Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2020, Intel Corporation. */
   3
   4#include <linux/vmalloc.h>
   5
   6#include "ice.h"
   7#include "ice_lib.h"
   8#include "ice_devlink.h"
   9#include "ice_eswitch.h"
  10#include "ice_fw_update.h"
  11#include "ice_dcb_lib.h"
  12
  13static int ice_active_port_option = -1;
  14
  15/* context for devlink info version reporting */
  16struct ice_info_ctx {
  17	char buf[128];
  18	struct ice_orom_info pending_orom;
  19	struct ice_nvm_info pending_nvm;
  20	struct ice_netlist_info pending_netlist;
  21	struct ice_hw_dev_caps dev_caps;
  22};
  23
  24/* The following functions are used to format specific strings for various
  25 * devlink info versions. The ctx parameter is used to provide the storage
  26 * buffer, as well as any ancillary information calculated when the info
  27 * request was made.
  28 *
  29 * If a version does not exist, for example when attempting to get the
  30 * inactive version of flash when there is no pending update, the function
  31 * should leave the buffer in the ctx structure empty.
  32 */
  33
  34static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
  35{
  36	u8 dsn[8];
  37
  38	/* Copy the DSN into an array in Big Endian format */
  39	put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
  40
  41	snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
  42}
  43
  44static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
  45{
  46	struct ice_hw *hw = &pf->hw;
  47	int status;
  48
  49	status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
  50	if (status)
  51		/* We failed to locate the PBA, so just skip this entry */
  52		dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
  53			status);
  54}
  55
  56static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
  57{
  58	struct ice_hw *hw = &pf->hw;
  59
  60	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
  61		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
  62}
  63
  64static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
  65{
  66	struct ice_hw *hw = &pf->hw;
  67
  68	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
  69		 hw->api_min_ver, hw->api_patch);
  70}
  71
  72static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
  73{
  74	struct ice_hw *hw = &pf->hw;
  75
  76	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
  77}
  78
  79static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
  80{
  81	struct ice_orom_info *orom = &pf->hw.flash.orom;
  82
  83	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
  84		 orom->major, orom->build, orom->patch);
  85}
  86
  87static void
  88ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
  89			  struct ice_info_ctx *ctx)
  90{
  91	struct ice_orom_info *orom = &ctx->pending_orom;
  92
  93	if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
  94		snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
  95			 orom->major, orom->build, orom->patch);
  96}
  97
  98static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
  99{
 100	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
 101
 102	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
 103}
 104
 105static void
 106ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
 107			 struct ice_info_ctx *ctx)
 108{
 109	struct ice_nvm_info *nvm = &ctx->pending_nvm;
 110
 111	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
 112		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
 113			 nvm->major, nvm->minor);
 114}
 115
 116static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
 117{
 118	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
 119
 120	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
 121}
 122
 123static void
 124ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
 125{
 126	struct ice_nvm_info *nvm = &ctx->pending_nvm;
 127
 128	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
 129		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
 130}
 131
 132static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
 133{
 134	struct ice_hw *hw = &pf->hw;
 135
 136	snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
 137}
 138
 139static void
 140ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
 141{
 142	struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
 143
 144	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
 145		 pkg->major, pkg->minor, pkg->update, pkg->draft);
 146}
 147
 148static void
 149ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
 150{
 151	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
 152}
 153
 154static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
 155{
 156	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
 157
 158	/* The netlist version fields are BCD formatted */
 159	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
 160		 netlist->major, netlist->minor,
 161		 netlist->type >> 16, netlist->type & 0xFFFF,
 162		 netlist->rev, netlist->cust_ver);
 163}
 164
 165static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
 166{
 167	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
 168
 169	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
 170}
 171
 172static void
 173ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
 174			     struct ice_info_ctx *ctx)
 175{
 176	struct ice_netlist_info *netlist = &ctx->pending_netlist;
 177
 178	/* The netlist version fields are BCD formatted */
 179	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
 180		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
 181			 netlist->major, netlist->minor,
 182			 netlist->type >> 16, netlist->type & 0xFFFF,
 183			 netlist->rev, netlist->cust_ver);
 184}
 185
 186static void
 187ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
 188			       struct ice_info_ctx *ctx)
 189{
 190	struct ice_netlist_info *netlist = &ctx->pending_netlist;
 191
 192	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
 193		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
 194}
 195
 196#define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
 197#define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
 198#define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
 199
 200/* The combined() macro inserts both the running entry as well as a stored
 201 * entry. The running entry will always report the version from the active
 202 * handler. The stored entry will first try the pending handler, and fallback
 203 * to the active handler if the pending function does not report a version.
 204 * The pending handler should check the status of a pending update for the
 205 * relevant flash component. It should only fill in the buffer in the case
 206 * where a valid pending version is available. This ensures that the related
 207 * stored and running versions remain in sync, and that stored versions are
 208 * correctly reported as expected.
 209 */
 210#define combined(key, active, pending) \
 211	running(key, active), \
 212	stored(key, pending, active)
 213
 214enum ice_version_type {
 215	ICE_VERSION_FIXED,
 216	ICE_VERSION_RUNNING,
 217	ICE_VERSION_STORED,
 218};
 219
 220static const struct ice_devlink_version {
 221	enum ice_version_type type;
 222	const char *key;
 223	void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
 224	void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
 225} ice_devlink_versions[] = {
 226	fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
 227	running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
 228	running("fw.mgmt.api", ice_info_fw_api),
 229	running("fw.mgmt.build", ice_info_fw_build),
 230	combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
 231	combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
 232	combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
 233	running("fw.app.name", ice_info_ddp_pkg_name),
 234	running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
 235	running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
 236	combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
 237	combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
 238};
 239
 240/**
 241 * ice_devlink_info_get - .info_get devlink handler
 242 * @devlink: devlink instance structure
 243 * @req: the devlink info request
 244 * @extack: extended netdev ack structure
 245 *
 246 * Callback for the devlink .info_get operation. Reports information about the
 247 * device.
 248 *
 249 * Return: zero on success or an error code on failure.
