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1531 ret);
1532 break;
1533 }
1534
1535 opcode = le16_to_cpu(event.desc.opcode);
1536
1537 /* Notify any thread that might be waiting for this event */
1538 ice_aq_check_events(pf, opcode, &event);
1539
1540 switch (opcode) {
1541 case ice_aqc_opc_get_link_status:
1542 if (ice_handle_link_event(pf, &event))
1543 dev_err(dev, "Could not handle link event\n");
1544 break;
1545 case ice_aqc_opc_event_lan_overflow:
1546 ice_vf_lan_overflow_event(pf, &event);
1547 break;
1548 case ice_mbx_opc_send_msg_to_pf:
1549 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1550 ice_vc_process_vf_msg(pf, &event, NULL);
1551 ice_mbx_vf_dec_trig_e830(hw, &event);
1552 } else {
1553 u16 val = hw->mailboxq.num_rq_entries;
1554
1555 data.max_num_msgs_mbx = val;
1556 val = ICE_MBX_OVERFLOW_WATERMARK;
1557 data.async_watermark_val = val;
1558 data.num_msg_proc = i;
1559 data.num_pending_arq = pending;
1560
1561 ice_vc_process_vf_msg(pf, &event, &data);
1562 }
1563 break;
1564 case ice_aqc_opc_fw_logs_event:
1565 ice_get_fwlog_data(pf, &event);
1566 break;
1567 case ice_aqc_opc_lldp_set_mib_change:
1568 ice_dcb_process_lldp_set_mib_change(pf, &event);
1569 break;
1570 default:
1571 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1572 qtype, opcode);
1573 break;
1574 }
1575 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1576
1577 kfree(event.msg_buf);
1578
1579 return pending && (i == ICE_DFLT_IRQ_WORK);
1580}
1581
1582/**
1583 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1584 * @hw: pointer to hardware info
1585 * @cq: control queue information
1586 *
1587 * returns true if there are pending messages in a queue, false if there aren't
1588 */
1589static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1590{
1591 u16 ntu;
1592
1593 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1594 return cq->rq.next_to_clean != ntu;
1595}
1596
1597/**
1598 * ice_clean_adminq_subtask - clean the AdminQ rings
1599 * @pf: board private structure
1600 */
1601static void ice_clean_adminq_subtask(struct ice_pf *pf)
1602{
1603 struct ice_hw *hw = &pf->hw;
1604
1605 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1606 return;
1607
1608 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1609 return;
1610
1611 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1612
1613 /* There might be a situation where new messages arrive to a control
1614 * queue between processing the last message and clearing the
1615 * EVENT_PENDING bit. So before exiting, check queue head again (using
1616 * ice_ctrlq_pending) and process new messages if any.
1617 */
1618 if (ice_ctrlq_pending(hw, &hw->adminq))
1619 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1620
1621 ice_flush(hw);
1622}
1623
1624/**
1625 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1626 * @pf: board private structure
1627 */
1628static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1629{
1630 struct ice_hw *hw = &pf->hw;
1631
1632 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1633 return;
1634
1635 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1636 return;
1637
1638 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1639
1640 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1641 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1642
1643 ice_flush(hw);
1644}
1645
1646/**
1647 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1648 * @pf: board private structure
1649 */
1650static void ice_clean_sbq_subtask(struct ice_pf *pf)
1651{
1652 struct ice_hw *hw = &pf->hw;
1653
1654 /* if mac_type is not generic, sideband is not supported
1655 * and there's nothing to do here
1656 */
1657 if (!ice_is_generic_mac(hw)) {
1658 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1659 return;
1660 }
1661
1662 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1663 return;
1664
1665 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1666 return;
1667
1668 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1669
1670 if (ice_ctrlq_pending(hw, &hw->sbq))
1671 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1672
1673 ice_flush(hw);
1674}
1675
1676/**
1677 * ice_service_task_schedule - schedule the service task to wake up
1678 * @pf: board private structure
1679 *
1680 * If not already scheduled, this puts the task into the work queue.
1681 */
1682void ice_service_task_schedule(struct ice_pf *pf)
1683{
1684 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1685 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1686 !test_bit(ICE_NEEDS_RESTART, pf->state))
1687 queue_work(ice_wq, &pf->serv_task);
1688}
1689
1690/**
1691 * ice_service_task_complete - finish up the service task
1692 * @pf: board private structure
1693 */
1694static void ice_service_task_complete(struct ice_pf *pf)
1695{
1696 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1697
1698 /* force memory (pf->state) to sync before next service task */
1699 smp_mb__before_atomic();
1700 clear_bit(ICE_SERVICE_SCHED, pf->state);
1701}
1702
1703/**
1704 * ice_service_task_stop - stop service task and cancel works
1705 * @pf: board private structure
1706 *
1707 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1708 * 1 otherwise.
1709 */
1710static int ice_service_task_stop(struct ice_pf *pf)
1711{
1712 int ret;
1713
1714 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1715
1716 if (pf->serv_tmr.function)
1717 del_timer_sync(&pf->serv_tmr);
1718 if (pf->serv_task.func)
1719 cancel_work_sync(&pf->serv_task);
1720
1721 clear_bit(ICE_SERVICE_SCHED, pf->state);
1722 return ret;
1723}
1724
1725/**
1726 * ice_service_task_restart - restart service task and schedule works
1727 * @pf: board private structure
1728 *
1729 * This function is needed for suspend and resume works (e.g WoL scenario)
1730 */
1731static void ice_service_task_restart(struct ice_pf *pf)
1732{
1733 clear_bit(ICE_SERVICE_DIS, pf->state);
1734 ice_service_task_schedule(pf);
1735}
1736
1737/**
1738 * ice_service_timer - timer callback to schedule service task
1739 * @t: pointer to timer_list
1740 */
1741static void ice_service_timer(struct timer_list *t)
1742{
1743 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1744
1745 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1746 ice_service_task_schedule(pf);
1747}
1748
1749/**
1750 * ice_mdd_maybe_reset_vf - reset VF after MDD event
1751 * @pf: pointer to the PF structure
1752 * @vf: pointer to the VF structure
1753 * @reset_vf_tx: whether Tx MDD has occurred
1754 * @reset_vf_rx: whether Rx MDD has occurred
1755 *
1756 * Since the queue can get stuck on VF MDD events, the PF can be configured to
1757 * automatically reset the VF by enabling the private ethtool flag
1758 * mdd-auto-reset-vf.
1759 */
1760static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1761 bool reset_vf_tx, bool reset_vf_rx)
1762{
1763 struct device *dev = ice_pf_to_dev(pf);
1764
1765 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1766 return;
1767
1768 /* VF MDD event counters will be cleared by reset, so print the event
1769 * prior to reset.
1770 */
1771 if (reset_vf_tx)
1772 ice_print_vf_tx_mdd_event(vf);
1773
1774 if (reset_vf_rx)
1775 ice_print_vf_rx_mdd_event(vf);
1776
1777 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1778 pf->hw.pf_id, vf->vf_id);
1779 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1780}
1781
1782/**
1783 * ice_handle_mdd_event - handle malicious driver detect event
1784 * @pf: pointer to the PF structure
1785 *
1786 * Called from service task. OICR interrupt handler indicates MDD event.
1787 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1788 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1789 * disable the queue, the PF can be configured to reset the VF using ethtool
1790 * private flag mdd-auto-reset-vf.
1791 */
1792static void ice_handle_mdd_event(struct ice_pf *pf)
1793{
1794 struct device *dev = ice_pf_to_dev(pf);
1795 struct ice_hw *hw = &pf->hw;
1796 struct ice_vf *vf;
1797 unsigned int bkt;
1798 u32 reg;
1799
1800 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1801 /* Since the VF MDD event logging is rate limited, check if
1802 * there are pending MDD events.
1803 */
1804 ice_print_vfs_mdd_events(pf);
1805 return;
1806 }
1807
1808 /* find what triggered an MDD event */
1809 reg = rd32(hw, GL_MDET_TX_PQM);
1810 if (reg & GL_MDET_TX_PQM_VALID_M) {
1811 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1812 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1813 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1814 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1815
1816 if (netif_msg_tx_err(pf))
1817 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1818 event, queue, pf_num, vf_num);
1819 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1820 }
1821
1822 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1823 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1824 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1825 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1826 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1827 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1828
1829 if (netif_msg_tx_err(pf))
1830 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1831 event, queue, pf_num, vf_num);
1832 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1833 }
1834
1835 reg = rd32(hw, GL_MDET_RX);
1836 if (reg & GL_MDET_RX_VALID_M) {
1837 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1838 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1839 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1840 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1841
1842 if (netif_msg_rx_err(pf))
1843 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1844 event, queue, pf_num, vf_num);
1845 wr32(hw, GL_MDET_RX, 0xffffffff);
1846 }
1847
1848 /* check to see if this PF caused an MDD event */
1849 reg = rd32(hw, PF_MDET_TX_PQM);
1850 if (reg & PF_MDET_TX_PQM_VALID_M) {
1851 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1852 if (netif_msg_tx_err(pf))
1853 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1854 }
1855
1856 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1857 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1858 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1859 if (netif_msg_tx_err(pf))
1860 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1861 }
1862
1863 reg = rd32(hw, PF_MDET_RX);
1864 if (reg & PF_MDET_RX_VALID_M) {
1865 wr32(hw, PF_MDET_RX, 0xFFFF);
1866 if (netif_msg_rx_err(pf))
1867 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1868 }
1869
1870 /* Check to see if one of the VFs caused an MDD event, and then
1871 * increment counters and set print pending
1872 */
1873 mutex_lock(&pf->vfs.table_lock);
1874 ice_for_each_vf(pf, bkt, vf) {
1875 bool reset_vf_tx = false, reset_vf_rx = false;
1876
1877 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1878 if (reg & VP_MDET_TX_PQM_VALID_M) {
1879 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1880 vf->mdd_tx_events.count++;
1881 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1882 if (netif_msg_tx_err(pf))
1883 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1884 vf->vf_id);
1885
1886 reset_vf_tx = true;
1887 }
1888
1889 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1890 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1891 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1892 vf->mdd_tx_events.count++;
1893 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1894 if (netif_msg_tx_err(pf))
1895 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1896 vf->vf_id);
1897
1898 reset_vf_tx = true;
1899 }
1900
1901 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1902 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1903 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1904 vf->mdd_tx_events.count++;
1905 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1906 if (netif_msg_tx_err(pf))
1907 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1908 vf->vf_id);
1909
1910 reset_vf_tx = true;
1911 }
1912
1913 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1914 if (reg & VP_MDET_RX_VALID_M) {
1915 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1916 vf->mdd_rx_events.count++;
1917 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1918 if (netif_msg_rx_err(pf))
1919 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1920 vf->vf_id);
1921
1922 reset_vf_rx = true;
1923 }
1924
1925 if (reset_vf_tx || reset_vf_rx)
1926 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1927 reset_vf_rx);
1928 }
1929 mutex_unlock(&pf->vfs.table_lock);
1930
1931 ice_print_vfs_mdd_events(pf);
1932}
1933
1934/**
1935 * ice_force_phys_link_state - Force the physical link state
1936 * @vsi: VSI to force the physical link state to up/down
1937 * @link_up: true/false indicates to set the physical link to up/down
1938 *
1939 * Force the physical link state by getting the current PHY capabilities from
1940 * hardware and setting the PHY config based on the determined capabilities. If
1941 * link changes a link event will be triggered because both the Enable Automatic
1942 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1943 *
1944 * Returns 0 on success, negative on failure
1945 */
1946static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1947{
1948 struct ice_aqc_get_phy_caps_data *pcaps;
1949 struct ice_aqc_set_phy_cfg_data *cfg;
1950 struct ice_port_info *pi;
1951 struct device *dev;
1952 int retcode;
1953
1954 if (!vsi || !vsi->port_info || !vsi->back)
1955 return -EINVAL;
1956 if (vsi->type != ICE_VSI_PF)
1957 return 0;
1958
1959 dev = ice_pf_to_dev(vsi->back);
1960
1961 pi = vsi->port_info;
1962
1963 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1964 if (!pcaps)
1965 return -ENOMEM;
1966
1967 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1968 NULL);
1969 if (retcode) {
1970 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1971 vsi->vsi_num, retcode);
1972 retcode = -EIO;
1973 goto out;
1974 }
1975
1976 /* No change in link */
1977 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1978 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1979 goto out;
1980
1981 /* Use the current user PHY configuration. The current user PHY
1982 * configuration is initialized during probe from PHY capabilities
1983 * software mode, and updated on set PHY configuration.
1984 */
1985 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1986 if (!cfg) {
1987 retcode = -ENOMEM;
1988 goto out;
1989 }
1990
1991 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1992 if (link_up)
1993 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1994 else
1995 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1996
1997 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1998 if (retcode) {
1999 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2000 vsi->vsi_num, retcode);
2001 retcode = -EIO;
2002 }
2003
2004 kfree(cfg);
2005out:
2006 kfree(pcaps);
2007 return retcode;
2008}
2009
2010/**
2011 * ice_init_nvm_phy_type - Initialize the NVM PHY type
2012 * @pi: port info structure
2013 *
2014 * Initialize nvm_phy_type_[low|high] for link lenient mode support
2015 */
2016static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2017{
2018 struct ice_aqc_get_phy_caps_data *pcaps;
2019 struct ice_pf *pf = pi->hw->back;
2020 int err;
2021
2022 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2023 if (!pcaps)
2024 return -ENOMEM;
2025
2026 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2027 pcaps, NULL);
2028
2029 if (err) {
2030 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2031 goto out;
2032 }
2033
2034 pf->nvm_phy_type_hi = pcaps->phy_type_high;
2035 pf->nvm_phy_type_lo = pcaps->phy_type_low;
2036
2037out:
2038 kfree(pcaps);
2039 return err;
2040}
2041
2042/**
2043 * ice_init_link_dflt_override - Initialize link default override
2044 * @pi: port info structure
2045 *
2046 * Initialize link default override and PHY total port shutdown during probe
2047 */
2048static void ice_init_link_dflt_override(struct ice_port_info *pi)
2049{
2050 struct ice_link_default_override_tlv *ldo;
2051 struct ice_pf *pf = pi->hw->back;
2052
2053 ldo = &pf->link_dflt_override;
2054 if (ice_get_link_default_override(ldo, pi))
2055 return;
2056
2057 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2058 return;
2059
2060 /* Enable Total Port Shutdown (override/replace link-down-on-close
2061 * ethtool private flag) for ports with Port Disable bit set.
2062 */
2063 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2064 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2065}
2066
2067/**
2068 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2069 * @pi: port info structure
2070 *
2071 * If default override is enabled, initialize the user PHY cfg speed and FEC
2072 * settings using the default override mask from the NVM.
2073 *
2074 * The PHY should only be configured with the default override settings the
2075 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2076 * is used to indicate that the user PHY cfg default override is initialized
2077 * and the PHY has not been configured with the default override settings. The
2078 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2079 * configured.
2080 *
2081 * This function should be called only if the FW doesn't support default
2082 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2083 */
2084static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2085{
2086 struct ice_link_default_override_tlv *ldo;
2087 struct ice_aqc_set_phy_cfg_data *cfg;
2088 struct ice_phy_info *phy = &pi->phy;
2089 struct ice_pf *pf = pi->hw->back;
2090
2091 ldo = &pf->link_dflt_override;
2092
2093 /* If link default override is enabled, use to mask NVM PHY capabilities
2094 * for speed and FEC default configuration.
2095 */
2096 cfg = &phy->curr_user_phy_cfg;
2097
2098 if (ldo->phy_type_low || ldo->phy_type_high) {
2099 cfg->phy_type_low = pf->nvm_phy_type_lo &
2100 cpu_to_le64(ldo->phy_type_low);
2101 cfg->phy_type_high = pf->nvm_phy_type_hi &
2102 cpu_to_le64(ldo->phy_type_high);
2103 }
2104 cfg->link_fec_opt = ldo->fec_options;
2105 phy->curr_user_fec_req = ICE_FEC_AUTO;
2106
2107 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2108}
2109
2110/**
2111 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2112 * @pi: port info structure
2113 *
2114 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2115 * mode to default. The PHY defaults are from get PHY capabilities topology
2116 * with media so call when media is first available. An error is returned if
2117 * called when media is not available. The PHY initialization completed state is
2118 * set here.
2119 *
2120 * These configurations are used when setting PHY
2121 * configuration. The user PHY configuration is updated on set PHY
2122 * configuration. Returns 0 on success, negative on failure
2123 */
2124static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2125{
2126 struct ice_aqc_get_phy_caps_data *pcaps;
2127 struct ice_phy_info *phy = &pi->phy;
2128 struct ice_pf *pf = pi->hw->back;
2129 int err;
2130
2131 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2132 return -EIO;
2133
2134 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2135 if (!pcaps)
2136 return -ENOMEM;
2137
2138 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2139 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2140 pcaps, NULL);
2141 else
2142 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2143 pcaps, NULL);
2144 if (err) {
2145 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2146 goto err_out;
2147 }
2148
2149 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2150
2151 /* check if lenient mode is supported and enabled */
2152 if (ice_fw_supports_link_override(pi->hw) &&
2153 !(pcaps->module_compliance_enforcement &
2154 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2155 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2156
2157 /* if the FW supports default PHY configuration mode, then the driver
2158 * does not have to apply link override settings. If not,
2159 * initialize user PHY configuration with link override values
2160 */
2161 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2162 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2163 ice_init_phy_cfg_dflt_override(pi);
2164 goto out;
2165 }
2166 }
2167
2168 /* if link default override is not enabled, set user flow control and
2169 * FEC settings based on what get_phy_caps returned
2170 */
2171 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2172 pcaps->link_fec_options);
2173 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2174
2175out:
2176 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2177 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2178err_out:
2179 kfree(pcaps);
2180 return err;
2181}
2182
2183/**
2184 * ice_configure_phy - configure PHY
2185 * @vsi: VSI of PHY
2186 *
2187 * Set the PHY configuration. If the current PHY configuration is the same as
2188 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2189 * configure the based get PHY capabilities for topology with media.
2190 */
2191static int ice_configure_phy(struct ice_vsi *vsi)
2192{
2193 struct device *dev = ice_pf_to_dev(vsi->back);
2194 struct ice_port_info *pi = vsi->port_info;
2195 struct ice_aqc_get_phy_caps_data *pcaps;
2196 struct ice_aqc_set_phy_cfg_data *cfg;
2197 struct ice_phy_info *phy = &pi->phy;
2198 struct ice_pf *pf = vsi->back;
2199 int err;
2200
2201 /* Ensure we have media as we cannot configure a medialess port */
2202 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2203 return -ENOMEDIUM;
2204
2205 ice_print_topo_conflict(vsi);
2206
2207 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2208 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2209 return -EPERM;
2210
2211 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2212 return ice_force_phys_link_state(vsi, true);
2213
2214 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2215 if (!pcaps)
2216 return -ENOMEM;
2217
2218 /* Get current PHY config */
2219 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2220 NULL);
2221 if (err) {
2222 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2223 vsi->vsi_num, err);
2224 goto done;
2225 }
2226
2227 /* If PHY enable link is configured and configuration has not changed,
2228 * there's nothing to do
2229 */
2230 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2231 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2232 goto done;
2233
2234 /* Use PHY topology as baseline for configuration */
2235 memset(pcaps, 0, sizeof(*pcaps));
2236 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2237 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2238 pcaps, NULL);
2239 else
2240 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2241 pcaps, NULL);
2242 if (err) {
2243 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2244 vsi->vsi_num, err);
2245 goto done;
2246 }
2247
2248 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2249 if (!cfg) {
2250 err = -ENOMEM;
2251 goto done;
2252 }
2253
2254 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2255
2256 /* Speed - If default override pending, use curr_user_phy_cfg set in
2257 * ice_init_phy_user_cfg_ldo.
2258 */
2259 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2260 vsi->back->state)) {
2261 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2262 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2263 } else {
2264 u64 phy_low = 0, phy_high = 0;
2265
2266 ice_update_phy_type(&phy_low, &phy_high,
2267 pi->phy.curr_user_speed_req);
2268 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2269 cfg->phy_type_high = pcaps->phy_type_high &
2270 cpu_to_le64(phy_high);
2271 }
2272
2273 /* Can't provide what was requested; use PHY capabilities */
2274 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2275 cfg->phy_type_low = pcaps->phy_type_low;
2276 cfg->phy_type_high = pcaps->phy_type_high;
2277 }
2278
2279 /* FEC */
2280 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2281
2282 /* Can't provide what was requested; use PHY capabilities */
2283 if (cfg->link_fec_opt !=
2284 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2285 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2286 cfg->link_fec_opt = pcaps->link_fec_options;
2287 }
2288
2289 /* Flow Control - always supported; no need to check against
2290 * capabilities
2291 */
2292 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2293
2294 /* Enable link and link update */
2295 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2296
2297 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2298 if (err)
2299 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2300 vsi->vsi_num, err);
2301
2302 kfree(cfg);
2303done:
2304 kfree(pcaps);
2305 return err;
2306}
2307
2308/**
2309 * ice_check_media_subtask - Check for media
2310 * @pf: pointer to PF struct
2311 *
2312 * If media is available, then initialize PHY user configuration if it is not
2313 * been, and configure the PHY if the interface is up.
2314 */
2315static void ice_check_media_subtask(struct ice_pf *pf)
2316{
2317 struct ice_port_info *pi;
2318 struct ice_vsi *vsi;
2319 int err;
2320
2321 /* No need to check for media if it's already present */
2322 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2323 return;
2324
2325 vsi = ice_get_main_vsi(pf);
2326 if (!vsi)
2327 return;
2328
2329 /* Refresh link info and check if media is present */
2330 pi = vsi->port_info;
2331 err = ice_update_link_info(pi);
2332 if (err)
2333 return;
2334
2335 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2336
2337 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2338 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2339 ice_init_phy_user_cfg(pi);
2340
2341 /* PHY settings are reset on media insertion, reconfigure
2342 * PHY to preserve settings.
2343 */
2344 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2345 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2346 return;
2347
2348 err = ice_configure_phy(vsi);
2349 if (!err)
2350 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2351
2352 /* A Link Status Event will be generated; the event handler
2353 * will complete bringing the interface up
2354 */
2355 }
2356}
2357
2358/**
2359 * ice_service_task - manage and run subtasks
2360 * @work: pointer to work_struct contained by the PF struct
2361 */
2362static void ice_service_task(struct work_struct *work)
2363{
2364 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2365 unsigned long start_time = jiffies;
2366
2367 /* subtasks */
2368
2369 /* process reset requests first */
2370 ice_reset_subtask(pf);
2371
2372 /* bail if a reset/recovery cycle is pending or rebuild failed */
2373 if (ice_is_reset_in_progress(pf->state) ||
2374 test_bit(ICE_SUSPENDED, pf->state) ||
2375 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2376 ice_service_task_complete(pf);
2377 return;
2378 }
2379
2380 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2381 struct iidc_event *event;
2382
2383 event = kzalloc(sizeof(*event), GFP_KERNEL);
2384 if (event) {
2385 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2386 /* report the entire OICR value to AUX driver */
2387 swap(event->reg, pf->oicr_err_reg);
2388 ice_send_event_to_aux(pf, event);
2389 kfree(event);
2390 }
2391 }
2392
2393 /* unplug aux dev per request, if an unplug request came in
2394 * while processing a plug request, this will handle it
2395 */
2396 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2397 ice_unplug_aux_dev(pf);
2398
2399 /* Plug aux device per request */
2400 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2401 ice_plug_aux_dev(pf);
2402
2403 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2404 struct iidc_event *event;
2405
2406 event = kzalloc(sizeof(*event), GFP_KERNEL);
2407 if (event) {
2408 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2409 ice_send_event_to_aux(pf, event);
2410 kfree(event);
2411 }
2412 }
2413
2414 ice_clean_adminq_subtask(pf);
2415 ice_check_media_subtask(pf);
2416 ice_check_for_hang_subtask(pf);
2417 ice_sync_fltr_subtask(pf);
2418 ice_handle_mdd_event(pf);
2419 ice_watchdog_subtask(pf);
2420
2421 if (ice_is_safe_mode(pf)) {
2422 ice_service_task_complete(pf);
2423 return;
2424 }
2425
2426 ice_process_vflr_event(pf);
2427 ice_clean_mailboxq_subtask(pf);
2428 ice_clean_sbq_subtask(pf);
2429 ice_sync_arfs_fltrs(pf);
2430 ice_flush_fdir_ctx(pf);
2431
2432 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2433 ice_service_task_complete(pf);
2434
2435 /* If the tasks have taken longer than one service timer period
2436 * or there is more work to be done, reset the service timer to
2437 * schedule the service task now.
2438 */
2439 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2440 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2441 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2442 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2443 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2444 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2445 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2446 mod_timer(&pf->serv_tmr, jiffies);
2447}
2448
2449/**
2450 * ice_set_ctrlq_len - helper function to set controlq length
2451 * @hw: pointer to the HW instance
2452 */
2453static void ice_set_ctrlq_len(struct ice_hw *hw)
2454{
2455 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2456 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2457 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2458 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2459 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2460 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2461 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2462 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2463 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2464 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2465 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2466 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2467}
2468
2469/**
2470 * ice_schedule_reset - schedule a reset
2471 * @pf: board private structure
2472 * @reset: reset being requested
2473 */
2474int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2475{
2476 struct device *dev = ice_pf_to_dev(pf);
2477
2478 /* bail out if earlier reset has failed */
2479 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2480 dev_dbg(dev, "earlier reset has failed\n");
2481 return -EIO;
2482 }
2483 /* bail if reset/recovery already in progress */
2484 if (ice_is_reset_in_progress(pf->state)) {
2485 dev_dbg(dev, "Reset already in progress\n");
2486 return -EBUSY;
2487 }
2488
2489 switch (reset) {
2490 case ICE_RESET_PFR:
2491 set_bit(ICE_PFR_REQ, pf->state);
2492 break;
2493 case ICE_RESET_CORER:
2494 set_bit(ICE_CORER_REQ, pf->state);
2495 break;
2496 case ICE_RESET_GLOBR:
2497 set_bit(ICE_GLOBR_REQ, pf->state);
2498 break;
2499 default:
2500 return -EINVAL;
2501 }
2502
2503 ice_service_task_schedule(pf);
2504 return 0;
2505}
2506
2507/**
2508 * ice_irq_affinity_notify - Callback for affinity changes
2509 * @notify: context as to what irq was changed
2510 * @mask: the new affinity mask
2511 *
2512 * This is a callback function used by the irq_set_affinity_notifier function
2513 * so that we may register to receive changes to the irq affinity masks.
2514 */
2515static void
2516ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2517 const cpumask_t *mask)
2518{
2519 struct ice_q_vector *q_vector =
2520 container_of(notify, struct ice_q_vector, affinity_notify);
2521
2522 cpumask_copy(&q_vector->affinity_mask, mask);
2523}
2524
2525/**
2526 * ice_irq_affinity_release - Callback for affinity notifier release
2527 * @ref: internal core kernel usage
2528 *
2529 * This is a callback function used by the irq_set_affinity_notifier function
2530 * to inform the current notification subscriber that they will no longer
2531 * receive notifications.
2532 */
2533static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2534
2535/**
2536 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2537 * @vsi: the VSI being configured
2538 */
2539static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2540{
2541 struct ice_hw *hw = &vsi->back->hw;
2542 int i;
2543
2544 ice_for_each_q_vector(vsi, i)
2545 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2546
2547 ice_flush(hw);
2548 return 0;
2549}
2550
2551/**
2552 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2553 * @vsi: the VSI being configured
2554 * @basename: name for the vector
2555 */
2556static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2557{
2558 int q_vectors = vsi->num_q_vectors;
2559 struct ice_pf *pf = vsi->back;
2560 struct device *dev;
2561 int rx_int_idx = 0;
2562 int tx_int_idx = 0;
2563 int vector, err;
2564 int irq_num;
2565
2566 dev = ice_pf_to_dev(pf);
2567 for (vector = 0; vector < q_vectors; vector++) {
2568 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2569
2570 irq_num = q_vector->irq.virq;
2571
2572 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2573 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2574 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2575 tx_int_idx++;
2576 } else if (q_vector->rx.rx_ring) {
2577 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2578 "%s-%s-%d", basename, "rx", rx_int_idx++);
2579 } else if (q_vector->tx.tx_ring) {
2580 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2581 "%s-%s-%d", basename, "tx", tx_int_idx++);
2582 } else {
2583 /* skip this unused q_vector */
2584 continue;
2585 }
2586 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2587 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2588 IRQF_SHARED, q_vector->name,
2589 q_vector);
2590 else
2591 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2592 0, q_vector->name, q_vector);
2593 if (err) {
2594 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2595 err);
2596 goto free_q_irqs;
2597 }
2598
2599 /* register for affinity change notifications */
2600 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2601 struct irq_affinity_notify *affinity_notify;
2602
2603 affinity_notify = &q_vector->affinity_notify;
2604 affinity_notify->notify = ice_irq_affinity_notify;
2605 affinity_notify->release = ice_irq_affinity_release;
2606 irq_set_affinity_notifier(irq_num, affinity_notify);
2607 }
2608
2609 /* assign the mask for this irq */
2610 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask);
2611 }
2612
2613 err = ice_set_cpu_rx_rmap(vsi);
2614 if (err) {
2615 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2616 vsi->vsi_num, ERR_PTR(err));
2617 goto free_q_irqs;
2618 }
2619
2620 vsi->irqs_ready = true;
2621 return 0;
2622
2623free_q_irqs:
2624 while (vector--) {
2625 irq_num = vsi->q_vectors[vector]->irq.virq;
2626 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2627 irq_set_affinity_notifier(irq_num, NULL);
2628 irq_update_affinity_hint(irq_num, NULL);
2629 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2630 }
2631 return err;
2632}
2633
2634/**
2635 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2636 * @vsi: VSI to setup Tx rings used by XDP
2637 *
2638 * Return 0 on success and negative value on error
2639 */
2640static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2641{
2642 struct device *dev = ice_pf_to_dev(vsi->back);
2643 struct ice_tx_desc *tx_desc;
2644 int i, j;
2645
2646 ice_for_each_xdp_txq(vsi, i) {
2647 u16 xdp_q_idx = vsi->alloc_txq + i;
2648 struct ice_ring_stats *ring_stats;
2649 struct ice_tx_ring *xdp_ring;
2650
2651 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2652 if (!xdp_ring)
2653 goto free_xdp_rings;
2654
2655 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2656 if (!ring_stats) {
2657 ice_free_tx_ring(xdp_ring);
2658 goto free_xdp_rings;
2659 }
2660
2661 xdp_ring->ring_stats = ring_stats;
2662 xdp_ring->q_index = xdp_q_idx;
2663 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2664 xdp_ring->vsi = vsi;
2665 xdp_ring->netdev = NULL;
2666 xdp_ring->dev = dev;
2667 xdp_ring->count = vsi->num_tx_desc;
2668 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2669 if (ice_setup_tx_ring(xdp_ring))
2670 goto free_xdp_rings;
2671 ice_set_ring_xdp(xdp_ring);
2672 spin_lock_init(&xdp_ring->tx_lock);
2673 for (j = 0; j < xdp_ring->count; j++) {
2674 tx_desc = ICE_TX_DESC(xdp_ring, j);
2675 tx_desc->cmd_type_offset_bsz = 0;
2676 }
2677 }
2678
2679 return 0;
2680
2681free_xdp_rings:
2682 for (; i >= 0; i--) {
2683 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2684 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2685 vsi->xdp_rings[i]->ring_stats = NULL;
2686 ice_free_tx_ring(vsi->xdp_rings[i]);
2687 }
2688 }
2689 return -ENOMEM;
2690}
2691
2692/**
2693 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2694 * @vsi: VSI to set the bpf prog on
2695 * @prog: the bpf prog pointer
2696 */
2697static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2698{
2699 struct bpf_prog *old_prog;
2700 int i;
2701
2702 old_prog = xchg(&vsi->xdp_prog, prog);
2703 ice_for_each_rxq(vsi, i)
2704 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2705
2706 if (old_prog)
2707 bpf_prog_put(old_prog);
2708}
2709
2710static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2711{
2712 struct ice_q_vector *q_vector;
2713 struct ice_tx_ring *ring;
2714
2715 if (static_key_enabled(&ice_xdp_locking_key))
2716 return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2717
2718 q_vector = vsi->rx_rings[qid]->q_vector;
2719 ice_for_each_tx_ring(ring, q_vector->tx)
2720 if (ice_ring_is_xdp(ring))
2721 return ring;
2722
2723 return NULL;
2724}
2725
2726/**
2727 * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2728 * @vsi: the VSI with XDP rings being configured
2729 *
2730 * Map XDP rings to interrupt vectors and perform the configuration steps
2731 * dependent on the mapping.
2732 */
2733void ice_map_xdp_rings(struct ice_vsi *vsi)
2734{
2735 int xdp_rings_rem = vsi->num_xdp_txq;
2736 int v_idx, q_idx;
2737
2738 /* follow the logic from ice_vsi_map_rings_to_vectors */
2739 ice_for_each_q_vector(vsi, v_idx) {
2740 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2741 int xdp_rings_per_v, q_id, q_base;
2742
2743 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2744 vsi->num_q_vectors - v_idx);
2745 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2746
2747 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2748 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2749
2750 xdp_ring->q_vector = q_vector;
2751 xdp_ring->next = q_vector->tx.tx_ring;
2752 q_vector->tx.tx_ring = xdp_ring;
2753 }
2754 xdp_rings_rem -= xdp_rings_per_v;
2755 }
2756
2757 ice_for_each_rxq(vsi, q_idx) {
2758 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2759 q_idx);
2760 ice_tx_xsk_pool(vsi, q_idx);
2761 }
2762}
2763
2764/**
2765 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2766 * @vsi: VSI to bring up Tx rings used by XDP
2767 * @prog: bpf program that will be assigned to VSI
2768 * @cfg_type: create from scratch or restore the existing configuration
2769 *
2770 * Return 0 on success and negative value on error
2771 */
2772int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2773 enum ice_xdp_cfg cfg_type)
2774{
2775 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2776 struct ice_pf *pf = vsi->back;
2777 struct ice_qs_cfg xdp_qs_cfg = {
2778 .qs_mutex = &pf->avail_q_mutex,
2779 .pf_map = pf->avail_txqs,
2780 .pf_map_size = pf->max_pf_txqs,
2781 .q_count = vsi->num_xdp_txq,
2782 .scatter_count = ICE_MAX_SCATTER_TXQS,
2783 .vsi_map = vsi->txq_map,
2784 .vsi_map_offset = vsi->alloc_txq,
2785 .mapping_mode = ICE_VSI_MAP_CONTIG
2786 };
2787 struct device *dev;
2788 int status, i;
2789
2790 dev = ice_pf_to_dev(pf);
2791 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2792 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2793 if (!vsi->xdp_rings)
2794 return -ENOMEM;
2795
2796 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2797 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2798 goto err_map_xdp;
2799
2800 if (static_key_enabled(&ice_xdp_locking_key))
2801 netdev_warn(vsi->netdev,
2802 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2803
2804 if (ice_xdp_alloc_setup_rings(vsi))
2805 goto clear_xdp_rings;
2806
2807 /* omit the scheduler update if in reset path; XDP queues will be
2808 * taken into account at the end of ice_vsi_rebuild, where
2809 * ice_cfg_vsi_lan is being called
2810 */
2811 if (cfg_type == ICE_XDP_CFG_PART)
2812 return 0;
2813
2814 ice_map_xdp_rings(vsi);
2815
2816 /* tell the Tx scheduler that right now we have
2817 * additional queues
2818 */
2819 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2820 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2821
2822 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2823 max_txqs);
2824 if (status) {
2825 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2826 status);
2827 goto clear_xdp_rings;
2828 }
2829
2830 /* assign the prog only when it's not already present on VSI;
2831 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2832 * VSI rebuild that happens under ethtool -L can expose us to
2833 * the bpf_prog refcount issues as we would be swapping same
2834 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2835 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2836 * this is not harmful as dev_xdp_install bumps the refcount
2837 * before calling the op exposed by the driver;
2838 */
2839 if (!ice_is_xdp_ena_vsi(vsi))
2840 ice_vsi_assign_bpf_prog(vsi, prog);
2841
2842 return 0;
2843clear_xdp_rings:
2844 ice_for_each_xdp_txq(vsi, i)
2845 if (vsi->xdp_rings[i]) {
2846 kfree_rcu(vsi->xdp_rings[i], rcu);
2847 vsi->xdp_rings[i] = NULL;
2848 }
2849
2850err_map_xdp:
2851 mutex_lock(&pf->avail_q_mutex);
2852 ice_for_each_xdp_txq(vsi, i) {
2853 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2854 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2855 }
2856 mutex_unlock(&pf->avail_q_mutex);
2857
2858 devm_kfree(dev, vsi->xdp_rings);
2859 return -ENOMEM;
2860}
2861
2862/**
2863 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2864 * @vsi: VSI to remove XDP rings
2865 * @cfg_type: disable XDP permanently or allow it to be restored later
2866 *
2867 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2868 * resources
2869 */
2870int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2871{
2872 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2873 struct ice_pf *pf = vsi->back;
2874 int i, v_idx;
2875
2876 /* q_vectors are freed in reset path so there's no point in detaching
2877 * rings
2878 */
2879 if (cfg_type == ICE_XDP_CFG_PART)
2880 goto free_qmap;
2881
2882 ice_for_each_q_vector(vsi, v_idx) {
2883 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2884 struct ice_tx_ring *ring;
2885
2886 ice_for_each_tx_ring(ring, q_vector->tx)
2887 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2888 break;
2889
2890 /* restore the value of last node prior to XDP setup */
2891 q_vector->tx.tx_ring = ring;
2892 }
2893
2894free_qmap:
2895 mutex_lock(&pf->avail_q_mutex);
2896 ice_for_each_xdp_txq(vsi, i) {
2897 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2898 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2899 }
2900 mutex_unlock(&pf->avail_q_mutex);
2901
2902 ice_for_each_xdp_txq(vsi, i)
2903 if (vsi->xdp_rings[i]) {
2904 if (vsi->xdp_rings[i]->desc) {
2905 synchronize_rcu();
2906 ice_free_tx_ring(vsi->xdp_rings[i]);
2907 }
2908 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2909 vsi->xdp_rings[i]->ring_stats = NULL;
2910 kfree_rcu(vsi->xdp_rings[i], rcu);
2911 vsi->xdp_rings[i] = NULL;
2912 }
2913
2914 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2915 vsi->xdp_rings = NULL;
2916
2917 if (static_key_enabled(&ice_xdp_locking_key))
2918 static_branch_dec(&ice_xdp_locking_key);
2919
2920 if (cfg_type == ICE_XDP_CFG_PART)
2921 return 0;
2922
2923 ice_vsi_assign_bpf_prog(vsi, NULL);
2924
2925 /* notify Tx scheduler that we destroyed XDP queues and bring
2926 * back the old number of child nodes
2927 */
2928 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2929 max_txqs[i] = vsi->num_txq;
2930
2931 /* change number of XDP Tx queues to 0 */
2932 vsi->num_xdp_txq = 0;
2933
2934 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2935 max_txqs);
2936}
2937
2938/**
2939 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2940 * @vsi: VSI to schedule napi on
2941 */
2942static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2943{
2944 int i;
2945
2946 ice_for_each_rxq(vsi, i) {
2947 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2948
2949 if (READ_ONCE(rx_ring->xsk_pool))
2950 napi_schedule(&rx_ring->q_vector->napi);
2951 }
2952}
2953
2954/**
2955 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2956 * @vsi: VSI to determine the count of XDP Tx qs
2957 *
2958 * returns 0 if Tx qs count is higher than at least half of CPU count,
2959 * -ENOMEM otherwise
2960 */
2961int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2962{
2963 u16 avail = ice_get_avail_txq_count(vsi->back);
2964 u16 cpus = num_possible_cpus();
2965
2966 if (avail < cpus / 2)
2967 return -ENOMEM;
2968
2969 if (vsi->type == ICE_VSI_SF)
2970 avail = vsi->alloc_txq;
2971
2972 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2973
2974 if (vsi->num_xdp_txq < cpus)
2975 static_branch_inc(&ice_xdp_locking_key);
2976
2977 return 0;
2978}
2979
2980/**
2981 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2982 * @vsi: Pointer to VSI structure
2983 */
2984static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2985{
2986 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2987 return ICE_RXBUF_1664;
2988 else
2989 return ICE_RXBUF_3072;
2990}
2991
2992/**
2993 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2994 * @vsi: VSI to setup XDP for
2995 * @prog: XDP program
2996 * @extack: netlink extended ack
2997 */
2998static int
2999ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
3000 struct netlink_ext_ack *extack)
3001{
3002 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
3003 int ret = 0, xdp_ring_err = 0;
3004 bool if_running;
3005
3006 if (prog && !prog->aux->xdp_has_frags) {
3007 if (frame_size > ice_max_xdp_frame_size(vsi)) {
3008 NL_SET_ERR_MSG_MOD(extack,
3009 "MTU is too large for linear frames and XDP prog does not support frags");
3010 return -EOPNOTSUPP;
3011 }
3012 }
3013
3014 /* hot swap progs and avoid toggling link */
3015 if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
3016 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
3017 ice_vsi_assign_bpf_prog(vsi, prog);
3018 return 0;
3019 }
3020
3021 if_running = netif_running(vsi->netdev) &&
3022 !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
3023
3024 /* need to stop netdev while setting up the program for Rx rings */
3025 if (if_running) {
3026 ret = ice_down(vsi);
3027 if (ret) {
3028 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3029 return ret;
3030 }
3031 }
3032
3033 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3034 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3035 if (xdp_ring_err) {
3036 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3037 } else {
3038 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3039 ICE_XDP_CFG_FULL);
3040 if (xdp_ring_err)
3041 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3042 }
3043 xdp_features_set_redirect_target(vsi->netdev, true);
3044 /* reallocate Rx queues that are used for zero-copy */
3045 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
3046 if (xdp_ring_err)
3047 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
3048 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3049 xdp_features_clear_redirect_target(vsi->netdev);
3050 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3051 if (xdp_ring_err)
3052 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3053 /* reallocate Rx queues that were used for zero-copy */
3054 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
3055 if (xdp_ring_err)
3056 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
3057 }
3058
3059 if (if_running)
3060 ret = ice_up(vsi);
3061
3062 if (!ret && prog)
3063 ice_vsi_rx_napi_schedule(vsi);
3064
3065 return (ret || xdp_ring_err) ? -ENOMEM : 0;
3066}
3067
3068/**
3069 * ice_xdp_safe_mode - XDP handler for safe mode
3070 * @dev: netdevice
3071 * @xdp: XDP command
3072 */
3073static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3074 struct netdev_bpf *xdp)
3075{
3076 NL_SET_ERR_MSG_MOD(xdp->extack,
3077 "Please provide working DDP firmware package in order to use XDP\n"
3078 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3079 return -EOPNOTSUPP;
3080}
3081
3082/**
3083 * ice_xdp - implements XDP handler
3084 * @dev: netdevice
3085 * @xdp: XDP command
3086 */
3087int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3088{
3089 struct ice_netdev_priv *np = netdev_priv(dev);
3090 struct ice_vsi *vsi = np->vsi;
3091 int ret;
3092
3093 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3094 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3095 return -EINVAL;
3096 }
3097
3098 mutex_lock(&vsi->xdp_state_lock);
3099
3100 switch (xdp->command) {
3101 case XDP_SETUP_PROG:
3102 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3103 break;
3104 case XDP_SETUP_XSK_POOL:
3105 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3106 break;
3107 default:
3108 ret = -EINVAL;
3109 }
3110
3111 mutex_unlock(&vsi->xdp_state_lock);
3112 return ret;
3113}
3114
3115/**
3116 * ice_ena_misc_vector - enable the non-queue interrupts
3117 * @pf: board private structure
3118 */
3119static void ice_ena_misc_vector(struct ice_pf *pf)
3120{
3121 struct ice_hw *hw = &pf->hw;
3122 u32 pf_intr_start_offset;
3123 u32 val;
3124
3125 /* Disable anti-spoof detection interrupt to prevent spurious event
3126 * interrupts during a function reset. Anti-spoof functionally is
3127 * still supported.
3128 */
3129 val = rd32(hw, GL_MDCK_TX_TDPU);
3130 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3131 wr32(hw, GL_MDCK_TX_TDPU, val);
3132
3133 /* clear things first */
3134 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3135 rd32(hw, PFINT_OICR); /* read to clear */
3136
3137 val = (PFINT_OICR_ECC_ERR_M |
3138 PFINT_OICR_MAL_DETECT_M |
3139 PFINT_OICR_GRST_M |
3140 PFINT_OICR_PCI_EXCEPTION_M |
3141 PFINT_OICR_VFLR_M |
3142 PFINT_OICR_HMC_ERR_M |
3143 PFINT_OICR_PE_PUSH_M |
3144 PFINT_OICR_PE_CRITERR_M);
3145
3146 wr32(hw, PFINT_OICR_ENA, val);
3147
3148 /* SW_ITR_IDX = 0, but don't change INTENA */
3149 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3150 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3151
3152 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3153 return;
3154 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3155 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3156 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3157}
3158
3159/**
3160 * ice_ll_ts_intr - ll_ts interrupt handler
3161 * @irq: interrupt number
3162 * @data: pointer to a q_vector
3163 */
3164static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3165{
3166 struct ice_pf *pf = data;
3167 u32 pf_intr_start_offset;
3168 struct ice_ptp_tx *tx;
3169 unsigned long flags;
3170 struct ice_hw *hw;
3171 u32 val;
3172 u8 idx;
3173
3174 hw = &pf->hw;
3175 tx = &pf->ptp.port.tx;
3176 spin_lock_irqsave(&tx->lock, flags);
3177 ice_ptp_complete_tx_single_tstamp(tx);
3178
3179 idx = find_next_bit_wrap(tx->in_use, tx->len,
3180 tx->last_ll_ts_idx_read + 1);
3181 if (idx != tx->len)
3182 ice_ptp_req_tx_single_tstamp(tx, idx);
3183 spin_unlock_irqrestore(&tx->lock, flags);
3184
3185 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3186 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3187 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3188 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3189 val);
3190
3191 return IRQ_HANDLED;
3192}
3193
3194/**
3195 * ice_misc_intr - misc interrupt handler
3196 * @irq: interrupt number
3197 * @data: pointer to a q_vector
3198 */
3199static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3200{
3201 struct ice_pf *pf = (struct ice_pf *)data;
3202 irqreturn_t ret = IRQ_HANDLED;
3203 struct ice_hw *hw = &pf->hw;
3204 struct device *dev;
3205 u32 oicr, ena_mask;
3206
3207 dev = ice_pf_to_dev(pf);
3208 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3209 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3210 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3211
3212 oicr = rd32(hw, PFINT_OICR);
3213 ena_mask = rd32(hw, PFINT_OICR_ENA);
3214
3215 if (oicr & PFINT_OICR_SWINT_M) {
3216 ena_mask &= ~PFINT_OICR_SWINT_M;
3217 pf->sw_int_count++;
3218 }
3219
3220 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3221 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3222 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3223 }
3224 if (oicr & PFINT_OICR_VFLR_M) {
3225 /* disable any further VFLR event notifications */
3226 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3227 u32 reg = rd32(hw, PFINT_OICR_ENA);
3228
3229 reg &= ~PFINT_OICR_VFLR_M;
3230 wr32(hw, PFINT_OICR_ENA, reg);
3231 } else {
3232 ena_mask &= ~PFINT_OICR_VFLR_M;
3233 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3234 }
3235 }
3236
3237 if (oicr & PFINT_OICR_GRST_M) {
3238 u32 reset;
3239
3240 /* we have a reset warning */
3241 ena_mask &= ~PFINT_OICR_GRST_M;
3242 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3243 rd32(hw, GLGEN_RSTAT));
3244
3245 if (reset == ICE_RESET_CORER)
3246 pf->corer_count++;
3247 else if (reset == ICE_RESET_GLOBR)
3248 pf->globr_count++;
3249 else if (reset == ICE_RESET_EMPR)
3250 pf->empr_count++;
3251 else
3252 dev_dbg(dev, "Invalid reset type %d\n", reset);
3253
3254 /* If a reset cycle isn't already in progress, we set a bit in
3255 * pf->state so that the service task can start a reset/rebuild.
3256 */
3257 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3258 if (reset == ICE_RESET_CORER)
3259 set_bit(ICE_CORER_RECV, pf->state);
3260 else if (reset == ICE_RESET_GLOBR)
3261 set_bit(ICE_GLOBR_RECV, pf->state);
3262 else
3263 set_bit(ICE_EMPR_RECV, pf->state);
3264
3265 /* There are couple of different bits at play here.
3266 * hw->reset_ongoing indicates whether the hardware is
3267 * in reset. This is set to true when a reset interrupt
3268 * is received and set back to false after the driver
3269 * has determined that the hardware is out of reset.
3270 *
3271 * ICE_RESET_OICR_RECV in pf->state indicates
3272 * that a post reset rebuild is required before the
3273 * driver is operational again. This is set above.
3274 *
3275 * As this is the start of the reset/rebuild cycle, set
3276 * both to indicate that.
3277 */
3278 hw->reset_ongoing = true;
3279 }
3280 }
3281
3282 if (oicr & PFINT_OICR_TSYN_TX_M) {
3283 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3284 if (ice_pf_state_is_nominal(pf) &&
3285 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) {
3286 struct ice_ptp_tx *tx = &pf->ptp.port.tx;
3287 unsigned long flags;
3288 u8 idx;
3289
3290 spin_lock_irqsave(&tx->lock, flags);
3291 idx = find_next_bit_wrap(tx->in_use, tx->len,
3292 tx->last_ll_ts_idx_read + 1);
3293 if (idx != tx->len)
3294 ice_ptp_req_tx_single_tstamp(tx, idx);
3295 spin_unlock_irqrestore(&tx->lock, flags);
3296 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) {
3297 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3298 ret = IRQ_WAKE_THREAD;
3299 }
3300 }
3301
3302 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3303 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3304 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3305
3306 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3307
3308 if (ice_pf_src_tmr_owned(pf)) {
3309 /* Save EVENTs from GLTSYN register */
3310 pf->ptp.ext_ts_irq |= gltsyn_stat &
3311 (GLTSYN_STAT_EVENT0_M |
3312 GLTSYN_STAT_EVENT1_M |
3313 GLTSYN_STAT_EVENT2_M);
3314
3315 ice_ptp_extts_event(pf);
3316 }
3317 }
3318
3319#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3320 if (oicr & ICE_AUX_CRIT_ERR) {
3321 pf->oicr_err_reg |= oicr;
3322 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3323 ena_mask &= ~ICE_AUX_CRIT_ERR;
3324 }
3325
3326 /* Report any remaining unexpected interrupts */
3327 oicr &= ena_mask;
3328 if (oicr) {
3329 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3330 /* If a critical error is pending there is no choice but to
3331 * reset the device.
3332 */
3333 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3334 PFINT_OICR_ECC_ERR_M)) {
3335 set_bit(ICE_PFR_REQ, pf->state);
3336 }
3337 }
3338 ice_service_task_schedule(pf);
3339 if (ret == IRQ_HANDLED)
3340 ice_irq_dynamic_ena(hw, NULL, NULL);
3341
3342 return ret;
3343}
3344
3345/**
3346 * ice_misc_intr_thread_fn - misc interrupt thread function
3347 * @irq: interrupt number
3348 * @data: pointer to a q_vector
3349 */
3350static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3351{
3352 struct ice_pf *pf = data;
3353 struct ice_hw *hw;
3354
3355 hw = &pf->hw;
3356
3357 if (ice_is_reset_in_progress(pf->state))
3358 goto skip_irq;
3359
3360 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3361 /* Process outstanding Tx timestamps. If there is more work,
3362 * re-arm the interrupt to trigger again.
3363 */
3364 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3365 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3366 ice_flush(hw);
3367 }
3368 }
3369
3370skip_irq:
3371 ice_irq_dynamic_ena(hw, NULL, NULL);
3372
3373 return IRQ_HANDLED;
3374}
3375
3376/**
3377 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3378 * @hw: pointer to HW structure
3379 */
3380static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3381{
3382 /* disable Admin queue Interrupt causes */
3383 wr32(hw, PFINT_FW_CTL,
3384 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3385
3386 /* disable Mailbox queue Interrupt causes */
3387 wr32(hw, PFINT_MBX_CTL,
3388 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3389
3390 wr32(hw, PFINT_SB_CTL,
3391 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3392
3393 /* disable Control queue Interrupt causes */
3394 wr32(hw, PFINT_OICR_CTL,
3395 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3396
3397 ice_flush(hw);
3398}
3399
3400/**
3401 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3402 * @pf: board private structure
3403 */
3404static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3405{
3406 int irq_num = pf->ll_ts_irq.virq;
3407
3408 synchronize_irq(irq_num);
3409 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3410
3411 ice_free_irq(pf, pf->ll_ts_irq);
3412}
3413
3414/**
3415 * ice_free_irq_msix_misc - Unroll misc vector setup
3416 * @pf: board private structure
3417 */
3418static void ice_free_irq_msix_misc(struct ice_pf *pf)
3419{
3420 int misc_irq_num = pf->oicr_irq.virq;
3421 struct ice_hw *hw = &pf->hw;
3422
3423 ice_dis_ctrlq_interrupts(hw);
3424
3425 /* disable OICR interrupt */
3426 wr32(hw, PFINT_OICR_ENA, 0);
3427 ice_flush(hw);
3428
3429 synchronize_irq(misc_irq_num);
3430 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3431
3432 ice_free_irq(pf, pf->oicr_irq);
3433 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3434 ice_free_irq_msix_ll_ts(pf);
3435}
3436
3437/**
3438 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3439 * @hw: pointer to HW structure
3440 * @reg_idx: HW vector index to associate the control queue interrupts with
3441 */
3442static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3443{
3444 u32 val;
3445
3446 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3447 PFINT_OICR_CTL_CAUSE_ENA_M);
3448 wr32(hw, PFINT_OICR_CTL, val);
3449
3450 /* enable Admin queue Interrupt causes */
3451 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3452 PFINT_FW_CTL_CAUSE_ENA_M);
3453 wr32(hw, PFINT_FW_CTL, val);
3454
3455 /* enable Mailbox queue Interrupt causes */
3456 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3457 PFINT_MBX_CTL_CAUSE_ENA_M);
3458 wr32(hw, PFINT_MBX_CTL, val);
3459
3460 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3461 /* enable Sideband queue Interrupt causes */
3462 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3463 PFINT_SB_CTL_CAUSE_ENA_M);
3464 wr32(hw, PFINT_SB_CTL, val);
3465 }
3466
3467 ice_flush(hw);
3468}
3469
3470/**
3471 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3472 * @pf: board private structure
3473 *
3474 * This sets up the handler for MSIX 0, which is used to manage the
3475 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3476 * when in MSI or Legacy interrupt mode.
3477 */
3478static int ice_req_irq_msix_misc(struct ice_pf *pf)
3479{
3480 struct device *dev = ice_pf_to_dev(pf);
3481 struct ice_hw *hw = &pf->hw;
3482 u32 pf_intr_start_offset;
3483 struct msi_map irq;
3484 int err = 0;
3485
3486 if (!pf->int_name[0])
3487 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3488 dev_driver_string(dev), dev_name(dev));
3489
3490 if (!pf->int_name_ll_ts[0])
3491 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3492 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3493 /* Do not request IRQ but do enable OICR interrupt since settings are
3494 * lost during reset. Note that this function is called only during
3495 * rebuild path and not while reset is in progress.
3496 */
3497 if (ice_is_reset_in_progress(pf->state))
3498 goto skip_req_irq;
3499
3500 /* reserve one vector in irq_tracker for misc interrupts */
3501 irq = ice_alloc_irq(pf, false);
3502 if (irq.index < 0)
3503 return irq.index;
3504
3505 pf->oicr_irq = irq;
3506 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3507 ice_misc_intr_thread_fn, 0,
3508 pf->int_name, pf);
3509 if (err) {
3510 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3511 pf->int_name, err);
3512 ice_free_irq(pf, pf->oicr_irq);
3513 return err;
3514 }
3515
3516 /* reserve one vector in irq_tracker for ll_ts interrupt */
3517 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3518 goto skip_req_irq;
3519
3520 irq = ice_alloc_irq(pf, false);
3521 if (irq.index < 0)
3522 return irq.index;
3523
3524 pf->ll_ts_irq = irq;
3525 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3526 pf->int_name_ll_ts, pf);
3527 if (err) {
3528 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3529 pf->int_name_ll_ts, err);
3530 ice_free_irq(pf, pf->ll_ts_irq);
3531 return err;
3532 }
3533
3534skip_req_irq:
3535 ice_ena_misc_vector(pf);
3536
3537 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3538 /* This enables LL TS interrupt */
3539 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3540 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3541 wr32(hw, PFINT_SB_CTL,
3542 ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3543 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3544 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3545 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3546
3547 ice_flush(hw);
3548 ice_irq_dynamic_ena(hw, NULL, NULL);
3549
3550 return 0;
3551}
3552
3553/**
3554 * ice_set_ops - set netdev and ethtools ops for the given netdev
3555 * @vsi: the VSI associated with the new netdev
3556 */
3557static void ice_set_ops(struct ice_vsi *vsi)
3558{
3559 struct net_device *netdev = vsi->netdev;
3560 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3561
3562 if (ice_is_safe_mode(pf)) {
3563 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3564 ice_set_ethtool_safe_mode_ops(netdev);
3565 return;
3566 }
3567
3568 netdev->netdev_ops = &ice_netdev_ops;
3569 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3570 netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3571 ice_set_ethtool_ops(netdev);
3572
3573 if (vsi->type != ICE_VSI_PF)
3574 return;
3575
3576 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3577 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3578 NETDEV_XDP_ACT_RX_SG;
3579 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3580}
3581
3582/**
3583 * ice_set_netdev_features - set features for the given netdev
3584 * @netdev: netdev instance
3585 */
3586void ice_set_netdev_features(struct net_device *netdev)
3587{
3588 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3589 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3590 netdev_features_t csumo_features;
3591 netdev_features_t vlano_features;
3592 netdev_features_t dflt_features;
3593 netdev_features_t tso_features;
3594
3595 if (ice_is_safe_mode(pf)) {
3596 /* safe mode */
3597 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3598 netdev->hw_features = netdev->features;
3599 return;
3600 }
3601
3602 dflt_features = NETIF_F_SG |
3603 NETIF_F_HIGHDMA |
3604 NETIF_F_NTUPLE |
3605 NETIF_F_RXHASH;
3606
3607 csumo_features = NETIF_F_RXCSUM |
3608 NETIF_F_IP_CSUM |
3609 NETIF_F_SCTP_CRC |
3610 NETIF_F_IPV6_CSUM;
3611
3612 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3613 NETIF_F_HW_VLAN_CTAG_TX |
3614 NETIF_F_HW_VLAN_CTAG_RX;
3615
3616 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3617 if (is_dvm_ena)
3618 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3619
3620 tso_features = NETIF_F_TSO |
3621 NETIF_F_TSO_ECN |
3622 NETIF_F_TSO6 |
3623 NETIF_F_GSO_GRE |
3624 NETIF_F_GSO_UDP_TUNNEL |
3625 NETIF_F_GSO_GRE_CSUM |
3626 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3627 NETIF_F_GSO_PARTIAL |
3628 NETIF_F_GSO_IPXIP4 |
3629 NETIF_F_GSO_IPXIP6 |
3630 NETIF_F_GSO_UDP_L4;
3631
3632 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3633 NETIF_F_GSO_GRE_CSUM;
3634 /* set features that user can change */
3635 netdev->hw_features = dflt_features | csumo_features |
3636 vlano_features | tso_features;
3637
3638 /* add support for HW_CSUM on packets with MPLS header */
3639 netdev->mpls_features = NETIF_F_HW_CSUM |
3640 NETIF_F_TSO |
3641 NETIF_F_TSO6;
3642
3643 /* enable features */
3644 netdev->features |= netdev->hw_features;
3645
3646 netdev->hw_features |= NETIF_F_HW_TC;
3647 netdev->hw_features |= NETIF_F_LOOPBACK;
3648
3649 /* encap and VLAN devices inherit default, csumo and tso features */
3650 netdev->hw_enc_features |= dflt_features | csumo_features |
3651 tso_features;
3652 netdev->vlan_features |= dflt_features | csumo_features |
3653 tso_features;
3654
3655 /* advertise support but don't enable by default since only one type of
3656 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3657 * type turns on the other has to be turned off. This is enforced by the
3658 * ice_fix_features() ndo callback.
3659 */
3660 if (is_dvm_ena)
3661 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3662 NETIF_F_HW_VLAN_STAG_TX;
3663
3664 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3665 * be changed at runtime
3666 */
3667 netdev->hw_features |= NETIF_F_RXFCS;
3668
3669 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3670}
3671
3672/**
3673 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3674 * @lut: Lookup table
3675 * @rss_table_size: Lookup table size
3676 * @rss_size: Range of queue number for hashing
3677 */
3678void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3679{
3680 u16 i;
3681
3682 for (i = 0; i < rss_table_size; i++)
3683 lut[i] = i % rss_size;
3684}
3685
3686/**
3687 * ice_pf_vsi_setup - Set up a PF VSI
3688 * @pf: board private structure
3689 * @pi: pointer to the port_info instance
3690 *
3691 * Returns pointer to the successfully allocated VSI software struct
3692 * on success, otherwise returns NULL on failure.
