Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018-2023, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_sched.h"
   6#include "ice_adminq_cmd.h"
   7#include "ice_flow.h"
   8#include "ice_ptp_hw.h"
   9
  10#define ICE_PF_RESET_WAIT_COUNT	300
  11#define ICE_MAX_NETLIST_SIZE	10
  12
  13static const char * const ice_link_mode_str_low[] = {
  14	[0] = "100BASE_TX",
  15	[1] = "100M_SGMII",
  16	[2] = "1000BASE_T",
  17	[3] = "1000BASE_SX",
  18	[4] = "1000BASE_LX",
  19	[5] = "1000BASE_KX",
  20	[6] = "1G_SGMII",
  21	[7] = "2500BASE_T",
  22	[8] = "2500BASE_X",
  23	[9] = "2500BASE_KX",
  24	[10] = "5GBASE_T",
  25	[11] = "5GBASE_KR",
  26	[12] = "10GBASE_T",
  27	[13] = "10G_SFI_DA",
  28	[14] = "10GBASE_SR",
  29	[15] = "10GBASE_LR",
  30	[16] = "10GBASE_KR_CR1",
  31	[17] = "10G_SFI_AOC_ACC",
  32	[18] = "10G_SFI_C2C",
  33	[19] = "25GBASE_T",
  34	[20] = "25GBASE_CR",
  35	[21] = "25GBASE_CR_S",
  36	[22] = "25GBASE_CR1",
  37	[23] = "25GBASE_SR",
  38	[24] = "25GBASE_LR",
  39	[25] = "25GBASE_KR",
  40	[26] = "25GBASE_KR_S",
  41	[27] = "25GBASE_KR1",
  42	[28] = "25G_AUI_AOC_ACC",
  43	[29] = "25G_AUI_C2C",
  44	[30] = "40GBASE_CR4",
  45	[31] = "40GBASE_SR4",
  46	[32] = "40GBASE_LR4",
  47	[33] = "40GBASE_KR4",
  48	[34] = "40G_XLAUI_AOC_ACC",
  49	[35] = "40G_XLAUI",
  50	[36] = "50GBASE_CR2",
  51	[37] = "50GBASE_SR2",
  52	[38] = "50GBASE_LR2",
  53	[39] = "50GBASE_KR2",
  54	[40] = "50G_LAUI2_AOC_ACC",
  55	[41] = "50G_LAUI2",
  56	[42] = "50G_AUI2_AOC_ACC",
  57	[43] = "50G_AUI2",
  58	[44] = "50GBASE_CP",
  59	[45] = "50GBASE_SR",
  60	[46] = "50GBASE_FR",
  61	[47] = "50GBASE_LR",
  62	[48] = "50GBASE_KR_PAM4",
  63	[49] = "50G_AUI1_AOC_ACC",
  64	[50] = "50G_AUI1",
  65	[51] = "100GBASE_CR4",
  66	[52] = "100GBASE_SR4",
  67	[53] = "100GBASE_LR4",
  68	[54] = "100GBASE_KR4",
  69	[55] = "100G_CAUI4_AOC_ACC",
  70	[56] = "100G_CAUI4",
  71	[57] = "100G_AUI4_AOC_ACC",
  72	[58] = "100G_AUI4",
  73	[59] = "100GBASE_CR_PAM4",
  74	[60] = "100GBASE_KR_PAM4",
  75	[61] = "100GBASE_CP2",
  76	[62] = "100GBASE_SR2",
  77	[63] = "100GBASE_DR",
  78};
  79
  80static const char * const ice_link_mode_str_high[] = {
  81	[0] = "100GBASE_KR2_PAM4",
  82	[1] = "100G_CAUI2_AOC_ACC",
  83	[2] = "100G_CAUI2",
  84	[3] = "100G_AUI2_AOC_ACC",
  85	[4] = "100G_AUI2",
  86};
  87
  88/**
  89 * ice_dump_phy_type - helper function to dump phy_type
  90 * @hw: pointer to the HW structure
  91 * @low: 64 bit value for phy_type_low
  92 * @high: 64 bit value for phy_type_high
  93 * @prefix: prefix string to differentiate multiple dumps
  94 */
  95static void
  96ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
  97{
  98	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
  99
 100	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
 101		if (low & BIT_ULL(i))
 102			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
 103				  prefix, i, ice_link_mode_str_low[i]);
 104	}
 105
 106	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
 107
 108	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
 109		if (high & BIT_ULL(i))
 110			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
 111				  prefix, i, ice_link_mode_str_high[i]);
 112	}
 113}
 114
 115/**
 116 * ice_set_mac_type - Sets MAC type
 117 * @hw: pointer to the HW structure
 118 *
 119 * This function sets the MAC type of the adapter based on the
 120 * vendor ID and device ID stored in the HW structure.
 121 */
 122static int ice_set_mac_type(struct ice_hw *hw)
 123{
 124	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
 125		return -ENODEV;
 126
 127	switch (hw->device_id) {
 128	case ICE_DEV_ID_E810C_BACKPLANE:
 129	case ICE_DEV_ID_E810C_QSFP:
 130	case ICE_DEV_ID_E810C_SFP:
 131	case ICE_DEV_ID_E810_XXV_BACKPLANE:
 132	case ICE_DEV_ID_E810_XXV_QSFP:
 133	case ICE_DEV_ID_E810_XXV_SFP:
 134		hw->mac_type = ICE_MAC_E810;
 135		break;
 136	case ICE_DEV_ID_E823C_10G_BASE_T:
 137	case ICE_DEV_ID_E823C_BACKPLANE:
 138	case ICE_DEV_ID_E823C_QSFP:
 139	case ICE_DEV_ID_E823C_SFP:
 140	case ICE_DEV_ID_E823C_SGMII:
 141	case ICE_DEV_ID_E822C_10G_BASE_T:
 142	case ICE_DEV_ID_E822C_BACKPLANE:
 143	case ICE_DEV_ID_E822C_QSFP:
 144	case ICE_DEV_ID_E822C_SFP:
 145	case ICE_DEV_ID_E822C_SGMII:
 146	case ICE_DEV_ID_E822L_10G_BASE_T:
 147	case ICE_DEV_ID_E822L_BACKPLANE:
 148	case ICE_DEV_ID_E822L_SFP:
 149	case ICE_DEV_ID_E822L_SGMII:
 150	case ICE_DEV_ID_E823L_10G_BASE_T:
 151	case ICE_DEV_ID_E823L_1GBE:
 152	case ICE_DEV_ID_E823L_BACKPLANE:
 153	case ICE_DEV_ID_E823L_QSFP:
 154	case ICE_DEV_ID_E823L_SFP:
 155		hw->mac_type = ICE_MAC_GENERIC;
 156		break;
 157	case ICE_DEV_ID_E825C_BACKPLANE:
 158	case ICE_DEV_ID_E825C_QSFP:
 159	case ICE_DEV_ID_E825C_SFP:
 160	case ICE_DEV_ID_E825C_SGMII:
 161		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
 162		break;
 163	case ICE_DEV_ID_E830CC_BACKPLANE:
 164	case ICE_DEV_ID_E830CC_QSFP56:
 165	case ICE_DEV_ID_E830CC_SFP:
 166	case ICE_DEV_ID_E830CC_SFP_DD:
 167	case ICE_DEV_ID_E830C_BACKPLANE:
 168	case ICE_DEV_ID_E830_XXV_BACKPLANE:
 169	case ICE_DEV_ID_E830C_QSFP:
 170	case ICE_DEV_ID_E830_XXV_QSFP:
 171	case ICE_DEV_ID_E830C_SFP:
 172	case ICE_DEV_ID_E830_XXV_SFP:
 173		hw->mac_type = ICE_MAC_E830;
 174		break;
 175	default:
 176		hw->mac_type = ICE_MAC_UNKNOWN;
 177		break;
 178	}
 179
 180	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
 181	return 0;
 182}
 183
 184/**
 185 * ice_is_generic_mac - check if device's mac_type is generic
 186 * @hw: pointer to the hardware structure
 187 *
 188 * Return: true if mac_type is generic (with SBQ support), false if not
 189 */
 190bool ice_is_generic_mac(struct ice_hw *hw)
 191{
 192	return (hw->mac_type == ICE_MAC_GENERIC ||
 193		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
 194}
 195
 196/**
 197 * ice_is_e810
 198 * @hw: pointer to the hardware structure
 199 *
 200 * returns true if the device is E810 based, false if not.
 201 */
 202bool ice_is_e810(struct ice_hw *hw)
 203{
 204	return hw->mac_type == ICE_MAC_E810;
 205}
 206
 207/**
 208 * ice_is_e810t
 209 * @hw: pointer to the hardware structure
 210 *
 211 * returns true if the device is E810T based, false if not.
 212 */
 213bool ice_is_e810t(struct ice_hw *hw)
 214{
 215	switch (hw->device_id) {
 216	case ICE_DEV_ID_E810C_SFP:
 217		switch (hw->subsystem_device_id) {
 218		case ICE_SUBDEV_ID_E810T:
 219		case ICE_SUBDEV_ID_E810T2:
 220		case ICE_SUBDEV_ID_E810T3:
 221		case ICE_SUBDEV_ID_E810T4:
 222		case ICE_SUBDEV_ID_E810T6:
 223		case ICE_SUBDEV_ID_E810T7:
 224			return true;
 225		}
 226		break;
 227	case ICE_DEV_ID_E810C_QSFP:
 228		switch (hw->subsystem_device_id) {
 229		case ICE_SUBDEV_ID_E810T2:
 230		case ICE_SUBDEV_ID_E810T3:
 231		case ICE_SUBDEV_ID_E810T5:
 232			return true;
 233		}
 234		break;
 235	default:
 236		break;
 237	}
 238
 239	return false;
 240}
 241
 242/**
 243 * ice_is_e822 - Check if a device is E822 family device
 244 * @hw: pointer to the hardware structure
 245 *
 246 * Return: true if the device is E822 based, false if not.
 247 */
 248bool ice_is_e822(struct ice_hw *hw)
 249{
 250	switch (hw->device_id) {
 251	case ICE_DEV_ID_E822C_BACKPLANE:
 252	case ICE_DEV_ID_E822C_QSFP:
 253	case ICE_DEV_ID_E822C_SFP:
 254	case ICE_DEV_ID_E822C_10G_BASE_T:
 255	case ICE_DEV_ID_E822C_SGMII:
 256	case ICE_DEV_ID_E822L_BACKPLANE:
 257	case ICE_DEV_ID_E822L_SFP:
 258	case ICE_DEV_ID_E822L_10G_BASE_T:
 259	case ICE_DEV_ID_E822L_SGMII:
 260		return true;
 261	default:
 262		return false;
 263	}
 264}
 265
 266/**
 267 * ice_is_e823
 268 * @hw: pointer to the hardware structure
 269 *
 270 * returns true if the device is E823-L or E823-C based, false if not.
 271 */
 272bool ice_is_e823(struct ice_hw *hw)
 273{
 274	switch (hw->device_id) {
 275	case ICE_DEV_ID_E823L_BACKPLANE:
 276	case ICE_DEV_ID_E823L_SFP:
 277	case ICE_DEV_ID_E823L_10G_BASE_T:
 278	case ICE_DEV_ID_E823L_1GBE:
 279	case ICE_DEV_ID_E823L_QSFP:
 280	case ICE_DEV_ID_E823C_BACKPLANE:
 281	case ICE_DEV_ID_E823C_QSFP:
 282	case ICE_DEV_ID_E823C_SFP:
 283	case ICE_DEV_ID_E823C_10G_BASE_T:
 284	case ICE_DEV_ID_E823C_SGMII:
 285		return true;
 286	default:
 287		return false;
 288	}
 289}
 290
 291/**
 292 * ice_is_e825c - Check if a device is E825C family device
 293 * @hw: pointer to the hardware structure
 294 *
 295 * Return: true if the device is E825-C based, false if not.
 296 */
 297bool ice_is_e825c(struct ice_hw *hw)
 298{
 299	switch (hw->device_id) {
 300	case ICE_DEV_ID_E825C_BACKPLANE:
 301	case ICE_DEV_ID_E825C_QSFP:
 302	case ICE_DEV_ID_E825C_SFP:
 303	case ICE_DEV_ID_E825C_SGMII:
 304		return true;
 305	default:
 306		return false;
 307	}
 308}
 309
 310/**
 311 * ice_clear_pf_cfg - Clear PF configuration
 312 * @hw: pointer to the hardware structure
 313 *
 314 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
 315 * configuration, flow director filters, etc.).
 316 */
 317int ice_clear_pf_cfg(struct ice_hw *hw)
 318{
 319	struct ice_aq_desc desc;
 320
 321	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
 322
 323	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
 324}
 325
 326/**
 327 * ice_aq_manage_mac_read - manage MAC address read command
 328 * @hw: pointer to the HW struct
 329 * @buf: a virtual buffer to hold the manage MAC read response
 330 * @buf_size: Size of the virtual buffer
 331 * @cd: pointer to command details structure or NULL
 332 *
 333 * This function is used to return per PF station MAC address (0x0107).
 334 * NOTE: Upon successful completion of this command, MAC address information
 335 * is returned in user specified buffer. Please interpret user specified
 336 * buffer as "manage_mac_read" response.
 337 * Response such as various MAC addresses are stored in HW struct (port.mac)
 338 * ice_discover_dev_caps is expected to be called before this function is
 339 * called.
 340 */
 341static int
 342ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
 343		       struct ice_sq_cd *cd)
 344{
 345	struct ice_aqc_manage_mac_read_resp *resp;
 346	struct ice_aqc_manage_mac_read *cmd;
 347	struct ice_aq_desc desc;
 348	int status;
 349	u16 flags;
 350	u8 i;
 351
 352	cmd = &desc.params.mac_read;
 353
 354	if (buf_size < sizeof(*resp))
 355		return -EINVAL;
 356
 357	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
 358
 359	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 360	if (status)
 361		return status;
 362
 363	resp = buf;
 364	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
 365
 366	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
 367		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
 368		return -EIO;
 369	}
 370
 371	/* A single port can report up to two (LAN and WoL) addresses */
 372	for (i = 0; i < cmd->num_addr; i++)
 373		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 374			ether_addr_copy(hw->port_info->mac.lan_addr,
 375					resp[i].mac_addr);
 376			ether_addr_copy(hw->port_info->mac.perm_addr,
 377					resp[i].mac_addr);
 378			break;
 379		}
 380
 381	return 0;
 382}
 383
 384/**
 385 * ice_aq_get_phy_caps - returns PHY capabilities
 386 * @pi: port information structure
 387 * @qual_mods: report qualified modules
 388 * @report_mode: report mode capabilities
 389 * @pcaps: structure for PHY capabilities to be filled
 390 * @cd: pointer to command details structure or NULL
 391 *
 392 * Returns the various PHY capabilities supported on the Port (0x0600)
 393 */
 394int
 395ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 396		    struct ice_aqc_get_phy_caps_data *pcaps,
 397		    struct ice_sq_cd *cd)
 398{
 399	struct ice_aqc_get_phy_caps *cmd;
 400	u16 pcaps_size = sizeof(*pcaps);
 401	struct ice_aq_desc desc;
 402	const char *prefix;
 403	struct ice_hw *hw;
 404	int status;
 405
 406	cmd = &desc.params.get_phy;
 407
 408	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 409		return -EINVAL;
 410	hw = pi->hw;
 411
 412	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
 413	    !ice_fw_supports_report_dflt_cfg(hw))
 414		return -EINVAL;
 415
 416	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 417
 418	if (qual_mods)
 419		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 420
 421	cmd->param0 |= cpu_to_le16(report_mode);
 422	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
 423
 424	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
 425
 426	switch (report_mode) {
 427	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
 428		prefix = "phy_caps_media";
 429		break;
 430	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
 431		prefix = "phy_caps_no_media";
 432		break;
 433	case ICE_AQC_REPORT_ACTIVE_CFG:
 434		prefix = "phy_caps_active";
 435		break;
 436	case ICE_AQC_REPORT_DFLT_CFG:
 437		prefix = "phy_caps_default";
 438		break;
 439	default:
 440		prefix = "phy_caps_invalid";
 441	}
 442
 443	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
 444			  le64_to_cpu(pcaps->phy_type_high), prefix);
 445
 446	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
 447		  prefix, report_mode);
 448	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
 449	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
 450		  pcaps->low_power_ctrl_an);
 451	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
 452		  pcaps->eee_cap);
 453	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
 454		  pcaps->eeer_value);
 455	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
 456		  pcaps->link_fec_options);
 457	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
 458		  prefix, pcaps->module_compliance_enforcement);
 459	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
 460		  prefix, pcaps->extended_compliance_code);
 461	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
 462		  pcaps->module_type[0]);
 463	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
 464		  pcaps->module_type[1]);
 465	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
 466		  pcaps->module_type[2]);
 467
 468	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
 469		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 470		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
 471		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
 472		       sizeof(pi->phy.link_info.module_type));
 473	}
 474
 475	return status;
 476}
 477
 478/**
 479 * ice_aq_get_link_topo_handle - get link topology node return status
 480 * @pi: port information structure
 481 * @node_type: requested node type
 482 * @cd: pointer to command details structure or NULL
 483 *
 484 * Get link topology node return status for specified node type (0x06E0)
 485 *
 486 * Node type cage can be used to determine if cage is present. If AQC
 487 * returns error (ENOENT), then no cage present. If no cage present, then
 488 * connection type is backplane or BASE-T.
 489 */
 490static int
 491ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
 492			    struct ice_sq_cd *cd)
 493{
 494	struct ice_aqc_get_link_topo *cmd;
 495	struct ice_aq_desc desc;
 496
 497	cmd = &desc.params.get_link_topo;
 498
 499	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
 500
 501	cmd->addr.topo_params.node_type_ctx =
 502		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
 503		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
 504
 505	/* set node type */
 506	cmd->addr.topo_params.node_type_ctx |=
 507		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
 508
 509	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
 510}
 511
 512/**
 513 * ice_aq_get_netlist_node
 514 * @hw: pointer to the hw struct
 515 * @cmd: get_link_topo AQ structure
 516 * @node_part_number: output node part number if node found
 517 * @node_handle: output node handle parameter if node found
 518 *
 519 * Get netlist node handle.
 520 */
 521int
 522ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
 523			u8 *node_part_number, u16 *node_handle)
 524{
 525	struct ice_aq_desc desc;
 526
 527	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
 528	desc.params.get_link_topo = *cmd;
 529
 530	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
 531		return -EINTR;
 532
 533	if (node_handle)
 534		*node_handle =
 535			le16_to_cpu(desc.params.get_link_topo.addr.handle);
 536	if (node_part_number)
 537		*node_part_number = desc.params.get_link_topo.node_part_num;
 538
 539	return 0;
 540}
 541
 542/**
 543 * ice_find_netlist_node
 544 * @hw: pointer to the hw struct
 545 * @node_type: type of netlist node to look for
 546 * @ctx: context of the search
 547 * @node_part_number: node part number to look for
 548 * @node_handle: output parameter if node found - optional
 549 *
 550 * Scan the netlist for a node handle of the given node type and part number.
 551 *
 552 * If node_handle is non-NULL it will be modified on function exit. It is only
 553 * valid if the function returns zero, and should be ignored on any non-zero
 554 * return value.
 555 *
 556 * Return:
 557 * * 0 if the node is found,
 558 * * -ENOENT if no handle was found,
 559 * * negative error code on failure to access the AQ.
 560 */
 561static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
 562				 u8 node_part_number, u16 *node_handle)
 563{
 564	u8 idx;
 565
 566	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
 567		struct ice_aqc_get_link_topo cmd = {};
 568		u8 rec_node_part_number;
 569		int status;
 570
 571		cmd.addr.topo_params.node_type_ctx =
 572			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
 573			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
 574		cmd.addr.topo_params.index = idx;
 575
 576		status = ice_aq_get_netlist_node(hw, &cmd,
 577						 &rec_node_part_number,
 578						 node_handle);
 579		if (status)
 580			return status;
 581
 582		if (rec_node_part_number == node_part_number)
 583			return 0;
 584	}
 585
 586	return -ENOENT;
 587}
 588
 589/**
 590 * ice_is_media_cage_present
 591 * @pi: port information structure
 592 *
 593 * Returns true if media cage is present, else false. If no cage, then
 594 * media type is backplane or BASE-T.
 595 */
 596static bool ice_is_media_cage_present(struct ice_port_info *pi)
 597{
 598	/* Node type cage can be used to determine if cage is present. If AQC
 599	 * returns error (ENOENT), then no cage present. If no cage present then
 600	 * connection type is backplane or BASE-T.
 601	 */
 602	return !ice_aq_get_link_topo_handle(pi,
 603					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
 604					    NULL);
 605}
 606
 607/**
 608 * ice_get_media_type - Gets media type
 609 * @pi: port information structure
 610 */
 611static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 612{
 613	struct ice_link_status *hw_link_info;
 614
 615	if (!pi)
 616		return ICE_MEDIA_UNKNOWN;
 617
 618	hw_link_info = &pi->phy.link_info;
 619	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
 620		/* If more than one media type is selected, report unknown */
 621		return ICE_MEDIA_UNKNOWN;
 622
 623	if (hw_link_info->phy_type_low) {
 624		/* 1G SGMII is a special case where some DA cable PHYs
 625		 * may show this as an option when it really shouldn't
 626		 * be since SGMII is meant to be between a MAC and a PHY
 627		 * in a backplane. Try to detect this case and handle it
 628		 */
 629		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
 630		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 631		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
 632		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 633		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
 634			return ICE_MEDIA_DA;
 635
 636		switch (hw_link_info->phy_type_low) {
 637		case ICE_PHY_TYPE_LOW_1000BASE_SX:
 638		case ICE_PHY_TYPE_LOW_1000BASE_LX:
 639		case ICE_PHY_TYPE_LOW_10GBASE_SR:
 640		case ICE_PHY_TYPE_LOW_10GBASE_LR:
 641		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 642		case ICE_PHY_TYPE_LOW_25GBASE_SR:
 643		case ICE_PHY_TYPE_LOW_25GBASE_LR:
 644		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 645		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 646		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
 647		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
 648		case ICE_PHY_TYPE_LOW_50GBASE_SR:
 649		case ICE_PHY_TYPE_LOW_50GBASE_FR:
 650		case ICE_PHY_TYPE_LOW_50GBASE_LR:
 651		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
 652		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
 653		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
 654		case ICE_PHY_TYPE_LOW_100GBASE_DR:
 655		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
 656		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
 657		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
 658		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
 659		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
 660		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
 661		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
 662		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
 663			return ICE_MEDIA_FIBER;
 664		case ICE_PHY_TYPE_LOW_100BASE_TX:
 665		case ICE_PHY_TYPE_LOW_1000BASE_T:
 666		case ICE_PHY_TYPE_LOW_2500BASE_T:
 667		case ICE_PHY_TYPE_LOW_5GBASE_T:
 668		case ICE_PHY_TYPE_LOW_10GBASE_T:
 669		case ICE_PHY_TYPE_LOW_25GBASE_T:
 670			return ICE_MEDIA_BASET;
 671		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 672		case ICE_PHY_TYPE_LOW_25GBASE_CR:
 673		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 674		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 675		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 676		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
 677		case ICE_PHY_TYPE_LOW_50GBASE_CP:
 678		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
 679		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
 680		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
 681			return ICE_MEDIA_DA;
 682		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 683		case ICE_PHY_TYPE_LOW_40G_XLAUI:
 684		case ICE_PHY_TYPE_LOW_50G_LAUI2:
 685		case ICE_PHY_TYPE_LOW_50G_AUI2:
 686		case ICE_PHY_TYPE_LOW_50G_AUI1:
 687		case ICE_PHY_TYPE_LOW_100G_AUI4:
 688		case ICE_PHY_TYPE_LOW_100G_CAUI4:
 689			if (ice_is_media_cage_present(pi))
 690				return ICE_MEDIA_DA;
 691			fallthrough;
 692		case ICE_PHY_TYPE_LOW_1000BASE_KX:
 693		case ICE_PHY_TYPE_LOW_2500BASE_KX:
 694		case ICE_PHY_TYPE_LOW_2500BASE_X:
 695		case ICE_PHY_TYPE_LOW_5GBASE_KR:
 696		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 697		case ICE_PHY_TYPE_LOW_25GBASE_KR:
 698		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 699		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 700		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 701		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
 702		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
 703		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
 704		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
 705			return ICE_MEDIA_BACKPLANE;
 706		}
 707	} else {
 708		switch (hw_link_info->phy_type_high) {
 709		case ICE_PHY_TYPE_HIGH_100G_AUI2:
 710		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
 711			if (ice_is_media_cage_present(pi))
 712				return ICE_MEDIA_DA;
 713			fallthrough;
 714		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
 715			return ICE_MEDIA_BACKPLANE;
 716		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
 717		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
 718			return ICE_MEDIA_FIBER;
 719		}
 720	}
 721	return ICE_MEDIA_UNKNOWN;
 722}
 723
 724/**
 725 * ice_get_link_status_datalen
 726 * @hw: pointer to the HW struct
 727 *
 728 * Returns datalength for the Get Link Status AQ command, which is bigger for
 729 * newer adapter families handled by ice driver.
 730 */
 731static u16 ice_get_link_status_datalen(struct ice_hw *hw)
 732{
 733	switch (hw->mac_type) {
 734	case ICE_MAC_E830:
 735		return ICE_AQC_LS_DATA_SIZE_V2;
 736	case ICE_MAC_E810:
 737	default:
 738		return ICE_AQC_LS_DATA_SIZE_V1;
 739	}
 740}
 741
 742/**
 743 * ice_aq_get_link_info
 744 * @pi: port information structure
 745 * @ena_lse: enable/disable LinkStatusEvent reporting
 746 * @link: pointer to link status structure - optional
 747 * @cd: pointer to command details structure or NULL
 748 *
 749 * Get Link Status (0x607). Returns the link status of the adapter.
 750 */
 751int
 752ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 753		     struct ice_link_status *link, struct ice_sq_cd *cd)
 754{
 755	struct ice_aqc_get_link_status_data link_data = { 0 };
 756	struct ice_aqc_get_link_status *resp;
 757	struct ice_link_status *li_old, *li;
 758	enum ice_media_type *hw_media_type;
 759	struct ice_fc_info *hw_fc_info;
 760	bool tx_pause, rx_pause;
 761	struct ice_aq_desc desc;
 762	struct ice_hw *hw;
 763	u16 cmd_flags;
 764	int status;
 765
 766	if (!pi)
 767		return -EINVAL;
 768	hw = pi->hw;
 769	li_old = &pi->phy.link_info_old;
 770	hw_media_type = &pi->phy.media_type;
 771	li = &pi->phy.link_info;
 772	hw_fc_info = &pi->fc;
 773
 774	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 775	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 776	resp = &desc.params.get_link_status;
 777	resp->cmd_flags = cpu_to_le16(cmd_flags);
 778	resp->lport_num = pi->lport;
 779
 780	status = ice_aq_send_cmd(hw, &desc, &link_data,
 781				 ice_get_link_status_datalen(hw), cd);
 782	if (status)
 783		return status;
 784
 785	/* save off old link status information */
 786	*li_old = *li;
 787
 788	/* update current link status information */
 789	li->link_speed = le16_to_cpu(link_data.link_speed);
 790	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 791	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
 792	*hw_media_type = ice_get_media_type(pi);
 793	li->link_info = link_data.link_info;
 794	li->link_cfg_err = link_data.link_cfg_err;
 795	li->an_info = link_data.an_info;
 796	li->ext_info = link_data.ext_info;
 797	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 798	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
 799	li->topo_media_conflict = link_data.topo_media_conflict;
 800	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
 801				      ICE_AQ_CFG_PACING_TYPE_M);
 802
 803	/* update fc info */
 804	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 805	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 806	if (tx_pause && rx_pause)
 807		hw_fc_info->current_mode = ICE_FC_FULL;
 808	else if (tx_pause)
 809		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 810	else if (rx_pause)
 811		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 812	else
 813		hw_fc_info->current_mode = ICE_FC_NONE;
 814
 815	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 816
 817	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
 818	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
 819	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
 820		  (unsigned long long)li->phy_type_low);
 821	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
 822		  (unsigned long long)li->phy_type_high);
 823	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
 824	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
 825	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
 826	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
 827	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
 828	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
 829	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
 830	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
 831		  li->max_frame_size);
 832	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
 833
 834	/* save link status information */
 835	if (link)
 836		*link = *li;
 837
 838	/* flag cleared so calling functions don't call AQ again */
 839	pi->phy.get_link_info = false;
 840
 841	return 0;
 842}
 843
 844/**
 845 * ice_fill_tx_timer_and_fc_thresh
 846 * @hw: pointer to the HW struct
 847 * @cmd: pointer to MAC cfg structure
 848 *
 849 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
 850 * descriptor
 851 */
 852static void
 853ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
 854				struct ice_aqc_set_mac_cfg *cmd)
 855{
 856	u32 val, fc_thres_m;
 