 250 */
 251static int ice_devlink_info_get(struct devlink *devlink,
 252				struct devlink_info_req *req,
 253				struct netlink_ext_ack *extack)
 254{
 255	struct ice_pf *pf = devlink_priv(devlink);
 256	struct device *dev = ice_pf_to_dev(pf);
 257	struct ice_hw *hw = &pf->hw;
 258	struct ice_info_ctx *ctx;
 259	size_t i;
 260	int err;
 261
 262	err = ice_wait_for_reset(pf, 10 * HZ);
 263	if (err) {
 264		NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
 265		return err;
 266	}
 267
 268	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 269	if (!ctx)
 270		return -ENOMEM;
 271
 272	/* discover capabilities first */
 273	err = ice_discover_dev_caps(hw, &ctx->dev_caps);
 274	if (err) {
 275		dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
 276			err, ice_aq_str(hw->adminq.sq_last_status));
 277		NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
 278		goto out_free_ctx;
 279	}
 280
 281	if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
 282		err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
 283		if (err) {
 284			dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
 285				err, ice_aq_str(hw->adminq.sq_last_status));
 286
 287			/* disable display of pending Option ROM */
 288			ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
 289		}
 290	}
 291
 292	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
 293		err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
 294		if (err) {
 295			dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
 296				err, ice_aq_str(hw->adminq.sq_last_status));
 297
 298			/* disable display of pending Option ROM */
 299			ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
 300		}
 301	}
 302
 303	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
 304		err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
 305		if (err) {
 306			dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
 307				err, ice_aq_str(hw->adminq.sq_last_status));
 308
 309			/* disable display of pending Option ROM */
 310			ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
 311		}
 312	}
 313
 314	ice_info_get_dsn(pf, ctx);
 315
 316	err = devlink_info_serial_number_put(req, ctx->buf);
 317	if (err) {
 318		NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
 319		goto out_free_ctx;
 320	}
 321
 322	for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
 323		enum ice_version_type type = ice_devlink_versions[i].type;
 324		const char *key = ice_devlink_versions[i].key;
 325
 326		memset(ctx->buf, 0, sizeof(ctx->buf));
 327
 328		ice_devlink_versions[i].getter(pf, ctx);
 329
 330		/* If the default getter doesn't report a version, use the
 331		 * fallback function. This is primarily useful in the case of
 332		 * "stored" versions that want to report the same value as the
 333		 * running version in the normal case of no pending update.
 334		 */
 335		if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
 336			ice_devlink_versions[i].fallback(pf, ctx);
 337
 338		/* Do not report missing versions */
 339		if (ctx->buf[0] == '\0')
 340			continue;
 341
 342		switch (type) {
 343		case ICE_VERSION_FIXED:
 344			err = devlink_info_version_fixed_put(req, key, ctx->buf);
 345			if (err) {
 346				NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
 347				goto out_free_ctx;
 348			}
 349			break;
 350		case ICE_VERSION_RUNNING:
 351			err = devlink_info_version_running_put(req, key, ctx->buf);
 352			if (err) {
 353				NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
 354				goto out_free_ctx;
 355			}
 356			break;
 357		case ICE_VERSION_STORED:
 358			err = devlink_info_version_stored_put(req, key, ctx->buf);
 359			if (err) {
 360				NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
 361				goto out_free_ctx;
 362			}
 363			break;
 364		}
 365	}
 366
 367out_free_ctx:
 368	kfree(ctx);
 369	return err;
 370}
 371
 372/**
 373 * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
 374 * @devlink: pointer to the devlink instance to reload
 375 * @netns_change: if true, the network namespace is changing
 376 * @action: the action to perform. Must be DEVLINK_RELOAD_ACTION_FW_ACTIVATE
 377 * @limit: limits on what reload should do, such as not resetting
 378 * @extack: netlink extended ACK structure
 379 *
 380 * Allow user to activate new Embedded Management Processor firmware by
 381 * issuing device specific EMP reset. Called in response to
 382 * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
 383 *
 384 * Note that teardown and rebuild of the driver state happens automatically as
 385 * part of an interrupt and watchdog task. This is because all physical
 386 * functions on the device must be able to reset when an EMP reset occurs from
 387 * any source.
 388 */
 389static int
 390ice_devlink_reload_empr_start(struct devlink *devlink, bool netns_change,
 391			      enum devlink_reload_action action,
 392			      enum devlink_reload_limit limit,
 393			      struct netlink_ext_ack *extack)
 394{
 395	struct ice_pf *pf = devlink_priv(devlink);
 396	struct device *dev = ice_pf_to_dev(pf);
 397	struct ice_hw *hw = &pf->hw;
 398	u8 pending;
 399	int err;
 400
 401	err = ice_get_pending_updates(pf, &pending, extack);
 402	if (err)
 403		return err;
 404
 405	/* pending is a bitmask of which flash banks have a pending update,
 406	 * including the main NVM bank, the Option ROM bank, and the netlist
 407	 * bank. If any of these bits are set, then there is a pending update
 408	 * waiting to be activated.
 409	 */
 410	if (!pending) {
 411		NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
 412		return -ECANCELED;
 413	}
 414
 415	if (pf->fw_emp_reset_disabled) {
 416		NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
 417		return -ECANCELED;
 418	}
 419
 420	dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
 421
 422	err = ice_aq_nvm_update_empr(hw);
 423	if (err) {
 424		dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
 425			err, ice_aq_str(hw->adminq.sq_last_status));
 426		NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
 427		return err;
 428	}
 429
 430	return 0;
 431}
 432
 433/**
 434 * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
 435 * @devlink: pointer to the devlink instance reloading
 436 * @action: the action requested
 437 * @limit: limits imposed by userspace, such as not resetting
 438 * @actions_performed: on return, indicate what actions actually performed
 439 * @extack: netlink extended ACK structure
 440 *
 441 * Wait for driver to finish rebuilding after EMP reset is completed. This
 442 * includes time to wait for both the actual device reset as well as the time
 443 * for the driver's rebuild to complete.
 444 */
 445static int
 446ice_devlink_reload_empr_finish(struct devlink *devlink,
 447			       enum devlink_reload_action action,
 448			       enum devlink_reload_limit limit,
 449			       u32 *actions_performed,
 450			       struct netlink_ext_ack *extack)
 451{
 452	struct ice_pf *pf = devlink_priv(devlink);
 453	int err;
 454
 455	*actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
 456
 457	err = ice_wait_for_reset(pf, 60 * HZ);
 458	if (err) {
 459		NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
 460		return err;
 461	}
 462
 463	return 0;
 464}
 465
 466/**
 467 * ice_devlink_port_opt_speed_str - convert speed to a string
 468 * @speed: speed value
 469 */
 470static const char *ice_devlink_port_opt_speed_str(u8 speed)
 471{
 472	switch (speed & ICE_AQC_PORT_OPT_MAX_LANE_M) {
 473	case ICE_AQC_PORT_OPT_MAX_LANE_100M:
 474		return "0.1";
 475	case ICE_AQC_PORT_OPT_MAX_LANE_1G:
 476		return "1";
 477	case ICE_AQC_PORT_OPT_MAX_LANE_2500M:
 478		return "2.5";
 479	case ICE_AQC_PORT_OPT_MAX_LANE_5G:
 480		return "5";
 481	case ICE_AQC_PORT_OPT_MAX_LANE_10G:
 482		return "10";
 483	case ICE_AQC_PORT_OPT_MAX_LANE_25G:
 484		return "25";
 485	case ICE_AQC_PORT_OPT_MAX_LANE_50G:
 486		return "50";
 487	case ICE_AQC_PORT_OPT_MAX_LANE_100G:
 488		return "100";
 489	}
 490
 491	return "-";
 492}
 493
 494#define ICE_PORT_OPT_DESC_LEN	50
 495/**
 496 * ice_devlink_port_options_print - Print available port split options
 497 * @pf: the PF to print split port options
 498 *
 499 * Prints a table with available port split options and max port speeds
 500 */
 501static void ice_devlink_port_options_print(struct ice_pf *pf)
 502{
 503	u8 i, j, options_count, cnt, speed, pending_idx, active_idx;
 504	struct ice_aqc_get_port_options_elem *options, *opt;
 505	struct device *dev = ice_pf_to_dev(pf);
 506	bool active_valid, pending_valid;
 507	char desc[ICE_PORT_OPT_DESC_LEN];
 508	const char *str;
 509	int status;
 510
 511	options = kcalloc(ICE_AQC_PORT_OPT_MAX * ICE_MAX_PORT_PER_PCI_DEV,
 512			  sizeof(*options), GFP_KERNEL);
 513	if (!options)
 514		return;
 515
 516	for (i = 0; i < ICE_MAX_PORT_PER_PCI_DEV; i++) {
 517		opt = options + i * ICE_AQC_PORT_OPT_MAX;
 518		options_count = ICE_AQC_PORT_OPT_MAX;
 519		active_valid = 0;
 520
 521		status = ice_aq_get_port_options(&pf->hw, opt, &options_count,
 522						 i, true, &active_idx,
 523						 &active_valid, &pending_idx,
 524						 &pending_valid);
 525		if (status) {
 526			dev_dbg(dev, "Couldn't read port option for port %d, err %d\n",
 527				i, status);
 528			goto err;
 529		}
 530	}
 531
 532	dev_dbg(dev, "Available port split options and max port speeds (Gbps):\n");
 533	dev_dbg(dev, "Status  Split      Quad 0          Quad 1\n");
 534	dev_dbg(dev, "        count  L0  L1  L2  L3  L4  L5  L6  L7\n");
 535
 536	for (i = 0; i < options_count; i++) {
 537		cnt = 0;
 538
 539		if (i == ice_active_port_option)
 540			str = "Active";
 541		else if ((i == pending_idx) && pending_valid)
 542			str = "Pending";
 543		else
 544			str = "";
 545
 546		cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
 547				"%-8s", str);
 548
 549		cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
 550				"%-6u", options[i].pmd);
 551
 552		for (j = 0; j < ICE_MAX_PORT_PER_PCI_DEV; ++j) {
 553			speed = options[i + j * ICE_AQC_PORT_OPT_MAX].max_lane_speed;
 554			str = ice_devlink_port_opt_speed_str(speed);
 555			cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
 556					"%3s ", str);
 557		}
 558
 559		dev_dbg(dev, "%s\n", desc);
 560	}
 561
 562err:
 563	kfree(options);
 564}
 565
 566/**
 567 * ice_devlink_aq_set_port_option - Send set port option admin queue command
 568 * @pf: the PF to print split port options
 569 * @option_idx: selected port option
 570 * @extack: extended netdev ack structure
 571 *
 572 * Sends set port option admin queue command with selected port option and
 573 * calls NVM write activate.
 574 */
 575static int
 576ice_devlink_aq_set_port_option(struct ice_pf *pf, u8 option_idx,
 577			       struct netlink_ext_ack *extack)
 578{
 579	struct device *dev = ice_pf_to_dev(pf);
 580	int status;
 581
 582	status = ice_aq_set_port_option(&pf->hw, 0, true, option_idx);
 583	if (status) {
 584		dev_dbg(dev, "ice_aq_set_port_option, err %d aq_err %d\n",
 585			status, pf->hw.adminq.sq_last_status);
 586		NL_SET_ERR_MSG_MOD(extack, "Port split request failed");
 587		return -EIO;
 588	}
 589
 590	status = ice_acquire_nvm(&pf->hw, ICE_RES_WRITE);
 591	if (status) {
 592		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
 593			status, pf->hw.adminq.sq_last_status);
 594		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
 595		return -EIO;
 596	}
 597
 598	status = ice_nvm_write_activate(&pf->hw, ICE_AQC_NVM_ACTIV_REQ_EMPR, NULL);
 599	if (status) {
 600		dev_dbg(dev, "ice_nvm_write_activate failed, err %d aq_err %d\n",
 601			status, pf->hw.adminq.sq_last_status);
 602		NL_SET_ERR_MSG_MOD(extack, "Port split request failed to save data");
 603		ice_release_nvm(&pf->hw);
 604		return -EIO;
 605	}
 606
 607	ice_release_nvm(&pf->hw);
 608
 609	NL_SET_ERR_MSG_MOD(extack, "Reboot required to finish port split");
 610	return 0;
 611}
 612
 613/**
 614 * ice_devlink_port_split - .port_split devlink handler
 615 * @devlink: devlink instance structure
 616 * @port: devlink port structure
 617 * @count: number of ports to split to
 618 * @extack: extended netdev ack structure
 619 *
 620 * Callback for the devlink .port_split operation.
 621 *
 622 * Unfortunately, the devlink expression of available options is limited
 623 * to just a number, so search for an FW port option which supports
 624 * the specified number. As there could be multiple FW port options with
 625 * the same port split count, allow switching between them. When the same
 626 * port split count request is issued again, switch to the next FW port
 627 * option with the same port split count.
 628 *
 629 * Return: zero on success or an error code on failure.
 630 */
 631static int
 632ice_devlink_port_split(struct devlink *devlink, struct devlink_port *port,
 633		       unsigned int count, struct netlink_ext_ack *extack)
 634{
 635	struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
 636	u8 i, j, active_idx, pending_idx, new_option;
 637	struct ice_pf *pf = devlink_priv(devlink);
 638	u8 option_count = ICE_AQC_PORT_OPT_MAX;
 639	struct device *dev = ice_pf_to_dev(pf);
 640	bool active_valid, pending_valid;
 641	int status;
 642
 643	status = ice_aq_get_port_options(&pf->hw, options, &option_count,
 644					 0, true, &active_idx, &active_valid,
 645					 &pending_idx, &pending_valid);
 646	if (status) {
 647		dev_dbg(dev, "Couldn't read port split options, err = %d\n",
 648			status);
 649		NL_SET_ERR_MSG_MOD(extack, "Failed to get available port split options");
 650		return -EIO;
 651	}
 652
 653	new_option = ICE_AQC_PORT_OPT_MAX;
 654	active_idx = pending_valid ? pending_idx : active_idx;
 655	for (i = 1; i <= option_count; i++) {
 656		/* In order to allow switching between FW port options with
 657		 * the same port split count, search for a new option starting
 658		 * from the active/pending option (with array wrap around).
 659		 */
 660		j = (active_idx + i) % option_count;
 661
 662		if (count == options[j].pmd) {
 663			new_option = j;
 664			break;
 665		}
 666	}
 667
 668	if (new_option == active_idx) {
 669		dev_dbg(dev, "request to split: count: %u is already set and there are no other options\n",
 670			count);
 671		NL_SET_ERR_MSG_MOD(extack, "Requested split count is already set");
 672		ice_devlink_port_options_print(pf);
 673		return -EINVAL;
 674	}
 675
 676	if (new_option == ICE_AQC_PORT_OPT_MAX) {
 677		dev_dbg(dev, "request to split: count: %u not found\n", count);
 678		NL_SET_ERR_MSG_MOD(extack, "Port split requested unsupported port config");
 679		ice_devlink_port_options_print(pf);
 680		return -EINVAL;
 681	}
 682
 683	status = ice_devlink_aq_set_port_option(pf, new_option, extack);
 684	if (status)
 685		return status;
 686
 687	ice_devlink_port_options_print(pf);
 688
 689	return 0;
 690}
 691
 692/**
 693 * ice_devlink_port_unsplit - .port_unsplit devlink handler
 694 * @devlink: devlink instance structure
 695 * @port: devlink port structure
 696 * @extack: extended netdev ack structure
 697 *
 698 * Callback for the devlink .port_unsplit operation.