3693 */
3694static struct ice_vsi *
3695ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3696{
3697 struct ice_vsi_cfg_params params = {};
3698
3699 params.type = ICE_VSI_PF;
3700 params.port_info = pi;
3701 params.flags = ICE_VSI_FLAG_INIT;
3702
3703 return ice_vsi_setup(pf, ¶ms);
3704}
3705
3706static struct ice_vsi *
3707ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3708 struct ice_channel *ch)
3709{
3710 struct ice_vsi_cfg_params params = {};
3711
3712 params.type = ICE_VSI_CHNL;
3713 params.port_info = pi;
3714 params.ch = ch;
3715 params.flags = ICE_VSI_FLAG_INIT;
3716
3717 return ice_vsi_setup(pf, ¶ms);
3718}
3719
3720/**
3721 * ice_ctrl_vsi_setup - Set up a control VSI
3722 * @pf: board private structure
3723 * @pi: pointer to the port_info instance
3724 *
3725 * Returns pointer to the successfully allocated VSI software struct
3726 * on success, otherwise returns NULL on failure.
3727 */
3728static struct ice_vsi *
3729ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3730{
3731 struct ice_vsi_cfg_params params = {};
3732
3733 params.type = ICE_VSI_CTRL;
3734 params.port_info = pi;
3735 params.flags = ICE_VSI_FLAG_INIT;
3736
3737 return ice_vsi_setup(pf, ¶ms);
3738}
3739
3740/**
3741 * ice_lb_vsi_setup - Set up a loopback VSI
3742 * @pf: board private structure
3743 * @pi: pointer to the port_info instance
3744 *
3745 * Returns pointer to the successfully allocated VSI software struct
3746 * on success, otherwise returns NULL on failure.
3747 */
3748struct ice_vsi *
3749ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3750{
3751 struct ice_vsi_cfg_params params = {};
3752
3753 params.type = ICE_VSI_LB;
3754 params.port_info = pi;
3755 params.flags = ICE_VSI_FLAG_INIT;
3756
3757 return ice_vsi_setup(pf, ¶ms);
3758}
3759
3760/**
3761 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3762 * @netdev: network interface to be adjusted
3763 * @proto: VLAN TPID
3764 * @vid: VLAN ID to be added
3765 *
3766 * net_device_ops implementation for adding VLAN IDs
3767 */
3768int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3769{
3770 struct ice_netdev_priv *np = netdev_priv(netdev);
3771 struct ice_vsi_vlan_ops *vlan_ops;
3772 struct ice_vsi *vsi = np->vsi;
3773 struct ice_vlan vlan;
3774 int ret;
3775
3776 /* VLAN 0 is added by default during load/reset */
3777 if (!vid)
3778 return 0;
3779
3780 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3781 usleep_range(1000, 2000);
3782
3783 /* Add multicast promisc rule for the VLAN ID to be added if
3784 * all-multicast is currently enabled.
3785 */
3786 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3787 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3788 ICE_MCAST_VLAN_PROMISC_BITS,
3789 vid);
3790 if (ret)
3791 goto finish;
3792 }
3793
3794 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3795
3796 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3797 * packets aren't pruned by the device's internal switch on Rx
3798 */
3799 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3800 ret = vlan_ops->add_vlan(vsi, &vlan);
3801 if (ret)
3802 goto finish;
3803
3804 /* If all-multicast is currently enabled and this VLAN ID is only one
3805 * besides VLAN-0 we have to update look-up type of multicast promisc
3806 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3807 */
3808 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3809 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3810 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3811 ICE_MCAST_PROMISC_BITS, 0);
3812 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3813 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3814 }
3815
3816finish:
3817 clear_bit(ICE_CFG_BUSY, vsi->state);
3818
3819 return ret;
3820}
3821
3822/**
3823 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3824 * @netdev: network interface to be adjusted
3825 * @proto: VLAN TPID
3826 * @vid: VLAN ID to be removed
3827 *
3828 * net_device_ops implementation for removing VLAN IDs
3829 */
3830int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3831{
3832 struct ice_netdev_priv *np = netdev_priv(netdev);
3833 struct ice_vsi_vlan_ops *vlan_ops;
3834 struct ice_vsi *vsi = np->vsi;
3835 struct ice_vlan vlan;
3836 int ret;
3837
3838 /* don't allow removal of VLAN 0 */
3839 if (!vid)
3840 return 0;
3841
3842 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3843 usleep_range(1000, 2000);
3844
3845 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3846 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3847 if (ret) {
3848 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3849 vsi->vsi_num);
3850 vsi->current_netdev_flags |= IFF_ALLMULTI;
3851 }
3852
3853 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3854
3855 /* Make sure VLAN delete is successful before updating VLAN
3856 * information
3857 */
3858 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3859 ret = vlan_ops->del_vlan(vsi, &vlan);
3860 if (ret)
3861 goto finish;
3862
3863 /* Remove multicast promisc rule for the removed VLAN ID if
3864 * all-multicast is enabled.
3865 */
3866 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3867 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3868 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3869
3870 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3871 /* Update look-up type of multicast promisc rule for VLAN 0
3872 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3873 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3874 */
3875 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3876 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3877 ICE_MCAST_VLAN_PROMISC_BITS,
3878 0);
3879 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3880 ICE_MCAST_PROMISC_BITS, 0);
3881 }
3882 }
3883
3884finish:
3885 clear_bit(ICE_CFG_BUSY, vsi->state);
3886
3887 return ret;
3888}
3889
3890/**
3891 * ice_rep_indr_tc_block_unbind
3892 * @cb_priv: indirection block private data
3893 */
3894static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3895{
3896 struct ice_indr_block_priv *indr_priv = cb_priv;
3897
3898 list_del(&indr_priv->list);
3899 kfree(indr_priv);
3900}
3901
3902/**
3903 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3904 * @vsi: VSI struct which has the netdev
3905 */
3906static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3907{
3908 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3909
3910 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3911 ice_rep_indr_tc_block_unbind);
3912}
3913
3914/**
3915 * ice_tc_indir_block_register - Register TC indirect block notifications
3916 * @vsi: VSI struct which has the netdev
3917 *
3918 * Returns 0 on success, negative value on failure
3919 */
3920static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3921{
3922 struct ice_netdev_priv *np;
3923
3924 if (!vsi || !vsi->netdev)
3925 return -EINVAL;
3926
3927 np = netdev_priv(vsi->netdev);
3928
3929 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3930 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3931}
3932
3933/**
3934 * ice_get_avail_q_count - Get count of queues in use
3935 * @pf_qmap: bitmap to get queue use count from
3936 * @lock: pointer to a mutex that protects access to pf_qmap
3937 * @size: size of the bitmap
3938 */
3939static u16
3940ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3941{
3942 unsigned long bit;
3943 u16 count = 0;
3944
3945 mutex_lock(lock);
3946 for_each_clear_bit(bit, pf_qmap, size)
3947 count++;
3948 mutex_unlock(lock);
3949
3950 return count;
3951}
3952
3953/**
3954 * ice_get_avail_txq_count - Get count of Tx queues in use
3955 * @pf: pointer to an ice_pf instance
3956 */
3957u16 ice_get_avail_txq_count(struct ice_pf *pf)
3958{
3959 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3960 pf->max_pf_txqs);
3961}
3962
3963/**
3964 * ice_get_avail_rxq_count - Get count of Rx queues in use
3965 * @pf: pointer to an ice_pf instance
3966 */
3967u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3968{
3969 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3970 pf->max_pf_rxqs);
3971}
3972
3973/**
3974 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3975 * @pf: board private structure to initialize
3976 */
3977static void ice_deinit_pf(struct ice_pf *pf)
3978{
3979 ice_service_task_stop(pf);
3980 mutex_destroy(&pf->lag_mutex);
3981 mutex_destroy(&pf->adev_mutex);
3982 mutex_destroy(&pf->sw_mutex);
3983 mutex_destroy(&pf->tc_mutex);
3984 mutex_destroy(&pf->avail_q_mutex);
3985 mutex_destroy(&pf->vfs.table_lock);
3986
3987 if (pf->avail_txqs) {
3988 bitmap_free(pf->avail_txqs);
3989 pf->avail_txqs = NULL;
3990 }
3991
3992 if (pf->avail_rxqs) {
3993 bitmap_free(pf->avail_rxqs);
3994 pf->avail_rxqs = NULL;
3995 }
3996
3997 if (pf->ptp.clock)
3998 ptp_clock_unregister(pf->ptp.clock);
3999
4000 xa_destroy(&pf->dyn_ports);
4001 xa_destroy(&pf->sf_nums);
4002}
4003
4004/**
4005 * ice_set_pf_caps - set PFs capability flags
4006 * @pf: pointer to the PF instance
4007 */
4008static void ice_set_pf_caps(struct ice_pf *pf)
4009{
4010 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
4011
4012 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4013 if (func_caps->common_cap.rdma)
4014 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4015 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4016 if (func_caps->common_cap.dcb)
4017 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4018 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4019 if (func_caps->common_cap.sr_iov_1_1) {
4020 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4021 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
4022 ICE_MAX_SRIOV_VFS);
4023 }
4024 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
4025 if (func_caps->common_cap.rss_table_size)
4026 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
4027
4028 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
4029 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
4030 u16 unused;
4031
4032 /* ctrl_vsi_idx will be set to a valid value when flow director
4033 * is setup by ice_init_fdir
4034 */
4035 pf->ctrl_vsi_idx = ICE_NO_VSI;
4036 set_bit(ICE_FLAG_FD_ENA, pf->flags);
4037 /* force guaranteed filter pool for PF */
4038 ice_alloc_fd_guar_item(&pf->hw, &unused,
4039 func_caps->fd_fltr_guar);
4040 /* force shared filter pool for PF */
4041 ice_alloc_fd_shrd_item(&pf->hw, &unused,
4042 func_caps->fd_fltr_best_effort);
4043 }
4044
4045 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4046 if (func_caps->common_cap.ieee_1588 &&
4047 !(pf->hw.mac_type == ICE_MAC_E830))
4048 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4049
4050 pf->max_pf_txqs = func_caps->common_cap.num_txq;
4051 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4052}
4053
4054/**
4055 * ice_init_pf - Initialize general software structures (struct ice_pf)
4056 * @pf: board private structure to initialize
4057 */
4058static int ice_init_pf(struct ice_pf *pf)
4059{
4060 ice_set_pf_caps(pf);
4061
4062 mutex_init(&pf->sw_mutex);
4063 mutex_init(&pf->tc_mutex);
4064 mutex_init(&pf->adev_mutex);
4065 mutex_init(&pf->lag_mutex);
4066
4067 INIT_HLIST_HEAD(&pf->aq_wait_list);
4068 spin_lock_init(&pf->aq_wait_lock);
4069 init_waitqueue_head(&pf->aq_wait_queue);
4070
4071 init_waitqueue_head(&pf->reset_wait_queue);
4072
4073 /* setup service timer and periodic service task */
4074 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4075 pf->serv_tmr_period = HZ;
4076 INIT_WORK(&pf->serv_task, ice_service_task);
4077 clear_bit(ICE_SERVICE_SCHED, pf->state);
4078
4079 mutex_init(&pf->avail_q_mutex);
4080 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4081 if (!pf->avail_txqs)
4082 return -ENOMEM;
4083
4084 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4085 if (!pf->avail_rxqs) {
4086 bitmap_free(pf->avail_txqs);
4087 pf->avail_txqs = NULL;
4088 return -ENOMEM;
4089 }
4090
4091 mutex_init(&pf->vfs.table_lock);
4092 hash_init(pf->vfs.table);
4093 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
4094 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
4095 ICE_MBX_OVERFLOW_WATERMARK);
4096 else
4097 ice_mbx_init_snapshot(&pf->hw);
4098
4099 xa_init(&pf->dyn_ports);
4100 xa_init(&pf->sf_nums);
4101
4102 return 0;
4103}
4104
4105/**
4106 * ice_is_wol_supported - check if WoL is supported
4107 * @hw: pointer to hardware info
4108 *
4109 * Check if WoL is supported based on the HW configuration.
4110 * Returns true if NVM supports and enables WoL for this port, false otherwise
4111 */
4112bool ice_is_wol_supported(struct ice_hw *hw)
4113{
4114 u16 wol_ctrl;
4115
4116 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4117 * word) indicates WoL is not supported on the corresponding PF ID.
4118 */
4119 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4120 return false;
4121
4122 return !(BIT(hw->port_info->lport) & wol_ctrl);
4123}
4124
4125/**
4126 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4127 * @vsi: VSI being changed
4128 * @new_rx: new number of Rx queues
4129 * @new_tx: new number of Tx queues
4130 * @locked: is adev device_lock held
4131 *
4132 * Only change the number of queues if new_tx, or new_rx is non-0.
4133 *
4134 * Returns 0 on success.
4135 */
4136int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4137{
4138 struct ice_pf *pf = vsi->back;
4139 int i, err = 0, timeout = 50;
4140
4141 if (!new_rx && !new_tx)
4142 return -EINVAL;
4143
4144 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4145 timeout--;
4146 if (!timeout)
4147 return -EBUSY;
4148 usleep_range(1000, 2000);
4149 }
4150
4151 if (new_tx)
4152 vsi->req_txq = (u16)new_tx;
4153 if (new_rx)
4154 vsi->req_rxq = (u16)new_rx;
4155
4156 /* set for the next time the netdev is started */
4157 if (!netif_running(vsi->netdev)) {
4158 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4159 if (err)
4160 goto rebuild_err;
4161 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4162 goto done;
4163 }
4164
4165 ice_vsi_close(vsi);
4166 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4167 if (err)
4168 goto rebuild_err;
4169
4170 ice_for_each_traffic_class(i) {
4171 if (vsi->tc_cfg.ena_tc & BIT(i))
4172 netdev_set_tc_queue(vsi->netdev,
4173 vsi->tc_cfg.tc_info[i].netdev_tc,
4174 vsi->tc_cfg.tc_info[i].qcount_tx,
4175 vsi->tc_cfg.tc_info[i].qoffset);
4176 }
4177 ice_pf_dcb_recfg(pf, locked);
4178 ice_vsi_open(vsi);
4179 goto done;
4180
4181rebuild_err:
4182 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4183 err);
4184done:
4185 clear_bit(ICE_CFG_BUSY, pf->state);
4186 return err;
4187}
4188
4189/**
4190 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4191 * @pf: PF to configure
4192 *
4193 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4194 * VSI can still Tx/Rx VLAN tagged packets.
4195 */
4196static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4197{
4198 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4199 struct ice_vsi_ctx *ctxt;
4200 struct ice_hw *hw;
4201 int status;
4202
4203 if (!vsi)
4204 return;
4205
4206 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4207 if (!ctxt)
4208 return;
4209
4210 hw = &pf->hw;
4211 ctxt->info = vsi->info;
4212
4213 ctxt->info.valid_sections =
4214 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4215 ICE_AQ_VSI_PROP_SECURITY_VALID |
4216 ICE_AQ_VSI_PROP_SW_VALID);
4217
4218 /* disable VLAN anti-spoof */
4219 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4220 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4221
4222 /* disable VLAN pruning and keep all other settings */
4223 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4224
4225 /* allow all VLANs on Tx and don't strip on Rx */
4226 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4227 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4228
4229 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4230 if (status) {
4231 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4232 status, ice_aq_str(hw->adminq.sq_last_status));
4233 } else {
4234 vsi->info.sec_flags = ctxt->info.sec_flags;
4235 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4236 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4237 }
4238
4239 kfree(ctxt);
4240}
4241
4242/**
4243 * ice_log_pkg_init - log result of DDP package load
4244 * @hw: pointer to hardware info
4245 * @state: state of package load
4246 */
4247static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4248{
4249 struct ice_pf *pf = hw->back;
4250 struct device *dev;
4251
4252 dev = ice_pf_to_dev(pf);
4253
4254 switch (state) {
4255 case ICE_DDP_PKG_SUCCESS:
4256 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4257 hw->active_pkg_name,
4258 hw->active_pkg_ver.major,
4259 hw->active_pkg_ver.minor,
4260 hw->active_pkg_ver.update,
4261 hw->active_pkg_ver.draft);
4262 break;
4263 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4264 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4265 hw->active_pkg_name,
4266 hw->active_pkg_ver.major,
4267 hw->active_pkg_ver.minor,
4268 hw->active_pkg_ver.update,
4269 hw->active_pkg_ver.draft);
4270 break;
4271 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4272 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4273 hw->active_pkg_name,
4274 hw->active_pkg_ver.major,
4275 hw->active_pkg_ver.minor,
4276 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4277 break;
4278 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4279 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4280 hw->active_pkg_name,
4281 hw->active_pkg_ver.major,
4282 hw->active_pkg_ver.minor,
4283 hw->active_pkg_ver.update,
4284 hw->active_pkg_ver.draft,
4285 hw->pkg_name,
4286 hw->pkg_ver.major,
4287 hw->pkg_ver.minor,
4288 hw->pkg_ver.update,
4289 hw->pkg_ver.draft);
4290 break;
4291 case ICE_DDP_PKG_FW_MISMATCH:
4292 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4293 break;
4294 case ICE_DDP_PKG_INVALID_FILE:
4295 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4296 break;
4297 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4298 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4299 break;
4300 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4301 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4302 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4303 break;
4304 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4305 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4306 break;
4307 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4308 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4309 break;
4310 case ICE_DDP_PKG_LOAD_ERROR:
4311 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4312 /* poll for reset to complete */
4313 if (ice_check_reset(hw))
4314 dev_err(dev, "Error resetting device. Please reload the driver\n");
4315 break;
4316 case ICE_DDP_PKG_ERR:
4317 default:
4318 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4319 break;
4320 }
4321}
4322
4323/**
4324 * ice_load_pkg - load/reload the DDP Package file
4325 * @firmware: firmware structure when firmware requested or NULL for reload
4326 * @pf: pointer to the PF instance
4327 *
4328 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4329 * initialize HW tables.
4330 */
4331static void
4332ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4333{
4334 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4335 struct device *dev = ice_pf_to_dev(pf);
4336 struct ice_hw *hw = &pf->hw;
4337
4338 /* Load DDP Package */
4339 if (firmware && !hw->pkg_copy) {
4340 state = ice_copy_and_init_pkg(hw, firmware->data,
4341 firmware->size);
4342 ice_log_pkg_init(hw, state);
4343 } else if (!firmware && hw->pkg_copy) {
4344 /* Reload package during rebuild after CORER/GLOBR reset */
4345 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4346 ice_log_pkg_init(hw, state);
4347 } else {
4348 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4349 }
4350
4351 if (!ice_is_init_pkg_successful(state)) {
4352 /* Safe Mode */
4353 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4354 return;
4355 }
4356
4357 /* Successful download package is the precondition for advanced
4358 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4359 */
4360 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4361}
4362
4363/**
4364 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4365 * @pf: pointer to the PF structure
4366 *
4367 * There is no error returned here because the driver should be able to handle
4368 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4369 * specifically with Tx.
4370 */
4371static void ice_verify_cacheline_size(struct ice_pf *pf)
4372{
4373 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4374 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4375 ICE_CACHE_LINE_BYTES);
4376}
4377
4378/**
4379 * ice_send_version - update firmware with driver version
4380 * @pf: PF struct
4381 *
4382 * Returns 0 on success, else error code
4383 */
4384static int ice_send_version(struct ice_pf *pf)
4385{
4386 struct ice_driver_ver dv;
4387
4388 dv.major_ver = 0xff;
4389 dv.minor_ver = 0xff;
4390 dv.build_ver = 0xff;
4391 dv.subbuild_ver = 0;
4392 strscpy((char *)dv.driver_string, UTS_RELEASE,
4393 sizeof(dv.driver_string));
4394 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4395}
4396
4397/**
4398 * ice_init_fdir - Initialize flow director VSI and configuration
4399 * @pf: pointer to the PF instance
4400 *
4401 * returns 0 on success, negative on error
4402 */
4403static int ice_init_fdir(struct ice_pf *pf)
4404{
4405 struct device *dev = ice_pf_to_dev(pf);
4406 struct ice_vsi *ctrl_vsi;
4407 int err;
4408
4409 /* Side Band Flow Director needs to have a control VSI.
4410 * Allocate it and store it in the PF.
4411 */
4412 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4413 if (!ctrl_vsi) {
4414 dev_dbg(dev, "could not create control VSI\n");
4415 return -ENOMEM;
4416 }
4417
4418 err = ice_vsi_open_ctrl(ctrl_vsi);
4419 if (err) {
4420 dev_dbg(dev, "could not open control VSI\n");
4421 goto err_vsi_open;
4422 }
4423
4424 mutex_init(&pf->hw.fdir_fltr_lock);
4425
4426 err = ice_fdir_create_dflt_rules(pf);
4427 if (err)
4428 goto err_fdir_rule;
4429
4430 return 0;
4431
4432err_fdir_rule:
4433 ice_fdir_release_flows(&pf->hw);
4434 ice_vsi_close(ctrl_vsi);
4435err_vsi_open:
4436 ice_vsi_release(ctrl_vsi);
4437 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4438 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4439 pf->ctrl_vsi_idx = ICE_NO_VSI;
4440 }
4441 return err;
4442}
4443
4444static void ice_deinit_fdir(struct ice_pf *pf)
4445{
4446 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4447
4448 if (!vsi)
4449 return;
4450
4451 ice_vsi_manage_fdir(vsi, false);
4452 ice_vsi_release(vsi);
4453 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4454 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4455 pf->ctrl_vsi_idx = ICE_NO_VSI;
4456 }
4457
4458 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4459}
4460
4461/**
4462 * ice_get_opt_fw_name - return optional firmware file name or NULL
4463 * @pf: pointer to the PF instance
4464 */
4465static char *ice_get_opt_fw_name(struct ice_pf *pf)
4466{
4467 /* Optional firmware name same as default with additional dash
4468 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4469 */
4470 struct pci_dev *pdev = pf->pdev;
4471 char *opt_fw_filename;
4472 u64 dsn;
4473
4474 /* Determine the name of the optional file using the DSN (two
4475 * dwords following the start of the DSN Capability).
4476 */
4477 dsn = pci_get_dsn(pdev);
4478 if (!dsn)
4479 return NULL;
4480
4481 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4482 if (!opt_fw_filename)
4483 return NULL;
4484
4485 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4486 ICE_DDP_PKG_PATH, dsn);
4487
4488 return opt_fw_filename;
4489}
4490
4491/**
4492 * ice_request_fw - Device initialization routine
4493 * @pf: pointer to the PF instance
4494 * @firmware: double pointer to firmware struct
4495 *
4496 * Return: zero when successful, negative values otherwise.
4497 */
4498static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4499{
4500 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4501 struct device *dev = ice_pf_to_dev(pf);
4502 int err = 0;
4503
4504 /* optional device-specific DDP (if present) overrides the default DDP
4505 * package file. kernel logs a debug message if the file doesn't exist,
4506 * and warning messages for other errors.
4507 */
4508 if (opt_fw_filename) {
4509 err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4510 kfree(opt_fw_filename);
4511 if (!err)
4512 return err;
4513 }
4514 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4515 if (err)
4516 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4517
4518 return err;
4519}
4520
4521/**
4522 * ice_init_tx_topology - performs Tx topology initialization
4523 * @hw: pointer to the hardware structure
4524 * @firmware: pointer to firmware structure
4525 *
4526 * Return: zero when init was successful, negative values otherwise.
4527 */
4528static int
4529ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4530{
4531 u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4532 struct ice_pf *pf = hw->back;
4533 struct device *dev;
4534 int err;
4535
4536 dev = ice_pf_to_dev(pf);
4537 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4538 if (!err) {
4539 if (hw->num_tx_sched_layers > num_tx_sched_layers)
4540 dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4541 else
4542 dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4543 /* if there was a change in topology ice_cfg_tx_topo triggered
4544 * a CORER and we need to re-init hw
4545 */
4546 ice_deinit_hw(hw);
4547 err = ice_init_hw(hw);
4548
4549 return err;
4550 } else if (err == -EIO) {
4551 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4552 }
4553
4554 return 0;
4555}
4556
4557/**
4558 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs
4559 * @hw: pointer to the hardware structure
4560 * @pf: pointer to pf structure
4561 *
4562 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor
4563 * formats the PF hardware supports. The exact list of supported RXDIDs
4564 * depends on the loaded DDP package. The IDs can be determined by reading the
4565 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded.
4566 *
4567 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed
4568 * in the DDP package. The 16-byte legacy descriptor is never supported by
4569 * VFs.
4570 */
4571static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf)
4572{
4573 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1);
4574
4575 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
4576 u32 regval;
4577
4578 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
4579 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
4580 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
4581 pf->supported_rxdids |= BIT(i);
4582 }
4583}
4584
4585/**
4586 * ice_init_ddp_config - DDP related configuration
4587 * @hw: pointer to the hardware structure
4588 * @pf: pointer to pf structure
4589 *
4590 * This function loads DDP file from the disk, then initializes Tx
4591 * topology. At the end DDP package is loaded on the card.
4592 *
4593 * Return: zero when init was successful, negative values otherwise.
4594 */
4595static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4596{
4597 struct device *dev = ice_pf_to_dev(pf);
4598 const struct firmware *firmware = NULL;
4599 int err;
4600
4601 err = ice_request_fw(pf, &firmware);
4602 if (err) {
4603 dev_err(dev, "Fail during requesting FW: %d\n", err);
4604 return err;
4605 }
4606
4607 err = ice_init_tx_topology(hw, firmware);
4608 if (err) {
4609 dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4610 err);
4611 release_firmware(firmware);
4612 return err;
4613 }
4614
4615 /* Download firmware to device */
4616 ice_load_pkg(firmware, pf);
4617 release_firmware(firmware);
4618
4619 /* Initialize the supported Rx descriptor IDs after loading DDP */
4620 ice_init_supported_rxdids(hw, pf);
4621
4622 return 0;
4623}
4624
4625/**
4626 * ice_print_wake_reason - show the wake up cause in the log
4627 * @pf: pointer to the PF struct
4628 */
4629static void ice_print_wake_reason(struct ice_pf *pf)
4630{
4631 u32 wus = pf->wakeup_reason;
4632 const char *wake_str;
4633
4634 /* if no wake event, nothing to print */
4635 if (!wus)
4636 return;
4637
4638 if (wus & PFPM_WUS_LNKC_M)
4639 wake_str = "Link\n";
4640 else if (wus & PFPM_WUS_MAG_M)
4641 wake_str = "Magic Packet\n";
4642 else if (wus & PFPM_WUS_MNG_M)
4643 wake_str = "Management\n";
4644 else if (wus & PFPM_WUS_FW_RST_WK_M)
4645 wake_str = "Firmware Reset\n";
4646 else
4647 wake_str = "Unknown\n";
4648
4649 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4650}
4651
4652/**
4653 * ice_pf_fwlog_update_module - update 1 module
4654 * @pf: pointer to the PF struct
4655 * @log_level: log_level to use for the @module
4656 * @module: module to update
4657 */
4658void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4659{
4660 struct ice_hw *hw = &pf->hw;
4661
4662 hw->fwlog_cfg.module_entries[module].log_level = log_level;
4663}
4664
4665/**
4666 * ice_register_netdev - register netdev
4667 * @vsi: pointer to the VSI struct
4668 */
4669static int ice_register_netdev(struct ice_vsi *vsi)
4670{
4671 int err;
4672
4673 if (!vsi || !vsi->netdev)
4674 return -EIO;
4675
4676 err = register_netdev(vsi->netdev);
4677 if (err)
4678 return err;
4679
4680 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4681 netif_carrier_off(vsi->netdev);
4682 netif_tx_stop_all_queues(vsi->netdev);
4683
4684 return 0;
4685}
4686
4687static void ice_unregister_netdev(struct ice_vsi *vsi)
4688{
4689 if (!vsi || !vsi->netdev)
4690 return;
4691
4692 unregister_netdev(vsi->netdev);
4693 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4694}
4695
4696/**
4697 * ice_cfg_netdev - Allocate, configure and register a netdev
4698 * @vsi: the VSI associated with the new netdev
4699 *
4700 * Returns 0 on success, negative value on failure
4701 */
4702static int ice_cfg_netdev(struct ice_vsi *vsi)
4703{
4704 struct ice_netdev_priv *np;
4705 struct net_device *netdev;
4706 u8 mac_addr[ETH_ALEN];
4707
4708 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4709 vsi->alloc_rxq);
4710 if (!netdev)
4711 return -ENOMEM;
4712
4713 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4714 vsi->netdev = netdev;
4715 np = netdev_priv(netdev);
4716 np->vsi = vsi;
4717
4718 ice_set_netdev_features(netdev);
4719 ice_set_ops(vsi);
4720
4721 if (vsi->type == ICE_VSI_PF) {
4722 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4723 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4724 eth_hw_addr_set(netdev, mac_addr);
4725 }
4726
4727 netdev->priv_flags |= IFF_UNICAST_FLT;
4728
4729 /* Setup netdev TC information */
4730 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4731
4732 netdev->max_mtu = ICE_MAX_MTU;
4733
4734 return 0;
4735}
4736
4737static void ice_decfg_netdev(struct ice_vsi *vsi)
4738{
4739 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4740 free_netdev(vsi->netdev);
4741 vsi->netdev = NULL;
4742}
4743
4744/**
4745 * ice_wait_for_fw - wait for full FW readiness
4746 * @hw: pointer to the hardware structure
4747 * @timeout: milliseconds that can elapse before timing out
4748 */
4749static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4750{
4751 int fw_loading;
4752 u32 elapsed = 0;
4753
4754 while (elapsed <= timeout) {
4755 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4756
4757 /* firmware was not yet loaded, we have to wait more */
4758 if (fw_loading) {
4759 elapsed += 100;
4760 msleep(100);
4761 continue;
4762 }
4763 return 0;
4764 }
4765
4766 return -ETIMEDOUT;
4767}
4768
4769int ice_init_dev(struct ice_pf *pf)
4770{
4771 struct device *dev = ice_pf_to_dev(pf);
4772 struct ice_hw *hw = &pf->hw;
4773 int err;
4774
4775 err = ice_init_hw(hw);
4776 if (err) {
4777 dev_err(dev, "ice_init_hw failed: %d\n", err);
4778 return err;
4779 }
4780
4781 /* Some cards require longer initialization times
4782 * due to necessity of loading FW from an external source.
4783 * This can take even half a minute.
4784 */
4785 if (ice_is_pf_c827(hw)) {
4786 err = ice_wait_for_fw(hw, 30000);
4787 if (err) {
4788 dev_err(dev, "ice_wait_for_fw timed out");
4789 return err;
4790 }
4791 }
4792
4793 ice_init_feature_support(pf);
4794
4795 err = ice_init_ddp_config(hw, pf);
4796
4797 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4798 * set in pf->state, which will cause ice_is_safe_mode to return
4799 * true
4800 */
4801 if (err || ice_is_safe_mode(pf)) {
4802 /* we already got function/device capabilities but these don't
4803 * reflect what the driver needs to do in safe mode. Instead of
4804 * adding conditional logic everywhere to ignore these
4805 * device/function capabilities, override them.
4806 */
4807 ice_set_safe_mode_caps(hw);
4808 }
4809
4810 err = ice_init_pf(pf);
4811 if (err) {
4812 dev_err(dev, "ice_init_pf failed: %d\n", err);
4813 goto err_init_pf;
4814 }
4815
4816 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4817 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4818 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4819 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4820 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4821 pf->hw.udp_tunnel_nic.tables[0].n_entries =
4822 pf->hw.tnl.valid_count[TNL_VXLAN];
4823 pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4824 UDP_TUNNEL_TYPE_VXLAN;
4825 }
4826 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4827 pf->hw.udp_tunnel_nic.tables[1].n_entries =
4828 pf->hw.tnl.valid_count[TNL_GENEVE];
4829 pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4830 UDP_TUNNEL_TYPE_GENEVE;
4831 }
4832
4833 err = ice_init_interrupt_scheme(pf);
4834 if (err) {
4835 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4836 err = -EIO;
4837 goto err_init_interrupt_scheme;
4838 }
4839
4840 /* In case of MSIX we are going to setup the misc vector right here
4841 * to handle admin queue events etc. In case of legacy and MSI
4842 * the misc functionality and queue processing is combined in
4843 * the same vector and that gets setup at open.
4844 */
4845 err = ice_req_irq_msix_misc(pf);
4846 if (err) {
4847 dev_err(dev, "setup of misc vector failed: %d\n", err);
4848 goto err_req_irq_msix_misc;
4849 }
4850
4851 return 0;
4852
4853err_req_irq_msix_misc:
4854 ice_clear_interrupt_scheme(pf);
4855err_init_interrupt_scheme:
4856 ice_deinit_pf(pf);
4857err_init_pf:
4858 ice_deinit_hw(hw);
4859 return err;
4860}
4861
4862void ice_deinit_dev(struct ice_pf *pf)
4863{
4864 ice_free_irq_msix_misc(pf);
4865 ice_deinit_pf(pf);
4866 ice_deinit_hw(&pf->hw);
4867
4868 /* Service task is already stopped, so call reset directly. */
4869 ice_reset(&pf->hw, ICE_RESET_PFR);
4870 pci_wait_for_pending_transaction(pf->pdev);
4871 ice_clear_interrupt_scheme(pf);
4872}
4873
4874static void ice_init_features(struct ice_pf *pf)
4875{
4876 struct device *dev = ice_pf_to_dev(pf);
4877
4878 if (ice_is_safe_mode(pf))
4879 return;
4880
4881 /* initialize DDP driven features */
4882 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4883 ice_ptp_init(pf);
4884
4885 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4886 ice_gnss_init(pf);
4887
4888 if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4889 ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4890 ice_dpll_init(pf);
4891
4892 /* Note: Flow director init failure is non-fatal to load */
4893 if (ice_init_fdir(pf))
4894 dev_err(dev, "could not initialize flow director\n");
4895
4896 /* Note: DCB init failure is non-fatal to load */
4897 if (ice_init_pf_dcb(pf, false)) {
4898 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4899 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4900 } else {
4901 ice_cfg_lldp_mib_change(&pf->hw, true);
4902 }
4903
4904 if (ice_init_lag(pf))
4905 dev_warn(dev, "Failed to init link aggregation support\n");
4906
4907 ice_hwmon_init(pf);
4908}
4909
4910static void ice_deinit_features(struct ice_pf *pf)
4911{
4912 if (ice_is_safe_mode(pf))
4913 return;
4914
4915 ice_deinit_lag(pf);
4916 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4917 ice_cfg_lldp_mib_change(&pf->hw, false);
4918 ice_deinit_fdir(pf);
4919 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4920 ice_gnss_exit(pf);
4921 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4922 ice_ptp_release(pf);
4923 if (test_bit(ICE_FLAG_DPLL, pf->flags))
4924 ice_dpll_deinit(pf);
4925 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4926 xa_destroy(&pf->eswitch.reprs);
4927}
4928
4929static void ice_init_wakeup(struct ice_pf *pf)
4930{
4931 /* Save wakeup reason register for later use */
4932 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4933
4934 /* check for a power management event */
4935 ice_print_wake_reason(pf);
4936
4937 /* clear wake status, all bits */
4938 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4939
4940 /* Disable WoL at init, wait for user to enable */
4941 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4942}
4943
4944static int ice_init_link(struct ice_pf *pf)
4945{
4946 struct device *dev = ice_pf_to_dev(pf);
4947 int err;
4948
4949 err = ice_init_link_events(pf->hw.port_info);
4950 if (err) {
4951 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4952 return err;
4953 }
4954
4955 /* not a fatal error if this fails */
4956 err = ice_init_nvm_phy_type(pf->hw.port_info);
4957 if (err)
4958 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4959
4960 /* not a fatal error if this fails */
4961 err = ice_update_link_info(pf->hw.port_info);
4962 if (err)
4963 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4964
4965 ice_init_link_dflt_override(pf->hw.port_info);
4966
4967 ice_check_link_cfg_err(pf,
4968 pf->hw.port_info->phy.link_info.link_cfg_err);
4969
4970 /* if media available, initialize PHY settings */
4971 if (pf->hw.port_info->phy.link_info.link_info &
4972 ICE_AQ_MEDIA_AVAILABLE) {
4973 /* not a fatal error if this fails */
4974 err = ice_init_phy_user_cfg(pf->hw.port_info);
4975 if (err)
4976 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4977
4978 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4979 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4980
4981 if (vsi)
4982 ice_configure_phy(vsi);
4983 }
4984 } else {
4985 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4986 }
4987
4988 return err;
4989}
4990
4991static int ice_init_pf_sw(struct ice_pf *pf)
4992{
4993 bool dvm = ice_is_dvm_ena(&pf->hw);
4994 struct ice_vsi *vsi;
4995 int err;
4996
4997 /* create switch struct for the switch element created by FW on boot */
4998 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4999 if (!pf->first_sw)
5000 return -ENOMEM;
5001
5002 if (pf->hw.evb_veb)
5003 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
5004 else
5005 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
5006
5007 pf->first_sw->pf = pf;
5008
5009 /* record the sw_id available for later use */
5010 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
5011
5012 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
5013 if (err)
5014 goto err_aq_set_port_params;
5015
5016 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
5017 if (!vsi) {
5018 err = -ENOMEM;
5019 goto err_pf_vsi_setup;
5020 }
5021
5022 return 0;
5023
5024err_pf_vsi_setup:
5025err_aq_set_port_params:
5026 kfree(pf->first_sw);
5027 return err;
5028}
5029
5030static void ice_deinit_pf_sw(struct ice_pf *pf)
5031{
5032 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5033
5034 if (!vsi)
5035 return;
5036
5037 ice_vsi_release(vsi);
5038 kfree(pf->first_sw);
5039}
5040
5041static int ice_alloc_vsis(struct ice_pf *pf)
5042{
5043 struct device *dev = ice_pf_to_dev(pf);
5044
5045 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
5046 if (!pf->num_alloc_vsi)
5047 return -EIO;
5048
5049 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
5050 dev_warn(dev,
5051 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
5052 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
5053 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
5054 }
5055
5056 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
5057 GFP_KERNEL);
5058 if (!pf->vsi)
5059 return -ENOMEM;
5060
5061 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
5062 sizeof(*pf->vsi_stats), GFP_KERNEL);
5063 if (!pf->vsi_stats) {
5064 devm_kfree(dev, pf->vsi);
5065 return -ENOMEM;
5066 }
5067
5068 return 0;
5069}
5070
5071static void ice_dealloc_vsis(struct ice_pf *pf)
5072{
5073 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
5074 pf->vsi_stats = NULL;
5075
5076 pf->num_alloc_vsi = 0;
5077 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
5078 pf->vsi = NULL;
5079}
5080
5081static int ice_init_devlink(struct ice_pf *pf)
5082{
5083 int err;
5084
5085 err = ice_devlink_register_params(pf);
5086 if (err)
5087 return err;
5088
5089 ice_devlink_init_regions(pf);
5090 ice_devlink_register(pf);
5091
5092 return 0;
5093}
5094
5095static void ice_deinit_devlink(struct ice_pf *pf)
5096{
5097 ice_devlink_unregister(pf);
5098 ice_devlink_destroy_regions(pf);
5099 ice_devlink_unregister_params(pf);
5100}
5101
5102static int ice_init(struct ice_pf *pf)
5103{
5104 int err;
5105
5106 err = ice_init_dev(pf);
5107 if (err)
5108 return err;
5109
5110 err = ice_alloc_vsis(pf);
5111 if (err)
5112 goto err_alloc_vsis;
5113
5114 err = ice_init_pf_sw(pf);
5115 if (err)
5116 goto err_init_pf_sw;
5117
5118 ice_init_wakeup(pf);
5119
5120 err = ice_init_link(pf);
5121 if (err)
5122 goto err_init_link;
5123
5124 err = ice_send_version(pf);
5125 if (err)
5126 goto err_init_link;
5127
5128 ice_verify_cacheline_size(pf);
5129
5130 if (ice_is_safe_mode(pf))
5131 ice_set_safe_mode_vlan_cfg(pf);
5132 else
5133 /* print PCI link speed and width */
5134 pcie_print_link_status(pf->pdev);
5135
5136 /* ready to go, so clear down state bit */
5137 clear_bit(ICE_DOWN, pf->state);
5138 clear_bit(ICE_SERVICE_DIS, pf->state);
5139
5140 /* since everything is good, start the service timer */
5141 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5142
5143 return 0;
5144
5145err_init_link:
5146 ice_deinit_pf_sw(pf);
5147err_init_pf_sw:
5148 ice_dealloc_vsis(pf);
5149err_alloc_vsis:
5150 ice_deinit_dev(pf);
5151 return err;
5152}
5153
5154static void ice_deinit(struct ice_pf *pf)
5155{
5156 set_bit(ICE_SERVICE_DIS, pf->state);
5157 set_bit(ICE_DOWN, pf->state);
5158
5159 ice_deinit_pf_sw(pf);
5160 ice_dealloc_vsis(pf);
5161 ice_deinit_dev(pf);
5162}
5163
5164/**
5165 * ice_load - load pf by init hw and starting VSI
5166 * @pf: pointer to the pf instance
5167 *
5168 * This function has to be called under devl_lock.
5169 */
5170int ice_load(struct ice_pf *pf)
5171{
5172 struct ice_vsi *vsi;
5173 int err;
5174
5175 devl_assert_locked(priv_to_devlink(pf));
5176
5177 vsi = ice_get_main_vsi(pf);
5178
5179 /* init channel list */
5180 INIT_LIST_HEAD(&vsi->ch_list);
5181
5182 err = ice_cfg_netdev(vsi);
5183 if (err)
5184 return err;
5185
5186 /* Setup DCB netlink interface */
5187 ice_dcbnl_setup(vsi);
5188
5189 err = ice_init_mac_fltr(pf);
5190 if (err)
5191 goto err_init_mac_fltr;
5192
5193 err = ice_devlink_create_pf_port(pf);
5194 if (err)
5195 goto err_devlink_create_pf_port;
5196
5197 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5198
5199 err = ice_register_netdev(vsi);
5200 if (err)
5201 goto err_register_netdev;
5202
5203 err = ice_tc_indir_block_register(vsi);
5204 if (err)
5205 goto err_tc_indir_block_register;
5206
5207 ice_napi_add(vsi);
5208
5209 err = ice_init_rdma(pf);
5210 if (err)
5211 goto err_init_rdma;
5212
5213 ice_init_features(pf);
5214 ice_service_task_restart(pf);
5215
5216 clear_bit(ICE_DOWN, pf->state);
5217
5218 return 0;
5219
5220err_init_rdma:
5221 ice_tc_indir_block_unregister(vsi);
5222err_tc_indir_block_register:
5223 ice_unregister_netdev(vsi);
5224err_register_netdev:
5225 ice_devlink_destroy_pf_port(pf);
5226err_devlink_create_pf_port:
5227err_init_mac_fltr:
5228 ice_decfg_netdev(vsi);
5229 return err;
5230}
5231
5232/**
5233 * ice_unload - unload pf by stopping VSI and deinit hw
5234 * @pf: pointer to the pf instance
5235 *
5236 * This function has to be called under devl_lock.
5237 */
5238void ice_unload(struct ice_pf *pf)
5239{
5240 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5241
5242 devl_assert_locked(priv_to_devlink(pf));
5243
5244 ice_deinit_features(pf);
5245 ice_deinit_rdma(pf);
5246 ice_tc_indir_block_unregister(vsi);
5247 ice_unregister_netdev(vsi);
5248 ice_devlink_destroy_pf_port(pf);
5249 ice_decfg_netdev(vsi);
5250}
5251
5252/**
5253 * ice_probe - Device initialization routine
5254 * @pdev: PCI device information struct
5255 * @ent: entry in ice_pci_tbl
5256 *
5257 * Returns 0 on success, negative on failure
5258 */
5259static int
5260ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5261{
5262 struct device *dev = &pdev->dev;
5263 struct ice_adapter *adapter;
5264 struct ice_pf *pf;
5265 struct ice_hw *hw;
5266 int err;
5267
5268 if (pdev->is_virtfn) {
5269 dev_err(dev, "can't probe a virtual function\n");
5270 return -EINVAL;
5271 }
5272
5273 /* when under a kdump kernel initiate a reset before enabling the
5274 * device in order to clear out any pending DMA transactions. These
5275 * transactions can cause some systems to machine check when doing
5276 * the pcim_enable_device() below.
5277 */
5278 if (is_kdump_kernel()) {
5279 pci_save_state(pdev);
5280 pci_clear_master(pdev);
5281 err = pcie_flr(pdev);
5282 if (err)
5283 return err;
5284 pci_restore_state(pdev);
5285 }
5286
5287 /* this driver uses devres, see
5288 * Documentation/driver-api/driver-model/devres.rst
5289 */
5290 err = pcim_enable_device(pdev);
5291 if (err)
5292 return err;
5293
5294 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5295 if (err) {
5296 dev_err(dev, "BAR0 I/O map error %d\n", err);
5297 return err;
5298 }
5299
5300 pf = ice_allocate_pf(dev);
5301 if (!pf)
5302 return -ENOMEM;
5303
5304 /* initialize Auxiliary index to invalid value */
5305 pf->aux_idx = -1;
5306
5307 /* set up for high or low DMA */
5308 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5309 if (err) {
5310 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5311 return err;
5312 }
5313
5314 pci_set_master(pdev);
5315
5316 adapter = ice_adapter_get(pdev);
5317 if (IS_ERR(adapter))
5318 return PTR_ERR(adapter);
5319
5320 pf->pdev = pdev;
5321 pf->adapter = adapter;
5322 pci_set_drvdata(pdev, pf);
5323 set_bit(ICE_DOWN, pf->state);
5324 /* Disable service task until DOWN bit is cleared */
5325 set_bit(ICE_SERVICE_DIS, pf->state);
5326
5327 hw = &pf->hw;
5328 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5329 pci_save_state(pdev);
5330
5331 hw->back = pf;
5332 hw->port_info = NULL;
5333 hw->vendor_id = pdev->vendor;
5334 hw->device_id = pdev->device;
5335 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5336 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5337 hw->subsystem_device_id = pdev->subsystem_device;
5338 hw->bus.device = PCI_SLOT(pdev->devfn);
5339 hw->bus.func = PCI_FUNC(pdev->devfn);
5340 ice_set_ctrlq_len(hw);
5341
5342 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5343
5344#ifndef CONFIG_DYNAMIC_DEBUG
5345 if (debug < -1)
5346 hw->debug_mask = debug;
5347#endif
5348
5349 err = ice_init(pf);
5350 if (err)
5351 goto err_init;
5352
5353 devl_lock(priv_to_devlink(pf));
5354 err = ice_load(pf);
5355 if (err)
5356 goto err_load;
5357
5358 err = ice_init_devlink(pf);
5359 if (err)
5360 goto err_init_devlink;
5361 devl_unlock(priv_to_devlink(pf));
5362
5363 return 0;
5364
5365err_init_devlink:
5366 ice_unload(pf);
5367err_load:
5368 devl_unlock(priv_to_devlink(pf));
5369 ice_deinit(pf);
5370err_init:
5371 ice_adapter_put(pdev);
5372 return err;
5373}
5374
5375/**
5376 * ice_set_wake - enable or disable Wake on LAN
5377 * @pf: pointer to the PF struct
5378 *
5379 * Simple helper for WoL control
5380 */
5381static void ice_set_wake(struct ice_pf *pf)
5382{
5383 struct ice_hw *hw = &pf->hw;
5384 bool wol = pf->wol_ena;
5385
5386 /* clear wake state, otherwise new wake events won't fire */
5387 wr32(hw, PFPM_WUS, U32_MAX);
5388
5389 /* enable / disable APM wake up, no RMW needed */
5390 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5391
5392 /* set magic packet filter enabled */
5393 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5394}
5395
5396/**
5397 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5398 * @pf: pointer to the PF struct
5399 *
5400 * Issue firmware command to enable multicast magic wake, making
5401 * sure that any locally administered address (LAA) is used for
5402 * wake, and that PF reset doesn't undo the LAA.
5403 */
5404static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5405{
5406 struct device *dev = ice_pf_to_dev(pf);
5407 struct ice_hw *hw = &pf->hw;
5408 u8 mac_addr[ETH_ALEN];
5409 struct ice_vsi *vsi;
5410 int status;
5411 u8 flags;
5412
5413 if (!pf->wol_ena)
5414 return;
5415
5416 vsi = ice_get_main_vsi(pf);
5417 if (!vsi)
5418 return;
5419
5420 /* Get current MAC address in case it's an LAA */
5421 if (vsi->netdev)
5422 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5423 else
5424 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5425
5426 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5427 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5428 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5429
5430 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5431 if (status)
5432 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5433 status, ice_aq_str(hw->adminq.sq_last_status));
5434}
5435
5436/**
5437 * ice_remove - Device removal routine
5438 * @pdev: PCI device information struct
5439 */
5440static void ice_remove(struct pci_dev *pdev)
5441{
5442 struct ice_pf *pf = pci_get_drvdata(pdev);
5443 int i;
5444
5445 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5446 if (!ice_is_reset_in_progress(pf->state))
5447 break;
5448 msleep(100);
5449 }
5450
5451 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5452 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5453 ice_free_vfs(pf);
5454 }
5455
5456 ice_hwmon_exit(pf);
5457
5458 ice_service_task_stop(pf);
5459 ice_aq_cancel_waiting_tasks(pf);
5460 set_bit(ICE_DOWN, pf->state);
5461
5462 if (!ice_is_safe_mode(pf))
5463 ice_remove_arfs(pf);
5464
5465 devl_lock(priv_to_devlink(pf));
5466 ice_dealloc_all_dynamic_ports(pf);
5467 ice_deinit_devlink(pf);
5468
5469 ice_unload(pf);
5470 devl_unlock(priv_to_devlink(pf));
5471
5472 ice_deinit(pf);
5473 ice_vsi_release_all(pf);
5474
5475 ice_setup_mc_magic_wake(pf);
5476 ice_set_wake(pf);
5477
5478 ice_adapter_put(pdev);
5479}
5480
5481/**
5482 * ice_shutdown - PCI callback for shutting down device
5483 * @pdev: PCI device information struct
5484 */
5485static void ice_shutdown(struct pci_dev *pdev)
5486{
5487 struct ice_pf *pf = pci_get_drvdata(pdev);
5488
5489 ice_remove(pdev);
5490
5491 if (system_state == SYSTEM_POWER_OFF) {
5492 pci_wake_from_d3(pdev, pf->wol_ena);
5493 pci_set_power_state(pdev, PCI_D3hot);
5494 }
5495}
5496
5497/**
5498 * ice_prepare_for_shutdown - prep for PCI shutdown
5499 * @pf: board private structure
5500 *
5501 * Inform or close all dependent features in prep for PCI device shutdown
5502 */
5503static void ice_prepare_for_shutdown(struct ice_pf *pf)
5504{
5505 struct ice_hw *hw = &pf->hw;
5506 u32 v;
5507
5508 /* Notify VFs of impending reset */
5509 if (ice_check_sq_alive(hw, &hw->mailboxq))
5510 ice_vc_notify_reset(pf);
5511
5512 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5513
5514 /* disable the VSIs and their queues that are not already DOWN */
5515 ice_pf_dis_all_vsi(pf, false);
5516
5517 ice_for_each_vsi(pf, v)
5518 if (pf->vsi[v])
5519 pf->vsi[v]->vsi_num = 0;
5520
5521 ice_shutdown_all_ctrlq(hw, true);
5522}
5523
5524/**
5525 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5526 * @pf: board private structure to reinitialize
5527 *
5528 * This routine reinitialize interrupt scheme that was cleared during
5529 * power management suspend callback.
5530 *
5531 * This should be called during resume routine to re-allocate the q_vectors
5532 * and reacquire interrupts.
5533 */
5534static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5535{
5536 struct device *dev = ice_pf_to_dev(pf);
5537 int ret, v;
5538
5539 /* Since we clear MSIX flag during suspend, we need to
5540 * set it back during resume...
5541 */
5542
5543 ret = ice_init_interrupt_scheme(pf);
5544 if (ret) {
5545 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5546 return ret;
5547 }
5548
5549 /* Remap vectors and rings, after successful re-init interrupts */
5550 ice_for_each_vsi(pf, v) {
5551 if (!pf->vsi[v])
5552 continue;
5553
5554 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5555 if (ret)
5556 goto err_reinit;
5557 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5558 rtnl_lock();
5559 ice_vsi_set_napi_queues(pf->vsi[v]);
5560 rtnl_unlock();
5561 }
5562
5563 ret = ice_req_irq_msix_misc(pf);
5564 if (ret) {
5565 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5566 ret);
5567 goto err_reinit;
5568 }
5569
5570 return 0;
5571
5572err_reinit:
5573 while (v--)
5574 if (pf->vsi[v]) {
5575 rtnl_lock();
5576 ice_vsi_clear_napi_queues(pf->vsi[v]);
5577 rtnl_unlock();
5578 ice_vsi_free_q_vectors(pf->vsi[v]);
5579 }
5580
5581 return ret;
5582}
5583
5584/**
5585 * ice_suspend
5586 * @dev: generic device information structure
5587 *
5588 * Power Management callback to quiesce the device and prepare
5589 * for D3 transition.
5590 */
5591static int ice_suspend(struct device *dev)
5592{
5593 struct pci_dev *pdev = to_pci_dev(dev);
5594 struct ice_pf *pf;
5595 int disabled, v;
5596
5597 pf = pci_get_drvdata(pdev);
5598
5599 if (!ice_pf_state_is_nominal(pf)) {
5600 dev_err(dev, "Device is not ready, no need to suspend it\n");
5601 return -EBUSY;
5602 }
5603
5604 /* Stop watchdog tasks until resume completion.
5605 * Even though it is most likely that the service task is
5606 * disabled if the device is suspended or down, the service task's
5607 * state is controlled by a different state bit, and we should
5608 * store and honor whatever state that bit is in at this point.
5609 */
5610 disabled = ice_service_task_stop(pf);
5611
5612 ice_deinit_rdma(pf);
5613
5614 /* Already suspended?, then there is nothing to do */
5615 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5616 if (!disabled)
5617 ice_service_task_restart(pf);
5618 return 0;
5619 }
5620
5621 if (test_bit(ICE_DOWN, pf->state) ||
5622 ice_is_reset_in_progress(pf->state)) {
5623 dev_err(dev, "can't suspend device in reset or already down\n");
5624 if (!disabled)
5625 ice_service_task_restart(pf);
5626 return 0;
5627 }
5628
5629 ice_setup_mc_magic_wake(pf);
5630
5631 ice_prepare_for_shutdown(pf);
5632
5633 ice_set_wake(pf);
5634
5635 /* Free vectors, clear the interrupt scheme and release IRQs
5636 * for proper hibernation, especially with large number of CPUs.
5637 * Otherwise hibernation might fail when mapping all the vectors back
5638 * to CPU0.
5639 */
5640 ice_free_irq_msix_misc(pf);
5641 ice_for_each_vsi(pf, v) {
5642 if (!pf->vsi[v])
5643 continue;
5644 rtnl_lock();
5645 ice_vsi_clear_napi_queues(pf->vsi[v]);
5646 rtnl_unlock();
5647 ice_vsi_free_q_vectors(pf->vsi[v]);
5648 }
5649 ice_clear_interrupt_scheme(pf);
5650
5651 pci_save_state(pdev);
5652 pci_wake_from_d3(pdev, pf->wol_ena);
5653 pci_set_power_state(pdev, PCI_D3hot);
5654 return 0;
5655}
5656
5657/**
5658 * ice_resume - PM callback for waking up from D3
5659 * @dev: generic device information structure
5660 */
5661static int ice_resume(struct device *dev)
5662{
5663 struct pci_dev *pdev = to_pci_dev(dev);
5664 enum ice_reset_req reset_type;
5665 struct ice_pf *pf;
5666 struct ice_hw *hw;
5667 int ret;
5668
5669 pci_set_power_state(pdev, PCI_D0);
5670 pci_restore_state(pdev);
5671 pci_save_state(pdev);
5672
5673 if (!pci_device_is_present(pdev))
5674 return -ENODEV;
5675
5676 ret = pci_enable_device_mem(pdev);
5677 if (ret) {
5678 dev_err(dev, "Cannot enable device after suspend\n");
5679 return ret;
5680 }
5681
5682 pf = pci_get_drvdata(pdev);
5683 hw = &pf->hw;
5684
5685 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5686 ice_print_wake_reason(pf);
5687
5688 /* We cleared the interrupt scheme when we suspended, so we need to
5689 * restore it now to resume device functionality.
5690 */
5691 ret = ice_reinit_interrupt_scheme(pf);
5692 if (ret)
5693 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5694
5695 ret = ice_init_rdma(pf);
5696 if (ret)
5697 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5698 ret);
5699
5700 clear_bit(ICE_DOWN, pf->state);
5701 /* Now perform PF reset and rebuild */
5702 reset_type = ICE_RESET_PFR;
5703 /* re-enable service task for reset, but allow reset to schedule it */
5704 clear_bit(ICE_SERVICE_DIS, pf->state);
5705
5706 if (ice_schedule_reset(pf, reset_type))
5707 dev_err(dev, "Reset during resume failed.\n");
5708
5709 clear_bit(ICE_SUSPENDED, pf->state);
5710 ice_service_task_restart(pf);
5711
5712 /* Restart the service task */
5713 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5714
5715 return 0;
5716}
5717
5718/**
5719 * ice_pci_err_detected - warning that PCI error has been detected
5720 * @pdev: PCI device information struct
5721 * @err: the type of PCI error
5722 *
5723 * Called to warn that something happened on the PCI bus and the error handling
5724 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5725 */
5726static pci_ers_result_t
5727ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5728{
5729 struct ice_pf *pf = pci_get_drvdata(pdev);
5730
5731 if (!pf) {
5732 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5733 __func__, err);
5734 return PCI_ERS_RESULT_DISCONNECT;
5735 }
5736
5737 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5738 ice_service_task_stop(pf);
5739
5740 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5741 set_bit(ICE_PFR_REQ, pf->state);
5742 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5743 }
5744 }
5745
5746 return PCI_ERS_RESULT_NEED_RESET;
5747}
5748
5749/**
5750 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5751 * @pdev: PCI device information struct
5752 *
5753 * Called to determine if the driver can recover from the PCI slot reset by
5754 * using a register read to determine if the device is recoverable.
5755 */
5756static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5757{
5758 struct ice_pf *pf = pci_get_drvdata(pdev);
5759 pci_ers_result_t result;
5760 int err;
5761 u32 reg;
5762
5763 err = pci_enable_device_mem(pdev);
5764 if (err) {
5765 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5766 err);
5767 result = PCI_ERS_RESULT_DISCONNECT;
5768 } else {
5769 pci_set_master(pdev);
5770 pci_restore_state(pdev);
5771 pci_save_state(pdev);
5772 pci_wake_from_d3(pdev, false);
5773
5774 /* Check for life */
5775 reg = rd32(&pf->hw, GLGEN_RTRIG);
5776 if (!reg)
5777 result = PCI_ERS_RESULT_RECOVERED;
5778 else
5779 result = PCI_ERS_RESULT_DISCONNECT;
5780 }
5781
5782 return result;
5783}
5784
5785/**
5786 * ice_pci_err_resume - restart operations after PCI error recovery
5787 * @pdev: PCI device information struct
5788 *
5789 * Called to allow the driver to bring things back up after PCI error and/or
5790 * reset recovery have finished
5791 */
5792static void ice_pci_err_resume(struct pci_dev *pdev)
5793{
5794 struct ice_pf *pf = pci_get_drvdata(pdev);
5795
5796 if (!pf) {
5797 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5798 __func__);
5799 return;
5800 }
5801
5802 if (test_bit(ICE_SUSPENDED, pf->state)) {
5803 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5804 __func__);
5805 return;
5806 }
5807
5808 ice_restore_all_vfs_msi_state(pf);
5809
5810 ice_do_reset(pf, ICE_RESET_PFR);
5811 ice_service_task_restart(pf);
5812 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5813}
5814
5815/**
5816 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5817 * @pdev: PCI device information struct
5818 */
5819static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5820{
5821 struct ice_pf *pf = pci_get_drvdata(pdev);
5822
5823 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5824 ice_service_task_stop(pf);
5825
5826 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5827 set_bit(ICE_PFR_REQ, pf->state);
5828 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5829 }
5830 }
5831}
5832
5833/**
5834 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5835 * @pdev: PCI device information struct
5836 */
5837static void ice_pci_err_reset_done(struct pci_dev *pdev)
5838{
5839 ice_pci_err_resume(pdev);
5840}
5841
5842/* ice_pci_tbl - PCI Device ID Table
5843 *
5844 * Wildcard entries (PCI_ANY_ID) should come last
5845 * Last entry must be all 0s
5846 *
5847 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5848 * Class, Class Mask, private data (not used) }
5849 */
5850static const struct pci_device_id ice_pci_tbl[] = {
5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5889 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5890 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5891 /* required last entry */
5892 {}
5893};
5894MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5895
5896static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5897
5898static const struct pci_error_handlers ice_pci_err_handler = {
5899 .error_detected = ice_pci_err_detected,
5900 .slot_reset = ice_pci_err_slot_reset,
5901 .reset_prepare = ice_pci_err_reset_prepare,
5902 .reset_done = ice_pci_err_reset_done,
5903 .resume = ice_pci_err_resume
5904};
5905
5906static struct pci_driver ice_driver = {
5907 .name = KBUILD_MODNAME,
5908 .id_table = ice_pci_tbl,
5909 .probe = ice_probe,
5910 .remove = ice_remove,
5911 .driver.pm = pm_sleep_ptr(&ice_pm_ops),
5912 .shutdown = ice_shutdown,
5913 .sriov_configure = ice_sriov_configure,
5914 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5915 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5916 .err_handler = &ice_pci_err_handler
5917};
5918
5919/**
5920 * ice_module_init - Driver registration routine
5921 *
5922 * ice_module_init is the first routine called when the driver is
5923 * loaded. All it does is register with the PCI subsystem.