 857
 858	/* We read back the transmit timer and FC threshold value of
 859	 * LFC. Thus, we will use index =
 860	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
 861	 *
 862	 * Also, because we are operating on transmit timer and FC
 863	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
 864	 */
 865#define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
 866#define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
 867
 868	if (hw->mac_type == ICE_MAC_E830) {
 869		/* Retrieve the transmit timer */
 870		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
 871		cmd->tx_tmr_value =
 872			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
 873
 874		/* Retrieve the fc threshold */
 875		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
 876		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
 877	} else {
 878		/* Retrieve the transmit timer */
 879		val = rd32(hw,
 880			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
 881		cmd->tx_tmr_value =
 882			le16_encode_bits(val,
 883					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
 884
 885		/* Retrieve the fc threshold */
 886		val = rd32(hw,
 887			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
 888		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
 889	}
 890	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
 891}
 892
 893/**
 894 * ice_aq_set_mac_cfg
 895 * @hw: pointer to the HW struct
 896 * @max_frame_size: Maximum Frame Size to be supported
 897 * @cd: pointer to command details structure or NULL
 898 *
 899 * Set MAC configuration (0x0603)
 900 */
 901int
 902ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
 903{
 904	struct ice_aqc_set_mac_cfg *cmd;
 905	struct ice_aq_desc desc;
 906
 907	cmd = &desc.params.set_mac_cfg;
 908
 909	if (max_frame_size == 0)
 910		return -EINVAL;
 911
 912	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
 913
 914	cmd->max_frame_size = cpu_to_le16(max_frame_size);
 915
 916	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
 917
 918	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
 919}
 920
 921/**
 922 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 923 * @hw: pointer to the HW struct
 924 */
 925static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 926{
 927	struct ice_switch_info *sw;
 928	int status;
 929
 930	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 931				       sizeof(*hw->switch_info), GFP_KERNEL);
 932	sw = hw->switch_info;
 933
 934	if (!sw)
 935		return -ENOMEM;
 936
 937	INIT_LIST_HEAD(&sw->vsi_list_map_head);
 938	sw->prof_res_bm_init = 0;
 939
 940	/* Initialize recipe count with default recipes read from NVM */
 941	sw->recp_cnt = ICE_SW_LKUP_LAST;
 942
 943	status = ice_init_def_sw_recp(hw);
 944	if (status) {
 945		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
 946		return status;
 947	}
 948	return 0;
 949}
 950
 951/**
 952 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 953 * @hw: pointer to the HW struct
 954 */
 955static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 956{
 957	struct ice_switch_info *sw = hw->switch_info;
 958	struct ice_vsi_list_map_info *v_pos_map;
 959	struct ice_vsi_list_map_info *v_tmp_map;
 960	struct ice_sw_recipe *recps;
 961	u8 i;
 962
 963	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 964				 list_entry) {
 965		list_del(&v_pos_map->list_entry);
 966		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 967	}
 968	recps = sw->recp_list;
 969	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
 
 
 970		recps[i].root_rid = i;
 
 
 
 
 
 971
 972		if (recps[i].adv_rule) {
 973			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
 974			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
 975
 976			mutex_destroy(&recps[i].filt_rule_lock);
 977			list_for_each_entry_safe(lst_itr, tmp_entry,
 978						 &recps[i].filt_rules,
 979						 list_entry) {
 980				list_del(&lst_itr->list_entry);
 981				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
 982				devm_kfree(ice_hw_to_dev(hw), lst_itr);
 983			}
 984		} else {
 985			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
 986
 987			mutex_destroy(&recps[i].filt_rule_lock);
 988			list_for_each_entry_safe(lst_itr, tmp_entry,
 989						 &recps[i].filt_rules,
 990						 list_entry) {
 991				list_del(&lst_itr->list_entry);
 992				devm_kfree(ice_hw_to_dev(hw), lst_itr);
 993			}
 994		}
 
 
 995	}
 996	ice_rm_all_sw_replay_rule_info(hw);
 997	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
 998	devm_kfree(ice_hw_to_dev(hw), sw);
 999}
1000
1001/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002 * ice_get_itr_intrl_gran
1003 * @hw: pointer to the HW struct
1004 *
1005 * Determines the ITR/INTRL granularities based on the maximum aggregate
1006 * bandwidth according to the device's configuration during power-on.
1007 */
1008static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1009{
1010	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
1011				  rd32(hw, GL_PWR_MODE_CTL));
 
1012
1013	switch (max_agg_bw) {
1014	case ICE_MAX_AGG_BW_200G:
1015	case ICE_MAX_AGG_BW_100G:
1016	case ICE_MAX_AGG_BW_50G:
1017		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1018		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1019		break;
1020	case ICE_MAX_AGG_BW_25G:
1021		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1022		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1023		break;
1024	}
1025}
1026
1027/**
1028 * ice_init_hw - main hardware initialization routine
1029 * @hw: pointer to the hardware structure
1030 */
1031int ice_init_hw(struct ice_hw *hw)
1032{
1033	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1034	void *mac_buf __free(kfree) = NULL;
1035	u16 mac_buf_len;
 
1036	int status;
1037
1038	/* Set MAC type based on DeviceID */
1039	status = ice_set_mac_type(hw);
1040	if (status)
1041		return status;
1042
1043	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
 
 
1044
1045	status = ice_reset(hw, ICE_RESET_PFR);
1046	if (status)
1047		return status;
1048
1049	ice_get_itr_intrl_gran(hw);
1050
1051	status = ice_create_all_ctrlq(hw);
1052	if (status)
1053		goto err_unroll_cqinit;
1054
1055	status = ice_fwlog_init(hw);
 
1056	if (status)
1057		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1058			  status);
1059
1060	status = ice_clear_pf_cfg(hw);
1061	if (status)
1062		goto err_unroll_cqinit;
1063
1064	/* Set bit to enable Flow Director filters */
1065	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1066	INIT_LIST_HEAD(&hw->fdir_list_head);
1067
1068	ice_clear_pxe_mode(hw);
1069
1070	status = ice_init_nvm(hw);
1071	if (status)
1072		goto err_unroll_cqinit;
1073
1074	status = ice_get_caps(hw);
1075	if (status)
1076		goto err_unroll_cqinit;
1077
1078	if (!hw->port_info)
1079		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1080					     sizeof(*hw->port_info),
1081					     GFP_KERNEL);
1082	if (!hw->port_info) {
1083		status = -ENOMEM;
1084		goto err_unroll_cqinit;
1085	}
1086
1087	hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1088	/* set the back pointer to HW */
1089	hw->port_info->hw = hw;
1090
1091	/* Initialize port_info struct with switch configuration data */
1092	status = ice_get_initial_sw_cfg(hw);
1093	if (status)
1094		goto err_unroll_alloc;
1095
1096	hw->evb_veb = true;
1097
1098	/* init xarray for identifying scheduling nodes uniquely */
1099	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1100
1101	/* Query the allocated resources for Tx scheduler */
1102	status = ice_sched_query_res_alloc(hw);
1103	if (status) {
1104		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1105		goto err_unroll_alloc;
1106	}
1107	ice_sched_get_psm_clk_freq(hw);
1108
1109	/* Initialize port_info struct with scheduler data */
1110	status = ice_sched_init_port(hw->port_info);
1111	if (status)
1112		goto err_unroll_sched;
1113
1114	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1115	if (!pcaps) {
1116		status = -ENOMEM;
1117		goto err_unroll_sched;
1118	}
1119
1120	/* Initialize port_info struct with PHY capabilities */
1121	status = ice_aq_get_phy_caps(hw->port_info, false,
1122				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1123				     NULL);
 
1124	if (status)
1125		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1126			 status);
1127
1128	/* Initialize port_info struct with link information */
1129	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1130	if (status)
1131		goto err_unroll_sched;
1132
1133	/* need a valid SW entry point to build a Tx tree */
1134	if (!hw->sw_entry_point_layer) {
1135		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1136		status = -EIO;
1137		goto err_unroll_sched;
1138	}
1139	INIT_LIST_HEAD(&hw->agg_list);
1140	/* Initialize max burst size */
1141	if (!hw->max_burst_size)
1142		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1143
1144	status = ice_init_fltr_mgmt_struct(hw);
1145	if (status)
1146		goto err_unroll_sched;
1147
1148	/* Get MAC information */
1149	/* A single port can report up to two (LAN and WoL) addresses */
1150	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1151			  GFP_KERNEL);
 
 
 
1152	if (!mac_buf) {
1153		status = -ENOMEM;
1154		goto err_unroll_fltr_mgmt_struct;
1155	}
1156
1157	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1158	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
 
1159
1160	if (status)
1161		goto err_unroll_fltr_mgmt_struct;
1162	/* enable jumbo frame support at MAC level */
1163	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1164	if (status)
1165		goto err_unroll_fltr_mgmt_struct;
1166	/* Obtain counter base index which would be used by flow director */
1167	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1168	if (status)
1169		goto err_unroll_fltr_mgmt_struct;
1170	status = ice_init_hw_tbls(hw);
1171	if (status)
1172		goto err_unroll_fltr_mgmt_struct;
1173	mutex_init(&hw->tnl_lock);
1174	ice_init_chk_recipe_reuse_support(hw);
1175
1176	return 0;
1177
1178err_unroll_fltr_mgmt_struct:
1179	ice_cleanup_fltr_mgmt_struct(hw);
1180err_unroll_sched:
1181	ice_sched_cleanup_all(hw);
1182err_unroll_alloc:
1183	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1184err_unroll_cqinit:
1185	ice_destroy_all_ctrlq(hw);
1186	return status;
1187}
1188
1189/**
1190 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1191 * @hw: pointer to the hardware structure
1192 *
1193 * This should be called only during nominal operation, not as a result of
1194 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1195 * applicable initializations if it fails for any reason.
1196 */
1197void ice_deinit_hw(struct ice_hw *hw)
1198{
1199	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1200	ice_cleanup_fltr_mgmt_struct(hw);
1201
1202	ice_sched_cleanup_all(hw);
1203	ice_sched_clear_agg(hw);
1204	ice_free_seg(hw);
1205	ice_free_hw_tbls(hw);
1206	mutex_destroy(&hw->tnl_lock);
1207
1208	ice_fwlog_deinit(hw);
 
 
 
 
 
 
1209	ice_destroy_all_ctrlq(hw);
1210
1211	/* Clear VSI contexts if not already cleared */
1212	ice_clear_all_vsi_ctx(hw);
1213}
1214
1215/**
1216 * ice_check_reset - Check to see if a global reset is complete
1217 * @hw: pointer to the hardware structure
1218 */
1219int ice_check_reset(struct ice_hw *hw)
1220{
1221	u32 cnt, reg = 0, grst_timeout, uld_mask;
1222
1223	/* Poll for Device Active state in case a recent CORER, GLOBR,
1224	 * or EMPR has occurred. The grst delay value is in 100ms units.
1225	 * Add 1sec for outstanding AQ commands that can take a long time.
1226	 */
1227	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1228				 rd32(hw, GLGEN_RSTCTL)) + 10;
1229
1230	for (cnt = 0; cnt < grst_timeout; cnt++) {
1231		mdelay(100);
1232		reg = rd32(hw, GLGEN_RSTAT);
1233		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1234			break;
1235	}
1236
1237	if (cnt == grst_timeout) {
1238		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1239		return -EIO;
1240	}
1241
1242#define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1243				 GLNVM_ULD_PCIER_DONE_1_M |\
1244				 GLNVM_ULD_CORER_DONE_M |\
1245				 GLNVM_ULD_GLOBR_DONE_M |\
1246				 GLNVM_ULD_POR_DONE_M |\
1247				 GLNVM_ULD_POR_DONE_1_M |\
1248				 GLNVM_ULD_PCIER_DONE_2_M)
1249
1250	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1251					  GLNVM_ULD_PE_DONE_M : 0);
1252
1253	/* Device is Active; check Global Reset processes are done */
1254	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1255		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1256		if (reg == uld_mask) {
1257			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1258			break;
1259		}
1260		mdelay(10);
1261	}
1262
1263	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1264		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1265			  reg);
1266		return -EIO;
1267	}
1268
1269	return 0;
1270}
1271
1272/**
1273 * ice_pf_reset - Reset the PF
1274 * @hw: pointer to the hardware structure
1275 *
1276 * If a global reset has been triggered, this function checks
1277 * for its completion and then issues the PF reset
1278 */
1279static int ice_pf_reset(struct ice_hw *hw)
1280{
1281	u32 cnt, reg;
1282
1283	/* If at function entry a global reset was already in progress, i.e.
1284	 * state is not 'device active' or any of the reset done bits are not
1285	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1286	 * global reset is done.
1287	 */
1288	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1289	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1290		/* poll on global reset currently in progress until done */
1291		if (ice_check_reset(hw))
1292			return -EIO;
1293
1294		return 0;
1295	}
1296
1297	/* Reset the PF */
1298	reg = rd32(hw, PFGEN_CTRL);
1299
1300	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1301
1302	/* Wait for the PFR to complete. The wait time is the global config lock
1303	 * timeout plus the PFR timeout which will account for a possible reset
1304	 * that is occurring during a download package operation.
1305	 */
1306	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1307	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1308		reg = rd32(hw, PFGEN_CTRL);
1309		if (!(reg & PFGEN_CTRL_PFSWR_M))
1310			break;
1311
1312		mdelay(1);
1313	}
1314
1315	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1316		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1317		return -EIO;
1318	}
1319
1320	return 0;
1321}
1322
1323/**
1324 * ice_reset - Perform different types of reset
1325 * @hw: pointer to the hardware structure
1326 * @req: reset request
1327 *
1328 * This function triggers a reset as specified by the req parameter.
1329 *
1330 * Note:
1331 * If anything other than a PF reset is triggered, PXE mode is restored.
1332 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1333 * interface has been restored in the rebuild flow.
1334 */
1335int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1336{
1337	u32 val = 0;
1338
1339	switch (req) {
1340	case ICE_RESET_PFR:
1341		return ice_pf_reset(hw);
1342	case ICE_RESET_CORER:
1343		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1344		val = GLGEN_RTRIG_CORER_M;
1345		break;
1346	case ICE_RESET_GLOBR:
1347		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1348		val = GLGEN_RTRIG_GLOBR_M;
1349		break;
1350	default:
1351		return -EINVAL;
1352	}
1353
1354	val |= rd32(hw, GLGEN_RTRIG);
1355	wr32(hw, GLGEN_RTRIG, val);
1356	ice_flush(hw);
1357
1358	/* wait for the FW to be ready */
1359	return ice_check_reset(hw);
1360}
1361
1362/**
1363 * ice_copy_rxq_ctx_to_hw
1364 * @hw: pointer to the hardware structure
1365 * @ice_rxq_ctx: pointer to the rxq context
1366 * @rxq_index: the index of the Rx queue
1367 *
1368 * Copies rxq context from dense structure to HW register space
1369 */
1370static int
1371ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1372{
1373	u8 i;
1374
1375	if (!ice_rxq_ctx)
1376		return -EINVAL;
1377
1378	if (rxq_index > QRX_CTRL_MAX_INDEX)
1379		return -EINVAL;
1380
1381	/* Copy each dword separately to HW */
1382	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1383		wr32(hw, QRX_CONTEXT(i, rxq_index),
1384		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1385
1386		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1387			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1388	}
1389
1390	return 0;
1391}
1392
1393/* LAN Rx Queue Context */
1394static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1395	/* Field		Width	LSB */
1396	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1397	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1398	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1399	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1400	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1401	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1402	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1403	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1404	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1405	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1406	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1407	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1408	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1409	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1410	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1411	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1412	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1413	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1414	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1415	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1416	{ 0 }
1417};
1418
1419/**
1420 * ice_write_rxq_ctx
1421 * @hw: pointer to the hardware structure
1422 * @rlan_ctx: pointer to the rxq context
1423 * @rxq_index: the index of the Rx queue
1424 *
1425 * Converts rxq context from sparse to dense structure and then writes
1426 * it to HW register space and enables the hardware to prefetch descriptors
1427 * instead of only fetching them on demand
1428 */
1429int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1430		      u32 rxq_index)
 
1431{
1432	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1433
1434	if (!rlan_ctx)
1435		return -EINVAL;
1436
1437	rlan_ctx->prefena = 1;
1438
1439	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1440	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1441}
1442
1443/* LAN Tx Queue Context */
1444const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1445				    /* Field			Width	LSB */
1446	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1447	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1448	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1449	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1450	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1451	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1452	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1453	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1454	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1455	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1456	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1457	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1458	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1459	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1460	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1461	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1462	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1463	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1464	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1465	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1466	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1467	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1468	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1469	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1470	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1471	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1472	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1473	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1474	{ 0 }
1475};
1476
1477/* Sideband Queue command wrappers */
1478
1479/**
1480 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1481 * @hw: pointer to the HW struct
1482 * @desc: descriptor describing the command
1483 * @buf: buffer to use for indirect commands (NULL for direct commands)
1484 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1485 * @cd: pointer to command details structure
1486 */
1487static int
1488ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1489		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1490{
1491	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1492			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1493}
1494
1495/**
1496 * ice_sbq_rw_reg - Fill Sideband Queue command
1497 * @hw: pointer to the HW struct
1498 * @in: message info to be filled in descriptor
1499 * @flags: control queue descriptor flags
1500 */
1501int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1502{
1503	struct ice_sbq_cmd_desc desc = {0};
1504	struct ice_sbq_msg_req msg = {0};
1505	u16 msg_len;
1506	int status;
1507
1508	msg_len = sizeof(msg);
1509
1510	msg.dest_dev = in->dest_dev;
1511	msg.opcode = in->opcode;
1512	msg.flags = ICE_SBQ_MSG_FLAGS;
1513	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1514	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1515	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1516
1517	if (in->opcode)
1518		msg.data = cpu_to_le32(in->data);
1519	else
1520		/* data read comes back in completion, so shorten the struct by
1521		 * sizeof(msg.data)
1522		 */
1523		msg_len -= sizeof(msg.data);
1524
1525	desc.flags = cpu_to_le16(flags);
1526	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1527	desc.param0.cmd_len = cpu_to_le16(msg_len);
1528	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1529	if (!status && !in->opcode)
1530		in->data = le32_to_cpu
1531			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1532	return status;
1533}
1534
1535/* FW Admin Queue command wrappers */
1536
1537/* Software lock/mutex that is meant to be held while the Global Config Lock
1538 * in firmware is acquired by the software to prevent most (but not all) types
1539 * of AQ commands from being sent to FW
1540 */
1541DEFINE_MUTEX(ice_global_cfg_lock_sw);
1542
1543/**
1544 * ice_should_retry_sq_send_cmd
1545 * @opcode: AQ opcode
1546 *
1547 * Decide if we should retry the send command routine for the ATQ, depending
1548 * on the opcode.
1549 */
1550static bool ice_should_retry_sq_send_cmd(u16 opcode)
1551{
1552	switch (opcode) {
1553	case ice_aqc_opc_get_link_topo:
1554	case ice_aqc_opc_lldp_stop:
1555	case ice_aqc_opc_lldp_start:
1556	case ice_aqc_opc_lldp_filter_ctrl:
1557		return true;
1558	}
1559
1560	return false;
1561}
1562
1563/**
1564 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1565 * @hw: pointer to the HW struct
1566 * @cq: pointer to the specific Control queue
1567 * @desc: prefilled descriptor describing the command
1568 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1569 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1570 * @cd: pointer to command details structure
1571 *
1572 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1573 * Queue if the EBUSY AQ error is returned.
1574 */
1575static int
1576ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1577		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1578		      struct ice_sq_cd *cd)
1579{
1580	struct ice_aq_desc desc_cpy;
1581	bool is_cmd_for_retry;
 
1582	u8 idx = 0;
1583	u16 opcode;
1584	int status;
1585
1586	opcode = le16_to_cpu(desc->opcode);
1587	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1588	memset(&desc_cpy, 0, sizeof(desc_cpy));
1589
1590	if (is_cmd_for_retry) {
1591		/* All retryable cmds are direct, without buf. */
1592		WARN_ON(buf);
 
 
 
1593
1594		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1595	}
1596
1597	do {
1598		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1599
1600		if (!is_cmd_for_retry || !status ||
1601		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1602			break;
1603
 
 
 
1604		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1605
1606		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1607
1608	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1609
 