 699 * Calls ice_devlink_port_split with split count set to 1.
 700 * There could be no FW option available with split count 1.
 701 *
 702 * Return: zero on success or an error code on failure.
 703 */
 704static int
 705ice_devlink_port_unsplit(struct devlink *devlink, struct devlink_port *port,
 706			 struct netlink_ext_ack *extack)
 707{
 708	return ice_devlink_port_split(devlink, port, 1, extack);
 709}
 710
 711/**
 712 * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
 713 * @pf: pf struct
 714 *
 715 * This function tears down tree exported during VF's creation.
 716 */
 717void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
 718{
 719	struct devlink *devlink;
 720	struct ice_vf *vf;
 721	unsigned int bkt;
 722
 723	devlink = priv_to_devlink(pf);
 724
 725	devl_lock(devlink);
 726	mutex_lock(&pf->vfs.table_lock);
 727	ice_for_each_vf(pf, bkt, vf) {
 728		if (vf->devlink_port.devlink_rate)
 729			devl_rate_leaf_destroy(&vf->devlink_port);
 730	}
 731	mutex_unlock(&pf->vfs.table_lock);
 732
 733	devl_rate_nodes_destroy(devlink);
 734	devl_unlock(devlink);
 735}
 736
 737/**
 738 * ice_enable_custom_tx - try to enable custom Tx feature
 739 * @pf: pf struct
 740 *
 741 * This function tries to enable custom Tx feature,
 742 * it's not possible to enable it, if DCB or ADQ is active.
 743 */
 744static bool ice_enable_custom_tx(struct ice_pf *pf)
 745{
 746	struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
 747	struct device *dev = ice_pf_to_dev(pf);
 748
 749	if (pi->is_custom_tx_enabled)
 750		/* already enabled, return true */
 751		return true;
 752
 753	if (ice_is_adq_active(pf)) {
 754		dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
 755		return false;
 756	}
 757
 758	if (ice_is_dcb_active(pf)) {
 759		dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
 760		return false;
 761	}
 762
 763	pi->is_custom_tx_enabled = true;
 764
 765	return true;
 766}
 767
 768/**
 769 * ice_traverse_tx_tree - traverse Tx scheduler tree
 770 * @devlink: devlink struct
 771 * @node: current node, used for recursion
 772 * @tc_node: tc_node struct, that is treated as a root
 773 * @pf: pf struct
 774 *
 775 * This function traverses Tx scheduler tree and exports
 776 * entire structure to the devlink-rate.
 777 */
 778static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
 779				 struct ice_sched_node *tc_node, struct ice_pf *pf)
 780{
 781	struct devlink_rate *rate_node = NULL;
 782	struct ice_vf *vf;
 783	int i;
 784
 785	if (node->parent == tc_node) {
 786		/* create root node */
 787		rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
 788	} else if (node->vsi_handle &&
 789		   pf->vsi[node->vsi_handle]->vf) {
 790		vf = pf->vsi[node->vsi_handle]->vf;
 791		if (!vf->devlink_port.devlink_rate)
 792			/* leaf nodes doesn't have children
 793			 * so we don't set rate_node
 794			 */
 795			devl_rate_leaf_create(&vf->devlink_port, node,
 796					      node->parent->rate_node);
 797	} else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
 798		   node->parent->rate_node) {
 799		rate_node = devl_rate_node_create(devlink, node, node->name,
 800						  node->parent->rate_node);
 801	}
 802
 803	if (rate_node && !IS_ERR(rate_node))
 804		node->rate_node = rate_node;
 805
 806	for (i = 0; i < node->num_children; i++)
 807		ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
 808}
 809
 810/**
 811 * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
 812 * @devlink: devlink struct
 813 * @vsi: main vsi struct
 814 *
 815 * This function finds a root node, then calls ice_traverse_tx tree, which
 816 * traverses the tree and exports it's contents to devlink rate.
 817 */
 818int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
 819{
 820	struct ice_port_info *pi = vsi->port_info;
 821	struct ice_sched_node *tc_node;
 822	struct ice_pf *pf = vsi->back;
 823	int i;
 824
 825	tc_node = pi->root->children[0];
 826	mutex_lock(&pi->sched_lock);
 827	devl_lock(devlink);
 828	for (i = 0; i < tc_node->num_children; i++)
 829		ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
 830	devl_unlock(devlink);
 831	mutex_unlock(&pi->sched_lock);
 832
 833	return 0;
 834}
 835
 836/**
 837 * ice_set_object_tx_share - sets node scheduling parameter
 838 * @pi: devlink struct instance
 839 * @node: node struct instance
 840 * @bw: bandwidth in bytes per second
 841 * @extack: extended netdev ack structure
 842 *
 843 * This function sets ICE_MIN_BW scheduling BW limit.
 844 */
 845static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
 846				   u64 bw, struct netlink_ext_ack *extack)
 847{
 848	int status;
 849
 850	mutex_lock(&pi->sched_lock);
 851	/* converts bytes per second to kilo bits per second */
 852	node->tx_share = div_u64(bw, 125);
 853	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
 854	mutex_unlock(&pi->sched_lock);
 855
 856	if (status)
 857		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
 858
 859	return status;
 860}
 861
 862/**
 863 * ice_set_object_tx_max - sets node scheduling parameter
 864 * @pi: devlink struct instance
 865 * @node: node struct instance
 866 * @bw: bandwidth in bytes per second
 867 * @extack: extended netdev ack structure
 868 *
 869 * This function sets ICE_MAX_BW scheduling BW limit.
 870 */
 871static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
 872				 u64 bw, struct netlink_ext_ack *extack)
 873{
 874	int status;
 875
 876	mutex_lock(&pi->sched_lock);
 877	/* converts bytes per second value to kilo bits per second */
 878	node->tx_max = div_u64(bw, 125);
 879	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
 880	mutex_unlock(&pi->sched_lock);
 881
 882	if (status)
 883		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
 884
 885	return status;
 886}
 887
 888/**
 889 * ice_set_object_tx_priority - sets node scheduling parameter
 890 * @pi: devlink struct instance
 891 * @node: node struct instance
 892 * @priority: value representing priority for strict priority arbitration
 893 * @extack: extended netdev ack structure
 894 *
 895 * This function sets priority of node among siblings.
 896 */
 897static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
 898				      u32 priority, struct netlink_ext_ack *extack)
 899{
 900	int status;
 901
 902	if (priority >= 8) {
 903		NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
 904		return -EINVAL;
 905	}
 906
 907	mutex_lock(&pi->sched_lock);
 908	node->tx_priority = priority;
 909	status = ice_sched_set_node_priority(pi, node, node->tx_priority);
 910	mutex_unlock(&pi->sched_lock);
 911
 912	if (status)
 913		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
 914
 915	return status;
 916}
 917
 918/**
 919 * ice_set_object_tx_weight - sets node scheduling parameter
 920 * @pi: devlink struct instance
 921 * @node: node struct instance
 922 * @weight: value represeting relative weight for WFQ arbitration
 923 * @extack: extended netdev ack structure
 924 *
 925 * This function sets node weight for WFQ algorithm.