5924 */
5925static int __init ice_module_init(void)
5926{
5927 int status = -ENOMEM;
5928
5929 pr_info("%s\n", ice_driver_string);
5930 pr_info("%s\n", ice_copyright);
5931
5932 ice_adv_lnk_speed_maps_init();
5933
5934 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME);
5935 if (!ice_wq) {
5936 pr_err("Failed to create workqueue\n");
5937 return status;
5938 }
5939
5940 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5941 if (!ice_lag_wq) {
5942 pr_err("Failed to create LAG workqueue\n");
5943 goto err_dest_wq;
5944 }
5945
5946 ice_debugfs_init();
5947
5948 status = pci_register_driver(&ice_driver);
5949 if (status) {
5950 pr_err("failed to register PCI driver, err %d\n", status);
5951 goto err_dest_lag_wq;
5952 }
5953
5954 status = ice_sf_driver_register();
5955 if (status) {
5956 pr_err("Failed to register SF driver, err %d\n", status);
5957 goto err_sf_driver;
5958 }
5959
5960 return 0;
5961
5962err_sf_driver:
5963 pci_unregister_driver(&ice_driver);
5964err_dest_lag_wq:
5965 destroy_workqueue(ice_lag_wq);
5966 ice_debugfs_exit();
5967err_dest_wq:
5968 destroy_workqueue(ice_wq);
5969 return status;
5970}
5971module_init(ice_module_init);
5972
5973/**
5974 * ice_module_exit - Driver exit cleanup routine
5975 *
5976 * ice_module_exit is called just before the driver is removed
5977 * from memory.
5978 */
5979static void __exit ice_module_exit(void)
5980{
5981 ice_sf_driver_unregister();
5982 pci_unregister_driver(&ice_driver);
5983 ice_debugfs_exit();
5984 destroy_workqueue(ice_wq);
5985 destroy_workqueue(ice_lag_wq);
5986 pr_info("module unloaded\n");
5987}
5988module_exit(ice_module_exit);
5989
5990/**
5991 * ice_set_mac_address - NDO callback to set MAC address
5992 * @netdev: network interface device structure
5993 * @pi: pointer to an address structure
5994 *
5995 * Returns 0 on success, negative on failure
5996 */
5997static int ice_set_mac_address(struct net_device *netdev, void *pi)
5998{
5999 struct ice_netdev_priv *np = netdev_priv(netdev);
6000 struct ice_vsi *vsi = np->vsi;
6001 struct ice_pf *pf = vsi->back;
6002 struct ice_hw *hw = &pf->hw;
6003 struct sockaddr *addr = pi;
6004 u8 old_mac[ETH_ALEN];
6005 u8 flags = 0;
6006 u8 *mac;
6007 int err;
6008
6009 mac = (u8 *)addr->sa_data;
6010
6011 if (!is_valid_ether_addr(mac))
6012 return -EADDRNOTAVAIL;
6013
6014 if (test_bit(ICE_DOWN, pf->state) ||
6015 ice_is_reset_in_progress(pf->state)) {
6016 netdev_err(netdev, "can't set mac %pM. device not ready\n",
6017 mac);
6018 return -EBUSY;
6019 }
6020
6021 if (ice_chnl_dmac_fltr_cnt(pf)) {
6022 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
6023 mac);
6024 return -EAGAIN;
6025 }
6026
6027 netif_addr_lock_bh(netdev);
6028 ether_addr_copy(old_mac, netdev->dev_addr);
6029 /* change the netdev's MAC address */
6030 eth_hw_addr_set(netdev, mac);
6031 netif_addr_unlock_bh(netdev);
6032
6033 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
6034 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
6035 if (err && err != -ENOENT) {
6036 err = -EADDRNOTAVAIL;
6037 goto err_update_filters;
6038 }
6039
6040 /* Add filter for new MAC. If filter exists, return success */
6041 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
6042 if (err == -EEXIST) {
6043 /* Although this MAC filter is already present in hardware it's
6044 * possible in some cases (e.g. bonding) that dev_addr was
6045 * modified outside of the driver and needs to be restored back
6046 * to this value.
6047 */
6048 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6049
6050 return 0;
6051 } else if (err) {
6052 /* error if the new filter addition failed */
6053 err = -EADDRNOTAVAIL;
6054 }
6055
6056err_update_filters:
6057 if (err) {
6058 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6059 mac);
6060 netif_addr_lock_bh(netdev);
6061 eth_hw_addr_set(netdev, old_mac);
6062 netif_addr_unlock_bh(netdev);
6063 return err;
6064 }
6065
6066 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6067 netdev->dev_addr);
6068
6069 /* write new MAC address to the firmware */
6070 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6071 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6072 if (err) {
6073 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6074 mac, err);
6075 }
6076 return 0;
6077}
6078
6079/**
6080 * ice_set_rx_mode - NDO callback to set the netdev filters
6081 * @netdev: network interface device structure
6082 */
6083static void ice_set_rx_mode(struct net_device *netdev)
6084{
6085 struct ice_netdev_priv *np = netdev_priv(netdev);
6086 struct ice_vsi *vsi = np->vsi;
6087
6088 if (!vsi || ice_is_switchdev_running(vsi->back))
6089 return;
6090
6091 /* Set the flags to synchronize filters
6092 * ndo_set_rx_mode may be triggered even without a change in netdev
6093 * flags
6094 */
6095 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6096 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6097 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6098
6099 /* schedule our worker thread which will take care of
6100 * applying the new filter changes
6101 */
6102 ice_service_task_schedule(vsi->back);
6103}
6104
6105/**
6106 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6107 * @netdev: network interface device structure
6108 * @queue_index: Queue ID
6109 * @maxrate: maximum bandwidth in Mbps
6110 */
6111static int
6112ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6113{
6114 struct ice_netdev_priv *np = netdev_priv(netdev);
6115 struct ice_vsi *vsi = np->vsi;
6116 u16 q_handle;
6117 int status;
6118 u8 tc;
6119
6120 /* Validate maxrate requested is within permitted range */
6121 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6122 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6123 maxrate, queue_index);
6124 return -EINVAL;
6125 }
6126
6127 q_handle = vsi->tx_rings[queue_index]->q_handle;
6128 tc = ice_dcb_get_tc(vsi, queue_index);
6129
6130 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6131 if (!vsi) {
6132 netdev_err(netdev, "Invalid VSI for given queue %d\n",
6133 queue_index);
6134 return -EINVAL;
6135 }
6136
6137 /* Set BW back to default, when user set maxrate to 0 */
6138 if (!maxrate)
6139 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6140 q_handle, ICE_MAX_BW);
6141 else
6142 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6143 q_handle, ICE_MAX_BW, maxrate * 1000);
6144 if (status)
6145 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6146 status);
6147
6148 return status;
6149}
6150
6151/**
6152 * ice_fdb_add - add an entry to the hardware database
6153 * @ndm: the input from the stack
6154 * @tb: pointer to array of nladdr (unused)
6155 * @dev: the net device pointer
6156 * @addr: the MAC address entry being added
6157 * @vid: VLAN ID
6158 * @flags: instructions from stack about fdb operation
6159 * @notified: whether notification was emitted
6160 * @extack: netlink extended ack
6161 */
6162static int
6163ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6164 struct net_device *dev, const unsigned char *addr, u16 vid,
6165 u16 flags, bool *notified,
6166 struct netlink_ext_ack __always_unused *extack)
6167{
6168 int err;
6169
6170 if (vid) {
6171 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6172 return -EINVAL;
6173 }
6174 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6175 netdev_err(dev, "FDB only supports static addresses\n");
6176 return -EINVAL;
6177 }
6178
6179 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6180 err = dev_uc_add_excl(dev, addr);
6181 else if (is_multicast_ether_addr(addr))
6182 err = dev_mc_add_excl(dev, addr);
6183 else
6184 err = -EINVAL;
6185
6186 /* Only return duplicate errors if NLM_F_EXCL is set */
6187 if (err == -EEXIST && !(flags & NLM_F_EXCL))
6188 err = 0;
6189
6190 return err;
6191}
6192
6193/**
6194 * ice_fdb_del - delete an entry from the hardware database
6195 * @ndm: the input from the stack
6196 * @tb: pointer to array of nladdr (unused)
6197 * @dev: the net device pointer
6198 * @addr: the MAC address entry being added
6199 * @vid: VLAN ID
6200 * @notified: whether notification was emitted
6201 * @extack: netlink extended ack
6202 */
6203static int
6204ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6205 struct net_device *dev, const unsigned char *addr,
6206 __always_unused u16 vid, bool *notified,
6207 struct netlink_ext_ack *extack)
6208{
6209 int err;
6210
6211 if (ndm->ndm_state & NUD_PERMANENT) {
6212 netdev_err(dev, "FDB only supports static addresses\n");
6213 return -EINVAL;
6214 }
6215
6216 if (is_unicast_ether_addr(addr))
6217 err = dev_uc_del(dev, addr);
6218 else if (is_multicast_ether_addr(addr))
6219 err = dev_mc_del(dev, addr);
6220 else
6221 err = -EINVAL;
6222
6223 return err;
6224}
6225
6226#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6227 NETIF_F_HW_VLAN_CTAG_TX | \
6228 NETIF_F_HW_VLAN_STAG_RX | \
6229 NETIF_F_HW_VLAN_STAG_TX)
6230
6231#define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6232 NETIF_F_HW_VLAN_STAG_RX)
6233
6234#define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
6235 NETIF_F_HW_VLAN_STAG_FILTER)
6236
6237/**
6238 * ice_fix_features - fix the netdev features flags based on device limitations
6239 * @netdev: ptr to the netdev that flags are being fixed on
6240 * @features: features that need to be checked and possibly fixed
6241 *
6242 * Make sure any fixups are made to features in this callback. This enables the
6243 * driver to not have to check unsupported configurations throughout the driver
6244 * because that's the responsiblity of this callback.
6245 *
6246 * Single VLAN Mode (SVM) Supported Features:
6247 * NETIF_F_HW_VLAN_CTAG_FILTER
6248 * NETIF_F_HW_VLAN_CTAG_RX
6249 * NETIF_F_HW_VLAN_CTAG_TX
6250 *
6251 * Double VLAN Mode (DVM) Supported Features:
6252 * NETIF_F_HW_VLAN_CTAG_FILTER
6253 * NETIF_F_HW_VLAN_CTAG_RX
6254 * NETIF_F_HW_VLAN_CTAG_TX
6255 *
6256 * NETIF_F_HW_VLAN_STAG_FILTER
6257 * NETIF_HW_VLAN_STAG_RX
6258 * NETIF_HW_VLAN_STAG_TX
6259 *
6260 * Features that need fixing:
6261 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6262 * These are mutually exlusive as the VSI context cannot support multiple
6263 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
6264 * is not done, then default to clearing the requested STAG offload
6265 * settings.
6266 *
6267 * All supported filtering has to be enabled or disabled together. For
6268 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6269 * together. If this is not done, then default to VLAN filtering disabled.
6270 * These are mutually exclusive as there is currently no way to
6271 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6272 * prune rules.
6273 */
6274static netdev_features_t
6275ice_fix_features(struct net_device *netdev, netdev_features_t features)
6276{
6277 struct ice_netdev_priv *np = netdev_priv(netdev);
6278 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6279 bool cur_ctag, cur_stag, req_ctag, req_stag;
6280
6281 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6282 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6283 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6284
6285 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6286 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6287 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6288
6289 if (req_vlan_fltr != cur_vlan_fltr) {
6290 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6291 if (req_ctag && req_stag) {
6292 features |= NETIF_VLAN_FILTERING_FEATURES;
6293 } else if (!req_ctag && !req_stag) {
6294 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6295 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6296 (!cur_stag && req_stag && !cur_ctag)) {
6297 features |= NETIF_VLAN_FILTERING_FEATURES;
6298 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6299 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6300 (cur_stag && !req_stag && cur_ctag)) {
6301 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6302 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6303 }
6304 } else {
6305 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6306 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6307
6308 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6309 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6310 }
6311 }
6312
6313 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6314 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6315 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6316 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6317 NETIF_F_HW_VLAN_STAG_TX);
6318 }
6319
6320 if (!(netdev->features & NETIF_F_RXFCS) &&
6321 (features & NETIF_F_RXFCS) &&
6322 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6323 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6324 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6325 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6326 }
6327
6328 return features;
6329}
6330
6331/**
6332 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6333 * @vsi: PF's VSI
6334 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6335 *
6336 * Store current stripped VLAN proto in ring packet context,
6337 * so it can be accessed more efficiently by packet processing code.
6338 */
6339static void
6340ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6341{
6342 u16 i;
6343
6344 ice_for_each_alloc_rxq(vsi, i)
6345 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6346}
6347
6348/**
6349 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6350 * @vsi: PF's VSI
6351 * @features: features used to determine VLAN offload settings
6352 *
6353 * First, determine the vlan_ethertype based on the VLAN offload bits in
6354 * features. Then determine if stripping and insertion should be enabled or
6355 * disabled. Finally enable or disable VLAN stripping and insertion.
6356 */
6357static int
6358ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6359{
6360 bool enable_stripping = true, enable_insertion = true;
6361 struct ice_vsi_vlan_ops *vlan_ops;
6362 int strip_err = 0, insert_err = 0;
6363 u16 vlan_ethertype = 0;
6364
6365 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6366
6367 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6368 vlan_ethertype = ETH_P_8021AD;
6369 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6370 vlan_ethertype = ETH_P_8021Q;
6371
6372 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6373 enable_stripping = false;
6374 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6375 enable_insertion = false;
6376
6377 if (enable_stripping)
6378 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6379 else
6380 strip_err = vlan_ops->dis_stripping(vsi);
6381
6382 if (enable_insertion)
6383 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6384 else
6385 insert_err = vlan_ops->dis_insertion(vsi);
6386
6387 if (strip_err || insert_err)
6388 return -EIO;
6389
6390 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6391 htons(vlan_ethertype) : 0);
6392
6393 return 0;
6394}
6395
6396/**
6397 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6398 * @vsi: PF's VSI
6399 * @features: features used to determine VLAN filtering settings
6400 *
6401 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6402 * features.
6403 */
6404static int
6405ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6406{
6407 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6408 int err = 0;
6409
6410 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6411 * if either bit is set. In switchdev mode Rx filtering should never be
6412 * enabled.
6413 */
6414 if ((features &
6415 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) &&
6416 !ice_is_eswitch_mode_switchdev(vsi->back))
6417 err = vlan_ops->ena_rx_filtering(vsi);
6418 else
6419 err = vlan_ops->dis_rx_filtering(vsi);
6420
6421 return err;
6422}
6423
6424/**
6425 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6426 * @netdev: ptr to the netdev being adjusted
6427 * @features: the feature set that the stack is suggesting
6428 *
6429 * Only update VLAN settings if the requested_vlan_features are different than
6430 * the current_vlan_features.
6431 */
6432static int
6433ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6434{
6435 netdev_features_t current_vlan_features, requested_vlan_features;
6436 struct ice_netdev_priv *np = netdev_priv(netdev);
6437 struct ice_vsi *vsi = np->vsi;
6438 int err;
6439
6440 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6441 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6442 if (current_vlan_features ^ requested_vlan_features) {
6443 if ((features & NETIF_F_RXFCS) &&
6444 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6445 dev_err(ice_pf_to_dev(vsi->back),
6446 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6447 return -EIO;
6448 }
6449
6450 err = ice_set_vlan_offload_features(vsi, features);
6451 if (err)
6452 return err;
6453 }
6454
6455 current_vlan_features = netdev->features &
6456 NETIF_VLAN_FILTERING_FEATURES;
6457 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6458 if (current_vlan_features ^ requested_vlan_features) {
6459 err = ice_set_vlan_filtering_features(vsi, features);
6460 if (err)
6461 return err;
6462 }
6463
6464 return 0;
6465}
6466
6467/**
6468 * ice_set_loopback - turn on/off loopback mode on underlying PF
6469 * @vsi: ptr to VSI
6470 * @ena: flag to indicate the on/off setting
6471 */
6472static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6473{
6474 bool if_running = netif_running(vsi->netdev);
6475 int ret;
6476
6477 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6478 ret = ice_down(vsi);
6479 if (ret) {
6480 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6481 return ret;
6482 }
6483 }
6484 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6485 if (ret)
6486 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6487 if (if_running)
6488 ret = ice_up(vsi);
6489
6490 return ret;
6491}
6492
6493/**
6494 * ice_set_features - set the netdev feature flags
6495 * @netdev: ptr to the netdev being adjusted
6496 * @features: the feature set that the stack is suggesting
6497 */
6498static int
6499ice_set_features(struct net_device *netdev, netdev_features_t features)
6500{
6501 netdev_features_t changed = netdev->features ^ features;
6502 struct ice_netdev_priv *np = netdev_priv(netdev);
6503 struct ice_vsi *vsi = np->vsi;
6504 struct ice_pf *pf = vsi->back;
6505 int ret = 0;
6506
6507 /* Don't set any netdev advanced features with device in Safe Mode */
6508 if (ice_is_safe_mode(pf)) {
6509 dev_err(ice_pf_to_dev(pf),
6510 "Device is in Safe Mode - not enabling advanced netdev features\n");
6511 return ret;
6512 }
6513
6514 /* Do not change setting during reset */
6515 if (ice_is_reset_in_progress(pf->state)) {
6516 dev_err(ice_pf_to_dev(pf),
6517 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6518 return -EBUSY;
6519 }
6520
6521 /* Multiple features can be changed in one call so keep features in
6522 * separate if/else statements to guarantee each feature is checked
6523 */
6524 if (changed & NETIF_F_RXHASH)
6525 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6526
6527 ret = ice_set_vlan_features(netdev, features);
6528 if (ret)
6529 return ret;
6530
6531 /* Turn on receive of FCS aka CRC, and after setting this
6532 * flag the packet data will have the 4 byte CRC appended
6533 */
6534 if (changed & NETIF_F_RXFCS) {
6535 if ((features & NETIF_F_RXFCS) &&
6536 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6537 dev_err(ice_pf_to_dev(vsi->back),
6538 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6539 return -EIO;
6540 }
6541
6542 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6543 ret = ice_down_up(vsi);
6544 if (ret)
6545 return ret;
6546 }
6547
6548 if (changed & NETIF_F_NTUPLE) {
6549 bool ena = !!(features & NETIF_F_NTUPLE);
6550
6551 ice_vsi_manage_fdir(vsi, ena);
6552 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6553 }
6554
6555 /* don't turn off hw_tc_offload when ADQ is already enabled */
6556 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6557 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6558 return -EACCES;
6559 }
6560
6561 if (changed & NETIF_F_HW_TC) {
6562 bool ena = !!(features & NETIF_F_HW_TC);
6563
6564 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena);
6565 }
6566
6567 if (changed & NETIF_F_LOOPBACK)
6568 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6569
6570 return ret;
6571}
6572
6573/**
6574 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6575 * @vsi: VSI to setup VLAN properties for
6576 */
6577static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6578{
6579 int err;
6580
6581 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6582 if (err)
6583 return err;
6584
6585 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6586 if (err)
6587 return err;
6588
6589 return ice_vsi_add_vlan_zero(vsi);
6590}
6591
6592/**
6593 * ice_vsi_cfg_lan - Setup the VSI lan related config
6594 * @vsi: the VSI being configured
6595 *
6596 * Return 0 on success and negative value on error
6597 */
6598int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6599{
6600 int err;
6601
6602 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6603 ice_set_rx_mode(vsi->netdev);
6604
6605 err = ice_vsi_vlan_setup(vsi);
6606 if (err)
6607 return err;
6608 }
6609 ice_vsi_cfg_dcb_rings(vsi);
6610
6611 err = ice_vsi_cfg_lan_txqs(vsi);
6612 if (!err && ice_is_xdp_ena_vsi(vsi))
6613 err = ice_vsi_cfg_xdp_txqs(vsi);
6614 if (!err)
6615 err = ice_vsi_cfg_rxqs(vsi);
6616
6617 return err;
6618}
6619
6620/* THEORY OF MODERATION:
6621 * The ice driver hardware works differently than the hardware that DIMLIB was
6622 * originally made for. ice hardware doesn't have packet count limits that
6623 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6624 * which is hard-coded to a limit of 250,000 ints/second.
6625 * If not using dynamic moderation, the INTRL value can be modified
6626 * by ethtool rx-usecs-high.
6627 */
6628struct ice_dim {
6629 /* the throttle rate for interrupts, basically worst case delay before
6630 * an initial interrupt fires, value is stored in microseconds.
6631 */
6632 u16 itr;
6633};
6634
6635/* Make a different profile for Rx that doesn't allow quite so aggressive
6636 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6637 * second.
6638 */
6639static const struct ice_dim rx_profile[] = {
6640 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6641 {8}, /* 125,000 ints/s */
6642 {16}, /* 62,500 ints/s */
6643 {62}, /* 16,129 ints/s */
6644 {126} /* 7,936 ints/s */
6645};
6646
6647/* The transmit profile, which has the same sorts of values
6648 * as the previous struct
6649 */
6650static const struct ice_dim tx_profile[] = {
6651 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6652 {8}, /* 125,000 ints/s */
6653 {40}, /* 16,125 ints/s */
6654 {128}, /* 7,812 ints/s */
6655 {256} /* 3,906 ints/s */
6656};
6657
6658static void ice_tx_dim_work(struct work_struct *work)
6659{
6660 struct ice_ring_container *rc;
6661 struct dim *dim;
6662 u16 itr;
6663
6664 dim = container_of(work, struct dim, work);
6665 rc = dim->priv;
6666
6667 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6668
6669 /* look up the values in our local table */
6670 itr = tx_profile[dim->profile_ix].itr;
6671
6672 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6673 ice_write_itr(rc, itr);
6674
6675 dim->state = DIM_START_MEASURE;
6676}
6677
6678static void ice_rx_dim_work(struct work_struct *work)
6679{
6680 struct ice_ring_container *rc;
6681 struct dim *dim;
6682 u16 itr;
6683
6684 dim = container_of(work, struct dim, work);
6685 rc = dim->priv;
6686
6687 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6688
6689 /* look up the values in our local table */
6690 itr = rx_profile[dim->profile_ix].itr;
6691
6692 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6693 ice_write_itr(rc, itr);
6694
6695 dim->state = DIM_START_MEASURE;
6696}
6697
6698#define ICE_DIM_DEFAULT_PROFILE_IX 1
6699
6700/**
6701 * ice_init_moderation - set up interrupt moderation
6702 * @q_vector: the vector containing rings to be configured
6703 *
6704 * Set up interrupt moderation registers, with the intent to do the right thing
6705 * when called from reset or from probe, and whether or not dynamic moderation
6706 * is enabled or not. Take special care to write all the registers in both
6707 * dynamic moderation mode or not in order to make sure hardware is in a known
6708 * state.
6709 */
6710static void ice_init_moderation(struct ice_q_vector *q_vector)
6711{
6712 struct ice_ring_container *rc;
6713 bool tx_dynamic, rx_dynamic;
6714
6715 rc = &q_vector->tx;
6716 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6717 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6718 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6719 rc->dim.priv = rc;
6720 tx_dynamic = ITR_IS_DYNAMIC(rc);
6721
6722 /* set the initial TX ITR to match the above */
6723 ice_write_itr(rc, tx_dynamic ?
6724 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6725
6726 rc = &q_vector->rx;
6727 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6728 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6729 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6730 rc->dim.priv = rc;
6731 rx_dynamic = ITR_IS_DYNAMIC(rc);
6732
6733 /* set the initial RX ITR to match the above */
6734 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6735 rc->itr_setting);
6736
6737 ice_set_q_vector_intrl(q_vector);
6738}
6739
6740/**
6741 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6742 * @vsi: the VSI being configured
6743 */
6744static void ice_napi_enable_all(struct ice_vsi *vsi)
6745{
6746 int q_idx;
6747
6748 if (!vsi->netdev)
6749 return;
6750
6751 ice_for_each_q_vector(vsi, q_idx) {
6752 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6753
6754 ice_init_moderation(q_vector);
6755
6756 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6757 napi_enable(&q_vector->napi);
6758 }
6759}
6760
6761/**
6762 * ice_up_complete - Finish the last steps of bringing up a connection
6763 * @vsi: The VSI being configured
6764 *
6765 * Return 0 on success and negative value on error
6766 */
6767static int ice_up_complete(struct ice_vsi *vsi)
6768{
6769 struct ice_pf *pf = vsi->back;
6770 int err;
6771
6772 ice_vsi_cfg_msix(vsi);
6773
6774 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6775 * Tx queue group list was configured and the context bits were
6776 * programmed using ice_vsi_cfg_txqs
6777 */
6778 err = ice_vsi_start_all_rx_rings(vsi);
6779 if (err)
6780 return err;
6781
6782 clear_bit(ICE_VSI_DOWN, vsi->state);
6783 ice_napi_enable_all(vsi);
6784 ice_vsi_ena_irq(vsi);
6785
6786 if (vsi->port_info &&
6787 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6788 ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6789 vsi->type == ICE_VSI_SF)))) {
6790 ice_print_link_msg(vsi, true);
6791 netif_tx_start_all_queues(vsi->netdev);
6792 netif_carrier_on(vsi->netdev);
6793 ice_ptp_link_change(pf, true);
6794 }
6795
6796 /* Perform an initial read of the statistics registers now to
6797 * set the baseline so counters are ready when interface is up
6798 */
6799 ice_update_eth_stats(vsi);
6800
6801 if (vsi->type == ICE_VSI_PF)
6802 ice_service_task_schedule(pf);
6803
6804 return 0;
6805}
6806
6807/**
6808 * ice_up - Bring the connection back up after being down
6809 * @vsi: VSI being configured
6810 */
6811int ice_up(struct ice_vsi *vsi)
6812{
6813 int err;
6814
6815 err = ice_vsi_cfg_lan(vsi);
6816 if (!err)
6817 err = ice_up_complete(vsi);
6818
6819 return err;
6820}
6821
6822/**
6823 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6824 * @syncp: pointer to u64_stats_sync
6825 * @stats: stats that pkts and bytes count will be taken from
6826 * @pkts: packets stats counter
6827 * @bytes: bytes stats counter
6828 *
6829 * This function fetches stats from the ring considering the atomic operations
6830 * that needs to be performed to read u64 values in 32 bit machine.
6831 */
6832void
6833ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6834 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6835{
6836 unsigned int start;
6837
6838 do {
6839 start = u64_stats_fetch_begin(syncp);
6840 *pkts = stats.pkts;
6841 *bytes = stats.bytes;
6842 } while (u64_stats_fetch_retry(syncp, start));
6843}
6844
6845/**
6846 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6847 * @vsi: the VSI to be updated
6848 * @vsi_stats: the stats struct to be updated
6849 * @rings: rings to work on
6850 * @count: number of rings
6851 */
6852static void
6853ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6854 struct rtnl_link_stats64 *vsi_stats,
6855 struct ice_tx_ring **rings, u16 count)
6856{
6857 u16 i;
6858
6859 for (i = 0; i < count; i++) {
6860 struct ice_tx_ring *ring;
6861 u64 pkts = 0, bytes = 0;
6862
6863 ring = READ_ONCE(rings[i]);
6864 if (!ring || !ring->ring_stats)
6865 continue;
6866 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6867 ring->ring_stats->stats, &pkts,
6868 &bytes);
6869 vsi_stats->tx_packets += pkts;
6870 vsi_stats->tx_bytes += bytes;
6871 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6872 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6873 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6874 }
6875}
6876
6877/**
6878 * ice_update_vsi_ring_stats - Update VSI stats counters
6879 * @vsi: the VSI to be updated
6880 */
6881static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6882{
6883 struct rtnl_link_stats64 *net_stats, *stats_prev;
6884 struct rtnl_link_stats64 *vsi_stats;
6885 struct ice_pf *pf = vsi->back;
6886 u64 pkts, bytes;
6887 int i;
6888
6889 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6890 if (!vsi_stats)
6891 return;
6892
6893 /* reset non-netdev (extended) stats */
6894 vsi->tx_restart = 0;
6895 vsi->tx_busy = 0;
6896 vsi->tx_linearize = 0;
6897 vsi->rx_buf_failed = 0;
6898 vsi->rx_page_failed = 0;
6899
6900 rcu_read_lock();
6901
6902 /* update Tx rings counters */
6903 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6904 vsi->num_txq);
6905
6906 /* update Rx rings counters */
6907 ice_for_each_rxq(vsi, i) {
6908 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6909 struct ice_ring_stats *ring_stats;
6910
6911 ring_stats = ring->ring_stats;
6912 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6913 ring_stats->stats, &pkts,
6914 &bytes);
6915 vsi_stats->rx_packets += pkts;
6916 vsi_stats->rx_bytes += bytes;
6917 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6918 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6919 }
6920
6921 /* update XDP Tx rings counters */
6922 if (ice_is_xdp_ena_vsi(vsi))
6923 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6924 vsi->num_xdp_txq);
6925
6926 rcu_read_unlock();
6927
6928 net_stats = &vsi->net_stats;
6929 stats_prev = &vsi->net_stats_prev;
6930
6931 /* Update netdev counters, but keep in mind that values could start at
6932 * random value after PF reset. And as we increase the reported stat by
6933 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6934 * let's skip this round.
6935 */
6936 if (likely(pf->stat_prev_loaded)) {
6937 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6938 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6939 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6940 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6941 }
6942
6943 stats_prev->tx_packets = vsi_stats->tx_packets;
6944 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6945 stats_prev->rx_packets = vsi_stats->rx_packets;
6946 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6947
6948 kfree(vsi_stats);
6949}
6950
6951/**
6952 * ice_update_vsi_stats - Update VSI stats counters
6953 * @vsi: the VSI to be updated
6954 */
6955void ice_update_vsi_stats(struct ice_vsi *vsi)
6956{
6957 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6958 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6959 struct ice_pf *pf = vsi->back;
6960
6961 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6962 test_bit(ICE_CFG_BUSY, pf->state))
6963 return;
6964
6965 /* get stats as recorded by Tx/Rx rings */
6966 ice_update_vsi_ring_stats(vsi);
6967
6968 /* get VSI stats as recorded by the hardware */
6969 ice_update_eth_stats(vsi);
6970
6971 cur_ns->tx_errors = cur_es->tx_errors;
6972 cur_ns->rx_dropped = cur_es->rx_discards;
6973 cur_ns->tx_dropped = cur_es->tx_discards;
6974 cur_ns->multicast = cur_es->rx_multicast;
6975
6976 /* update some more netdev stats if this is main VSI */
6977 if (vsi->type == ICE_VSI_PF) {
6978 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6979 cur_ns->rx_errors = pf->stats.crc_errors +
6980 pf->stats.illegal_bytes +
6981 pf->stats.rx_undersize +
6982 pf->hw_csum_rx_error +
6983 pf->stats.rx_jabber +
6984 pf->stats.rx_fragments +
6985 pf->stats.rx_oversize;
6986 /* record drops from the port level */
6987 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6988 }
6989}
6990
6991/**
6992 * ice_update_pf_stats - Update PF port stats counters
6993 * @pf: PF whose stats needs to be updated
6994 */
6995void ice_update_pf_stats(struct ice_pf *pf)
6996{
6997 struct ice_hw_port_stats *prev_ps, *cur_ps;
6998 struct ice_hw *hw = &pf->hw;
6999 u16 fd_ctr_base;
7000 u8 port;
7001
7002 port = hw->port_info->lport;
7003 prev_ps = &pf->stats_prev;
7004 cur_ps = &pf->stats;
7005
7006 if (ice_is_reset_in_progress(pf->state))
7007 pf->stat_prev_loaded = false;
7008
7009 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
7010 &prev_ps->eth.rx_bytes,
7011 &cur_ps->eth.rx_bytes);
7012
7013 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
7014 &prev_ps->eth.rx_unicast,
7015 &cur_ps->eth.rx_unicast);
7016
7017 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
7018 &prev_ps->eth.rx_multicast,
7019 &cur_ps->eth.rx_multicast);
7020
7021 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
7022 &prev_ps->eth.rx_broadcast,
7023 &cur_ps->eth.rx_broadcast);
7024
7025 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
7026 &prev_ps->eth.rx_discards,
7027 &cur_ps->eth.rx_discards);
7028
7029 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
7030 &prev_ps->eth.tx_bytes,
7031 &cur_ps->eth.tx_bytes);
7032
7033 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
7034 &prev_ps->eth.tx_unicast,
7035 &cur_ps->eth.tx_unicast);
7036
7037 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
7038 &prev_ps->eth.tx_multicast,
7039 &cur_ps->eth.tx_multicast);
7040
7041 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
7042 &prev_ps->eth.tx_broadcast,
7043 &cur_ps->eth.tx_broadcast);
7044
7045 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
7046 &prev_ps->tx_dropped_link_down,
7047 &cur_ps->tx_dropped_link_down);
7048
7049 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7050 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7051
7052 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7053 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7054
7055 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7056 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7057
7058 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7059 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7060
7061 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7062 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7063
7064 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7065 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7066
7067 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7068 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7069
7070 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7071 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7072
7073 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7074 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7075
7076 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7077 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7078
7079 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7080 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7081
7082 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7083 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7084
7085 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7086 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7087
7088 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7089 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7090
7091 fd_ctr_base = hw->fd_ctr_base;
7092
7093 ice_stat_update40(hw,
7094 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7095 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7096 &cur_ps->fd_sb_match);
7097 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7098 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7099
7100 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7101 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7102
7103 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7104 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7105
7106 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7107 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7108
7109 ice_update_dcb_stats(pf);
7110
7111 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7112 &prev_ps->crc_errors, &cur_ps->crc_errors);
7113
7114 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7115 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7116
7117 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7118 &prev_ps->mac_local_faults,
7119 &cur_ps->mac_local_faults);
7120
7121 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7122 &prev_ps->mac_remote_faults,
7123 &cur_ps->mac_remote_faults);
7124
7125 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7126 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7127
7128 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7129 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7130
7131 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7132 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7133
7134 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7135 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7136
7137 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7138
7139 pf->stat_prev_loaded = true;
7140}
7141
7142/**
7143 * ice_get_stats64 - get statistics for network device structure
7144 * @netdev: network interface device structure
7145 * @stats: main device statistics structure
7146 */
7147void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7148{
7149 struct ice_netdev_priv *np = netdev_priv(netdev);
7150 struct rtnl_link_stats64 *vsi_stats;
7151 struct ice_vsi *vsi = np->vsi;
7152
7153 vsi_stats = &vsi->net_stats;
7154
7155 if (!vsi->num_txq || !vsi->num_rxq)
7156 return;
7157
7158 /* netdev packet/byte stats come from ring counter. These are obtained
7159 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7160 * But, only call the update routine and read the registers if VSI is
7161 * not down.
7162 */
7163 if (!test_bit(ICE_VSI_DOWN, vsi->state))
7164 ice_update_vsi_ring_stats(vsi);
7165 stats->tx_packets = vsi_stats->tx_packets;
7166 stats->tx_bytes = vsi_stats->tx_bytes;
7167 stats->rx_packets = vsi_stats->rx_packets;
7168 stats->rx_bytes = vsi_stats->rx_bytes;
7169
7170 /* The rest of the stats can be read from the hardware but instead we
7171 * just return values that the watchdog task has already obtained from
7172 * the hardware.
7173 */
7174 stats->multicast = vsi_stats->multicast;
7175 stats->tx_errors = vsi_stats->tx_errors;
7176 stats->tx_dropped = vsi_stats->tx_dropped;
7177 stats->rx_errors = vsi_stats->rx_errors;
7178 stats->rx_dropped = vsi_stats->rx_dropped;
7179 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7180 stats->rx_length_errors = vsi_stats->rx_length_errors;
7181}
7182
7183/**
7184 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7185 * @vsi: VSI having NAPI disabled
7186 */
7187static void ice_napi_disable_all(struct ice_vsi *vsi)
7188{
7189 int q_idx;
7190
7191 if (!vsi->netdev)
7192 return;
7193
7194 ice_for_each_q_vector(vsi, q_idx) {
7195 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7196
7197 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7198 napi_disable(&q_vector->napi);
7199
7200 cancel_work_sync(&q_vector->tx.dim.work);
7201 cancel_work_sync(&q_vector->rx.dim.work);
7202 }
7203}
7204
7205/**
7206 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7207 * @vsi: the VSI being un-configured
7208 */
7209static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7210{
7211 struct ice_pf *pf = vsi->back;
7212 struct ice_hw *hw = &pf->hw;
7213 u32 val;
7214 int i;
7215
7216 /* disable interrupt causation from each Rx queue; Tx queues are
7217 * handled in ice_vsi_stop_tx_ring()
7218 */
7219 if (vsi->rx_rings) {
7220 ice_for_each_rxq(vsi, i) {
7221 if (vsi->rx_rings[i]) {
7222 u16 reg;
7223
7224 reg = vsi->rx_rings[i]->reg_idx;
7225 val = rd32(hw, QINT_RQCTL(reg));
7226 val &= ~QINT_RQCTL_CAUSE_ENA_M;
7227 wr32(hw, QINT_RQCTL(reg), val);
7228 }
7229 }
7230 }
7231
7232 /* disable each interrupt */
7233 ice_for_each_q_vector(vsi, i) {
7234 if (!vsi->q_vectors[i])
7235 continue;
7236 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7237 }
7238
7239 ice_flush(hw);
7240
7241 /* don't call synchronize_irq() for VF's from the host */
7242 if (vsi->type == ICE_VSI_VF)
7243 return;
7244
7245 ice_for_each_q_vector(vsi, i)
7246 synchronize_irq(vsi->q_vectors[i]->irq.virq);
7247}
7248
7249/**
7250 * ice_down - Shutdown the connection
7251 * @vsi: The VSI being stopped
7252 *
7253 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7254 */
7255int ice_down(struct ice_vsi *vsi)
7256{
7257 int i, tx_err, rx_err, vlan_err = 0;
7258
7259 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7260
7261 if (vsi->netdev) {
7262 vlan_err = ice_vsi_del_vlan_zero(vsi);
7263 ice_ptp_link_change(vsi->back, false);
7264 netif_carrier_off(vsi->netdev);
7265 netif_tx_disable(vsi->netdev);
7266 }
7267
7268 ice_vsi_dis_irq(vsi);
7269
7270 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7271 if (tx_err)
7272 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7273 vsi->vsi_num, tx_err);
7274 if (!tx_err && vsi->xdp_rings) {
7275 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7276 if (tx_err)
7277 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7278 vsi->vsi_num, tx_err);
7279 }
7280
7281 rx_err = ice_vsi_stop_all_rx_rings(vsi);
7282 if (rx_err)
7283 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7284 vsi->vsi_num, rx_err);
7285
7286 ice_napi_disable_all(vsi);
7287
7288 ice_for_each_txq(vsi, i)
7289 ice_clean_tx_ring(vsi->tx_rings[i]);
7290
7291 if (vsi->xdp_rings)
7292 ice_for_each_xdp_txq(vsi, i)
7293 ice_clean_tx_ring(vsi->xdp_rings[i]);
7294
7295 ice_for_each_rxq(vsi, i)
7296 ice_clean_rx_ring(vsi->rx_rings[i]);
7297
7298 if (tx_err || rx_err || vlan_err) {
7299 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7300 vsi->vsi_num, vsi->vsw->sw_id);
7301 return -EIO;
7302 }
7303
7304 return 0;
7305}
7306
7307/**
7308 * ice_down_up - shutdown the VSI connection and bring it up
7309 * @vsi: the VSI to be reconnected
7310 */
7311int ice_down_up(struct ice_vsi *vsi)
7312{
7313 int ret;
7314
7315 /* if DOWN already set, nothing to do */
7316 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7317 return 0;
7318
7319 ret = ice_down(vsi);
7320 if (ret)
7321 return ret;
7322
7323 ret = ice_up(vsi);
7324 if (ret) {
7325 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7326 return ret;
7327 }
7328
7329 return 0;
7330}
7331
7332/**
7333 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7334 * @vsi: VSI having resources allocated
7335 *
7336 * Return 0 on success, negative on failure
7337 */
7338int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7339{
7340 int i, err = 0;
7341
7342 if (!vsi->num_txq) {
7343 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7344 vsi->vsi_num);
7345 return -EINVAL;
7346 }
7347
7348 ice_for_each_txq(vsi, i) {
7349 struct ice_tx_ring *ring = vsi->tx_rings[i];
7350
7351 if (!ring)
7352 return -EINVAL;
7353
7354 if (vsi->netdev)
7355 ring->netdev = vsi->netdev;
7356 err = ice_setup_tx_ring(ring);
7357 if (err)
7358 break;
7359 }
7360
7361 return err;
7362}
7363
7364/**
7365 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7366 * @vsi: VSI having resources allocated
7367 *
7368 * Return 0 on success, negative on failure
7369 */
7370int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7371{
7372 int i, err = 0;
7373
7374 if (!vsi->num_rxq) {
7375 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7376 vsi->vsi_num);
7377 return -EINVAL;
7378 }
7379
7380 ice_for_each_rxq(vsi, i) {
7381 struct ice_rx_ring *ring = vsi->rx_rings[i];
7382
7383 if (!ring)
7384 return -EINVAL;
7385
7386 if (vsi->netdev)
7387 ring->netdev = vsi->netdev;
7388 err = ice_setup_rx_ring(ring);
7389 if (err)
7390 break;
7391 }
7392
7393 return err;
7394}
7395
7396/**
7397 * ice_vsi_open_ctrl - open control VSI for use
7398 * @vsi: the VSI to open
7399 *
7400 * Initialization of the Control VSI
7401 *
7402 * Returns 0 on success, negative value on error
7403 */
7404int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7405{
7406 char int_name[ICE_INT_NAME_STR_LEN];
7407 struct ice_pf *pf = vsi->back;
7408 struct device *dev;
7409 int err;
7410
7411 dev = ice_pf_to_dev(pf);
7412 /* allocate descriptors */
7413 err = ice_vsi_setup_tx_rings(vsi);
7414 if (err)
7415 goto err_setup_tx;
7416
7417 err = ice_vsi_setup_rx_rings(vsi);
7418 if (err)
7419 goto err_setup_rx;
7420
7421 err = ice_vsi_cfg_lan(vsi);
7422 if (err)
7423 goto err_setup_rx;
7424
7425 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7426 dev_driver_string(dev), dev_name(dev));
7427 err = ice_vsi_req_irq_msix(vsi, int_name);
7428 if (err)
7429 goto err_setup_rx;
7430
7431 ice_vsi_cfg_msix(vsi);
7432
7433 err = ice_vsi_start_all_rx_rings(vsi);
7434 if (err)
7435 goto err_up_complete;
7436
7437 clear_bit(ICE_VSI_DOWN, vsi->state);
7438 ice_vsi_ena_irq(vsi);
7439
7440 return 0;
7441
7442err_up_complete:
7443 ice_down(vsi);
7444err_setup_rx:
7445 ice_vsi_free_rx_rings(vsi);
7446err_setup_tx:
7447 ice_vsi_free_tx_rings(vsi);
7448
7449 return err;
7450}
7451
7452/**
7453 * ice_vsi_open - Called when a network interface is made active
7454 * @vsi: the VSI to open
7455 *
7456 * Initialization of the VSI
7457 *
7458 * Returns 0 on success, negative value on error
7459 */
7460int ice_vsi_open(struct ice_vsi *vsi)
7461{
7462 char int_name[ICE_INT_NAME_STR_LEN];
7463 struct ice_pf *pf = vsi->back;
7464 int err;
7465
7466 /* allocate descriptors */
7467 err = ice_vsi_setup_tx_rings(vsi);
7468 if (err)
7469 goto err_setup_tx;
7470
7471 err = ice_vsi_setup_rx_rings(vsi);
7472 if (err)
7473 goto err_setup_rx;
7474
7475 err = ice_vsi_cfg_lan(vsi);
7476 if (err)
7477 goto err_setup_rx;
7478
7479 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7480 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7481 err = ice_vsi_req_irq_msix(vsi, int_name);
7482 if (err)
7483 goto err_setup_rx;
7484
7485 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7486
7487 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7488 /* Notify the stack of the actual queue counts. */
7489 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7490 if (err)
7491 goto err_set_qs;
7492
7493 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7494 if (err)
7495 goto err_set_qs;
7496
7497 ice_vsi_set_napi_queues(vsi);
7498 }
7499
7500 err = ice_up_complete(vsi);
7501 if (err)
7502 goto err_up_complete;
7503
7504 return 0;
7505
7506err_up_complete:
7507 ice_down(vsi);
7508err_set_qs:
7509 ice_vsi_free_irq(vsi);
7510err_setup_rx:
7511 ice_vsi_free_rx_rings(vsi);
7512err_setup_tx:
7513 ice_vsi_free_tx_rings(vsi);
7514
7515 return err;
7516}
7517
7518/**
7519 * ice_vsi_release_all - Delete all VSIs
7520 * @pf: PF from which all VSIs are being removed
7521 */
7522static void ice_vsi_release_all(struct ice_pf *pf)
7523{
7524 int err, i;
7525
7526 if (!pf->vsi)
7527 return;
7528
7529 ice_for_each_vsi(pf, i) {
7530 if (!pf->vsi[i])
7531 continue;
7532
7533 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7534 continue;
7535
7536 err = ice_vsi_release(pf->vsi[i]);
7537 if (err)
7538 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7539 i, err, pf->vsi[i]->vsi_num);
7540 }
7541}
7542
7543/**
7544 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7545 * @pf: pointer to the PF instance
7546 * @type: VSI type to rebuild
7547 *
7548 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7549 */
7550static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7551{
7552 struct device *dev = ice_pf_to_dev(pf);
7553 int i, err;
7554
7555 ice_for_each_vsi(pf, i) {
7556 struct ice_vsi *vsi = pf->vsi[i];
7557
7558 if (!vsi || vsi->type != type)
7559 continue;
7560
7561 /* rebuild the VSI */
7562 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7563 if (err) {
7564 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7565 err, vsi->idx, ice_vsi_type_str(type));
7566 return err;
7567 }
7568
7569 /* replay filters for the VSI */
7570 err = ice_replay_vsi(&pf->hw, vsi->idx);
7571 if (err) {
7572 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7573 err, vsi->idx, ice_vsi_type_str(type));
7574 return err;
7575 }
7576
7577 /* Re-map HW VSI number, using VSI handle that has been
7578 * previously validated in ice_replay_vsi() call above
7579 */
7580 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7581
7582 /* enable the VSI */
7583 err = ice_ena_vsi(vsi, false);
7584 if (err) {
7585 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7586 err, vsi->idx, ice_vsi_type_str(type));
7587 return err;
7588 }
7589
7590 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7591 ice_vsi_type_str(type));
7592 }
7593
7594 return 0;
7595}
7596
7597/**
7598 * ice_update_pf_netdev_link - Update PF netdev link status
7599 * @pf: pointer to the PF instance
7600 */
7601static void ice_update_pf_netdev_link(struct ice_pf *pf)
7602{
7603 bool link_up;
7604 int i;
7605
7606 ice_for_each_vsi(pf, i) {
7607 struct ice_vsi *vsi = pf->vsi[i];
7608
7609 if (!vsi || vsi->type != ICE_VSI_PF)
7610 return;
7611
7612 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7613 if (link_up) {
7614 netif_carrier_on(pf->vsi[i]->netdev);
7615 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7616 } else {
7617 netif_carrier_off(pf->vsi[i]->netdev);
7618 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7619 }
7620 }
7621}
7622
7623/**
7624 * ice_rebuild - rebuild after reset
7625 * @pf: PF to rebuild
7626 * @reset_type: type of reset
7627 *
7628 * Do not rebuild VF VSI in this flow because that is already handled via
7629 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7630 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7631 * to reset/rebuild all the VF VSI twice.
7632 */
7633static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7634{
7635 struct ice_vsi *vsi = ice_get_main_vsi(pf);
7636 struct device *dev = ice_pf_to_dev(pf);
7637 struct ice_hw *hw = &pf->hw;
7638 bool dvm;
7639 int err;
7640
7641 if (test_bit(ICE_DOWN, pf->state))
7642 goto clear_recovery;
7643
7644 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7645
7646#define ICE_EMP_RESET_SLEEP_MS 5000
7647 if (reset_type == ICE_RESET_EMPR) {
7648 /* If an EMP reset has occurred, any previously pending flash
7649 * update will have completed. We no longer know whether or
7650 * not the NVM update EMP reset is restricted.
7651 */
7652 pf->fw_emp_reset_disabled = false;
7653
7654 msleep(ICE_EMP_RESET_SLEEP_MS);
7655 }
7656
7657 err = ice_init_all_ctrlq(hw);
7658 if (err) {
7659 dev_err(dev, "control queues init failed %d\n", err);
7660 goto err_init_ctrlq;
7661 }
7662
7663 /* if DDP was previously loaded successfully */
7664 if (!ice_is_safe_mode(pf)) {
7665 /* reload the SW DB of filter tables */
7666 if (reset_type == ICE_RESET_PFR)
7667 ice_fill_blk_tbls(hw);
7668 else
7669 /* Reload DDP Package after CORER/GLOBR reset */
7670 ice_load_pkg(NULL, pf);
7671 }
7672
7673 err = ice_clear_pf_cfg(hw);
7674 if (err) {
7675 dev_err(dev, "clear PF configuration failed %d\n", err);
7676 goto err_init_ctrlq;
7677 }
7678
7679 ice_clear_pxe_mode(hw);
7680
7681 err = ice_init_nvm(hw);
7682 if (err) {
7683 dev_err(dev, "ice_init_nvm failed %d\n", err);
7684 goto err_init_ctrlq;
7685 }
7686
7687 err = ice_get_caps(hw);
7688 if (err) {
7689 dev_err(dev, "ice_get_caps failed %d\n", err);
7690 goto err_init_ctrlq;
7691 }
7692
7693 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7694 if (err) {
7695 dev_err(dev, "set_mac_cfg failed %d\n", err);
7696 goto err_init_ctrlq;
7697 }
7698
7699 dvm = ice_is_dvm_ena(hw);
7700
7701 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7702 if (err)
7703 goto err_init_ctrlq;
7704
7705 err = ice_sched_init_port(hw->port_info);
7706 if (err)
7707 goto err_sched_init_port;
7708
7709 /* start misc vector */
7710 err = ice_req_irq_msix_misc(pf);
7711 if (err) {
7712 dev_err(dev, "misc vector setup failed: %d\n", err);
7713 goto err_sched_init_port;
7714 }
7715
7716 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7717 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7718 if (!rd32(hw, PFQF_FD_SIZE)) {
7719 u16 unused, guar, b_effort;
7720
7721 guar = hw->func_caps.fd_fltr_guar;
7722 b_effort = hw->func_caps.fd_fltr_best_effort;
7723
7724 /* force guaranteed filter pool for PF */
7725 ice_alloc_fd_guar_item(hw, &unused, guar);
7726 /* force shared filter pool for PF */
7727 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7728 }
7729 }
7730
7731 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7732 ice_dcb_rebuild(pf);
7733
7734 /* If the PF previously had enabled PTP, PTP init needs to happen before
7735 * the VSI rebuild. If not, this causes the PTP link status events to
7736 * fail.
7737 */
7738 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7739 ice_ptp_rebuild(pf, reset_type);
7740
7741 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7742 ice_gnss_init(pf);
7743
7744 /* rebuild PF VSI */
7745 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7746 if (err) {
7747 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7748 goto err_vsi_rebuild;
7749 }
7750
7751 if (reset_type == ICE_RESET_PFR) {
7752 err = ice_rebuild_channels(pf);
7753 if (err) {
7754 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7755 err);
7756 goto err_vsi_rebuild;
7757 }
7758 }
7759
7760 /* If Flow Director is active */
7761 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7762 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7763 if (err) {
7764 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7765 goto err_vsi_rebuild;
7766 }
7767
7768 /* replay HW Flow Director recipes */
7769 if (hw->fdir_prof)
7770 ice_fdir_replay_flows(hw);
7771
7772 /* replay Flow Director filters */
7773 ice_fdir_replay_fltrs(pf);
7774
7775 ice_rebuild_arfs(pf);
7776 }
7777
7778 if (vsi && vsi->netdev)
7779 netif_device_attach(vsi->netdev);
7780
7781 ice_update_pf_netdev_link(pf);
7782
7783 /* tell the firmware we are up */
7784 err = ice_send_version(pf);
7785 if (err) {
7786 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7787 err);
7788 goto err_vsi_rebuild;
7789 }
7790
7791 ice_replay_post(hw);
7792
7793 /* if we get here, reset flow is successful */
7794 clear_bit(ICE_RESET_FAILED, pf->state);
7795
7796 ice_plug_aux_dev(pf);
7797 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7798 ice_lag_rebuild(pf);
7799
7800 /* Restore timestamp mode settings after VSI rebuild */
7801 ice_ptp_restore_timestamp_mode(pf);
7802 return;
7803
7804err_vsi_rebuild:
7805err_sched_init_port:
7806 ice_sched_cleanup_all(hw);
7807err_init_ctrlq:
7808 ice_shutdown_all_ctrlq(hw, false);
7809 set_bit(ICE_RESET_FAILED, pf->state);
7810clear_recovery:
7811 /* set this bit in PF state to control service task scheduling */
7812 set_bit(ICE_NEEDS_RESTART, pf->state);
7813 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7814}
7815
7816/**
7817 * ice_change_mtu - NDO callback to change the MTU
7818 * @netdev: network interface device structure
7819 * @new_mtu: new value for maximum frame size
7820 *
7821 * Returns 0 on success, negative on failure
7822 */
7823int ice_change_mtu(struct net_device *netdev, int new_mtu)
7824{
7825 struct ice_netdev_priv *np = netdev_priv(netdev);
7826 struct ice_vsi *vsi = np->vsi;
7827 struct ice_pf *pf = vsi->back;
7828 struct bpf_prog *prog;
7829 u8 count = 0;
7830 int err = 0;
7831
7832 if (new_mtu == (int)netdev->mtu) {
7833 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7834 return 0;
7835 }
7836
7837 prog = vsi->xdp_prog;
7838 if (prog && !prog->aux->xdp_has_frags) {
7839 int frame_size = ice_max_xdp_frame_size(vsi);
7840
7841 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7842 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7843 frame_size - ICE_ETH_PKT_HDR_PAD);
7844 return -EINVAL;
7845 }
7846 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7847 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7848 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7849 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7850 return -EINVAL;
7851 }
7852 }
7853
7854 /* if a reset is in progress, wait for some time for it to complete */
7855 do {
7856 if (ice_is_reset_in_progress(pf->state)) {
7857 count++;
7858 usleep_range(1000, 2000);
7859 } else {
7860 break;
7861 }
7862
7863 } while (count < 100);
7864
7865 if (count == 100) {
7866 netdev_err(netdev, "can't change MTU. Device is busy\n");
7867 return -EBUSY;
7868 }
7869
7870 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7871 err = ice_down_up(vsi);
7872 if (err)
7873 return err;
7874
7875 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7876 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7877
7878 return err;
7879}
7880
7881/**
7882 * ice_eth_ioctl - Access the hwtstamp interface
7883 * @netdev: network interface device structure
7884 * @ifr: interface request data
7885 * @cmd: ioctl command
7886 */
7887static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7888{
7889 struct ice_netdev_priv *np = netdev_priv(netdev);
7890 struct ice_pf *pf = np->vsi->back;
7891
7892 switch (cmd) {
7893 case SIOCGHWTSTAMP:
7894 return ice_ptp_get_ts_config(pf, ifr);
7895 case SIOCSHWTSTAMP:
7896 return ice_ptp_set_ts_config(pf, ifr);
7897 default:
7898 return -EOPNOTSUPP;
7899 }
7900}
7901
7902/**
7903 * ice_aq_str - convert AQ err code to a string
7904 * @aq_err: the AQ error code to convert
7905 */
7906const char *ice_aq_str(enum ice_aq_err aq_err)
7907{
7908 switch (aq_err) {
7909 case ICE_AQ_RC_OK:
7910 return "OK";
7911 case ICE_AQ_RC_EPERM:
7912 return "ICE_AQ_RC_EPERM";
7913 case ICE_AQ_RC_ENOENT:
7914 return "ICE_AQ_RC_ENOENT";
7915 case ICE_AQ_RC_ENOMEM:
7916 return "ICE_AQ_RC_ENOMEM";
7917 case ICE_AQ_RC_EBUSY:
7918 return "ICE_AQ_RC_EBUSY";
7919 case ICE_AQ_RC_EEXIST:
7920 return "ICE_AQ_RC_EEXIST";
7921 case ICE_AQ_RC_EINVAL:
7922 return "ICE_AQ_RC_EINVAL";
7923 case ICE_AQ_RC_ENOSPC:
7924 return "ICE_AQ_RC_ENOSPC";
7925 case ICE_AQ_RC_ENOSYS:
7926 return "ICE_AQ_RC_ENOSYS";
7927 case ICE_AQ_RC_EMODE:
7928 return "ICE_AQ_RC_EMODE";
7929 case ICE_AQ_RC_ENOSEC:
7930 return "ICE_AQ_RC_ENOSEC";
7931 case ICE_AQ_RC_EBADSIG:
7932 return "ICE_AQ_RC_EBADSIG";
7933 case ICE_AQ_RC_ESVN:
7934 return "ICE_AQ_RC_ESVN";
7935 case ICE_AQ_RC_EBADMAN:
7936 return "ICE_AQ_RC_EBADMAN";
7937 case ICE_AQ_RC_EBADBUF:
7938 return "ICE_AQ_RC_EBADBUF";
7939 }
7940
7941 return "ICE_AQ_RC_UNKNOWN";
7942}
7943
7944/**
7945 * ice_set_rss_lut - Set RSS LUT
7946 * @vsi: Pointer to VSI structure
7947 * @lut: Lookup table
7948 * @lut_size: Lookup table size
7949 *
7950 * Returns 0 on success, negative on failure
7951 */
7952int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7953{
7954 struct ice_aq_get_set_rss_lut_params params = {};
7955 struct ice_hw *hw = &vsi->back->hw;
7956 int status;
7957
7958 if (!lut)
7959 return -EINVAL;
7960
7961 params.vsi_handle = vsi->idx;
7962 params.lut_size = lut_size;
7963 params.lut_type = vsi->rss_lut_type;
7964 params.lut = lut;
7965
7966 status = ice_aq_set_rss_lut(hw, ¶ms);
7967 if (status)
7968 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7969 status, ice_aq_str(hw->adminq.sq_last_status));
7970
7971 return status;
7972}
7973
7974/**
7975 * ice_set_rss_key - Set RSS key
7976 * @vsi: Pointer to the VSI structure
7977 * @seed: RSS hash seed
7978 *
7979 * Returns 0 on success, negative on failure
7980 */
7981int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7982{
7983 struct ice_hw *hw = &vsi->back->hw;
7984 int status;
7985
7986 if (!seed)
7987 return -EINVAL;
7988
7989 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7990 if (status)
7991 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7992 status, ice_aq_str(hw->adminq.sq_last_status));
7993
7994 return status;
7995}
7996
7997/**
7998 * ice_get_rss_lut - Get RSS LUT
7999 * @vsi: Pointer to VSI structure
8000 * @lut: Buffer to store the lookup table entries
8001 * @lut_size: Size of buffer to store the lookup table entries
8002 *
8003 * Returns 0 on success, negative on failure
8004 */
8005int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
8006{
8007 struct ice_aq_get_set_rss_lut_params params = {};
8008 struct ice_hw *hw = &vsi->back->hw;
8009 int status;
8010
8011 if (!lut)
8012 return -EINVAL;
8013
8014 params.vsi_handle = vsi->idx;
8015 params.lut_size = lut_size;
8016 params.lut_type = vsi->rss_lut_type;
8017 params.lut = lut;
8018
8019 status = ice_aq_get_rss_lut(hw, ¶ms);
8020 if (status)
8021 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
8022 status, ice_aq_str(hw->adminq.sq_last_status));
8023
8024 return status;
8025}
8026
8027/**
8028 * ice_get_rss_key - Get RSS key
8029 * @vsi: Pointer to VSI structure
8030 * @seed: Buffer to store the key in
8031 *
8032 * Returns 0 on success, negative on failure
8033 */
8034int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
8035{
8036 struct ice_hw *hw = &vsi->back->hw;
8037 int status;
8038
8039 if (!seed)
8040 return -EINVAL;
8041
8042 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
8043 if (status)
8044 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
8045 status, ice_aq_str(hw->adminq.sq_last_status));
8046
8047 return status;
8048}
8049
8050/**
8051 * ice_set_rss_hfunc - Set RSS HASH function
8052 * @vsi: Pointer to VSI structure
8053 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8054 *
8055 * Returns 0 on success, negative on failure
8056 */
8057int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8058{
8059 struct ice_hw *hw = &vsi->back->hw;
8060 struct ice_vsi_ctx *ctx;
8061 bool symm;
8062 int err;
8063
8064 if (hfunc == vsi->rss_hfunc)
8065 return 0;
8066
8067 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8068 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8069 return -EOPNOTSUPP;
8070
8071 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8072 if (!ctx)
8073 return -ENOMEM;
8074
8075 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8076 ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8077 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8078 ctx->info.q_opt_rss |=
8079 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8080 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8081 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8082
8083 err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8084 if (err) {
8085 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8086 vsi->vsi_num, err);
8087 } else {
8088 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8089 vsi->rss_hfunc = hfunc;
8090 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8091 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8092 "Symmetric " : "");
8093 }
8094 kfree(ctx);
8095 if (err)
8096 return err;
8097
8098 /* Fix the symmetry setting for all existing RSS configurations */
8099 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8100 return ice_set_rss_cfg_symm(hw, vsi, symm);
8101}
8102
8103/**
8104 * ice_bridge_getlink - Get the hardware bridge mode
8105 * @skb: skb buff
8106 * @pid: process ID
8107 * @seq: RTNL message seq
8108 * @dev: the netdev being configured
8109 * @filter_mask: filter mask passed in
8110 * @nlflags: netlink flags passed in
8111 *
8112 * Return the bridge mode (VEB/VEPA)
8113 */
8114static int
8115ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8116 struct net_device *dev, u32 filter_mask, int nlflags)
8117{
8118 struct ice_netdev_priv *np = netdev_priv(dev);
8119 struct ice_vsi *vsi = np->vsi;
8120 struct ice_pf *pf = vsi->back;
8121 u16 bmode;
8122
8123 bmode = pf->first_sw->bridge_mode;
8124
8125 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8126 filter_mask, NULL);
8127}
8128
8129/**
8130 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8131 * @vsi: Pointer to VSI structure
8132 * @bmode: Hardware bridge mode (VEB/VEPA)
8133 *
8134 * Returns 0 on success, negative on failure
8135 */
8136static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8137{
8138 struct ice_aqc_vsi_props *vsi_props;
8139 struct ice_hw *hw = &vsi->back->hw;
8140 struct ice_vsi_ctx *ctxt;
8141 int ret;
8142
8143 vsi_props = &vsi->info;
8144
8145 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8146 if (!ctxt)
8147 return -ENOMEM;
8148
8149 ctxt->info = vsi->info;
8150
8151 if (bmode == BRIDGE_MODE_VEB)
8152 /* change from VEPA to VEB mode */
8153 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8154 else
8155 /* change from VEB to VEPA mode */
8156 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8157 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8158
8159 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8160 if (ret) {
8161 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8162 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
8163 goto out;
8164 }
8165 /* Update sw flags for book keeping */
8166 vsi_props->sw_flags = ctxt->info.sw_flags;
8167
8168out:
8169 kfree(ctxt);
8170 return ret;
8171}
8172
8173/**
8174 * ice_bridge_setlink - Set the hardware bridge mode
8175 * @dev: the netdev being configured
8176 * @nlh: RTNL message
8177 * @flags: bridge setlink flags
8178 * @extack: netlink extended ack
8179 *
8180 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8181 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8182 * not already set for all VSIs connected to this switch. And also update the
8183 * unicast switch filter rules for the corresponding switch of the netdev.