 
1610	return status;
1611}
1612
1613/**
1614 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1615 * @hw: pointer to the HW struct
1616 * @desc: descriptor describing the command
1617 * @buf: buffer to use for indirect commands (NULL for direct commands)
1618 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1619 * @cd: pointer to command details structure
1620 *
1621 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1622 */
1623int
1624ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1625		u16 buf_size, struct ice_sq_cd *cd)
1626{
1627	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1628	bool lock_acquired = false;
1629	int status;
1630
1631	/* When a package download is in process (i.e. when the firmware's
1632	 * Global Configuration Lock resource is held), only the Download
1633	 * Package, Get Version, Get Package Info List, Upload Section,
1634	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1635	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1636	 * Recipes to Profile Association, and Release Resource (with resource
1637	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1638	 * must block until the package download completes and the Global Config
1639	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1640	 */
1641	switch (le16_to_cpu(desc->opcode)) {
1642	case ice_aqc_opc_download_pkg:
1643	case ice_aqc_opc_get_pkg_info_list:
1644	case ice_aqc_opc_get_ver:
1645	case ice_aqc_opc_upload_section:
1646	case ice_aqc_opc_update_pkg:
1647	case ice_aqc_opc_set_port_params:
1648	case ice_aqc_opc_get_vlan_mode_parameters:
1649	case ice_aqc_opc_set_vlan_mode_parameters:
1650	case ice_aqc_opc_set_tx_topo:
1651	case ice_aqc_opc_get_tx_topo:
1652	case ice_aqc_opc_add_recipe:
1653	case ice_aqc_opc_recipe_to_profile:
1654	case ice_aqc_opc_get_recipe:
1655	case ice_aqc_opc_get_recipe_to_profile:
1656		break;
1657	case ice_aqc_opc_release_res:
1658		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1659			break;
1660		fallthrough;
1661	default:
1662		mutex_lock(&ice_global_cfg_lock_sw);
1663		lock_acquired = true;
1664		break;
1665	}
1666
1667	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1668	if (lock_acquired)
1669		mutex_unlock(&ice_global_cfg_lock_sw);
1670
1671	return status;
1672}
1673
1674/**
1675 * ice_aq_get_fw_ver
1676 * @hw: pointer to the HW struct
1677 * @cd: pointer to command details structure or NULL
1678 *
1679 * Get the firmware version (0x0001) from the admin queue commands
1680 */
1681int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1682{
1683	struct ice_aqc_get_ver *resp;
1684	struct ice_aq_desc desc;
1685	int status;
1686
1687	resp = &desc.params.get_ver;
1688
1689	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1690
1691	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1692
1693	if (!status) {
1694		hw->fw_branch = resp->fw_branch;
1695		hw->fw_maj_ver = resp->fw_major;
1696		hw->fw_min_ver = resp->fw_minor;
1697		hw->fw_patch = resp->fw_patch;
1698		hw->fw_build = le32_to_cpu(resp->fw_build);
1699		hw->api_branch = resp->api_branch;
1700		hw->api_maj_ver = resp->api_major;
1701		hw->api_min_ver = resp->api_minor;
1702		hw->api_patch = resp->api_patch;
1703	}
1704
1705	return status;
1706}
1707
1708/**
1709 * ice_aq_send_driver_ver
1710 * @hw: pointer to the HW struct
1711 * @dv: driver's major, minor version
1712 * @cd: pointer to command details structure or NULL
1713 *
1714 * Send the driver version (0x0002) to the firmware
1715 */
1716int
1717ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1718		       struct ice_sq_cd *cd)
1719{
1720	struct ice_aqc_driver_ver *cmd;
1721	struct ice_aq_desc desc;
1722	u16 len;
1723
1724	cmd = &desc.params.driver_ver;
1725
1726	if (!dv)
1727		return -EINVAL;
1728
1729	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1730
1731	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1732	cmd->major_ver = dv->major_ver;
1733	cmd->minor_ver = dv->minor_ver;
1734	cmd->build_ver = dv->build_ver;
1735	cmd->subbuild_ver = dv->subbuild_ver;
1736
1737	len = 0;
1738	while (len < sizeof(dv->driver_string) &&
1739	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1740		len++;
1741
1742	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1743}
1744
1745/**
1746 * ice_aq_q_shutdown
1747 * @hw: pointer to the HW struct
1748 * @unloading: is the driver unloading itself
1749 *
1750 * Tell the Firmware that we're shutting down the AdminQ and whether
1751 * or not the driver is unloading as well (0x0003).
1752 */
1753int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1754{
1755	struct ice_aqc_q_shutdown *cmd;
1756	struct ice_aq_desc desc;
1757
1758	cmd = &desc.params.q_shutdown;
1759
1760	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1761
1762	if (unloading)
1763		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1764
1765	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1766}
1767
1768/**
1769 * ice_aq_req_res
1770 * @hw: pointer to the HW struct
1771 * @res: resource ID
1772 * @access: access type
1773 * @sdp_number: resource number
1774 * @timeout: the maximum time in ms that the driver may hold the resource
1775 * @cd: pointer to command details structure or NULL
1776 *
1777 * Requests common resource using the admin queue commands (0x0008).
1778 * When attempting to acquire the Global Config Lock, the driver can
1779 * learn of three states:
1780 *  1) 0 -         acquired lock, and can perform download package
1781 *  2) -EIO -      did not get lock, driver should fail to load
1782 *  3) -EALREADY - did not get lock, but another driver has
1783 *                 successfully downloaded the package; the driver does
1784 *                 not have to download the package and can continue
1785 *                 loading
1786 *
1787 * Note that if the caller is in an acquire lock, perform action, release lock
1788 * phase of operation, it is possible that the FW may detect a timeout and issue
1789 * a CORER. In this case, the driver will receive a CORER interrupt and will
1790 * have to determine its cause. The calling thread that is handling this flow
1791 * will likely get an error propagated back to it indicating the Download
1792 * Package, Update Package or the Release Resource AQ commands timed out.
1793 */
1794static int
1795ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1796	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1797	       struct ice_sq_cd *cd)
1798{
1799	struct ice_aqc_req_res *cmd_resp;
1800	struct ice_aq_desc desc;
1801	int status;
1802
1803	cmd_resp = &desc.params.res_owner;
1804
1805	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1806
1807	cmd_resp->res_id = cpu_to_le16(res);
1808	cmd_resp->access_type = cpu_to_le16(access);
1809	cmd_resp->res_number = cpu_to_le32(sdp_number);
1810	cmd_resp->timeout = cpu_to_le32(*timeout);
1811	*timeout = 0;
1812
1813	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1814
1815	/* The completion specifies the maximum time in ms that the driver
1816	 * may hold the resource in the Timeout field.
1817	 */
1818
1819	/* Global config lock response utilizes an additional status field.
1820	 *
1821	 * If the Global config lock resource is held by some other driver, the
1822	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1823	 * and the timeout field indicates the maximum time the current owner
1824	 * of the resource has to free it.
1825	 */
1826	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1827		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1828			*timeout = le32_to_cpu(cmd_resp->timeout);
1829			return 0;
1830		} else if (le16_to_cpu(cmd_resp->status) ==
1831			   ICE_AQ_RES_GLBL_IN_PROG) {
1832			*timeout = le32_to_cpu(cmd_resp->timeout);
1833			return -EIO;
1834		} else if (le16_to_cpu(cmd_resp->status) ==
1835			   ICE_AQ_RES_GLBL_DONE) {
1836			return -EALREADY;
1837		}
1838
1839		/* invalid FW response, force a timeout immediately */
1840		*timeout = 0;
1841		return -EIO;
1842	}
1843
1844	/* If the resource is held by some other driver, the command completes
1845	 * with a busy return value and the timeout field indicates the maximum
1846	 * time the current owner of the resource has to free it.
1847	 */
1848	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1849		*timeout = le32_to_cpu(cmd_resp->timeout);
1850
1851	return status;
1852}
1853
1854/**
1855 * ice_aq_release_res
1856 * @hw: pointer to the HW struct
1857 * @res: resource ID
1858 * @sdp_number: resource number
1859 * @cd: pointer to command details structure or NULL
1860 *
1861 * release common resource using the admin queue commands (0x0009)
1862 */
1863static int
1864ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1865		   struct ice_sq_cd *cd)
1866{
1867	struct ice_aqc_req_res *cmd;
1868	struct ice_aq_desc desc;
1869
1870	cmd = &desc.params.res_owner;
1871
1872	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1873
1874	cmd->res_id = cpu_to_le16(res);
1875	cmd->res_number = cpu_to_le32(sdp_number);
1876
1877	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1878}
1879
1880/**
1881 * ice_acquire_res
1882 * @hw: pointer to the HW structure
1883 * @res: resource ID
1884 * @access: access type (read or write)
1885 * @timeout: timeout in milliseconds
1886 *
1887 * This function will attempt to acquire the ownership of a resource.
1888 */
1889int
1890ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1891		enum ice_aq_res_access_type access, u32 timeout)
1892{
1893#define ICE_RES_POLLING_DELAY_MS	10
1894	u32 delay = ICE_RES_POLLING_DELAY_MS;
1895	u32 time_left = timeout;
1896	int status;
1897
1898	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1899
1900	/* A return code of -EALREADY means that another driver has
1901	 * previously acquired the resource and performed any necessary updates;
1902	 * in this case the caller does not obtain the resource and has no
1903	 * further work to do.
1904	 */
1905	if (status == -EALREADY)
1906		goto ice_acquire_res_exit;
1907
1908	if (status)
1909		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1910
1911	/* If necessary, poll until the current lock owner timeouts */
1912	timeout = time_left;
1913	while (status && timeout && time_left) {
1914		mdelay(delay);
1915		timeout = (timeout > delay) ? timeout - delay : 0;
1916		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1917
1918		if (status == -EALREADY)
1919			/* lock free, but no work to do */
1920			break;
1921
1922		if (!status)
1923			/* lock acquired */
1924			break;
1925	}
1926	if (status && status != -EALREADY)
1927		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1928
1929ice_acquire_res_exit:
1930	if (status == -EALREADY) {
1931		if (access == ICE_RES_WRITE)
1932			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1933		else
1934			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1935	}
1936	return status;
1937}
1938
1939/**
1940 * ice_release_res
1941 * @hw: pointer to the HW structure
1942 * @res: resource ID
1943 *
1944 * This function will release a resource using the proper Admin Command.
1945 */
1946void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1947{
1948	unsigned long timeout;
1949	int status;
1950
 
 
1951	/* there are some rare cases when trying to release the resource
1952	 * results in an admin queue timeout, so handle them correctly
1953	 */
1954	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1955	do {
1956		status = ice_aq_release_res(hw, res, 0, NULL);
1957		if (status != -EIO)
1958			break;
1959		usleep_range(1000, 2000);
1960	} while (time_before(jiffies, timeout));
1961}
1962
1963/**
1964 * ice_aq_alloc_free_res - command to allocate/free resources
1965 * @hw: pointer to the HW struct
 
1966 * @buf: Indirect buffer to hold data parameters and response
1967 * @buf_size: size of buffer for indirect commands
1968 * @opc: pass in the command opcode
 
1969 *
1970 * Helper function to allocate/free resources using the admin queue commands
1971 */
1972int ice_aq_alloc_free_res(struct ice_hw *hw,
1973			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1974			  enum ice_adminq_opc opc)
 
1975{
1976	struct ice_aqc_alloc_free_res_cmd *cmd;
1977	struct ice_aq_desc desc;
1978
1979	cmd = &desc.params.sw_res_ctrl;
1980
1981	if (!buf || buf_size < flex_array_size(buf, elem, 1))
 
 
 
1982		return -EINVAL;
1983
1984	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1985
1986	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1987
1988	cmd->num_entries = cpu_to_le16(1);
1989
1990	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1991}
1992
1993/**
1994 * ice_alloc_hw_res - allocate resource
1995 * @hw: pointer to the HW struct
1996 * @type: type of resource
1997 * @num: number of resources to allocate
1998 * @btm: allocate from bottom
1999 * @res: pointer to array that will receive the resources
2000 */
2001int
2002ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2003{
2004	struct ice_aqc_alloc_free_res_elem *buf;
2005	u16 buf_len;
2006	int status;
2007
2008	buf_len = struct_size(buf, elem, num);
2009	buf = kzalloc(buf_len, GFP_KERNEL);
2010	if (!buf)
2011		return -ENOMEM;
2012
2013	/* Prepare buffer to allocate resource. */
2014	buf->num_elems = cpu_to_le16(num);
2015	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2016				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2017	if (btm)
2018		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2019
2020	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
 
2021	if (status)
2022		goto ice_alloc_res_exit;
2023
2024	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2025
2026ice_alloc_res_exit:
2027	kfree(buf);
2028	return status;
2029}
2030
2031/**
2032 * ice_free_hw_res - free allocated HW resource
2033 * @hw: pointer to the HW struct
2034 * @type: type of resource to free
2035 * @num: number of resources
2036 * @res: pointer to array that contains the resources to free
2037 */
2038int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2039{
2040	struct ice_aqc_alloc_free_res_elem *buf;
2041	u16 buf_len;
2042	int status;
2043
2044	buf_len = struct_size(buf, elem, num);
2045	buf = kzalloc(buf_len, GFP_KERNEL);
2046	if (!buf)
2047		return -ENOMEM;
2048
2049	/* Prepare buffer to free resource. */
2050	buf->num_elems = cpu_to_le16(num);
2051	buf->res_type = cpu_to_le16(type);
2052	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2053
2054	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
 