 926 */
 927static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
 928				    u32 weight, struct netlink_ext_ack *extack)
 929{
 930	int status;
 931
 932	if (weight > 200 || weight < 1) {
 933		NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
 934		return -EINVAL;
 935	}
 936
 937	mutex_lock(&pi->sched_lock);
 938	node->tx_weight = weight;
 939	status = ice_sched_set_node_weight(pi, node, node->tx_weight);
 940	mutex_unlock(&pi->sched_lock);
 941
 942	if (status)
 943		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
 944
 945	return status;
 946}
 947
 948/**
 949 * ice_get_pi_from_dev_rate - get port info from devlink_rate
 950 * @rate_node: devlink struct instance
 951 *
 952 * This function returns corresponding port_info struct of devlink_rate
 953 */
 954static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
 955{
 956	struct ice_pf *pf = devlink_priv(rate_node->devlink);
 957
 958	return ice_get_main_vsi(pf)->port_info;
 959}
 960
 961static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
 962				     struct netlink_ext_ack *extack)
 963{
 964	struct ice_sched_node *node;
 965	struct ice_port_info *pi;
 966
 967	pi = ice_get_pi_from_dev_rate(rate_node);
 968
 969	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
 970		return -EBUSY;
 971
 972	/* preallocate memory for ice_sched_node */
 973	node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
 974	*priv = node;
 975
 976	return 0;
 977}
 978
 979static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
 980				     struct netlink_ext_ack *extack)
 981{
 982	struct ice_sched_node *node, *tc_node;
 983	struct ice_port_info *pi;
 984
 985	pi = ice_get_pi_from_dev_rate(rate_node);
 986	tc_node = pi->root->children[0];
 987	node = priv;
 988
 989	if (!rate_node->parent || !node || tc_node == node || !extack)
 990		return 0;
 991
 992	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
 993		return -EBUSY;
 994
 995	/* can't allow to delete a node with children */
 996	if (node->num_children)
 997		return -EINVAL;
 998
 999	mutex_lock(&pi->sched_lock);
1000	ice_free_sched_node(pi, node);
1001	mutex_unlock(&pi->sched_lock);
1002
1003	return 0;
1004}
1005
1006static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1007					    u64 tx_max, struct netlink_ext_ack *extack)
1008{
1009	struct ice_sched_node *node = priv;
1010
1011	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1012		return -EBUSY;
1013
1014	if (!node)
1015		return 0;
1016
1017	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1018				     node, tx_max, extack);
1019}
1020
1021static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1022					      u64 tx_share, struct netlink_ext_ack *extack)
1023{
1024	struct ice_sched_node *node = priv;
1025
1026	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1027		return -EBUSY;
1028
1029	if (!node)
1030		return 0;
1031
1032	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1033				       tx_share, extack);
1034}
1035
1036static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1037						 u32 tx_priority, struct netlink_ext_ack *extack)
1038{
1039	struct ice_sched_node *node = priv;
1040
1041	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1042		return -EBUSY;
1043
1044	if (!node)
1045		return 0;
1046
1047	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1048					  tx_priority, extack);
1049}
1050
1051static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1052					       u32 tx_weight, struct netlink_ext_ack *extack)
1053{
1054	struct ice_sched_node *node = priv;
1055
1056	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1057		return -EBUSY;
1058
1059	if (!node)
1060		return 0;
1061
1062	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1063					tx_weight, extack);
1064}
1065
1066static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1067					    u64 tx_max, struct netlink_ext_ack *extack)
1068{
1069	struct ice_sched_node *node = priv;
1070
1071	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1072		return -EBUSY;
1073
1074	if (!node)
1075		return 0;
1076
1077	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1078				     node, tx_max, extack);
1079}
1080
1081static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1082					      u64 tx_share, struct netlink_ext_ack *extack)
1083{
1084	struct ice_sched_node *node = priv;
1085
1086	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1087		return -EBUSY;
1088
1089	if (!node)
1090		return 0;
1091
1092	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1093				       node, tx_share, extack);
1094}
1095
1096static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1097						 u32 tx_priority, struct netlink_ext_ack *extack)
1098{
1099	struct ice_sched_node *node = priv;
1100
1101	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1102		return -EBUSY;
1103
1104	if (!node)
1105		return 0;
1106
1107	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1108					  node, tx_priority, extack);
1109}
1110
1111static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1112					       u32 tx_weight, struct netlink_ext_ack *extack)
1113{
1114	struct ice_sched_node *node = priv;
1115
1116	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1117		return -EBUSY;
1118
1119	if (!node)
1120		return 0;
1121
1122	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1123					node, tx_weight, extack);
1124}
1125
1126static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1127				  struct devlink_rate *parent,
1128				  void *priv, void *parent_priv,
1129				  struct netlink_ext_ack *extack)
1130{
1131	struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1132	struct ice_sched_node *tc_node, *node, *parent_node;
1133	u16 num_nodes_added;
1134	u32 first_node_teid;
1135	u32 node_teid;
1136	int status;
1137
1138	tc_node = pi->root->children[0];
1139	node = priv;
1140
1141	if (!extack)
1142		return 0;
1143
1144	if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1145		return -EBUSY;
1146
1147	if (!parent) {
1148		if (!node || tc_node == node || node->num_children)
1149			return -EINVAL;
1150
1151		mutex_lock(&pi->sched_lock);
1152		ice_free_sched_node(pi, node);
1153		mutex_unlock(&pi->sched_lock);
1154
1155		return 0;
1156	}
1157
1158	parent_node = parent_priv;
1159
1160	/* if the node doesn't exist, create it */
1161	if (!node->parent) {
1162		mutex_lock(&pi->sched_lock);
1163		status = ice_sched_add_elems(pi, tc_node, parent_node,
1164					     parent_node->tx_sched_layer + 1,
1165					     1, &num_nodes_added, &first_node_teid,
1166					     &node);
1167		mutex_unlock(&pi->sched_lock);
1168
1169		if (status) {
1170			NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1171			return status;
1172		}
1173
1174		if (devlink_rate->tx_share)
1175			ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1176		if (devlink_rate->tx_max)
1177			ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1178		if (devlink_rate->tx_priority)
1179			ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1180		if (devlink_rate->tx_weight)
1181			ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1182	} else {
1183		node_teid = le32_to_cpu(node->info.node_teid);
1184		mutex_lock(&pi->sched_lock);
1185		status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1186		mutex_unlock(&pi->sched_lock);
1187
1188		if (status)
1189			NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1190	}
1191
1192	return status;
1193}
1194
1195static const struct devlink_ops ice_devlink_ops = {
1196	.supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1197	.reload_actions = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1198	/* The ice driver currently does not support driver reinit */
1199	.reload_down = ice_devlink_reload_empr_start,
1200	.reload_up = ice_devlink_reload_empr_finish,
1201	.port_split = ice_devlink_port_split,
1202	.port_unsplit = ice_devlink_port_unsplit,
1203	.eswitch_mode_get = ice_eswitch_mode_get,
1204	.eswitch_mode_set = ice_eswitch_mode_set,
1205	.info_get = ice_devlink_info_get,
1206	.flash_update = ice_devlink_flash_update,
1207
1208	.rate_node_new = ice_devlink_rate_node_new,