8184 */
8185static int
8186ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8187 u16 __always_unused flags,
8188 struct netlink_ext_ack __always_unused *extack)
8189{
8190 struct ice_netdev_priv *np = netdev_priv(dev);
8191 struct ice_pf *pf = np->vsi->back;
8192 struct nlattr *attr, *br_spec;
8193 struct ice_hw *hw = &pf->hw;
8194 struct ice_sw *pf_sw;
8195 int rem, v, err = 0;
8196
8197 pf_sw = pf->first_sw;
8198 /* find the attribute in the netlink message */
8199 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8200 if (!br_spec)
8201 return -EINVAL;
8202
8203 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8204 __u16 mode = nla_get_u16(attr);
8205
8206 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8207 return -EINVAL;
8208 /* Continue if bridge mode is not being flipped */
8209 if (mode == pf_sw->bridge_mode)
8210 continue;
8211 /* Iterates through the PF VSI list and update the loopback
8212 * mode of the VSI
8213 */
8214 ice_for_each_vsi(pf, v) {
8215 if (!pf->vsi[v])
8216 continue;
8217 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8218 if (err)
8219 return err;
8220 }
8221
8222 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8223 /* Update the unicast switch filter rules for the corresponding
8224 * switch of the netdev
8225 */
8226 err = ice_update_sw_rule_bridge_mode(hw);
8227 if (err) {
8228 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8229 mode, err,
8230 ice_aq_str(hw->adminq.sq_last_status));
8231 /* revert hw->evb_veb */
8232 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8233 return err;
8234 }
8235
8236 pf_sw->bridge_mode = mode;
8237 }
8238
8239 return 0;
8240}
8241
8242/**
8243 * ice_tx_timeout - Respond to a Tx Hang
8244 * @netdev: network interface device structure
8245 * @txqueue: Tx queue
8246 */
8247void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8248{
8249 struct ice_netdev_priv *np = netdev_priv(netdev);
8250 struct ice_tx_ring *tx_ring = NULL;
8251 struct ice_vsi *vsi = np->vsi;
8252 struct ice_pf *pf = vsi->back;
8253 u32 i;
8254
8255 pf->tx_timeout_count++;
8256
8257 /* Check if PFC is enabled for the TC to which the queue belongs
8258 * to. If yes then Tx timeout is not caused by a hung queue, no
8259 * need to reset and rebuild
8260 */
8261 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8262 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8263 txqueue);
8264 return;
8265 }
8266
8267 /* now that we have an index, find the tx_ring struct */
8268 ice_for_each_txq(vsi, i)
8269 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8270 if (txqueue == vsi->tx_rings[i]->q_index) {
8271 tx_ring = vsi->tx_rings[i];
8272 break;
8273 }
8274
8275 /* Reset recovery level if enough time has elapsed after last timeout.
8276 * Also ensure no new reset action happens before next timeout period.
8277 */
8278 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8279 pf->tx_timeout_recovery_level = 1;
8280 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8281 netdev->watchdog_timeo)))
8282 return;
8283
8284 if (tx_ring) {
8285 struct ice_hw *hw = &pf->hw;
8286 u32 head, val = 0;
8287
8288 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8289 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8290 /* Read interrupt register */
8291 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8292
8293 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8294 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8295 head, tx_ring->next_to_use, val);
8296 }
8297
8298 pf->tx_timeout_last_recovery = jiffies;
8299 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8300 pf->tx_timeout_recovery_level, txqueue);
8301
8302 switch (pf->tx_timeout_recovery_level) {
8303 case 1:
8304 set_bit(ICE_PFR_REQ, pf->state);
8305 break;
8306 case 2:
8307 set_bit(ICE_CORER_REQ, pf->state);
8308 break;
8309 case 3:
8310 set_bit(ICE_GLOBR_REQ, pf->state);
8311 break;
8312 default:
8313 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8314 set_bit(ICE_DOWN, pf->state);
8315 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8316 set_bit(ICE_SERVICE_DIS, pf->state);
8317 break;
8318 }
8319
8320 ice_service_task_schedule(pf);
8321 pf->tx_timeout_recovery_level++;
8322}
8323
8324/**
8325 * ice_setup_tc_cls_flower - flower classifier offloads
8326 * @np: net device to configure
8327 * @filter_dev: device on which filter is added
8328 * @cls_flower: offload data
8329 */
8330static int
8331ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8332 struct net_device *filter_dev,
8333 struct flow_cls_offload *cls_flower)
8334{
8335 struct ice_vsi *vsi = np->vsi;
8336
8337 if (cls_flower->common.chain_index)
8338 return -EOPNOTSUPP;
8339
8340 switch (cls_flower->command) {
8341 case FLOW_CLS_REPLACE:
8342 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8343 case FLOW_CLS_DESTROY:
8344 return ice_del_cls_flower(vsi, cls_flower);
8345 default:
8346 return -EINVAL;
8347 }
8348}
8349
8350/**
8351 * ice_setup_tc_block_cb - callback handler registered for TC block
8352 * @type: TC SETUP type
8353 * @type_data: TC flower offload data that contains user input
8354 * @cb_priv: netdev private data
8355 */
8356static int
8357ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8358{
8359 struct ice_netdev_priv *np = cb_priv;
8360
8361 switch (type) {
8362 case TC_SETUP_CLSFLOWER:
8363 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8364 type_data);
8365 default:
8366 return -EOPNOTSUPP;
8367 }
8368}
8369
8370/**
8371 * ice_validate_mqprio_qopt - Validate TCF input parameters
8372 * @vsi: Pointer to VSI
8373 * @mqprio_qopt: input parameters for mqprio queue configuration
8374 *
8375 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8376 * needed), and make sure user doesn't specify qcount and BW rate limit
8377 * for TCs, which are more than "num_tc"
8378 */
8379static int
8380ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8381 struct tc_mqprio_qopt_offload *mqprio_qopt)
8382{
8383 int non_power_of_2_qcount = 0;
8384 struct ice_pf *pf = vsi->back;
8385 int max_rss_q_cnt = 0;
8386 u64 sum_min_rate = 0;
8387 struct device *dev;
8388 int i, speed;
8389 u8 num_tc;
8390
8391 if (vsi->type != ICE_VSI_PF)
8392 return -EINVAL;
8393
8394 if (mqprio_qopt->qopt.offset[0] != 0 ||
8395 mqprio_qopt->qopt.num_tc < 1 ||
8396 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8397 return -EINVAL;
8398
8399 dev = ice_pf_to_dev(pf);
8400 vsi->ch_rss_size = 0;
8401 num_tc = mqprio_qopt->qopt.num_tc;
8402 speed = ice_get_link_speed_kbps(vsi);
8403
8404 for (i = 0; num_tc; i++) {
8405 int qcount = mqprio_qopt->qopt.count[i];
8406 u64 max_rate, min_rate, rem;
8407
8408 if (!qcount)
8409 return -EINVAL;
8410
8411 if (is_power_of_2(qcount)) {
8412 if (non_power_of_2_qcount &&
8413 qcount > non_power_of_2_qcount) {
8414 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8415 qcount, non_power_of_2_qcount);
8416 return -EINVAL;
8417 }
8418 if (qcount > max_rss_q_cnt)
8419 max_rss_q_cnt = qcount;
8420 } else {
8421 if (non_power_of_2_qcount &&
8422 qcount != non_power_of_2_qcount) {
8423 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8424 qcount, non_power_of_2_qcount);
8425 return -EINVAL;
8426 }
8427 if (qcount < max_rss_q_cnt) {
8428 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8429 qcount, max_rss_q_cnt);
8430 return -EINVAL;
8431 }
8432 max_rss_q_cnt = qcount;
8433 non_power_of_2_qcount = qcount;
8434 }
8435
8436 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8437 * converts the bandwidth rate limit into Bytes/s when
8438 * passing it down to the driver. So convert input bandwidth
8439 * from Bytes/s to Kbps
8440 */
8441 max_rate = mqprio_qopt->max_rate[i];
8442 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8443
8444 /* min_rate is minimum guaranteed rate and it can't be zero */
8445 min_rate = mqprio_qopt->min_rate[i];
8446 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8447 sum_min_rate += min_rate;
8448
8449 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8450 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8451 min_rate, ICE_MIN_BW_LIMIT);
8452 return -EINVAL;
8453 }
8454
8455 if (max_rate && max_rate > speed) {
8456 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8457 i, max_rate, speed);
8458 return -EINVAL;
8459 }
8460
8461 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8462 if (rem) {
8463 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8464 i, ICE_MIN_BW_LIMIT);
8465 return -EINVAL;
8466 }
8467
8468 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8469 if (rem) {
8470 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8471 i, ICE_MIN_BW_LIMIT);
8472 return -EINVAL;
8473 }
8474
8475 /* min_rate can't be more than max_rate, except when max_rate
8476 * is zero (implies max_rate sought is max line rate). In such
8477 * a case min_rate can be more than max.
8478 */
8479 if (max_rate && min_rate > max_rate) {
8480 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8481 min_rate, max_rate);
8482 return -EINVAL;
8483 }
8484
8485 if (i >= mqprio_qopt->qopt.num_tc - 1)
8486 break;
8487 if (mqprio_qopt->qopt.offset[i + 1] !=
8488 (mqprio_qopt->qopt.offset[i] + qcount))
8489 return -EINVAL;
8490 }
8491 if (vsi->num_rxq <
8492 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8493 return -EINVAL;
8494 if (vsi->num_txq <
8495 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8496 return -EINVAL;
8497
8498 if (sum_min_rate && sum_min_rate > (u64)speed) {
8499 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8500 sum_min_rate, speed);
8501 return -EINVAL;
8502 }
8503
8504 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8505 vsi->ch_rss_size = max_rss_q_cnt;
8506
8507 return 0;
8508}
8509
8510/**
8511 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8512 * @pf: ptr to PF device
8513 * @vsi: ptr to VSI
8514 */
8515static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8516{
8517 struct device *dev = ice_pf_to_dev(pf);
8518 bool added = false;
8519 struct ice_hw *hw;
8520 int flow;
8521
8522 if (!(vsi->num_gfltr || vsi->num_bfltr))
8523 return -EINVAL;
8524
8525 hw = &pf->hw;
8526 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8527 struct ice_fd_hw_prof *prof;
8528 int tun, status;
8529 u64 entry_h;
8530
8531 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8532 hw->fdir_prof[flow]->cnt))
8533 continue;
8534
8535 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8536 enum ice_flow_priority prio;
8537
8538 /* add this VSI to FDir profile for this flow */
8539 prio = ICE_FLOW_PRIO_NORMAL;
8540 prof = hw->fdir_prof[flow];
8541 status = ice_flow_add_entry(hw, ICE_BLK_FD,
8542 prof->prof_id[tun],
8543 prof->vsi_h[0], vsi->idx,
8544 prio, prof->fdir_seg[tun],
8545 &entry_h);
8546 if (status) {
8547 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8548 vsi->idx, flow);
8549 continue;
8550 }
8551
8552 prof->entry_h[prof->cnt][tun] = entry_h;
8553 }
8554
8555 /* store VSI for filter replay and delete */
8556 prof->vsi_h[prof->cnt] = vsi->idx;
8557 prof->cnt++;
8558
8559 added = true;
8560 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8561 flow);
8562 }
8563
8564 if (!added)
8565 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8566
8567 return 0;
8568}
8569
8570/**
8571 * ice_add_channel - add a channel by adding VSI
8572 * @pf: ptr to PF device
8573 * @sw_id: underlying HW switching element ID
8574 * @ch: ptr to channel structure
8575 *
8576 * Add a channel (VSI) using add_vsi and queue_map
8577 */
8578static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8579{
8580 struct device *dev = ice_pf_to_dev(pf);
8581 struct ice_vsi *vsi;
8582
8583 if (ch->type != ICE_VSI_CHNL) {
8584 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8585 return -EINVAL;
8586 }
8587
8588 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8589 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8590 dev_err(dev, "create chnl VSI failure\n");
8591 return -EINVAL;
8592 }
8593
8594 ice_add_vsi_to_fdir(pf, vsi);
8595
8596 ch->sw_id = sw_id;
8597 ch->vsi_num = vsi->vsi_num;
8598 ch->info.mapping_flags = vsi->info.mapping_flags;
8599 ch->ch_vsi = vsi;
8600 /* set the back pointer of channel for newly created VSI */
8601 vsi->ch = ch;
8602
8603 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8604 sizeof(vsi->info.q_mapping));
8605 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8606 sizeof(vsi->info.tc_mapping));
8607
8608 return 0;
8609}
8610
8611/**
8612 * ice_chnl_cfg_res
8613 * @vsi: the VSI being setup
8614 * @ch: ptr to channel structure
8615 *
8616 * Configure channel specific resources such as rings, vector.
8617 */
8618static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8619{
8620 int i;
8621
8622 for (i = 0; i < ch->num_txq; i++) {
8623 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8624 struct ice_ring_container *rc;
8625 struct ice_tx_ring *tx_ring;
8626 struct ice_rx_ring *rx_ring;
8627
8628 tx_ring = vsi->tx_rings[ch->base_q + i];
8629 rx_ring = vsi->rx_rings[ch->base_q + i];
8630 if (!tx_ring || !rx_ring)
8631 continue;
8632
8633 /* setup ring being channel enabled */
8634 tx_ring->ch = ch;
8635 rx_ring->ch = ch;
8636
8637 /* following code block sets up vector specific attributes */
8638 tx_q_vector = tx_ring->q_vector;
8639 rx_q_vector = rx_ring->q_vector;
8640 if (!tx_q_vector && !rx_q_vector)
8641 continue;
8642
8643 if (tx_q_vector) {
8644 tx_q_vector->ch = ch;
8645 /* setup Tx and Rx ITR setting if DIM is off */
8646 rc = &tx_q_vector->tx;
8647 if (!ITR_IS_DYNAMIC(rc))
8648 ice_write_itr(rc, rc->itr_setting);
8649 }
8650 if (rx_q_vector) {
8651 rx_q_vector->ch = ch;
8652 /* setup Tx and Rx ITR setting if DIM is off */
8653 rc = &rx_q_vector->rx;
8654 if (!ITR_IS_DYNAMIC(rc))
8655 ice_write_itr(rc, rc->itr_setting);
8656 }
8657 }
8658
8659 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8660 * GLINT_ITR register would have written to perform in-context
8661 * update, hence perform flush
8662 */
8663 if (ch->num_txq || ch->num_rxq)
8664 ice_flush(&vsi->back->hw);
8665}
8666
8667/**
8668 * ice_cfg_chnl_all_res - configure channel resources
8669 * @vsi: pte to main_vsi
8670 * @ch: ptr to channel structure
8671 *
8672 * This function configures channel specific resources such as flow-director
8673 * counter index, and other resources such as queues, vectors, ITR settings
8674 */
8675static void
8676ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8677{
8678 /* configure channel (aka ADQ) resources such as queues, vectors,
8679 * ITR settings for channel specific vectors and anything else
8680 */
8681 ice_chnl_cfg_res(vsi, ch);
8682}
8683
8684/**
8685 * ice_setup_hw_channel - setup new channel
8686 * @pf: ptr to PF device
8687 * @vsi: the VSI being setup
8688 * @ch: ptr to channel structure
8689 * @sw_id: underlying HW switching element ID
8690 * @type: type of channel to be created (VMDq2/VF)
8691 *
8692 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8693 * and configures Tx rings accordingly
8694 */
8695static int
8696ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8697 struct ice_channel *ch, u16 sw_id, u8 type)
8698{
8699 struct device *dev = ice_pf_to_dev(pf);
8700 int ret;
8701
8702 ch->base_q = vsi->next_base_q;
8703 ch->type = type;
8704
8705 ret = ice_add_channel(pf, sw_id, ch);
8706 if (ret) {
8707 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8708 return ret;
8709 }
8710
8711 /* configure/setup ADQ specific resources */
8712 ice_cfg_chnl_all_res(vsi, ch);
8713
8714 /* make sure to update the next_base_q so that subsequent channel's
8715 * (aka ADQ) VSI queue map is correct
8716 */
8717 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8718 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8719 ch->num_rxq);
8720
8721 return 0;
8722}
8723
8724/**
8725 * ice_setup_channel - setup new channel using uplink element
8726 * @pf: ptr to PF device
8727 * @vsi: the VSI being setup
8728 * @ch: ptr to channel structure
8729 *
8730 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8731 * and uplink switching element
8732 */
8733static bool
8734ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8735 struct ice_channel *ch)
8736{
8737 struct device *dev = ice_pf_to_dev(pf);
8738 u16 sw_id;
8739 int ret;
8740
8741 if (vsi->type != ICE_VSI_PF) {
8742 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8743 return false;
8744 }
8745
8746 sw_id = pf->first_sw->sw_id;
8747
8748 /* create channel (VSI) */
8749 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8750 if (ret) {
8751 dev_err(dev, "failed to setup hw_channel\n");
8752 return false;
8753 }
8754 dev_dbg(dev, "successfully created channel()\n");
8755
8756 return ch->ch_vsi ? true : false;
8757}
8758
8759/**
8760 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8761 * @vsi: VSI to be configured
8762 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8763 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8764 */
8765static int
8766ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8767{
8768 int err;
8769
8770 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8771 if (err)
8772 return err;
8773
8774 return ice_set_max_bw_limit(vsi, max_tx_rate);
8775}
8776
8777/**
8778 * ice_create_q_channel - function to create channel
8779 * @vsi: VSI to be configured
8780 * @ch: ptr to channel (it contains channel specific params)
8781 *
8782 * This function creates channel (VSI) using num_queues specified by user,
8783 * reconfigs RSS if needed.
8784 */
8785static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8786{
8787 struct ice_pf *pf = vsi->back;
8788 struct device *dev;
8789
8790 if (!ch)
8791 return -EINVAL;
8792
8793 dev = ice_pf_to_dev(pf);
8794 if (!ch->num_txq || !ch->num_rxq) {
8795 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8796 return -EINVAL;
8797 }
8798
8799 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8800 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8801 vsi->cnt_q_avail, ch->num_txq);
8802 return -EINVAL;
8803 }
8804
8805 if (!ice_setup_channel(pf, vsi, ch)) {
8806 dev_info(dev, "Failed to setup channel\n");
8807 return -EINVAL;
8808 }
8809 /* configure BW rate limit */
8810 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8811 int ret;
8812
8813 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8814 ch->min_tx_rate);
8815 if (ret)
8816 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8817 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8818 else
8819 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8820 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8821 }
8822
8823 vsi->cnt_q_avail -= ch->num_txq;
8824
8825 return 0;
8826}
8827
8828/**
8829 * ice_rem_all_chnl_fltrs - removes all channel filters
8830 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8831 *
8832 * Remove all advanced switch filters only if they are channel specific
8833 * tc-flower based filter
8834 */
8835static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8836{
8837 struct ice_tc_flower_fltr *fltr;
8838 struct hlist_node *node;
8839
8840 /* to remove all channel filters, iterate an ordered list of filters */
8841 hlist_for_each_entry_safe(fltr, node,
8842 &pf->tc_flower_fltr_list,
8843 tc_flower_node) {
8844 struct ice_rule_query_data rule;
8845 int status;
8846
8847 /* for now process only channel specific filters */
8848 if (!ice_is_chnl_fltr(fltr))
8849 continue;
8850
8851 rule.rid = fltr->rid;
8852 rule.rule_id = fltr->rule_id;
8853 rule.vsi_handle = fltr->dest_vsi_handle;
8854 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8855 if (status) {
8856 if (status == -ENOENT)
8857 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8858 rule.rule_id);
8859 else
8860 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8861 status);
8862 } else if (fltr->dest_vsi) {
8863 /* update advanced switch filter count */
8864 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8865 u32 flags = fltr->flags;
8866
8867 fltr->dest_vsi->num_chnl_fltr--;
8868 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8869 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8870 pf->num_dmac_chnl_fltrs--;
8871 }
8872 }
8873
8874 hlist_del(&fltr->tc_flower_node);
8875 kfree(fltr);
8876 }
8877}
8878
8879/**
8880 * ice_remove_q_channels - Remove queue channels for the TCs
8881 * @vsi: VSI to be configured
8882 * @rem_fltr: delete advanced switch filter or not
8883 *
8884 * Remove queue channels for the TCs
8885 */
8886static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8887{
8888 struct ice_channel *ch, *ch_tmp;
8889 struct ice_pf *pf = vsi->back;
8890 int i;
8891
8892 /* remove all tc-flower based filter if they are channel filters only */
8893 if (rem_fltr)
8894 ice_rem_all_chnl_fltrs(pf);
8895
8896 /* remove ntuple filters since queue configuration is being changed */
8897 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8898 struct ice_hw *hw = &pf->hw;
8899
8900 mutex_lock(&hw->fdir_fltr_lock);
8901 ice_fdir_del_all_fltrs(vsi);
8902 mutex_unlock(&hw->fdir_fltr_lock);
8903 }
8904
8905 /* perform cleanup for channels if they exist */
8906 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8907 struct ice_vsi *ch_vsi;
8908
8909 list_del(&ch->list);
8910 ch_vsi = ch->ch_vsi;
8911 if (!ch_vsi) {
8912 kfree(ch);
8913 continue;
8914 }
8915
8916 /* Reset queue contexts */
8917 for (i = 0; i < ch->num_rxq; i++) {
8918 struct ice_tx_ring *tx_ring;
8919 struct ice_rx_ring *rx_ring;
8920
8921 tx_ring = vsi->tx_rings[ch->base_q + i];
8922 rx_ring = vsi->rx_rings[ch->base_q + i];
8923 if (tx_ring) {
8924 tx_ring->ch = NULL;
8925 if (tx_ring->q_vector)
8926 tx_ring->q_vector->ch = NULL;
8927 }
8928 if (rx_ring) {
8929 rx_ring->ch = NULL;
8930 if (rx_ring->q_vector)
8931 rx_ring->q_vector->ch = NULL;
8932 }
8933 }
8934
8935 /* Release FD resources for the channel VSI */
8936 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8937
8938 /* clear the VSI from scheduler tree */
8939 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8940
8941 /* Delete VSI from FW, PF and HW VSI arrays */
8942 ice_vsi_delete(ch->ch_vsi);
8943
8944 /* free the channel */
8945 kfree(ch);
8946 }
8947
8948 /* clear the channel VSI map which is stored in main VSI */
8949 ice_for_each_chnl_tc(i)
8950 vsi->tc_map_vsi[i] = NULL;
8951
8952 /* reset main VSI's all TC information */
8953 vsi->all_enatc = 0;
8954 vsi->all_numtc = 0;
8955}
8956
8957/**
8958 * ice_rebuild_channels - rebuild channel
8959 * @pf: ptr to PF
8960 *
8961 * Recreate channel VSIs and replay filters
8962 */
8963static int ice_rebuild_channels(struct ice_pf *pf)
8964{
8965 struct device *dev = ice_pf_to_dev(pf);
8966 struct ice_vsi *main_vsi;
8967 bool rem_adv_fltr = true;
8968 struct ice_channel *ch;
8969 struct ice_vsi *vsi;
8970 int tc_idx = 1;
8971 int i, err;
8972
8973 main_vsi = ice_get_main_vsi(pf);
8974 if (!main_vsi)
8975 return 0;
8976
8977 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8978 main_vsi->old_numtc == 1)
8979 return 0; /* nothing to be done */
8980
8981 /* reconfigure main VSI based on old value of TC and cached values
8982 * for MQPRIO opts
8983 */
8984 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8985 if (err) {
8986 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8987 main_vsi->old_ena_tc, main_vsi->vsi_num);
8988 return err;
8989 }
8990
8991 /* rebuild ADQ VSIs */
8992 ice_for_each_vsi(pf, i) {
8993 enum ice_vsi_type type;
8994
8995 vsi = pf->vsi[i];
8996 if (!vsi || vsi->type != ICE_VSI_CHNL)
8997 continue;
8998
8999 type = vsi->type;
9000
9001 /* rebuild ADQ VSI */
9002 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
9003 if (err) {
9004 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
9005 ice_vsi_type_str(type), vsi->idx, err);
9006 goto cleanup;
9007 }
9008
9009 /* Re-map HW VSI number, using VSI handle that has been
9010 * previously validated in ice_replay_vsi() call above
9011 */
9012 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
9013
9014 /* replay filters for the VSI */
9015 err = ice_replay_vsi(&pf->hw, vsi->idx);
9016 if (err) {
9017 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
9018 ice_vsi_type_str(type), err, vsi->idx);
9019 rem_adv_fltr = false;
9020 goto cleanup;
9021 }
9022 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
9023 ice_vsi_type_str(type), vsi->idx);
9024
9025 /* store ADQ VSI at correct TC index in main VSI's
9026 * map of TC to VSI
9027 */
9028 main_vsi->tc_map_vsi[tc_idx++] = vsi;
9029 }
9030
9031 /* ADQ VSI(s) has been rebuilt successfully, so setup
9032 * channel for main VSI's Tx and Rx rings
9033 */
9034 list_for_each_entry(ch, &main_vsi->ch_list, list) {
9035 struct ice_vsi *ch_vsi;
9036
9037 ch_vsi = ch->ch_vsi;
9038 if (!ch_vsi)
9039 continue;
9040
9041 /* reconfig channel resources */
9042 ice_cfg_chnl_all_res(main_vsi, ch);
9043
9044 /* replay BW rate limit if it is non-zero */
9045 if (!ch->max_tx_rate && !ch->min_tx_rate)
9046 continue;
9047
9048 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9049 ch->min_tx_rate);
9050 if (err)
9051 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9052 err, ch->max_tx_rate, ch->min_tx_rate,
9053 ch_vsi->vsi_num);
9054 else
9055 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9056 ch->max_tx_rate, ch->min_tx_rate,
9057 ch_vsi->vsi_num);
9058 }
9059
9060 /* reconfig RSS for main VSI */
9061 if (main_vsi->ch_rss_size)
9062 ice_vsi_cfg_rss_lut_key(main_vsi);
9063
9064 return 0;
9065
9066cleanup:
9067 ice_remove_q_channels(main_vsi, rem_adv_fltr);
9068 return err;
9069}
9070
9071/**
9072 * ice_create_q_channels - Add queue channel for the given TCs
9073 * @vsi: VSI to be configured
9074 *
9075 * Configures queue channel mapping to the given TCs
9076 */
9077static int ice_create_q_channels(struct ice_vsi *vsi)
9078{
9079 struct ice_pf *pf = vsi->back;
9080 struct ice_channel *ch;
9081 int ret = 0, i;
9082
9083 ice_for_each_chnl_tc(i) {
9084 if (!(vsi->all_enatc & BIT(i)))
9085 continue;
9086
9087 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9088 if (!ch) {
9089 ret = -ENOMEM;
9090 goto err_free;
9091 }
9092 INIT_LIST_HEAD(&ch->list);
9093 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9094 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9095 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9096 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9097 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9098
9099 /* convert to Kbits/s */
9100 if (ch->max_tx_rate)
9101 ch->max_tx_rate = div_u64(ch->max_tx_rate,
9102 ICE_BW_KBPS_DIVISOR);
9103 if (ch->min_tx_rate)
9104 ch->min_tx_rate = div_u64(ch->min_tx_rate,
9105 ICE_BW_KBPS_DIVISOR);
9106
9107 ret = ice_create_q_channel(vsi, ch);
9108 if (ret) {
9109 dev_err(ice_pf_to_dev(pf),
9110 "failed creating channel TC:%d\n", i);
9111 kfree(ch);
9112 goto err_free;
9113 }
9114 list_add_tail(&ch->list, &vsi->ch_list);
9115 vsi->tc_map_vsi[i] = ch->ch_vsi;
9116 dev_dbg(ice_pf_to_dev(pf),
9117 "successfully created channel: VSI %pK\n", ch->ch_vsi);
9118 }
9119 return 0;
9120
9121err_free:
9122 ice_remove_q_channels(vsi, false);
9123
9124 return ret;
9125}
9126
9127/**
9128 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9129 * @netdev: net device to configure
9130 * @type_data: TC offload data
9131 */
9132static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9133{
9134 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9135 struct ice_netdev_priv *np = netdev_priv(netdev);
9136 struct ice_vsi *vsi = np->vsi;
9137 struct ice_pf *pf = vsi->back;
9138 u16 mode, ena_tc_qdisc = 0;
9139 int cur_txq, cur_rxq;
9140 u8 hw = 0, num_tcf;
9141 struct device *dev;
9142 int ret, i;
9143
9144 dev = ice_pf_to_dev(pf);
9145 num_tcf = mqprio_qopt->qopt.num_tc;
9146 hw = mqprio_qopt->qopt.hw;
9147 mode = mqprio_qopt->mode;
9148 if (!hw) {
9149 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9150 vsi->ch_rss_size = 0;
9151 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9152 goto config_tcf;
9153 }
9154
9155 /* Generate queue region map for number of TCF requested */
9156 for (i = 0; i < num_tcf; i++)
9157 ena_tc_qdisc |= BIT(i);
9158
9159 switch (mode) {
9160 case TC_MQPRIO_MODE_CHANNEL:
9161
9162 if (pf->hw.port_info->is_custom_tx_enabled) {
9163 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9164 return -EBUSY;
9165 }
9166 ice_tear_down_devlink_rate_tree(pf);
9167
9168 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9169 if (ret) {
9170 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9171 ret);
9172 return ret;
9173 }
9174 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9175 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9176 /* don't assume state of hw_tc_offload during driver load
9177 * and set the flag for TC flower filter if hw_tc_offload
9178 * already ON
9179 */
9180 if (vsi->netdev->features & NETIF_F_HW_TC)
9181 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9182 break;
9183 default:
9184 return -EINVAL;
9185 }
9186
9187config_tcf:
9188
9189 /* Requesting same TCF configuration as already enabled */
9190 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9191 mode != TC_MQPRIO_MODE_CHANNEL)
9192 return 0;
9193
9194 /* Pause VSI queues */
9195 ice_dis_vsi(vsi, true);
9196
9197 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9198 ice_remove_q_channels(vsi, true);
9199
9200 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9201 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9202 num_online_cpus());
9203 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9204 num_online_cpus());
9205 } else {
9206 /* logic to rebuild VSI, same like ethtool -L */
9207 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9208
9209 for (i = 0; i < num_tcf; i++) {
9210 if (!(ena_tc_qdisc & BIT(i)))
9211 continue;
9212
9213 offset = vsi->mqprio_qopt.qopt.offset[i];
9214 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9215 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9216 }
9217 vsi->req_txq = offset + qcount_tx;
9218 vsi->req_rxq = offset + qcount_rx;
9219
9220 /* store away original rss_size info, so that it gets reused
9221 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9222 * determine, what should be the rss_sizefor main VSI
9223 */
9224 vsi->orig_rss_size = vsi->rss_size;
9225 }
9226
9227 /* save current values of Tx and Rx queues before calling VSI rebuild
9228 * for fallback option
9229 */
9230 cur_txq = vsi->num_txq;
9231 cur_rxq = vsi->num_rxq;
9232
9233 /* proceed with rebuild main VSI using correct number of queues */
9234 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9235 if (ret) {
9236 /* fallback to current number of queues */
9237 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9238 vsi->req_txq = cur_txq;
9239 vsi->req_rxq = cur_rxq;
9240 clear_bit(ICE_RESET_FAILED, pf->state);
9241 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9242 dev_err(dev, "Rebuild of main VSI failed again\n");
9243 return ret;
9244 }
9245 }
9246
9247 vsi->all_numtc = num_tcf;
9248 vsi->all_enatc = ena_tc_qdisc;
9249 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9250 if (ret) {
9251 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9252 vsi->vsi_num);
9253 goto exit;
9254 }
9255
9256 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9257 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9258 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9259
9260 /* set TC0 rate limit if specified */
9261 if (max_tx_rate || min_tx_rate) {
9262 /* convert to Kbits/s */
9263 if (max_tx_rate)
9264 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9265 if (min_tx_rate)
9266 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9267
9268 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9269 if (!ret) {
9270 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9271 max_tx_rate, min_tx_rate, vsi->vsi_num);
9272 } else {
9273 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9274 max_tx_rate, min_tx_rate, vsi->vsi_num);
9275 goto exit;
9276 }
9277 }
9278 ret = ice_create_q_channels(vsi);
9279 if (ret) {
9280 netdev_err(netdev, "failed configuring queue channels\n");
9281 goto exit;
9282 } else {
9283 netdev_dbg(netdev, "successfully configured channels\n");
9284 }
9285 }
9286
9287 if (vsi->ch_rss_size)
9288 ice_vsi_cfg_rss_lut_key(vsi);
9289
9290exit:
9291 /* if error, reset the all_numtc and all_enatc */
9292 if (ret) {
9293 vsi->all_numtc = 0;
9294 vsi->all_enatc = 0;
9295 }
9296 /* resume VSI */
9297 ice_ena_vsi(vsi, true);
9298
9299 return ret;
9300}
9301
9302static LIST_HEAD(ice_block_cb_list);
9303
9304static int
9305ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9306 void *type_data)
9307{
9308 struct ice_netdev_priv *np = netdev_priv(netdev);
9309 struct ice_pf *pf = np->vsi->back;
9310 bool locked = false;
9311 int err;
9312
9313 switch (type) {
9314 case TC_SETUP_BLOCK:
9315 return flow_block_cb_setup_simple(type_data,
9316 &ice_block_cb_list,
9317 ice_setup_tc_block_cb,
9318 np, np, true);
9319 case TC_SETUP_QDISC_MQPRIO:
9320 if (ice_is_eswitch_mode_switchdev(pf)) {
9321 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9322 return -EOPNOTSUPP;
9323 }
9324
9325 if (pf->adev) {
9326 mutex_lock(&pf->adev_mutex);
9327 device_lock(&pf->adev->dev);
9328 locked = true;
9329 if (pf->adev->dev.driver) {
9330 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9331 err = -EBUSY;
9332 goto adev_unlock;
9333 }
9334 }
9335
9336 /* setup traffic classifier for receive side */
9337 mutex_lock(&pf->tc_mutex);
9338 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9339 mutex_unlock(&pf->tc_mutex);
9340
9341adev_unlock:
9342 if (locked) {
9343 device_unlock(&pf->adev->dev);
9344 mutex_unlock(&pf->adev_mutex);
9345 }
9346 return err;
9347 default:
9348 return -EOPNOTSUPP;
9349 }
9350 return -EOPNOTSUPP;
9351}
9352
9353static struct ice_indr_block_priv *
9354ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9355 struct net_device *netdev)
9356{
9357 struct ice_indr_block_priv *cb_priv;
9358
9359 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9360 if (!cb_priv->netdev)
9361 return NULL;
9362 if (cb_priv->netdev == netdev)
9363 return cb_priv;
9364 }
9365 return NULL;
9366}
9367
9368static int
9369ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9370 void *indr_priv)
9371{
9372 struct ice_indr_block_priv *priv = indr_priv;
9373 struct ice_netdev_priv *np = priv->np;
9374
9375 switch (type) {
9376 case TC_SETUP_CLSFLOWER:
9377 return ice_setup_tc_cls_flower(np, priv->netdev,
9378 (struct flow_cls_offload *)
9379 type_data);
9380 default:
9381 return -EOPNOTSUPP;
9382 }
9383}
9384
9385static int
9386ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9387 struct ice_netdev_priv *np,
9388 struct flow_block_offload *f, void *data,
9389 void (*cleanup)(struct flow_block_cb *block_cb))
9390{
9391 struct ice_indr_block_priv *indr_priv;
9392 struct flow_block_cb *block_cb;
9393
9394 if (!ice_is_tunnel_supported(netdev) &&
9395 !(is_vlan_dev(netdev) &&
9396 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9397 return -EOPNOTSUPP;
9398
9399 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9400 return -EOPNOTSUPP;
9401
9402 switch (f->command) {
9403 case FLOW_BLOCK_BIND:
9404 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9405 if (indr_priv)
9406 return -EEXIST;
9407
9408 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9409 if (!indr_priv)
9410 return -ENOMEM;
9411
9412 indr_priv->netdev = netdev;
9413 indr_priv->np = np;
9414 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9415
9416 block_cb =
9417 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9418 indr_priv, indr_priv,
9419 ice_rep_indr_tc_block_unbind,
9420 f, netdev, sch, data, np,
9421 cleanup);
9422
9423 if (IS_ERR(block_cb)) {
9424 list_del(&indr_priv->list);
9425 kfree(indr_priv);
9426 return PTR_ERR(block_cb);
9427 }
9428 flow_block_cb_add(block_cb, f);
9429 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9430 break;
9431 case FLOW_BLOCK_UNBIND:
9432 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9433 if (!indr_priv)
9434 return -ENOENT;
9435
9436 block_cb = flow_block_cb_lookup(f->block,
9437 ice_indr_setup_block_cb,
9438 indr_priv);
9439 if (!block_cb)
9440 return -ENOENT;
9441
9442 flow_indr_block_cb_remove(block_cb, f);
9443
9444 list_del(&block_cb->driver_list);
9445 break;
9446 default:
9447 return -EOPNOTSUPP;
9448 }
9449 return 0;
9450}
9451
9452static int
9453ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9454 void *cb_priv, enum tc_setup_type type, void *type_data,
9455 void *data,
9456 void (*cleanup)(struct flow_block_cb *block_cb))
9457{
9458 switch (type) {
9459 case TC_SETUP_BLOCK:
9460 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9461 data, cleanup);
9462
9463 default:
9464 return -EOPNOTSUPP;
9465 }
9466}
9467
9468/**
9469 * ice_open - Called when a network interface becomes active
9470 * @netdev: network interface device structure
9471 *
9472 * The open entry point is called when a network interface is made
9473 * active by the system (IFF_UP). At this point all resources needed
9474 * for transmit and receive operations are allocated, the interrupt
9475 * handler is registered with the OS, the netdev watchdog is enabled,
9476 * and the stack is notified that the interface is ready.
9477 *
9478 * Returns 0 on success, negative value on failure
9479 */
9480int ice_open(struct net_device *netdev)
9481{
9482 struct ice_netdev_priv *np = netdev_priv(netdev);
9483 struct ice_pf *pf = np->vsi->back;
9484
9485 if (ice_is_reset_in_progress(pf->state)) {
9486 netdev_err(netdev, "can't open net device while reset is in progress");
9487 return -EBUSY;
9488 }
9489
9490 return ice_open_internal(netdev);
9491}
9492
9493/**
9494 * ice_open_internal - Called when a network interface becomes active
9495 * @netdev: network interface device structure
9496 *
9497 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9498 * handling routine
9499 *
9500 * Returns 0 on success, negative value on failure
9501 */
9502int ice_open_internal(struct net_device *netdev)
9503{
9504 struct ice_netdev_priv *np = netdev_priv(netdev);
9505 struct ice_vsi *vsi = np->vsi;
9506 struct ice_pf *pf = vsi->back;
9507 struct ice_port_info *pi;
9508 int err;
9509
9510 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9511 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9512 return -EIO;
9513 }
9514
9515 netif_carrier_off(netdev);
9516
9517 pi = vsi->port_info;
9518 err = ice_update_link_info(pi);
9519 if (err) {
9520 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9521 return err;
9522 }
9523
9524 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9525
9526 /* Set PHY if there is media, otherwise, turn off PHY */
9527 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9528 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9529 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9530 err = ice_init_phy_user_cfg(pi);
9531 if (err) {
9532 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9533 err);
9534 return err;
9535 }
9536 }
9537
9538 err = ice_configure_phy(vsi);
9539 if (err) {
9540 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9541 err);
9542 return err;
9543 }
9544 } else {
9545 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9546 ice_set_link(vsi, false);
9547 }
9548
9549 err = ice_vsi_open(vsi);
9550 if (err)
9551 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9552 vsi->vsi_num, vsi->vsw->sw_id);
9553
9554 /* Update existing tunnels information */
9555 udp_tunnel_get_rx_info(netdev);
9556
9557 return err;
9558}
9559
9560/**
9561 * ice_stop - Disables a network interface
9562 * @netdev: network interface device structure
9563 *
9564 * The stop entry point is called when an interface is de-activated by the OS,
9565 * and the netdevice enters the DOWN state. The hardware is still under the
9566 * driver's control, but the netdev interface is disabled.
9567 *
9568 * Returns success only - not allowed to fail
9569 */
9570int ice_stop(struct net_device *netdev)
9571{
9572 struct ice_netdev_priv *np = netdev_priv(netdev);
9573 struct ice_vsi *vsi = np->vsi;
9574 struct ice_pf *pf = vsi->back;
9575
9576 if (ice_is_reset_in_progress(pf->state)) {
9577 netdev_err(netdev, "can't stop net device while reset is in progress");
9578 return -EBUSY;
9579 }
9580
9581 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9582 int link_err = ice_force_phys_link_state(vsi, false);
9583
9584 if (link_err) {
9585 if (link_err == -ENOMEDIUM)
9586 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9587 vsi->vsi_num);
9588 else
9589 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9590 vsi->vsi_num, link_err);
9591
9592 ice_vsi_close(vsi);
9593 return -EIO;
9594 }
9595 }
9596
9597 ice_vsi_close(vsi);
9598
9599 return 0;
9600}
9601
9602/**
9603 * ice_features_check - Validate encapsulated packet conforms to limits
9604 * @skb: skb buffer
9605 * @netdev: This port's netdev
9606 * @features: Offload features that the stack believes apply
9607 */
9608static netdev_features_t
9609ice_features_check(struct sk_buff *skb,
9610 struct net_device __always_unused *netdev,
9611 netdev_features_t features)
9612{
9613 bool gso = skb_is_gso(skb);
9614 size_t len;
9615
9616 /* No point in doing any of this if neither checksum nor GSO are
9617 * being requested for this frame. We can rule out both by just
9618 * checking for CHECKSUM_PARTIAL
9619 */
9620 if (skb->ip_summed != CHECKSUM_PARTIAL)
9621 return features;
9622
9623 /* We cannot support GSO if the MSS is going to be less than
9624 * 64 bytes. If it is then we need to drop support for GSO.
9625 */
9626 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9627 features &= ~NETIF_F_GSO_MASK;
9628
9629 len = skb_network_offset(skb);
9630 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9631 goto out_rm_features;
9632
9633 len = skb_network_header_len(skb);
9634 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9635 goto out_rm_features;
9636
9637 if (skb->encapsulation) {
9638 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9639 * the case of IPIP frames, the transport header pointer is
9640 * after the inner header! So check to make sure that this
9641 * is a GRE or UDP_TUNNEL frame before doing that math.
9642 */
9643 if (gso && (skb_shinfo(skb)->gso_type &
9644 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9645 len = skb_inner_network_header(skb) -
9646 skb_transport_header(skb);
9647 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9648 goto out_rm_features;
9649 }
9650
9651 len = skb_inner_network_header_len(skb);
9652 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9653 goto out_rm_features;
9654 }
9655
9656 return features;
9657out_rm_features:
9658 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9659}
9660
9661static const struct net_device_ops ice_netdev_safe_mode_ops = {
9662 .ndo_open = ice_open,
9663 .ndo_stop = ice_stop,
9664 .ndo_start_xmit = ice_start_xmit,
9665 .ndo_set_mac_address = ice_set_mac_address,
9666 .ndo_validate_addr = eth_validate_addr,
9667 .ndo_change_mtu = ice_change_mtu,
9668 .ndo_get_stats64 = ice_get_stats64,
9669 .ndo_tx_timeout = ice_tx_timeout,
9670 .ndo_bpf = ice_xdp_safe_mode,
9671};
9672
9673static const struct net_device_ops ice_netdev_ops = {
9674 .ndo_open = ice_open,
9675 .ndo_stop = ice_stop,
9676 .ndo_start_xmit = ice_start_xmit,
9677 .ndo_select_queue = ice_select_queue,
9678 .ndo_features_check = ice_features_check,
9679 .ndo_fix_features = ice_fix_features,
9680 .ndo_set_rx_mode = ice_set_rx_mode,
9681 .ndo_set_mac_address = ice_set_mac_address,
9682 .ndo_validate_addr = eth_validate_addr,
9683 .ndo_change_mtu = ice_change_mtu,
9684 .ndo_get_stats64 = ice_get_stats64,
9685 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9686 .ndo_eth_ioctl = ice_eth_ioctl,
9687 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9688 .ndo_set_vf_mac = ice_set_vf_mac,
9689 .ndo_get_vf_config = ice_get_vf_cfg,
9690 .ndo_set_vf_trust = ice_set_vf_trust,
9691 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9692 .ndo_set_vf_link_state = ice_set_vf_link_state,
9693 .ndo_get_vf_stats = ice_get_vf_stats,
9694 .ndo_set_vf_rate = ice_set_vf_bw,
9695 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9696 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9697 .ndo_setup_tc = ice_setup_tc,
9698 .ndo_set_features = ice_set_features,
9699 .ndo_bridge_getlink = ice_bridge_getlink,
9700 .ndo_bridge_setlink = ice_bridge_setlink,
9701 .ndo_fdb_add = ice_fdb_add,
9702 .ndo_fdb_del = ice_fdb_del,
9703#ifdef CONFIG_RFS_ACCEL
9704 .ndo_rx_flow_steer = ice_rx_flow_steer,
9705#endif
9706 .ndo_tx_timeout = ice_tx_timeout,
9707 .ndo_bpf = ice_xdp,
9708 .ndo_xdp_xmit = ice_xdp_xmit,
9709 .ndo_xsk_wakeup = ice_xsk_wakeup,
9710};
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <generated/utsrelease.h>
9#include "ice.h"
10#include "ice_base.h"
11#include "ice_lib.h"
12#include "ice_fltr.h"
13#include "ice_dcb_lib.h"
14#include "ice_dcb_nl.h"
15#include "ice_devlink.h"
16/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17 * ice tracepoint functions. This must be done exactly once across the
18 * ice driver.
19 */
20#define CREATE_TRACE_POINTS
21#include "ice_trace.h"
22#include "ice_eswitch.h"
23#include "ice_tc_lib.h"
24#include "ice_vsi_vlan_ops.h"
25
26#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
27static const char ice_driver_string[] = DRV_SUMMARY;
28static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29
30/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31#define ICE_DDP_PKG_PATH "intel/ice/ddp/"
32#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
33
34MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35MODULE_DESCRIPTION(DRV_SUMMARY);
36MODULE_LICENSE("GPL v2");
37MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38
39static int debug = -1;
40module_param(debug, int, 0644);
41#ifndef CONFIG_DYNAMIC_DEBUG
42MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43#else
44MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45#endif /* !CONFIG_DYNAMIC_DEBUG */
46
47static DEFINE_IDA(ice_aux_ida);
48DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49EXPORT_SYMBOL(ice_xdp_locking_key);
50
51/**
52 * ice_hw_to_dev - Get device pointer from the hardware structure
53 * @hw: pointer to the device HW structure
54 *
55 * Used to access the device pointer from compilation units which can't easily
56 * include the definition of struct ice_pf without leading to circular header
57 * dependencies.
58 */
59struct device *ice_hw_to_dev(struct ice_hw *hw)
60{
61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62
63 return &pf->pdev->dev;
64}
65
66static struct workqueue_struct *ice_wq;
67static const struct net_device_ops ice_netdev_safe_mode_ops;
68static const struct net_device_ops ice_netdev_ops;
69
70static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71
72static void ice_vsi_release_all(struct ice_pf *pf);
73
74static int ice_rebuild_channels(struct ice_pf *pf);
75static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76
77static int
78ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 void *cb_priv, enum tc_setup_type type, void *type_data,
80 void *data,
81 void (*cleanup)(struct flow_block_cb *block_cb));
82
83bool netif_is_ice(struct net_device *dev)
84{
85 return dev && (dev->netdev_ops == &ice_netdev_ops);
86}
87
88/**
89 * ice_get_tx_pending - returns number of Tx descriptors not processed
90 * @ring: the ring of descriptors
91 */
92static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93{
94 u16 head, tail;
95
96 head = ring->next_to_clean;
97 tail = ring->next_to_use;
98
99 if (head != tail)
100 return (head < tail) ?
101 tail - head : (tail + ring->count - head);
102 return 0;
103}
104
105/**
106 * ice_check_for_hang_subtask - check for and recover hung queues
107 * @pf: pointer to PF struct
108 */
109static void ice_check_for_hang_subtask(struct ice_pf *pf)
110{
111 struct ice_vsi *vsi = NULL;
112 struct ice_hw *hw;
113 unsigned int i;
114 int packets;
115 u32 v;
116
117 ice_for_each_vsi(pf, v)
118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 vsi = pf->vsi[v];
120 break;
121 }
122
123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 return;
125
126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 return;
128
129 hw = &vsi->back->hw;
130
131 ice_for_each_txq(vsi, i) {
132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133 struct ice_ring_stats *ring_stats;
134
135 if (!tx_ring)
136 continue;
137 if (ice_ring_ch_enabled(tx_ring))
138 continue;
139
140 ring_stats = tx_ring->ring_stats;
141 if (!ring_stats)
142 continue;
143
144 if (tx_ring->desc) {
145 /* If packet counter has not changed the queue is
146 * likely stalled, so force an interrupt for this
147 * queue.
148 *
149 * prev_pkt would be negative if there was no
150 * pending work.
151 */
152 packets = ring_stats->stats.pkts & INT_MAX;
153 if (ring_stats->tx_stats.prev_pkt == packets) {
154 /* Trigger sw interrupt to revive the queue */
155 ice_trigger_sw_intr(hw, tx_ring->q_vector);
156 continue;
157 }
158
159 /* Memory barrier between read of packet count and call
160 * to ice_get_tx_pending()
161 */
162 smp_rmb();
163 ring_stats->tx_stats.prev_pkt =
164 ice_get_tx_pending(tx_ring) ? packets : -1;
165 }
166 }
167}
168
169/**
170 * ice_init_mac_fltr - Set initial MAC filters
171 * @pf: board private structure
172 *
173 * Set initial set of MAC filters for PF VSI; configure filters for permanent
174 * address and broadcast address. If an error is encountered, netdevice will be
175 * unregistered.
176 */
177static int ice_init_mac_fltr(struct ice_pf *pf)
178{
179 struct ice_vsi *vsi;
180 u8 *perm_addr;
181
182 vsi = ice_get_main_vsi(pf);
183 if (!vsi)
184 return -EINVAL;
185
186 perm_addr = vsi->port_info->mac.perm_addr;
187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
188}
189
190/**
191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
192 * @netdev: the net device on which the sync is happening
193 * @addr: MAC address to sync
194 *
195 * This is a callback function which is called by the in kernel device sync
196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
198 * MAC filters from the hardware.
199 */
200static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
201{
202 struct ice_netdev_priv *np = netdev_priv(netdev);
203 struct ice_vsi *vsi = np->vsi;
204
205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
206 ICE_FWD_TO_VSI))
207 return -EINVAL;
208
209 return 0;
210}
211
212/**
213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
214 * @netdev: the net device on which the unsync is happening
215 * @addr: MAC address to unsync
216 *
217 * This is a callback function which is called by the in kernel device unsync
218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
220 * delete the MAC filters from the hardware.
221 */
222static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
223{
224 struct ice_netdev_priv *np = netdev_priv(netdev);
225 struct ice_vsi *vsi = np->vsi;
226
227 /* Under some circumstances, we might receive a request to delete our
228 * own device address from our uc list. Because we store the device
229 * address in the VSI's MAC filter list, we need to ignore such
230 * requests and not delete our device address from this list.
231 */
232 if (ether_addr_equal(addr, netdev->dev_addr))
233 return 0;
234
235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
236 ICE_FWD_TO_VSI))
237 return -EINVAL;
238
239 return 0;
240}
241
242/**
243 * ice_vsi_fltr_changed - check if filter state changed
244 * @vsi: VSI to be checked
245 *
246 * returns true if filter state has changed, false otherwise.
247 */
248static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
249{
250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
252}
253
254/**
255 * ice_set_promisc - Enable promiscuous mode for a given PF
256 * @vsi: the VSI being configured
257 * @promisc_m: mask of promiscuous config bits
258 *
259 */
260static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
261{
262 int status;
263
264 if (vsi->type != ICE_VSI_PF)
265 return 0;
266
267 if (ice_vsi_has_non_zero_vlans(vsi)) {
268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
270 promisc_m);
271 } else {
272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
273 promisc_m, 0);
274 }
275 if (status && status != -EEXIST)
276 return status;
277
278 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
279 vsi->vsi_num, promisc_m);
280 return 0;
281}
282
283/**
284 * ice_clear_promisc - Disable promiscuous mode for a given PF
285 * @vsi: the VSI being configured
286 * @promisc_m: mask of promiscuous config bits
287 *
288 */
289static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
290{
291 int status;
292
293 if (vsi->type != ICE_VSI_PF)
294 return 0;
295
296 if (ice_vsi_has_non_zero_vlans(vsi)) {
297 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
298 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
299 promisc_m);
300 } else {
301 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
302 promisc_m, 0);
303 }
304
305 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
306 vsi->vsi_num, promisc_m);
307 return status;
308}
309
310/**
311 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
312 * @vsi: ptr to the VSI
313 *
314 * Push any outstanding VSI filter changes through the AdminQ.
315 */
316static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
317{
318 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
319 struct device *dev = ice_pf_to_dev(vsi->back);
320 struct net_device *netdev = vsi->netdev;
321 bool promisc_forced_on = false;
322 struct ice_pf *pf = vsi->back;
323 struct ice_hw *hw = &pf->hw;
324 u32 changed_flags = 0;
325 int err;
326
327 if (!vsi->netdev)
328 return -EINVAL;
329
330 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
331 usleep_range(1000, 2000);
332
333 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
334 vsi->current_netdev_flags = vsi->netdev->flags;
335
336 INIT_LIST_HEAD(&vsi->tmp_sync_list);
337 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
338
339 if (ice_vsi_fltr_changed(vsi)) {
340 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
341 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
342
343 /* grab the netdev's addr_list_lock */
344 netif_addr_lock_bh(netdev);
345 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
346 ice_add_mac_to_unsync_list);
347 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
348 ice_add_mac_to_unsync_list);
349 /* our temp lists are populated. release lock */
350 netif_addr_unlock_bh(netdev);
351 }
352
353 /* Remove MAC addresses in the unsync list */
354 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
355 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
356 if (err) {
357 netdev_err(netdev, "Failed to delete MAC filters\n");
358 /* if we failed because of alloc failures, just bail */
359 if (err == -ENOMEM)
360 goto out;
361 }
362
363 /* Add MAC addresses in the sync list */
364 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
365 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
366 /* If filter is added successfully or already exists, do not go into
367 * 'if' condition and report it as error. Instead continue processing
368 * rest of the function.
369 */
370 if (err && err != -EEXIST) {
371 netdev_err(netdev, "Failed to add MAC filters\n");
372 /* If there is no more space for new umac filters, VSI
373 * should go into promiscuous mode. There should be some
374 * space reserved for promiscuous filters.
375 */
376 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
377 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
378 vsi->state)) {
379 promisc_forced_on = true;
380 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
381 vsi->vsi_num);
382 } else {
383 goto out;
384 }
385 }
386 err = 0;
387 /* check for changes in promiscuous modes */
388 if (changed_flags & IFF_ALLMULTI) {
389 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
390 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
391 if (err) {
392 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
393 goto out_promisc;
394 }
395 } else {
396 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
397 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
398 if (err) {
399 vsi->current_netdev_flags |= IFF_ALLMULTI;
400 goto out_promisc;
401 }
402 }
403 }
404
405 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
406 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
407 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
408 if (vsi->current_netdev_flags & IFF_PROMISC) {
409 /* Apply Rx filter rule to get traffic from wire */
410 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
411 err = ice_set_dflt_vsi(vsi);
412 if (err && err != -EEXIST) {
413 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
414 err, vsi->vsi_num);
415 vsi->current_netdev_flags &=
416 ~IFF_PROMISC;
417 goto out_promisc;
418 }
419 err = 0;
420 vlan_ops->dis_rx_filtering(vsi);
421
422 /* promiscuous mode implies allmulticast so
423 * that VSIs that are in promiscuous mode are
424 * subscribed to multicast packets coming to
425 * the port
426 */
427 err = ice_set_promisc(vsi,
428 ICE_MCAST_PROMISC_BITS);
429 if (err)
430 goto out_promisc;
431 }
432 } else {
433 /* Clear Rx filter to remove traffic from wire */
434 if (ice_is_vsi_dflt_vsi(vsi)) {
435 err = ice_clear_dflt_vsi(vsi);
436 if (err) {
437 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
438 err, vsi->vsi_num);
439 vsi->current_netdev_flags |=
440 IFF_PROMISC;
441 goto out_promisc;
442 }
443 if (vsi->netdev->features &
444 NETIF_F_HW_VLAN_CTAG_FILTER)
445 vlan_ops->ena_rx_filtering(vsi);
446 }
447
448 /* disable allmulti here, but only if allmulti is not
449 * still enabled for the netdev
450 */
451 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
452 err = ice_clear_promisc(vsi,
453 ICE_MCAST_PROMISC_BITS);
454 if (err) {
455 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
456 err, vsi->vsi_num);
457 }
458 }
459 }
460 }
461 goto exit;
462
463out_promisc:
464 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
465 goto exit;
466out:
467 /* if something went wrong then set the changed flag so we try again */
468 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
469 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
470exit:
471 clear_bit(ICE_CFG_BUSY, vsi->state);
472 return err;
473}
474
475/**
476 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
477 * @pf: board private structure
478 */
479static void ice_sync_fltr_subtask(struct ice_pf *pf)
480{
481 int v;
482
483 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
484 return;
485
486 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
487
488 ice_for_each_vsi(pf, v)
489 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
490 ice_vsi_sync_fltr(pf->vsi[v])) {
491 /* come back and try again later */
492 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
493 break;
494 }
495}
496
497/**
498 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
499 * @pf: the PF
500 * @locked: is the rtnl_lock already held
501 */
502static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
503{
504 int node;
505 int v;
506
507 ice_for_each_vsi(pf, v)
508 if (pf->vsi[v])
509 ice_dis_vsi(pf->vsi[v], locked);
510
511 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
512 pf->pf_agg_node[node].num_vsis = 0;
513
514 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
515 pf->vf_agg_node[node].num_vsis = 0;
516}
517
518/**
519 * ice_clear_sw_switch_recipes - clear switch recipes
520 * @pf: board private structure
521 *
522 * Mark switch recipes as not created in sw structures. There are cases where
523 * rules (especially advanced rules) need to be restored, either re-read from
524 * hardware or added again. For example after the reset. 'recp_created' flag
525 * prevents from doing that and need to be cleared upfront.
526 */
527static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
528{
529 struct ice_sw_recipe *recp;
530 u8 i;
531
532 recp = pf->hw.switch_info->recp_list;
533 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
534 recp[i].recp_created = false;
535}
536
537/**
538 * ice_prepare_for_reset - prep for reset
539 * @pf: board private structure
540 * @reset_type: reset type requested
541 *
542 * Inform or close all dependent features in prep for reset.