2055	if (status)
2056		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2057
2058	kfree(buf);
2059	return status;
2060}
2061
2062/**
2063 * ice_get_num_per_func - determine number of resources per PF
2064 * @hw: pointer to the HW structure
2065 * @max: value to be evenly split between each PF
2066 *
2067 * Determine the number of valid functions by going through the bitmap returned
2068 * from parsing capabilities and use this to calculate the number of resources
2069 * per PF based on the max value passed in.
2070 */
2071static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2072{
2073	u8 funcs;
2074
2075#define ICE_CAPS_VALID_FUNCS_M	0xFF
2076	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2077			 ICE_CAPS_VALID_FUNCS_M);
2078
2079	if (!funcs)
2080		return 0;
2081
2082	return max / funcs;
2083}
2084
2085/**
2086 * ice_parse_common_caps - parse common device/function capabilities
2087 * @hw: pointer to the HW struct
2088 * @caps: pointer to common capabilities structure
2089 * @elem: the capability element to parse
2090 * @prefix: message prefix for tracing capabilities
2091 *
2092 * Given a capability element, extract relevant details into the common
2093 * capability structure.
2094 *
2095 * Returns: true if the capability matches one of the common capability ids,
2096 * false otherwise.
2097 */
2098static bool
2099ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2100		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2101{
2102	u32 logical_id = le32_to_cpu(elem->logical_id);
2103	u32 phys_id = le32_to_cpu(elem->phys_id);
2104	u32 number = le32_to_cpu(elem->number);
2105	u16 cap = le16_to_cpu(elem->cap);
2106	bool found = true;
2107
2108	switch (cap) {
2109	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2110		caps->valid_functions = number;
2111		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2112			  caps->valid_functions);
2113		break;
2114	case ICE_AQC_CAPS_SRIOV:
2115		caps->sr_iov_1_1 = (number == 1);
2116		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2117			  caps->sr_iov_1_1);
2118		break;
2119	case ICE_AQC_CAPS_DCB:
2120		caps->dcb = (number == 1);
2121		caps->active_tc_bitmap = logical_id;
2122		caps->maxtc = phys_id;
2123		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2124		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2125			  caps->active_tc_bitmap);
2126		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2127		break;
2128	case ICE_AQC_CAPS_RSS:
2129		caps->rss_table_size = number;
2130		caps->rss_table_entry_width = logical_id;
2131		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2132			  caps->rss_table_size);
2133		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2134			  caps->rss_table_entry_width);
2135		break;
2136	case ICE_AQC_CAPS_RXQS:
2137		caps->num_rxq = number;
2138		caps->rxq_first_id = phys_id;
2139		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2140			  caps->num_rxq);
2141		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2142			  caps->rxq_first_id);
2143		break;
2144	case ICE_AQC_CAPS_TXQS:
2145		caps->num_txq = number;
2146		caps->txq_first_id = phys_id;
2147		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2148			  caps->num_txq);
2149		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2150			  caps->txq_first_id);
2151		break;
2152	case ICE_AQC_CAPS_MSIX:
2153		caps->num_msix_vectors = number;
2154		caps->msix_vector_first_id = phys_id;
2155		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2156			  caps->num_msix_vectors);
2157		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2158			  caps->msix_vector_first_id);
2159		break;
2160	case ICE_AQC_CAPS_PENDING_NVM_VER:
2161		caps->nvm_update_pending_nvm = true;
2162		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2163		break;
2164	case ICE_AQC_CAPS_PENDING_OROM_VER:
2165		caps->nvm_update_pending_orom = true;
2166		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2167		break;
2168	case ICE_AQC_CAPS_PENDING_NET_VER:
2169		caps->nvm_update_pending_netlist = true;
2170		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2171		break;
2172	case ICE_AQC_CAPS_NVM_MGMT:
2173		caps->nvm_unified_update =
2174			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2175			true : false;
2176		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2177			  caps->nvm_unified_update);
2178		break;
2179	case ICE_AQC_CAPS_RDMA:
2180		caps->rdma = (number == 1);
2181		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2182		break;
2183	case ICE_AQC_CAPS_MAX_MTU:
2184		caps->max_mtu = number;
2185		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2186			  prefix, caps->max_mtu);
2187		break;
2188	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2189		caps->pcie_reset_avoidance = (number > 0);
2190		ice_debug(hw, ICE_DBG_INIT,
2191			  "%s: pcie_reset_avoidance = %d\n", prefix,
2192			  caps->pcie_reset_avoidance);
2193		break;
2194	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2195		caps->reset_restrict_support = (number == 1);
2196		ice_debug(hw, ICE_DBG_INIT,
2197			  "%s: reset_restrict_support = %d\n", prefix,
2198			  caps->reset_restrict_support);
2199		break;
2200	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2201		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2202		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2203			  prefix, caps->roce_lag);
2204		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2205		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2206			  prefix, caps->sriov_lag);
2207		break;
2208	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2209		caps->tx_sched_topo_comp_mode_en = (number == 1);
2210		break;
2211	default:
2212		/* Not one of the recognized common capabilities */
2213		found = false;
2214	}
2215
2216	return found;
2217}
2218
2219/**
2220 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2221 * @hw: pointer to the HW structure
2222 * @caps: pointer to capabilities structure to fix
2223 *
2224 * Re-calculate the capabilities that are dependent on the number of physical
2225 * ports; i.e. some features are not supported or function differently on
2226 * devices with more than 4 ports.
2227 */
2228static void
2229ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2230{
2231	/* This assumes device capabilities are always scanned before function
2232	 * capabilities during the initialization flow.
2233	 */
2234	if (hw->dev_caps.num_funcs > 4) {
2235		/* Max 4 TCs per port */
2236		caps->maxtc = 4;
2237		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2238			  caps->maxtc);
2239		if (caps->rdma) {
2240			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2241			caps->rdma = 0;
2242		}
2243
2244		/* print message only when processing device capabilities
2245		 * during initialization.
2246		 */
2247		if (caps == &hw->dev_caps.common_cap)
2248			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2249	}
2250}
2251
2252/**
2253 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2254 * @hw: pointer to the HW struct
2255 * @func_p: pointer to function capabilities structure
2256 * @cap: pointer to the capability element to parse
2257 *
2258 * Extract function capabilities for ICE_AQC_CAPS_VF.
2259 */
2260static void
2261ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2262		       struct ice_aqc_list_caps_elem *cap)
2263{
2264	u32 logical_id = le32_to_cpu(cap->logical_id);
2265	u32 number = le32_to_cpu(cap->number);
2266
2267	func_p->num_allocd_vfs = number;
2268	func_p->vf_base_id = logical_id;
2269	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2270		  func_p->num_allocd_vfs);
2271	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2272		  func_p->vf_base_id);
2273}
2274
2275/**
2276 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2277 * @hw: pointer to the HW struct
2278 * @func_p: pointer to function capabilities structure
2279 * @cap: pointer to the capability element to parse
2280 *
2281 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2282 */
2283static void
2284ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2285			struct ice_aqc_list_caps_elem *cap)
2286{
2287	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2288	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2289		  le32_to_cpu(cap->number));
2290	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2291		  func_p->guar_num_vsi);
2292}
2293
2294/**
2295 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2296 * @hw: pointer to the HW struct
2297 * @func_p: pointer to function capabilities structure
2298 * @cap: pointer to the capability element to parse
2299 *
2300 * Extract function capabilities for ICE_AQC_CAPS_1588.
2301 */
2302static void
2303ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2304			 struct ice_aqc_list_caps_elem *cap)
2305{
2306	struct ice_ts_func_info *info = &func_p->ts_func_info;
2307	u32 number = le32_to_cpu(cap->number);
2308
2309	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2310	func_p->common_cap.ieee_1588 = info->ena;
2311
2312	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2313	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2314	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2315	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2316
2317	if (!ice_is_e825c(hw)) {
2318		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2319		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2320	} else {
2321		info->clk_freq = ICE_TIME_REF_FREQ_156_250;
2322		info->clk_src = ICE_CLK_SRC_TCXO;
2323	}
2324
2325	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2326		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2327	} else {
2328		/* Unknown clock frequency, so assume a (probably incorrect)
2329		 * default to avoid out-of-bounds look ups of frequency
2330		 * related information.
2331		 */
2332		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2333			  info->clk_freq);
2334		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2335	}
2336
2337	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2338		  func_p->common_cap.ieee_1588);
2339	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2340		  info->src_tmr_owned);
2341	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2342		  info->tmr_ena);
2343	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2344		  info->tmr_index_owned);
2345	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2346		  info->tmr_index_assoc);
2347	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2348		  info->clk_freq);
2349	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2350		  info->clk_src);
2351}
2352
2353/**
2354 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2355 * @hw: pointer to the HW struct
2356 * @func_p: pointer to function capabilities structure
2357 *
2358 * Extract function capabilities for ICE_AQC_CAPS_FD.
2359 */
2360static void
2361ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2362{
2363	u32 reg_val, gsize, bsize;
2364
2365	reg_val = rd32(hw, GLQF_FD_SIZE);
2366	switch (hw->mac_type) {
2367	case ICE_MAC_E830:
2368		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2369		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2370		break;
2371	case ICE_MAC_E810:
2372	default:
2373		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2374		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2375	}
2376	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2377	func_p->fd_fltr_best_effort = bsize;
2378
2379	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2380		  func_p->fd_fltr_guar);
2381	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2382		  func_p->fd_fltr_best_effort);
2383}
2384
2385/**
2386 * ice_parse_func_caps - Parse function capabilities
2387 * @hw: pointer to the HW struct
2388 * @func_p: pointer to function capabilities structure
2389 * @buf: buffer containing the function capability records
2390 * @cap_count: the number of capabilities
2391 *
2392 * Helper function to parse function (0x000A) capabilities list. For
2393 * capabilities shared between device and function, this relies on
2394 * ice_parse_common_caps.
2395 *
2396 * Loop through the list of provided capabilities and extract the relevant
2397 * data into the function capabilities structured.
2398 */
2399static void
2400ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2401		    void *buf, u32 cap_count)
2402{
2403	struct ice_aqc_list_caps_elem *cap_resp;
2404	u32 i;
2405
2406	cap_resp = buf;
2407
2408	memset(func_p, 0, sizeof(*func_p));
2409
2410	for (i = 0; i < cap_count; i++) {
2411		u16 cap = le16_to_cpu(cap_resp[i].cap);
2412		bool found;
2413
2414		found = ice_parse_common_caps(hw, &func_p->common_cap,
2415					      &cap_resp[i], "func caps");
2416
2417		switch (cap) {
2418		case ICE_AQC_CAPS_VF:
2419			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2420			break;
2421		case ICE_AQC_CAPS_VSI:
2422			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2423			break;
2424		case ICE_AQC_CAPS_1588:
2425			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2426			break;
2427		case ICE_AQC_CAPS_FD:
2428			ice_parse_fdir_func_caps(hw, func_p);
2429			break;
2430		default:
2431			/* Don't list common capabilities as unknown */
2432			if (!found)
2433				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2434					  i, cap);
2435			break;
2436		}
2437	}
2438
2439	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2440}
2441
2442/**
2443 * ice_func_id_to_logical_id - map from function id to logical pf id
2444 * @active_function_bitmap: active function bitmap
2445 * @pf_id: function number of device
2446 *
2447 * Return: logical PF ID.
2448 */
2449static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2450{
2451	u8 logical_id = 0;
2452	u8 i;
2453
2454	for (i = 0; i < pf_id; i++)
2455		if (active_function_bitmap & BIT(i))
2456			logical_id++;
2457
2458	return logical_id;
2459}
2460
2461/**
2462 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2463 * @hw: pointer to the HW struct
2464 * @dev_p: pointer to device capabilities structure
2465 * @cap: capability element to parse
2466 *
2467 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2468 */
2469static void
2470ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2471			      struct ice_aqc_list_caps_elem *cap)
2472{
2473	u32 number = le32_to_cpu(cap->number);
2474
2475	dev_p->num_funcs = hweight32(number);
2476	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2477		  dev_p->num_funcs);
2478
2479	hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2480}
2481
2482/**
2483 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2484 * @hw: pointer to the HW struct
2485 * @dev_p: pointer to device capabilities structure
2486 * @cap: capability element to parse
2487 *
2488 * Parse ICE_AQC_CAPS_VF for device capabilities.
2489 */
2490static void
2491ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2492		      struct ice_aqc_list_caps_elem *cap)
2493{
2494	u32 number = le32_to_cpu(cap->number);
2495
2496	dev_p->num_vfs_exposed = number;
2497	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2498		  dev_p->num_vfs_exposed);
2499}
2500
2501/**
2502 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2503 * @hw: pointer to the HW struct
2504 * @dev_p: pointer to device capabilities structure
2505 * @cap: capability element to parse
2506 *
2507 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2508 */
2509static void
2510ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2511		       struct ice_aqc_list_caps_elem *cap)
2512{
2513	u32 number = le32_to_cpu(cap->number);
2514
2515	dev_p->num_vsi_allocd_to_host = number;
2516	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2517		  dev_p->num_vsi_allocd_to_host);
2518}
2519
2520/**
2521 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2522 * @hw: pointer to the HW struct
2523 * @dev_p: pointer to device capabilities structure
2524 * @cap: capability element to parse
2525 *
2526 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2527 */
2528static void
2529ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2530			struct ice_aqc_list_caps_elem *cap)
2531{
2532	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2533	u32 logical_id = le32_to_cpu(cap->logical_id);
2534	u32 phys_id = le32_to_cpu(cap->phys_id);
2535	u32 number = le32_to_cpu(cap->number);
2536
2537	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2538	dev_p->common_cap.ieee_1588 = info->ena;
2539
2540	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2541	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2542	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2543
2544	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2545	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2546	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2547
2548	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2549	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2550
2551	info->ena_ports = logical_id;
2552	info->tmr_own_map = phys_id;
2553
2554	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2555		  dev_p->common_cap.ieee_1588);
2556	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2557		  info->tmr0_owner);
2558	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2559		  info->tmr0_owned);
2560	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2561		  info->tmr0_ena);
2562	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2563		  info->tmr1_owner);
2564	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2565		  info->tmr1_owned);
2566	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2567		  info->tmr1_ena);
2568	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2569		  info->ts_ll_read);
2570	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2571		  info->ts_ll_int_read);
2572	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2573		  info->ena_ports);
2574	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2575		  info->tmr_own_map);
2576}
2577
2578/**
2579 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2580 * @hw: pointer to the HW struct
2581 * @dev_p: pointer to device capabilities structure
2582 * @cap: capability element to parse
2583 *
2584 * Parse ICE_AQC_CAPS_FD for device capabilities.
2585 */
2586static void
2587ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2588			struct ice_aqc_list_caps_elem *cap)
2589{
2590	u32 number = le32_to_cpu(cap->number);
2591
2592	dev_p->num_flow_director_fltr = number;
2593	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2594		  dev_p->num_flow_director_fltr);
2595}
2596
2597/**
2598 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2599 * @hw: pointer to the HW struct
2600 * @dev_p: pointer to device capabilities structure
2601 * @cap: capability element to parse
2602 *
2603 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2604 * enabled sensors.
2605 */
2606static void
2607ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2608			     struct ice_aqc_list_caps_elem *cap)
2609{
2610	dev_p->supported_sensors = le32_to_cpu(cap->number);
2611
2612	ice_debug(hw, ICE_DBG_INIT,
2613		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2614		  dev_p->supported_sensors);
2615}
2616
2617/**
2618 * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2619 * @hw: pointer to the HW struct
2620 * @dev_p: pointer to device capabilities structure
2621 * @cap: capability element to parse
2622 *
2623 * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2624 */
2625static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2626					struct ice_hw_dev_caps *dev_p,
2627					struct ice_aqc_list_caps_elem *cap)
2628{
2629	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2630	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2631
2632	dev_info(ice_hw_to_dev(hw),
2633		 "PF is configured in %s mode with IP instance ID %d\n",
2634		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2635		 "primary" : "secondary", dev_p->nac_topo.id);
2636
2637	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2638		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2639	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2640		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2641	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2642		  dev_p->nac_topo.id);
2643}
2644
2645/**
2646 * ice_parse_dev_caps - Parse device capabilities
2647 * @hw: pointer to the HW struct
2648 * @dev_p: pointer to device capabilities structure
2649 * @buf: buffer containing the device capability records
2650 * @cap_count: the number of capabilities
2651 *
2652 * Helper device to parse device (0x000B) capabilities list. For
2653 * capabilities shared between device and function, this relies on
2654 * ice_parse_common_caps.
2655 *
2656 * Loop through the list of provided capabilities and extract the relevant
2657 * data into the device capabilities structured.
2658 */
2659static void
2660ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2661		   void *buf, u32 cap_count)
2662{
2663	struct ice_aqc_list_caps_elem *cap_resp;
2664	u32 i;
2665
2666	cap_resp = buf;
2667
2668	memset(dev_p, 0, sizeof(*dev_p));
2669
2670	for (i = 0; i < cap_count; i++) {
2671		u16 cap = le16_to_cpu(cap_resp[i].cap);
2672		bool found;
2673
2674		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2675					      &cap_resp[i], "dev caps");
2676
2677		switch (cap) {
2678		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2679			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2680			break;
2681		case ICE_AQC_CAPS_VF:
2682			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2683			break;
2684		case ICE_AQC_CAPS_VSI:
2685			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2686			break;
2687		case ICE_AQC_CAPS_1588:
2688			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2689			break;
2690		case ICE_AQC_CAPS_FD:
2691			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2692			break;
2693		case ICE_AQC_CAPS_SENSOR_READING:
2694			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2695			break;
2696		case ICE_AQC_CAPS_NAC_TOPOLOGY:
2697			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2698			break;
2699		default:
2700			/* Don't list common capabilities as unknown */
2701			if (!found)
2702				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2703					  i, cap);
2704			break;
2705		}
2706	}
2707
2708	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2709}
2710
2711/**
2712 * ice_is_pf_c827 - check if pf contains c827 phy
2713 * @hw: pointer to the hw struct
2714 */
2715bool ice_is_pf_c827(struct ice_hw *hw)
2716{
2717	struct ice_aqc_get_link_topo cmd = {};
2718	u8 node_part_number;
2719	u16 node_handle;
2720	int status;
2721
2722	if (hw->mac_type != ICE_MAC_E810)
2723		return false;
2724
2725	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2726		return true;
2727
2728	cmd.addr.topo_params.node_type_ctx =
2729		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2730		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2731	cmd.addr.topo_params.index = 0;
2732
2733	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2734					 &node_handle);
2735
2736	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2737		return false;
2738
2739	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2740		return true;
2741
2742	return false;
2743}
2744
2745/**
2746 * ice_is_phy_rclk_in_netlist
2747 * @hw: pointer to the hw struct
2748 *
2749 * Check if the PHY Recovered Clock device is present in the netlist
2750 */
2751bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2752{
2753	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2754				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2755				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2756	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2757				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2758				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2759		return false;
2760
2761	return true;
2762}
2763
2764/**
2765 * ice_is_clock_mux_in_netlist
2766 * @hw: pointer to the hw struct
2767 *
2768 * Check if the Clock Multiplexer device is present in the netlist
2769 */
2770bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2771{
2772	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2773				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2774				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2775				  NULL))
2776		return false;
2777
2778	return true;
2779}
2780
2781/**
2782 * ice_is_cgu_in_netlist - check for CGU presence
2783 * @hw: pointer to the hw struct
2784 *
2785 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2786 * Save the CGU part number in the hw structure for later use.
2787 * Return:
2788 * * true - cgu is present
2789 * * false - cgu is not present
2790 */
2791bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2792{
2793	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2794				   ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2795				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2796				   NULL)) {
2797		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2798		return true;
2799	} else if (!ice_find_netlist_node(hw,
2800					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2801					  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2802					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2803					  NULL)) {
2804		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2805		return true;
2806	}
2807
2808	return false;
2809}
2810
2811/**
2812 * ice_is_gps_in_netlist
2813 * @hw: pointer to the hw struct
2814 *
2815 * Check if the GPS generic device is present in the netlist
2816 */
2817bool ice_is_gps_in_netlist(struct ice_hw *hw)
2818{
2819	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2820				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2821				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2822		return false;
2823
2824	return true;
2825}
2826
2827/**
2828 * ice_aq_list_caps - query function/device capabilities
2829 * @hw: pointer to the HW struct
2830 * @buf: a buffer to hold the capabilities
2831 * @buf_size: size of the buffer
2832 * @cap_count: if not NULL, set to the number of capabilities reported
2833 * @opc: capabilities type to discover, device or function
2834 * @cd: pointer to command details structure or NULL
2835 *
2836 * Get the function (0x000A) or device (0x000B) capabilities description from
2837 * firmware and store it in the buffer.
2838 *
2839 * If the cap_count pointer is not NULL, then it is set to the number of
2840 * capabilities firmware will report. Note that if the buffer size is too
2841 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2842 * cap_count will still be updated in this case. It is recommended that the
2843 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2844 * firmware could return) to avoid this.
2845 */
2846int
2847ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2848		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2849{
2850	struct ice_aqc_list_caps *cmd;
2851	struct ice_aq_desc desc;
2852	int status;
2853
2854	cmd = &desc.params.get_cap;
2855
2856	if (opc != ice_aqc_opc_list_func_caps &&
2857	    opc != ice_aqc_opc_list_dev_caps)
2858		return -EINVAL;
2859
2860	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2861	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2862
2863	if (cap_count)
2864		*cap_count = le32_to_cpu(cmd->count);
2865
2866	return status;
2867}
2868
2869/**
2870 * ice_discover_dev_caps - Read and extract device capabilities
2871 * @hw: pointer to the hardware structure
2872 * @dev_caps: pointer to device capabilities structure
2873 *
2874 * Read the device capabilities and extract them into the dev_caps structure
2875 * for later use.
2876 */
2877int
2878ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2879{
2880	u32 cap_count = 0;
2881	void *cbuf;
2882	int status;
2883
2884	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2885	if (!cbuf)
2886		return -ENOMEM;
2887
2888	/* Although the driver doesn't know the number of capabilities the
2889	 * device will return, we can simply send a 4KB buffer, the maximum
2890	 * possible size that firmware can return.
2891	 */
2892	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2893
2894	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2895				  ice_aqc_opc_list_dev_caps, NULL);
2896	if (!status)
2897		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2898	kfree(cbuf);
2899
2900	return status;
2901}
2902
2903/**
2904 * ice_discover_func_caps - Read and extract function capabilities
2905 * @hw: pointer to the hardware structure
2906 * @func_caps: pointer to function capabilities structure
2907 *
2908 * Read the function capabilities and extract them into the func_caps structure
2909 * for later use.
2910 */
2911static int
2912ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2913{
2914	u32 cap_count = 0;
2915	void *cbuf;
2916	int status;
2917
2918	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2919	if (!cbuf)
2920		return -ENOMEM;
2921
2922	/* Although the driver doesn't know the number of capabilities the
2923	 * device will return, we can simply send a 4KB buffer, the maximum
2924	 * possible size that firmware can return.
2925	 */
2926	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2927
2928	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2929				  ice_aqc_opc_list_func_caps, NULL);
2930	if (!status)
2931		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2932	kfree(cbuf);
2933
2934	return status;
2935}
2936
2937/**
2938 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2939 * @hw: pointer to the hardware structure
2940 */
2941void ice_set_safe_mode_caps(struct ice_hw *hw)
2942{
2943	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2944	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2945	struct ice_hw_common_caps cached_caps;
2946	u32 num_funcs;
2947
2948	/* cache some func_caps values that should be restored after memset */
2949	cached_caps = func_caps->common_cap;
2950
2951	/* unset func capabilities */
2952	memset(func_caps, 0, sizeof(*func_caps));
2953
2954#define ICE_RESTORE_FUNC_CAP(name) \
2955	func_caps->common_cap.name = cached_caps.name
2956
2957	/* restore cached values */
2958	ICE_RESTORE_FUNC_CAP(valid_functions);
2959	ICE_RESTORE_FUNC_CAP(txq_first_id);
2960	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2961	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2962	ICE_RESTORE_FUNC_CAP(max_mtu);
2963	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2964	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2965	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2966	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2967
2968	/* one Tx and one Rx queue in safe mode */
2969	func_caps->common_cap.num_rxq = 1;
2970	func_caps->common_cap.num_txq = 1;
2971
2972	/* two MSIX vectors, one for traffic and one for misc causes */
2973	func_caps->common_cap.num_msix_vectors = 2;
2974	func_caps->guar_num_vsi = 1;
2975
2976	/* cache some dev_caps values that should be restored after memset */
2977	cached_caps = dev_caps->common_cap;
2978	num_funcs = dev_caps->num_funcs;
2979
2980	/* unset dev capabilities */
2981	memset(dev_caps, 0, sizeof(*dev_caps));
2982
2983#define ICE_RESTORE_DEV_CAP(name) \
2984	dev_caps->common_cap.name = cached_caps.name
2985
2986	/* restore cached values */
2987	ICE_RESTORE_DEV_CAP(valid_functions);
2988	ICE_RESTORE_DEV_CAP(txq_first_id);
2989	ICE_RESTORE_DEV_CAP(rxq_first_id);
2990	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2991	ICE_RESTORE_DEV_CAP(max_mtu);
2992	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2993	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2994	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2995	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2996	dev_caps->num_funcs = num_funcs;
2997
2998	/* one Tx and one Rx queue per function in safe mode */
2999	dev_caps->common_cap.num_rxq = num_funcs;
3000	dev_caps->common_cap.num_txq = num_funcs;
3001
3002	/* two MSIX vectors per function */
3003	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3004}
3005
3006/**
3007 * ice_get_caps - get info about the HW
3008 * @hw: pointer to the hardware structure
3009 */
3010int ice_get_caps(struct ice_hw *hw)
3011{
3012	int status;
3013
3014	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3015	if (status)
3016		return status;
3017
3018	return ice_discover_func_caps(hw, &hw->func_caps);
3019}
3020
3021/**
3022 * ice_aq_manage_mac_write - manage MAC address write command
3023 * @hw: pointer to the HW struct
3024 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3025 * @flags: flags to control write behavior
3026 * @cd: pointer to command details structure or NULL
3027 *
3028 * This function is used to write MAC address to the NVM (0x0108).
3029 */
3030int
3031ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3032			struct ice_sq_cd *cd)
3033{
3034	struct ice_aqc_manage_mac_write *cmd;
3035	struct ice_aq_desc desc;
3036
3037	cmd = &desc.params.mac_write;
3038	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3039
3040	cmd->flags = flags;
3041	ether_addr_copy(cmd->mac_addr, mac_addr);
3042
3043	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3044}
3045
3046/**
3047 * ice_aq_clear_pxe_mode
3048 * @hw: pointer to the HW struct
3049 *
3050 * Tell the firmware that the driver is taking over from PXE (0x0110).
3051 */
3052static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3053{
3054	struct ice_aq_desc desc;
3055
3056	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3057	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3058
3059	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3060}
3061
3062/**
3063 * ice_clear_pxe_mode - clear pxe operations mode
3064 * @hw: pointer to the HW struct
3065 *
3066 * Make sure all PXE mode settings are cleared, including things
3067 * like descriptor fetch/write-back mode.
3068 */
3069void ice_clear_pxe_mode(struct ice_hw *hw)
3070{
3071	if (ice_check_sq_alive(hw, &hw->adminq))
3072		ice_aq_clear_pxe_mode(hw);
3073}
3074
3075/**
3076 * ice_aq_set_port_params - set physical port parameters.
3077 * @pi: pointer to the port info struct
3078 * @double_vlan: if set double VLAN is enabled
3079 * @cd: pointer to command details structure or NULL
3080 *
3081 * Set Physical port parameters (0x0203)
3082 */
3083int
3084ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3085		       struct ice_sq_cd *cd)
3086
3087{
3088	struct ice_aqc_set_port_params *cmd;
3089	struct ice_hw *hw = pi->hw;
3090	struct ice_aq_desc desc;
3091	u16 cmd_flags = 0;
3092
3093	cmd = &desc.params.set_port_params;
3094
3095	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3096	if (double_vlan)
3097		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3098	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3099
3100	cmd->local_fwd_mode = pi->local_fwd_mode |
3101				ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3102
3103	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3104}
3105
3106/**
3107 * ice_is_100m_speed_supported
3108 * @hw: pointer to the HW struct
3109 *
3110 * returns true if 100M speeds are supported by the device,
3111 * false otherwise.
3112 */
3113bool ice_is_100m_speed_supported(struct ice_hw *hw)
3114{
3115	switch (hw->device_id) {
3116	case ICE_DEV_ID_E822C_SGMII:
3117	case ICE_DEV_ID_E822L_SGMII:
3118	case ICE_DEV_ID_E823L_1GBE:
3119	case ICE_DEV_ID_E823C_SGMII:
3120		return true;
3121	default:
3122		return false;
3123	}
3124}
3125
3126/**
3127 * ice_get_link_speed_based_on_phy_type - returns link speed
3128 * @phy_type_low: lower part of phy_type
3129 * @phy_type_high: higher part of phy_type
3130 *
3131 * This helper function will convert an entry in PHY type structure
3132 * [phy_type_low, phy_type_high] to its corresponding link speed.
3133 * Note: In the structure of [phy_type_low, phy_type_high], there should
3134 * be one bit set, as this function will convert one PHY type to its
3135 * speed.
3136 *
3137 * Return:
3138 * * PHY speed for recognized PHY type
3139 * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3140 * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3141 */
3142u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
 
3143{
3144	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3145	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3146
3147	switch (phy_type_low) {
3148	case ICE_PHY_TYPE_LOW_100BASE_TX:
3149	case ICE_PHY_TYPE_LOW_100M_SGMII:
3150		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3151		break;
3152	case ICE_PHY_TYPE_LOW_1000BASE_T:
3153	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3154	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3155	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3156	case ICE_PHY_TYPE_LOW_1G_SGMII:
3157		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3158		break;
3159	case ICE_PHY_TYPE_LOW_2500BASE_T:
3160	case ICE_PHY_TYPE_LOW_2500BASE_X:
3161	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3162		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3163		break;
3164	case ICE_PHY_TYPE_LOW_5GBASE_T:
3165	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3166		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3167		break;
3168	case ICE_PHY_TYPE_LOW_10GBASE_T:
3169	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3170	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3171	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3172	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3173	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3174	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3175		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3176		break;
3177	case ICE_PHY_TYPE_LOW_25GBASE_T:
3178	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3179	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3180	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3181	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3182	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3183	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3184	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3185	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3186	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3187	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3188		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3189		break;
3190	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3191	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3192	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3193	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3194	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3195	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3196		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3197		break;
3198	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3199	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3200	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3201	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3202	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3203	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3204	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3205	case ICE_PHY_TYPE_LOW_50G_AUI2:
3206	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3207	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3208	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3209	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3210	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3211	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3212	case ICE_PHY_TYPE_LOW_50G_AUI1:
3213		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3214		break;
3215	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3216	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3217	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3218	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3219	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3220	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3221	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3222	case ICE_PHY_TYPE_LOW_100G_AUI4:
3223	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3224	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3225	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3226	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3227	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3228		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3229		break;
3230	default:
3231		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3232		break;
3233	}
3234
3235	switch (phy_type_high) {
3236	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3237	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3238	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3239	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3240	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3241		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3242		break;
3243	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3244	case ICE_PHY_TYPE_HIGH_200G_SR4:
3245	case ICE_PHY_TYPE_HIGH_200G_FR4:
3246	case ICE_PHY_TYPE_HIGH_200G_LR4:
3247	case ICE_PHY_TYPE_HIGH_200G_DR4:
3248	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3249	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3250	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3251		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3252		break;
3253	default:
3254		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3255		break;
3256	}
3257
3258	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3259	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3260		return ICE_AQ_LINK_SPEED_UNKNOWN;
3261	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3262		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3263		return ICE_AQ_LINK_SPEED_UNKNOWN;
3264	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3265		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3266		return speed_phy_type_low;
3267	else
3268		return speed_phy_type_high;
3269}
3270
3271/**
3272 * ice_update_phy_type
3273 * @phy_type_low: pointer to the lower part of phy_type
3274 * @phy_type_high: pointer to the higher part of phy_type
3275 * @link_speeds_bitmap: targeted link speeds bitmap
3276 *
3277 * Note: For the link_speeds_bitmap structure, you can check it at
3278 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3279 * link_speeds_bitmap include multiple speeds.
3280 *
3281 * Each entry in this [phy_type_low, phy_type_high] structure will
3282 * present a certain link speed. This helper function will turn on bits
3283 * in [phy_type_low, phy_type_high] structure based on the value of
3284 * link_speeds_bitmap input parameter.
3285 */
3286void
3287ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3288		    u16 link_speeds_bitmap)
3289{
3290	u64 pt_high;
3291	u64 pt_low;
3292	int index;
3293	u16 speed;
3294
3295	/* We first check with low part of phy_type */
3296	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3297		pt_low = BIT_ULL(index);
3298		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3299
3300		if (link_speeds_bitmap & speed)
3301			*phy_type_low |= BIT_ULL(index);
3302	}
3303
3304	/* We then check with high part of phy_type */
3305	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3306		pt_high = BIT_ULL(index);
3307		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3308
3309		if (link_speeds_bitmap & speed)
3310			*phy_type_high |= BIT_ULL(index);
3311	}
3312}
3313
3314/**
3315 * ice_aq_set_phy_cfg
3316 * @hw: pointer to the HW struct
3317 * @pi: port info structure of the interested logical port
3318 * @cfg: structure with PHY configuration data to be set
3319 * @cd: pointer to command details structure or NULL
3320 *
3321 * Set the various PHY configuration parameters supported on the Port.
3322 * One or more of the Set PHY config parameters may be ignored in an MFP
3323 * mode as the PF may not have the privilege to set some of the PHY Config
3324 * parameters. This status will be indicated by the command response (0x0601).
3325 */
3326int
3327ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3328		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3329{
3330	struct ice_aq_desc desc;
3331	int status;
3332
3333	if (!cfg)
3334		return -EINVAL;
3335
3336	/* Ensure that only valid bits of cfg->caps can be turned on. */
3337	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3338		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3339			  cfg->caps);
3340
3341		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3342	}
3343
3344	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3345	desc.params.set_phy.lport_num = pi->lport;
3346	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3347
3348	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3349	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3350		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3351	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3352		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3353	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3354	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3355		  cfg->low_power_ctrl_an);
3356	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3357	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3358	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3359		  cfg->link_fec_opt);
3360
3361	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3362	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3363		status = 0;
3364
3365	if (!status)
3366		pi->phy.curr_user_phy_cfg = *cfg;
3367
3368	return status;
3369}
3370
3371/**
3372 * ice_update_link_info - update status of the HW network link
3373 * @pi: port info structure of the interested logical port
3374 */
3375int ice_update_link_info(struct ice_port_info *pi)
3376{
3377	struct ice_link_status *li;
3378	int status;
3379
3380	if (!pi)
3381		return -EINVAL;
3382
3383	li = &pi->phy.link_info;
3384
3385	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3386	if (status)
3387		return status;
3388
3389	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3390		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
 
3391
3392		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
 
 
3393		if (!pcaps)
3394			return -ENOMEM;
3395
3396		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3397					     pcaps, NULL);
 