1209	.rate_node_del = ice_devlink_rate_node_del,
1210
1211	.rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1212	.rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1213	.rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1214	.rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1215
1216	.rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1217	.rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1218	.rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1219	.rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1220
1221	.rate_leaf_parent_set = ice_devlink_set_parent,
1222	.rate_node_parent_set = ice_devlink_set_parent,
1223};
1224
1225static int
1226ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1227			    struct devlink_param_gset_ctx *ctx)
1228{
1229	struct ice_pf *pf = devlink_priv(devlink);
1230
1231	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
1232
1233	return 0;
1234}
1235
1236static int
1237ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1238			    struct devlink_param_gset_ctx *ctx)
1239{
1240	struct ice_pf *pf = devlink_priv(devlink);
1241	bool roce_ena = ctx->val.vbool;
1242	int ret;
1243
1244	if (!roce_ena) {
1245		ice_unplug_aux_dev(pf);
1246		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1247		return 0;
1248	}
1249
1250	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
1251	ret = ice_plug_aux_dev(pf);
1252	if (ret)
1253		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1254
1255	return ret;
1256}
1257
1258static int
1259ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1260				 union devlink_param_value val,
1261				 struct netlink_ext_ack *extack)
1262{
1263	struct ice_pf *pf = devlink_priv(devlink);
1264
1265	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1266		return -EOPNOTSUPP;
1267
1268	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
1269		NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1270		return -EOPNOTSUPP;
1271	}
1272
1273	return 0;
1274}
1275
1276static int
1277ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1278			  struct devlink_param_gset_ctx *ctx)
1279{
1280	struct ice_pf *pf = devlink_priv(devlink);
1281
1282	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
1283
1284	return 0;
1285}
1286
1287static int
1288ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1289			  struct devlink_param_gset_ctx *ctx)
1290{
1291	struct ice_pf *pf = devlink_priv(devlink);
1292	bool iw_ena = ctx->val.vbool;
1293	int ret;
1294
1295	if (!iw_ena) {
1296		ice_unplug_aux_dev(pf);
1297		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1298		return 0;
1299	}
1300
1301	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
1302	ret = ice_plug_aux_dev(pf);
1303	if (ret)
1304		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1305
1306	return ret;
1307}
1308
1309static int
1310ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1311			       union devlink_param_value val,
1312			       struct netlink_ext_ack *extack)
1313{
1314	struct ice_pf *pf = devlink_priv(devlink);
1315
1316	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1317		return -EOPNOTSUPP;
1318
1319	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
1320		NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1321		return -EOPNOTSUPP;
1322	}
1323
1324	return 0;
1325}
1326
1327static const struct devlink_param ice_devlink_params[] = {
1328	DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1329			      ice_devlink_enable_roce_get,
1330			      ice_devlink_enable_roce_set,
1331			      ice_devlink_enable_roce_validate),
1332	DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1333			      ice_devlink_enable_iw_get,
1334			      ice_devlink_enable_iw_set,
1335			      ice_devlink_enable_iw_validate),
1336
1337};
1338
1339static void ice_devlink_free(void *devlink_ptr)
1340{
1341	devlink_free((struct devlink *)devlink_ptr);
1342}
1343
1344/**
1345 * ice_allocate_pf - Allocate devlink and return PF structure pointer
1346 * @dev: the device to allocate for
1347 *
1348 * Allocate a devlink instance for this device and return the private area as
1349 * the PF structure. The devlink memory is kept track of through devres by
1350 * adding an action to remove it when unwinding.
1351 */
1352struct ice_pf *ice_allocate_pf(struct device *dev)
1353{
1354	struct devlink *devlink;
1355
1356	devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1357	if (!devlink)
1358		return NULL;
1359
1360	/* Add an action to teardown the devlink when unwinding the driver */
1361	if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1362		return NULL;
1363
1364	return devlink_priv(devlink);
1365}
1366
1367/**
1368 * ice_devlink_register - Register devlink interface for this PF
1369 * @pf: the PF to register the devlink for.
1370 *
1371 * Register the devlink instance associated with this physical function.
1372 *
1373 * Return: zero on success or an error code on failure.
1374 */
1375void ice_devlink_register(struct ice_pf *pf)
1376{
1377	struct devlink *devlink = priv_to_devlink(pf);
1378
1379	devlink_set_features(devlink, DEVLINK_F_RELOAD);
1380	devlink_register(devlink);
1381}
1382
1383/**
1384 * ice_devlink_unregister - Unregister devlink resources for this PF.
1385 * @pf: the PF structure to cleanup
1386 *
1387 * Releases resources used by devlink and cleans up associated memory.
1388 */
1389void ice_devlink_unregister(struct ice_pf *pf)
1390{
1391	devlink_unregister(priv_to_devlink(pf));
1392}
1393
1394/**
1395 * ice_devlink_set_switch_id - Set unique switch id based on pci dsn
1396 * @pf: the PF to create a devlink port for
1397 * @ppid: struct with switch id information
1398 */
1399static void
1400ice_devlink_set_switch_id(struct ice_pf *pf, struct netdev_phys_item_id *ppid)
1401{
1402	struct pci_dev *pdev = pf->pdev;
1403	u64 id;
1404
1405	id = pci_get_dsn(pdev);
1406
1407	ppid->id_len = sizeof(id);
1408	put_unaligned_be64(id, &ppid->id);
1409}
1410
1411int ice_devlink_register_params(struct ice_pf *pf)
1412{
1413	struct devlink *devlink = priv_to_devlink(pf);
1414	union devlink_param_value value;
1415	int err;
1416
1417	err = devlink_params_register(devlink, ice_devlink_params,
1418				      ARRAY_SIZE(ice_devlink_params));
1419	if (err)
1420		return err;
1421
1422	value.vbool = false;
1423	devlink_param_driverinit_value_set(devlink,
1424					   DEVLINK_PARAM_GENERIC_ID_ENABLE_IWARP,
1425					   value);
1426
1427	value.vbool = test_bit(ICE_FLAG_RDMA_ENA, pf->flags) ? true : false;
1428	devlink_param_driverinit_value_set(devlink,
1429					   DEVLINK_PARAM_GENERIC_ID_ENABLE_ROCE,
1430					   value);
1431
1432	return 0;
1433}
1434
1435void ice_devlink_unregister_params(struct ice_pf *pf)
1436{
1437	devlink_params_unregister(priv_to_devlink(pf), ice_devlink_params,
1438				  ARRAY_SIZE(ice_devlink_params));
1439}
1440
1441/**
1442 * ice_devlink_set_port_split_options - Set port split options
1443 * @pf: the PF to set port split options
1444 * @attrs: devlink attributes
1445 *
1446 * Sets devlink port split options based on available FW port options
1447 */
1448static void
1449ice_devlink_set_port_split_options(struct ice_pf *pf,
1450				   struct devlink_port_attrs *attrs)
1451{
1452	struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
1453	u8 i, active_idx, pending_idx, option_count = ICE_AQC_PORT_OPT_MAX;
1454	bool active_valid, pending_valid;
1455	int status;
1456
1457	status = ice_aq_get_port_options(&pf->hw, options, &option_count,
1458					 0, true, &active_idx, &active_valid,
1459					 &pending_idx, &pending_valid);
1460	if (status) {
1461		dev_dbg(ice_pf_to_dev(pf), "Couldn't read port split options, err = %d\n",
1462			status);
1463		return;
1464	}
1465
1466	/* find the biggest available port split count */
1467	for (i = 0; i < option_count; i++)
1468		attrs->lanes = max_t(int, attrs->lanes, options[i].pmd);
1469
1470	attrs->splittable = attrs->lanes ? 1 : 0;
1471	ice_active_port_option = active_idx;
1472}
1473
1474/**
1475 * ice_devlink_create_pf_port - Create a devlink port for this PF
1476 * @pf: the PF to create a devlink port for
1477 *
1478 * Create and register a devlink_port for this PF.