543 */
544static void
545ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
546{
547 struct ice_hw *hw = &pf->hw;
548 struct ice_vsi *vsi;
549 struct ice_vf *vf;
550 unsigned int bkt;
551
552 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
553
554 /* already prepared for reset */
555 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
556 return;
557
558 ice_unplug_aux_dev(pf);
559
560 /* Notify VFs of impending reset */
561 if (ice_check_sq_alive(hw, &hw->mailboxq))
562 ice_vc_notify_reset(pf);
563
564 /* Disable VFs until reset is completed */
565 mutex_lock(&pf->vfs.table_lock);
566 ice_for_each_vf(pf, bkt, vf)
567 ice_set_vf_state_qs_dis(vf);
568 mutex_unlock(&pf->vfs.table_lock);
569
570 if (ice_is_eswitch_mode_switchdev(pf)) {
571 if (reset_type != ICE_RESET_PFR)
572 ice_clear_sw_switch_recipes(pf);
573 }
574
575 /* release ADQ specific HW and SW resources */
576 vsi = ice_get_main_vsi(pf);
577 if (!vsi)
578 goto skip;
579
580 /* to be on safe side, reset orig_rss_size so that normal flow
581 * of deciding rss_size can take precedence
582 */
583 vsi->orig_rss_size = 0;
584
585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
586 if (reset_type == ICE_RESET_PFR) {
587 vsi->old_ena_tc = vsi->all_enatc;
588 vsi->old_numtc = vsi->all_numtc;
589 } else {
590 ice_remove_q_channels(vsi, true);
591
592 /* for other reset type, do not support channel rebuild
593 * hence reset needed info
594 */
595 vsi->old_ena_tc = 0;
596 vsi->all_enatc = 0;
597 vsi->old_numtc = 0;
598 vsi->all_numtc = 0;
599 vsi->req_txq = 0;
600 vsi->req_rxq = 0;
601 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
602 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
603 }
604 }
605skip:
606
607 /* clear SW filtering DB */
608 ice_clear_hw_tbls(hw);
609 /* disable the VSIs and their queues that are not already DOWN */
610 ice_pf_dis_all_vsi(pf, false);
611
612 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
613 ice_ptp_prepare_for_reset(pf);
614
615 if (ice_is_feature_supported(pf, ICE_F_GNSS))
616 ice_gnss_exit(pf);
617
618 if (hw->port_info)
619 ice_sched_clear_port(hw->port_info);
620
621 ice_shutdown_all_ctrlq(hw);
622
623 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
624}
625
626/**
627 * ice_do_reset - Initiate one of many types of resets
628 * @pf: board private structure
629 * @reset_type: reset type requested before this function was called.
630 */
631static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
632{
633 struct device *dev = ice_pf_to_dev(pf);
634 struct ice_hw *hw = &pf->hw;
635
636 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
637
638 ice_prepare_for_reset(pf, reset_type);
639
640 /* trigger the reset */
641 if (ice_reset(hw, reset_type)) {
642 dev_err(dev, "reset %d failed\n", reset_type);
643 set_bit(ICE_RESET_FAILED, pf->state);
644 clear_bit(ICE_RESET_OICR_RECV, pf->state);
645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
646 clear_bit(ICE_PFR_REQ, pf->state);
647 clear_bit(ICE_CORER_REQ, pf->state);
648 clear_bit(ICE_GLOBR_REQ, pf->state);
649 wake_up(&pf->reset_wait_queue);
650 return;
651 }
652
653 /* PFR is a bit of a special case because it doesn't result in an OICR
654 * interrupt. So for PFR, rebuild after the reset and clear the reset-
655 * associated state bits.
656 */
657 if (reset_type == ICE_RESET_PFR) {
658 pf->pfr_count++;
659 ice_rebuild(pf, reset_type);
660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
661 clear_bit(ICE_PFR_REQ, pf->state);
662 wake_up(&pf->reset_wait_queue);
663 ice_reset_all_vfs(pf);
664 }
665}
666
667/**
668 * ice_reset_subtask - Set up for resetting the device and driver
669 * @pf: board private structure
670 */
671static void ice_reset_subtask(struct ice_pf *pf)
672{
673 enum ice_reset_req reset_type = ICE_RESET_INVAL;
674
675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
677 * of reset is pending and sets bits in pf->state indicating the reset
678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
679 * prepare for pending reset if not already (for PF software-initiated
680 * global resets the software should already be prepared for it as
681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
682 * by firmware or software on other PFs, that bit is not set so prepare
683 * for the reset now), poll for reset done, rebuild and return.
684 */
685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
686 /* Perform the largest reset requested */
687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
688 reset_type = ICE_RESET_CORER;
689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
690 reset_type = ICE_RESET_GLOBR;
691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
692 reset_type = ICE_RESET_EMPR;
693 /* return if no valid reset type requested */
694 if (reset_type == ICE_RESET_INVAL)
695 return;
696 ice_prepare_for_reset(pf, reset_type);
697
698 /* make sure we are ready to rebuild */
699 if (ice_check_reset(&pf->hw)) {
700 set_bit(ICE_RESET_FAILED, pf->state);
701 } else {
702 /* done with reset. start rebuild */
703 pf->hw.reset_ongoing = false;
704 ice_rebuild(pf, reset_type);
705 /* clear bit to resume normal operations, but
706 * ICE_NEEDS_RESTART bit is set in case rebuild failed
707 */
708 clear_bit(ICE_RESET_OICR_RECV, pf->state);
709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
710 clear_bit(ICE_PFR_REQ, pf->state);
711 clear_bit(ICE_CORER_REQ, pf->state);
712 clear_bit(ICE_GLOBR_REQ, pf->state);
713 wake_up(&pf->reset_wait_queue);
714 ice_reset_all_vfs(pf);
715 }
716
717 return;
718 }
719
720 /* No pending resets to finish processing. Check for new resets */
721 if (test_bit(ICE_PFR_REQ, pf->state))
722 reset_type = ICE_RESET_PFR;
723 if (test_bit(ICE_CORER_REQ, pf->state))
724 reset_type = ICE_RESET_CORER;
725 if (test_bit(ICE_GLOBR_REQ, pf->state))
726 reset_type = ICE_RESET_GLOBR;
727 /* If no valid reset type requested just return */
728 if (reset_type == ICE_RESET_INVAL)
729 return;
730
731 /* reset if not already down or busy */
732 if (!test_bit(ICE_DOWN, pf->state) &&
733 !test_bit(ICE_CFG_BUSY, pf->state)) {
734 ice_do_reset(pf, reset_type);
735 }
736}
737
738/**
739 * ice_print_topo_conflict - print topology conflict message
740 * @vsi: the VSI whose topology status is being checked
741 */
742static void ice_print_topo_conflict(struct ice_vsi *vsi)
743{
744 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
745 case ICE_AQ_LINK_TOPO_CONFLICT:
746 case ICE_AQ_LINK_MEDIA_CONFLICT:
747 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
748 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
749 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
750 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
751 break;
752 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
754 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
755 else
756 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
757 break;
758 default:
759 break;
760 }
761}
762
763/**
764 * ice_print_link_msg - print link up or down message
765 * @vsi: the VSI whose link status is being queried
766 * @isup: boolean for if the link is now up or down
767 */
768void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
769{
770 struct ice_aqc_get_phy_caps_data *caps;
771 const char *an_advertised;
772 const char *fec_req;
773 const char *speed;
774 const char *fec;
775 const char *fc;
776 const char *an;
777 int status;
778
779 if (!vsi)
780 return;
781
782 if (vsi->current_isup == isup)
783 return;
784
785 vsi->current_isup = isup;
786
787 if (!isup) {
788 netdev_info(vsi->netdev, "NIC Link is Down\n");
789 return;
790 }
791
792 switch (vsi->port_info->phy.link_info.link_speed) {
793 case ICE_AQ_LINK_SPEED_100GB:
794 speed = "100 G";
795 break;
796 case ICE_AQ_LINK_SPEED_50GB:
797 speed = "50 G";
798 break;
799 case ICE_AQ_LINK_SPEED_40GB:
800 speed = "40 G";
801 break;
802 case ICE_AQ_LINK_SPEED_25GB:
803 speed = "25 G";
804 break;
805 case ICE_AQ_LINK_SPEED_20GB:
806 speed = "20 G";
807 break;
808 case ICE_AQ_LINK_SPEED_10GB:
809 speed = "10 G";
810 break;
811 case ICE_AQ_LINK_SPEED_5GB:
812 speed = "5 G";
813 break;
814 case ICE_AQ_LINK_SPEED_2500MB:
815 speed = "2.5 G";
816 break;
817 case ICE_AQ_LINK_SPEED_1000MB:
818 speed = "1 G";
819 break;
820 case ICE_AQ_LINK_SPEED_100MB:
821 speed = "100 M";
822 break;
823 default:
824 speed = "Unknown ";
825 break;
826 }
827
828 switch (vsi->port_info->fc.current_mode) {
829 case ICE_FC_FULL:
830 fc = "Rx/Tx";
831 break;
832 case ICE_FC_TX_PAUSE:
833 fc = "Tx";
834 break;
835 case ICE_FC_RX_PAUSE:
836 fc = "Rx";
837 break;
838 case ICE_FC_NONE:
839 fc = "None";
840 break;
841 default:
842 fc = "Unknown";
843 break;
844 }
845
846 /* Get FEC mode based on negotiated link info */
847 switch (vsi->port_info->phy.link_info.fec_info) {
848 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
849 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
850 fec = "RS-FEC";
851 break;
852 case ICE_AQ_LINK_25G_KR_FEC_EN:
853 fec = "FC-FEC/BASE-R";
854 break;
855 default:
856 fec = "NONE";
857 break;
858 }
859
860 /* check if autoneg completed, might be false due to not supported */
861 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
862 an = "True";
863 else
864 an = "False";
865
866 /* Get FEC mode requested based on PHY caps last SW configuration */
867 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
868 if (!caps) {
869 fec_req = "Unknown";
870 an_advertised = "Unknown";
871 goto done;
872 }
873
874 status = ice_aq_get_phy_caps(vsi->port_info, false,
875 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
876 if (status)
877 netdev_info(vsi->netdev, "Get phy capability failed.\n");
878
879 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
880
881 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
882 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
883 fec_req = "RS-FEC";
884 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
885 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
886 fec_req = "FC-FEC/BASE-R";
887 else
888 fec_req = "NONE";
889
890 kfree(caps);
891
892done:
893 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
894 speed, fec_req, fec, an_advertised, an, fc);
895 ice_print_topo_conflict(vsi);
896}
897
898/**
899 * ice_vsi_link_event - update the VSI's netdev
900 * @vsi: the VSI on which the link event occurred
901 * @link_up: whether or not the VSI needs to be set up or down
902 */
903static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
904{
905 if (!vsi)
906 return;
907
908 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
909 return;
910
911 if (vsi->type == ICE_VSI_PF) {
912 if (link_up == netif_carrier_ok(vsi->netdev))
913 return;
914
915 if (link_up) {
916 netif_carrier_on(vsi->netdev);
917 netif_tx_wake_all_queues(vsi->netdev);
918 } else {
919 netif_carrier_off(vsi->netdev);
920 netif_tx_stop_all_queues(vsi->netdev);
921 }
922 }
923}
924
925/**
926 * ice_set_dflt_mib - send a default config MIB to the FW
927 * @pf: private PF struct
928 *
929 * This function sends a default configuration MIB to the FW.
930 *
931 * If this function errors out at any point, the driver is still able to
932 * function. The main impact is that LFC may not operate as expected.
933 * Therefore an error state in this function should be treated with a DBG
934 * message and continue on with driver rebuild/reenable.
935 */
936static void ice_set_dflt_mib(struct ice_pf *pf)
937{
938 struct device *dev = ice_pf_to_dev(pf);
939 u8 mib_type, *buf, *lldpmib = NULL;
940 u16 len, typelen, offset = 0;
941 struct ice_lldp_org_tlv *tlv;
942 struct ice_hw *hw = &pf->hw;
943 u32 ouisubtype;
944
945 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
946 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
947 if (!lldpmib) {
948 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
949 __func__);
950 return;
951 }
952
953 /* Add ETS CFG TLV */
954 tlv = (struct ice_lldp_org_tlv *)lldpmib;
955 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
956 ICE_IEEE_ETS_TLV_LEN);
957 tlv->typelen = htons(typelen);
958 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
959 ICE_IEEE_SUBTYPE_ETS_CFG);
960 tlv->ouisubtype = htonl(ouisubtype);
961
962 buf = tlv->tlvinfo;
963 buf[0] = 0;
964
965 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
966 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
967 * Octets 13 - 20 are TSA values - leave as zeros
968 */
969 buf[5] = 0x64;
970 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
971 offset += len + 2;
972 tlv = (struct ice_lldp_org_tlv *)
973 ((char *)tlv + sizeof(tlv->typelen) + len);
974
975 /* Add ETS REC TLV */
976 buf = tlv->tlvinfo;
977 tlv->typelen = htons(typelen);
978
979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
980 ICE_IEEE_SUBTYPE_ETS_REC);
981 tlv->ouisubtype = htonl(ouisubtype);
982
983 /* First octet of buf is reserved
984 * Octets 1 - 4 map UP to TC - all UPs map to zero
985 * Octets 5 - 12 are BW values - set TC 0 to 100%.
986 * Octets 13 - 20 are TSA value - leave as zeros
987 */
988 buf[5] = 0x64;
989 offset += len + 2;
990 tlv = (struct ice_lldp_org_tlv *)
991 ((char *)tlv + sizeof(tlv->typelen) + len);
992
993 /* Add PFC CFG TLV */
994 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
995 ICE_IEEE_PFC_TLV_LEN);
996 tlv->typelen = htons(typelen);
997
998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
999 ICE_IEEE_SUBTYPE_PFC_CFG);
1000 tlv->ouisubtype = htonl(ouisubtype);
1001
1002 /* Octet 1 left as all zeros - PFC disabled */
1003 buf[0] = 0x08;
1004 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
1005 offset += len + 2;
1006
1007 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1008 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1009
1010 kfree(lldpmib);
1011}
1012
1013/**
1014 * ice_check_phy_fw_load - check if PHY FW load failed
1015 * @pf: pointer to PF struct
1016 * @link_cfg_err: bitmap from the link info structure
1017 *
1018 * check if external PHY FW load failed and print an error message if it did
1019 */
1020static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1021{
1022 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1023 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1024 return;
1025 }
1026
1027 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1028 return;
1029
1030 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1031 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1032 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1033 }
1034}
1035
1036/**
1037 * ice_check_module_power
1038 * @pf: pointer to PF struct
1039 * @link_cfg_err: bitmap from the link info structure
1040 *
1041 * check module power level returned by a previous call to aq_get_link_info
1042 * and print error messages if module power level is not supported
1043 */
1044static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1045{
1046 /* if module power level is supported, clear the flag */
1047 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1048 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1049 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1050 return;
1051 }
1052
1053 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1054 * above block didn't clear this bit, there's nothing to do
1055 */
1056 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1057 return;
1058
1059 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1060 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1061 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1062 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1063 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1064 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1065 }
1066}
1067
1068/**
1069 * ice_check_link_cfg_err - check if link configuration failed
1070 * @pf: pointer to the PF struct
1071 * @link_cfg_err: bitmap from the link info structure
1072 *
1073 * print if any link configuration failure happens due to the value in the
1074 * link_cfg_err parameter in the link info structure
1075 */
1076static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1077{
1078 ice_check_module_power(pf, link_cfg_err);
1079 ice_check_phy_fw_load(pf, link_cfg_err);
1080}
1081
1082/**
1083 * ice_link_event - process the link event
1084 * @pf: PF that the link event is associated with
1085 * @pi: port_info for the port that the link event is associated with
1086 * @link_up: true if the physical link is up and false if it is down
1087 * @link_speed: current link speed received from the link event
1088 *
1089 * Returns 0 on success and negative on failure
1090 */
1091static int
1092ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1093 u16 link_speed)
1094{
1095 struct device *dev = ice_pf_to_dev(pf);
1096 struct ice_phy_info *phy_info;
1097 struct ice_vsi *vsi;
1098 u16 old_link_speed;
1099 bool old_link;
1100 int status;
1101
1102 phy_info = &pi->phy;
1103 phy_info->link_info_old = phy_info->link_info;
1104
1105 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1106 old_link_speed = phy_info->link_info_old.link_speed;
1107
1108 /* update the link info structures and re-enable link events,
1109 * don't bail on failure due to other book keeping needed
1110 */
1111 status = ice_update_link_info(pi);
1112 if (status)
1113 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1114 pi->lport, status,
1115 ice_aq_str(pi->hw->adminq.sq_last_status));
1116
1117 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1118
1119 /* Check if the link state is up after updating link info, and treat
1120 * this event as an UP event since the link is actually UP now.
1121 */
1122 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1123 link_up = true;
1124
1125 vsi = ice_get_main_vsi(pf);
1126 if (!vsi || !vsi->port_info)
1127 return -EINVAL;
1128
1129 /* turn off PHY if media was removed */
1130 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1131 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1133 ice_set_link(vsi, false);
1134 }
1135
1136 /* if the old link up/down and speed is the same as the new */
1137 if (link_up == old_link && link_speed == old_link_speed)
1138 return 0;
1139
1140 ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1141
1142 if (ice_is_dcb_active(pf)) {
1143 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1144 ice_dcb_rebuild(pf);
1145 } else {
1146 if (link_up)
1147 ice_set_dflt_mib(pf);
1148 }
1149 ice_vsi_link_event(vsi, link_up);
1150 ice_print_link_msg(vsi, link_up);
1151
1152 ice_vc_notify_link_state(pf);
1153
1154 return 0;
1155}
1156
1157/**
1158 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1159 * @pf: board private structure
1160 */
1161static void ice_watchdog_subtask(struct ice_pf *pf)
1162{
1163 int i;
1164
1165 /* if interface is down do nothing */
1166 if (test_bit(ICE_DOWN, pf->state) ||
1167 test_bit(ICE_CFG_BUSY, pf->state))
1168 return;
1169
1170 /* make sure we don't do these things too often */
1171 if (time_before(jiffies,
1172 pf->serv_tmr_prev + pf->serv_tmr_period))
1173 return;
1174
1175 pf->serv_tmr_prev = jiffies;
1176
1177 /* Update the stats for active netdevs so the network stack
1178 * can look at updated numbers whenever it cares to
1179 */
1180 ice_update_pf_stats(pf);
1181 ice_for_each_vsi(pf, i)
1182 if (pf->vsi[i] && pf->vsi[i]->netdev)
1183 ice_update_vsi_stats(pf->vsi[i]);
1184}
1185
1186/**
1187 * ice_init_link_events - enable/initialize link events
1188 * @pi: pointer to the port_info instance
1189 *
1190 * Returns -EIO on failure, 0 on success
1191 */
1192static int ice_init_link_events(struct ice_port_info *pi)
1193{
1194 u16 mask;
1195
1196 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1197 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1198 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1199
1200 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1201 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1202 pi->lport);
1203 return -EIO;
1204 }
1205
1206 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1207 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1208 pi->lport);
1209 return -EIO;
1210 }
1211
1212 return 0;
1213}
1214
1215/**
1216 * ice_handle_link_event - handle link event via ARQ
1217 * @pf: PF that the link event is associated with
1218 * @event: event structure containing link status info
1219 */
1220static int
1221ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1222{
1223 struct ice_aqc_get_link_status_data *link_data;
1224 struct ice_port_info *port_info;
1225 int status;
1226
1227 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1228 port_info = pf->hw.port_info;
1229 if (!port_info)
1230 return -EINVAL;
1231
1232 status = ice_link_event(pf, port_info,
1233 !!(link_data->link_info & ICE_AQ_LINK_UP),
1234 le16_to_cpu(link_data->link_speed));
1235 if (status)
1236 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1237 status);
1238
1239 return status;
1240}
1241
1242enum ice_aq_task_state {
1243 ICE_AQ_TASK_WAITING = 0,
1244 ICE_AQ_TASK_COMPLETE,
1245 ICE_AQ_TASK_CANCELED,
1246};
1247
1248struct ice_aq_task {
1249 struct hlist_node entry;
1250
1251 u16 opcode;
1252 struct ice_rq_event_info *event;
1253 enum ice_aq_task_state state;
1254};
1255
1256/**
1257 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1258 * @pf: pointer to the PF private structure
1259 * @opcode: the opcode to wait for
1260 * @timeout: how long to wait, in jiffies
1261 * @event: storage for the event info
1262 *
1263 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1264 * current thread will be put to sleep until the specified event occurs or
1265 * until the given timeout is reached.
1266 *
1267 * To obtain only the descriptor contents, pass an event without an allocated
1268 * msg_buf. If the complete data buffer is desired, allocate the
1269 * event->msg_buf with enough space ahead of time.
1270 *
1271 * Returns: zero on success, or a negative error code on failure.
1272 */
1273int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1274 struct ice_rq_event_info *event)
1275{
1276 struct device *dev = ice_pf_to_dev(pf);
1277 struct ice_aq_task *task;
1278 unsigned long start;
1279 long ret;
1280 int err;
1281
1282 task = kzalloc(sizeof(*task), GFP_KERNEL);
1283 if (!task)
1284 return -ENOMEM;
1285
1286 INIT_HLIST_NODE(&task->entry);
1287 task->opcode = opcode;
1288 task->event = event;
1289 task->state = ICE_AQ_TASK_WAITING;
1290
1291 spin_lock_bh(&pf->aq_wait_lock);
1292 hlist_add_head(&task->entry, &pf->aq_wait_list);
1293 spin_unlock_bh(&pf->aq_wait_lock);
1294
1295 start = jiffies;
1296
1297 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1298 timeout);
1299 switch (task->state) {
1300 case ICE_AQ_TASK_WAITING:
1301 err = ret < 0 ? ret : -ETIMEDOUT;
1302 break;
1303 case ICE_AQ_TASK_CANCELED:
1304 err = ret < 0 ? ret : -ECANCELED;
1305 break;
1306 case ICE_AQ_TASK_COMPLETE:
1307 err = ret < 0 ? ret : 0;
1308 break;
1309 default:
1310 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1311 err = -EINVAL;
1312 break;
1313 }
1314
1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1316 jiffies_to_msecs(jiffies - start),
1317 jiffies_to_msecs(timeout),
1318 opcode);
1319
1320 spin_lock_bh(&pf->aq_wait_lock);
1321 hlist_del(&task->entry);
1322 spin_unlock_bh(&pf->aq_wait_lock);
1323 kfree(task);
1324
1325 return err;
1326}
1327
1328/**
1329 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1330 * @pf: pointer to the PF private structure
1331 * @opcode: the opcode of the event
1332 * @event: the event to check
1333 *
1334 * Loops over the current list of pending threads waiting for an AdminQ event.
1335 * For each matching task, copy the contents of the event into the task
1336 * structure and wake up the thread.
1337 *
1338 * If multiple threads wait for the same opcode, they will all be woken up.
1339 *
1340 * Note that event->msg_buf will only be duplicated if the event has a buffer
1341 * with enough space already allocated. Otherwise, only the descriptor and
1342 * message length will be copied.
1343 *
1344 * Returns: true if an event was found, false otherwise
1345 */
1346static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1347 struct ice_rq_event_info *event)
1348{
1349 struct ice_aq_task *task;
1350 bool found = false;
1351
1352 spin_lock_bh(&pf->aq_wait_lock);
1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1354 if (task->state || task->opcode != opcode)
1355 continue;
1356
1357 memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1358 task->event->msg_len = event->msg_len;
1359
1360 /* Only copy the data buffer if a destination was set */
1361 if (task->event->msg_buf &&
1362 task->event->buf_len > event->buf_len) {
1363 memcpy(task->event->msg_buf, event->msg_buf,
1364 event->buf_len);
1365 task->event->buf_len = event->buf_len;
1366 }
1367
1368 task->state = ICE_AQ_TASK_COMPLETE;
1369 found = true;
1370 }
1371 spin_unlock_bh(&pf->aq_wait_lock);
1372
1373 if (found)
1374 wake_up(&pf->aq_wait_queue);
1375}
1376
1377/**
1378 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1379 * @pf: the PF private structure
1380 *
1381 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1382 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1383 */
1384static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1385{
1386 struct ice_aq_task *task;
1387
1388 spin_lock_bh(&pf->aq_wait_lock);
1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1390 task->state = ICE_AQ_TASK_CANCELED;
1391 spin_unlock_bh(&pf->aq_wait_lock);
1392
1393 wake_up(&pf->aq_wait_queue);
1394}
1395
1396/**
1397 * __ice_clean_ctrlq - helper function to clean controlq rings
1398 * @pf: ptr to struct ice_pf
1399 * @q_type: specific Control queue type
1400 */
1401static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1402{
1403 struct device *dev = ice_pf_to_dev(pf);
1404 struct ice_rq_event_info event;
1405 struct ice_hw *hw = &pf->hw;
1406 struct ice_ctl_q_info *cq;
1407 u16 pending, i = 0;
1408 const char *qtype;
1409 u32 oldval, val;
1410
1411 /* Do not clean control queue if/when PF reset fails */
1412 if (test_bit(ICE_RESET_FAILED, pf->state))
1413 return 0;
1414
1415 switch (q_type) {
1416 case ICE_CTL_Q_ADMIN:
1417 cq = &hw->adminq;
1418 qtype = "Admin";
1419 break;
1420 case ICE_CTL_Q_SB:
1421 cq = &hw->sbq;
1422 qtype = "Sideband";
1423 break;
1424 case ICE_CTL_Q_MAILBOX:
1425 cq = &hw->mailboxq;
1426 qtype = "Mailbox";
1427 /* we are going to try to detect a malicious VF, so set the
1428 * state to begin detection
1429 */
1430 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1431 break;
1432 default:
1433 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1434 return 0;
1435 }
1436
1437 /* check for error indications - PF_xx_AxQLEN register layout for
1438 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1439 */
1440 val = rd32(hw, cq->rq.len);
1441 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1442 PF_FW_ARQLEN_ARQCRIT_M)) {
1443 oldval = val;
1444 if (val & PF_FW_ARQLEN_ARQVFE_M)
1445 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1446 qtype);
1447 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1448 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1449 qtype);
1450 }
1451 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1452 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1453 qtype);
1454 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1455 PF_FW_ARQLEN_ARQCRIT_M);
1456 if (oldval != val)
1457 wr32(hw, cq->rq.len, val);
1458 }
1459
1460 val = rd32(hw, cq->sq.len);
1461 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1462 PF_FW_ATQLEN_ATQCRIT_M)) {
1463 oldval = val;
1464 if (val & PF_FW_ATQLEN_ATQVFE_M)
1465 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1466 qtype);
1467 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1468 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1469 qtype);
1470 }
1471 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1472 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1473 qtype);
1474 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1475 PF_FW_ATQLEN_ATQCRIT_M);
1476 if (oldval != val)
1477 wr32(hw, cq->sq.len, val);
1478 }
1479
1480 event.buf_len = cq->rq_buf_size;
1481 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1482 if (!event.msg_buf)
1483 return 0;
1484
1485 do {
1486 u16 opcode;
1487 int ret;
1488
1489 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1490 if (ret == -EALREADY)
1491 break;
1492 if (ret) {
1493 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1494 ret);
1495 break;
1496 }
1497
1498 opcode = le16_to_cpu(event.desc.opcode);
1499
1500 /* Notify any thread that might be waiting for this event */
1501 ice_aq_check_events(pf, opcode, &event);
1502
1503 switch (opcode) {
1504 case ice_aqc_opc_get_link_status:
1505 if (ice_handle_link_event(pf, &event))
1506 dev_err(dev, "Could not handle link event\n");
1507 break;
1508 case ice_aqc_opc_event_lan_overflow:
1509 ice_vf_lan_overflow_event(pf, &event);
1510 break;
1511 case ice_mbx_opc_send_msg_to_pf:
1512 if (!ice_is_malicious_vf(pf, &event, i, pending))
1513 ice_vc_process_vf_msg(pf, &event);
1514 break;
1515 case ice_aqc_opc_fw_logging:
1516 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1517 break;
1518 case ice_aqc_opc_lldp_set_mib_change:
1519 ice_dcb_process_lldp_set_mib_change(pf, &event);
1520 break;
1521 default:
1522 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1523 qtype, opcode);
1524 break;
1525 }
1526 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1527
1528 kfree(event.msg_buf);
1529
1530 return pending && (i == ICE_DFLT_IRQ_WORK);
1531}
1532
1533/**
1534 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1535 * @hw: pointer to hardware info
1536 * @cq: control queue information
1537 *
1538 * returns true if there are pending messages in a queue, false if there aren't
1539 */
1540static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1541{
1542 u16 ntu;
1543
1544 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1545 return cq->rq.next_to_clean != ntu;
1546}
1547
1548/**
1549 * ice_clean_adminq_subtask - clean the AdminQ rings
1550 * @pf: board private structure
1551 */
1552static void ice_clean_adminq_subtask(struct ice_pf *pf)
1553{
1554 struct ice_hw *hw = &pf->hw;
1555
1556 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1557 return;
1558
1559 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1560 return;
1561
1562 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1563
1564 /* There might be a situation where new messages arrive to a control
1565 * queue between processing the last message and clearing the
1566 * EVENT_PENDING bit. So before exiting, check queue head again (using
1567 * ice_ctrlq_pending) and process new messages if any.
1568 */
1569 if (ice_ctrlq_pending(hw, &hw->adminq))
1570 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1571
1572 ice_flush(hw);
1573}
1574
1575/**
1576 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1577 * @pf: board private structure
1578 */
1579static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1580{
1581 struct ice_hw *hw = &pf->hw;
1582
1583 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1584 return;
1585
1586 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1587 return;
1588
1589 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1590
1591 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1592 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1593
1594 ice_flush(hw);
1595}
1596
1597/**
1598 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1599 * @pf: board private structure
1600 */
1601static void ice_clean_sbq_subtask(struct ice_pf *pf)
1602{
1603 struct ice_hw *hw = &pf->hw;
1604
1605 /* Nothing to do here if sideband queue is not supported */
1606 if (!ice_is_sbq_supported(hw)) {
1607 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1608 return;
1609 }
1610
1611 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1612 return;
1613
1614 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1615 return;
1616
1617 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1618
1619 if (ice_ctrlq_pending(hw, &hw->sbq))
1620 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1621
1622 ice_flush(hw);
1623}
1624
1625/**
1626 * ice_service_task_schedule - schedule the service task to wake up
1627 * @pf: board private structure
1628 *
1629 * If not already scheduled, this puts the task into the work queue.
1630 */
1631void ice_service_task_schedule(struct ice_pf *pf)
1632{
1633 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1634 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1635 !test_bit(ICE_NEEDS_RESTART, pf->state))
1636 queue_work(ice_wq, &pf->serv_task);
1637}
1638
1639/**
1640 * ice_service_task_complete - finish up the service task
1641 * @pf: board private structure
1642 */
1643static void ice_service_task_complete(struct ice_pf *pf)
1644{
1645 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1646
1647 /* force memory (pf->state) to sync before next service task */
1648 smp_mb__before_atomic();
1649 clear_bit(ICE_SERVICE_SCHED, pf->state);
1650}
1651
1652/**
1653 * ice_service_task_stop - stop service task and cancel works
1654 * @pf: board private structure
1655 *
1656 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1657 * 1 otherwise.
1658 */
1659static int ice_service_task_stop(struct ice_pf *pf)
1660{
1661 int ret;
1662
1663 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1664
1665 if (pf->serv_tmr.function)
1666 del_timer_sync(&pf->serv_tmr);
1667 if (pf->serv_task.func)
1668 cancel_work_sync(&pf->serv_task);
1669
1670 clear_bit(ICE_SERVICE_SCHED, pf->state);
1671 return ret;
1672}
1673
1674/**
1675 * ice_service_task_restart - restart service task and schedule works
1676 * @pf: board private structure
1677 *
1678 * This function is needed for suspend and resume works (e.g WoL scenario)
1679 */
1680static void ice_service_task_restart(struct ice_pf *pf)
1681{
1682 clear_bit(ICE_SERVICE_DIS, pf->state);
1683 ice_service_task_schedule(pf);
1684}
1685
1686/**
1687 * ice_service_timer - timer callback to schedule service task
1688 * @t: pointer to timer_list
1689 */
1690static void ice_service_timer(struct timer_list *t)
1691{
1692 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1693
1694 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1695 ice_service_task_schedule(pf);
1696}
1697
1698/**
1699 * ice_handle_mdd_event - handle malicious driver detect event
1700 * @pf: pointer to the PF structure
1701 *
1702 * Called from service task. OICR interrupt handler indicates MDD event.
1703 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1704 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1705 * disable the queue, the PF can be configured to reset the VF using ethtool
1706 * private flag mdd-auto-reset-vf.
1707 */
1708static void ice_handle_mdd_event(struct ice_pf *pf)
1709{
1710 struct device *dev = ice_pf_to_dev(pf);
1711 struct ice_hw *hw = &pf->hw;
1712 struct ice_vf *vf;
1713 unsigned int bkt;
1714 u32 reg;
1715
1716 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1717 /* Since the VF MDD event logging is rate limited, check if
1718 * there are pending MDD events.
1719 */
1720 ice_print_vfs_mdd_events(pf);
1721 return;
1722 }
1723
1724 /* find what triggered an MDD event */
1725 reg = rd32(hw, GL_MDET_TX_PQM);
1726 if (reg & GL_MDET_TX_PQM_VALID_M) {
1727 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1728 GL_MDET_TX_PQM_PF_NUM_S;
1729 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1730 GL_MDET_TX_PQM_VF_NUM_S;
1731 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1732 GL_MDET_TX_PQM_MAL_TYPE_S;
1733 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1734 GL_MDET_TX_PQM_QNUM_S);
1735
1736 if (netif_msg_tx_err(pf))
1737 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1738 event, queue, pf_num, vf_num);
1739 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1740 }
1741
1742 reg = rd32(hw, GL_MDET_TX_TCLAN);
1743 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1744 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1745 GL_MDET_TX_TCLAN_PF_NUM_S;
1746 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1747 GL_MDET_TX_TCLAN_VF_NUM_S;
1748 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1749 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1750 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1751 GL_MDET_TX_TCLAN_QNUM_S);
1752
1753 if (netif_msg_tx_err(pf))
1754 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1755 event, queue, pf_num, vf_num);
1756 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1757 }
1758
1759 reg = rd32(hw, GL_MDET_RX);
1760 if (reg & GL_MDET_RX_VALID_M) {
1761 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1762 GL_MDET_RX_PF_NUM_S;
1763 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1764 GL_MDET_RX_VF_NUM_S;
1765 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1766 GL_MDET_RX_MAL_TYPE_S;
1767 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1768 GL_MDET_RX_QNUM_S);
1769
1770 if (netif_msg_rx_err(pf))
1771 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1772 event, queue, pf_num, vf_num);
1773 wr32(hw, GL_MDET_RX, 0xffffffff);
1774 }
1775
1776 /* check to see if this PF caused an MDD event */
1777 reg = rd32(hw, PF_MDET_TX_PQM);
1778 if (reg & PF_MDET_TX_PQM_VALID_M) {
1779 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1780 if (netif_msg_tx_err(pf))
1781 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1782 }
1783
1784 reg = rd32(hw, PF_MDET_TX_TCLAN);
1785 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1786 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1787 if (netif_msg_tx_err(pf))
1788 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1789 }
1790
1791 reg = rd32(hw, PF_MDET_RX);
1792 if (reg & PF_MDET_RX_VALID_M) {
1793 wr32(hw, PF_MDET_RX, 0xFFFF);
1794 if (netif_msg_rx_err(pf))
1795 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1796 }
1797
1798 /* Check to see if one of the VFs caused an MDD event, and then
1799 * increment counters and set print pending
1800 */
1801 mutex_lock(&pf->vfs.table_lock);
1802 ice_for_each_vf(pf, bkt, vf) {
1803 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1804 if (reg & VP_MDET_TX_PQM_VALID_M) {
1805 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1806 vf->mdd_tx_events.count++;
1807 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1808 if (netif_msg_tx_err(pf))
1809 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1810 vf->vf_id);
1811 }
1812
1813 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1814 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1815 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1816 vf->mdd_tx_events.count++;
1817 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1818 if (netif_msg_tx_err(pf))
1819 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1820 vf->vf_id);
1821 }
1822
1823 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1824 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1825 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1826 vf->mdd_tx_events.count++;
1827 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1828 if (netif_msg_tx_err(pf))
1829 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1830 vf->vf_id);
1831 }
1832
1833 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1834 if (reg & VP_MDET_RX_VALID_M) {
1835 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1836 vf->mdd_rx_events.count++;
1837 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1838 if (netif_msg_rx_err(pf))
1839 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1840 vf->vf_id);
1841
1842 /* Since the queue is disabled on VF Rx MDD events, the
1843 * PF can be configured to reset the VF through ethtool
1844 * private flag mdd-auto-reset-vf.
1845 */
1846 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1847 /* VF MDD event counters will be cleared by
1848 * reset, so print the event prior to reset.
1849 */
1850 ice_print_vf_rx_mdd_event(vf);
1851 ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1852 }
1853 }
1854 }
1855 mutex_unlock(&pf->vfs.table_lock);
1856
1857 ice_print_vfs_mdd_events(pf);
1858}
1859
1860/**
1861 * ice_force_phys_link_state - Force the physical link state
1862 * @vsi: VSI to force the physical link state to up/down
1863 * @link_up: true/false indicates to set the physical link to up/down
1864 *
1865 * Force the physical link state by getting the current PHY capabilities from
1866 * hardware and setting the PHY config based on the determined capabilities. If
1867 * link changes a link event will be triggered because both the Enable Automatic
1868 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1869 *
1870 * Returns 0 on success, negative on failure
1871 */
1872static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1873{
1874 struct ice_aqc_get_phy_caps_data *pcaps;
1875 struct ice_aqc_set_phy_cfg_data *cfg;
1876 struct ice_port_info *pi;
1877 struct device *dev;
1878 int retcode;
1879
1880 if (!vsi || !vsi->port_info || !vsi->back)
1881 return -EINVAL;
1882 if (vsi->type != ICE_VSI_PF)
1883 return 0;
1884
1885 dev = ice_pf_to_dev(vsi->back);
1886
1887 pi = vsi->port_info;
1888
1889 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1890 if (!pcaps)
1891 return -ENOMEM;
1892
1893 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1894 NULL);
1895 if (retcode) {
1896 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1897 vsi->vsi_num, retcode);
1898 retcode = -EIO;
1899 goto out;
1900 }
1901
1902 /* No change in link */
1903 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1904 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1905 goto out;
1906
1907 /* Use the current user PHY configuration. The current user PHY
1908 * configuration is initialized during probe from PHY capabilities
1909 * software mode, and updated on set PHY configuration.
1910 */
1911 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1912 if (!cfg) {
1913 retcode = -ENOMEM;
1914 goto out;
1915 }
1916
1917 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1918 if (link_up)
1919 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1920 else
1921 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1922
1923 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1924 if (retcode) {
1925 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1926 vsi->vsi_num, retcode);
1927 retcode = -EIO;
1928 }
1929
1930 kfree(cfg);
1931out:
1932 kfree(pcaps);
1933 return retcode;
1934}
1935
1936/**
1937 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1938 * @pi: port info structure
1939 *
1940 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1941 */
1942static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1943{
1944 struct ice_aqc_get_phy_caps_data *pcaps;
1945 struct ice_pf *pf = pi->hw->back;
1946 int err;
1947
1948 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1949 if (!pcaps)
1950 return -ENOMEM;
1951
1952 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1953 pcaps, NULL);
1954
1955 if (err) {
1956 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1957 goto out;
1958 }
1959
1960 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1961 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1962
1963out:
1964 kfree(pcaps);
1965 return err;
1966}
1967
1968/**
1969 * ice_init_link_dflt_override - Initialize link default override
1970 * @pi: port info structure
1971 *
1972 * Initialize link default override and PHY total port shutdown during probe
1973 */
1974static void ice_init_link_dflt_override(struct ice_port_info *pi)
1975{
1976 struct ice_link_default_override_tlv *ldo;
1977 struct ice_pf *pf = pi->hw->back;
1978
1979 ldo = &pf->link_dflt_override;
1980 if (ice_get_link_default_override(ldo, pi))
1981 return;
1982
1983 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1984 return;
1985
1986 /* Enable Total Port Shutdown (override/replace link-down-on-close
1987 * ethtool private flag) for ports with Port Disable bit set.
1988 */
1989 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1990 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1991}
1992
1993/**
1994 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1995 * @pi: port info structure
1996 *
1997 * If default override is enabled, initialize the user PHY cfg speed and FEC
1998 * settings using the default override mask from the NVM.
1999 *
2000 * The PHY should only be configured with the default override settings the
2001 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2002 * is used to indicate that the user PHY cfg default override is initialized
2003 * and the PHY has not been configured with the default override settings. The
2004 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2005 * configured.
2006 *
2007 * This function should be called only if the FW doesn't support default
2008 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2009 */
2010static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2011{
2012 struct ice_link_default_override_tlv *ldo;
2013 struct ice_aqc_set_phy_cfg_data *cfg;
2014 struct ice_phy_info *phy = &pi->phy;
2015 struct ice_pf *pf = pi->hw->back;
2016
2017 ldo = &pf->link_dflt_override;
2018
2019 /* If link default override is enabled, use to mask NVM PHY capabilities
2020 * for speed and FEC default configuration.
2021 */
2022 cfg = &phy->curr_user_phy_cfg;
2023
2024 if (ldo->phy_type_low || ldo->phy_type_high) {
2025 cfg->phy_type_low = pf->nvm_phy_type_lo &
2026 cpu_to_le64(ldo->phy_type_low);
2027 cfg->phy_type_high = pf->nvm_phy_type_hi &
2028 cpu_to_le64(ldo->phy_type_high);
2029 }
2030 cfg->link_fec_opt = ldo->fec_options;
2031 phy->curr_user_fec_req = ICE_FEC_AUTO;
2032
2033 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2034}
2035
2036/**
2037 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2038 * @pi: port info structure
2039 *
2040 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2041 * mode to default. The PHY defaults are from get PHY capabilities topology
2042 * with media so call when media is first available. An error is returned if
2043 * called when media is not available. The PHY initialization completed state is
2044 * set here.
2045 *
2046 * These configurations are used when setting PHY
2047 * configuration. The user PHY configuration is updated on set PHY
2048 * configuration. Returns 0 on success, negative on failure
2049 */
2050static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2051{
2052 struct ice_aqc_get_phy_caps_data *pcaps;
2053 struct ice_phy_info *phy = &pi->phy;
2054 struct ice_pf *pf = pi->hw->back;
2055 int err;
2056
2057 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2058 return -EIO;
2059
2060 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2061 if (!pcaps)
2062 return -ENOMEM;
2063
2064 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2065 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2066 pcaps, NULL);
2067 else
2068 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2069 pcaps, NULL);
2070 if (err) {
2071 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2072 goto err_out;
2073 }
2074
2075 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2076
2077 /* check if lenient mode is supported and enabled */
2078 if (ice_fw_supports_link_override(pi->hw) &&
2079 !(pcaps->module_compliance_enforcement &
2080 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2081 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2082
2083 /* if the FW supports default PHY configuration mode, then the driver
2084 * does not have to apply link override settings. If not,
2085 * initialize user PHY configuration with link override values
2086 */
2087 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2088 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2089 ice_init_phy_cfg_dflt_override(pi);
2090 goto out;
2091 }
2092 }
2093
2094 /* if link default override is not enabled, set user flow control and
2095 * FEC settings based on what get_phy_caps returned
2096 */
2097 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2098 pcaps->link_fec_options);
2099 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2100
2101out:
2102 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2103 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2104err_out:
2105 kfree(pcaps);
2106 return err;
2107}
2108
2109/**
2110 * ice_configure_phy - configure PHY
2111 * @vsi: VSI of PHY
2112 *
2113 * Set the PHY configuration. If the current PHY configuration is the same as
2114 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2115 * configure the based get PHY capabilities for topology with media.
2116 */
2117static int ice_configure_phy(struct ice_vsi *vsi)
2118{
2119 struct device *dev = ice_pf_to_dev(vsi->back);
2120 struct ice_port_info *pi = vsi->port_info;
2121 struct ice_aqc_get_phy_caps_data *pcaps;
2122 struct ice_aqc_set_phy_cfg_data *cfg;
2123 struct ice_phy_info *phy = &pi->phy;
2124 struct ice_pf *pf = vsi->back;
2125 int err;
2126
2127 /* Ensure we have media as we cannot configure a medialess port */
2128 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2129 return -EPERM;
2130
2131 ice_print_topo_conflict(vsi);
2132
2133 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2134 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2135 return -EPERM;
2136
2137 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2138 return ice_force_phys_link_state(vsi, true);
2139
2140 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2141 if (!pcaps)
2142 return -ENOMEM;
2143
2144 /* Get current PHY config */
2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2146 NULL);
2147 if (err) {
2148 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2149 vsi->vsi_num, err);
2150 goto done;
2151 }
2152
2153 /* If PHY enable link is configured and configuration has not changed,
2154 * there's nothing to do
2155 */
2156 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2157 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2158 goto done;
2159
2160 /* Use PHY topology as baseline for configuration */
2161 memset(pcaps, 0, sizeof(*pcaps));
2162 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2163 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2164 pcaps, NULL);
2165 else
2166 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2167 pcaps, NULL);
2168 if (err) {
2169 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2170 vsi->vsi_num, err);
2171 goto done;
2172 }
2173
2174 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2175 if (!cfg) {
2176 err = -ENOMEM;
2177 goto done;
2178 }
2179
2180 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2181
2182 /* Speed - If default override pending, use curr_user_phy_cfg set in
2183 * ice_init_phy_user_cfg_ldo.
2184 */
2185 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2186 vsi->back->state)) {
2187 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2188 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2189 } else {
2190 u64 phy_low = 0, phy_high = 0;
2191
2192 ice_update_phy_type(&phy_low, &phy_high,
2193 pi->phy.curr_user_speed_req);
2194 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2195 cfg->phy_type_high = pcaps->phy_type_high &
2196 cpu_to_le64(phy_high);
2197 }
2198
2199 /* Can't provide what was requested; use PHY capabilities */
2200 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2201 cfg->phy_type_low = pcaps->phy_type_low;
2202 cfg->phy_type_high = pcaps->phy_type_high;
2203 }
2204
2205 /* FEC */
2206 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2207
2208 /* Can't provide what was requested; use PHY capabilities */
2209 if (cfg->link_fec_opt !=
2210 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2211 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2212 cfg->link_fec_opt = pcaps->link_fec_options;
2213 }
2214
2215 /* Flow Control - always supported; no need to check against
2216 * capabilities
2217 */
2218 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2219
2220 /* Enable link and link update */
2221 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2222
2223 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2224 if (err)
2225 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2226 vsi->vsi_num, err);
2227
2228 kfree(cfg);
2229done:
2230 kfree(pcaps);
2231 return err;
2232}
2233
2234/**
2235 * ice_check_media_subtask - Check for media
2236 * @pf: pointer to PF struct
2237 *
2238 * If media is available, then initialize PHY user configuration if it is not
2239 * been, and configure the PHY if the interface is up.
2240 */
2241static void ice_check_media_subtask(struct ice_pf *pf)
2242{
2243 struct ice_port_info *pi;
2244 struct ice_vsi *vsi;
2245 int err;
2246
2247 /* No need to check for media if it's already present */
2248 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2249 return;
2250
2251 vsi = ice_get_main_vsi(pf);
2252 if (!vsi)
2253 return;
2254
2255 /* Refresh link info and check if media is present */
2256 pi = vsi->port_info;
2257 err = ice_update_link_info(pi);
2258 if (err)
2259 return;
2260
2261 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2262
2263 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2264 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2265 ice_init_phy_user_cfg(pi);
2266
2267 /* PHY settings are reset on media insertion, reconfigure
2268 * PHY to preserve settings.
2269 */
2270 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2271 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2272 return;
2273
2274 err = ice_configure_phy(vsi);
2275 if (!err)
2276 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2277
2278 /* A Link Status Event will be generated; the event handler
2279 * will complete bringing the interface up
2280 */
2281 }
2282}
2283
2284/**
2285 * ice_service_task - manage and run subtasks
2286 * @work: pointer to work_struct contained by the PF struct
2287 */
2288static void ice_service_task(struct work_struct *work)
2289{
2290 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2291 unsigned long start_time = jiffies;
2292
2293 /* subtasks */
2294
2295 /* process reset requests first */
2296 ice_reset_subtask(pf);
2297
2298 /* bail if a reset/recovery cycle is pending or rebuild failed */
2299 if (ice_is_reset_in_progress(pf->state) ||
2300 test_bit(ICE_SUSPENDED, pf->state) ||
2301 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2302 ice_service_task_complete(pf);
2303 return;
2304 }
2305
2306 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2307 struct iidc_event *event;
2308
2309 event = kzalloc(sizeof(*event), GFP_KERNEL);
2310 if (event) {
2311 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2312 /* report the entire OICR value to AUX driver */
2313 swap(event->reg, pf->oicr_err_reg);
2314 ice_send_event_to_aux(pf, event);
2315 kfree(event);
2316 }
2317 }
2318
2319 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2320 /* Plug aux device per request */
2321 ice_plug_aux_dev(pf);
2322
2323 /* Mark plugging as done but check whether unplug was
2324 * requested during ice_plug_aux_dev() call
2325 * (e.g. from ice_clear_rdma_cap()) and if so then
2326 * plug aux device.
2327 */
2328 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2329 ice_unplug_aux_dev(pf);
2330 }
2331
2332 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2333 struct iidc_event *event;
2334
2335 event = kzalloc(sizeof(*event), GFP_KERNEL);
2336 if (event) {
2337 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2338 ice_send_event_to_aux(pf, event);
2339 kfree(event);
2340 }
2341 }
2342
2343 ice_clean_adminq_subtask(pf);
2344 ice_check_media_subtask(pf);
2345 ice_check_for_hang_subtask(pf);
2346 ice_sync_fltr_subtask(pf);
2347 ice_handle_mdd_event(pf);
2348 ice_watchdog_subtask(pf);
2349
2350 if (ice_is_safe_mode(pf)) {
2351 ice_service_task_complete(pf);
2352 return;
2353 }
2354
2355 ice_process_vflr_event(pf);
2356 ice_clean_mailboxq_subtask(pf);
2357 ice_clean_sbq_subtask(pf);
2358 ice_sync_arfs_fltrs(pf);
2359 ice_flush_fdir_ctx(pf);
2360
2361 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2362 ice_service_task_complete(pf);
2363
2364 /* If the tasks have taken longer than one service timer period
2365 * or there is more work to be done, reset the service timer to
2366 * schedule the service task now.
2367 */
2368 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2369 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2370 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2371 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2372 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2373 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2374 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2375 mod_timer(&pf->serv_tmr, jiffies);
2376}
2377
2378/**
2379 * ice_set_ctrlq_len - helper function to set controlq length
2380 * @hw: pointer to the HW instance
2381 */
2382static void ice_set_ctrlq_len(struct ice_hw *hw)
2383{
2384 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2385 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2386 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2387 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2388 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2389 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2390 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2391 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2392 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2393 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2394 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2395 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2396}
2397
2398/**
2399 * ice_schedule_reset - schedule a reset
2400 * @pf: board private structure
2401 * @reset: reset being requested
2402 */
2403int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2404{
2405 struct device *dev = ice_pf_to_dev(pf);
2406
2407 /* bail out if earlier reset has failed */
2408 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2409 dev_dbg(dev, "earlier reset has failed\n");
2410 return -EIO;
2411 }
2412 /* bail if reset/recovery already in progress */
2413 if (ice_is_reset_in_progress(pf->state)) {
2414 dev_dbg(dev, "Reset already in progress\n");
2415 return -EBUSY;
2416 }
2417
2418 switch (reset) {
2419 case ICE_RESET_PFR:
2420 set_bit(ICE_PFR_REQ, pf->state);
2421 break;
2422 case ICE_RESET_CORER:
2423 set_bit(ICE_CORER_REQ, pf->state);
2424 break;
2425 case ICE_RESET_GLOBR:
2426 set_bit(ICE_GLOBR_REQ, pf->state);
2427 break;
2428 default:
2429 return -EINVAL;
2430 }
2431
2432 ice_service_task_schedule(pf);
2433 return 0;
2434}
2435
2436/**
2437 * ice_irq_affinity_notify - Callback for affinity changes
2438 * @notify: context as to what irq was changed
2439 * @mask: the new affinity mask
2440 *
2441 * This is a callback function used by the irq_set_affinity_notifier function
2442 * so that we may register to receive changes to the irq affinity masks.
2443 */
2444static void
2445ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2446 const cpumask_t *mask)
2447{
2448 struct ice_q_vector *q_vector =
2449 container_of(notify, struct ice_q_vector, affinity_notify);
2450
2451 cpumask_copy(&q_vector->affinity_mask, mask);
2452}
2453
2454/**
2455 * ice_irq_affinity_release - Callback for affinity notifier release
2456 * @ref: internal core kernel usage
2457 *
2458 * This is a callback function used by the irq_set_affinity_notifier function
2459 * to inform the current notification subscriber that they will no longer
2460 * receive notifications.
2461 */
2462static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2463
2464/**
2465 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2466 * @vsi: the VSI being configured
2467 */
2468static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2469{
2470 struct ice_hw *hw = &vsi->back->hw;
2471 int i;
2472
2473 ice_for_each_q_vector(vsi, i)
2474 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2475
2476 ice_flush(hw);
2477 return 0;
2478}
2479
2480/**
2481 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2482 * @vsi: the VSI being configured
2483 * @basename: name for the vector
2484 */
2485static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2486{
2487 int q_vectors = vsi->num_q_vectors;
2488 struct ice_pf *pf = vsi->back;
2489 int base = vsi->base_vector;
2490 struct device *dev;
2491 int rx_int_idx = 0;
2492 int tx_int_idx = 0;
2493 int vector, err;
2494 int irq_num;
2495
2496 dev = ice_pf_to_dev(pf);
2497 for (vector = 0; vector < q_vectors; vector++) {
2498 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2499
2500 irq_num = pf->msix_entries[base + vector].vector;
2501
2502 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2503 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2504 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2505 tx_int_idx++;
2506 } else if (q_vector->rx.rx_ring) {
2507 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2508 "%s-%s-%d", basename, "rx", rx_int_idx++);
2509 } else if (q_vector->tx.tx_ring) {
2510 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2511 "%s-%s-%d", basename, "tx", tx_int_idx++);
2512 } else {
2513 /* skip this unused q_vector */
2514 continue;
2515 }
2516 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2517 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2518 IRQF_SHARED, q_vector->name,
2519 q_vector);
2520 else
2521 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2522 0, q_vector->name, q_vector);
2523 if (err) {
2524 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2525 err);
2526 goto free_q_irqs;
2527 }
2528
2529 /* register for affinity change notifications */
2530 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2531 struct irq_affinity_notify *affinity_notify;
2532
2533 affinity_notify = &q_vector->affinity_notify;
2534 affinity_notify->notify = ice_irq_affinity_notify;
2535 affinity_notify->release = ice_irq_affinity_release;
2536 irq_set_affinity_notifier(irq_num, affinity_notify);
2537 }
2538
2539 /* assign the mask for this irq */
2540 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2541 }
2542
2543 err = ice_set_cpu_rx_rmap(vsi);
2544 if (err) {
2545 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2546 vsi->vsi_num, ERR_PTR(err));
2547 goto free_q_irqs;
2548 }
2549
2550 vsi->irqs_ready = true;
2551 return 0;
2552
2553free_q_irqs:
2554 while (vector) {
2555 vector--;
2556 irq_num = pf->msix_entries[base + vector].vector;
2557 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2558 irq_set_affinity_notifier(irq_num, NULL);
2559 irq_set_affinity_hint(irq_num, NULL);
2560 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2561 }
2562 return err;
2563}
2564
2565/**
2566 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2567 * @vsi: VSI to setup Tx rings used by XDP
2568 *
2569 * Return 0 on success and negative value on error
2570 */
2571static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2572{
2573 struct device *dev = ice_pf_to_dev(vsi->back);
2574 struct ice_tx_desc *tx_desc;
2575 int i, j;
2576
2577 ice_for_each_xdp_txq(vsi, i) {
2578 u16 xdp_q_idx = vsi->alloc_txq + i;
2579 struct ice_ring_stats *ring_stats;
2580 struct ice_tx_ring *xdp_ring;
2581
2582 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2583 if (!xdp_ring)
2584 goto free_xdp_rings;
2585
2586 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2587 if (!ring_stats) {
2588 ice_free_tx_ring(xdp_ring);
2589 goto free_xdp_rings;
2590 }
2591
2592 xdp_ring->ring_stats = ring_stats;
2593 xdp_ring->q_index = xdp_q_idx;
2594 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2595 xdp_ring->vsi = vsi;
2596 xdp_ring->netdev = NULL;
2597 xdp_ring->dev = dev;
2598 xdp_ring->count = vsi->num_tx_desc;
2599 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2600 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2601 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2602 if (ice_setup_tx_ring(xdp_ring))
2603 goto free_xdp_rings;
2604 ice_set_ring_xdp(xdp_ring);
2605 spin_lock_init(&xdp_ring->tx_lock);
2606 for (j = 0; j < xdp_ring->count; j++) {
2607 tx_desc = ICE_TX_DESC(xdp_ring, j);
2608 tx_desc->cmd_type_offset_bsz = 0;
2609 }
2610 }
2611
2612 return 0;
2613
2614free_xdp_rings:
2615 for (; i >= 0; i--) {
2616 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2617 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2618 vsi->xdp_rings[i]->ring_stats = NULL;
2619 ice_free_tx_ring(vsi->xdp_rings[i]);
2620 }
2621 }
2622 return -ENOMEM;
2623}
2624
2625/**
2626 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2627 * @vsi: VSI to set the bpf prog on
2628 * @prog: the bpf prog pointer
2629 */
2630static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2631{
2632 struct bpf_prog *old_prog;
2633 int i;
2634
2635 old_prog = xchg(&vsi->xdp_prog, prog);
2636 if (old_prog)
2637 bpf_prog_put(old_prog);
2638
2639 ice_for_each_rxq(vsi, i)
2640 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2641}
2642
2643/**
2644 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2645 * @vsi: VSI to bring up Tx rings used by XDP
2646 * @prog: bpf program that will be assigned to VSI
2647 *
2648 * Return 0 on success and negative value on error
2649 */
2650int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2651{
2652 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2653 int xdp_rings_rem = vsi->num_xdp_txq;
2654 struct ice_pf *pf = vsi->back;
2655 struct ice_qs_cfg xdp_qs_cfg = {
2656 .qs_mutex = &pf->avail_q_mutex,
2657 .pf_map = pf->avail_txqs,
2658 .pf_map_size = pf->max_pf_txqs,
2659 .q_count = vsi->num_xdp_txq,
2660 .scatter_count = ICE_MAX_SCATTER_TXQS,
2661 .vsi_map = vsi->txq_map,
2662 .vsi_map_offset = vsi->alloc_txq,
2663 .mapping_mode = ICE_VSI_MAP_CONTIG
2664 };
2665 struct device *dev;
2666 int i, v_idx;
2667 int status;
2668
2669 dev = ice_pf_to_dev(pf);
2670 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2671 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2672 if (!vsi->xdp_rings)
2673 return -ENOMEM;
2674
2675 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2676 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2677 goto err_map_xdp;
2678
2679 if (static_key_enabled(&ice_xdp_locking_key))
2680 netdev_warn(vsi->netdev,
2681 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2682
2683 if (ice_xdp_alloc_setup_rings(vsi))
2684 goto clear_xdp_rings;
2685
2686 /* follow the logic from ice_vsi_map_rings_to_vectors */
2687 ice_for_each_q_vector(vsi, v_idx) {
2688 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2689 int xdp_rings_per_v, q_id, q_base;
2690
2691 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2692 vsi->num_q_vectors - v_idx);
2693 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2694
2695 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2696 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2697
2698 xdp_ring->q_vector = q_vector;
2699 xdp_ring->next = q_vector->tx.tx_ring;
2700 q_vector->tx.tx_ring = xdp_ring;
2701 }
2702 xdp_rings_rem -= xdp_rings_per_v;
2703 }
2704
2705 ice_for_each_rxq(vsi, i) {
2706 if (static_key_enabled(&ice_xdp_locking_key)) {
2707 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2708 } else {
2709 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2710 struct ice_tx_ring *ring;
2711
2712 ice_for_each_tx_ring(ring, q_vector->tx) {
2713 if (ice_ring_is_xdp(ring)) {
2714 vsi->rx_rings[i]->xdp_ring = ring;
2715 break;
2716 }
2717 }
2718 }
2719 ice_tx_xsk_pool(vsi, i);
2720 }
2721
2722 /* omit the scheduler update if in reset path; XDP queues will be
2723 * taken into account at the end of ice_vsi_rebuild, where
2724 * ice_cfg_vsi_lan is being called
2725 */
2726 if (ice_is_reset_in_progress(pf->state))
2727 return 0;
2728
2729 /* tell the Tx scheduler that right now we have
2730 * additional queues
2731 */
2732 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2733 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2734
2735 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2736 max_txqs);
2737 if (status) {
2738 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2739 status);
2740 goto clear_xdp_rings;
2741 }
2742
2743 /* assign the prog only when it's not already present on VSI;
2744 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2745 * VSI rebuild that happens under ethtool -L can expose us to
2746 * the bpf_prog refcount issues as we would be swapping same
2747 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2748 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2749 * this is not harmful as dev_xdp_install bumps the refcount
2750 * before calling the op exposed by the driver;
2751 */
2752 if (!ice_is_xdp_ena_vsi(vsi))
2753 ice_vsi_assign_bpf_prog(vsi, prog);
2754
2755 return 0;
2756clear_xdp_rings:
2757 ice_for_each_xdp_txq(vsi, i)
2758 if (vsi->xdp_rings[i]) {
2759 kfree_rcu(vsi->xdp_rings[i], rcu);
2760 vsi->xdp_rings[i] = NULL;
2761 }
2762
2763err_map_xdp:
2764 mutex_lock(&pf->avail_q_mutex);
2765 ice_for_each_xdp_txq(vsi, i) {
2766 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2767 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2768 }
2769 mutex_unlock(&pf->avail_q_mutex);
2770
2771 devm_kfree(dev, vsi->xdp_rings);
2772 return -ENOMEM;
2773}
2774
2775/**
2776 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2777 * @vsi: VSI to remove XDP rings
2778 *
2779 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2780 * resources
2781 */
2782int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2783{
2784 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2785 struct ice_pf *pf = vsi->back;
2786 int i, v_idx;
2787
2788 /* q_vectors are freed in reset path so there's no point in detaching
2789 * rings; in case of rebuild being triggered not from reset bits
2790 * in pf->state won't be set, so additionally check first q_vector
2791 * against NULL
2792 */
2793 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2794 goto free_qmap;
2795
2796 ice_for_each_q_vector(vsi, v_idx) {
2797 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2798 struct ice_tx_ring *ring;
2799
2800 ice_for_each_tx_ring(ring, q_vector->tx)
2801 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2802 break;
2803
2804 /* restore the value of last node prior to XDP setup */
2805 q_vector->tx.tx_ring = ring;
2806 }
2807
2808free_qmap:
2809 mutex_lock(&pf->avail_q_mutex);
2810 ice_for_each_xdp_txq(vsi, i) {
2811 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2812 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2813 }
2814 mutex_unlock(&pf->avail_q_mutex);
2815
2816 ice_for_each_xdp_txq(vsi, i)
2817 if (vsi->xdp_rings[i]) {
2818 if (vsi->xdp_rings[i]->desc) {
2819 synchronize_rcu();
2820 ice_free_tx_ring(vsi->xdp_rings[i]);
2821 }
2822 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2823 vsi->xdp_rings[i]->ring_stats = NULL;
2824 kfree_rcu(vsi->xdp_rings[i], rcu);
2825 vsi->xdp_rings[i] = NULL;
2826 }
2827
2828 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2829 vsi->xdp_rings = NULL;
2830
2831 if (static_key_enabled(&ice_xdp_locking_key))
2832 static_branch_dec(&ice_xdp_locking_key);
2833
2834 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2835 return 0;
2836
2837 ice_vsi_assign_bpf_prog(vsi, NULL);
2838
2839 /* notify Tx scheduler that we destroyed XDP queues and bring
2840 * back the old number of child nodes
2841 */
2842 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2843 max_txqs[i] = vsi->num_txq;
2844
2845 /* change number of XDP Tx queues to 0 */
2846 vsi->num_xdp_txq = 0;
2847
2848 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2849 max_txqs);
2850}
2851
2852/**
2853 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2854 * @vsi: VSI to schedule napi on
2855 */
2856static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2857{
2858 int i;
2859
2860 ice_for_each_rxq(vsi, i) {
2861 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2862
2863 if (rx_ring->xsk_pool)
2864 napi_schedule(&rx_ring->q_vector->napi);
2865 }
2866}
2867
2868/**
2869 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2870 * @vsi: VSI to determine the count of XDP Tx qs
2871 *
2872 * returns 0 if Tx qs count is higher than at least half of CPU count,
2873 * -ENOMEM otherwise
2874 */
2875int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2876{
2877 u16 avail = ice_get_avail_txq_count(vsi->back);
2878 u16 cpus = num_possible_cpus();
2879
2880 if (avail < cpus / 2)
2881 return -ENOMEM;
2882
2883 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2884
2885 if (vsi->num_xdp_txq < cpus)
2886 static_branch_inc(&ice_xdp_locking_key);
2887
2888 return 0;
2889}
2890
2891/**
2892 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2893 * @vsi: VSI to setup XDP for
2894 * @prog: XDP program
2895 * @extack: netlink extended ack
2896 */
2897static int
2898ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2899 struct netlink_ext_ack *extack)
2900{
2901 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2902 bool if_running = netif_running(vsi->netdev);
2903 int ret = 0, xdp_ring_err = 0;
2904
2905 if (frame_size > vsi->rx_buf_len) {
2906 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2907 return -EOPNOTSUPP;
2908 }
2909
2910 /* need to stop netdev while setting up the program for Rx rings */
2911 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2912 ret = ice_down(vsi);
2913 if (ret) {
2914 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2915 return ret;
2916 }
2917 }
2918
2919 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2920 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2921 if (xdp_ring_err) {
2922 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2923 } else {
2924 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2925 if (xdp_ring_err)
2926 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2927 }
2928 /* reallocate Rx queues that are used for zero-copy */
2929 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2930 if (xdp_ring_err)
2931 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2932 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2933 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2934 if (xdp_ring_err)
2935 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2936 /* reallocate Rx queues that were used for zero-copy */
2937 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2938 if (xdp_ring_err)
2939 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2940 } else {
2941 /* safe to call even when prog == vsi->xdp_prog as
2942 * dev_xdp_install in net/core/dev.c incremented prog's
2943 * refcount so corresponding bpf_prog_put won't cause
2944 * underflow
2945 */
2946 ice_vsi_assign_bpf_prog(vsi, prog);
2947 }
2948
2949 if (if_running)
2950 ret = ice_up(vsi);
2951
2952 if (!ret && prog)
2953 ice_vsi_rx_napi_schedule(vsi);
2954
2955 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2956}
2957
2958/**
2959 * ice_xdp_safe_mode - XDP handler for safe mode
2960 * @dev: netdevice
2961 * @xdp: XDP command
2962 */
2963static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2964 struct netdev_bpf *xdp)
2965{
2966 NL_SET_ERR_MSG_MOD(xdp->extack,
2967 "Please provide working DDP firmware package in order to use XDP\n"
2968 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2969 return -EOPNOTSUPP;
2970}
2971
2972/**
2973 * ice_xdp - implements XDP handler
2974 * @dev: netdevice
2975 * @xdp: XDP command
2976 */
2977static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2978{
2979 struct ice_netdev_priv *np = netdev_priv(dev);
2980 struct ice_vsi *vsi = np->vsi;
2981
2982 if (vsi->type != ICE_VSI_PF) {
2983 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2984 return -EINVAL;
2985 }
2986
2987 switch (xdp->command) {
2988 case XDP_SETUP_PROG:
2989 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2990 case XDP_SETUP_XSK_POOL:
2991 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2992 xdp->xsk.queue_id);
2993 default:
2994 return -EINVAL;
2995 }
2996}
2997
2998/**
2999 * ice_ena_misc_vector - enable the non-queue interrupts
3000 * @pf: board private structure
3001 */
3002static void ice_ena_misc_vector(struct ice_pf *pf)
3003{
3004 struct ice_hw *hw = &pf->hw;
3005 u32 val;
3006
3007 /* Disable anti-spoof detection interrupt to prevent spurious event
3008 * interrupts during a function reset. Anti-spoof functionally is
3009 * still supported.