 
3398	}
3399
3400	return status;
3401}
3402
3403/**
3404 * ice_aq_get_phy_equalization - function to read serdes equaliser
3405 * value from firmware using admin queue command.
3406 * @hw: pointer to the HW struct
3407 * @data_in: represents the serdes equalization parameter requested
3408 * @op_code: represents the serdes number and flag to represent tx or rx
3409 * @serdes_num: represents the serdes number
3410 * @output: pointer to the caller-supplied buffer to return serdes equaliser
3411 *
3412 * Return: non-zero status on error and 0 on success.
3413 */
3414int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3415				u8 serdes_num, int *output)
3416{
3417	struct ice_aqc_dnl_call_command *cmd;
3418	struct ice_aqc_dnl_call buf = {};
3419	struct ice_aq_desc desc;
3420	int err;
3421
3422	buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3423	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3424		cpu_to_le16(op_code | (serdes_num & 0xF));
3425	cmd = &desc.params.dnl_call;
3426	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3427	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF |
3428				  ICE_AQ_FLAG_RD |
3429				  ICE_AQ_FLAG_SI);
3430	desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3431	cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3432
3433	err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3434			      NULL);
3435	*output = err ? 0 : buf.sto.txrx_equa_resp.val;
3436
3437	return err;
3438}
3439
3440#define FEC_REG_PORT(port) {	\
3441	FEC_CORR_LOW_REG_PORT##port,		\
3442	FEC_CORR_HIGH_REG_PORT##port,	\
3443	FEC_UNCORR_LOW_REG_PORT##port,	\
3444	FEC_UNCORR_HIGH_REG_PORT##port,	\
3445}
3446
3447static const u32 fec_reg[][ICE_FEC_MAX] = {
3448	FEC_REG_PORT(0),
3449	FEC_REG_PORT(1),
3450	FEC_REG_PORT(2),
3451	FEC_REG_PORT(3)
3452};
3453
3454/**
3455 * ice_aq_get_fec_stats - reads fec stats from phy
3456 * @hw: pointer to the HW struct
3457 * @pcs_quad: represents pcsquad of user input serdes
3458 * @pcs_port: represents the pcs port number part of above pcs quad
3459 * @fec_type: represents FEC stats type
3460 * @output: pointer to the caller-supplied buffer to return requested fec stats
3461 *
3462 * Return: non-zero status on error and 0 on success.
3463 */
3464int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3465			 enum ice_fec_stats_types fec_type, u32 *output)
3466{
3467	u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI);
3468	struct ice_sbq_msg_input msg = {};
3469	u32 receiver_id, reg_offset;
3470	int err;
3471
3472	if (pcs_port > 3)
3473		return -EINVAL;
3474
3475	reg_offset = fec_reg[pcs_port][fec_type];
3476
3477	if (pcs_quad == 0)
3478		receiver_id = FEC_RECEIVER_ID_PCS0;
3479	else if (pcs_quad == 1)
3480		receiver_id = FEC_RECEIVER_ID_PCS1;
3481	else
3482		return -EINVAL;
3483
3484	msg.msg_addr_low = lower_16_bits(reg_offset);
3485	msg.msg_addr_high = receiver_id;
3486	msg.opcode = ice_sbq_msg_rd;
3487	msg.dest_dev = rmn_0;
3488
3489	err = ice_sbq_rw_reg(hw, &msg, flag);
3490	if (err)
3491		return err;
3492
3493	*output = msg.data;
3494	return 0;
3495}
3496
3497/**
3498 * ice_cache_phy_user_req
3499 * @pi: port information structure
3500 * @cache_data: PHY logging data
3501 * @cache_mode: PHY logging mode
3502 *
3503 * Log the user request on (FC, FEC, SPEED) for later use.
3504 */
3505static void
3506ice_cache_phy_user_req(struct ice_port_info *pi,
3507		       struct ice_phy_cache_mode_data cache_data,
3508		       enum ice_phy_cache_mode cache_mode)
3509{
3510	if (!pi)
3511		return;
3512
3513	switch (cache_mode) {
3514	case ICE_FC_MODE:
3515		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3516		break;
3517	case ICE_SPEED_MODE:
3518		pi->phy.curr_user_speed_req =
3519			cache_data.data.curr_user_speed_req;
3520		break;
3521	case ICE_FEC_MODE:
3522		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3523		break;
3524	default:
3525		break;
3526	}
3527}
3528
3529/**
3530 * ice_caps_to_fc_mode
3531 * @caps: PHY capabilities
3532 *
3533 * Convert PHY FC capabilities to ice FC mode
3534 */
3535enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3536{
3537	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3538	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3539		return ICE_FC_FULL;
3540
3541	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3542		return ICE_FC_TX_PAUSE;
3543
3544	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3545		return ICE_FC_RX_PAUSE;
3546
3547	return ICE_FC_NONE;
3548}
3549
3550/**
3551 * ice_caps_to_fec_mode
3552 * @caps: PHY capabilities
3553 * @fec_options: Link FEC options
3554 *
3555 * Convert PHY FEC capabilities to ice FEC mode
3556 */
3557enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3558{
3559	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3560		return ICE_FEC_AUTO;
3561
3562	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3563			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3564			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3565			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3566		return ICE_FEC_BASER;
3567
3568	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3569			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3570			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3571		return ICE_FEC_RS;
3572
3573	return ICE_FEC_NONE;
3574}
3575
3576/**
3577 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3578 * @pi: port information structure
3579 * @cfg: PHY configuration data to set FC mode
3580 * @req_mode: FC mode to configure
3581 */
3582int
3583ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3584	       enum ice_fc_mode req_mode)
3585{
3586	struct ice_phy_cache_mode_data cache_data;
3587	u8 pause_mask = 0x0;
3588
3589	if (!pi || !cfg)
3590		return -EINVAL;
3591
3592	switch (req_mode) {
3593	case ICE_FC_FULL:
3594		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3595		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3596		break;
3597	case ICE_FC_RX_PAUSE:
3598		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3599		break;
3600	case ICE_FC_TX_PAUSE:
3601		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3602		break;
3603	default:
3604		break;
3605	}
3606
3607	/* clear the old pause settings */
3608	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3609		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3610
3611	/* set the new capabilities */
3612	cfg->caps |= pause_mask;
3613
3614	/* Cache user FC request */
3615	cache_data.data.curr_user_fc_req = req_mode;
3616	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3617
3618	return 0;
3619}
3620
3621/**
3622 * ice_set_fc
3623 * @pi: port information structure
3624 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3625 * @ena_auto_link_update: enable automatic link update
3626 *
3627 * Set the requested flow control mode.
3628 */
3629int
3630ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3631{
3632	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3633	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
 
3634	struct ice_hw *hw;
3635	int status;
3636
3637	if (!pi || !aq_failures)
3638		return -EINVAL;
3639
3640	*aq_failures = 0;
3641	hw = pi->hw;
3642
3643	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3644	if (!pcaps)
3645		return -ENOMEM;
3646
3647	/* Get the current PHY config */
3648	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3649				     pcaps, NULL);
3650	if (status) {
3651		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3652		goto out;
3653	}
3654
3655	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3656
3657	/* Configure the set PHY data */
3658	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3659	if (status)
3660		goto out;
3661
3662	/* If the capabilities have changed, then set the new config */
3663	if (cfg.caps != pcaps->caps) {
3664		int retry_count, retry_max = 10;
3665
3666		/* Auto restart link so settings take effect */
3667		if (ena_auto_link_update)
3668			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3669
3670		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3671		if (status) {
3672			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3673			goto out;
3674		}
3675
3676		/* Update the link info
3677		 * It sometimes takes a really long time for link to
3678		 * come back from the atomic reset. Thus, we wait a
3679		 * little bit.
3680		 */
3681		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3682			status = ice_update_link_info(pi);
3683
3684			if (!status)
3685				break;
3686
3687			mdelay(100);
3688		}
3689
3690		if (status)
3691			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3692	}
3693
3694out:
 
3695	return status;
3696}
3697
3698/**
3699 * ice_phy_caps_equals_cfg
3700 * @phy_caps: PHY capabilities
3701 * @phy_cfg: PHY configuration
3702 *
3703 * Helper function to determine if PHY capabilities matches PHY
3704 * configuration
3705 */
3706bool
3707ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3708			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3709{
3710	u8 caps_mask, cfg_mask;
3711
3712	if (!phy_caps || !phy_cfg)
3713		return false;
3714
3715	/* These bits are not common between capabilities and configuration.
3716	 * Do not use them to determine equality.
3717	 */
3718	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3719					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3720	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3721
3722	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3723	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3724	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3725	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3726	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3727	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3728	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3729		return false;
3730
3731	return true;
3732}
3733
3734/**
3735 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3736 * @pi: port information structure
3737 * @caps: PHY ability structure to copy date from
3738 * @cfg: PHY configuration structure to copy data to
3739 *
3740 * Helper function to copy AQC PHY get ability data to PHY set configuration
3741 * data structure
3742 */
3743void
3744ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3745			 struct ice_aqc_get_phy_caps_data *caps,
3746			 struct ice_aqc_set_phy_cfg_data *cfg)
3747{
3748	if (!pi || !caps || !cfg)
3749		return;
3750
3751	memset(cfg, 0, sizeof(*cfg));
3752	cfg->phy_type_low = caps->phy_type_low;
3753	cfg->phy_type_high = caps->phy_type_high;
3754	cfg->caps = caps->caps;
3755	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3756	cfg->eee_cap = caps->eee_cap;
3757	cfg->eeer_value = caps->eeer_value;
3758	cfg->link_fec_opt = caps->link_fec_options;
3759	cfg->module_compliance_enforcement =
3760		caps->module_compliance_enforcement;
3761}
3762
3763/**
3764 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3765 * @pi: port information structure
3766 * @cfg: PHY configuration data to set FEC mode
3767 * @fec: FEC mode to configure
3768 */
3769int
3770ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3771		enum ice_fec_mode fec)
3772{
3773	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3774	struct ice_hw *hw;
3775	int status;
3776
3777	if (!pi || !cfg)
3778		return -EINVAL;
3779
3780	hw = pi->hw;
3781
3782	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3783	if (!pcaps)
3784		return -ENOMEM;
3785
3786	status = ice_aq_get_phy_caps(pi, false,
3787				     (ice_fw_supports_report_dflt_cfg(hw) ?
3788				      ICE_AQC_REPORT_DFLT_CFG :
3789				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3790	if (status)
3791		goto out;
3792
3793	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3794	cfg->link_fec_opt = pcaps->link_fec_options;
3795
3796	switch (fec) {
3797	case ICE_FEC_BASER:
3798		/* Clear RS bits, and AND BASE-R ability
3799		 * bits and OR request bits.
3800		 */
3801		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3802			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3803		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3804			ICE_AQC_PHY_FEC_25G_KR_REQ;
3805		break;
3806	case ICE_FEC_RS:
3807		/* Clear BASE-R bits, and AND RS ability
3808		 * bits and OR request bits.
3809		 */
3810		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3811		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3812			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3813		break;
3814	case ICE_FEC_NONE:
3815		/* Clear all FEC option bits. */
3816		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3817		break;
3818	case ICE_FEC_AUTO:
3819		/* AND auto FEC bit, and all caps bits. */
3820		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3821		cfg->link_fec_opt |= pcaps->link_fec_options;
3822		break;
3823	default:
3824		status = -EINVAL;
3825		break;
3826	}
3827
3828	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3829	    !ice_fw_supports_report_dflt_cfg(hw)) {
3830		struct ice_link_default_override_tlv tlv = { 0 };
3831
3832		status = ice_get_link_default_override(&tlv, pi);
3833		if (status)
3834			goto out;
3835
3836		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3837		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3838			cfg->link_fec_opt = tlv.fec_options;
3839	}
3840
3841out:
 
 
3842	return status;
3843}
3844
3845/**
3846 * ice_get_link_status - get status of the HW network link
3847 * @pi: port information structure
3848 * @link_up: pointer to bool (true/false = linkup/linkdown)
3849 *
3850 * Variable link_up is true if link is up, false if link is down.
3851 * The variable link_up is invalid if status is non zero. As a
3852 * result of this call, link status reporting becomes enabled
3853 */
3854int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3855{
3856	struct ice_phy_info *phy_info;
3857	int status = 0;
3858
3859	if (!pi || !link_up)
3860		return -EINVAL;
3861
3862	phy_info = &pi->phy;
3863
3864	if (phy_info->get_link_info) {
3865		status = ice_update_link_info(pi);
3866
3867		if (status)
3868			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3869				  status);
3870	}
3871
3872	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3873
3874	return status;
3875}
3876
3877/**
3878 * ice_aq_set_link_restart_an
3879 * @pi: pointer to the port information structure
3880 * @ena_link: if true: enable link, if false: disable link
3881 * @cd: pointer to command details structure or NULL
3882 *
3883 * Sets up the link and restarts the Auto-Negotiation over the link.
3884 */
3885int
3886ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3887			   struct ice_sq_cd *cd)
3888{
3889	struct ice_aqc_restart_an *cmd;
3890	struct ice_aq_desc desc;
3891
3892	cmd = &desc.params.restart_an;
3893
3894	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3895
3896	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3897	cmd->lport_num = pi->lport;
3898	if (ena_link)
3899		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3900	else
3901		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3902
3903	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3904}
3905
3906/**
3907 * ice_aq_set_event_mask
3908 * @hw: pointer to the HW struct
3909 * @port_num: port number of the physical function
3910 * @mask: event mask to be set
3911 * @cd: pointer to command details structure or NULL
3912 *
3913 * Set event mask (0x0613)
3914 */
3915int
3916ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3917		      struct ice_sq_cd *cd)
3918{
3919	struct ice_aqc_set_event_mask *cmd;
3920	struct ice_aq_desc desc;
3921
3922	cmd = &desc.params.set_event_mask;
3923
3924	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3925
3926	cmd->lport_num = port_num;
3927
3928	cmd->event_mask = cpu_to_le16(mask);
3929	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3930}
3931
3932/**
3933 * ice_aq_set_mac_loopback
3934 * @hw: pointer to the HW struct
3935 * @ena_lpbk: Enable or Disable loopback
3936 * @cd: pointer to command details structure or NULL
3937 *
3938 * Enable/disable loopback on a given port
3939 */
3940int
3941ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3942{
3943	struct ice_aqc_set_mac_lb *cmd;
3944	struct ice_aq_desc desc;
3945
3946	cmd = &desc.params.set_mac_lb;
3947
3948	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3949	if (ena_lpbk)
3950		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3951
3952	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3953}
3954
3955/**
3956 * ice_aq_set_port_id_led
3957 * @pi: pointer to the port information
3958 * @is_orig_mode: is this LED set to original mode (by the net-list)
3959 * @cd: pointer to command details structure or NULL
3960 *
3961 * Set LED value for the given port (0x06e9)
3962 */
3963int
3964ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3965		       struct ice_sq_cd *cd)
3966{
3967	struct ice_aqc_set_port_id_led *cmd;
3968	struct ice_hw *hw = pi->hw;
3969	struct ice_aq_desc desc;
3970
3971	cmd = &desc.params.set_port_id_led;
3972
3973	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3974
3975	if (is_orig_mode)
3976		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3977	else
3978		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3979
3980	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3981}
3982
3983/**
3984 * ice_aq_get_port_options
3985 * @hw: pointer to the HW struct
3986 * @options: buffer for the resultant port options
3987 * @option_count: input - size of the buffer in port options structures,
3988 *                output - number of returned port options
3989 * @lport: logical port to call the command with (optional)
3990 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3991 *               when PF owns more than 1 port it must be true
3992 * @active_option_idx: index of active port option in returned buffer
3993 * @active_option_valid: active option in returned buffer is valid
3994 * @pending_option_idx: index of pending port option in returned buffer
3995 * @pending_option_valid: pending option in returned buffer is valid
3996 *
3997 * Calls Get Port Options AQC (0x06ea) and verifies result.
3998 */
3999int
4000ice_aq_get_port_options(struct ice_hw *hw,
4001			struct ice_aqc_get_port_options_elem *options,
4002			u8 *option_count, u8 lport, bool lport_valid,
4003			u8 *active_option_idx, bool *active_option_valid,
4004			u8 *pending_option_idx, bool *pending_option_valid)
4005{
4006	struct ice_aqc_get_port_options *cmd;
4007	struct ice_aq_desc desc;
4008	int status;
4009	u8 i;
4010
4011	/* options buffer shall be able to hold max returned options */
4012	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4013		return -EINVAL;
4014
4015	cmd = &desc.params.get_port_options;
4016	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4017
4018	if (lport_valid)
4019		cmd->lport_num = lport;
4020	cmd->lport_num_valid = lport_valid;
4021
4022	status = ice_aq_send_cmd(hw, &desc, options,
4023				 *option_count * sizeof(*options), NULL);
4024	if (status)
4025		return status;
4026
4027	/* verify direct FW response & set output parameters */
4028	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4029				  cmd->port_options_count);
4030	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4031	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4032					 cmd->port_options);
4033	if (*active_option_valid) {
4034		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4035					       cmd->port_options);
4036		if (*active_option_idx > (*option_count - 1))
4037			return -EIO;
4038		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4039			  *active_option_idx);
4040	}
4041
4042	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4043					  cmd->pending_port_option_status);
4044	if (*pending_option_valid) {
4045		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4046						cmd->pending_port_option_status);
4047		if (*pending_option_idx > (*option_count - 1))
4048			return -EIO;
4049		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4050			  *pending_option_idx);
4051	}
4052
4053	/* mask output options fields */
4054	for (i = 0; i < *option_count; i++) {
4055		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4056					   options[i].pmd);
4057		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4058						      options[i].max_lane_speed);
4059		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4060			  options[i].pmd, options[i].max_lane_speed);
4061	}
4062
4063	return 0;
4064}
4065
4066/**
4067 * ice_aq_set_port_option
4068 * @hw: pointer to the HW struct
4069 * @lport: logical port to call the command with
4070 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4071 *               when PF owns more than 1 port it must be true
4072 * @new_option: new port option to be written
4073 *
4074 * Calls Set Port Options AQC (0x06eb).
4075 */
4076int
4077ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4078		       u8 new_option)
4079{
4080	struct ice_aqc_set_port_option *cmd;
4081	struct ice_aq_desc desc;
4082
4083	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4084		return -EINVAL;
4085
4086	cmd = &desc.params.set_port_option;
4087	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4088
4089	if (lport_valid)
4090		cmd->lport_num = lport;
4091
4092	cmd->lport_num_valid = lport_valid;
4093	cmd->selected_port_option = new_option;
4094
4095	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4096}
4097
4098/**
4099 * ice_get_phy_lane_number - Get PHY lane number for current adapter
4100 * @hw: pointer to the hw struct
4101 *
4102 * Return: PHY lane number on success, negative error code otherwise.
4103 */
4104int ice_get_phy_lane_number(struct ice_hw *hw)
4105{
4106	struct ice_aqc_get_port_options_elem *options;
4107	unsigned int lport = 0;
4108	unsigned int lane;
4109	int err;
4110
4111	options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4112	if (!options)
4113		return -ENOMEM;
4114
4115	for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4116		u8 options_count = ICE_AQC_PORT_OPT_MAX;
4117		u8 speed, active_idx, pending_idx;
4118		bool active_valid, pending_valid;
4119
4120		err = ice_aq_get_port_options(hw, options, &options_count, lane,
4121					      true, &active_idx, &active_valid,
4122					      &pending_idx, &pending_valid);
4123		if (err)
4124			goto err;
4125
4126		if (!active_valid)
4127			continue;
4128
4129		speed = options[active_idx].max_lane_speed;
4130		/* If we don't get speed for this lane, it's unoccupied */
4131		if (speed > ICE_AQC_PORT_OPT_MAX_LANE_200G)
4132			continue;
4133
4134		if (hw->pf_id == lport) {
4135			kfree(options);
4136			return lane;
4137		}
4138
4139		lport++;
4140	}
4141
4142	/* PHY lane not found */
4143	err = -ENXIO;
4144err:
4145	kfree(options);
4146	return err;
4147}
4148
4149/**
4150 * ice_aq_sff_eeprom
4151 * @hw: pointer to the HW struct
4152 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4153 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4154 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4155 * @page: QSFP page
4156 * @set_page: set or ignore the page
4157 * @data: pointer to data buffer to be read/written to the I2C device.
4158 * @length: 1-16 for read, 1 for write.
4159 * @write: 0 read, 1 for write.
4160 * @cd: pointer to command details structure or NULL
4161 *
4162 * Read/Write SFF EEPROM (0x06EE)
4163 */
4164int
4165ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4166		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4167		  bool write, struct ice_sq_cd *cd)
4168{
4169	struct ice_aqc_sff_eeprom *cmd;
4170	struct ice_aq_desc desc;
4171	u16 i2c_bus_addr;
4172	int status;
4173
4174	if (!data || (mem_addr & 0xff00))
4175		return -EINVAL;
4176
4177	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4178	cmd = &desc.params.read_write_sff_param;
4179	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
4180	cmd->lport_num = (u8)(lport & 0xff);
4181	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4182	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4183		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4184	if (write)
4185		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4186	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4187	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4188	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
 
 
4189
4190	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4191	return status;
4192}
4193
4194static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4195{
4196	switch (type) {
4197	case ICE_LUT_VSI:
4198		return ICE_LUT_VSI_SIZE;
4199	case ICE_LUT_GLOBAL:
4200		return ICE_LUT_GLOBAL_SIZE;
4201	case ICE_LUT_PF:
4202		return ICE_LUT_PF_SIZE;
4203	}
4204	WARN_ONCE(1, "incorrect type passed");
4205	return ICE_LUT_VSI_SIZE;
4206}
4207
4208static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4209{
4210	switch (size) {
4211	case ICE_LUT_VSI_SIZE:
4212		return ICE_AQC_LUT_SIZE_SMALL;
4213	case ICE_LUT_GLOBAL_SIZE:
4214		return ICE_AQC_LUT_SIZE_512;
4215	case ICE_LUT_PF_SIZE:
4216		return ICE_AQC_LUT_SIZE_2K;
4217	}
4218	WARN_ONCE(1, "incorrect size passed");
4219	return 0;
4220}
4221
4222/**
4223 * __ice_aq_get_set_rss_lut
4224 * @hw: pointer to the hardware structure
4225 * @params: RSS LUT parameters
4226 * @set: set true to set the table, false to get the table
4227 *
4228 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4229 */
4230static int
4231__ice_aq_get_set_rss_lut(struct ice_hw *hw,
4232			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4233{
4234	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4235	enum ice_lut_type lut_type = params->lut_type;
4236	struct ice_aqc_get_set_rss_lut *desc_params;
4237	enum ice_aqc_lut_flags flags;
4238	enum ice_lut_size lut_size;
4239	struct ice_aq_desc desc;
4240	u8 *lut = params->lut;
4241
4242
4243	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4244		return -EINVAL;
4245
4246	lut_size = ice_lut_type_to_size(lut_type);
4247	if (lut_size > params->lut_size)
4248		return -EINVAL;
4249	else if (set && lut_size != params->lut_size)
4250		return -EINVAL;
4251
4252	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4253	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4254	if (set)
 
 
 
 
 
 
4255		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 
 
 
4256
4257	desc_params = &desc.params.get_set_rss_lut;
4258	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4259	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
 
 
 
 
 
 
 
 
 
 
 
 
 
4260
4261	if (lut_type == ICE_LUT_GLOBAL)
4262		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4263					  params->global_lut_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4264
4265	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4266	desc_params->flags = cpu_to_le16(flags);
 
4267
4268	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
 
4269}
4270
4271/**
4272 * ice_aq_get_rss_lut
4273 * @hw: pointer to the hardware structure
4274 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4275 *
4276 * get the RSS lookup table, PF or VSI type
4277 */
4278int
4279ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4280{
4281	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4282}
4283
4284/**
4285 * ice_aq_set_rss_lut
4286 * @hw: pointer to the hardware structure
4287 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4288 *
4289 * set the RSS lookup table, PF or VSI type
4290 */
4291int
4292ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4293{
4294	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4295}
4296
4297/**
4298 * __ice_aq_get_set_rss_key
4299 * @hw: pointer to the HW struct
4300 * @vsi_id: VSI FW index
4301 * @key: pointer to key info struct
4302 * @set: set true to set the key, false to get the key
4303 *
4304 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4305 */
4306static int
4307__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4308			 struct ice_aqc_get_set_rss_keys *key, bool set)
4309{
4310	struct ice_aqc_get_set_rss_key *desc_params;
4311	u16 key_size = sizeof(*key);
4312	struct ice_aq_desc desc;
4313
 
 
4314	if (set) {
4315		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4316		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4317	} else {
4318		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4319	}
4320
4321	desc_params = &desc.params.get_set_rss_key;
4322	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
 
 
4323
4324	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4325}
4326
4327/**
4328 * ice_aq_get_rss_key
4329 * @hw: pointer to the HW struct
4330 * @vsi_handle: software VSI handle
4331 * @key: pointer to key info struct
4332 *
4333 * get the RSS key per VSI
4334 */
4335int
4336ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4337		   struct ice_aqc_get_set_rss_keys *key)
4338{
4339	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4340		return -EINVAL;
4341
4342	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4343					key, false);
4344}
4345
4346/**
4347 * ice_aq_set_rss_key
4348 * @hw: pointer to the HW struct
4349 * @vsi_handle: software VSI handle
4350 * @keys: pointer to key info struct
4351 *
4352 * set the RSS key per VSI
4353 */
4354int
4355ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4356		   struct ice_aqc_get_set_rss_keys *keys)
4357{
4358	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4359		return -EINVAL;
4360
4361	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4362					keys, true);
4363}
4364
4365/**
4366 * ice_aq_add_lan_txq
4367 * @hw: pointer to the hardware structure
4368 * @num_qgrps: Number of added queue groups
4369 * @qg_list: list of queue groups to be added
4370 * @buf_size: size of buffer for indirect command
4371 * @cd: pointer to command details structure or NULL
4372 *
4373 * Add Tx LAN queue (0x0C30)
4374 *
4375 * NOTE:
4376 * Prior to calling add Tx LAN queue:
4377 * Initialize the following as part of the Tx queue context:
4378 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4379 * Cache profile and Packet shaper profile.
4380 *
4381 * After add Tx LAN queue AQ command is completed:
4382 * Interrupts should be associated with specific queues,
4383 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4384 * flow.
4385 */
4386static int
4387ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4388		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4389		   struct ice_sq_cd *cd)
4390{
4391	struct ice_aqc_add_tx_qgrp *list;
4392	struct ice_aqc_add_txqs *cmd;
4393	struct ice_aq_desc desc;
4394	u16 i, sum_size = 0;
4395
4396	cmd = &desc.params.add_txqs;
4397
4398	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4399
4400	if (!qg_list)
4401		return -EINVAL;
4402
4403	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4404		return -EINVAL;
4405
4406	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4407		sum_size += struct_size(list, txqs, list->num_txqs);
4408		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4409						      list->num_txqs);
4410	}
4411
4412	if (buf_size != sum_size)
4413		return -EINVAL;
4414
4415	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4416
4417	cmd->num_qgrps = num_qgrps;
4418
4419	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4420}
4421
4422/**
4423 * ice_aq_dis_lan_txq
4424 * @hw: pointer to the hardware structure
4425 * @num_qgrps: number of groups in the list
4426 * @qg_list: the list of groups to disable
4427 * @buf_size: the total size of the qg_list buffer in bytes
4428 * @rst_src: if called due to reset, specifies the reset source
4429 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4430 * @cd: pointer to command details structure or NULL
4431 *
4432 * Disable LAN Tx queue (0x0C31)
4433 */
4434static int
4435ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4436		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4437		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4438		   struct ice_sq_cd *cd)
4439{
4440	struct ice_aqc_dis_txq_item *item;
4441	struct ice_aqc_dis_txqs *cmd;
4442	struct ice_aq_desc desc;
4443	u16 vmvf_and_timeout;
4444	u16 i, sz = 0;
4445	int status;
4446
4447	cmd = &desc.params.dis_txqs;
4448	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4449
4450	/* qg_list can be NULL only in VM/VF reset flow */
4451	if (!qg_list && !rst_src)
4452		return -EINVAL;
4453
4454	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4455		return -EINVAL;
4456
4457	cmd->num_entries = num_qgrps;
4458
4459	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
 