1479 *
1480 * Return: zero on success or an error code on failure.
1481 */
1482int ice_devlink_create_pf_port(struct ice_pf *pf)
1483{
1484	struct devlink_port_attrs attrs = {};
1485	struct devlink_port *devlink_port;
1486	struct devlink *devlink;
1487	struct ice_vsi *vsi;
1488	struct device *dev;
1489	int err;
1490
1491	dev = ice_pf_to_dev(pf);
1492
1493	devlink_port = &pf->devlink_port;
1494
1495	vsi = ice_get_main_vsi(pf);
1496	if (!vsi)
1497		return -EIO;
1498
1499	attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
1500	attrs.phys.port_number = pf->hw.bus.func;
1501
1502	/* As FW supports only port split options for whole device,
1503	 * set port split options only for first PF.
1504	 */
1505	if (pf->hw.pf_id == 0)
1506		ice_devlink_set_port_split_options(pf, &attrs);
1507
1508	ice_devlink_set_switch_id(pf, &attrs.switch_id);
1509
1510	devlink_port_attrs_set(devlink_port, &attrs);
1511	devlink = priv_to_devlink(pf);
1512
1513	err = devlink_port_register(devlink, devlink_port, vsi->idx);
1514	if (err) {
1515		dev_err(dev, "Failed to create devlink port for PF %d, error %d\n",
1516			pf->hw.pf_id, err);
1517		return err;
1518	}
1519
1520	return 0;
1521}
1522
1523/**
1524 * ice_devlink_destroy_pf_port - Destroy the devlink_port for this PF
1525 * @pf: the PF to cleanup
1526 *
1527 * Unregisters the devlink_port structure associated with this PF.
1528 */
1529void ice_devlink_destroy_pf_port(struct ice_pf *pf)
1530{
1531	devlink_port_unregister(&pf->devlink_port);
1532}
1533
1534/**
1535 * ice_devlink_create_vf_port - Create a devlink port for this VF
1536 * @vf: the VF to create a port for
1537 *
1538 * Create and register a devlink_port for this VF.
1539 *
1540 * Return: zero on success or an error code on failure.
1541 */
1542int ice_devlink_create_vf_port(struct ice_vf *vf)
1543{
1544	struct devlink_port_attrs attrs = {};
1545	struct devlink_port *devlink_port;
1546	struct devlink *devlink;
1547	struct ice_vsi *vsi;
1548	struct device *dev;
1549	struct ice_pf *pf;
1550	int err;
1551
1552	pf = vf->pf;
1553	dev = ice_pf_to_dev(pf);
1554	devlink_port = &vf->devlink_port;
1555
1556	vsi = ice_get_vf_vsi(vf);
1557	if (!vsi)
1558		return -EINVAL;
1559
1560	attrs.flavour = DEVLINK_PORT_FLAVOUR_PCI_VF;
1561	attrs.pci_vf.pf = pf->hw.bus.func;
1562	attrs.pci_vf.vf = vf->vf_id;
1563
1564	ice_devlink_set_switch_id(pf, &attrs.switch_id);
1565
1566	devlink_port_attrs_set(devlink_port, &attrs);
1567	devlink = priv_to_devlink(pf);
1568
1569	err = devlink_port_register(devlink, devlink_port, vsi->idx);
1570	if (err) {
1571		dev_err(dev, "Failed to create devlink port for VF %d, error %d\n",
1572			vf->vf_id, err);
1573		return err;
1574	}
1575
1576	return 0;
1577}
1578
1579/**
1580 * ice_devlink_destroy_vf_port - Destroy the devlink_port for this VF
1581 * @vf: the VF to cleanup
1582 *
1583 * Unregisters the devlink_port structure associated with this VF.
1584 */
1585void ice_devlink_destroy_vf_port(struct ice_vf *vf)
1586{
1587	devl_rate_leaf_destroy(&vf->devlink_port);
1588	devlink_port_unregister(&vf->devlink_port);
1589}
1590
1591#define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1592
1593static const struct devlink_region_ops ice_nvm_region_ops;
1594static const struct devlink_region_ops ice_sram_region_ops;
1595
1596/**
1597 * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1598 * @devlink: the devlink instance
1599 * @ops: the devlink region to snapshot
1600 * @extack: extended ACK response structure
1601 * @data: on exit points to snapshot data buffer
1602 *
1603 * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1604 * the nvm-flash or shadow-ram region.
1605 *
1606 * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1607 * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1608 * interface.
1609 *
1610 * @returns zero on success, and updates the data pointer. Returns a non-zero
1611 * error code on failure.
1612 */
1613static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1614				    const struct devlink_region_ops *ops,
1615				    struct netlink_ext_ack *extack, u8 **data)
1616{
1617	struct ice_pf *pf = devlink_priv(devlink);
1618	struct device *dev = ice_pf_to_dev(pf);
1619	struct ice_hw *hw = &pf->hw;
1620	bool read_shadow_ram;
1621	u8 *nvm_data, *tmp, i;
1622	u32 nvm_size, left;
1623	s8 num_blks;
1624	int status;
1625
1626	if (ops == &ice_nvm_region_ops) {
1627		read_shadow_ram = false;
1628		nvm_size = hw->flash.flash_size;
1629	} else if (ops == &ice_sram_region_ops) {
1630		read_shadow_ram = true;
1631		nvm_size = hw->flash.sr_words * 2u;
1632	} else {
1633		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1634		return -EOPNOTSUPP;
1635	}
1636
1637	nvm_data = vzalloc(nvm_size);
1638	if (!nvm_data)
1639		return -ENOMEM;
1640
1641	num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1642	tmp = nvm_data;
1643	left = nvm_size;
1644
1645	/* Some systems take longer to read the NVM than others which causes the
1646	 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1647	 * this by breaking the reads of the NVM into smaller chunks that will
1648	 * probably not take as long. This has some overhead since we are
1649	 * increasing the number of AQ commands, but it should always work
1650	 */
1651	for (i = 0; i < num_blks; i++) {
1652		u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1653
1654		status = ice_acquire_nvm(hw, ICE_RES_READ);
1655		if (status) {
1656			dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1657				status, hw->adminq.sq_last_status);
1658			NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1659			vfree(nvm_data);
1660			return -EIO;
1661		}
1662
1663		status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1664					   &read_sz, tmp, read_shadow_ram);
1665		if (status) {
1666			dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1667				read_sz, status, hw->adminq.sq_last_status);
1668			NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1669			ice_release_nvm(hw);
1670			vfree(nvm_data);
1671			return -EIO;
1672		}
1673		ice_release_nvm(hw);
1674
1675		tmp += read_sz;
1676		left -= read_sz;
1677	}
1678
1679	*data = nvm_data;
1680
1681	return 0;
1682}
1683
1684/**
1685 * ice_devlink_nvm_read - Read a portion of NVM flash contents
1686 * @devlink: the devlink instance
1687 * @ops: the devlink region to snapshot
1688 * @extack: extended ACK response structure
1689 * @offset: the offset to start at
1690 * @size: the amount to read
1691 * @data: the data buffer to read into
1692 *
1693 * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1694 * read a section of the NVM contents.