3010 */
3011 val = rd32(hw, GL_MDCK_TX_TDPU);
3012 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3013 wr32(hw, GL_MDCK_TX_TDPU, val);
3014
3015 /* clear things first */
3016 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3017 rd32(hw, PFINT_OICR); /* read to clear */
3018
3019 val = (PFINT_OICR_ECC_ERR_M |
3020 PFINT_OICR_MAL_DETECT_M |
3021 PFINT_OICR_GRST_M |
3022 PFINT_OICR_PCI_EXCEPTION_M |
3023 PFINT_OICR_VFLR_M |
3024 PFINT_OICR_HMC_ERR_M |
3025 PFINT_OICR_PE_PUSH_M |
3026 PFINT_OICR_PE_CRITERR_M);
3027
3028 wr32(hw, PFINT_OICR_ENA, val);
3029
3030 /* SW_ITR_IDX = 0, but don't change INTENA */
3031 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
3032 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3033}
3034
3035/**
3036 * ice_misc_intr - misc interrupt handler
3037 * @irq: interrupt number
3038 * @data: pointer to a q_vector
3039 */
3040static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3041{
3042 struct ice_pf *pf = (struct ice_pf *)data;
3043 struct ice_hw *hw = &pf->hw;
3044 irqreturn_t ret = IRQ_NONE;
3045 struct device *dev;
3046 u32 oicr, ena_mask;
3047
3048 dev = ice_pf_to_dev(pf);
3049 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3050 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3051 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3052
3053 oicr = rd32(hw, PFINT_OICR);
3054 ena_mask = rd32(hw, PFINT_OICR_ENA);
3055
3056 if (oicr & PFINT_OICR_SWINT_M) {
3057 ena_mask &= ~PFINT_OICR_SWINT_M;
3058 pf->sw_int_count++;
3059 }
3060
3061 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3062 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3063 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3064 }
3065 if (oicr & PFINT_OICR_VFLR_M) {
3066 /* disable any further VFLR event notifications */
3067 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3068 u32 reg = rd32(hw, PFINT_OICR_ENA);
3069
3070 reg &= ~PFINT_OICR_VFLR_M;
3071 wr32(hw, PFINT_OICR_ENA, reg);
3072 } else {
3073 ena_mask &= ~PFINT_OICR_VFLR_M;
3074 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3075 }
3076 }
3077
3078 if (oicr & PFINT_OICR_GRST_M) {
3079 u32 reset;
3080
3081 /* we have a reset warning */
3082 ena_mask &= ~PFINT_OICR_GRST_M;
3083 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3084 GLGEN_RSTAT_RESET_TYPE_S;
3085
3086 if (reset == ICE_RESET_CORER)
3087 pf->corer_count++;
3088 else if (reset == ICE_RESET_GLOBR)
3089 pf->globr_count++;
3090 else if (reset == ICE_RESET_EMPR)
3091 pf->empr_count++;
3092 else
3093 dev_dbg(dev, "Invalid reset type %d\n", reset);
3094
3095 /* If a reset cycle isn't already in progress, we set a bit in
3096 * pf->state so that the service task can start a reset/rebuild.
3097 */
3098 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3099 if (reset == ICE_RESET_CORER)
3100 set_bit(ICE_CORER_RECV, pf->state);
3101 else if (reset == ICE_RESET_GLOBR)
3102 set_bit(ICE_GLOBR_RECV, pf->state);
3103 else
3104 set_bit(ICE_EMPR_RECV, pf->state);
3105
3106 /* There are couple of different bits at play here.
3107 * hw->reset_ongoing indicates whether the hardware is
3108 * in reset. This is set to true when a reset interrupt
3109 * is received and set back to false after the driver
3110 * has determined that the hardware is out of reset.
3111 *
3112 * ICE_RESET_OICR_RECV in pf->state indicates
3113 * that a post reset rebuild is required before the
3114 * driver is operational again. This is set above.
3115 *
3116 * As this is the start of the reset/rebuild cycle, set
3117 * both to indicate that.
3118 */
3119 hw->reset_ongoing = true;
3120 }
3121 }
3122
3123 if (oicr & PFINT_OICR_TSYN_TX_M) {
3124 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3125 if (!hw->reset_ongoing)
3126 ret = IRQ_WAKE_THREAD;
3127 }
3128
3129 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3130 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3131 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3132
3133 /* Save EVENTs from GTSYN register */
3134 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3135 GLTSYN_STAT_EVENT1_M |
3136 GLTSYN_STAT_EVENT2_M);
3137 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3138 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3139 }
3140
3141#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3142 if (oicr & ICE_AUX_CRIT_ERR) {
3143 pf->oicr_err_reg |= oicr;
3144 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3145 ena_mask &= ~ICE_AUX_CRIT_ERR;
3146 }
3147
3148 /* Report any remaining unexpected interrupts */
3149 oicr &= ena_mask;
3150 if (oicr) {
3151 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3152 /* If a critical error is pending there is no choice but to
3153 * reset the device.
3154 */
3155 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3156 PFINT_OICR_ECC_ERR_M)) {
3157 set_bit(ICE_PFR_REQ, pf->state);
3158 ice_service_task_schedule(pf);
3159 }
3160 }
3161 if (!ret)
3162 ret = IRQ_HANDLED;
3163
3164 ice_service_task_schedule(pf);
3165 ice_irq_dynamic_ena(hw, NULL, NULL);
3166
3167 return ret;
3168}
3169
3170/**
3171 * ice_misc_intr_thread_fn - misc interrupt thread function
3172 * @irq: interrupt number
3173 * @data: pointer to a q_vector
3174 */
3175static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3176{
3177 struct ice_pf *pf = data;
3178
3179 if (ice_is_reset_in_progress(pf->state))
3180 return IRQ_HANDLED;
3181
3182 while (!ice_ptp_process_ts(pf))
3183 usleep_range(50, 100);
3184
3185 return IRQ_HANDLED;
3186}
3187
3188/**
3189 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3190 * @hw: pointer to HW structure
3191 */
3192static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3193{
3194 /* disable Admin queue Interrupt causes */
3195 wr32(hw, PFINT_FW_CTL,
3196 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3197
3198 /* disable Mailbox queue Interrupt causes */
3199 wr32(hw, PFINT_MBX_CTL,
3200 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3201
3202 wr32(hw, PFINT_SB_CTL,
3203 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3204
3205 /* disable Control queue Interrupt causes */
3206 wr32(hw, PFINT_OICR_CTL,
3207 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3208
3209 ice_flush(hw);
3210}
3211
3212/**
3213 * ice_free_irq_msix_misc - Unroll misc vector setup
3214 * @pf: board private structure
3215 */
3216static void ice_free_irq_msix_misc(struct ice_pf *pf)
3217{
3218 struct ice_hw *hw = &pf->hw;
3219
3220 ice_dis_ctrlq_interrupts(hw);
3221
3222 /* disable OICR interrupt */
3223 wr32(hw, PFINT_OICR_ENA, 0);
3224 ice_flush(hw);
3225
3226 if (pf->msix_entries) {
3227 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3228 devm_free_irq(ice_pf_to_dev(pf),
3229 pf->msix_entries[pf->oicr_idx].vector, pf);
3230 }
3231
3232 pf->num_avail_sw_msix += 1;
3233 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3234}
3235
3236/**
3237 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3238 * @hw: pointer to HW structure
3239 * @reg_idx: HW vector index to associate the control queue interrupts with
3240 */
3241static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3242{
3243 u32 val;
3244
3245 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3246 PFINT_OICR_CTL_CAUSE_ENA_M);
3247 wr32(hw, PFINT_OICR_CTL, val);
3248
3249 /* enable Admin queue Interrupt causes */
3250 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3251 PFINT_FW_CTL_CAUSE_ENA_M);
3252 wr32(hw, PFINT_FW_CTL, val);
3253
3254 /* enable Mailbox queue Interrupt causes */
3255 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3256 PFINT_MBX_CTL_CAUSE_ENA_M);
3257 wr32(hw, PFINT_MBX_CTL, val);
3258
3259 /* This enables Sideband queue Interrupt causes */
3260 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3261 PFINT_SB_CTL_CAUSE_ENA_M);
3262 wr32(hw, PFINT_SB_CTL, val);
3263
3264 ice_flush(hw);
3265}
3266
3267/**
3268 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3269 * @pf: board private structure
3270 *
3271 * This sets up the handler for MSIX 0, which is used to manage the
3272 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3273 * when in MSI or Legacy interrupt mode.
3274 */
3275static int ice_req_irq_msix_misc(struct ice_pf *pf)
3276{
3277 struct device *dev = ice_pf_to_dev(pf);
3278 struct ice_hw *hw = &pf->hw;
3279 int oicr_idx, err = 0;
3280
3281 if (!pf->int_name[0])
3282 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3283 dev_driver_string(dev), dev_name(dev));
3284
3285 /* Do not request IRQ but do enable OICR interrupt since settings are
3286 * lost during reset. Note that this function is called only during
3287 * rebuild path and not while reset is in progress.
3288 */
3289 if (ice_is_reset_in_progress(pf->state))
3290 goto skip_req_irq;
3291
3292 /* reserve one vector in irq_tracker for misc interrupts */
3293 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3294 if (oicr_idx < 0)
3295 return oicr_idx;
3296
3297 pf->num_avail_sw_msix -= 1;
3298 pf->oicr_idx = (u16)oicr_idx;
3299
3300 err = devm_request_threaded_irq(dev,
3301 pf->msix_entries[pf->oicr_idx].vector,
3302 ice_misc_intr, ice_misc_intr_thread_fn,
3303 0, pf->int_name, pf);
3304 if (err) {
3305 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3306 pf->int_name, err);
3307 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3308 pf->num_avail_sw_msix += 1;
3309 return err;
3310 }
3311
3312skip_req_irq:
3313 ice_ena_misc_vector(pf);
3314
3315 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3316 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3317 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3318
3319 ice_flush(hw);
3320 ice_irq_dynamic_ena(hw, NULL, NULL);
3321
3322 return 0;
3323}
3324
3325/**
3326 * ice_napi_add - register NAPI handler for the VSI
3327 * @vsi: VSI for which NAPI handler is to be registered
3328 *
3329 * This function is only called in the driver's load path. Registering the NAPI
3330 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3331 * reset/rebuild, etc.)
3332 */
3333static void ice_napi_add(struct ice_vsi *vsi)
3334{
3335 int v_idx;
3336
3337 if (!vsi->netdev)
3338 return;
3339
3340 ice_for_each_q_vector(vsi, v_idx)
3341 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3342 ice_napi_poll);
3343}
3344
3345/**
3346 * ice_set_ops - set netdev and ethtools ops for the given netdev
3347 * @netdev: netdev instance
3348 */
3349static void ice_set_ops(struct net_device *netdev)
3350{
3351 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3352
3353 if (ice_is_safe_mode(pf)) {
3354 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3355 ice_set_ethtool_safe_mode_ops(netdev);
3356 return;
3357 }
3358
3359 netdev->netdev_ops = &ice_netdev_ops;
3360 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3361 ice_set_ethtool_ops(netdev);
3362}
3363
3364/**
3365 * ice_set_netdev_features - set features for the given netdev
3366 * @netdev: netdev instance
3367 */
3368static void ice_set_netdev_features(struct net_device *netdev)
3369{
3370 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3371 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3372 netdev_features_t csumo_features;
3373 netdev_features_t vlano_features;
3374 netdev_features_t dflt_features;
3375 netdev_features_t tso_features;
3376
3377 if (ice_is_safe_mode(pf)) {
3378 /* safe mode */
3379 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3380 netdev->hw_features = netdev->features;
3381 return;
3382 }
3383
3384 dflt_features = NETIF_F_SG |
3385 NETIF_F_HIGHDMA |
3386 NETIF_F_NTUPLE |
3387 NETIF_F_RXHASH;
3388
3389 csumo_features = NETIF_F_RXCSUM |
3390 NETIF_F_IP_CSUM |
3391 NETIF_F_SCTP_CRC |
3392 NETIF_F_IPV6_CSUM;
3393
3394 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3395 NETIF_F_HW_VLAN_CTAG_TX |
3396 NETIF_F_HW_VLAN_CTAG_RX;
3397
3398 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3399 if (is_dvm_ena)
3400 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3401
3402 tso_features = NETIF_F_TSO |
3403 NETIF_F_TSO_ECN |
3404 NETIF_F_TSO6 |
3405 NETIF_F_GSO_GRE |
3406 NETIF_F_GSO_UDP_TUNNEL |
3407 NETIF_F_GSO_GRE_CSUM |
3408 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3409 NETIF_F_GSO_PARTIAL |
3410 NETIF_F_GSO_IPXIP4 |
3411 NETIF_F_GSO_IPXIP6 |
3412 NETIF_F_GSO_UDP_L4;
3413
3414 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3415 NETIF_F_GSO_GRE_CSUM;
3416 /* set features that user can change */
3417 netdev->hw_features = dflt_features | csumo_features |
3418 vlano_features | tso_features;
3419
3420 /* add support for HW_CSUM on packets with MPLS header */
3421 netdev->mpls_features = NETIF_F_HW_CSUM |
3422 NETIF_F_TSO |
3423 NETIF_F_TSO6;
3424
3425 /* enable features */
3426 netdev->features |= netdev->hw_features;
3427
3428 netdev->hw_features |= NETIF_F_HW_TC;
3429 netdev->hw_features |= NETIF_F_LOOPBACK;
3430
3431 /* encap and VLAN devices inherit default, csumo and tso features */
3432 netdev->hw_enc_features |= dflt_features | csumo_features |
3433 tso_features;
3434 netdev->vlan_features |= dflt_features | csumo_features |
3435 tso_features;
3436
3437 /* advertise support but don't enable by default since only one type of
3438 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3439 * type turns on the other has to be turned off. This is enforced by the
3440 * ice_fix_features() ndo callback.
3441 */
3442 if (is_dvm_ena)
3443 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3444 NETIF_F_HW_VLAN_STAG_TX;
3445
3446 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3447 * be changed at runtime
3448 */
3449 netdev->hw_features |= NETIF_F_RXFCS;
3450}
3451
3452/**
3453 * ice_cfg_netdev - Allocate, configure and register a netdev
3454 * @vsi: the VSI associated with the new netdev
3455 *
3456 * Returns 0 on success, negative value on failure
3457 */
3458static int ice_cfg_netdev(struct ice_vsi *vsi)
3459{
3460 struct ice_netdev_priv *np;
3461 struct net_device *netdev;
3462 u8 mac_addr[ETH_ALEN];
3463
3464 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3465 vsi->alloc_rxq);
3466 if (!netdev)
3467 return -ENOMEM;
3468
3469 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3470 vsi->netdev = netdev;
3471 np = netdev_priv(netdev);
3472 np->vsi = vsi;
3473
3474 ice_set_netdev_features(netdev);
3475
3476 ice_set_ops(netdev);
3477
3478 if (vsi->type == ICE_VSI_PF) {
3479 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3480 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3481 eth_hw_addr_set(netdev, mac_addr);
3482 ether_addr_copy(netdev->perm_addr, mac_addr);
3483 }
3484
3485 netdev->priv_flags |= IFF_UNICAST_FLT;
3486
3487 /* Setup netdev TC information */
3488 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3489
3490 /* setup watchdog timeout value to be 5 second */
3491 netdev->watchdog_timeo = 5 * HZ;
3492
3493 netdev->min_mtu = ETH_MIN_MTU;
3494 netdev->max_mtu = ICE_MAX_MTU;
3495
3496 return 0;
3497}
3498
3499/**
3500 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3501 * @lut: Lookup table
3502 * @rss_table_size: Lookup table size
3503 * @rss_size: Range of queue number for hashing
3504 */
3505void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3506{
3507 u16 i;
3508
3509 for (i = 0; i < rss_table_size; i++)
3510 lut[i] = i % rss_size;
3511}
3512
3513/**
3514 * ice_pf_vsi_setup - Set up a PF VSI
3515 * @pf: board private structure
3516 * @pi: pointer to the port_info instance
3517 *
3518 * Returns pointer to the successfully allocated VSI software struct
3519 * on success, otherwise returns NULL on failure.
3520 */
3521static struct ice_vsi *
3522ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3523{
3524 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3525}
3526
3527static struct ice_vsi *
3528ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3529 struct ice_channel *ch)
3530{
3531 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3532}
3533
3534/**
3535 * ice_ctrl_vsi_setup - Set up a control VSI
3536 * @pf: board private structure
3537 * @pi: pointer to the port_info instance
3538 *
3539 * Returns pointer to the successfully allocated VSI software struct
3540 * on success, otherwise returns NULL on failure.
3541 */
3542static struct ice_vsi *
3543ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3544{
3545 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3546}
3547
3548/**
3549 * ice_lb_vsi_setup - Set up a loopback VSI
3550 * @pf: board private structure
3551 * @pi: pointer to the port_info instance
3552 *
3553 * Returns pointer to the successfully allocated VSI software struct
3554 * on success, otherwise returns NULL on failure.
3555 */
3556struct ice_vsi *
3557ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3558{
3559 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3560}
3561
3562/**
3563 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3564 * @netdev: network interface to be adjusted
3565 * @proto: VLAN TPID
3566 * @vid: VLAN ID to be added
3567 *
3568 * net_device_ops implementation for adding VLAN IDs
3569 */
3570static int
3571ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3572{
3573 struct ice_netdev_priv *np = netdev_priv(netdev);
3574 struct ice_vsi_vlan_ops *vlan_ops;
3575 struct ice_vsi *vsi = np->vsi;
3576 struct ice_vlan vlan;
3577 int ret;
3578
3579 /* VLAN 0 is added by default during load/reset */
3580 if (!vid)
3581 return 0;
3582
3583 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3584 usleep_range(1000, 2000);
3585
3586 /* Add multicast promisc rule for the VLAN ID to be added if
3587 * all-multicast is currently enabled.
3588 */
3589 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3590 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3591 ICE_MCAST_VLAN_PROMISC_BITS,
3592 vid);
3593 if (ret)
3594 goto finish;
3595 }
3596
3597 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3598
3599 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3600 * packets aren't pruned by the device's internal switch on Rx
3601 */
3602 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3603 ret = vlan_ops->add_vlan(vsi, &vlan);
3604 if (ret)
3605 goto finish;
3606
3607 /* If all-multicast is currently enabled and this VLAN ID is only one
3608 * besides VLAN-0 we have to update look-up type of multicast promisc
3609 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3610 */
3611 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3612 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3613 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3614 ICE_MCAST_PROMISC_BITS, 0);
3615 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3616 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3617 }
3618
3619finish:
3620 clear_bit(ICE_CFG_BUSY, vsi->state);
3621
3622 return ret;
3623}
3624
3625/**
3626 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3627 * @netdev: network interface to be adjusted
3628 * @proto: VLAN TPID
3629 * @vid: VLAN ID to be removed
3630 *
3631 * net_device_ops implementation for removing VLAN IDs
3632 */
3633static int
3634ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3635{
3636 struct ice_netdev_priv *np = netdev_priv(netdev);
3637 struct ice_vsi_vlan_ops *vlan_ops;
3638 struct ice_vsi *vsi = np->vsi;
3639 struct ice_vlan vlan;
3640 int ret;
3641
3642 /* don't allow removal of VLAN 0 */
3643 if (!vid)
3644 return 0;
3645
3646 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3647 usleep_range(1000, 2000);
3648
3649 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3650 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3651 if (ret) {
3652 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3653 vsi->vsi_num);
3654 vsi->current_netdev_flags |= IFF_ALLMULTI;
3655 }
3656
3657 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3658
3659 /* Make sure VLAN delete is successful before updating VLAN
3660 * information
3661 */
3662 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3663 ret = vlan_ops->del_vlan(vsi, &vlan);
3664 if (ret)
3665 goto finish;
3666
3667 /* Remove multicast promisc rule for the removed VLAN ID if
3668 * all-multicast is enabled.
3669 */
3670 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3671 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3672 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3673
3674 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3675 /* Update look-up type of multicast promisc rule for VLAN 0
3676 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3677 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3678 */
3679 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3680 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3681 ICE_MCAST_VLAN_PROMISC_BITS,
3682 0);
3683 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3684 ICE_MCAST_PROMISC_BITS, 0);
3685 }
3686 }
3687
3688finish:
3689 clear_bit(ICE_CFG_BUSY, vsi->state);
3690
3691 return ret;
3692}
3693
3694/**
3695 * ice_rep_indr_tc_block_unbind
3696 * @cb_priv: indirection block private data
3697 */
3698static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3699{
3700 struct ice_indr_block_priv *indr_priv = cb_priv;
3701
3702 list_del(&indr_priv->list);
3703 kfree(indr_priv);
3704}
3705
3706/**
3707 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3708 * @vsi: VSI struct which has the netdev
3709 */
3710static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3711{
3712 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3713
3714 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3715 ice_rep_indr_tc_block_unbind);
3716}
3717
3718/**
3719 * ice_tc_indir_block_remove - clean indirect TC block notifications
3720 * @pf: PF structure
3721 */
3722static void ice_tc_indir_block_remove(struct ice_pf *pf)
3723{
3724 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3725
3726 if (!pf_vsi)
3727 return;
3728
3729 ice_tc_indir_block_unregister(pf_vsi);
3730}
3731
3732/**
3733 * ice_tc_indir_block_register - Register TC indirect block notifications
3734 * @vsi: VSI struct which has the netdev
3735 *
3736 * Returns 0 on success, negative value on failure
3737 */
3738static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3739{
3740 struct ice_netdev_priv *np;
3741
3742 if (!vsi || !vsi->netdev)
3743 return -EINVAL;
3744
3745 np = netdev_priv(vsi->netdev);
3746
3747 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3748 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3749}
3750
3751/**
3752 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3753 * @pf: board private structure
3754 *
3755 * Returns 0 on success, negative value on failure
3756 */
3757static int ice_setup_pf_sw(struct ice_pf *pf)
3758{
3759 struct device *dev = ice_pf_to_dev(pf);
3760 bool dvm = ice_is_dvm_ena(&pf->hw);
3761 struct ice_vsi *vsi;
3762 int status;
3763
3764 if (ice_is_reset_in_progress(pf->state))
3765 return -EBUSY;
3766
3767 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3768 if (status)
3769 return -EIO;
3770
3771 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3772 if (!vsi)
3773 return -ENOMEM;
3774
3775 /* init channel list */
3776 INIT_LIST_HEAD(&vsi->ch_list);
3777
3778 status = ice_cfg_netdev(vsi);
3779 if (status)
3780 goto unroll_vsi_setup;
3781 /* netdev has to be configured before setting frame size */
3782 ice_vsi_cfg_frame_size(vsi);
3783
3784 /* init indirect block notifications */
3785 status = ice_tc_indir_block_register(vsi);
3786 if (status) {
3787 dev_err(dev, "Failed to register netdev notifier\n");
3788 goto unroll_cfg_netdev;
3789 }
3790
3791 /* Setup DCB netlink interface */
3792 ice_dcbnl_setup(vsi);
3793
3794 /* registering the NAPI handler requires both the queues and
3795 * netdev to be created, which are done in ice_pf_vsi_setup()
3796 * and ice_cfg_netdev() respectively
3797 */
3798 ice_napi_add(vsi);
3799
3800 status = ice_init_mac_fltr(pf);
3801 if (status)
3802 goto unroll_napi_add;
3803
3804 return 0;
3805
3806unroll_napi_add:
3807 ice_tc_indir_block_unregister(vsi);
3808unroll_cfg_netdev:
3809 if (vsi) {
3810 ice_napi_del(vsi);
3811 if (vsi->netdev) {
3812 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3813 free_netdev(vsi->netdev);
3814 vsi->netdev = NULL;
3815 }
3816 }
3817
3818unroll_vsi_setup:
3819 ice_vsi_release(vsi);
3820 return status;
3821}
3822
3823/**
3824 * ice_get_avail_q_count - Get count of queues in use
3825 * @pf_qmap: bitmap to get queue use count from
3826 * @lock: pointer to a mutex that protects access to pf_qmap
3827 * @size: size of the bitmap
3828 */
3829static u16
3830ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3831{
3832 unsigned long bit;
3833 u16 count = 0;
3834
3835 mutex_lock(lock);
3836 for_each_clear_bit(bit, pf_qmap, size)
3837 count++;
3838 mutex_unlock(lock);
3839
3840 return count;
3841}
3842
3843/**
3844 * ice_get_avail_txq_count - Get count of Tx queues in use
3845 * @pf: pointer to an ice_pf instance
3846 */
3847u16 ice_get_avail_txq_count(struct ice_pf *pf)
3848{
3849 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3850 pf->max_pf_txqs);
3851}
3852
3853/**
3854 * ice_get_avail_rxq_count - Get count of Rx queues in use
3855 * @pf: pointer to an ice_pf instance
3856 */
3857u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3858{
3859 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3860 pf->max_pf_rxqs);
3861}
3862
3863/**
3864 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3865 * @pf: board private structure to initialize
3866 */
3867static void ice_deinit_pf(struct ice_pf *pf)
3868{
3869 ice_service_task_stop(pf);
3870 mutex_destroy(&pf->adev_mutex);
3871 mutex_destroy(&pf->sw_mutex);
3872 mutex_destroy(&pf->tc_mutex);
3873 mutex_destroy(&pf->avail_q_mutex);
3874 mutex_destroy(&pf->vfs.table_lock);
3875
3876 if (pf->avail_txqs) {
3877 bitmap_free(pf->avail_txqs);
3878 pf->avail_txqs = NULL;
3879 }
3880
3881 if (pf->avail_rxqs) {
3882 bitmap_free(pf->avail_rxqs);
3883 pf->avail_rxqs = NULL;
3884 }
3885
3886 if (pf->ptp.clock)
3887 ptp_clock_unregister(pf->ptp.clock);
3888}
3889
3890/**
3891 * ice_set_pf_caps - set PFs capability flags
3892 * @pf: pointer to the PF instance
3893 */
3894static void ice_set_pf_caps(struct ice_pf *pf)
3895{
3896 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3897
3898 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3899 if (func_caps->common_cap.rdma)
3900 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3901 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3902 if (func_caps->common_cap.dcb)
3903 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3904 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3905 if (func_caps->common_cap.sr_iov_1_1) {
3906 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3907 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3908 ICE_MAX_SRIOV_VFS);
3909 }
3910 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3911 if (func_caps->common_cap.rss_table_size)
3912 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3913
3914 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3915 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3916 u16 unused;
3917
3918 /* ctrl_vsi_idx will be set to a valid value when flow director
3919 * is setup by ice_init_fdir
3920 */
3921 pf->ctrl_vsi_idx = ICE_NO_VSI;
3922 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3923 /* force guaranteed filter pool for PF */
3924 ice_alloc_fd_guar_item(&pf->hw, &unused,
3925 func_caps->fd_fltr_guar);
3926 /* force shared filter pool for PF */
3927 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3928 func_caps->fd_fltr_best_effort);
3929 }
3930
3931 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3932 if (func_caps->common_cap.ieee_1588)
3933 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3934
3935 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3936 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3937}
3938
3939/**
3940 * ice_init_pf - Initialize general software structures (struct ice_pf)
3941 * @pf: board private structure to initialize
3942 */
3943static int ice_init_pf(struct ice_pf *pf)
3944{
3945 ice_set_pf_caps(pf);
3946
3947 mutex_init(&pf->sw_mutex);
3948 mutex_init(&pf->tc_mutex);
3949 mutex_init(&pf->adev_mutex);
3950
3951 INIT_HLIST_HEAD(&pf->aq_wait_list);
3952 spin_lock_init(&pf->aq_wait_lock);
3953 init_waitqueue_head(&pf->aq_wait_queue);
3954
3955 init_waitqueue_head(&pf->reset_wait_queue);
3956
3957 /* setup service timer and periodic service task */
3958 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3959 pf->serv_tmr_period = HZ;
3960 INIT_WORK(&pf->serv_task, ice_service_task);
3961 clear_bit(ICE_SERVICE_SCHED, pf->state);
3962
3963 mutex_init(&pf->avail_q_mutex);
3964 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3965 if (!pf->avail_txqs)
3966 return -ENOMEM;
3967
3968 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3969 if (!pf->avail_rxqs) {
3970 bitmap_free(pf->avail_txqs);
3971 pf->avail_txqs = NULL;
3972 return -ENOMEM;
3973 }
3974
3975 mutex_init(&pf->vfs.table_lock);
3976 hash_init(pf->vfs.table);
3977
3978 return 0;
3979}
3980
3981/**
3982 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors
3983 * @pf: board private structure
3984 * @v_remain: number of remaining MSI-X vectors to be distributed
3985 *
3986 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled.
3987 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of
3988 * remaining vectors.
3989 */
3990static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain)
3991{
3992 int v_rdma;
3993
3994 if (!ice_is_rdma_ena(pf)) {
3995 pf->num_lan_msix = v_remain;
3996 return;
3997 }
3998
3999 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */
4000 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
4001
4002 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) {
4003 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n");
4004 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4005
4006 pf->num_rdma_msix = 0;
4007 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
4008 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
4009 (v_remain - v_rdma < v_rdma)) {
4010 /* Support minimum RDMA and give remaining vectors to LAN MSIX */
4011 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX;
4012 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX;
4013 } else {
4014 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX
4015 */
4016 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
4017 ICE_RDMA_NUM_AEQ_MSIX;
4018 pf->num_lan_msix = v_remain - pf->num_rdma_msix;
4019 }
4020}
4021
4022/**
4023 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
4024 * @pf: board private structure
4025 *
4026 * Compute the number of MSIX vectors wanted and request from the OS. Adjust
4027 * device usage if there are not enough vectors. Return the number of vectors
4028 * reserved or negative on failure.
4029 */
4030static int ice_ena_msix_range(struct ice_pf *pf)
4031{
4032 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual;
4033 struct device *dev = ice_pf_to_dev(pf);
4034 int err, i;
4035
4036 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors;
4037 num_cpus = num_online_cpus();
4038
4039 /* LAN miscellaneous handler */
4040 v_other = ICE_MIN_LAN_OICR_MSIX;
4041
4042 /* Flow Director */
4043 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
4044 v_other += ICE_FDIR_MSIX;
4045
4046 /* switchdev */
4047 v_other += ICE_ESWITCH_MSIX;
4048
4049 v_wanted = v_other;
4050
4051 /* LAN traffic */
4052 pf->num_lan_msix = num_cpus;
4053 v_wanted += pf->num_lan_msix;
4054
4055 /* RDMA auxiliary driver */
4056 if (ice_is_rdma_ena(pf)) {
4057 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
4058 v_wanted += pf->num_rdma_msix;
4059 }
4060
4061 if (v_wanted > hw_num_msix) {
4062 int v_remain;
4063
4064 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n",
4065 v_wanted, hw_num_msix);
4066
4067 if (hw_num_msix < ICE_MIN_MSIX) {
4068 err = -ERANGE;
4069 goto exit_err;
4070 }
4071
4072 v_remain = hw_num_msix - v_other;
4073 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) {
4074 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX;
4075 v_remain = ICE_MIN_LAN_TXRX_MSIX;
4076 }
4077
4078 ice_reduce_msix_usage(pf, v_remain);
4079 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other;
4080
4081 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n",
4082 pf->num_lan_msix);
4083 if (ice_is_rdma_ena(pf))
4084 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n",
4085 pf->num_rdma_msix);
4086 }
4087
4088 pf->msix_entries = devm_kcalloc(dev, v_wanted,
4089 sizeof(*pf->msix_entries), GFP_KERNEL);
4090 if (!pf->msix_entries) {
4091 err = -ENOMEM;
4092 goto exit_err;
4093 }
4094
4095 for (i = 0; i < v_wanted; i++)
4096 pf->msix_entries[i].entry = i;
4097
4098 /* actually reserve the vectors */
4099 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
4100 ICE_MIN_MSIX, v_wanted);
4101 if (v_actual < 0) {
4102 dev_err(dev, "unable to reserve MSI-X vectors\n");
4103 err = v_actual;
4104 goto msix_err;
4105 }
4106
4107 if (v_actual < v_wanted) {
4108 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
4109 v_wanted, v_actual);
4110
4111 if (v_actual < ICE_MIN_MSIX) {
4112 /* error if we can't get minimum vectors */
4113 pci_disable_msix(pf->pdev);
4114 err = -ERANGE;
4115 goto msix_err;
4116 } else {
4117 int v_remain = v_actual - v_other;
4118
4119 if (v_remain < ICE_MIN_LAN_TXRX_MSIX)
4120 v_remain = ICE_MIN_LAN_TXRX_MSIX;
4121
4122 ice_reduce_msix_usage(pf, v_remain);
4123
4124 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4125 pf->num_lan_msix);
4126
4127 if (ice_is_rdma_ena(pf))
4128 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4129 pf->num_rdma_msix);
4130 }
4131 }
4132
4133 return v_actual;
4134
4135msix_err:
4136 devm_kfree(dev, pf->msix_entries);
4137
4138exit_err:
4139 pf->num_rdma_msix = 0;
4140 pf->num_lan_msix = 0;
4141 return err;
4142}
4143
4144/**
4145 * ice_dis_msix - Disable MSI-X interrupt setup in OS
4146 * @pf: board private structure
4147 */
4148static void ice_dis_msix(struct ice_pf *pf)
4149{
4150 pci_disable_msix(pf->pdev);
4151 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4152 pf->msix_entries = NULL;
4153}
4154
4155/**
4156 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4157 * @pf: board private structure
4158 */
4159static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4160{
4161 ice_dis_msix(pf);
4162
4163 if (pf->irq_tracker) {
4164 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4165 pf->irq_tracker = NULL;
4166 }
4167}
4168
4169/**
4170 * ice_init_interrupt_scheme - Determine proper interrupt scheme
4171 * @pf: board private structure to initialize
4172 */
4173static int ice_init_interrupt_scheme(struct ice_pf *pf)
4174{
4175 int vectors;
4176
4177 vectors = ice_ena_msix_range(pf);
4178
4179 if (vectors < 0)
4180 return vectors;
4181
4182 /* set up vector assignment tracking */
4183 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4184 struct_size(pf->irq_tracker, list, vectors),
4185 GFP_KERNEL);
4186 if (!pf->irq_tracker) {
4187 ice_dis_msix(pf);
4188 return -ENOMEM;
4189 }
4190
4191 /* populate SW interrupts pool with number of OS granted IRQs. */
4192 pf->num_avail_sw_msix = (u16)vectors;
4193 pf->irq_tracker->num_entries = (u16)vectors;
4194 pf->irq_tracker->end = pf->irq_tracker->num_entries;
4195
4196 return 0;
4197}
4198
4199/**
4200 * ice_is_wol_supported - check if WoL is supported
4201 * @hw: pointer to hardware info
4202 *
4203 * Check if WoL is supported based on the HW configuration.
4204 * Returns true if NVM supports and enables WoL for this port, false otherwise
4205 */
4206bool ice_is_wol_supported(struct ice_hw *hw)
4207{
4208 u16 wol_ctrl;
4209
4210 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4211 * word) indicates WoL is not supported on the corresponding PF ID.
4212 */
4213 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4214 return false;
4215
4216 return !(BIT(hw->port_info->lport) & wol_ctrl);
4217}
4218
4219/**
4220 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4221 * @vsi: VSI being changed
4222 * @new_rx: new number of Rx queues
4223 * @new_tx: new number of Tx queues
4224 * @locked: is adev device_lock held
4225 *
4226 * Only change the number of queues if new_tx, or new_rx is non-0.
4227 *
4228 * Returns 0 on success.
4229 */
4230int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4231{
4232 struct ice_pf *pf = vsi->back;
4233 int err = 0, timeout = 50;
4234
4235 if (!new_rx && !new_tx)
4236 return -EINVAL;
4237
4238 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4239 timeout--;
4240 if (!timeout)
4241 return -EBUSY;
4242 usleep_range(1000, 2000);
4243 }
4244
4245 if (new_tx)
4246 vsi->req_txq = (u16)new_tx;
4247 if (new_rx)
4248 vsi->req_rxq = (u16)new_rx;
4249
4250 /* set for the next time the netdev is started */
4251 if (!netif_running(vsi->netdev)) {
4252 ice_vsi_rebuild(vsi, false);
4253 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4254 goto done;
4255 }
4256
4257 ice_vsi_close(vsi);
4258 ice_vsi_rebuild(vsi, false);
4259 ice_pf_dcb_recfg(pf, locked);
4260 ice_vsi_open(vsi);
4261done:
4262 clear_bit(ICE_CFG_BUSY, pf->state);
4263 return err;
4264}
4265
4266/**
4267 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4268 * @pf: PF to configure
4269 *
4270 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4271 * VSI can still Tx/Rx VLAN tagged packets.
4272 */
4273static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4274{
4275 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4276 struct ice_vsi_ctx *ctxt;
4277 struct ice_hw *hw;
4278 int status;
4279
4280 if (!vsi)
4281 return;
4282
4283 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4284 if (!ctxt)
4285 return;
4286
4287 hw = &pf->hw;
4288 ctxt->info = vsi->info;
4289
4290 ctxt->info.valid_sections =
4291 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4292 ICE_AQ_VSI_PROP_SECURITY_VALID |
4293 ICE_AQ_VSI_PROP_SW_VALID);
4294
4295 /* disable VLAN anti-spoof */
4296 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4297 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4298
4299 /* disable VLAN pruning and keep all other settings */
4300 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4301
4302 /* allow all VLANs on Tx and don't strip on Rx */
4303 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4304 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4305
4306 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4307 if (status) {
4308 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4309 status, ice_aq_str(hw->adminq.sq_last_status));
4310 } else {
4311 vsi->info.sec_flags = ctxt->info.sec_flags;
4312 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4313 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4314 }
4315
4316 kfree(ctxt);
4317}
4318
4319/**
4320 * ice_log_pkg_init - log result of DDP package load
4321 * @hw: pointer to hardware info
4322 * @state: state of package load
4323 */
4324static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4325{
4326 struct ice_pf *pf = hw->back;
4327 struct device *dev;
4328
4329 dev = ice_pf_to_dev(pf);
4330
4331 switch (state) {
4332 case ICE_DDP_PKG_SUCCESS:
4333 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4334 hw->active_pkg_name,
4335 hw->active_pkg_ver.major,
4336 hw->active_pkg_ver.minor,
4337 hw->active_pkg_ver.update,
4338 hw->active_pkg_ver.draft);
4339 break;
4340 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4341 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4342 hw->active_pkg_name,
4343 hw->active_pkg_ver.major,
4344 hw->active_pkg_ver.minor,
4345 hw->active_pkg_ver.update,
4346 hw->active_pkg_ver.draft);
4347 break;
4348 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4349 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4350 hw->active_pkg_name,
4351 hw->active_pkg_ver.major,
4352 hw->active_pkg_ver.minor,
4353 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4354 break;
4355 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4356 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4357 hw->active_pkg_name,
4358 hw->active_pkg_ver.major,
4359 hw->active_pkg_ver.minor,
4360 hw->active_pkg_ver.update,
4361 hw->active_pkg_ver.draft,
4362 hw->pkg_name,
4363 hw->pkg_ver.major,
4364 hw->pkg_ver.minor,
4365 hw->pkg_ver.update,
4366 hw->pkg_ver.draft);
4367 break;
4368 case ICE_DDP_PKG_FW_MISMATCH:
4369 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4370 break;
4371 case ICE_DDP_PKG_INVALID_FILE:
4372 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4373 break;
4374 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4375 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4376 break;
4377 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4378 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4379 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4380 break;
4381 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4382 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4383 break;
4384 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4385 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4386 break;
4387 case ICE_DDP_PKG_LOAD_ERROR:
4388 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4389 /* poll for reset to complete */
4390 if (ice_check_reset(hw))
4391 dev_err(dev, "Error resetting device. Please reload the driver\n");
4392 break;
4393 case ICE_DDP_PKG_ERR:
4394 default:
4395 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4396 break;
4397 }
4398}
4399
4400/**
4401 * ice_load_pkg - load/reload the DDP Package file
4402 * @firmware: firmware structure when firmware requested or NULL for reload
4403 * @pf: pointer to the PF instance
4404 *
4405 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4406 * initialize HW tables.
4407 */
4408static void
4409ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4410{
4411 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4412 struct device *dev = ice_pf_to_dev(pf);
4413 struct ice_hw *hw = &pf->hw;
4414
4415 /* Load DDP Package */
4416 if (firmware && !hw->pkg_copy) {
4417 state = ice_copy_and_init_pkg(hw, firmware->data,
4418 firmware->size);
4419 ice_log_pkg_init(hw, state);
4420 } else if (!firmware && hw->pkg_copy) {
4421 /* Reload package during rebuild after CORER/GLOBR reset */
4422 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4423 ice_log_pkg_init(hw, state);
4424 } else {
4425 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4426 }
4427
4428 if (!ice_is_init_pkg_successful(state)) {
4429 /* Safe Mode */
4430 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4431 return;
4432 }
4433
4434 /* Successful download package is the precondition for advanced
4435 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4436 */
4437 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4438}
4439
4440/**
4441 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4442 * @pf: pointer to the PF structure
4443 *
4444 * There is no error returned here because the driver should be able to handle
4445 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4446 * specifically with Tx.
4447 */
4448static void ice_verify_cacheline_size(struct ice_pf *pf)
4449{
4450 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4451 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4452 ICE_CACHE_LINE_BYTES);
4453}
4454
4455/**
4456 * ice_send_version - update firmware with driver version
4457 * @pf: PF struct
4458 *
4459 * Returns 0 on success, else error code
4460 */
4461static int ice_send_version(struct ice_pf *pf)
4462{
4463 struct ice_driver_ver dv;
4464
4465 dv.major_ver = 0xff;
4466 dv.minor_ver = 0xff;
4467 dv.build_ver = 0xff;
4468 dv.subbuild_ver = 0;
4469 strscpy((char *)dv.driver_string, UTS_RELEASE,
4470 sizeof(dv.driver_string));
4471 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4472}
4473
4474/**
4475 * ice_init_fdir - Initialize flow director VSI and configuration
4476 * @pf: pointer to the PF instance
4477 *
4478 * returns 0 on success, negative on error
4479 */
4480static int ice_init_fdir(struct ice_pf *pf)
4481{
4482 struct device *dev = ice_pf_to_dev(pf);
4483 struct ice_vsi *ctrl_vsi;
4484 int err;
4485
4486 /* Side Band Flow Director needs to have a control VSI.
4487 * Allocate it and store it in the PF.
4488 */
4489 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4490 if (!ctrl_vsi) {
4491 dev_dbg(dev, "could not create control VSI\n");
4492 return -ENOMEM;
4493 }
4494
4495 err = ice_vsi_open_ctrl(ctrl_vsi);
4496 if (err) {
4497 dev_dbg(dev, "could not open control VSI\n");
4498 goto err_vsi_open;
4499 }
4500
4501 mutex_init(&pf->hw.fdir_fltr_lock);
4502
4503 err = ice_fdir_create_dflt_rules(pf);
4504 if (err)
4505 goto err_fdir_rule;
4506
4507 return 0;
4508
4509err_fdir_rule:
4510 ice_fdir_release_flows(&pf->hw);
4511 ice_vsi_close(ctrl_vsi);
4512err_vsi_open:
4513 ice_vsi_release(ctrl_vsi);
4514 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4515 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4516 pf->ctrl_vsi_idx = ICE_NO_VSI;
4517 }
4518 return err;
4519}
4520
4521/**
4522 * ice_get_opt_fw_name - return optional firmware file name or NULL
4523 * @pf: pointer to the PF instance
4524 */
4525static char *ice_get_opt_fw_name(struct ice_pf *pf)
4526{
4527 /* Optional firmware name same as default with additional dash
4528 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4529 */
4530 struct pci_dev *pdev = pf->pdev;
4531 char *opt_fw_filename;
4532 u64 dsn;
4533
4534 /* Determine the name of the optional file using the DSN (two
4535 * dwords following the start of the DSN Capability).
4536 */
4537 dsn = pci_get_dsn(pdev);
4538 if (!dsn)
4539 return NULL;
4540
4541 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4542 if (!opt_fw_filename)
4543 return NULL;
4544
4545 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4546 ICE_DDP_PKG_PATH, dsn);
4547
4548 return opt_fw_filename;
4549}
4550
4551/**
4552 * ice_request_fw - Device initialization routine
4553 * @pf: pointer to the PF instance
4554 */
4555static void ice_request_fw(struct ice_pf *pf)
4556{
4557 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4558 const struct firmware *firmware = NULL;
4559 struct device *dev = ice_pf_to_dev(pf);
4560 int err = 0;
4561
4562 /* optional device-specific DDP (if present) overrides the default DDP
4563 * package file. kernel logs a debug message if the file doesn't exist,
4564 * and warning messages for other errors.
4565 */
4566 if (opt_fw_filename) {
4567 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4568 if (err) {
4569 kfree(opt_fw_filename);
4570 goto dflt_pkg_load;
4571 }
4572
4573 /* request for firmware was successful. Download to device */
4574 ice_load_pkg(firmware, pf);
4575 kfree(opt_fw_filename);
4576 release_firmware(firmware);
4577 return;
4578 }
4579
4580dflt_pkg_load:
4581 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4582 if (err) {
4583 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4584 return;
4585 }
4586
4587 /* request for firmware was successful. Download to device */
4588 ice_load_pkg(firmware, pf);
4589 release_firmware(firmware);
4590}
4591
4592/**
4593 * ice_print_wake_reason - show the wake up cause in the log
4594 * @pf: pointer to the PF struct
4595 */
4596static void ice_print_wake_reason(struct ice_pf *pf)
4597{
4598 u32 wus = pf->wakeup_reason;
4599 const char *wake_str;
4600
4601 /* if no wake event, nothing to print */
4602 if (!wus)
4603 return;
4604
4605 if (wus & PFPM_WUS_LNKC_M)
4606 wake_str = "Link\n";
4607 else if (wus & PFPM_WUS_MAG_M)
4608 wake_str = "Magic Packet\n";
4609 else if (wus & PFPM_WUS_MNG_M)
4610 wake_str = "Management\n";
4611 else if (wus & PFPM_WUS_FW_RST_WK_M)
4612 wake_str = "Firmware Reset\n";
4613 else
4614 wake_str = "Unknown\n";
4615
4616 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4617}
4618
4619/**
4620 * ice_register_netdev - register netdev
4621 * @pf: pointer to the PF struct
4622 */
4623static int ice_register_netdev(struct ice_pf *pf)
4624{
4625 struct ice_vsi *vsi;
4626 int err = 0;
4627
4628 vsi = ice_get_main_vsi(pf);
4629 if (!vsi || !vsi->netdev)
4630 return -EIO;
4631
4632 err = register_netdev(vsi->netdev);
4633 if (err)
4634 goto err_register_netdev;
4635
4636 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4637 netif_carrier_off(vsi->netdev);
4638 netif_tx_stop_all_queues(vsi->netdev);
4639
4640 return 0;
4641err_register_netdev:
4642 free_netdev(vsi->netdev);
4643 vsi->netdev = NULL;
4644 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4645 return err;
4646}
4647
4648/**
4649 * ice_probe - Device initialization routine
4650 * @pdev: PCI device information struct
4651 * @ent: entry in ice_pci_tbl
4652 *
4653 * Returns 0 on success, negative on failure
4654 */
4655static int
4656ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4657{
4658 struct device *dev = &pdev->dev;
4659 struct ice_vsi *vsi;
4660 struct ice_pf *pf;
4661 struct ice_hw *hw;
4662 int i, err;
4663
4664 if (pdev->is_virtfn) {
4665 dev_err(dev, "can't probe a virtual function\n");
4666 return -EINVAL;
4667 }
4668
4669 /* this driver uses devres, see
4670 * Documentation/driver-api/driver-model/devres.rst
4671 */
4672 err = pcim_enable_device(pdev);
4673 if (err)
4674 return err;
4675
4676 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4677 if (err) {
4678 dev_err(dev, "BAR0 I/O map error %d\n", err);
4679 return err;
4680 }
4681
4682 pf = ice_allocate_pf(dev);
4683 if (!pf)
4684 return -ENOMEM;
4685
4686 /* initialize Auxiliary index to invalid value */
4687 pf->aux_idx = -1;
4688
4689 /* set up for high or low DMA */
4690 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4691 if (err) {
4692 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4693 return err;
4694 }
4695
4696 pci_enable_pcie_error_reporting(pdev);
4697 pci_set_master(pdev);
4698
4699 pf->pdev = pdev;
4700 pci_set_drvdata(pdev, pf);
4701 set_bit(ICE_DOWN, pf->state);
4702 /* Disable service task until DOWN bit is cleared */
4703 set_bit(ICE_SERVICE_DIS, pf->state);
4704
4705 hw = &pf->hw;
4706 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4707 pci_save_state(pdev);
4708
4709 hw->back = pf;
4710 hw->vendor_id = pdev->vendor;
4711 hw->device_id = pdev->device;
4712 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4713 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4714 hw->subsystem_device_id = pdev->subsystem_device;
4715 hw->bus.device = PCI_SLOT(pdev->devfn);
4716 hw->bus.func = PCI_FUNC(pdev->devfn);
4717 ice_set_ctrlq_len(hw);
4718
4719 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4720
4721#ifndef CONFIG_DYNAMIC_DEBUG
4722 if (debug < -1)
4723 hw->debug_mask = debug;
4724#endif
4725
4726 err = ice_init_hw(hw);
4727 if (err) {
4728 dev_err(dev, "ice_init_hw failed: %d\n", err);
4729 err = -EIO;
4730 goto err_exit_unroll;
4731 }
4732
4733 ice_init_feature_support(pf);
4734
4735 ice_request_fw(pf);
4736
4737 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4738 * set in pf->state, which will cause ice_is_safe_mode to return
4739 * true
4740 */
4741 if (ice_is_safe_mode(pf)) {
4742 /* we already got function/device capabilities but these don't
4743 * reflect what the driver needs to do in safe mode. Instead of
4744 * adding conditional logic everywhere to ignore these
4745 * device/function capabilities, override them.
4746 */
4747 ice_set_safe_mode_caps(hw);
4748 }
4749
4750 err = ice_init_pf(pf);
4751 if (err) {
4752 dev_err(dev, "ice_init_pf failed: %d\n", err);
4753 goto err_init_pf_unroll;
4754 }
4755
4756 ice_devlink_init_regions(pf);
4757
4758 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4759 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4760 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4761 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4762 i = 0;
4763 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4764 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4765 pf->hw.tnl.valid_count[TNL_VXLAN];
4766 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4767 UDP_TUNNEL_TYPE_VXLAN;
4768 i++;
4769 }
4770 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4771 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4772 pf->hw.tnl.valid_count[TNL_GENEVE];
4773 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4774 UDP_TUNNEL_TYPE_GENEVE;
4775 i++;
4776 }
4777
4778 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4779 if (!pf->num_alloc_vsi) {
4780 err = -EIO;
4781 goto err_init_pf_unroll;
4782 }
4783 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4784 dev_warn(&pf->pdev->dev,
4785 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4786 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4787 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4788 }
4789
4790 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4791 GFP_KERNEL);
4792 if (!pf->vsi) {
4793 err = -ENOMEM;
4794 goto err_init_pf_unroll;
4795 }
4796
4797 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4798 sizeof(*pf->vsi_stats), GFP_KERNEL);
4799 if (!pf->vsi_stats) {
4800 err = -ENOMEM;
4801 goto err_init_vsi_unroll;
4802 }
4803
4804 err = ice_init_interrupt_scheme(pf);
4805 if (err) {
4806 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4807 err = -EIO;
4808 goto err_init_vsi_stats_unroll;
4809 }
4810
4811 /* In case of MSIX we are going to setup the misc vector right here
4812 * to handle admin queue events etc. In case of legacy and MSI
4813 * the misc functionality and queue processing is combined in
4814 * the same vector and that gets setup at open.
4815 */
4816 err = ice_req_irq_msix_misc(pf);
4817 if (err) {
4818 dev_err(dev, "setup of misc vector failed: %d\n", err);
4819 goto err_init_interrupt_unroll;
4820 }
4821
4822 /* create switch struct for the switch element created by FW on boot */
4823 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4824 if (!pf->first_sw) {
4825 err = -ENOMEM;
4826 goto err_msix_misc_unroll;
4827 }
4828
4829 if (hw->evb_veb)
4830 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4831 else
4832 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4833
4834 pf->first_sw->pf = pf;
4835
4836 /* record the sw_id available for later use */
4837 pf->first_sw->sw_id = hw->port_info->sw_id;
4838
4839 err = ice_setup_pf_sw(pf);
4840 if (err) {
4841 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4842 goto err_alloc_sw_unroll;
4843 }
4844
4845 clear_bit(ICE_SERVICE_DIS, pf->state);
4846
4847 /* tell the firmware we are up */
4848 err = ice_send_version(pf);
4849 if (err) {
4850 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4851 UTS_RELEASE, err);
4852 goto err_send_version_unroll;
4853 }
4854
4855 /* since everything is good, start the service timer */
4856 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4857
4858 err = ice_init_link_events(pf->hw.port_info);
4859 if (err) {
4860 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4861 goto err_send_version_unroll;
4862 }
4863
4864 /* not a fatal error if this fails */
4865 err = ice_init_nvm_phy_type(pf->hw.port_info);
4866 if (err)
4867 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4868
4869 /* not a fatal error if this fails */
4870 err = ice_update_link_info(pf->hw.port_info);
4871 if (err)
4872 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4873
4874 ice_init_link_dflt_override(pf->hw.port_info);
4875
4876 ice_check_link_cfg_err(pf,
4877 pf->hw.port_info->phy.link_info.link_cfg_err);
4878
4879 /* if media available, initialize PHY settings */
4880 if (pf->hw.port_info->phy.link_info.link_info &
4881 ICE_AQ_MEDIA_AVAILABLE) {
4882 /* not a fatal error if this fails */
4883 err = ice_init_phy_user_cfg(pf->hw.port_info);
4884 if (err)
4885 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4886
4887 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4888 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4889
4890 if (vsi)
4891 ice_configure_phy(vsi);
4892 }
4893 } else {
4894 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4895 }
4896
4897 ice_verify_cacheline_size(pf);
4898
4899 /* Save wakeup reason register for later use */
4900 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4901
4902 /* check for a power management event */
4903 ice_print_wake_reason(pf);
4904
4905 /* clear wake status, all bits */
4906 wr32(hw, PFPM_WUS, U32_MAX);
4907
4908 /* Disable WoL at init, wait for user to enable */
4909 device_set_wakeup_enable(dev, false);
4910
4911 if (ice_is_safe_mode(pf)) {
4912 ice_set_safe_mode_vlan_cfg(pf);
4913 goto probe_done;
4914 }
4915
4916 /* initialize DDP driven features */
4917 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4918 ice_ptp_init(pf);
4919
4920 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4921 ice_gnss_init(pf);
4922
4923 /* Note: Flow director init failure is non-fatal to load */
4924 if (ice_init_fdir(pf))
4925 dev_err(dev, "could not initialize flow director\n");
4926
4927 /* Note: DCB init failure is non-fatal to load */
4928 if (ice_init_pf_dcb(pf, false)) {
4929 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4930 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4931 } else {
4932 ice_cfg_lldp_mib_change(&pf->hw, true);
4933 }
4934
4935 if (ice_init_lag(pf))
4936 dev_warn(dev, "Failed to init link aggregation support\n");
4937
4938 /* print PCI link speed and width */
4939 pcie_print_link_status(pf->pdev);
4940
4941probe_done:
4942 err = ice_devlink_create_pf_port(pf);
4943 if (err)
4944 goto err_create_pf_port;
4945
4946 vsi = ice_get_main_vsi(pf);
4947 if (!vsi || !vsi->netdev) {
4948 err = -EINVAL;
4949 goto err_netdev_reg;
4950 }
4951
4952 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4953
4954 err = ice_register_netdev(pf);
4955 if (err)
4956 goto err_netdev_reg;
4957
4958 err = ice_devlink_register_params(pf);
4959 if (err)
4960 goto err_netdev_reg;
4961
4962 /* ready to go, so clear down state bit */
4963 clear_bit(ICE_DOWN, pf->state);
4964 if (ice_is_rdma_ena(pf)) {
4965 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4966 if (pf->aux_idx < 0) {
4967 dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4968 err = -ENOMEM;
4969 goto err_devlink_reg_param;
4970 }
4971
4972 err = ice_init_rdma(pf);
4973 if (err) {
4974 dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4975 err = -EIO;
4976 goto err_init_aux_unroll;
4977 }
4978 } else {
4979 dev_warn(dev, "RDMA is not supported on this device\n");
4980 }
4981
4982 ice_devlink_register(pf);
4983 return 0;
4984
4985err_init_aux_unroll:
4986 pf->adev = NULL;
4987 ida_free(&ice_aux_ida, pf->aux_idx);
4988err_devlink_reg_param:
4989 ice_devlink_unregister_params(pf);
4990err_netdev_reg:
4991 ice_devlink_destroy_pf_port(pf);
4992err_create_pf_port:
4993err_send_version_unroll:
4994 ice_vsi_release_all(pf);
4995err_alloc_sw_unroll:
4996 set_bit(ICE_SERVICE_DIS, pf->state);
4997 set_bit(ICE_DOWN, pf->state);
4998 devm_kfree(dev, pf->first_sw);
4999err_msix_misc_unroll:
5000 ice_free_irq_msix_misc(pf);
5001err_init_interrupt_unroll:
5002 ice_clear_interrupt_scheme(pf);
5003err_init_vsi_stats_unroll:
5004 devm_kfree(dev, pf->vsi_stats);
5005 pf->vsi_stats = NULL;
5006err_init_vsi_unroll:
5007 devm_kfree(dev, pf->vsi);
5008err_init_pf_unroll:
5009 ice_deinit_pf(pf);
5010 ice_devlink_destroy_regions(pf);
5011 ice_deinit_hw(hw);
5012err_exit_unroll:
5013 pci_disable_pcie_error_reporting(pdev);
5014 pci_disable_device(pdev);
5015 return err;
5016}
5017
5018/**
5019 * ice_set_wake - enable or disable Wake on LAN
5020 * @pf: pointer to the PF struct
5021 *
5022 * Simple helper for WoL control
5023 */
5024static void ice_set_wake(struct ice_pf *pf)
5025{
5026 struct ice_hw *hw = &pf->hw;
5027 bool wol = pf->wol_ena;
5028
5029 /* clear wake state, otherwise new wake events won't fire */
5030 wr32(hw, PFPM_WUS, U32_MAX);
5031
5032 /* enable / disable APM wake up, no RMW needed */
5033 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5034
5035 /* set magic packet filter enabled */
5036 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5037}
5038
5039/**
5040 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5041 * @pf: pointer to the PF struct
5042 *
5043 * Issue firmware command to enable multicast magic wake, making
5044 * sure that any locally administered address (LAA) is used for
5045 * wake, and that PF reset doesn't undo the LAA.