4460
4461	switch (rst_src) {
4462	case ICE_VM_RESET:
4463		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4464		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
 
4465		break;
4466	case ICE_VF_RESET:
4467		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4468		/* In this case, FW expects vmvf_num to be absolute VF ID */
4469		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4470				    ICE_AQC_Q_DIS_VMVF_NUM_M;
 
4471		break;
4472	case ICE_NO_RESET:
4473	default:
4474		break;
4475	}
4476
4477	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4478
4479	/* flush pipe on time out */
4480	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4481	/* If no queue group info, we are in a reset flow. Issue the AQ */
4482	if (!qg_list)
4483		goto do_aq;
4484
4485	/* set RD bit to indicate that command buffer is provided by the driver
4486	 * and it needs to be read by the firmware
4487	 */
4488	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4489
4490	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4491		u16 item_size = struct_size(item, q_id, item->num_qs);
4492
4493		/* If the num of queues is even, add 2 bytes of padding */
4494		if ((item->num_qs % 2) == 0)
4495			item_size += 2;
4496
4497		sz += item_size;
4498
4499		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4500	}
4501
4502	if (buf_size != sz)
4503		return -EINVAL;
4504
4505do_aq:
4506	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4507	if (status) {
4508		if (!qg_list)
4509			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4510				  vmvf_num, hw->adminq.sq_last_status);
4511		else
4512			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4513				  le16_to_cpu(qg_list[0].q_id[0]),
4514				  hw->adminq.sq_last_status);
4515	}
4516	return status;
4517}
4518
4519/**
4520 * ice_aq_cfg_lan_txq
4521 * @hw: pointer to the hardware structure
4522 * @buf: buffer for command
4523 * @buf_size: size of buffer in bytes
4524 * @num_qs: number of queues being configured
4525 * @oldport: origination lport
4526 * @newport: destination lport
4527 * @cd: pointer to command details structure or NULL
4528 *
4529 * Move/Configure LAN Tx queue (0x0C32)
4530 *
4531 * There is a better AQ command to use for moving nodes, so only coding
4532 * this one for configuring the node.
4533 */
4534int
4535ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4536		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4537		   struct ice_sq_cd *cd)
4538{
4539	struct ice_aqc_cfg_txqs *cmd;
4540	struct ice_aq_desc desc;
4541	int status;
4542
4543	cmd = &desc.params.cfg_txqs;
4544	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4545	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4546
4547	if (!buf)
4548		return -EINVAL;
4549
4550	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4551	cmd->num_qs = num_qs;
4552	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4553	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4554	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4555	cmd->blocked_cgds = 0;
4556
4557	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4558	if (status)
4559		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4560			  hw->adminq.sq_last_status);
4561	return status;
4562}
4563
4564/**
4565 * ice_aq_add_rdma_qsets
4566 * @hw: pointer to the hardware structure
4567 * @num_qset_grps: Number of RDMA Qset groups
4568 * @qset_list: list of Qset groups to be added
4569 * @buf_size: size of buffer for indirect command
4570 * @cd: pointer to command details structure or NULL
4571 *
4572 * Add Tx RDMA Qsets (0x0C33)
4573 */
4574static int
4575ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4576		      struct ice_aqc_add_rdma_qset_data *qset_list,
4577		      u16 buf_size, struct ice_sq_cd *cd)
4578{
4579	struct ice_aqc_add_rdma_qset_data *list;
4580	struct ice_aqc_add_rdma_qset *cmd;
4581	struct ice_aq_desc desc;
4582	u16 i, sum_size = 0;
4583
4584	cmd = &desc.params.add_rdma_qset;
4585
4586	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4587
4588	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4589		return -EINVAL;
4590
4591	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4592		u16 num_qsets = le16_to_cpu(list->num_qsets);
4593
4594		sum_size += struct_size(list, rdma_qsets, num_qsets);
4595		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4596							     num_qsets);
4597	}
4598
4599	if (buf_size != sum_size)
4600		return -EINVAL;
4601
4602	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4603
4604	cmd->num_qset_grps = num_qset_grps;
4605
4606	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4607}
4608
4609/* End of FW Admin Queue command wrappers */
4610
4611/**
4612 * ice_pack_ctx_byte - write a byte to a packed context structure
4613 * @src_ctx: unpacked source context structure
4614 * @dest_ctx: packed destination context data
4615 * @ce_info: context element description
4616 */
4617static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4618			      const struct ice_ctx_ele *ce_info)
4619{
4620	u8 src_byte, dest_byte, mask;
4621	u8 *from, *dest;
4622	u16 shift_width;
4623
4624	/* copy from the next struct field */
4625	from = src_ctx + ce_info->offset;
4626
4627	/* prepare the bits and mask */
4628	shift_width = ce_info->lsb % 8;
4629	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4630
4631	src_byte = *from;
4632	src_byte <<= shift_width;
4633	src_byte &= mask;
4634
 
 
 
 
4635	/* get the current bits from the target bit string */
4636	dest = dest_ctx + (ce_info->lsb / 8);
4637
4638	memcpy(&dest_byte, dest, sizeof(dest_byte));
4639
4640	dest_byte &= ~mask;	/* get the bits not changing */
4641	dest_byte |= src_byte;	/* add in the new bits */
4642
4643	/* put it all back */
4644	memcpy(dest, &dest_byte, sizeof(dest_byte));
4645}
4646
4647/**
4648 * ice_pack_ctx_word - write a word to a packed context structure
4649 * @src_ctx: unpacked source context structure
4650 * @dest_ctx: packed destination context data
4651 * @ce_info: context element description
4652 */
4653static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4654			      const struct ice_ctx_ele *ce_info)
4655{
4656	u16 src_word, mask;
4657	__le16 dest_word;
4658	u8 *from, *dest;
4659	u16 shift_width;
4660
4661	/* copy from the next struct field */
4662	from = src_ctx + ce_info->offset;
4663
4664	/* prepare the bits and mask */
4665	shift_width = ce_info->lsb % 8;
4666	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4667
4668	/* don't swizzle the bits until after the mask because the mask bits
4669	 * will be in a different bit position on big endian machines
4670	 */
4671	src_word = *(u16 *)from;
4672	src_word <<= shift_width;
4673	src_word &= mask;
4674
 
 
 
 
4675	/* get the current bits from the target bit string */
4676	dest = dest_ctx + (ce_info->lsb / 8);
4677
4678	memcpy(&dest_word, dest, sizeof(dest_word));
4679
4680	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4681	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4682
4683	/* put it all back */
4684	memcpy(dest, &dest_word, sizeof(dest_word));
4685}
4686
4687/**
4688 * ice_pack_ctx_dword - write a dword to a packed context structure
4689 * @src_ctx: unpacked source context structure
4690 * @dest_ctx: packed destination context data
4691 * @ce_info: context element description
4692 */
4693static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4694			       const struct ice_ctx_ele *ce_info)
4695{
4696	u32 src_dword, mask;
4697	__le32 dest_dword;
4698	u8 *from, *dest;
4699	u16 shift_width;
4700
4701	/* copy from the next struct field */
4702	from = src_ctx + ce_info->offset;
4703
4704	/* prepare the bits and mask */
4705	shift_width = ce_info->lsb % 8;
4706	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
 
 
 
 
 
 
 
 
4707
4708	/* don't swizzle the bits until after the mask because the mask bits
4709	 * will be in a different bit position on big endian machines
4710	 */
4711	src_dword = *(u32 *)from;
4712	src_dword <<= shift_width;
4713	src_dword &= mask;
4714
 
 
 
 
4715	/* get the current bits from the target bit string */
4716	dest = dest_ctx + (ce_info->lsb / 8);
4717
4718	memcpy(&dest_dword, dest, sizeof(dest_dword));
4719
4720	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4721	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4722
4723	/* put it all back */
4724	memcpy(dest, &dest_dword, sizeof(dest_dword));
4725}
4726
4727/**
4728 * ice_pack_ctx_qword - write a qword to a packed context structure
4729 * @src_ctx: unpacked source context structure
4730 * @dest_ctx: packed destination context data
4731 * @ce_info: context element description
4732 */
4733static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4734			       const struct ice_ctx_ele *ce_info)
4735{
4736	u64 src_qword, mask;
4737	__le64 dest_qword;
4738	u8 *from, *dest;
4739	u16 shift_width;
4740
4741	/* copy from the next struct field */
4742	from = src_ctx + ce_info->offset;
4743
4744	/* prepare the bits and mask */
4745	shift_width = ce_info->lsb % 8;
4746	mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
 
 
 
 
 
 
 
 
4747
4748	/* don't swizzle the bits until after the mask because the mask bits
4749	 * will be in a different bit position on big endian machines
4750	 */
4751	src_qword = *(u64 *)from;
4752	src_qword <<= shift_width;
4753	src_qword &= mask;
4754
 
 
 
 
4755	/* get the current bits from the target bit string */
4756	dest = dest_ctx + (ce_info->lsb / 8);
4757
4758	memcpy(&dest_qword, dest, sizeof(dest_qword));
4759
4760	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4761	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4762
4763	/* put it all back */
4764	memcpy(dest, &dest_qword, sizeof(dest_qword));
4765}
4766
4767/**
4768 * ice_set_ctx - set context bits in packed structure
4769 * @hw: pointer to the hardware structure
4770 * @src_ctx:  pointer to a generic non-packed context structure
4771 * @dest_ctx: pointer to memory for the packed structure
4772 * @ce_info: List of Rx context elements
4773 */
4774int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4775		const struct ice_ctx_ele *ce_info)
 
4776{
4777	int f;
4778
4779	for (f = 0; ce_info[f].width; f++) {
4780		/* We have to deal with each element of the FW response
4781		 * using the correct size so that we are correct regardless
4782		 * of the endianness of the machine.
4783		 */
4784		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4785			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4786				  f, ce_info[f].width, ce_info[f].size_of);
4787			continue;
4788		}
4789		switch (ce_info[f].size_of) {
4790		case sizeof(u8):
4791			ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
4792			break;
4793		case sizeof(u16):
4794			ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
4795			break;
4796		case sizeof(u32):
4797			ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
4798			break;
4799		case sizeof(u64):
4800			ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
4801			break;
4802		default:
4803			return -EINVAL;
4804		}
4805	}
4806
4807	return 0;
4808}
4809
4810/**
4811 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4812 * @hw: pointer to the HW struct
4813 * @vsi_handle: software VSI handle
4814 * @tc: TC number
4815 * @q_handle: software queue handle
4816 */
4817struct ice_q_ctx *
4818ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4819{
4820	struct ice_vsi_ctx *vsi;
4821	struct ice_q_ctx *q_ctx;
4822
4823	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4824	if (!vsi)
4825		return NULL;
4826	if (q_handle >= vsi->num_lan_q_entries[tc])
4827		return NULL;
4828	if (!vsi->lan_q_ctx[tc])
4829		return NULL;
4830	q_ctx = vsi->lan_q_ctx[tc];
4831	return &q_ctx[q_handle];
4832}
4833
4834/**
4835 * ice_ena_vsi_txq
4836 * @pi: port information structure
4837 * @vsi_handle: software VSI handle
4838 * @tc: TC number
4839 * @q_handle: software queue handle
4840 * @num_qgrps: Number of added queue groups
4841 * @buf: list of queue groups to be added
4842 * @buf_size: size of buffer for indirect command
4843 * @cd: pointer to command details structure or NULL
4844 *
4845 * This function adds one LAN queue
4846 */
4847int
4848ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4849		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4850		struct ice_sq_cd *cd)
4851{
4852	struct ice_aqc_txsched_elem_data node = { 0 };
4853	struct ice_sched_node *parent;
4854	struct ice_q_ctx *q_ctx;
4855	struct ice_hw *hw;
4856	int status;
4857
4858	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4859		return -EIO;
4860
4861	if (num_qgrps > 1 || buf->num_txqs > 1)
4862		return -ENOSPC;
4863
4864	hw = pi->hw;
4865
4866	if (!ice_is_vsi_valid(hw, vsi_handle))
4867		return -EINVAL;
4868
4869	mutex_lock(&pi->sched_lock);
4870
4871	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4872	if (!q_ctx) {
4873		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4874			  q_handle);
4875		status = -EINVAL;
4876		goto ena_txq_exit;
4877	}
4878
4879	/* find a parent node */
4880	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4881					    ICE_SCHED_NODE_OWNER_LAN);
4882	if (!parent) {
4883		status = -EINVAL;
4884		goto ena_txq_exit;
4885	}
4886
4887	buf->parent_teid = parent->info.node_teid;
4888	node.parent_teid = parent->info.node_teid;
4889	/* Mark that the values in the "generic" section as valid. The default
4890	 * value in the "generic" section is zero. This means that :
4891	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4892	 * - 0 priority among siblings, indicated by Bit 1-3.
4893	 * - WFQ, indicated by Bit 4.
4894	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4895	 * Bit 5-6.
4896	 * - Bit 7 is reserved.
4897	 * Without setting the generic section as valid in valid_sections, the
4898	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4899	 */
4900	buf->txqs[0].info.valid_sections =
4901		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4902		ICE_AQC_ELEM_VALID_EIR;
4903	buf->txqs[0].info.generic = 0;
4904	buf->txqs[0].info.cir_bw.bw_profile_idx =
4905		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4906	buf->txqs[0].info.cir_bw.bw_alloc =
4907		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4908	buf->txqs[0].info.eir_bw.bw_profile_idx =
4909		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4910	buf->txqs[0].info.eir_bw.bw_alloc =
4911		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4912
4913	/* add the LAN queue */
4914	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4915	if (status) {
4916		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4917			  le16_to_cpu(buf->txqs[0].txq_id),
4918			  hw->adminq.sq_last_status);
4919		goto ena_txq_exit;
4920	}
4921
4922	node.node_teid = buf->txqs[0].q_teid;
4923	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4924	q_ctx->q_handle = q_handle;
4925	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4926
4927	/* add a leaf node into scheduler tree queue layer */
4928	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4929	if (!status)
4930		status = ice_sched_replay_q_bw(pi, q_ctx);
4931
4932ena_txq_exit:
4933	mutex_unlock(&pi->sched_lock);
4934	return status;
4935}
4936
4937/**
4938 * ice_dis_vsi_txq
4939 * @pi: port information structure
4940 * @vsi_handle: software VSI handle
4941 * @tc: TC number
4942 * @num_queues: number of queues
4943 * @q_handles: pointer to software queue handle array
4944 * @q_ids: pointer to the q_id array
4945 * @q_teids: pointer to queue node teids
4946 * @rst_src: if called due to reset, specifies the reset source
4947 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4948 * @cd: pointer to command details structure or NULL
4949 *
4950 * This function removes queues and their corresponding nodes in SW DB
4951 */
4952int
4953ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4954		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4955		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4956		struct ice_sq_cd *cd)
4957{
4958	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4959	u16 i, buf_size = __struct_size(qg_list);
4960	struct ice_q_ctx *q_ctx;
4961	int status = -ENOENT;
4962	struct ice_hw *hw;
 
4963
4964	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4965		return -EIO;
4966
4967	hw = pi->hw;
4968
4969	if (!num_queues) {
4970		/* if queue is disabled already yet the disable queue command
4971		 * has to be sent to complete the VF reset, then call
4972		 * ice_aq_dis_lan_txq without any queue information
4973		 */
4974		if (rst_src)
4975			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4976						  vmvf_num, NULL);
4977		return -EIO;
4978	}
4979
 
 
 
 
 
4980	mutex_lock(&pi->sched_lock);
4981
4982	for (i = 0; i < num_queues; i++) {
4983		struct ice_sched_node *node;
4984
4985		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4986		if (!node)
4987			continue;
4988		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4989		if (!q_ctx) {
4990			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4991				  q_handles[i]);
4992			continue;
4993		}
4994		if (q_ctx->q_handle != q_handles[i]) {
4995			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4996				  q_ctx->q_handle, q_handles[i]);
4997			continue;
4998		}
4999		qg_list->parent_teid = node->info.parent_teid;
5000		qg_list->num_qs = 1;
5001		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
5002		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5003					    vmvf_num, cd);
5004
5005		if (status)
5006			break;
5007		ice_free_sched_node(pi, node);
5008		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5009		q_ctx->q_teid = ICE_INVAL_TEID;
5010	}
5011	mutex_unlock(&pi->sched_lock);
 
5012	return status;
5013}
5014
5015/**
5016 * ice_cfg_vsi_qs - configure the new/existing VSI queues
5017 * @pi: port information structure
5018 * @vsi_handle: software VSI handle
5019 * @tc_bitmap: TC bitmap
5020 * @maxqs: max queues array per TC
5021 * @owner: LAN or RDMA
5022 *
5023 * This function adds/updates the VSI queues per TC.
5024 */
5025static int
5026ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5027	       u16 *maxqs, u8 owner)
5028{
5029	int status = 0;
5030	u8 i;
5031
5032	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5033		return -EIO;
5034
5035	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5036		return -EINVAL;
5037
5038	mutex_lock(&pi->sched_lock);
5039
5040	ice_for_each_traffic_class(i) {
5041		/* configuration is possible only if TC node is present */
5042		if (!ice_sched_get_tc_node(pi, i))
5043			continue;
5044
5045		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5046					   ice_is_tc_ena(tc_bitmap, i));
5047		if (status)
5048			break;
5049	}
5050
5051	mutex_unlock(&pi->sched_lock);
5052	return status;
5053}
5054
5055/**
5056 * ice_cfg_vsi_lan - configure VSI LAN queues
5057 * @pi: port information structure
5058 * @vsi_handle: software VSI handle
5059 * @tc_bitmap: TC bitmap
5060 * @max_lanqs: max LAN queues array per TC
5061 *
5062 * This function adds/updates the VSI LAN queues per TC.
5063 */
5064int
5065ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5066		u16 *max_lanqs)
5067{
5068	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5069			      ICE_SCHED_NODE_OWNER_LAN);
5070}
5071
5072/**
5073 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5074 * @pi: port information structure
5075 * @vsi_handle: software VSI handle
5076 * @tc_bitmap: TC bitmap
5077 * @max_rdmaqs: max RDMA queues array per TC
5078 *
5079 * This function adds/updates the VSI RDMA queues per TC.
5080 */
5081int
5082ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5083		 u16 *max_rdmaqs)
5084{
5085	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5086			      ICE_SCHED_NODE_OWNER_RDMA);
5087}
5088
5089/**
5090 * ice_ena_vsi_rdma_qset
5091 * @pi: port information structure
5092 * @vsi_handle: software VSI handle
5093 * @tc: TC number
5094 * @rdma_qset: pointer to RDMA Qset
5095 * @num_qsets: number of RDMA Qsets
5096 * @qset_teid: pointer to Qset node TEIDs
5097 *
5098 * This function adds RDMA Qset
5099 */
5100int
5101ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5102		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5103{
5104	struct ice_aqc_txsched_elem_data node = { 0 };
5105	struct ice_aqc_add_rdma_qset_data *buf;
5106	struct ice_sched_node *parent;
5107	struct ice_hw *hw;
5108	u16 i, buf_size;
5109	int ret;
5110
5111	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5112		return -EIO;
5113	hw = pi->hw;
5114
5115	if (!ice_is_vsi_valid(hw, vsi_handle))
5116		return -EINVAL;
5117
5118	buf_size = struct_size(buf, rdma_qsets, num_qsets);
5119	buf = kzalloc(buf_size, GFP_KERNEL);
5120	if (!buf)
5121		return -ENOMEM;
5122	mutex_lock(&pi->sched_lock);
5123
5124	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5125					    ICE_SCHED_NODE_OWNER_RDMA);
5126	if (!parent) {
5127		ret = -EINVAL;
5128		goto rdma_error_exit;
5129	}
5130	buf->parent_teid = parent->info.node_teid;
5131	node.parent_teid = parent->info.node_teid;
5132
5133	buf->num_qsets = cpu_to_le16(num_qsets);
5134	for (i = 0; i < num_qsets; i++) {
5135		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5136		buf->rdma_qsets[i].info.valid_sections =
5137			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5138			ICE_AQC_ELEM_VALID_EIR;
5139		buf->rdma_qsets[i].info.generic = 0;
5140		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5141			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5142		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5143			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5144		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5145			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5146		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5147			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5148	}
5149	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5150	if (ret) {
5151		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5152		goto rdma_error_exit;
5153	}
5154	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5155	for (i = 0; i < num_qsets; i++) {
5156		node.node_teid = buf->rdma_qsets[i].qset_teid;
5157		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5158					 &node, NULL);
5159		if (ret)
5160			break;
5161		qset_teid[i] = le32_to_cpu(node.node_teid);
5162	}
5163rdma_error_exit:
5164	mutex_unlock(&pi->sched_lock);
5165	kfree(buf);
5166	return ret;
5167}
5168
5169/**
5170 * ice_dis_vsi_rdma_qset - free RDMA resources
5171 * @pi: port_info struct
5172 * @count: number of RDMA Qsets to free
5173 * @qset_teid: TEID of Qset node
5174 * @q_id: list of queue IDs being disabled
5175 */
5176int
5177ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5178		      u16 *q_id)
5179{
5180	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5181	u16 qg_size = __struct_size(qg_list);
5182	struct ice_hw *hw;
5183	int status = 0;
 
5184	int i;
5185
5186	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5187		return -EIO;
5188
5189	hw = pi->hw;
5190
 
 
 
 
 