1695 *
1696 * It reads from either the nvm-flash or shadow-ram region contents.
1697 *
1698 * @returns zero on success, and updates the data pointer. Returns a non-zero
1699 * error code on failure.
1700 */
1701static int ice_devlink_nvm_read(struct devlink *devlink,
1702				const struct devlink_region_ops *ops,
1703				struct netlink_ext_ack *extack,
1704				u64 offset, u32 size, u8 *data)
1705{
1706	struct ice_pf *pf = devlink_priv(devlink);
1707	struct device *dev = ice_pf_to_dev(pf);
1708	struct ice_hw *hw = &pf->hw;
1709	bool read_shadow_ram;
1710	u64 nvm_size;
1711	int status;
1712
1713	if (ops == &ice_nvm_region_ops) {
1714		read_shadow_ram = false;
1715		nvm_size = hw->flash.flash_size;
1716	} else if (ops == &ice_sram_region_ops) {
1717		read_shadow_ram = true;
1718		nvm_size = hw->flash.sr_words * 2u;
1719	} else {
1720		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1721		return -EOPNOTSUPP;
1722	}
1723
1724	if (offset + size >= nvm_size) {
1725		NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1726		return -ERANGE;
1727	}
1728
1729	status = ice_acquire_nvm(hw, ICE_RES_READ);
1730	if (status) {
1731		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1732			status, hw->adminq.sq_last_status);
1733		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1734		return -EIO;
1735	}
1736
1737	status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1738				   read_shadow_ram);
1739	if (status) {
1740		dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1741			size, status, hw->adminq.sq_last_status);
1742		NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1743		ice_release_nvm(hw);
1744		return -EIO;
1745	}
1746	ice_release_nvm(hw);
1747
1748	return 0;
1749}
1750
1751/**
1752 * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1753 * @devlink: the devlink instance
1754 * @ops: the devlink region being snapshotted
1755 * @extack: extended ACK response structure
1756 * @data: on exit points to snapshot data buffer
1757 *
1758 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1759 * the device-caps devlink region. It captures a snapshot of the device
1760 * capabilities reported by firmware.
1761 *
1762 * @returns zero on success, and updates the data pointer. Returns a non-zero
1763 * error code on failure.
1764 */
1765static int
1766ice_devlink_devcaps_snapshot(struct devlink *devlink,
1767			     const struct devlink_region_ops *ops,
1768			     struct netlink_ext_ack *extack, u8 **data)
1769{
1770	struct ice_pf *pf = devlink_priv(devlink);
1771	struct device *dev = ice_pf_to_dev(pf);
1772	struct ice_hw *hw = &pf->hw;
1773	void *devcaps;
1774	int status;
1775
1776	devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1777	if (!devcaps)
1778		return -ENOMEM;
1779
1780	status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1781				  ice_aqc_opc_list_dev_caps, NULL);
1782	if (status) {
1783		dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
1784			status, hw->adminq.sq_last_status);
1785		NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
1786		vfree(devcaps);
1787		return status;
1788	}
1789
1790	*data = (u8 *)devcaps;
1791
1792	return 0;
1793}
1794
1795static const struct devlink_region_ops ice_nvm_region_ops = {
1796	.name = "nvm-flash",
1797	.destructor = vfree,
1798	.snapshot = ice_devlink_nvm_snapshot,
1799	.read = ice_devlink_nvm_read,
1800};
1801
1802static const struct devlink_region_ops ice_sram_region_ops = {
1803	.name = "shadow-ram",
1804	.destructor = vfree,
1805	.snapshot = ice_devlink_nvm_snapshot,
1806	.read = ice_devlink_nvm_read,
1807};
1808
1809static const struct devlink_region_ops ice_devcaps_region_ops = {
1810	.name = "device-caps",
1811	.destructor = vfree,
1812	.snapshot = ice_devlink_devcaps_snapshot,
1813};
1814
1815/**
1816 * ice_devlink_init_regions - Initialize devlink regions
1817 * @pf: the PF device structure
1818 *
1819 * Create devlink regions used to enable access to dump the contents of the
1820 * flash memory on the device.
1821 */
1822void ice_devlink_init_regions(struct ice_pf *pf)
1823{
1824	struct devlink *devlink = priv_to_devlink(pf);
1825	struct device *dev = ice_pf_to_dev(pf);
1826	u64 nvm_size, sram_size;
1827
1828	nvm_size = pf->hw.flash.flash_size;
1829	pf->nvm_region = devlink_region_create(devlink, &ice_nvm_region_ops, 1,
1830					       nvm_size);
1831	if (IS_ERR(pf->nvm_region)) {
1832		dev_err(dev, "failed to create NVM devlink region, err %ld\n",
1833			PTR_ERR(pf->nvm_region));
1834		pf->nvm_region = NULL;
1835	}
1836
1837	sram_size = pf->hw.flash.sr_words * 2u;
1838	pf->sram_region = devlink_region_create(devlink, &ice_sram_region_ops,
1839						1, sram_size);
1840	if (IS_ERR(pf->sram_region)) {
1841		dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
1842			PTR_ERR(pf->sram_region));
1843		pf->sram_region = NULL;
1844	}
1845
1846	pf->devcaps_region = devlink_region_create(devlink,
1847						   &ice_devcaps_region_ops, 10,
1848						   ICE_AQ_MAX_BUF_LEN);
1849	if (IS_ERR(pf->devcaps_region)) {
1850		dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
1851			PTR_ERR(pf->devcaps_region));
1852		pf->devcaps_region = NULL;
1853	}
1854}
1855
1856/**
1857 * ice_devlink_destroy_regions - Destroy devlink regions
1858 * @pf: the PF device structure
1859 *
1860 * Remove previously created regions for this PF.
1861 */
1862void ice_devlink_destroy_regions(struct ice_pf *pf)
1863{
1864	if (pf->nvm_region)
1865		devlink_region_destroy(pf->nvm_region);
1866
1867	if (pf->sram_region)
1868		devlink_region_destroy(pf->sram_region);
1869
1870	if (pf->devcaps_region)
1871		devlink_region_destroy(pf->devcaps_region);
1872}