5046 */
5047static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5048{
5049 struct device *dev = ice_pf_to_dev(pf);
5050 struct ice_hw *hw = &pf->hw;
5051 u8 mac_addr[ETH_ALEN];
5052 struct ice_vsi *vsi;
5053 int status;
5054 u8 flags;
5055
5056 if (!pf->wol_ena)
5057 return;
5058
5059 vsi = ice_get_main_vsi(pf);
5060 if (!vsi)
5061 return;
5062
5063 /* Get current MAC address in case it's an LAA */
5064 if (vsi->netdev)
5065 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5066 else
5067 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5068
5069 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5070 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5071 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5072
5073 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5074 if (status)
5075 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5076 status, ice_aq_str(hw->adminq.sq_last_status));
5077}
5078
5079/**
5080 * ice_remove - Device removal routine
5081 * @pdev: PCI device information struct
5082 */
5083static void ice_remove(struct pci_dev *pdev)
5084{
5085 struct ice_pf *pf = pci_get_drvdata(pdev);
5086 int i;
5087
5088 ice_devlink_unregister(pf);
5089 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5090 if (!ice_is_reset_in_progress(pf->state))
5091 break;
5092 msleep(100);
5093 }
5094
5095 ice_tc_indir_block_remove(pf);
5096
5097 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5098 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5099 ice_free_vfs(pf);
5100 }
5101
5102 ice_service_task_stop(pf);
5103
5104 ice_aq_cancel_waiting_tasks(pf);
5105 ice_unplug_aux_dev(pf);
5106 if (pf->aux_idx >= 0)
5107 ida_free(&ice_aux_ida, pf->aux_idx);
5108 ice_devlink_unregister_params(pf);
5109 set_bit(ICE_DOWN, pf->state);
5110
5111 ice_deinit_lag(pf);
5112 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
5113 ice_ptp_release(pf);
5114 if (ice_is_feature_supported(pf, ICE_F_GNSS))
5115 ice_gnss_exit(pf);
5116 if (!ice_is_safe_mode(pf))
5117 ice_remove_arfs(pf);
5118 ice_setup_mc_magic_wake(pf);
5119 ice_vsi_release_all(pf);
5120 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5121 ice_devlink_destroy_pf_port(pf);
5122 ice_set_wake(pf);
5123 ice_free_irq_msix_misc(pf);
5124 ice_for_each_vsi(pf, i) {
5125 if (!pf->vsi[i])
5126 continue;
5127 ice_vsi_free_q_vectors(pf->vsi[i]);
5128 }
5129 devm_kfree(&pdev->dev, pf->vsi_stats);
5130 pf->vsi_stats = NULL;
5131 ice_deinit_pf(pf);
5132 ice_devlink_destroy_regions(pf);
5133 ice_deinit_hw(&pf->hw);
5134
5135 /* Issue a PFR as part of the prescribed driver unload flow. Do not
5136 * do it via ice_schedule_reset() since there is no need to rebuild
5137 * and the service task is already stopped.
5138 */
5139 ice_reset(&pf->hw, ICE_RESET_PFR);
5140 pci_wait_for_pending_transaction(pdev);
5141 ice_clear_interrupt_scheme(pf);
5142 pci_disable_pcie_error_reporting(pdev);
5143 pci_disable_device(pdev);
5144}
5145
5146/**
5147 * ice_shutdown - PCI callback for shutting down device
5148 * @pdev: PCI device information struct
5149 */
5150static void ice_shutdown(struct pci_dev *pdev)
5151{
5152 struct ice_pf *pf = pci_get_drvdata(pdev);
5153
5154 ice_remove(pdev);
5155
5156 if (system_state == SYSTEM_POWER_OFF) {
5157 pci_wake_from_d3(pdev, pf->wol_ena);
5158 pci_set_power_state(pdev, PCI_D3hot);
5159 }
5160}
5161
5162#ifdef CONFIG_PM
5163/**
5164 * ice_prepare_for_shutdown - prep for PCI shutdown
5165 * @pf: board private structure
5166 *
5167 * Inform or close all dependent features in prep for PCI device shutdown
5168 */
5169static void ice_prepare_for_shutdown(struct ice_pf *pf)
5170{
5171 struct ice_hw *hw = &pf->hw;
5172 u32 v;
5173
5174 /* Notify VFs of impending reset */
5175 if (ice_check_sq_alive(hw, &hw->mailboxq))
5176 ice_vc_notify_reset(pf);
5177
5178 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5179
5180 /* disable the VSIs and their queues that are not already DOWN */
5181 ice_pf_dis_all_vsi(pf, false);
5182
5183 ice_for_each_vsi(pf, v)
5184 if (pf->vsi[v])
5185 pf->vsi[v]->vsi_num = 0;
5186
5187 ice_shutdown_all_ctrlq(hw);
5188}
5189
5190/**
5191 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5192 * @pf: board private structure to reinitialize
5193 *
5194 * This routine reinitialize interrupt scheme that was cleared during
5195 * power management suspend callback.
5196 *
5197 * This should be called during resume routine to re-allocate the q_vectors
5198 * and reacquire interrupts.
5199 */
5200static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5201{
5202 struct device *dev = ice_pf_to_dev(pf);
5203 int ret, v;
5204
5205 /* Since we clear MSIX flag during suspend, we need to
5206 * set it back during resume...
5207 */
5208
5209 ret = ice_init_interrupt_scheme(pf);
5210 if (ret) {
5211 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5212 return ret;
5213 }
5214
5215 /* Remap vectors and rings, after successful re-init interrupts */
5216 ice_for_each_vsi(pf, v) {
5217 if (!pf->vsi[v])
5218 continue;
5219
5220 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5221 if (ret)
5222 goto err_reinit;
5223 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5224 }
5225
5226 ret = ice_req_irq_msix_misc(pf);
5227 if (ret) {
5228 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5229 ret);
5230 goto err_reinit;
5231 }
5232
5233 return 0;
5234
5235err_reinit:
5236 while (v--)
5237 if (pf->vsi[v])
5238 ice_vsi_free_q_vectors(pf->vsi[v]);
5239
5240 return ret;
5241}
5242
5243/**
5244 * ice_suspend
5245 * @dev: generic device information structure
5246 *
5247 * Power Management callback to quiesce the device and prepare
5248 * for D3 transition.
5249 */
5250static int __maybe_unused ice_suspend(struct device *dev)
5251{
5252 struct pci_dev *pdev = to_pci_dev(dev);
5253 struct ice_pf *pf;
5254 int disabled, v;
5255
5256 pf = pci_get_drvdata(pdev);
5257
5258 if (!ice_pf_state_is_nominal(pf)) {
5259 dev_err(dev, "Device is not ready, no need to suspend it\n");
5260 return -EBUSY;
5261 }
5262
5263 /* Stop watchdog tasks until resume completion.
5264 * Even though it is most likely that the service task is
5265 * disabled if the device is suspended or down, the service task's
5266 * state is controlled by a different state bit, and we should
5267 * store and honor whatever state that bit is in at this point.
5268 */
5269 disabled = ice_service_task_stop(pf);
5270
5271 ice_unplug_aux_dev(pf);
5272
5273 /* Already suspended?, then there is nothing to do */
5274 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5275 if (!disabled)
5276 ice_service_task_restart(pf);
5277 return 0;
5278 }
5279
5280 if (test_bit(ICE_DOWN, pf->state) ||
5281 ice_is_reset_in_progress(pf->state)) {
5282 dev_err(dev, "can't suspend device in reset or already down\n");
5283 if (!disabled)
5284 ice_service_task_restart(pf);
5285 return 0;
5286 }
5287
5288 ice_setup_mc_magic_wake(pf);
5289
5290 ice_prepare_for_shutdown(pf);
5291
5292 ice_set_wake(pf);
5293
5294 /* Free vectors, clear the interrupt scheme and release IRQs
5295 * for proper hibernation, especially with large number of CPUs.
5296 * Otherwise hibernation might fail when mapping all the vectors back
5297 * to CPU0.
5298 */
5299 ice_free_irq_msix_misc(pf);
5300 ice_for_each_vsi(pf, v) {
5301 if (!pf->vsi[v])
5302 continue;
5303 ice_vsi_free_q_vectors(pf->vsi[v]);
5304 }
5305 ice_clear_interrupt_scheme(pf);
5306
5307 pci_save_state(pdev);
5308 pci_wake_from_d3(pdev, pf->wol_ena);
5309 pci_set_power_state(pdev, PCI_D3hot);
5310 return 0;
5311}
5312
5313/**
5314 * ice_resume - PM callback for waking up from D3
5315 * @dev: generic device information structure
5316 */
5317static int __maybe_unused ice_resume(struct device *dev)
5318{
5319 struct pci_dev *pdev = to_pci_dev(dev);
5320 enum ice_reset_req reset_type;
5321 struct ice_pf *pf;
5322 struct ice_hw *hw;
5323 int ret;
5324
5325 pci_set_power_state(pdev, PCI_D0);
5326 pci_restore_state(pdev);
5327 pci_save_state(pdev);
5328
5329 if (!pci_device_is_present(pdev))
5330 return -ENODEV;
5331
5332 ret = pci_enable_device_mem(pdev);
5333 if (ret) {
5334 dev_err(dev, "Cannot enable device after suspend\n");
5335 return ret;
5336 }
5337
5338 pf = pci_get_drvdata(pdev);
5339 hw = &pf->hw;
5340
5341 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5342 ice_print_wake_reason(pf);
5343
5344 /* We cleared the interrupt scheme when we suspended, so we need to
5345 * restore it now to resume device functionality.
5346 */
5347 ret = ice_reinit_interrupt_scheme(pf);
5348 if (ret)
5349 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5350
5351 clear_bit(ICE_DOWN, pf->state);
5352 /* Now perform PF reset and rebuild */
5353 reset_type = ICE_RESET_PFR;
5354 /* re-enable service task for reset, but allow reset to schedule it */
5355 clear_bit(ICE_SERVICE_DIS, pf->state);
5356
5357 if (ice_schedule_reset(pf, reset_type))
5358 dev_err(dev, "Reset during resume failed.\n");
5359
5360 clear_bit(ICE_SUSPENDED, pf->state);
5361 ice_service_task_restart(pf);
5362
5363 /* Restart the service task */
5364 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5365
5366 return 0;
5367}
5368#endif /* CONFIG_PM */
5369
5370/**
5371 * ice_pci_err_detected - warning that PCI error has been detected
5372 * @pdev: PCI device information struct
5373 * @err: the type of PCI error
5374 *
5375 * Called to warn that something happened on the PCI bus and the error handling
5376 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5377 */
5378static pci_ers_result_t
5379ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5380{
5381 struct ice_pf *pf = pci_get_drvdata(pdev);
5382
5383 if (!pf) {
5384 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5385 __func__, err);
5386 return PCI_ERS_RESULT_DISCONNECT;
5387 }
5388
5389 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5390 ice_service_task_stop(pf);
5391
5392 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5393 set_bit(ICE_PFR_REQ, pf->state);
5394 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5395 }
5396 }
5397
5398 return PCI_ERS_RESULT_NEED_RESET;
5399}
5400
5401/**
5402 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5403 * @pdev: PCI device information struct
5404 *
5405 * Called to determine if the driver can recover from the PCI slot reset by
5406 * using a register read to determine if the device is recoverable.
5407 */
5408static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5409{
5410 struct ice_pf *pf = pci_get_drvdata(pdev);
5411 pci_ers_result_t result;
5412 int err;
5413 u32 reg;
5414
5415 err = pci_enable_device_mem(pdev);
5416 if (err) {
5417 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5418 err);
5419 result = PCI_ERS_RESULT_DISCONNECT;
5420 } else {
5421 pci_set_master(pdev);
5422 pci_restore_state(pdev);
5423 pci_save_state(pdev);
5424 pci_wake_from_d3(pdev, false);
5425
5426 /* Check for life */
5427 reg = rd32(&pf->hw, GLGEN_RTRIG);
5428 if (!reg)
5429 result = PCI_ERS_RESULT_RECOVERED;
5430 else
5431 result = PCI_ERS_RESULT_DISCONNECT;
5432 }
5433
5434 return result;
5435}
5436
5437/**
5438 * ice_pci_err_resume - restart operations after PCI error recovery
5439 * @pdev: PCI device information struct
5440 *
5441 * Called to allow the driver to bring things back up after PCI error and/or
5442 * reset recovery have finished
5443 */
5444static void ice_pci_err_resume(struct pci_dev *pdev)
5445{
5446 struct ice_pf *pf = pci_get_drvdata(pdev);
5447
5448 if (!pf) {
5449 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5450 __func__);
5451 return;
5452 }
5453
5454 if (test_bit(ICE_SUSPENDED, pf->state)) {
5455 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5456 __func__);
5457 return;
5458 }
5459
5460 ice_restore_all_vfs_msi_state(pdev);
5461
5462 ice_do_reset(pf, ICE_RESET_PFR);
5463 ice_service_task_restart(pf);
5464 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5465}
5466
5467/**
5468 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5469 * @pdev: PCI device information struct
5470 */
5471static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5472{
5473 struct ice_pf *pf = pci_get_drvdata(pdev);
5474
5475 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5476 ice_service_task_stop(pf);
5477
5478 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5479 set_bit(ICE_PFR_REQ, pf->state);
5480 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5481 }
5482 }
5483}
5484
5485/**
5486 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5487 * @pdev: PCI device information struct
5488 */
5489static void ice_pci_err_reset_done(struct pci_dev *pdev)
5490{
5491 ice_pci_err_resume(pdev);
5492}
5493
5494/* ice_pci_tbl - PCI Device ID Table
5495 *
5496 * Wildcard entries (PCI_ANY_ID) should come last
5497 * Last entry must be all 0s
5498 *
5499 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5500 * Class, Class Mask, private data (not used) }
5501 */
5502static const struct pci_device_id ice_pci_tbl[] = {
5503 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5504 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5505 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5506 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5507 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5508 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5509 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5510 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5511 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5512 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5513 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5514 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5515 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5516 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5517 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5518 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5519 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5520 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5521 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5522 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5523 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5524 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5525 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5526 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5527 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5528 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5529 /* required last entry */
5530 { 0, }
5531};
5532MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5533
5534static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5535
5536static const struct pci_error_handlers ice_pci_err_handler = {
5537 .error_detected = ice_pci_err_detected,
5538 .slot_reset = ice_pci_err_slot_reset,
5539 .reset_prepare = ice_pci_err_reset_prepare,
5540 .reset_done = ice_pci_err_reset_done,
5541 .resume = ice_pci_err_resume
5542};
5543
5544static struct pci_driver ice_driver = {
5545 .name = KBUILD_MODNAME,
5546 .id_table = ice_pci_tbl,
5547 .probe = ice_probe,
5548 .remove = ice_remove,
5549#ifdef CONFIG_PM
5550 .driver.pm = &ice_pm_ops,
5551#endif /* CONFIG_PM */
5552 .shutdown = ice_shutdown,
5553 .sriov_configure = ice_sriov_configure,
5554 .err_handler = &ice_pci_err_handler
5555};
5556
5557/**
5558 * ice_module_init - Driver registration routine
5559 *
5560 * ice_module_init is the first routine called when the driver is
5561 * loaded. All it does is register with the PCI subsystem.
5562 */
5563static int __init ice_module_init(void)
5564{
5565 int status;
5566
5567 pr_info("%s\n", ice_driver_string);
5568 pr_info("%s\n", ice_copyright);
5569
5570 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5571 if (!ice_wq) {
5572 pr_err("Failed to create workqueue\n");
5573 return -ENOMEM;
5574 }
5575
5576 status = pci_register_driver(&ice_driver);
5577 if (status) {
5578 pr_err("failed to register PCI driver, err %d\n", status);
5579 destroy_workqueue(ice_wq);
5580 }
5581
5582 return status;
5583}
5584module_init(ice_module_init);
5585
5586/**
5587 * ice_module_exit - Driver exit cleanup routine
5588 *
5589 * ice_module_exit is called just before the driver is removed
5590 * from memory.
5591 */
5592static void __exit ice_module_exit(void)
5593{
5594 pci_unregister_driver(&ice_driver);
5595 destroy_workqueue(ice_wq);
5596 pr_info("module unloaded\n");
5597}
5598module_exit(ice_module_exit);
5599
5600/**
5601 * ice_set_mac_address - NDO callback to set MAC address
5602 * @netdev: network interface device structure
5603 * @pi: pointer to an address structure
5604 *
5605 * Returns 0 on success, negative on failure
5606 */
5607static int ice_set_mac_address(struct net_device *netdev, void *pi)
5608{
5609 struct ice_netdev_priv *np = netdev_priv(netdev);
5610 struct ice_vsi *vsi = np->vsi;
5611 struct ice_pf *pf = vsi->back;
5612 struct ice_hw *hw = &pf->hw;
5613 struct sockaddr *addr = pi;
5614 u8 old_mac[ETH_ALEN];
5615 u8 flags = 0;
5616 u8 *mac;
5617 int err;
5618
5619 mac = (u8 *)addr->sa_data;
5620
5621 if (!is_valid_ether_addr(mac))
5622 return -EADDRNOTAVAIL;
5623
5624 if (ether_addr_equal(netdev->dev_addr, mac)) {
5625 netdev_dbg(netdev, "already using mac %pM\n", mac);
5626 return 0;
5627 }
5628
5629 if (test_bit(ICE_DOWN, pf->state) ||
5630 ice_is_reset_in_progress(pf->state)) {
5631 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5632 mac);
5633 return -EBUSY;
5634 }
5635
5636 if (ice_chnl_dmac_fltr_cnt(pf)) {
5637 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5638 mac);
5639 return -EAGAIN;
5640 }
5641
5642 netif_addr_lock_bh(netdev);
5643 ether_addr_copy(old_mac, netdev->dev_addr);
5644 /* change the netdev's MAC address */
5645 eth_hw_addr_set(netdev, mac);
5646 netif_addr_unlock_bh(netdev);
5647
5648 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5649 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5650 if (err && err != -ENOENT) {
5651 err = -EADDRNOTAVAIL;
5652 goto err_update_filters;
5653 }
5654
5655 /* Add filter for new MAC. If filter exists, return success */
5656 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5657 if (err == -EEXIST) {
5658 /* Although this MAC filter is already present in hardware it's
5659 * possible in some cases (e.g. bonding) that dev_addr was
5660 * modified outside of the driver and needs to be restored back
5661 * to this value.
5662 */
5663 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5664
5665 return 0;
5666 } else if (err) {
5667 /* error if the new filter addition failed */
5668 err = -EADDRNOTAVAIL;
5669 }
5670
5671err_update_filters:
5672 if (err) {
5673 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5674 mac);
5675 netif_addr_lock_bh(netdev);
5676 eth_hw_addr_set(netdev, old_mac);
5677 netif_addr_unlock_bh(netdev);
5678 return err;
5679 }
5680
5681 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5682 netdev->dev_addr);
5683
5684 /* write new MAC address to the firmware */
5685 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5686 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5687 if (err) {
5688 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5689 mac, err);
5690 }
5691 return 0;
5692}
5693
5694/**
5695 * ice_set_rx_mode - NDO callback to set the netdev filters
5696 * @netdev: network interface device structure
5697 */
5698static void ice_set_rx_mode(struct net_device *netdev)
5699{
5700 struct ice_netdev_priv *np = netdev_priv(netdev);
5701 struct ice_vsi *vsi = np->vsi;
5702
5703 if (!vsi)
5704 return;
5705
5706 /* Set the flags to synchronize filters
5707 * ndo_set_rx_mode may be triggered even without a change in netdev
5708 * flags
5709 */
5710 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5711 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5712 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5713
5714 /* schedule our worker thread which will take care of
5715 * applying the new filter changes
5716 */
5717 ice_service_task_schedule(vsi->back);
5718}
5719
5720/**
5721 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5722 * @netdev: network interface device structure
5723 * @queue_index: Queue ID
5724 * @maxrate: maximum bandwidth in Mbps
5725 */
5726static int
5727ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5728{
5729 struct ice_netdev_priv *np = netdev_priv(netdev);
5730 struct ice_vsi *vsi = np->vsi;
5731 u16 q_handle;
5732 int status;
5733 u8 tc;
5734
5735 /* Validate maxrate requested is within permitted range */
5736 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5737 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5738 maxrate, queue_index);
5739 return -EINVAL;
5740 }
5741
5742 q_handle = vsi->tx_rings[queue_index]->q_handle;
5743 tc = ice_dcb_get_tc(vsi, queue_index);
5744
5745 /* Set BW back to default, when user set maxrate to 0 */
5746 if (!maxrate)
5747 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5748 q_handle, ICE_MAX_BW);
5749 else
5750 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5751 q_handle, ICE_MAX_BW, maxrate * 1000);
5752 if (status)
5753 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5754 status);
5755
5756 return status;
5757}
5758
5759/**
5760 * ice_fdb_add - add an entry to the hardware database
5761 * @ndm: the input from the stack
5762 * @tb: pointer to array of nladdr (unused)
5763 * @dev: the net device pointer
5764 * @addr: the MAC address entry being added
5765 * @vid: VLAN ID
5766 * @flags: instructions from stack about fdb operation
5767 * @extack: netlink extended ack
5768 */
5769static int
5770ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5771 struct net_device *dev, const unsigned char *addr, u16 vid,
5772 u16 flags, struct netlink_ext_ack __always_unused *extack)
5773{
5774 int err;
5775
5776 if (vid) {
5777 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5778 return -EINVAL;
5779 }
5780 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5781 netdev_err(dev, "FDB only supports static addresses\n");
5782 return -EINVAL;
5783 }
5784
5785 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5786 err = dev_uc_add_excl(dev, addr);
5787 else if (is_multicast_ether_addr(addr))
5788 err = dev_mc_add_excl(dev, addr);
5789 else
5790 err = -EINVAL;
5791
5792 /* Only return duplicate errors if NLM_F_EXCL is set */
5793 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5794 err = 0;
5795
5796 return err;
5797}
5798
5799/**
5800 * ice_fdb_del - delete an entry from the hardware database
5801 * @ndm: the input from the stack
5802 * @tb: pointer to array of nladdr (unused)
5803 * @dev: the net device pointer
5804 * @addr: the MAC address entry being added
5805 * @vid: VLAN ID
5806 * @extack: netlink extended ack
5807 */
5808static int
5809ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5810 struct net_device *dev, const unsigned char *addr,
5811 __always_unused u16 vid, struct netlink_ext_ack *extack)
5812{
5813 int err;
5814
5815 if (ndm->ndm_state & NUD_PERMANENT) {
5816 netdev_err(dev, "FDB only supports static addresses\n");
5817 return -EINVAL;
5818 }
5819
5820 if (is_unicast_ether_addr(addr))
5821 err = dev_uc_del(dev, addr);
5822 else if (is_multicast_ether_addr(addr))
5823 err = dev_mc_del(dev, addr);
5824 else
5825 err = -EINVAL;
5826
5827 return err;
5828}
5829
5830#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5831 NETIF_F_HW_VLAN_CTAG_TX | \
5832 NETIF_F_HW_VLAN_STAG_RX | \
5833 NETIF_F_HW_VLAN_STAG_TX)
5834
5835#define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5836 NETIF_F_HW_VLAN_STAG_RX)
5837
5838#define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
5839 NETIF_F_HW_VLAN_STAG_FILTER)
5840
5841/**
5842 * ice_fix_features - fix the netdev features flags based on device limitations
5843 * @netdev: ptr to the netdev that flags are being fixed on
5844 * @features: features that need to be checked and possibly fixed
5845 *
5846 * Make sure any fixups are made to features in this callback. This enables the
5847 * driver to not have to check unsupported configurations throughout the driver
5848 * because that's the responsiblity of this callback.
5849 *
5850 * Single VLAN Mode (SVM) Supported Features:
5851 * NETIF_F_HW_VLAN_CTAG_FILTER
5852 * NETIF_F_HW_VLAN_CTAG_RX
5853 * NETIF_F_HW_VLAN_CTAG_TX
5854 *
5855 * Double VLAN Mode (DVM) Supported Features:
5856 * NETIF_F_HW_VLAN_CTAG_FILTER
5857 * NETIF_F_HW_VLAN_CTAG_RX
5858 * NETIF_F_HW_VLAN_CTAG_TX
5859 *
5860 * NETIF_F_HW_VLAN_STAG_FILTER
5861 * NETIF_HW_VLAN_STAG_RX
5862 * NETIF_HW_VLAN_STAG_TX
5863 *
5864 * Features that need fixing:
5865 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5866 * These are mutually exlusive as the VSI context cannot support multiple
5867 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
5868 * is not done, then default to clearing the requested STAG offload
5869 * settings.
5870 *
5871 * All supported filtering has to be enabled or disabled together. For
5872 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5873 * together. If this is not done, then default to VLAN filtering disabled.
5874 * These are mutually exclusive as there is currently no way to
5875 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5876 * prune rules.
5877 */
5878static netdev_features_t
5879ice_fix_features(struct net_device *netdev, netdev_features_t features)
5880{
5881 struct ice_netdev_priv *np = netdev_priv(netdev);
5882 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5883 bool cur_ctag, cur_stag, req_ctag, req_stag;
5884
5885 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5886 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5887 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5888
5889 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5890 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5891 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5892
5893 if (req_vlan_fltr != cur_vlan_fltr) {
5894 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5895 if (req_ctag && req_stag) {
5896 features |= NETIF_VLAN_FILTERING_FEATURES;
5897 } else if (!req_ctag && !req_stag) {
5898 features &= ~NETIF_VLAN_FILTERING_FEATURES;
5899 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
5900 (!cur_stag && req_stag && !cur_ctag)) {
5901 features |= NETIF_VLAN_FILTERING_FEATURES;
5902 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5903 } else if ((cur_ctag && !req_ctag && cur_stag) ||
5904 (cur_stag && !req_stag && cur_ctag)) {
5905 features &= ~NETIF_VLAN_FILTERING_FEATURES;
5906 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
5907 }
5908 } else {
5909 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
5910 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
5911
5912 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
5913 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5914 }
5915 }
5916
5917 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5918 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5919 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5920 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5921 NETIF_F_HW_VLAN_STAG_TX);
5922 }
5923
5924 if (!(netdev->features & NETIF_F_RXFCS) &&
5925 (features & NETIF_F_RXFCS) &&
5926 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
5927 !ice_vsi_has_non_zero_vlans(np->vsi)) {
5928 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
5929 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
5930 }
5931
5932 return features;
5933}
5934
5935/**
5936 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5937 * @vsi: PF's VSI
5938 * @features: features used to determine VLAN offload settings
5939 *
5940 * First, determine the vlan_ethertype based on the VLAN offload bits in
5941 * features. Then determine if stripping and insertion should be enabled or
5942 * disabled. Finally enable or disable VLAN stripping and insertion.
5943 */
5944static int
5945ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5946{
5947 bool enable_stripping = true, enable_insertion = true;
5948 struct ice_vsi_vlan_ops *vlan_ops;
5949 int strip_err = 0, insert_err = 0;
5950 u16 vlan_ethertype = 0;
5951
5952 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5953
5954 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5955 vlan_ethertype = ETH_P_8021AD;
5956 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5957 vlan_ethertype = ETH_P_8021Q;
5958
5959 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5960 enable_stripping = false;
5961 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5962 enable_insertion = false;
5963
5964 if (enable_stripping)
5965 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5966 else
5967 strip_err = vlan_ops->dis_stripping(vsi);
5968
5969 if (enable_insertion)
5970 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5971 else
5972 insert_err = vlan_ops->dis_insertion(vsi);
5973
5974 if (strip_err || insert_err)
5975 return -EIO;
5976
5977 return 0;
5978}
5979
5980/**
5981 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5982 * @vsi: PF's VSI
5983 * @features: features used to determine VLAN filtering settings
5984 *
5985 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5986 * features.
5987 */
5988static int
5989ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5990{
5991 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5992 int err = 0;
5993
5994 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5995 * if either bit is set
5996 */
5997 if (features &
5998 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5999 err = vlan_ops->ena_rx_filtering(vsi);
6000 else
6001 err = vlan_ops->dis_rx_filtering(vsi);
6002
6003 return err;
6004}
6005
6006/**
6007 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6008 * @netdev: ptr to the netdev being adjusted
6009 * @features: the feature set that the stack is suggesting
6010 *
6011 * Only update VLAN settings if the requested_vlan_features are different than
6012 * the current_vlan_features.
6013 */
6014static int
6015ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6016{
6017 netdev_features_t current_vlan_features, requested_vlan_features;
6018 struct ice_netdev_priv *np = netdev_priv(netdev);
6019 struct ice_vsi *vsi = np->vsi;
6020 int err;
6021
6022 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6023 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6024 if (current_vlan_features ^ requested_vlan_features) {
6025 if ((features & NETIF_F_RXFCS) &&
6026 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6027 dev_err(ice_pf_to_dev(vsi->back),
6028 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6029 return -EIO;
6030 }
6031
6032 err = ice_set_vlan_offload_features(vsi, features);
6033 if (err)
6034 return err;
6035 }
6036
6037 current_vlan_features = netdev->features &
6038 NETIF_VLAN_FILTERING_FEATURES;
6039 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6040 if (current_vlan_features ^ requested_vlan_features) {
6041 err = ice_set_vlan_filtering_features(vsi, features);
6042 if (err)
6043 return err;
6044 }
6045
6046 return 0;
6047}
6048
6049/**
6050 * ice_set_loopback - turn on/off loopback mode on underlying PF
6051 * @vsi: ptr to VSI
6052 * @ena: flag to indicate the on/off setting
6053 */
6054static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6055{
6056 bool if_running = netif_running(vsi->netdev);
6057 int ret;
6058
6059 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6060 ret = ice_down(vsi);
6061 if (ret) {
6062 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6063 return ret;
6064 }
6065 }
6066 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6067 if (ret)
6068 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6069 if (if_running)
6070 ret = ice_up(vsi);
6071
6072 return ret;
6073}
6074
6075/**
6076 * ice_set_features - set the netdev feature flags
6077 * @netdev: ptr to the netdev being adjusted
6078 * @features: the feature set that the stack is suggesting
6079 */
6080static int
6081ice_set_features(struct net_device *netdev, netdev_features_t features)
6082{
6083 netdev_features_t changed = netdev->features ^ features;
6084 struct ice_netdev_priv *np = netdev_priv(netdev);
6085 struct ice_vsi *vsi = np->vsi;
6086 struct ice_pf *pf = vsi->back;
6087 int ret = 0;
6088
6089 /* Don't set any netdev advanced features with device in Safe Mode */
6090 if (ice_is_safe_mode(pf)) {
6091 dev_err(ice_pf_to_dev(pf),
6092 "Device is in Safe Mode - not enabling advanced netdev features\n");
6093 return ret;
6094 }
6095
6096 /* Do not change setting during reset */
6097 if (ice_is_reset_in_progress(pf->state)) {
6098 dev_err(ice_pf_to_dev(pf),
6099 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6100 return -EBUSY;
6101 }
6102
6103 /* Multiple features can be changed in one call so keep features in
6104 * separate if/else statements to guarantee each feature is checked
6105 */
6106 if (changed & NETIF_F_RXHASH)
6107 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6108
6109 ret = ice_set_vlan_features(netdev, features);
6110 if (ret)
6111 return ret;
6112
6113 /* Turn on receive of FCS aka CRC, and after setting this
6114 * flag the packet data will have the 4 byte CRC appended
6115 */
6116 if (changed & NETIF_F_RXFCS) {
6117 if ((features & NETIF_F_RXFCS) &&
6118 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6119 dev_err(ice_pf_to_dev(vsi->back),
6120 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6121 return -EIO;
6122 }
6123
6124 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6125 ret = ice_down_up(vsi);
6126 if (ret)
6127 return ret;
6128 }
6129
6130 if (changed & NETIF_F_NTUPLE) {
6131 bool ena = !!(features & NETIF_F_NTUPLE);
6132
6133 ice_vsi_manage_fdir(vsi, ena);
6134 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6135 }
6136
6137 /* don't turn off hw_tc_offload when ADQ is already enabled */
6138 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6139 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6140 return -EACCES;
6141 }
6142
6143 if (changed & NETIF_F_HW_TC) {
6144 bool ena = !!(features & NETIF_F_HW_TC);
6145
6146 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6147 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6148 }
6149
6150 if (changed & NETIF_F_LOOPBACK)
6151 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6152
6153 return ret;
6154}
6155
6156/**
6157 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6158 * @vsi: VSI to setup VLAN properties for
6159 */
6160static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6161{
6162 int err;
6163
6164 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6165 if (err)
6166 return err;
6167
6168 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6169 if (err)
6170 return err;
6171
6172 return ice_vsi_add_vlan_zero(vsi);
6173}
6174
6175/**
6176 * ice_vsi_cfg - Setup the VSI
6177 * @vsi: the VSI being configured
6178 *
6179 * Return 0 on success and negative value on error
6180 */
6181int ice_vsi_cfg(struct ice_vsi *vsi)
6182{
6183 int err;
6184
6185 if (vsi->netdev) {
6186 ice_set_rx_mode(vsi->netdev);
6187
6188 if (vsi->type != ICE_VSI_LB) {
6189 err = ice_vsi_vlan_setup(vsi);
6190
6191 if (err)
6192 return err;
6193 }
6194 }
6195 ice_vsi_cfg_dcb_rings(vsi);
6196
6197 err = ice_vsi_cfg_lan_txqs(vsi);
6198 if (!err && ice_is_xdp_ena_vsi(vsi))
6199 err = ice_vsi_cfg_xdp_txqs(vsi);
6200 if (!err)
6201 err = ice_vsi_cfg_rxqs(vsi);
6202
6203 return err;
6204}
6205
6206/* THEORY OF MODERATION:
6207 * The ice driver hardware works differently than the hardware that DIMLIB was
6208 * originally made for. ice hardware doesn't have packet count limits that
6209 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6210 * which is hard-coded to a limit of 250,000 ints/second.
6211 * If not using dynamic moderation, the INTRL value can be modified
6212 * by ethtool rx-usecs-high.
6213 */
6214struct ice_dim {
6215 /* the throttle rate for interrupts, basically worst case delay before
6216 * an initial interrupt fires, value is stored in microseconds.
6217 */
6218 u16 itr;
6219};
6220
6221/* Make a different profile for Rx that doesn't allow quite so aggressive
6222 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6223 * second.
6224 */
6225static const struct ice_dim rx_profile[] = {
6226 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6227 {8}, /* 125,000 ints/s */
6228 {16}, /* 62,500 ints/s */
6229 {62}, /* 16,129 ints/s */
6230 {126} /* 7,936 ints/s */
6231};
6232
6233/* The transmit profile, which has the same sorts of values
6234 * as the previous struct
6235 */
6236static const struct ice_dim tx_profile[] = {
6237 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6238 {8}, /* 125,000 ints/s */
6239 {40}, /* 16,125 ints/s */
6240 {128}, /* 7,812 ints/s */
6241 {256} /* 3,906 ints/s */
6242};
6243
6244static void ice_tx_dim_work(struct work_struct *work)
6245{
6246 struct ice_ring_container *rc;
6247 struct dim *dim;
6248 u16 itr;
6249
6250 dim = container_of(work, struct dim, work);
6251 rc = (struct ice_ring_container *)dim->priv;
6252
6253 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6254
6255 /* look up the values in our local table */
6256 itr = tx_profile[dim->profile_ix].itr;
6257
6258 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6259 ice_write_itr(rc, itr);
6260
6261 dim->state = DIM_START_MEASURE;
6262}
6263
6264static void ice_rx_dim_work(struct work_struct *work)
6265{
6266 struct ice_ring_container *rc;
6267 struct dim *dim;
6268 u16 itr;
6269
6270 dim = container_of(work, struct dim, work);
6271 rc = (struct ice_ring_container *)dim->priv;
6272
6273 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6274
6275 /* look up the values in our local table */
6276 itr = rx_profile[dim->profile_ix].itr;
6277
6278 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6279 ice_write_itr(rc, itr);
6280
6281 dim->state = DIM_START_MEASURE;
6282}
6283
6284#define ICE_DIM_DEFAULT_PROFILE_IX 1
6285
6286/**
6287 * ice_init_moderation - set up interrupt moderation
6288 * @q_vector: the vector containing rings to be configured
6289 *
6290 * Set up interrupt moderation registers, with the intent to do the right thing
6291 * when called from reset or from probe, and whether or not dynamic moderation
6292 * is enabled or not. Take special care to write all the registers in both
6293 * dynamic moderation mode or not in order to make sure hardware is in a known
6294 * state.
6295 */
6296static void ice_init_moderation(struct ice_q_vector *q_vector)
6297{
6298 struct ice_ring_container *rc;
6299 bool tx_dynamic, rx_dynamic;
6300
6301 rc = &q_vector->tx;
6302 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6303 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6304 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6305 rc->dim.priv = rc;
6306 tx_dynamic = ITR_IS_DYNAMIC(rc);
6307
6308 /* set the initial TX ITR to match the above */
6309 ice_write_itr(rc, tx_dynamic ?
6310 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6311
6312 rc = &q_vector->rx;
6313 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6314 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6315 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6316 rc->dim.priv = rc;
6317 rx_dynamic = ITR_IS_DYNAMIC(rc);
6318
6319 /* set the initial RX ITR to match the above */
6320 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6321 rc->itr_setting);
6322
6323 ice_set_q_vector_intrl(q_vector);
6324}
6325
6326/**
6327 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6328 * @vsi: the VSI being configured
6329 */
6330static void ice_napi_enable_all(struct ice_vsi *vsi)
6331{
6332 int q_idx;
6333
6334 if (!vsi->netdev)
6335 return;
6336
6337 ice_for_each_q_vector(vsi, q_idx) {
6338 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6339
6340 ice_init_moderation(q_vector);
6341
6342 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6343 napi_enable(&q_vector->napi);
6344 }
6345}
6346
6347/**
6348 * ice_up_complete - Finish the last steps of bringing up a connection
6349 * @vsi: The VSI being configured
6350 *
6351 * Return 0 on success and negative value on error
6352 */
6353static int ice_up_complete(struct ice_vsi *vsi)
6354{
6355 struct ice_pf *pf = vsi->back;
6356 int err;
6357
6358 ice_vsi_cfg_msix(vsi);
6359
6360 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6361 * Tx queue group list was configured and the context bits were
6362 * programmed using ice_vsi_cfg_txqs
6363 */
6364 err = ice_vsi_start_all_rx_rings(vsi);
6365 if (err)
6366 return err;
6367
6368 clear_bit(ICE_VSI_DOWN, vsi->state);
6369 ice_napi_enable_all(vsi);
6370 ice_vsi_ena_irq(vsi);
6371
6372 if (vsi->port_info &&
6373 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6374 vsi->netdev) {
6375 ice_print_link_msg(vsi, true);
6376 netif_tx_start_all_queues(vsi->netdev);
6377 netif_carrier_on(vsi->netdev);
6378 ice_ptp_link_change(pf, pf->hw.pf_id, true);
6379 }
6380
6381 /* Perform an initial read of the statistics registers now to
6382 * set the baseline so counters are ready when interface is up
6383 */
6384 ice_update_eth_stats(vsi);
6385 ice_service_task_schedule(pf);
6386
6387 return 0;
6388}
6389
6390/**
6391 * ice_up - Bring the connection back up after being down
6392 * @vsi: VSI being configured
6393 */
6394int ice_up(struct ice_vsi *vsi)
6395{
6396 int err;
6397
6398 err = ice_vsi_cfg(vsi);
6399 if (!err)
6400 err = ice_up_complete(vsi);
6401
6402 return err;
6403}
6404
6405/**
6406 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6407 * @syncp: pointer to u64_stats_sync
6408 * @stats: stats that pkts and bytes count will be taken from
6409 * @pkts: packets stats counter
6410 * @bytes: bytes stats counter
6411 *
6412 * This function fetches stats from the ring considering the atomic operations
6413 * that needs to be performed to read u64 values in 32 bit machine.
6414 */
6415void
6416ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6417 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6418{
6419 unsigned int start;
6420
6421 do {
6422 start = u64_stats_fetch_begin(syncp);
6423 *pkts = stats.pkts;
6424 *bytes = stats.bytes;
6425 } while (u64_stats_fetch_retry(syncp, start));
6426}
6427
6428/**
6429 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6430 * @vsi: the VSI to be updated
6431 * @vsi_stats: the stats struct to be updated
6432 * @rings: rings to work on
6433 * @count: number of rings
6434 */
6435static void
6436ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6437 struct rtnl_link_stats64 *vsi_stats,
6438 struct ice_tx_ring **rings, u16 count)
6439{
6440 u16 i;
6441
6442 for (i = 0; i < count; i++) {
6443 struct ice_tx_ring *ring;
6444 u64 pkts = 0, bytes = 0;
6445
6446 ring = READ_ONCE(rings[i]);
6447 if (!ring || !ring->ring_stats)
6448 continue;
6449 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6450 ring->ring_stats->stats, &pkts,
6451 &bytes);
6452 vsi_stats->tx_packets += pkts;
6453 vsi_stats->tx_bytes += bytes;
6454 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6455 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6456 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6457 }
6458}
6459
6460/**
6461 * ice_update_vsi_ring_stats - Update VSI stats counters
6462 * @vsi: the VSI to be updated
6463 */
6464static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6465{
6466 struct rtnl_link_stats64 *net_stats, *stats_prev;
6467 struct rtnl_link_stats64 *vsi_stats;
6468 u64 pkts, bytes;
6469 int i;
6470
6471 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6472 if (!vsi_stats)
6473 return;
6474
6475 /* reset non-netdev (extended) stats */
6476 vsi->tx_restart = 0;
6477 vsi->tx_busy = 0;
6478 vsi->tx_linearize = 0;
6479 vsi->rx_buf_failed = 0;
6480 vsi->rx_page_failed = 0;
6481
6482 rcu_read_lock();
6483
6484 /* update Tx rings counters */
6485 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6486 vsi->num_txq);
6487
6488 /* update Rx rings counters */
6489 ice_for_each_rxq(vsi, i) {
6490 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6491 struct ice_ring_stats *ring_stats;
6492
6493 ring_stats = ring->ring_stats;
6494 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6495 ring_stats->stats, &pkts,
6496 &bytes);
6497 vsi_stats->rx_packets += pkts;
6498 vsi_stats->rx_bytes += bytes;
6499 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6500 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6501 }
6502
6503 /* update XDP Tx rings counters */
6504 if (ice_is_xdp_ena_vsi(vsi))
6505 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6506 vsi->num_xdp_txq);
6507
6508 rcu_read_unlock();
6509
6510 net_stats = &vsi->net_stats;
6511 stats_prev = &vsi->net_stats_prev;
6512
6513 /* clear prev counters after reset */
6514 if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6515 vsi_stats->rx_packets < stats_prev->rx_packets) {
6516 stats_prev->tx_packets = 0;
6517 stats_prev->tx_bytes = 0;
6518 stats_prev->rx_packets = 0;
6519 stats_prev->rx_bytes = 0;
6520 }
6521
6522 /* update netdev counters */
6523 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6524 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6525 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6526 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6527
6528 stats_prev->tx_packets = vsi_stats->tx_packets;
6529 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6530 stats_prev->rx_packets = vsi_stats->rx_packets;
6531 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6532
6533 kfree(vsi_stats);
6534}
6535
6536/**
6537 * ice_update_vsi_stats - Update VSI stats counters
6538 * @vsi: the VSI to be updated
6539 */
6540void ice_update_vsi_stats(struct ice_vsi *vsi)
6541{
6542 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6543 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6544 struct ice_pf *pf = vsi->back;
6545
6546 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6547 test_bit(ICE_CFG_BUSY, pf->state))
6548 return;
6549
6550 /* get stats as recorded by Tx/Rx rings */
6551 ice_update_vsi_ring_stats(vsi);
6552
6553 /* get VSI stats as recorded by the hardware */
6554 ice_update_eth_stats(vsi);
6555
6556 cur_ns->tx_errors = cur_es->tx_errors;
6557 cur_ns->rx_dropped = cur_es->rx_discards;
6558 cur_ns->tx_dropped = cur_es->tx_discards;
6559 cur_ns->multicast = cur_es->rx_multicast;
6560
6561 /* update some more netdev stats if this is main VSI */
6562 if (vsi->type == ICE_VSI_PF) {
6563 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6564 cur_ns->rx_errors = pf->stats.crc_errors +
6565 pf->stats.illegal_bytes +
6566 pf->stats.rx_len_errors +
6567 pf->stats.rx_undersize +
6568 pf->hw_csum_rx_error +
6569 pf->stats.rx_jabber +
6570 pf->stats.rx_fragments +
6571 pf->stats.rx_oversize;
6572 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6573 /* record drops from the port level */
6574 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6575 }
6576}
6577
6578/**
6579 * ice_update_pf_stats - Update PF port stats counters
6580 * @pf: PF whose stats needs to be updated
6581 */
6582void ice_update_pf_stats(struct ice_pf *pf)
6583{
6584 struct ice_hw_port_stats *prev_ps, *cur_ps;
6585 struct ice_hw *hw = &pf->hw;
6586 u16 fd_ctr_base;
6587 u8 port;
6588
6589 port = hw->port_info->lport;
6590 prev_ps = &pf->stats_prev;
6591 cur_ps = &pf->stats;
6592
6593 if (ice_is_reset_in_progress(pf->state))
6594 pf->stat_prev_loaded = false;
6595
6596 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6597 &prev_ps->eth.rx_bytes,
6598 &cur_ps->eth.rx_bytes);
6599
6600 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6601 &prev_ps->eth.rx_unicast,
6602 &cur_ps->eth.rx_unicast);
6603
6604 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6605 &prev_ps->eth.rx_multicast,
6606 &cur_ps->eth.rx_multicast);
6607
6608 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6609 &prev_ps->eth.rx_broadcast,
6610 &cur_ps->eth.rx_broadcast);
6611
6612 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6613 &prev_ps->eth.rx_discards,
6614 &cur_ps->eth.rx_discards);
6615
6616 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6617 &prev_ps->eth.tx_bytes,
6618 &cur_ps->eth.tx_bytes);
6619
6620 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6621 &prev_ps->eth.tx_unicast,
6622 &cur_ps->eth.tx_unicast);
6623
6624 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6625 &prev_ps->eth.tx_multicast,
6626 &cur_ps->eth.tx_multicast);
6627
6628 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6629 &prev_ps->eth.tx_broadcast,
6630 &cur_ps->eth.tx_broadcast);
6631
6632 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6633 &prev_ps->tx_dropped_link_down,
6634 &cur_ps->tx_dropped_link_down);
6635
6636 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6637 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6638
6639 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6640 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6641
6642 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6643 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6644
6645 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6646 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6647
6648 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6649 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6650
6651 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6652 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6653
6654 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6655 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6656
6657 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6658 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6659
6660 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6661 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6662
6663 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6664 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6665
6666 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6667 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6668
6669 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6670 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6671
6672 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6673 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6674
6675 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6676 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6677
6678 fd_ctr_base = hw->fd_ctr_base;
6679
6680 ice_stat_update40(hw,
6681 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6682 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6683 &cur_ps->fd_sb_match);
6684 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6685 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6686
6687 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6688 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6689
6690 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6691 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6692
6693 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6694 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6695
6696 ice_update_dcb_stats(pf);
6697
6698 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6699 &prev_ps->crc_errors, &cur_ps->crc_errors);
6700
6701 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6702 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6703
6704 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6705 &prev_ps->mac_local_faults,
6706 &cur_ps->mac_local_faults);
6707
6708 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6709 &prev_ps->mac_remote_faults,
6710 &cur_ps->mac_remote_faults);
6711
6712 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6713 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6714
6715 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6716 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6717
6718 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6719 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6720
6721 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6722 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6723
6724 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6725 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6726
6727 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6728
6729 pf->stat_prev_loaded = true;
6730}
6731
6732/**
6733 * ice_get_stats64 - get statistics for network device structure
6734 * @netdev: network interface device structure
6735 * @stats: main device statistics structure
6736 */
6737static
6738void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6739{
6740 struct ice_netdev_priv *np = netdev_priv(netdev);
6741 struct rtnl_link_stats64 *vsi_stats;
6742 struct ice_vsi *vsi = np->vsi;
6743
6744 vsi_stats = &vsi->net_stats;
6745
6746 if (!vsi->num_txq || !vsi->num_rxq)
6747 return;
6748
6749 /* netdev packet/byte stats come from ring counter. These are obtained
6750 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6751 * But, only call the update routine and read the registers if VSI is
6752 * not down.
6753 */
6754 if (!test_bit(ICE_VSI_DOWN, vsi->state))
6755 ice_update_vsi_ring_stats(vsi);
6756 stats->tx_packets = vsi_stats->tx_packets;
6757 stats->tx_bytes = vsi_stats->tx_bytes;
6758 stats->rx_packets = vsi_stats->rx_packets;
6759 stats->rx_bytes = vsi_stats->rx_bytes;
6760
6761 /* The rest of the stats can be read from the hardware but instead we
6762 * just return values that the watchdog task has already obtained from
6763 * the hardware.
6764 */
6765 stats->multicast = vsi_stats->multicast;
6766 stats->tx_errors = vsi_stats->tx_errors;
6767 stats->tx_dropped = vsi_stats->tx_dropped;
6768 stats->rx_errors = vsi_stats->rx_errors;
6769 stats->rx_dropped = vsi_stats->rx_dropped;
6770 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6771 stats->rx_length_errors = vsi_stats->rx_length_errors;
6772}
6773
6774/**
6775 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6776 * @vsi: VSI having NAPI disabled
6777 */
6778static void ice_napi_disable_all(struct ice_vsi *vsi)
6779{
6780 int q_idx;
6781
6782 if (!vsi->netdev)
6783 return;
6784
6785 ice_for_each_q_vector(vsi, q_idx) {
6786 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6787
6788 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6789 napi_disable(&q_vector->napi);
6790
6791 cancel_work_sync(&q_vector->tx.dim.work);
6792 cancel_work_sync(&q_vector->rx.dim.work);
6793 }
6794}
6795
6796/**
6797 * ice_down - Shutdown the connection
6798 * @vsi: The VSI being stopped
6799 *
6800 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6801 */
6802int ice_down(struct ice_vsi *vsi)
6803{
6804 int i, tx_err, rx_err, vlan_err = 0;
6805
6806 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6807
6808 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6809 vlan_err = ice_vsi_del_vlan_zero(vsi);
6810 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6811 netif_carrier_off(vsi->netdev);
6812 netif_tx_disable(vsi->netdev);
6813 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6814 ice_eswitch_stop_all_tx_queues(vsi->back);
6815 }
6816
6817 ice_vsi_dis_irq(vsi);
6818
6819 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6820 if (tx_err)
6821 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6822 vsi->vsi_num, tx_err);
6823 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6824 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6825 if (tx_err)
6826 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6827 vsi->vsi_num, tx_err);
6828 }
6829
6830 rx_err = ice_vsi_stop_all_rx_rings(vsi);
6831 if (rx_err)
6832 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6833 vsi->vsi_num, rx_err);
6834
6835 ice_napi_disable_all(vsi);
6836
6837 ice_for_each_txq(vsi, i)
6838 ice_clean_tx_ring(vsi->tx_rings[i]);
6839
6840 ice_for_each_rxq(vsi, i)
6841 ice_clean_rx_ring(vsi->rx_rings[i]);
6842
6843 if (tx_err || rx_err || vlan_err) {
6844 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6845 vsi->vsi_num, vsi->vsw->sw_id);
6846 return -EIO;
6847 }
6848
6849 return 0;
6850}
6851
6852/**
6853 * ice_down_up - shutdown the VSI connection and bring it up
6854 * @vsi: the VSI to be reconnected
6855 */
6856int ice_down_up(struct ice_vsi *vsi)
6857{
6858 int ret;
6859
6860 /* if DOWN already set, nothing to do */
6861 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
6862 return 0;
6863
6864 ret = ice_down(vsi);
6865 if (ret)
6866 return ret;
6867
6868 ret = ice_up(vsi);
6869 if (ret) {
6870 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
6871 return ret;
6872 }
6873
6874 return 0;
6875}
6876
6877/**
6878 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6879 * @vsi: VSI having resources allocated
6880 *
6881 * Return 0 on success, negative on failure
6882 */
6883int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6884{
6885 int i, err = 0;
6886
6887 if (!vsi->num_txq) {
6888 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6889 vsi->vsi_num);
6890 return -EINVAL;
6891 }
6892
6893 ice_for_each_txq(vsi, i) {
6894 struct ice_tx_ring *ring = vsi->tx_rings[i];
6895
6896 if (!ring)
6897 return -EINVAL;
6898
6899 if (vsi->netdev)
6900 ring->netdev = vsi->netdev;
6901 err = ice_setup_tx_ring(ring);
6902 if (err)
6903 break;
6904 }
6905
6906 return err;
6907}
6908
6909/**
6910 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6911 * @vsi: VSI having resources allocated
6912 *
6913 * Return 0 on success, negative on failure
6914 */
6915int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6916{
6917 int i, err = 0;
6918
6919 if (!vsi->num_rxq) {
6920 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6921 vsi->vsi_num);
6922 return -EINVAL;
6923 }
6924
6925 ice_for_each_rxq(vsi, i) {
6926 struct ice_rx_ring *ring = vsi->rx_rings[i];
6927
6928 if (!ring)
6929 return -EINVAL;
6930
6931 if (vsi->netdev)
6932 ring->netdev = vsi->netdev;
6933 err = ice_setup_rx_ring(ring);
6934 if (err)
6935 break;
6936 }
6937
6938 return err;
6939}
6940
6941/**
6942 * ice_vsi_open_ctrl - open control VSI for use
6943 * @vsi: the VSI to open
6944 *
6945 * Initialization of the Control VSI
6946 *
6947 * Returns 0 on success, negative value on error
6948 */
6949int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6950{
6951 char int_name[ICE_INT_NAME_STR_LEN];
6952 struct ice_pf *pf = vsi->back;
6953 struct device *dev;
6954 int err;
6955
6956 dev = ice_pf_to_dev(pf);
6957 /* allocate descriptors */
6958 err = ice_vsi_setup_tx_rings(vsi);
6959 if (err)
6960 goto err_setup_tx;
6961
6962 err = ice_vsi_setup_rx_rings(vsi);
6963 if (err)
6964 goto err_setup_rx;
6965
6966 err = ice_vsi_cfg(vsi);
6967 if (err)
6968 goto err_setup_rx;
6969
6970 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6971 dev_driver_string(dev), dev_name(dev));
6972 err = ice_vsi_req_irq_msix(vsi, int_name);
6973 if (err)
6974 goto err_setup_rx;
6975
6976 ice_vsi_cfg_msix(vsi);
6977
6978 err = ice_vsi_start_all_rx_rings(vsi);
6979 if (err)
6980 goto err_up_complete;
6981
6982 clear_bit(ICE_VSI_DOWN, vsi->state);
6983 ice_vsi_ena_irq(vsi);
6984
6985 return 0;
6986
6987err_up_complete:
6988 ice_down(vsi);
6989err_setup_rx:
6990 ice_vsi_free_rx_rings(vsi);
6991err_setup_tx:
6992 ice_vsi_free_tx_rings(vsi);
6993
6994 return err;
6995}
6996
6997/**
6998 * ice_vsi_open - Called when a network interface is made active
6999 * @vsi: the VSI to open
7000 *
7001 * Initialization of the VSI
7002 *
7003 * Returns 0 on success, negative value on error
7004 */
7005int ice_vsi_open(struct ice_vsi *vsi)
7006{
7007 char int_name[ICE_INT_NAME_STR_LEN];
7008 struct ice_pf *pf = vsi->back;
7009 int err;
7010
7011 /* allocate descriptors */
7012 err = ice_vsi_setup_tx_rings(vsi);
7013 if (err)
7014 goto err_setup_tx;
7015
7016 err = ice_vsi_setup_rx_rings(vsi);
7017 if (err)
7018 goto err_setup_rx;
7019
7020 err = ice_vsi_cfg(vsi);
7021 if (err)
7022 goto err_setup_rx;
7023
7024 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7025 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7026 err = ice_vsi_req_irq_msix(vsi, int_name);
7027 if (err)
7028 goto err_setup_rx;
7029
7030 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7031
7032 if (vsi->type == ICE_VSI_PF) {
7033 /* Notify the stack of the actual queue counts. */
7034 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7035 if (err)
7036 goto err_set_qs;
7037
7038 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7039 if (err)
7040 goto err_set_qs;
7041 }
7042
7043 err = ice_up_complete(vsi);
7044 if (err)
7045 goto err_up_complete;
7046
7047 return 0;
7048
7049err_up_complete:
7050 ice_down(vsi);
7051err_set_qs:
7052 ice_vsi_free_irq(vsi);
7053err_setup_rx:
7054 ice_vsi_free_rx_rings(vsi);
7055err_setup_tx:
7056 ice_vsi_free_tx_rings(vsi);
7057
7058 return err;
7059}
7060
7061/**
7062 * ice_vsi_release_all - Delete all VSIs
7063 * @pf: PF from which all VSIs are being removed
7064 */
7065static void ice_vsi_release_all(struct ice_pf *pf)
7066{
7067 int err, i;
7068
7069 if (!pf->vsi)
7070 return;
7071
7072 ice_for_each_vsi(pf, i) {
7073 if (!pf->vsi[i])
7074 continue;
7075
7076 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7077 continue;
7078
7079 err = ice_vsi_release(pf->vsi[i]);
7080 if (err)
7081 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7082 i, err, pf->vsi[i]->vsi_num);
7083 }
7084}
7085
7086/**
7087 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7088 * @pf: pointer to the PF instance
7089 * @type: VSI type to rebuild
7090 *
7091 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7092 */
7093static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7094{
7095 struct device *dev = ice_pf_to_dev(pf);
7096 int i, err;
7097
7098 ice_for_each_vsi(pf, i) {
7099 struct ice_vsi *vsi = pf->vsi[i];
7100
7101 if (!vsi || vsi->type != type)
7102 continue;
7103
7104 /* rebuild the VSI */
7105 err = ice_vsi_rebuild(vsi, true);
7106 if (err) {
7107 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7108 err, vsi->idx, ice_vsi_type_str(type));
7109 return err;
7110 }
7111
7112 /* replay filters for the VSI */
7113 err = ice_replay_vsi(&pf->hw, vsi->idx);
7114 if (err) {
7115 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7116 err, vsi->idx, ice_vsi_type_str(type));
7117 return err;
7118 }
7119
7120 /* Re-map HW VSI number, using VSI handle that has been
7121 * previously validated in ice_replay_vsi() call above
7122 */
7123 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7124
7125 /* enable the VSI */
7126 err = ice_ena_vsi(vsi, false);
7127 if (err) {
7128 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7129 err, vsi->idx, ice_vsi_type_str(type));
7130 return err;
7131 }
7132
7133 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7134 ice_vsi_type_str(type));
7135 }
7136
7137 return 0;
7138}
7139
7140/**
7141 * ice_update_pf_netdev_link - Update PF netdev link status
7142 * @pf: pointer to the PF instance
7143 */
7144static void ice_update_pf_netdev_link(struct ice_pf *pf)
7145{
7146 bool link_up;
7147 int i;
7148
7149 ice_for_each_vsi(pf, i) {
7150 struct ice_vsi *vsi = pf->vsi[i];
7151
7152 if (!vsi || vsi->type != ICE_VSI_PF)
7153 return;
7154
7155 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7156 if (link_up) {
7157 netif_carrier_on(pf->vsi[i]->netdev);
7158 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7159 } else {
7160 netif_carrier_off(pf->vsi[i]->netdev);
7161 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7162 }
7163 }
7164}
7165
7166/**
7167 * ice_rebuild - rebuild after reset
7168 * @pf: PF to rebuild
7169 * @reset_type: type of reset
7170 *
7171 * Do not rebuild VF VSI in this flow because that is already handled via
7172 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7173 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7174 * to reset/rebuild all the VF VSI twice.