5191	mutex_lock(&pi->sched_lock);
5192
5193	for (i = 0; i < count; i++) {
5194		struct ice_sched_node *node;
5195
5196		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5197		if (!node)
5198			continue;
5199
5200		qg_list->parent_teid = node->info.parent_teid;
5201		qg_list->num_qs = 1;
5202		qg_list->q_id[0] =
5203			cpu_to_le16(q_id[i] |
5204				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5205
5206		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5207					    ICE_NO_RESET, 0, NULL);
5208		if (status)
5209			break;
5210
5211		ice_free_sched_node(pi, node);
5212	}
5213
5214	mutex_unlock(&pi->sched_lock);
5215	return status;
5216}
5217
5218/**
5219 * ice_aq_get_cgu_abilities - get cgu abilities
5220 * @hw: pointer to the HW struct
5221 * @abilities: CGU abilities
5222 *
5223 * Get CGU abilities (0x0C61)
5224 * Return: 0 on success or negative value on failure.
5225 */
5226int
5227ice_aq_get_cgu_abilities(struct ice_hw *hw,
5228			 struct ice_aqc_get_cgu_abilities *abilities)
5229{
5230	struct ice_aq_desc desc;
5231
5232	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5233	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5234}
5235
5236/**
5237 * ice_aq_set_input_pin_cfg - set input pin config
5238 * @hw: pointer to the HW struct
5239 * @input_idx: Input index
5240 * @flags1: Input flags
5241 * @flags2: Input flags
5242 * @freq: Frequency in Hz
5243 * @phase_delay: Delay in ps
5244 *
5245 * Set CGU input config (0x0C62)
5246 * Return: 0 on success or negative value on failure.
5247 */
5248int
5249ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5250			 u32 freq, s32 phase_delay)
5251{
5252	struct ice_aqc_set_cgu_input_config *cmd;
5253	struct ice_aq_desc desc;
5254
5255	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5256	cmd = &desc.params.set_cgu_input_config;
5257	cmd->input_idx = input_idx;
5258	cmd->flags1 = flags1;
5259	cmd->flags2 = flags2;
5260	cmd->freq = cpu_to_le32(freq);
5261	cmd->phase_delay = cpu_to_le32(phase_delay);
5262
5263	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5264}
5265
5266/**
5267 * ice_aq_get_input_pin_cfg - get input pin config
5268 * @hw: pointer to the HW struct
5269 * @input_idx: Input index
5270 * @status: Pin status
5271 * @type: Pin type
5272 * @flags1: Input flags
5273 * @flags2: Input flags
5274 * @freq: Frequency in Hz
5275 * @phase_delay: Delay in ps
5276 *
5277 * Get CGU input config (0x0C63)
5278 * Return: 0 on success or negative value on failure.
5279 */
5280int
5281ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5282			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5283{
5284	struct ice_aqc_get_cgu_input_config *cmd;
5285	struct ice_aq_desc desc;
5286	int ret;
5287
5288	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5289	cmd = &desc.params.get_cgu_input_config;
5290	cmd->input_idx = input_idx;
5291
5292	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5293	if (!ret) {
5294		if (status)
5295			*status = cmd->status;
5296		if (type)
5297			*type = cmd->type;
5298		if (flags1)
5299			*flags1 = cmd->flags1;
5300		if (flags2)
5301			*flags2 = cmd->flags2;
5302		if (freq)
5303			*freq = le32_to_cpu(cmd->freq);
5304		if (phase_delay)
5305			*phase_delay = le32_to_cpu(cmd->phase_delay);
5306	}
5307
5308	return ret;
5309}
5310
5311/**
5312 * ice_aq_set_output_pin_cfg - set output pin config
5313 * @hw: pointer to the HW struct
5314 * @output_idx: Output index
5315 * @flags: Output flags
5316 * @src_sel: Index of DPLL block
5317 * @freq: Output frequency
5318 * @phase_delay: Output phase compensation
5319 *
5320 * Set CGU output config (0x0C64)
5321 * Return: 0 on success or negative value on failure.
5322 */
5323int
5324ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5325			  u8 src_sel, u32 freq, s32 phase_delay)
5326{
5327	struct ice_aqc_set_cgu_output_config *cmd;
5328	struct ice_aq_desc desc;
5329
5330	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5331	cmd = &desc.params.set_cgu_output_config;
5332	cmd->output_idx = output_idx;
5333	cmd->flags = flags;
5334	cmd->src_sel = src_sel;
5335	cmd->freq = cpu_to_le32(freq);
5336	cmd->phase_delay = cpu_to_le32(phase_delay);
5337
5338	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5339}
5340
5341/**
5342 * ice_aq_get_output_pin_cfg - get output pin config
5343 * @hw: pointer to the HW struct
5344 * @output_idx: Output index
5345 * @flags: Output flags
5346 * @src_sel: Internal DPLL source
5347 * @freq: Output frequency
5348 * @src_freq: Source frequency
5349 *
5350 * Get CGU output config (0x0C65)
5351 * Return: 0 on success or negative value on failure.
5352 */
5353int
5354ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5355			  u8 *src_sel, u32 *freq, u32 *src_freq)
5356{
5357	struct ice_aqc_get_cgu_output_config *cmd;
5358	struct ice_aq_desc desc;
5359	int ret;
5360
5361	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5362	cmd = &desc.params.get_cgu_output_config;
5363	cmd->output_idx = output_idx;
5364
5365	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5366	if (!ret) {
5367		if (flags)
5368			*flags = cmd->flags;
5369		if (src_sel)
5370			*src_sel = cmd->src_sel;
5371		if (freq)
5372			*freq = le32_to_cpu(cmd->freq);
5373		if (src_freq)
5374			*src_freq = le32_to_cpu(cmd->src_freq);
5375	}
5376
5377	return ret;
5378}
5379
5380/**
5381 * ice_aq_get_cgu_dpll_status - get dpll status
5382 * @hw: pointer to the HW struct
5383 * @dpll_num: DPLL index
5384 * @ref_state: Reference clock state
5385 * @config: current DPLL config
5386 * @dpll_state: current DPLL state
5387 * @phase_offset: Phase offset in ns
5388 * @eec_mode: EEC_mode
5389 *
5390 * Get CGU DPLL status (0x0C66)
5391 * Return: 0 on success or negative value on failure.
5392 */
5393int
5394ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5395			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5396			   u8 *eec_mode)
5397{
5398	struct ice_aqc_get_cgu_dpll_status *cmd;
5399	struct ice_aq_desc desc;
5400	int status;
5401
5402	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5403	cmd = &desc.params.get_cgu_dpll_status;
5404	cmd->dpll_num = dpll_num;
5405
5406	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5407	if (!status) {
5408		*ref_state = cmd->ref_state;
5409		*dpll_state = cmd->dpll_state;
5410		*config = cmd->config;
5411		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5412		*phase_offset <<= 32;
5413		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5414		*phase_offset = sign_extend64(*phase_offset, 47);
5415		*eec_mode = cmd->eec_mode;
5416	}
5417
5418	return status;
5419}
5420
5421/**
5422 * ice_aq_set_cgu_dpll_config - set dpll config
5423 * @hw: pointer to the HW struct
5424 * @dpll_num: DPLL index
5425 * @ref_state: Reference clock state
5426 * @config: DPLL config
5427 * @eec_mode: EEC mode
5428 *
5429 * Set CGU DPLL config (0x0C67)
5430 * Return: 0 on success or negative value on failure.
5431 */
5432int
5433ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5434			   u8 config, u8 eec_mode)
5435{
5436	struct ice_aqc_set_cgu_dpll_config *cmd;
5437	struct ice_aq_desc desc;
5438
5439	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5440	cmd = &desc.params.set_cgu_dpll_config;
5441	cmd->dpll_num = dpll_num;
5442	cmd->ref_state = ref_state;
5443	cmd->config = config;
5444	cmd->eec_mode = eec_mode;
5445
5446	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5447}
5448
5449/**
5450 * ice_aq_set_cgu_ref_prio - set input reference priority
5451 * @hw: pointer to the HW struct
5452 * @dpll_num: DPLL index
5453 * @ref_idx: Reference pin index
5454 * @ref_priority: Reference input priority
5455 *
5456 * Set CGU reference priority (0x0C68)
5457 * Return: 0 on success or negative value on failure.
5458 */
5459int
5460ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5461			u8 ref_priority)
5462{
5463	struct ice_aqc_set_cgu_ref_prio *cmd;
5464	struct ice_aq_desc desc;
5465
5466	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5467	cmd = &desc.params.set_cgu_ref_prio;
5468	cmd->dpll_num = dpll_num;
5469	cmd->ref_idx = ref_idx;
5470	cmd->ref_priority = ref_priority;
5471
5472	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5473}
5474
5475/**
5476 * ice_aq_get_cgu_ref_prio - get input reference priority
5477 * @hw: pointer to the HW struct
5478 * @dpll_num: DPLL index
5479 * @ref_idx: Reference pin index
5480 * @ref_prio: Reference input priority
5481 *
5482 * Get CGU reference priority (0x0C69)
5483 * Return: 0 on success or negative value on failure.
5484 */
5485int
5486ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5487			u8 *ref_prio)
5488{
5489	struct ice_aqc_get_cgu_ref_prio *cmd;
5490	struct ice_aq_desc desc;
5491	int status;
5492
5493	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5494	cmd = &desc.params.get_cgu_ref_prio;
5495	cmd->dpll_num = dpll_num;
5496	cmd->ref_idx = ref_idx;
5497
5498	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5499	if (!status)
5500		*ref_prio = cmd->ref_priority;
5501
5502	return status;
5503}
5504
5505/**
5506 * ice_aq_get_cgu_info - get cgu info
5507 * @hw: pointer to the HW struct
5508 * @cgu_id: CGU ID
5509 * @cgu_cfg_ver: CGU config version
5510 * @cgu_fw_ver: CGU firmware version
5511 *
5512 * Get CGU info (0x0C6A)
5513 * Return: 0 on success or negative value on failure.
5514 */
5515int
5516ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5517		    u32 *cgu_fw_ver)
5518{
5519	struct ice_aqc_get_cgu_info *cmd;
5520	struct ice_aq_desc desc;
5521	int status;
5522
5523	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5524	cmd = &desc.params.get_cgu_info;
5525
5526	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5527	if (!status) {
5528		*cgu_id = le32_to_cpu(cmd->cgu_id);
5529		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5530		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5531	}
5532
5533	return status;
5534}
5535
5536/**
5537 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5538 * @hw: pointer to the HW struct
5539 * @phy_output: PHY reference clock output pin
5540 * @enable: GPIO state to be applied
5541 * @freq: PHY output frequency
5542 *
5543 * Set phy recovered clock as reference (0x0630)
5544 * Return: 0 on success or negative value on failure.
5545 */
5546int
5547ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5548			   u32 *freq)
5549{
5550	struct ice_aqc_set_phy_rec_clk_out *cmd;
5551	struct ice_aq_desc desc;
5552	int status;
5553
5554	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5555	cmd = &desc.params.set_phy_rec_clk_out;
5556	cmd->phy_output = phy_output;
5557	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5558	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5559	cmd->freq = cpu_to_le32(*freq);
5560
5561	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5562	if (!status)
5563		*freq = le32_to_cpu(cmd->freq);
5564
5565	return status;
5566}
5567
5568/**
5569 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5570 * @hw: pointer to the HW struct
5571 * @phy_output: PHY reference clock output pin
5572 * @port_num: Port number
5573 * @flags: PHY flags
5574 * @node_handle: PHY output frequency
5575 *
5576 * Get PHY recovered clock output info (0x0631)
5577 * Return: 0 on success or negative value on failure.
5578 */
5579int
5580ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5581			   u8 *flags, u16 *node_handle)
5582{
5583	struct ice_aqc_get_phy_rec_clk_out *cmd;
5584	struct ice_aq_desc desc;
5585	int status;
5586
5587	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5588	cmd = &desc.params.get_phy_rec_clk_out;
5589	cmd->phy_output = *phy_output;
5590
5591	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5592	if (!status) {
5593		*phy_output = cmd->phy_output;
5594		if (port_num)
5595			*port_num = cmd->port_num;
5596		if (flags)
5597			*flags = cmd->flags;
5598		if (node_handle)
5599			*node_handle = le16_to_cpu(cmd->node_handle);
5600	}
5601
5602	return status;
5603}
5604
5605/**
5606 * ice_aq_get_sensor_reading
5607 * @hw: pointer to the HW struct
5608 * @data: pointer to data to be read from the sensor
5609 *
5610 * Get sensor reading (0x0632)
5611 */
5612int ice_aq_get_sensor_reading(struct ice_hw *hw,
5613			      struct ice_aqc_get_sensor_reading_resp *data)
5614{
5615	struct ice_aqc_get_sensor_reading *cmd;
5616	struct ice_aq_desc desc;
5617	int status;
5618
5619	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5620	cmd = &desc.params.get_sensor_reading;
5621#define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5622#define ICE_INTERNAL_TEMP_SENSOR	0
5623	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5624	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5625
5626	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5627	if (!status)
5628		memcpy(data, &desc.params.get_sensor_reading_resp,
5629		       sizeof(*data));
5630
5631	return status;
5632}
5633
5634/**
5635 * ice_replay_pre_init - replay pre initialization
5636 * @hw: pointer to the HW struct
5637 *
5638 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5639 */
5640static int ice_replay_pre_init(struct ice_hw *hw)
5641{
5642	struct ice_switch_info *sw = hw->switch_info;
5643	u8 i;
5644
5645	/* Delete old entries from replay filter list head if there is any */
5646	ice_rm_all_sw_replay_rule_info(hw);
5647	/* In start of replay, move entries into replay_rules list, it
5648	 * will allow adding rules entries back to filt_rules list,
5649	 * which is operational list.
5650	 */
5651	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5652		list_replace_init(&sw->recp_list[i].filt_rules,
5653				  &sw->recp_list[i].filt_replay_rules);
5654	ice_sched_replay_agg_vsi_preinit(hw);
5655
5656	return 0;
5657}
5658
5659/**
5660 * ice_replay_vsi - replay VSI configuration
5661 * @hw: pointer to the HW struct
5662 * @vsi_handle: driver VSI handle
5663 *
5664 * Restore all VSI configuration after reset. It is required to call this
5665 * function with main VSI first.
5666 */
5667int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5668{
5669	int status;
5670
5671	if (!ice_is_vsi_valid(hw, vsi_handle))
5672		return -EINVAL;
5673
5674	/* Replay pre-initialization if there is any */
5675	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5676		status = ice_replay_pre_init(hw);
5677		if (status)
5678			return status;
5679	}
5680	/* Replay per VSI all RSS configurations */
5681	status = ice_replay_rss_cfg(hw, vsi_handle);
5682	if (status)
5683		return status;
5684	/* Replay per VSI all filters */
5685	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5686	if (!status)
5687		status = ice_replay_vsi_agg(hw, vsi_handle);
5688	return status;
5689}
5690
5691/**
5692 * ice_replay_post - post replay configuration cleanup
5693 * @hw: pointer to the HW struct
5694 *
5695 * Post replay cleanup.
5696 */
5697void ice_replay_post(struct ice_hw *hw)
5698{
5699	/* Delete old entries from replay filter list head */
5700	ice_rm_all_sw_replay_rule_info(hw);
5701	ice_sched_replay_agg(hw);
5702}
5703
5704/**
5705 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5706 * @hw: ptr to the hardware info
5707 * @reg: offset of 64 bit HW register to read from
5708 * @prev_stat_loaded: bool to specify if previous stats are loaded
5709 * @prev_stat: ptr to previous loaded stat value
5710 * @cur_stat: ptr to current stat value
5711 */
5712void
5713ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5714		  u64 *prev_stat, u64 *cur_stat)
5715{
5716	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5717
5718	/* device stats are not reset at PFR, they likely will not be zeroed
5719	 * when the driver starts. Thus, save the value from the first read
5720	 * without adding to the statistic value so that we report stats which
5721	 * count up from zero.
5722	 */
5723	if (!prev_stat_loaded) {
5724		*prev_stat = new_data;
5725		return;
5726	}
5727
5728	/* Calculate the difference between the new and old values, and then
5729	 * add it to the software stat value.
5730	 */
5731	if (new_data >= *prev_stat)
5732		*cur_stat += new_data - *prev_stat;
5733	else
5734		/* to manage the potential roll-over */
5735		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5736
5737	/* Update the previously stored value to prepare for next read */
5738	*prev_stat = new_data;
5739}
5740
5741/**
5742 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5743 * @hw: ptr to the hardware info
5744 * @reg: offset of HW register to read from
5745 * @prev_stat_loaded: bool to specify if previous stats are loaded
5746 * @prev_stat: ptr to previous loaded stat value
5747 * @cur_stat: ptr to current stat value
5748 */
5749void
5750ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5751		  u64 *prev_stat, u64 *cur_stat)
5752{
5753	u32 new_data;
5754
5755	new_data = rd32(hw, reg);
5756
5757	/* device stats are not reset at PFR, they likely will not be zeroed
5758	 * when the driver starts. Thus, save the value from the first read
5759	 * without adding to the statistic value so that we report stats which
5760	 * count up from zero.
5761	 */
5762	if (!prev_stat_loaded) {
5763		*prev_stat = new_data;
5764		return;
5765	}
5766
5767	/* Calculate the difference between the new and old values, and then
5768	 * add it to the software stat value.
5769	 */
5770	if (new_data >= *prev_stat)
5771		*cur_stat += new_data - *prev_stat;
5772	else
5773		/* to manage the potential roll-over */
5774		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5775
5776	/* Update the previously stored value to prepare for next read */
5777	*prev_stat = new_data;
5778}
5779
5780/**
5781 * ice_sched_query_elem - query element information from HW
5782 * @hw: pointer to the HW struct
5783 * @node_teid: node TEID to be queried
5784 * @buf: buffer to element information
5785 *
5786 * This function queries HW element information
5787 */
5788int
5789ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5790		     struct ice_aqc_txsched_elem_data *buf)
5791{
5792	u16 buf_size, num_elem_ret = 0;
5793	int status;
5794
5795	buf_size = sizeof(*buf);
5796	memset(buf, 0, buf_size);
5797	buf->node_teid = cpu_to_le32(node_teid);
5798	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5799					  NULL);
5800	if (status || num_elem_ret != 1)
5801		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5802	return status;
5803}
5804
5805/**
5806 * ice_aq_read_i2c
5807 * @hw: pointer to the hw struct
5808 * @topo_addr: topology address for a device to communicate with
5809 * @bus_addr: 7-bit I2C bus address
5810 * @addr: I2C memory address (I2C offset) with up to 16 bits
5811 * @params: I2C parameters: bit [7] - Repeated start,
5812 *			    bits [6:5] data offset size,
5813 *			    bit [4] - I2C address type,
5814 *			    bits [3:0] - data size to read (0-16 bytes)
5815 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5816 * @cd: pointer to command details structure or NULL
5817 *
5818 * Read I2C (0x06E2)
5819 */
5820int
5821ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5822		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5823		struct ice_sq_cd *cd)
5824{
5825	struct ice_aq_desc desc = { 0 };
5826	struct ice_aqc_i2c *cmd;
5827	u8 data_size;
5828	int status;
5829
5830	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5831	cmd = &desc.params.read_write_i2c;
5832
5833	if (!data)
5834		return -EINVAL;
5835
5836	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5837
5838	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5839	cmd->topo_addr = topo_addr;
5840	cmd->i2c_params = params;
5841	cmd->i2c_addr = addr;
5842
5843	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5844	if (!status) {
5845		struct ice_aqc_read_i2c_resp *resp;
5846		u8 i;
5847
5848		resp = &desc.params.read_i2c_resp;
5849		for (i = 0; i < data_size; i++) {
5850			*data = resp->i2c_data[i];
5851			data++;
5852		}
5853	}
5854
5855	return status;
5856}
5857
5858/**
5859 * ice_aq_write_i2c
5860 * @hw: pointer to the hw struct
5861 * @topo_addr: topology address for a device to communicate with
5862 * @bus_addr: 7-bit I2C bus address
5863 * @addr: I2C memory address (I2C offset) with up to 16 bits
5864 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5865 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5866 * @cd: pointer to command details structure or NULL
5867 *
5868 * Write I2C (0x06E3)
5869 *
5870 * * Return:
5871 * * 0             - Successful write to the i2c device
5872 * * -EINVAL       - Data size greater than 4 bytes
5873 * * -EIO          - FW error
5874 */
5875int
5876ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5877		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5878		 struct ice_sq_cd *cd)
5879{
5880	struct ice_aq_desc desc = { 0 };
5881	struct ice_aqc_i2c *cmd;
5882	u8 data_size;
5883
5884	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5885	cmd = &desc.params.read_write_i2c;
5886
5887	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5888
5889	/* data_size limited to 4 */
5890	if (data_size > 4)
5891		return -EINVAL;
5892
5893	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5894	cmd->topo_addr = topo_addr;
5895	cmd->i2c_params = params;
5896	cmd->i2c_addr = addr;
5897
5898	memcpy(cmd->i2c_data, data, data_size);
5899
5900	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5901}
5902
5903/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5904 * ice_aq_set_gpio
5905 * @hw: pointer to the hw struct
5906 * @gpio_ctrl_handle: GPIO controller node handle
5907 * @pin_idx: IO Number of the GPIO that needs to be set
5908 * @value: SW provide IO value to set in the LSB
5909 * @cd: pointer to command details structure or NULL
5910 *
5911 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5912 */
5913int
5914ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5915		struct ice_sq_cd *cd)
5916{
5917	struct ice_aqc_gpio *cmd;
5918	struct ice_aq_desc desc;
5919
5920	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5921	cmd = &desc.params.read_write_gpio;
5922	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5923	cmd->gpio_num = pin_idx;
5924	cmd->gpio_val = value ? 1 : 0;
5925
5926	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5927}
5928
5929/**
5930 * ice_aq_get_gpio
5931 * @hw: pointer to the hw struct
5932 * @gpio_ctrl_handle: GPIO controller node handle
5933 * @pin_idx: IO Number of the GPIO that needs to be set
5934 * @value: IO value read
5935 * @cd: pointer to command details structure or NULL
5936 *
5937 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5938 * the topology
5939 */
5940int
5941ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5942		bool *value, struct ice_sq_cd *cd)
5943{
5944	struct ice_aqc_gpio *cmd;
5945	struct ice_aq_desc desc;
5946	int status;
5947
5948	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5949	cmd = &desc.params.read_write_gpio;
5950	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5951	cmd->gpio_num = pin_idx;
5952
5953	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5954	if (status)
5955		return status;
5956
5957	*value = !!cmd->gpio_val;
5958	return 0;
5959}
5960
5961/**
5962 * ice_is_fw_api_min_ver
5963 * @hw: pointer to the hardware structure
5964 * @maj: major version
5965 * @min: minor version
5966 * @patch: patch version
5967 *
5968 * Checks if the firmware API is minimum version
5969 */
5970static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5971{
5972	if (hw->api_maj_ver == maj) {
5973		if (hw->api_min_ver > min)
5974			return true;
5975		if (hw->api_min_ver == min && hw->api_patch >= patch)
5976			return true;
5977	} else if (hw->api_maj_ver > maj) {
5978		return true;
5979	}
5980
5981	return false;
5982}
5983
5984/**
5985 * ice_fw_supports_link_override
5986 * @hw: pointer to the hardware structure
5987 *
5988 * Checks if the firmware supports link override
5989 */
5990bool ice_fw_supports_link_override(struct ice_hw *hw)
5991{
5992	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5993				     ICE_FW_API_LINK_OVERRIDE_MIN,
5994				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5995}
5996
5997/**
5998 * ice_get_link_default_override
5999 * @ldo: pointer to the link default override struct
6000 * @pi: pointer to the port info struct
6001 *
6002 * Gets the link default override for a port
6003 */
6004int
6005ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6006			      struct ice_port_info *pi)
6007{
6008	u16 i, tlv, tlv_len, tlv_start, buf, offset;
6009	struct ice_hw *hw = pi->hw;
6010	int status;
6011
6012	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6013					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6014	if (status) {
6015		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6016		return status;
6017	}
6018
6019	/* Each port has its own config; calculate for our port */
6020	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6021		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6022
6023	/* link options first */
6024	status = ice_read_sr_word(hw, tlv_start, &buf);
6025	if (status) {
6026		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6027		return status;
6028	}
6029	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
6030	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6031		ICE_LINK_OVERRIDE_PHY_CFG_S;
6032
6033	/* link PHY config */
6034	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6035	status = ice_read_sr_word(hw, offset, &buf);
6036	if (status) {
6037		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6038		return status;
6039	}
6040	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6041
6042	/* PHY types low */
6043	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6044	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6045		status = ice_read_sr_word(hw, (offset + i), &buf);
6046		if (status) {
6047			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6048			return status;
6049		}
6050		/* shift 16 bits at a time to fill 64 bits */
6051		ldo->phy_type_low |= ((u64)buf << (i * 16));
6052	}
6053
6054	/* PHY types high */
6055	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6056		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6057	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6058		status = ice_read_sr_word(hw, (offset + i), &buf);
6059		if (status) {
6060			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6061			return status;
6062		}
6063		/* shift 16 bits at a time to fill 64 bits */
6064		ldo->phy_type_high |= ((u64)buf << (i * 16));
6065	}
6066
6067	return status;
6068}
6069
6070/**
6071 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6072 * @caps: get PHY capability data
6073 */
6074bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6075{
6076	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6077	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6078				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
6079				       ICE_AQC_PHY_AN_EN_CLAUSE37))
6080		return true;
6081
6082	return false;
6083}
6084
6085/**
6086 * ice_aq_set_lldp_mib - Set the LLDP MIB
6087 * @hw: pointer to the HW struct
6088 * @mib_type: Local, Remote or both Local and Remote MIBs
6089 * @buf: pointer to the caller-supplied buffer to store the MIB block
6090 * @buf_size: size of the buffer (in bytes)
6091 * @cd: pointer to command details structure or NULL
6092 *
6093 * Set the LLDP MIB. (0x0A08)
6094 */
6095int
6096ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6097		    struct ice_sq_cd *cd)
6098{
6099	struct ice_aqc_lldp_set_local_mib *cmd;
6100	struct ice_aq_desc desc;
6101
6102	cmd = &desc.params.lldp_set_mib;
6103
6104	if (buf_size == 0 || !buf)
6105		return -EINVAL;
6106
6107	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6108
6109	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
6110	desc.datalen = cpu_to_le16(buf_size);
6111
6112	cmd->type = mib_type;
6113	cmd->length = cpu_to_le16(buf_size);
6114
6115	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6116}
6117
6118/**
6119 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6120 * @hw: pointer to HW struct
6121 */
6122bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6123{
6124	if (hw->mac_type != ICE_MAC_E810)
6125		return false;
6126
6127	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6128				     ICE_FW_API_LLDP_FLTR_MIN,
6129				     ICE_FW_API_LLDP_FLTR_PATCH);
6130}
6131
6132/**
6133 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6134 * @hw: pointer to HW struct
6135 * @vsi_num: absolute HW index for VSI
6136 * @add: boolean for if adding or removing a filter
6137 */
6138int
6139ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6140{
6141	struct ice_aqc_lldp_filter_ctrl *cmd;
6142	struct ice_aq_desc desc;
6143
6144	cmd = &desc.params.lldp_filter_ctrl;
6145
6146	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6147
6148	if (add)
6149		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6150	else
6151		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6152
6153	cmd->vsi_num = cpu_to_le16(vsi_num);
6154
6155	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6156}
6157
6158/**
6159 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6160 * @hw: pointer to HW struct
6161 */
6162int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6163{
6164	struct ice_aq_desc desc;
6165
6166	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6167
6168	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6169}
6170
6171/**
6172 * ice_fw_supports_report_dflt_cfg
6173 * @hw: pointer to the hardware structure
6174 *
6175 * Checks if the firmware supports report default configuration
6176 */
6177bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6178{
6179	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6180				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6181				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6182}
6183
6184/* each of the indexes into the following array match the speed of a return
6185 * value from the list of AQ returned speeds like the range:
6186 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6187 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6188 * array. The array is defined as 15 elements long because the link_speed
6189 * returned by the firmware is a 16 bit * value, but is indexed
6190 * by [fls(speed) - 1]
6191 */
6192static const u32 ice_aq_to_link_speed[] = {
6193	SPEED_10,	/* BIT(0) */
6194	SPEED_100,
6195	SPEED_1000,
6196	SPEED_2500,
6197	SPEED_5000,
6198	SPEED_10000,
6199	SPEED_20000,
6200	SPEED_25000,
6201	SPEED_40000,
6202	SPEED_50000,
6203	SPEED_100000,	/* BIT(10) */
6204	SPEED_200000,
6205};
6206
6207/**
6208 * ice_get_link_speed - get integer speed from table
6209 * @index: array index from fls(aq speed) - 1
6210 *
6211 * Returns: u32 value containing integer speed
6212 */
6213u32 ice_get_link_speed(u16 index)
6214{
6215	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6216		return 0;
6217
6218	return ice_aq_to_link_speed[index];
6219}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_sched.h"
   6#include "ice_adminq_cmd.h"
   7#include "ice_flow.h"
 