7175 */
7176static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7177{
7178 struct device *dev = ice_pf_to_dev(pf);
7179 struct ice_hw *hw = &pf->hw;
7180 bool dvm;
7181 int err;
7182
7183 if (test_bit(ICE_DOWN, pf->state))
7184 goto clear_recovery;
7185
7186 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7187
7188#define ICE_EMP_RESET_SLEEP_MS 5000
7189 if (reset_type == ICE_RESET_EMPR) {
7190 /* If an EMP reset has occurred, any previously pending flash
7191 * update will have completed. We no longer know whether or
7192 * not the NVM update EMP reset is restricted.
7193 */
7194 pf->fw_emp_reset_disabled = false;
7195
7196 msleep(ICE_EMP_RESET_SLEEP_MS);
7197 }
7198
7199 err = ice_init_all_ctrlq(hw);
7200 if (err) {
7201 dev_err(dev, "control queues init failed %d\n", err);
7202 goto err_init_ctrlq;
7203 }
7204
7205 /* if DDP was previously loaded successfully */
7206 if (!ice_is_safe_mode(pf)) {
7207 /* reload the SW DB of filter tables */
7208 if (reset_type == ICE_RESET_PFR)
7209 ice_fill_blk_tbls(hw);
7210 else
7211 /* Reload DDP Package after CORER/GLOBR reset */
7212 ice_load_pkg(NULL, pf);
7213 }
7214
7215 err = ice_clear_pf_cfg(hw);
7216 if (err) {
7217 dev_err(dev, "clear PF configuration failed %d\n", err);
7218 goto err_init_ctrlq;
7219 }
7220
7221 ice_clear_pxe_mode(hw);
7222
7223 err = ice_init_nvm(hw);
7224 if (err) {
7225 dev_err(dev, "ice_init_nvm failed %d\n", err);
7226 goto err_init_ctrlq;
7227 }
7228
7229 err = ice_get_caps(hw);
7230 if (err) {
7231 dev_err(dev, "ice_get_caps failed %d\n", err);
7232 goto err_init_ctrlq;
7233 }
7234
7235 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7236 if (err) {
7237 dev_err(dev, "set_mac_cfg failed %d\n", err);
7238 goto err_init_ctrlq;
7239 }
7240
7241 dvm = ice_is_dvm_ena(hw);
7242
7243 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7244 if (err)
7245 goto err_init_ctrlq;
7246
7247 err = ice_sched_init_port(hw->port_info);
7248 if (err)
7249 goto err_sched_init_port;
7250
7251 /* start misc vector */
7252 err = ice_req_irq_msix_misc(pf);
7253 if (err) {
7254 dev_err(dev, "misc vector setup failed: %d\n", err);
7255 goto err_sched_init_port;
7256 }
7257
7258 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7259 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7260 if (!rd32(hw, PFQF_FD_SIZE)) {
7261 u16 unused, guar, b_effort;
7262
7263 guar = hw->func_caps.fd_fltr_guar;
7264 b_effort = hw->func_caps.fd_fltr_best_effort;
7265
7266 /* force guaranteed filter pool for PF */
7267 ice_alloc_fd_guar_item(hw, &unused, guar);
7268 /* force shared filter pool for PF */
7269 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7270 }
7271 }
7272
7273 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7274 ice_dcb_rebuild(pf);
7275
7276 /* If the PF previously had enabled PTP, PTP init needs to happen before
7277 * the VSI rebuild. If not, this causes the PTP link status events to
7278 * fail.
7279 */
7280 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7281 ice_ptp_reset(pf);
7282
7283 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7284 ice_gnss_init(pf);
7285
7286 /* rebuild PF VSI */
7287 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7288 if (err) {
7289 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7290 goto err_vsi_rebuild;
7291 }
7292
7293 /* configure PTP timestamping after VSI rebuild */
7294 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7295 ice_ptp_cfg_timestamp(pf, false);
7296
7297 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7298 if (err) {
7299 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7300 goto err_vsi_rebuild;
7301 }
7302
7303 if (reset_type == ICE_RESET_PFR) {
7304 err = ice_rebuild_channels(pf);
7305 if (err) {
7306 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7307 err);
7308 goto err_vsi_rebuild;
7309 }
7310 }
7311
7312 /* If Flow Director is active */
7313 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7314 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7315 if (err) {
7316 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7317 goto err_vsi_rebuild;
7318 }
7319
7320 /* replay HW Flow Director recipes */
7321 if (hw->fdir_prof)
7322 ice_fdir_replay_flows(hw);
7323
7324 /* replay Flow Director filters */
7325 ice_fdir_replay_fltrs(pf);
7326
7327 ice_rebuild_arfs(pf);
7328 }
7329
7330 ice_update_pf_netdev_link(pf);
7331
7332 /* tell the firmware we are up */
7333 err = ice_send_version(pf);
7334 if (err) {
7335 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7336 err);
7337 goto err_vsi_rebuild;
7338 }
7339
7340 ice_replay_post(hw);
7341
7342 /* if we get here, reset flow is successful */
7343 clear_bit(ICE_RESET_FAILED, pf->state);
7344
7345 ice_plug_aux_dev(pf);
7346 return;
7347
7348err_vsi_rebuild:
7349err_sched_init_port:
7350 ice_sched_cleanup_all(hw);
7351err_init_ctrlq:
7352 ice_shutdown_all_ctrlq(hw);
7353 set_bit(ICE_RESET_FAILED, pf->state);
7354clear_recovery:
7355 /* set this bit in PF state to control service task scheduling */
7356 set_bit(ICE_NEEDS_RESTART, pf->state);
7357 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7358}
7359
7360/**
7361 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7362 * @vsi: Pointer to VSI structure
7363 */
7364static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7365{
7366 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7367 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7368 else
7369 return ICE_RXBUF_3072;
7370}
7371
7372/**
7373 * ice_change_mtu - NDO callback to change the MTU
7374 * @netdev: network interface device structure
7375 * @new_mtu: new value for maximum frame size
7376 *
7377 * Returns 0 on success, negative on failure
7378 */
7379static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7380{
7381 struct ice_netdev_priv *np = netdev_priv(netdev);
7382 struct ice_vsi *vsi = np->vsi;
7383 struct ice_pf *pf = vsi->back;
7384 u8 count = 0;
7385 int err = 0;
7386
7387 if (new_mtu == (int)netdev->mtu) {
7388 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7389 return 0;
7390 }
7391
7392 if (ice_is_xdp_ena_vsi(vsi)) {
7393 int frame_size = ice_max_xdp_frame_size(vsi);
7394
7395 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7396 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7397 frame_size - ICE_ETH_PKT_HDR_PAD);
7398 return -EINVAL;
7399 }
7400 }
7401
7402 /* if a reset is in progress, wait for some time for it to complete */
7403 do {
7404 if (ice_is_reset_in_progress(pf->state)) {
7405 count++;
7406 usleep_range(1000, 2000);
7407 } else {
7408 break;
7409 }
7410
7411 } while (count < 100);
7412
7413 if (count == 100) {
7414 netdev_err(netdev, "can't change MTU. Device is busy\n");
7415 return -EBUSY;
7416 }
7417
7418 netdev->mtu = (unsigned int)new_mtu;
7419
7420 /* if VSI is up, bring it down and then back up */
7421 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7422 err = ice_down(vsi);
7423 if (err) {
7424 netdev_err(netdev, "change MTU if_down err %d\n", err);
7425 return err;
7426 }
7427
7428 err = ice_up(vsi);
7429 if (err) {
7430 netdev_err(netdev, "change MTU if_up err %d\n", err);
7431 return err;
7432 }
7433 }
7434
7435 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7436 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7437
7438 return err;
7439}
7440
7441/**
7442 * ice_eth_ioctl - Access the hwtstamp interface
7443 * @netdev: network interface device structure
7444 * @ifr: interface request data
7445 * @cmd: ioctl command
7446 */
7447static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7448{
7449 struct ice_netdev_priv *np = netdev_priv(netdev);
7450 struct ice_pf *pf = np->vsi->back;
7451
7452 switch (cmd) {
7453 case SIOCGHWTSTAMP:
7454 return ice_ptp_get_ts_config(pf, ifr);
7455 case SIOCSHWTSTAMP:
7456 return ice_ptp_set_ts_config(pf, ifr);
7457 default:
7458 return -EOPNOTSUPP;
7459 }
7460}
7461
7462/**
7463 * ice_aq_str - convert AQ err code to a string
7464 * @aq_err: the AQ error code to convert
7465 */
7466const char *ice_aq_str(enum ice_aq_err aq_err)
7467{
7468 switch (aq_err) {
7469 case ICE_AQ_RC_OK:
7470 return "OK";
7471 case ICE_AQ_RC_EPERM:
7472 return "ICE_AQ_RC_EPERM";
7473 case ICE_AQ_RC_ENOENT:
7474 return "ICE_AQ_RC_ENOENT";
7475 case ICE_AQ_RC_ENOMEM:
7476 return "ICE_AQ_RC_ENOMEM";
7477 case ICE_AQ_RC_EBUSY:
7478 return "ICE_AQ_RC_EBUSY";
7479 case ICE_AQ_RC_EEXIST:
7480 return "ICE_AQ_RC_EEXIST";
7481 case ICE_AQ_RC_EINVAL:
7482 return "ICE_AQ_RC_EINVAL";
7483 case ICE_AQ_RC_ENOSPC:
7484 return "ICE_AQ_RC_ENOSPC";
7485 case ICE_AQ_RC_ENOSYS:
7486 return "ICE_AQ_RC_ENOSYS";
7487 case ICE_AQ_RC_EMODE:
7488 return "ICE_AQ_RC_EMODE";
7489 case ICE_AQ_RC_ENOSEC:
7490 return "ICE_AQ_RC_ENOSEC";
7491 case ICE_AQ_RC_EBADSIG:
7492 return "ICE_AQ_RC_EBADSIG";
7493 case ICE_AQ_RC_ESVN:
7494 return "ICE_AQ_RC_ESVN";
7495 case ICE_AQ_RC_EBADMAN:
7496 return "ICE_AQ_RC_EBADMAN";
7497 case ICE_AQ_RC_EBADBUF:
7498 return "ICE_AQ_RC_EBADBUF";
7499 }
7500
7501 return "ICE_AQ_RC_UNKNOWN";
7502}
7503
7504/**
7505 * ice_set_rss_lut - Set RSS LUT
7506 * @vsi: Pointer to VSI structure
7507 * @lut: Lookup table
7508 * @lut_size: Lookup table size
7509 *
7510 * Returns 0 on success, negative on failure
7511 */
7512int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7513{
7514 struct ice_aq_get_set_rss_lut_params params = {};
7515 struct ice_hw *hw = &vsi->back->hw;
7516 int status;
7517
7518 if (!lut)
7519 return -EINVAL;
7520
7521 params.vsi_handle = vsi->idx;
7522 params.lut_size = lut_size;
7523 params.lut_type = vsi->rss_lut_type;
7524 params.lut = lut;
7525
7526 status = ice_aq_set_rss_lut(hw, ¶ms);
7527 if (status)
7528 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7529 status, ice_aq_str(hw->adminq.sq_last_status));
7530
7531 return status;
7532}
7533
7534/**
7535 * ice_set_rss_key - Set RSS key
7536 * @vsi: Pointer to the VSI structure
7537 * @seed: RSS hash seed
7538 *
7539 * Returns 0 on success, negative on failure
7540 */
7541int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7542{
7543 struct ice_hw *hw = &vsi->back->hw;
7544 int status;
7545
7546 if (!seed)
7547 return -EINVAL;
7548
7549 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7550 if (status)
7551 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7552 status, ice_aq_str(hw->adminq.sq_last_status));
7553
7554 return status;
7555}
7556
7557/**
7558 * ice_get_rss_lut - Get RSS LUT
7559 * @vsi: Pointer to VSI structure
7560 * @lut: Buffer to store the lookup table entries
7561 * @lut_size: Size of buffer to store the lookup table entries
7562 *
7563 * Returns 0 on success, negative on failure
7564 */
7565int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7566{
7567 struct ice_aq_get_set_rss_lut_params params = {};
7568 struct ice_hw *hw = &vsi->back->hw;
7569 int status;
7570
7571 if (!lut)
7572 return -EINVAL;
7573
7574 params.vsi_handle = vsi->idx;
7575 params.lut_size = lut_size;
7576 params.lut_type = vsi->rss_lut_type;
7577 params.lut = lut;
7578
7579 status = ice_aq_get_rss_lut(hw, ¶ms);
7580 if (status)
7581 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7582 status, ice_aq_str(hw->adminq.sq_last_status));
7583
7584 return status;
7585}
7586
7587/**
7588 * ice_get_rss_key - Get RSS key
7589 * @vsi: Pointer to VSI structure
7590 * @seed: Buffer to store the key in
7591 *
7592 * Returns 0 on success, negative on failure
7593 */
7594int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7595{
7596 struct ice_hw *hw = &vsi->back->hw;
7597 int status;
7598
7599 if (!seed)
7600 return -EINVAL;
7601
7602 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7603 if (status)
7604 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7605 status, ice_aq_str(hw->adminq.sq_last_status));
7606
7607 return status;
7608}
7609
7610/**
7611 * ice_bridge_getlink - Get the hardware bridge mode
7612 * @skb: skb buff
7613 * @pid: process ID
7614 * @seq: RTNL message seq
7615 * @dev: the netdev being configured
7616 * @filter_mask: filter mask passed in
7617 * @nlflags: netlink flags passed in
7618 *
7619 * Return the bridge mode (VEB/VEPA)
7620 */
7621static int
7622ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7623 struct net_device *dev, u32 filter_mask, int nlflags)
7624{
7625 struct ice_netdev_priv *np = netdev_priv(dev);
7626 struct ice_vsi *vsi = np->vsi;
7627 struct ice_pf *pf = vsi->back;
7628 u16 bmode;
7629
7630 bmode = pf->first_sw->bridge_mode;
7631
7632 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7633 filter_mask, NULL);
7634}
7635
7636/**
7637 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7638 * @vsi: Pointer to VSI structure
7639 * @bmode: Hardware bridge mode (VEB/VEPA)
7640 *
7641 * Returns 0 on success, negative on failure
7642 */
7643static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7644{
7645 struct ice_aqc_vsi_props *vsi_props;
7646 struct ice_hw *hw = &vsi->back->hw;
7647 struct ice_vsi_ctx *ctxt;
7648 int ret;
7649
7650 vsi_props = &vsi->info;
7651
7652 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7653 if (!ctxt)
7654 return -ENOMEM;
7655
7656 ctxt->info = vsi->info;
7657
7658 if (bmode == BRIDGE_MODE_VEB)
7659 /* change from VEPA to VEB mode */
7660 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7661 else
7662 /* change from VEB to VEPA mode */
7663 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7664 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7665
7666 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7667 if (ret) {
7668 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7669 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7670 goto out;
7671 }
7672 /* Update sw flags for book keeping */
7673 vsi_props->sw_flags = ctxt->info.sw_flags;
7674
7675out:
7676 kfree(ctxt);
7677 return ret;
7678}
7679
7680/**
7681 * ice_bridge_setlink - Set the hardware bridge mode
7682 * @dev: the netdev being configured
7683 * @nlh: RTNL message
7684 * @flags: bridge setlink flags
7685 * @extack: netlink extended ack
7686 *
7687 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7688 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7689 * not already set for all VSIs connected to this switch. And also update the
7690 * unicast switch filter rules for the corresponding switch of the netdev.
7691 */
7692static int
7693ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7694 u16 __always_unused flags,
7695 struct netlink_ext_ack __always_unused *extack)
7696{
7697 struct ice_netdev_priv *np = netdev_priv(dev);
7698 struct ice_pf *pf = np->vsi->back;
7699 struct nlattr *attr, *br_spec;
7700 struct ice_hw *hw = &pf->hw;
7701 struct ice_sw *pf_sw;
7702 int rem, v, err = 0;
7703
7704 pf_sw = pf->first_sw;
7705 /* find the attribute in the netlink message */
7706 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7707
7708 nla_for_each_nested(attr, br_spec, rem) {
7709 __u16 mode;
7710
7711 if (nla_type(attr) != IFLA_BRIDGE_MODE)
7712 continue;
7713 mode = nla_get_u16(attr);
7714 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7715 return -EINVAL;
7716 /* Continue if bridge mode is not being flipped */
7717 if (mode == pf_sw->bridge_mode)
7718 continue;
7719 /* Iterates through the PF VSI list and update the loopback
7720 * mode of the VSI
7721 */
7722 ice_for_each_vsi(pf, v) {
7723 if (!pf->vsi[v])
7724 continue;
7725 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7726 if (err)
7727 return err;
7728 }
7729
7730 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7731 /* Update the unicast switch filter rules for the corresponding
7732 * switch of the netdev
7733 */
7734 err = ice_update_sw_rule_bridge_mode(hw);
7735 if (err) {
7736 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7737 mode, err,
7738 ice_aq_str(hw->adminq.sq_last_status));
7739 /* revert hw->evb_veb */
7740 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7741 return err;
7742 }
7743
7744 pf_sw->bridge_mode = mode;
7745 }
7746
7747 return 0;
7748}
7749
7750/**
7751 * ice_tx_timeout - Respond to a Tx Hang
7752 * @netdev: network interface device structure
7753 * @txqueue: Tx queue
7754 */
7755static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7756{
7757 struct ice_netdev_priv *np = netdev_priv(netdev);
7758 struct ice_tx_ring *tx_ring = NULL;
7759 struct ice_vsi *vsi = np->vsi;
7760 struct ice_pf *pf = vsi->back;
7761 u32 i;
7762
7763 pf->tx_timeout_count++;
7764
7765 /* Check if PFC is enabled for the TC to which the queue belongs
7766 * to. If yes then Tx timeout is not caused by a hung queue, no
7767 * need to reset and rebuild
7768 */
7769 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7770 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7771 txqueue);
7772 return;
7773 }
7774
7775 /* now that we have an index, find the tx_ring struct */
7776 ice_for_each_txq(vsi, i)
7777 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7778 if (txqueue == vsi->tx_rings[i]->q_index) {
7779 tx_ring = vsi->tx_rings[i];
7780 break;
7781 }
7782
7783 /* Reset recovery level if enough time has elapsed after last timeout.
7784 * Also ensure no new reset action happens before next timeout period.
7785 */
7786 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7787 pf->tx_timeout_recovery_level = 1;
7788 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7789 netdev->watchdog_timeo)))
7790 return;
7791
7792 if (tx_ring) {
7793 struct ice_hw *hw = &pf->hw;
7794 u32 head, val = 0;
7795
7796 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7797 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7798 /* Read interrupt register */
7799 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7800
7801 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7802 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7803 head, tx_ring->next_to_use, val);
7804 }
7805
7806 pf->tx_timeout_last_recovery = jiffies;
7807 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7808 pf->tx_timeout_recovery_level, txqueue);
7809
7810 switch (pf->tx_timeout_recovery_level) {
7811 case 1:
7812 set_bit(ICE_PFR_REQ, pf->state);
7813 break;
7814 case 2:
7815 set_bit(ICE_CORER_REQ, pf->state);
7816 break;
7817 case 3:
7818 set_bit(ICE_GLOBR_REQ, pf->state);
7819 break;
7820 default:
7821 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7822 set_bit(ICE_DOWN, pf->state);
7823 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7824 set_bit(ICE_SERVICE_DIS, pf->state);
7825 break;
7826 }
7827
7828 ice_service_task_schedule(pf);
7829 pf->tx_timeout_recovery_level++;
7830}
7831
7832/**
7833 * ice_setup_tc_cls_flower - flower classifier offloads
7834 * @np: net device to configure
7835 * @filter_dev: device on which filter is added
7836 * @cls_flower: offload data
7837 */
7838static int
7839ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7840 struct net_device *filter_dev,
7841 struct flow_cls_offload *cls_flower)
7842{
7843 struct ice_vsi *vsi = np->vsi;
7844
7845 if (cls_flower->common.chain_index)
7846 return -EOPNOTSUPP;
7847
7848 switch (cls_flower->command) {
7849 case FLOW_CLS_REPLACE:
7850 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7851 case FLOW_CLS_DESTROY:
7852 return ice_del_cls_flower(vsi, cls_flower);
7853 default:
7854 return -EINVAL;
7855 }
7856}
7857
7858/**
7859 * ice_setup_tc_block_cb - callback handler registered for TC block
7860 * @type: TC SETUP type
7861 * @type_data: TC flower offload data that contains user input
7862 * @cb_priv: netdev private data
7863 */
7864static int
7865ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7866{
7867 struct ice_netdev_priv *np = cb_priv;
7868
7869 switch (type) {
7870 case TC_SETUP_CLSFLOWER:
7871 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7872 type_data);
7873 default:
7874 return -EOPNOTSUPP;
7875 }
7876}
7877
7878/**
7879 * ice_validate_mqprio_qopt - Validate TCF input parameters
7880 * @vsi: Pointer to VSI
7881 * @mqprio_qopt: input parameters for mqprio queue configuration
7882 *
7883 * This function validates MQPRIO params, such as qcount (power of 2 wherever
7884 * needed), and make sure user doesn't specify qcount and BW rate limit
7885 * for TCs, which are more than "num_tc"
7886 */
7887static int
7888ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7889 struct tc_mqprio_qopt_offload *mqprio_qopt)
7890{
7891 u64 sum_max_rate = 0, sum_min_rate = 0;
7892 int non_power_of_2_qcount = 0;
7893 struct ice_pf *pf = vsi->back;
7894 int max_rss_q_cnt = 0;
7895 struct device *dev;
7896 int i, speed;
7897 u8 num_tc;
7898
7899 if (vsi->type != ICE_VSI_PF)
7900 return -EINVAL;
7901
7902 if (mqprio_qopt->qopt.offset[0] != 0 ||
7903 mqprio_qopt->qopt.num_tc < 1 ||
7904 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7905 return -EINVAL;
7906
7907 dev = ice_pf_to_dev(pf);
7908 vsi->ch_rss_size = 0;
7909 num_tc = mqprio_qopt->qopt.num_tc;
7910
7911 for (i = 0; num_tc; i++) {
7912 int qcount = mqprio_qopt->qopt.count[i];
7913 u64 max_rate, min_rate, rem;
7914
7915 if (!qcount)
7916 return -EINVAL;
7917
7918 if (is_power_of_2(qcount)) {
7919 if (non_power_of_2_qcount &&
7920 qcount > non_power_of_2_qcount) {
7921 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7922 qcount, non_power_of_2_qcount);
7923 return -EINVAL;
7924 }
7925 if (qcount > max_rss_q_cnt)
7926 max_rss_q_cnt = qcount;
7927 } else {
7928 if (non_power_of_2_qcount &&
7929 qcount != non_power_of_2_qcount) {
7930 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7931 qcount, non_power_of_2_qcount);
7932 return -EINVAL;
7933 }
7934 if (qcount < max_rss_q_cnt) {
7935 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7936 qcount, max_rss_q_cnt);
7937 return -EINVAL;
7938 }
7939 max_rss_q_cnt = qcount;
7940 non_power_of_2_qcount = qcount;
7941 }
7942
7943 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7944 * converts the bandwidth rate limit into Bytes/s when
7945 * passing it down to the driver. So convert input bandwidth
7946 * from Bytes/s to Kbps
7947 */
7948 max_rate = mqprio_qopt->max_rate[i];
7949 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7950 sum_max_rate += max_rate;
7951
7952 /* min_rate is minimum guaranteed rate and it can't be zero */
7953 min_rate = mqprio_qopt->min_rate[i];
7954 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7955 sum_min_rate += min_rate;
7956
7957 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7958 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7959 min_rate, ICE_MIN_BW_LIMIT);
7960 return -EINVAL;
7961 }
7962
7963 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7964 if (rem) {
7965 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7966 i, ICE_MIN_BW_LIMIT);
7967 return -EINVAL;
7968 }
7969
7970 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7971 if (rem) {
7972 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7973 i, ICE_MIN_BW_LIMIT);
7974 return -EINVAL;
7975 }
7976
7977 /* min_rate can't be more than max_rate, except when max_rate
7978 * is zero (implies max_rate sought is max line rate). In such
7979 * a case min_rate can be more than max.
7980 */
7981 if (max_rate && min_rate > max_rate) {
7982 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7983 min_rate, max_rate);
7984 return -EINVAL;
7985 }
7986
7987 if (i >= mqprio_qopt->qopt.num_tc - 1)
7988 break;
7989 if (mqprio_qopt->qopt.offset[i + 1] !=
7990 (mqprio_qopt->qopt.offset[i] + qcount))
7991 return -EINVAL;
7992 }
7993 if (vsi->num_rxq <
7994 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7995 return -EINVAL;
7996 if (vsi->num_txq <
7997 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7998 return -EINVAL;
7999
8000 speed = ice_get_link_speed_kbps(vsi);
8001 if (sum_max_rate && sum_max_rate > (u64)speed) {
8002 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
8003 sum_max_rate, speed);
8004 return -EINVAL;
8005 }
8006 if (sum_min_rate && sum_min_rate > (u64)speed) {
8007 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8008 sum_min_rate, speed);
8009 return -EINVAL;
8010 }
8011
8012 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8013 vsi->ch_rss_size = max_rss_q_cnt;
8014
8015 return 0;
8016}
8017
8018/**
8019 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8020 * @pf: ptr to PF device
8021 * @vsi: ptr to VSI
8022 */
8023static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8024{
8025 struct device *dev = ice_pf_to_dev(pf);
8026 bool added = false;
8027 struct ice_hw *hw;
8028 int flow;
8029
8030 if (!(vsi->num_gfltr || vsi->num_bfltr))
8031 return -EINVAL;
8032
8033 hw = &pf->hw;
8034 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8035 struct ice_fd_hw_prof *prof;
8036 int tun, status;
8037 u64 entry_h;
8038
8039 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8040 hw->fdir_prof[flow]->cnt))
8041 continue;
8042
8043 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8044 enum ice_flow_priority prio;
8045 u64 prof_id;
8046
8047 /* add this VSI to FDir profile for this flow */
8048 prio = ICE_FLOW_PRIO_NORMAL;
8049 prof = hw->fdir_prof[flow];
8050 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
8051 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
8052 prof->vsi_h[0], vsi->idx,
8053 prio, prof->fdir_seg[tun],
8054 &entry_h);
8055 if (status) {
8056 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8057 vsi->idx, flow);
8058 continue;
8059 }
8060
8061 prof->entry_h[prof->cnt][tun] = entry_h;
8062 }
8063
8064 /* store VSI for filter replay and delete */
8065 prof->vsi_h[prof->cnt] = vsi->idx;
8066 prof->cnt++;
8067
8068 added = true;
8069 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8070 flow);
8071 }
8072
8073 if (!added)
8074 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8075
8076 return 0;
8077}
8078
8079/**
8080 * ice_add_channel - add a channel by adding VSI
8081 * @pf: ptr to PF device
8082 * @sw_id: underlying HW switching element ID
8083 * @ch: ptr to channel structure
8084 *
8085 * Add a channel (VSI) using add_vsi and queue_map
8086 */
8087static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8088{
8089 struct device *dev = ice_pf_to_dev(pf);
8090 struct ice_vsi *vsi;
8091
8092 if (ch->type != ICE_VSI_CHNL) {
8093 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8094 return -EINVAL;
8095 }
8096
8097 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8098 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8099 dev_err(dev, "create chnl VSI failure\n");
8100 return -EINVAL;
8101 }
8102
8103 ice_add_vsi_to_fdir(pf, vsi);
8104
8105 ch->sw_id = sw_id;
8106 ch->vsi_num = vsi->vsi_num;
8107 ch->info.mapping_flags = vsi->info.mapping_flags;
8108 ch->ch_vsi = vsi;
8109 /* set the back pointer of channel for newly created VSI */
8110 vsi->ch = ch;
8111
8112 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8113 sizeof(vsi->info.q_mapping));
8114 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8115 sizeof(vsi->info.tc_mapping));
8116
8117 return 0;
8118}
8119
8120/**
8121 * ice_chnl_cfg_res
8122 * @vsi: the VSI being setup
8123 * @ch: ptr to channel structure
8124 *
8125 * Configure channel specific resources such as rings, vector.
8126 */
8127static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8128{
8129 int i;
8130
8131 for (i = 0; i < ch->num_txq; i++) {
8132 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8133 struct ice_ring_container *rc;
8134 struct ice_tx_ring *tx_ring;
8135 struct ice_rx_ring *rx_ring;
8136
8137 tx_ring = vsi->tx_rings[ch->base_q + i];
8138 rx_ring = vsi->rx_rings[ch->base_q + i];
8139 if (!tx_ring || !rx_ring)
8140 continue;
8141
8142 /* setup ring being channel enabled */
8143 tx_ring->ch = ch;
8144 rx_ring->ch = ch;
8145
8146 /* following code block sets up vector specific attributes */
8147 tx_q_vector = tx_ring->q_vector;
8148 rx_q_vector = rx_ring->q_vector;
8149 if (!tx_q_vector && !rx_q_vector)
8150 continue;
8151
8152 if (tx_q_vector) {
8153 tx_q_vector->ch = ch;
8154 /* setup Tx and Rx ITR setting if DIM is off */
8155 rc = &tx_q_vector->tx;
8156 if (!ITR_IS_DYNAMIC(rc))
8157 ice_write_itr(rc, rc->itr_setting);
8158 }
8159 if (rx_q_vector) {
8160 rx_q_vector->ch = ch;
8161 /* setup Tx and Rx ITR setting if DIM is off */
8162 rc = &rx_q_vector->rx;
8163 if (!ITR_IS_DYNAMIC(rc))
8164 ice_write_itr(rc, rc->itr_setting);
8165 }
8166 }
8167
8168 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8169 * GLINT_ITR register would have written to perform in-context
8170 * update, hence perform flush
8171 */
8172 if (ch->num_txq || ch->num_rxq)
8173 ice_flush(&vsi->back->hw);
8174}
8175
8176/**
8177 * ice_cfg_chnl_all_res - configure channel resources
8178 * @vsi: pte to main_vsi
8179 * @ch: ptr to channel structure
8180 *
8181 * This function configures channel specific resources such as flow-director
8182 * counter index, and other resources such as queues, vectors, ITR settings
8183 */
8184static void
8185ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8186{
8187 /* configure channel (aka ADQ) resources such as queues, vectors,
8188 * ITR settings for channel specific vectors and anything else
8189 */
8190 ice_chnl_cfg_res(vsi, ch);
8191}
8192
8193/**
8194 * ice_setup_hw_channel - setup new channel
8195 * @pf: ptr to PF device
8196 * @vsi: the VSI being setup
8197 * @ch: ptr to channel structure
8198 * @sw_id: underlying HW switching element ID
8199 * @type: type of channel to be created (VMDq2/VF)
8200 *
8201 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8202 * and configures Tx rings accordingly
8203 */
8204static int
8205ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8206 struct ice_channel *ch, u16 sw_id, u8 type)
8207{
8208 struct device *dev = ice_pf_to_dev(pf);
8209 int ret;
8210
8211 ch->base_q = vsi->next_base_q;
8212 ch->type = type;
8213
8214 ret = ice_add_channel(pf, sw_id, ch);
8215 if (ret) {
8216 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8217 return ret;
8218 }
8219
8220 /* configure/setup ADQ specific resources */
8221 ice_cfg_chnl_all_res(vsi, ch);
8222
8223 /* make sure to update the next_base_q so that subsequent channel's
8224 * (aka ADQ) VSI queue map is correct
8225 */
8226 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8227 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8228 ch->num_rxq);
8229
8230 return 0;
8231}
8232
8233/**
8234 * ice_setup_channel - setup new channel using uplink element
8235 * @pf: ptr to PF device
8236 * @vsi: the VSI being setup
8237 * @ch: ptr to channel structure
8238 *
8239 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8240 * and uplink switching element
8241 */
8242static bool
8243ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8244 struct ice_channel *ch)
8245{
8246 struct device *dev = ice_pf_to_dev(pf);
8247 u16 sw_id;
8248 int ret;
8249
8250 if (vsi->type != ICE_VSI_PF) {
8251 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8252 return false;
8253 }
8254
8255 sw_id = pf->first_sw->sw_id;
8256
8257 /* create channel (VSI) */
8258 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8259 if (ret) {
8260 dev_err(dev, "failed to setup hw_channel\n");
8261 return false;
8262 }
8263 dev_dbg(dev, "successfully created channel()\n");
8264
8265 return ch->ch_vsi ? true : false;
8266}
8267
8268/**
8269 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8270 * @vsi: VSI to be configured
8271 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8272 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8273 */
8274static int
8275ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8276{
8277 int err;
8278
8279 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8280 if (err)
8281 return err;
8282
8283 return ice_set_max_bw_limit(vsi, max_tx_rate);
8284}
8285
8286/**
8287 * ice_create_q_channel - function to create channel
8288 * @vsi: VSI to be configured
8289 * @ch: ptr to channel (it contains channel specific params)
8290 *
8291 * This function creates channel (VSI) using num_queues specified by user,
8292 * reconfigs RSS if needed.
8293 */
8294static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8295{
8296 struct ice_pf *pf = vsi->back;
8297 struct device *dev;
8298
8299 if (!ch)
8300 return -EINVAL;
8301
8302 dev = ice_pf_to_dev(pf);
8303 if (!ch->num_txq || !ch->num_rxq) {
8304 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8305 return -EINVAL;
8306 }
8307
8308 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8309 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8310 vsi->cnt_q_avail, ch->num_txq);
8311 return -EINVAL;
8312 }
8313
8314 if (!ice_setup_channel(pf, vsi, ch)) {
8315 dev_info(dev, "Failed to setup channel\n");
8316 return -EINVAL;
8317 }
8318 /* configure BW rate limit */
8319 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8320 int ret;
8321
8322 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8323 ch->min_tx_rate);
8324 if (ret)
8325 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8326 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8327 else
8328 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8329 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8330 }
8331
8332 vsi->cnt_q_avail -= ch->num_txq;
8333
8334 return 0;
8335}
8336
8337/**
8338 * ice_rem_all_chnl_fltrs - removes all channel filters
8339 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8340 *
8341 * Remove all advanced switch filters only if they are channel specific
8342 * tc-flower based filter
8343 */
8344static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8345{
8346 struct ice_tc_flower_fltr *fltr;
8347 struct hlist_node *node;
8348
8349 /* to remove all channel filters, iterate an ordered list of filters */
8350 hlist_for_each_entry_safe(fltr, node,
8351 &pf->tc_flower_fltr_list,
8352 tc_flower_node) {
8353 struct ice_rule_query_data rule;
8354 int status;
8355
8356 /* for now process only channel specific filters */
8357 if (!ice_is_chnl_fltr(fltr))
8358 continue;
8359
8360 rule.rid = fltr->rid;
8361 rule.rule_id = fltr->rule_id;
8362 rule.vsi_handle = fltr->dest_vsi_handle;
8363 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8364 if (status) {
8365 if (status == -ENOENT)
8366 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8367 rule.rule_id);
8368 else
8369 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8370 status);
8371 } else if (fltr->dest_vsi) {
8372 /* update advanced switch filter count */
8373 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8374 u32 flags = fltr->flags;
8375
8376 fltr->dest_vsi->num_chnl_fltr--;
8377 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8378 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8379 pf->num_dmac_chnl_fltrs--;
8380 }
8381 }
8382
8383 hlist_del(&fltr->tc_flower_node);
8384 kfree(fltr);
8385 }
8386}
8387
8388/**
8389 * ice_remove_q_channels - Remove queue channels for the TCs
8390 * @vsi: VSI to be configured
8391 * @rem_fltr: delete advanced switch filter or not
8392 *
8393 * Remove queue channels for the TCs
8394 */
8395static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8396{
8397 struct ice_channel *ch, *ch_tmp;
8398 struct ice_pf *pf = vsi->back;
8399 int i;
8400
8401 /* remove all tc-flower based filter if they are channel filters only */
8402 if (rem_fltr)
8403 ice_rem_all_chnl_fltrs(pf);
8404
8405 /* remove ntuple filters since queue configuration is being changed */
8406 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8407 struct ice_hw *hw = &pf->hw;
8408
8409 mutex_lock(&hw->fdir_fltr_lock);
8410 ice_fdir_del_all_fltrs(vsi);
8411 mutex_unlock(&hw->fdir_fltr_lock);
8412 }
8413
8414 /* perform cleanup for channels if they exist */
8415 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8416 struct ice_vsi *ch_vsi;
8417
8418 list_del(&ch->list);
8419 ch_vsi = ch->ch_vsi;
8420 if (!ch_vsi) {
8421 kfree(ch);
8422 continue;
8423 }
8424
8425 /* Reset queue contexts */
8426 for (i = 0; i < ch->num_rxq; i++) {
8427 struct ice_tx_ring *tx_ring;
8428 struct ice_rx_ring *rx_ring;
8429
8430 tx_ring = vsi->tx_rings[ch->base_q + i];
8431 rx_ring = vsi->rx_rings[ch->base_q + i];
8432 if (tx_ring) {
8433 tx_ring->ch = NULL;
8434 if (tx_ring->q_vector)
8435 tx_ring->q_vector->ch = NULL;
8436 }
8437 if (rx_ring) {
8438 rx_ring->ch = NULL;
8439 if (rx_ring->q_vector)
8440 rx_ring->q_vector->ch = NULL;
8441 }
8442 }
8443
8444 /* Release FD resources for the channel VSI */
8445 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8446
8447 /* clear the VSI from scheduler tree */
8448 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8449
8450 /* Delete VSI from FW */
8451 ice_vsi_delete(ch->ch_vsi);
8452
8453 /* Delete VSI from PF and HW VSI arrays */
8454 ice_vsi_clear(ch->ch_vsi);
8455
8456 /* free the channel */
8457 kfree(ch);
8458 }
8459
8460 /* clear the channel VSI map which is stored in main VSI */
8461 ice_for_each_chnl_tc(i)
8462 vsi->tc_map_vsi[i] = NULL;
8463
8464 /* reset main VSI's all TC information */
8465 vsi->all_enatc = 0;
8466 vsi->all_numtc = 0;
8467}
8468
8469/**
8470 * ice_rebuild_channels - rebuild channel
8471 * @pf: ptr to PF
8472 *
8473 * Recreate channel VSIs and replay filters
8474 */
8475static int ice_rebuild_channels(struct ice_pf *pf)
8476{
8477 struct device *dev = ice_pf_to_dev(pf);
8478 struct ice_vsi *main_vsi;
8479 bool rem_adv_fltr = true;
8480 struct ice_channel *ch;
8481 struct ice_vsi *vsi;
8482 int tc_idx = 1;
8483 int i, err;
8484
8485 main_vsi = ice_get_main_vsi(pf);
8486 if (!main_vsi)
8487 return 0;
8488
8489 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8490 main_vsi->old_numtc == 1)
8491 return 0; /* nothing to be done */
8492
8493 /* reconfigure main VSI based on old value of TC and cached values
8494 * for MQPRIO opts
8495 */
8496 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8497 if (err) {
8498 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8499 main_vsi->old_ena_tc, main_vsi->vsi_num);
8500 return err;
8501 }
8502
8503 /* rebuild ADQ VSIs */
8504 ice_for_each_vsi(pf, i) {
8505 enum ice_vsi_type type;
8506
8507 vsi = pf->vsi[i];
8508 if (!vsi || vsi->type != ICE_VSI_CHNL)
8509 continue;
8510
8511 type = vsi->type;
8512
8513 /* rebuild ADQ VSI */
8514 err = ice_vsi_rebuild(vsi, true);
8515 if (err) {
8516 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8517 ice_vsi_type_str(type), vsi->idx, err);
8518 goto cleanup;
8519 }
8520
8521 /* Re-map HW VSI number, using VSI handle that has been
8522 * previously validated in ice_replay_vsi() call above
8523 */
8524 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8525
8526 /* replay filters for the VSI */
8527 err = ice_replay_vsi(&pf->hw, vsi->idx);
8528 if (err) {
8529 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8530 ice_vsi_type_str(type), err, vsi->idx);
8531 rem_adv_fltr = false;
8532 goto cleanup;
8533 }
8534 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8535 ice_vsi_type_str(type), vsi->idx);
8536
8537 /* store ADQ VSI at correct TC index in main VSI's
8538 * map of TC to VSI
8539 */
8540 main_vsi->tc_map_vsi[tc_idx++] = vsi;
8541 }
8542
8543 /* ADQ VSI(s) has been rebuilt successfully, so setup
8544 * channel for main VSI's Tx and Rx rings
8545 */
8546 list_for_each_entry(ch, &main_vsi->ch_list, list) {
8547 struct ice_vsi *ch_vsi;
8548
8549 ch_vsi = ch->ch_vsi;
8550 if (!ch_vsi)
8551 continue;
8552
8553 /* reconfig channel resources */
8554 ice_cfg_chnl_all_res(main_vsi, ch);
8555
8556 /* replay BW rate limit if it is non-zero */
8557 if (!ch->max_tx_rate && !ch->min_tx_rate)
8558 continue;
8559
8560 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8561 ch->min_tx_rate);
8562 if (err)
8563 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8564 err, ch->max_tx_rate, ch->min_tx_rate,
8565 ch_vsi->vsi_num);
8566 else
8567 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8568 ch->max_tx_rate, ch->min_tx_rate,
8569 ch_vsi->vsi_num);
8570 }
8571
8572 /* reconfig RSS for main VSI */
8573 if (main_vsi->ch_rss_size)
8574 ice_vsi_cfg_rss_lut_key(main_vsi);
8575
8576 return 0;
8577
8578cleanup:
8579 ice_remove_q_channels(main_vsi, rem_adv_fltr);
8580 return err;
8581}
8582
8583/**
8584 * ice_create_q_channels - Add queue channel for the given TCs
8585 * @vsi: VSI to be configured
8586 *
8587 * Configures queue channel mapping to the given TCs
8588 */
8589static int ice_create_q_channels(struct ice_vsi *vsi)
8590{
8591 struct ice_pf *pf = vsi->back;
8592 struct ice_channel *ch;
8593 int ret = 0, i;
8594
8595 ice_for_each_chnl_tc(i) {
8596 if (!(vsi->all_enatc & BIT(i)))
8597 continue;
8598
8599 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8600 if (!ch) {
8601 ret = -ENOMEM;
8602 goto err_free;
8603 }
8604 INIT_LIST_HEAD(&ch->list);
8605 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8606 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8607 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8608 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8609 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8610
8611 /* convert to Kbits/s */
8612 if (ch->max_tx_rate)
8613 ch->max_tx_rate = div_u64(ch->max_tx_rate,
8614 ICE_BW_KBPS_DIVISOR);
8615 if (ch->min_tx_rate)
8616 ch->min_tx_rate = div_u64(ch->min_tx_rate,
8617 ICE_BW_KBPS_DIVISOR);
8618
8619 ret = ice_create_q_channel(vsi, ch);
8620 if (ret) {
8621 dev_err(ice_pf_to_dev(pf),
8622 "failed creating channel TC:%d\n", i);
8623 kfree(ch);
8624 goto err_free;
8625 }
8626 list_add_tail(&ch->list, &vsi->ch_list);
8627 vsi->tc_map_vsi[i] = ch->ch_vsi;
8628 dev_dbg(ice_pf_to_dev(pf),
8629 "successfully created channel: VSI %pK\n", ch->ch_vsi);
8630 }
8631 return 0;
8632
8633err_free:
8634 ice_remove_q_channels(vsi, false);
8635
8636 return ret;
8637}
8638
8639/**
8640 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8641 * @netdev: net device to configure
8642 * @type_data: TC offload data
8643 */
8644static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8645{
8646 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8647 struct ice_netdev_priv *np = netdev_priv(netdev);
8648 struct ice_vsi *vsi = np->vsi;
8649 struct ice_pf *pf = vsi->back;
8650 u16 mode, ena_tc_qdisc = 0;
8651 int cur_txq, cur_rxq;
8652 u8 hw = 0, num_tcf;
8653 struct device *dev;
8654 int ret, i;
8655
8656 dev = ice_pf_to_dev(pf);
8657 num_tcf = mqprio_qopt->qopt.num_tc;
8658 hw = mqprio_qopt->qopt.hw;
8659 mode = mqprio_qopt->mode;
8660 if (!hw) {
8661 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8662 vsi->ch_rss_size = 0;
8663 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8664 goto config_tcf;
8665 }
8666
8667 /* Generate queue region map for number of TCF requested */
8668 for (i = 0; i < num_tcf; i++)
8669 ena_tc_qdisc |= BIT(i);
8670
8671 switch (mode) {
8672 case TC_MQPRIO_MODE_CHANNEL:
8673
8674 if (pf->hw.port_info->is_custom_tx_enabled) {
8675 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8676 return -EBUSY;
8677 }
8678 ice_tear_down_devlink_rate_tree(pf);
8679
8680 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8681 if (ret) {
8682 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8683 ret);
8684 return ret;
8685 }
8686 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8687 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8688 /* don't assume state of hw_tc_offload during driver load
8689 * and set the flag for TC flower filter if hw_tc_offload
8690 * already ON
8691 */
8692 if (vsi->netdev->features & NETIF_F_HW_TC)
8693 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8694 break;
8695 default:
8696 return -EINVAL;
8697 }
8698
8699config_tcf:
8700
8701 /* Requesting same TCF configuration as already enabled */
8702 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8703 mode != TC_MQPRIO_MODE_CHANNEL)
8704 return 0;
8705
8706 /* Pause VSI queues */
8707 ice_dis_vsi(vsi, true);
8708
8709 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8710 ice_remove_q_channels(vsi, true);
8711
8712 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8713 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8714 num_online_cpus());
8715 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8716 num_online_cpus());
8717 } else {
8718 /* logic to rebuild VSI, same like ethtool -L */
8719 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8720
8721 for (i = 0; i < num_tcf; i++) {
8722 if (!(ena_tc_qdisc & BIT(i)))
8723 continue;
8724
8725 offset = vsi->mqprio_qopt.qopt.offset[i];
8726 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8727 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8728 }
8729 vsi->req_txq = offset + qcount_tx;
8730 vsi->req_rxq = offset + qcount_rx;
8731
8732 /* store away original rss_size info, so that it gets reused
8733 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8734 * determine, what should be the rss_sizefor main VSI
8735 */
8736 vsi->orig_rss_size = vsi->rss_size;
8737 }
8738
8739 /* save current values of Tx and Rx queues before calling VSI rebuild
8740 * for fallback option
8741 */
8742 cur_txq = vsi->num_txq;
8743 cur_rxq = vsi->num_rxq;
8744
8745 /* proceed with rebuild main VSI using correct number of queues */
8746 ret = ice_vsi_rebuild(vsi, false);
8747 if (ret) {
8748 /* fallback to current number of queues */
8749 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8750 vsi->req_txq = cur_txq;
8751 vsi->req_rxq = cur_rxq;
8752 clear_bit(ICE_RESET_FAILED, pf->state);
8753 if (ice_vsi_rebuild(vsi, false)) {
8754 dev_err(dev, "Rebuild of main VSI failed again\n");
8755 return ret;
8756 }
8757 }
8758
8759 vsi->all_numtc = num_tcf;
8760 vsi->all_enatc = ena_tc_qdisc;
8761 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8762 if (ret) {
8763 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8764 vsi->vsi_num);
8765 goto exit;
8766 }
8767
8768 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8769 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8770 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8771
8772 /* set TC0 rate limit if specified */
8773 if (max_tx_rate || min_tx_rate) {
8774 /* convert to Kbits/s */
8775 if (max_tx_rate)
8776 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8777 if (min_tx_rate)
8778 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8779
8780 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8781 if (!ret) {
8782 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8783 max_tx_rate, min_tx_rate, vsi->vsi_num);
8784 } else {
8785 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8786 max_tx_rate, min_tx_rate, vsi->vsi_num);
8787 goto exit;
8788 }
8789 }
8790 ret = ice_create_q_channels(vsi);
8791 if (ret) {
8792 netdev_err(netdev, "failed configuring queue channels\n");
8793 goto exit;
8794 } else {
8795 netdev_dbg(netdev, "successfully configured channels\n");
8796 }
8797 }
8798
8799 if (vsi->ch_rss_size)
8800 ice_vsi_cfg_rss_lut_key(vsi);
8801
8802exit:
8803 /* if error, reset the all_numtc and all_enatc */
8804 if (ret) {
8805 vsi->all_numtc = 0;
8806 vsi->all_enatc = 0;
8807 }
8808 /* resume VSI */
8809 ice_ena_vsi(vsi, true);
8810
8811 return ret;
8812}
8813
8814static LIST_HEAD(ice_block_cb_list);
8815
8816static int
8817ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8818 void *type_data)
8819{
8820 struct ice_netdev_priv *np = netdev_priv(netdev);
8821 struct ice_pf *pf = np->vsi->back;
8822 int err;
8823
8824 switch (type) {
8825 case TC_SETUP_BLOCK:
8826 return flow_block_cb_setup_simple(type_data,
8827 &ice_block_cb_list,
8828 ice_setup_tc_block_cb,
8829 np, np, true);
8830 case TC_SETUP_QDISC_MQPRIO:
8831 /* setup traffic classifier for receive side */
8832 mutex_lock(&pf->tc_mutex);
8833 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8834 mutex_unlock(&pf->tc_mutex);
8835 return err;
8836 default:
8837 return -EOPNOTSUPP;
8838 }
8839 return -EOPNOTSUPP;
8840}
8841
8842static struct ice_indr_block_priv *
8843ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8844 struct net_device *netdev)
8845{
8846 struct ice_indr_block_priv *cb_priv;
8847
8848 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8849 if (!cb_priv->netdev)
8850 return NULL;
8851 if (cb_priv->netdev == netdev)
8852 return cb_priv;
8853 }
8854 return NULL;
8855}
8856
8857static int
8858ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8859 void *indr_priv)
8860{
8861 struct ice_indr_block_priv *priv = indr_priv;
8862 struct ice_netdev_priv *np = priv->np;
8863
8864 switch (type) {
8865 case TC_SETUP_CLSFLOWER:
8866 return ice_setup_tc_cls_flower(np, priv->netdev,
8867 (struct flow_cls_offload *)
8868 type_data);
8869 default:
8870 return -EOPNOTSUPP;
8871 }
8872}
8873
8874static int
8875ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8876 struct ice_netdev_priv *np,
8877 struct flow_block_offload *f, void *data,
8878 void (*cleanup)(struct flow_block_cb *block_cb))
8879{
8880 struct ice_indr_block_priv *indr_priv;
8881 struct flow_block_cb *block_cb;
8882
8883 if (!ice_is_tunnel_supported(netdev) &&
8884 !(is_vlan_dev(netdev) &&
8885 vlan_dev_real_dev(netdev) == np->vsi->netdev))
8886 return -EOPNOTSUPP;
8887
8888 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8889 return -EOPNOTSUPP;
8890
8891 switch (f->command) {
8892 case FLOW_BLOCK_BIND:
8893 indr_priv = ice_indr_block_priv_lookup(np, netdev);
8894 if (indr_priv)
8895 return -EEXIST;
8896
8897 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8898 if (!indr_priv)
8899 return -ENOMEM;
8900
8901 indr_priv->netdev = netdev;
8902 indr_priv->np = np;
8903 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8904
8905 block_cb =
8906 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8907 indr_priv, indr_priv,
8908 ice_rep_indr_tc_block_unbind,
8909 f, netdev, sch, data, np,
8910 cleanup);
8911
8912 if (IS_ERR(block_cb)) {
8913 list_del(&indr_priv->list);
8914 kfree(indr_priv);
8915 return PTR_ERR(block_cb);
8916 }
8917 flow_block_cb_add(block_cb, f);
8918 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8919 break;
8920 case FLOW_BLOCK_UNBIND:
8921 indr_priv = ice_indr_block_priv_lookup(np, netdev);
8922 if (!indr_priv)
8923 return -ENOENT;
8924
8925 block_cb = flow_block_cb_lookup(f->block,
8926 ice_indr_setup_block_cb,
8927 indr_priv);
8928 if (!block_cb)
8929 return -ENOENT;
8930
8931 flow_indr_block_cb_remove(block_cb, f);
8932
8933 list_del(&block_cb->driver_list);
8934 break;
8935 default:
8936 return -EOPNOTSUPP;
8937 }
8938 return 0;
8939}
8940
8941static int
8942ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8943 void *cb_priv, enum tc_setup_type type, void *type_data,
8944 void *data,
8945 void (*cleanup)(struct flow_block_cb *block_cb))
8946{
8947 switch (type) {
8948 case TC_SETUP_BLOCK:
8949 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8950 data, cleanup);
8951
8952 default:
8953 return -EOPNOTSUPP;
8954 }
8955}
8956
8957/**
8958 * ice_open - Called when a network interface becomes active
8959 * @netdev: network interface device structure
8960 *
8961 * The open entry point is called when a network interface is made
8962 * active by the system (IFF_UP). At this point all resources needed
8963 * for transmit and receive operations are allocated, the interrupt
8964 * handler is registered with the OS, the netdev watchdog is enabled,
8965 * and the stack is notified that the interface is ready.
8966 *
8967 * Returns 0 on success, negative value on failure
8968 */
8969int ice_open(struct net_device *netdev)
8970{
8971 struct ice_netdev_priv *np = netdev_priv(netdev);
8972 struct ice_pf *pf = np->vsi->back;
8973
8974 if (ice_is_reset_in_progress(pf->state)) {
8975 netdev_err(netdev, "can't open net device while reset is in progress");
8976 return -EBUSY;
8977 }
8978
8979 return ice_open_internal(netdev);
8980}
8981
8982/**
8983 * ice_open_internal - Called when a network interface becomes active
8984 * @netdev: network interface device structure
8985 *
8986 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8987 * handling routine
8988 *
8989 * Returns 0 on success, negative value on failure
8990 */
8991int ice_open_internal(struct net_device *netdev)
8992{
8993 struct ice_netdev_priv *np = netdev_priv(netdev);
8994 struct ice_vsi *vsi = np->vsi;
8995 struct ice_pf *pf = vsi->back;
8996 struct ice_port_info *pi;
8997 int err;
8998
8999 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9000 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9001 return -EIO;
9002 }
9003
9004 netif_carrier_off(netdev);
9005
9006 pi = vsi->port_info;
9007 err = ice_update_link_info(pi);
9008 if (err) {
9009 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9010 return err;
9011 }
9012
9013 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9014
9015 /* Set PHY if there is media, otherwise, turn off PHY */
9016 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9017 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9018 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9019 err = ice_init_phy_user_cfg(pi);
9020 if (err) {
9021 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9022 err);
9023 return err;
9024 }
9025 }
9026
9027 err = ice_configure_phy(vsi);
9028 if (err) {
9029 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9030 err);
9031 return err;
9032 }
9033 } else {
9034 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9035 ice_set_link(vsi, false);
9036 }
9037
9038 err = ice_vsi_open(vsi);
9039 if (err)
9040 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9041 vsi->vsi_num, vsi->vsw->sw_id);
9042
9043 /* Update existing tunnels information */
9044 udp_tunnel_get_rx_info(netdev);
9045
9046 return err;
9047}
9048
9049/**
9050 * ice_stop - Disables a network interface
9051 * @netdev: network interface device structure
9052 *
9053 * The stop entry point is called when an interface is de-activated by the OS,
9054 * and the netdevice enters the DOWN state. The hardware is still under the
9055 * driver's control, but the netdev interface is disabled.
9056 *
9057 * Returns success only - not allowed to fail
9058 */
9059int ice_stop(struct net_device *netdev)
9060{
9061 struct ice_netdev_priv *np = netdev_priv(netdev);
9062 struct ice_vsi *vsi = np->vsi;
9063 struct ice_pf *pf = vsi->back;
9064
9065 if (ice_is_reset_in_progress(pf->state)) {
9066 netdev_err(netdev, "can't stop net device while reset is in progress");
9067 return -EBUSY;
9068 }
9069
9070 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9071 int link_err = ice_force_phys_link_state(vsi, false);
9072
9073 if (link_err) {
9074 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9075 vsi->vsi_num, link_err);
9076 return -EIO;
9077 }
9078 }
9079
9080 ice_vsi_close(vsi);
9081
9082 return 0;
9083}
9084
9085/**
9086 * ice_features_check - Validate encapsulated packet conforms to limits
9087 * @skb: skb buffer
9088 * @netdev: This port's netdev
9089 * @features: Offload features that the stack believes apply
9090 */
9091static netdev_features_t
9092ice_features_check(struct sk_buff *skb,
9093 struct net_device __always_unused *netdev,
9094 netdev_features_t features)
9095{
9096 bool gso = skb_is_gso(skb);
9097 size_t len;
9098
9099 /* No point in doing any of this if neither checksum nor GSO are
9100 * being requested for this frame. We can rule out both by just
9101 * checking for CHECKSUM_PARTIAL
9102 */
9103 if (skb->ip_summed != CHECKSUM_PARTIAL)
9104 return features;
9105
9106 /* We cannot support GSO if the MSS is going to be less than
9107 * 64 bytes. If it is then we need to drop support for GSO.
9108 */
9109 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9110 features &= ~NETIF_F_GSO_MASK;
9111
9112 len = skb_network_offset(skb);
9113 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9114 goto out_rm_features;
9115
9116 len = skb_network_header_len(skb);
9117 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9118 goto out_rm_features;
9119
9120 if (skb->encapsulation) {
9121 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9122 * the case of IPIP frames, the transport header pointer is
9123 * after the inner header! So check to make sure that this
9124 * is a GRE or UDP_TUNNEL frame before doing that math.
9125 */
9126 if (gso && (skb_shinfo(skb)->gso_type &
9127 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9128 len = skb_inner_network_header(skb) -
9129 skb_transport_header(skb);
9130 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9131 goto out_rm_features;
9132 }
9133
9134 len = skb_inner_network_header_len(skb);
9135 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9136 goto out_rm_features;
9137 }
9138
9139 return features;
9140out_rm_features:
9141 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9142}
9143
9144static const struct net_device_ops ice_netdev_safe_mode_ops = {
9145 .ndo_open = ice_open,
9146 .ndo_stop = ice_stop,
9147 .ndo_start_xmit = ice_start_xmit,
9148 .ndo_set_mac_address = ice_set_mac_address,
9149 .ndo_validate_addr = eth_validate_addr,
9150 .ndo_change_mtu = ice_change_mtu,
9151 .ndo_get_stats64 = ice_get_stats64,
9152 .ndo_tx_timeout = ice_tx_timeout,
9153 .ndo_bpf = ice_xdp_safe_mode,
9154};
9155
9156static const struct net_device_ops ice_netdev_ops = {
9157 .ndo_open = ice_open,
9158 .ndo_stop = ice_stop,
9159 .ndo_start_xmit = ice_start_xmit,
9160 .ndo_select_queue = ice_select_queue,
9161 .ndo_features_check = ice_features_check,
9162 .ndo_fix_features = ice_fix_features,
9163 .ndo_set_rx_mode = ice_set_rx_mode,
9164 .ndo_set_mac_address = ice_set_mac_address,
9165 .ndo_validate_addr = eth_validate_addr,
9166 .ndo_change_mtu = ice_change_mtu,
9167 .ndo_get_stats64 = ice_get_stats64,
9168 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9169 .ndo_eth_ioctl = ice_eth_ioctl,
9170 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9171 .ndo_set_vf_mac = ice_set_vf_mac,
9172 .ndo_get_vf_config = ice_get_vf_cfg,
9173 .ndo_set_vf_trust = ice_set_vf_trust,
9174 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9175 .ndo_set_vf_link_state = ice_set_vf_link_state,
9176 .ndo_get_vf_stats = ice_get_vf_stats,
9177 .ndo_set_vf_rate = ice_set_vf_bw,
9178 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9179 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9180 .ndo_setup_tc = ice_setup_tc,
9181 .ndo_set_features = ice_set_features,
9182 .ndo_bridge_getlink = ice_bridge_getlink,
9183 .ndo_bridge_setlink = ice_bridge_setlink,
9184 .ndo_fdb_add = ice_fdb_add,
9185 .ndo_fdb_del = ice_fdb_del,
9186#ifdef CONFIG_RFS_ACCEL
9187 .ndo_rx_flow_steer = ice_rx_flow_steer,
9188#endif
9189 .ndo_tx_timeout = ice_tx_timeout,
9190 .ndo_bpf = ice_xdp,
9191 .ndo_xdp_xmit = ice_xdp_xmit,
9192 .ndo_xsk_wakeup = ice_xsk_wakeup,
9193};