   8
   9#define ICE_PF_RESET_WAIT_COUNT	300
 
  10
  11static const char * const ice_link_mode_str_low[] = {
  12	[0] = "100BASE_TX",
  13	[1] = "100M_SGMII",
  14	[2] = "1000BASE_T",
  15	[3] = "1000BASE_SX",
  16	[4] = "1000BASE_LX",
  17	[5] = "1000BASE_KX",
  18	[6] = "1G_SGMII",
  19	[7] = "2500BASE_T",
  20	[8] = "2500BASE_X",
  21	[9] = "2500BASE_KX",
  22	[10] = "5GBASE_T",
  23	[11] = "5GBASE_KR",
  24	[12] = "10GBASE_T",
  25	[13] = "10G_SFI_DA",
  26	[14] = "10GBASE_SR",
  27	[15] = "10GBASE_LR",
  28	[16] = "10GBASE_KR_CR1",
  29	[17] = "10G_SFI_AOC_ACC",
  30	[18] = "10G_SFI_C2C",
  31	[19] = "25GBASE_T",
  32	[20] = "25GBASE_CR",
  33	[21] = "25GBASE_CR_S",
  34	[22] = "25GBASE_CR1",
  35	[23] = "25GBASE_SR",
  36	[24] = "25GBASE_LR",
  37	[25] = "25GBASE_KR",
  38	[26] = "25GBASE_KR_S",
  39	[27] = "25GBASE_KR1",
  40	[28] = "25G_AUI_AOC_ACC",
  41	[29] = "25G_AUI_C2C",
  42	[30] = "40GBASE_CR4",
  43	[31] = "40GBASE_SR4",
  44	[32] = "40GBASE_LR4",
  45	[33] = "40GBASE_KR4",
  46	[34] = "40G_XLAUI_AOC_ACC",
  47	[35] = "40G_XLAUI",
  48	[36] = "50GBASE_CR2",
  49	[37] = "50GBASE_SR2",
  50	[38] = "50GBASE_LR2",
  51	[39] = "50GBASE_KR2",
  52	[40] = "50G_LAUI2_AOC_ACC",
  53	[41] = "50G_LAUI2",
  54	[42] = "50G_AUI2_AOC_ACC",
  55	[43] = "50G_AUI2",
  56	[44] = "50GBASE_CP",
  57	[45] = "50GBASE_SR",
  58	[46] = "50GBASE_FR",
  59	[47] = "50GBASE_LR",
  60	[48] = "50GBASE_KR_PAM4",
  61	[49] = "50G_AUI1_AOC_ACC",
  62	[50] = "50G_AUI1",
  63	[51] = "100GBASE_CR4",
  64	[52] = "100GBASE_SR4",
  65	[53] = "100GBASE_LR4",
  66	[54] = "100GBASE_KR4",
  67	[55] = "100G_CAUI4_AOC_ACC",
  68	[56] = "100G_CAUI4",
  69	[57] = "100G_AUI4_AOC_ACC",
  70	[58] = "100G_AUI4",
  71	[59] = "100GBASE_CR_PAM4",
  72	[60] = "100GBASE_KR_PAM4",
  73	[61] = "100GBASE_CP2",
  74	[62] = "100GBASE_SR2",
  75	[63] = "100GBASE_DR",
  76};
  77
  78static const char * const ice_link_mode_str_high[] = {
  79	[0] = "100GBASE_KR2_PAM4",
  80	[1] = "100G_CAUI2_AOC_ACC",
  81	[2] = "100G_CAUI2",
  82	[3] = "100G_AUI2_AOC_ACC",
  83	[4] = "100G_AUI2",
  84};
  85
  86/**
  87 * ice_dump_phy_type - helper function to dump phy_type
  88 * @hw: pointer to the HW structure
  89 * @low: 64 bit value for phy_type_low
  90 * @high: 64 bit value for phy_type_high
  91 * @prefix: prefix string to differentiate multiple dumps
  92 */
  93static void
  94ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
  95{
  96	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
  97
  98	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
  99		if (low & BIT_ULL(i))
 100			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
 101				  prefix, i, ice_link_mode_str_low[i]);
 102	}
 103
 104	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
 105
 106	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
 107		if (high & BIT_ULL(i))
 108			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
 109				  prefix, i, ice_link_mode_str_high[i]);
 110	}
 111}
 112
 113/**
 114 * ice_set_mac_type - Sets MAC type
 115 * @hw: pointer to the HW structure
 116 *
 117 * This function sets the MAC type of the adapter based on the
 118 * vendor ID and device ID stored in the HW structure.
 119 */
 120static int ice_set_mac_type(struct ice_hw *hw)
 121{
 122	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
 123		return -ENODEV;
 124
 125	switch (hw->device_id) {
 126	case ICE_DEV_ID_E810C_BACKPLANE:
 127	case ICE_DEV_ID_E810C_QSFP:
 128	case ICE_DEV_ID_E810C_SFP:
 129	case ICE_DEV_ID_E810_XXV_BACKPLANE:
 130	case ICE_DEV_ID_E810_XXV_QSFP:
 131	case ICE_DEV_ID_E810_XXV_SFP:
 132		hw->mac_type = ICE_MAC_E810;
 133		break;
 134	case ICE_DEV_ID_E823C_10G_BASE_T:
 135	case ICE_DEV_ID_E823C_BACKPLANE:
 136	case ICE_DEV_ID_E823C_QSFP:
 137	case ICE_DEV_ID_E823C_SFP:
 138	case ICE_DEV_ID_E823C_SGMII:
 139	case ICE_DEV_ID_E822C_10G_BASE_T:
 140	case ICE_DEV_ID_E822C_BACKPLANE:
 141	case ICE_DEV_ID_E822C_QSFP:
 142	case ICE_DEV_ID_E822C_SFP:
 143	case ICE_DEV_ID_E822C_SGMII:
 144	case ICE_DEV_ID_E822L_10G_BASE_T:
 145	case ICE_DEV_ID_E822L_BACKPLANE:
 146	case ICE_DEV_ID_E822L_SFP:
 147	case ICE_DEV_ID_E822L_SGMII:
 148	case ICE_DEV_ID_E823L_10G_BASE_T:
 149	case ICE_DEV_ID_E823L_1GBE:
 150	case ICE_DEV_ID_E823L_BACKPLANE:
 151	case ICE_DEV_ID_E823L_QSFP:
 152	case ICE_DEV_ID_E823L_SFP:
 153		hw->mac_type = ICE_MAC_GENERIC;
 154		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155	default:
 156		hw->mac_type = ICE_MAC_UNKNOWN;
 157		break;
 158	}
 159
 160	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
 161	return 0;
 162}
 163
 164/**
 
 
 
 
 
 
 
 
 
 
 
 
 165 * ice_is_e810
 166 * @hw: pointer to the hardware structure
 167 *
 168 * returns true if the device is E810 based, false if not.
 169 */
 170bool ice_is_e810(struct ice_hw *hw)
 171{
 172	return hw->mac_type == ICE_MAC_E810;
 173}
 174
 175/**
 176 * ice_is_e810t
 177 * @hw: pointer to the hardware structure
 178 *
 179 * returns true if the device is E810T based, false if not.
 180 */
 181bool ice_is_e810t(struct ice_hw *hw)
 182{
 183	switch (hw->device_id) {
 184	case ICE_DEV_ID_E810C_SFP:
 185		switch (hw->subsystem_device_id) {
 186		case ICE_SUBDEV_ID_E810T:
 187		case ICE_SUBDEV_ID_E810T2:
 188		case ICE_SUBDEV_ID_E810T3:
 189		case ICE_SUBDEV_ID_E810T4:
 190		case ICE_SUBDEV_ID_E810T6:
 191		case ICE_SUBDEV_ID_E810T7:
 192			return true;
 193		}
 194		break;
 195	case ICE_DEV_ID_E810C_QSFP:
 196		switch (hw->subsystem_device_id) {
 197		case ICE_SUBDEV_ID_E810T2:
 198		case ICE_SUBDEV_ID_E810T3:
 199		case ICE_SUBDEV_ID_E810T5:
 200			return true;
 201		}
 202		break;
 203	default:
 204		break;
 205	}
 206
 207	return false;
 208}
 209
 210/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211 * ice_clear_pf_cfg - Clear PF configuration
 212 * @hw: pointer to the hardware structure
 213 *
 214 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
 215 * configuration, flow director filters, etc.).
 216 */
 217int ice_clear_pf_cfg(struct ice_hw *hw)
 218{
 219	struct ice_aq_desc desc;
 220
 221	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
 222
 223	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
 224}
 225
 226/**
 227 * ice_aq_manage_mac_read - manage MAC address read command
 228 * @hw: pointer to the HW struct
 229 * @buf: a virtual buffer to hold the manage MAC read response
 230 * @buf_size: Size of the virtual buffer
 231 * @cd: pointer to command details structure or NULL
 232 *
 233 * This function is used to return per PF station MAC address (0x0107).
 234 * NOTE: Upon successful completion of this command, MAC address information
 235 * is returned in user specified buffer. Please interpret user specified
 236 * buffer as "manage_mac_read" response.
 237 * Response such as various MAC addresses are stored in HW struct (port.mac)
 238 * ice_discover_dev_caps is expected to be called before this function is
 239 * called.
 240 */
 241static int
 242ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
 243		       struct ice_sq_cd *cd)
 244{
 245	struct ice_aqc_manage_mac_read_resp *resp;
 246	struct ice_aqc_manage_mac_read *cmd;
 247	struct ice_aq_desc desc;
 248	int status;
 249	u16 flags;
 250	u8 i;
 251
 252	cmd = &desc.params.mac_read;
 253
 254	if (buf_size < sizeof(*resp))
 255		return -EINVAL;
 256
 257	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
 258
 259	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 260	if (status)
 261		return status;
 262
 263	resp = buf;
 264	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
 265
 266	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
 267		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
 268		return -EIO;
 269	}
 270
 271	/* A single port can report up to two (LAN and WoL) addresses */
 272	for (i = 0; i < cmd->num_addr; i++)
 273		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 274			ether_addr_copy(hw->port_info->mac.lan_addr,
 275					resp[i].mac_addr);
 276			ether_addr_copy(hw->port_info->mac.perm_addr,
 277					resp[i].mac_addr);
 278			break;
 279		}
 280
 281	return 0;
 282}
 283
 284/**
 285 * ice_aq_get_phy_caps - returns PHY capabilities
 286 * @pi: port information structure
 287 * @qual_mods: report qualified modules
 288 * @report_mode: report mode capabilities
 289 * @pcaps: structure for PHY capabilities to be filled
 290 * @cd: pointer to command details structure or NULL
 291 *
 292 * Returns the various PHY capabilities supported on the Port (0x0600)
 293 */
 294int
 295ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 296		    struct ice_aqc_get_phy_caps_data *pcaps,
 297		    struct ice_sq_cd *cd)
 298{
 299	struct ice_aqc_get_phy_caps *cmd;
 300	u16 pcaps_size = sizeof(*pcaps);
 301	struct ice_aq_desc desc;
 302	const char *prefix;
 303	struct ice_hw *hw;
 304	int status;
 305
 306	cmd = &desc.params.get_phy;
 307
 308	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 309		return -EINVAL;
 310	hw = pi->hw;
 311
 312	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
 313	    !ice_fw_supports_report_dflt_cfg(hw))
 314		return -EINVAL;
 315
 316	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 317
 318	if (qual_mods)
 319		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 320
 321	cmd->param0 |= cpu_to_le16(report_mode);
 322	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
 323
 324	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
 325
 326	switch (report_mode) {
 327	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
 328		prefix = "phy_caps_media";
 329		break;
 330	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
 331		prefix = "phy_caps_no_media";
 332		break;
 333	case ICE_AQC_REPORT_ACTIVE_CFG:
 334		prefix = "phy_caps_active";
 335		break;
 336	case ICE_AQC_REPORT_DFLT_CFG:
 337		prefix = "phy_caps_default";
 338		break;
 339	default:
 340		prefix = "phy_caps_invalid";
 341	}
 342
 343	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
 344			  le64_to_cpu(pcaps->phy_type_high), prefix);
 345
 346	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
 347		  prefix, report_mode);
 348	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
 349	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
 350		  pcaps->low_power_ctrl_an);
 351	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
 352		  pcaps->eee_cap);
 353	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
 354		  pcaps->eeer_value);
 355	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
 356		  pcaps->link_fec_options);
 357	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
 358		  prefix, pcaps->module_compliance_enforcement);
 359	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
 360		  prefix, pcaps->extended_compliance_code);
 361	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
 362		  pcaps->module_type[0]);
 363	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
 364		  pcaps->module_type[1]);
 365	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
 366		  pcaps->module_type[2]);
 367
 368	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
 369		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 370		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
 371		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
 372		       sizeof(pi->phy.link_info.module_type));
 373	}
 374
 375	return status;
 376}
 377
 378/**
 379 * ice_aq_get_link_topo_handle - get link topology node return status
 380 * @pi: port information structure
 381 * @node_type: requested node type
 382 * @cd: pointer to command details structure or NULL
 383 *
 384 * Get link topology node return status for specified node type (0x06E0)
 385 *
 386 * Node type cage can be used to determine if cage is present. If AQC
 387 * returns error (ENOENT), then no cage present. If no cage present, then
 388 * connection type is backplane or BASE-T.
 389 */
 390static int
 391ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
 392			    struct ice_sq_cd *cd)
 393{
 394	struct ice_aqc_get_link_topo *cmd;
 395	struct ice_aq_desc desc;
 396
 397	cmd = &desc.params.get_link_topo;
 398
 399	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
 400
 401	cmd->addr.topo_params.node_type_ctx =
 402		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
 403		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
 404
 405	/* set node type */
 406	cmd->addr.topo_params.node_type_ctx |=
 407		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
 408
 409	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
 410}
 411
 412/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413 * ice_is_media_cage_present
 414 * @pi: port information structure
 415 *
 416 * Returns true if media cage is present, else false. If no cage, then
 417 * media type is backplane or BASE-T.
 418 */
 419static bool ice_is_media_cage_present(struct ice_port_info *pi)
 420{
 421	/* Node type cage can be used to determine if cage is present. If AQC
 422	 * returns error (ENOENT), then no cage present. If no cage present then
 423	 * connection type is backplane or BASE-T.
 424	 */
 425	return !ice_aq_get_link_topo_handle(pi,
 426					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
 427					    NULL);
 428}
 429
 430/**
 431 * ice_get_media_type - Gets media type
 432 * @pi: port information structure
 433 */
 434static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 435{
 436	struct ice_link_status *hw_link_info;
 437
 438	if (!pi)
 439		return ICE_MEDIA_UNKNOWN;
 440
 441	hw_link_info = &pi->phy.link_info;
 442	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
 443		/* If more than one media type is selected, report unknown */
 444		return ICE_MEDIA_UNKNOWN;
 445
 446	if (hw_link_info->phy_type_low) {
 447		/* 1G SGMII is a special case where some DA cable PHYs
 448		 * may show this as an option when it really shouldn't
 449		 * be since SGMII is meant to be between a MAC and a PHY
 450		 * in a backplane. Try to detect this case and handle it
 451		 */
 452		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
 453		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 454		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
 455		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 456		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
 457			return ICE_MEDIA_DA;
 458
 459		switch (hw_link_info->phy_type_low) {
 460		case ICE_PHY_TYPE_LOW_1000BASE_SX:
 461		case ICE_PHY_TYPE_LOW_1000BASE_LX:
 462		case ICE_PHY_TYPE_LOW_10GBASE_SR:
 463		case ICE_PHY_TYPE_LOW_10GBASE_LR:
 464		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 465		case ICE_PHY_TYPE_LOW_25GBASE_SR:
 466		case ICE_PHY_TYPE_LOW_25GBASE_LR:
 467		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 468		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 469		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
 470		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
 471		case ICE_PHY_TYPE_LOW_50GBASE_SR:
 472		case ICE_PHY_TYPE_LOW_50GBASE_FR:
 473		case ICE_PHY_TYPE_LOW_50GBASE_LR:
 474		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
 475		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
 476		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
 477		case ICE_PHY_TYPE_LOW_100GBASE_DR:
 478		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
 479		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
 480		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
 481		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
 482		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
 483		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
 484		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
 485		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
 486			return ICE_MEDIA_FIBER;
 487		case ICE_PHY_TYPE_LOW_100BASE_TX:
 488		case ICE_PHY_TYPE_LOW_1000BASE_T:
 489		case ICE_PHY_TYPE_LOW_2500BASE_T:
 490		case ICE_PHY_TYPE_LOW_5GBASE_T:
 491		case ICE_PHY_TYPE_LOW_10GBASE_T:
 492		case ICE_PHY_TYPE_LOW_25GBASE_T:
 493			return ICE_MEDIA_BASET;
 494		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 495		case ICE_PHY_TYPE_LOW_25GBASE_CR:
 496		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 497		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 498		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 499		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
 500		case ICE_PHY_TYPE_LOW_50GBASE_CP:
 501		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
 502		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
 503		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
 504			return ICE_MEDIA_DA;
 505		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 506		case ICE_PHY_TYPE_LOW_40G_XLAUI:
 507		case ICE_PHY_TYPE_LOW_50G_LAUI2:
 508		case ICE_PHY_TYPE_LOW_50G_AUI2:
 509		case ICE_PHY_TYPE_LOW_50G_AUI1:
 510		case ICE_PHY_TYPE_LOW_100G_AUI4:
 511		case ICE_PHY_TYPE_LOW_100G_CAUI4:
 512			if (ice_is_media_cage_present(pi))
 513				return ICE_MEDIA_DA;
 514			fallthrough;
 515		case ICE_PHY_TYPE_LOW_1000BASE_KX:
 516		case ICE_PHY_TYPE_LOW_2500BASE_KX:
 517		case ICE_PHY_TYPE_LOW_2500BASE_X:
 518		case ICE_PHY_TYPE_LOW_5GBASE_KR:
 519		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 520		case ICE_PHY_TYPE_LOW_25GBASE_KR:
 521		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 522		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 523		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 524		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
 525		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
 526		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
 527		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
 528			return ICE_MEDIA_BACKPLANE;
 529		}
 530	} else {
 531		switch (hw_link_info->phy_type_high) {
 532		case ICE_PHY_TYPE_HIGH_100G_AUI2:
 533		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
 534			if (ice_is_media_cage_present(pi))
 535				return ICE_MEDIA_DA;
 536			fallthrough;
 537		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
 538			return ICE_MEDIA_BACKPLANE;
 539		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
 540		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
 541			return ICE_MEDIA_FIBER;
 542		}
 543	}
 544	return ICE_MEDIA_UNKNOWN;
 545}
 546
 547/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548 * ice_aq_get_link_info
 549 * @pi: port information structure
 550 * @ena_lse: enable/disable LinkStatusEvent reporting
 551 * @link: pointer to link status structure - optional
 552 * @cd: pointer to command details structure or NULL
 553 *
 554 * Get Link Status (0x607). Returns the link status of the adapter.
 555 */
 556int
 557ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 558		     struct ice_link_status *link, struct ice_sq_cd *cd)
 559{
 560	struct ice_aqc_get_link_status_data link_data = { 0 };
 561	struct ice_aqc_get_link_status *resp;
 562	struct ice_link_status *li_old, *li;
 563	enum ice_media_type *hw_media_type;
 564	struct ice_fc_info *hw_fc_info;
 565	bool tx_pause, rx_pause;
 566	struct ice_aq_desc desc;
 567	struct ice_hw *hw;
 568	u16 cmd_flags;
 569	int status;
 570
 571	if (!pi)
 572		return -EINVAL;
 573	hw = pi->hw;
 574	li_old = &pi->phy.link_info_old;
 575	hw_media_type = &pi->phy.media_type;
 576	li = &pi->phy.link_info;
 577	hw_fc_info = &pi->fc;
 578
 579	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 580	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 581	resp = &desc.params.get_link_status;
 582	resp->cmd_flags = cpu_to_le16(cmd_flags);
 583	resp->lport_num = pi->lport;
 584
 585	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
 586
 587	if (status)
 588		return status;
 589
 590	/* save off old link status information */
 591	*li_old = *li;
 592
 593	/* update current link status information */
 594	li->link_speed = le16_to_cpu(link_data.link_speed);
 595	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 596	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
 597	*hw_media_type = ice_get_media_type(pi);
 598	li->link_info = link_data.link_info;
 599	li->link_cfg_err = link_data.link_cfg_err;
 600	li->an_info = link_data.an_info;
 601	li->ext_info = link_data.ext_info;
 602	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 603	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
 604	li->topo_media_conflict = link_data.topo_media_conflict;
 605	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
 606				      ICE_AQ_CFG_PACING_TYPE_M);
 607
 608	/* update fc info */
 609	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 610	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 611	if (tx_pause && rx_pause)
 612		hw_fc_info->current_mode = ICE_FC_FULL;
 613	else if (tx_pause)
 614		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 615	else if (rx_pause)
 616		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 617	else
 618		hw_fc_info->current_mode = ICE_FC_NONE;
 619
 620	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 621
 622	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
 623	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
 624	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
 625		  (unsigned long long)li->phy_type_low);
 626	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
 627		  (unsigned long long)li->phy_type_high);
 628	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
 629	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
 630	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
 631	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
 632	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
 633	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
 634	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
 635	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
 636		  li->max_frame_size);
 637	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
 638
 639	/* save link status information */
 640	if (link)
 641		*link = *li;
 642
 643	/* flag cleared so calling functions don't call AQ again */
 644	pi->phy.get_link_info = false;
 645
 646	return 0;
 647}
 648
 649/**
 650 * ice_fill_tx_timer_and_fc_thresh
 651 * @hw: pointer to the HW struct
 652 * @cmd: pointer to MAC cfg structure
 653 *
 654 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
 655 * descriptor
 656 */
 657static void
 658ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
 659				struct ice_aqc_set_mac_cfg *cmd)
 660{
 661	u16 fc_thres_val, tx_timer_val;
 662	u32 val;
 663
 664	/* We read back the transmit timer and FC threshold value of
 665	 * LFC. Thus, we will use index =
 666	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
 667	 *
 668	 * Also, because we are operating on transmit timer and FC
 669	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
 670	 */
 671#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
 
 672
 673	/* Retrieve the transmit timer */
 674	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
 675	tx_timer_val = val &
 676		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
 677	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
 678
 679	/* Retrieve the FC threshold */
 680	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
 681	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
 682
 683	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
 
 
 
 
 
 
 
 
 
 
 
 
 684}
 685
 686/**
 687 * ice_aq_set_mac_cfg
 688 * @hw: pointer to the HW struct
 689 * @max_frame_size: Maximum Frame Size to be supported
 690 * @cd: pointer to command details structure or NULL
 691 *
 692 * Set MAC configuration (0x0603)
 693 */
 694int
 695ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
 696{
 697	struct ice_aqc_set_mac_cfg *cmd;
 698	struct ice_aq_desc desc;
 699
 700	cmd = &desc.params.set_mac_cfg;
 701
 702	if (max_frame_size == 0)
 703		return -EINVAL;
 704
 705	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
 706
 707	cmd->max_frame_size = cpu_to_le16(max_frame_size);
 708
 709	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
 710
 711	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
 712}
 713
 714/**
 715 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 716 * @hw: pointer to the HW struct
 717 */
 718static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 719{
 720	struct ice_switch_info *sw;
 721	int status;
 722
 723	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 724				       sizeof(*hw->switch_info), GFP_KERNEL);
 725	sw = hw->switch_info;
 726
 727	if (!sw)
 728		return -ENOMEM;
 729
 730	INIT_LIST_HEAD(&sw->vsi_list_map_head);
 731	sw->prof_res_bm_init = 0;
 732
 
 
 
 733	status = ice_init_def_sw_recp(hw);
 734	if (status) {
 735		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
 736		return status;
 737	}
 738	return 0;
 739}
 740
 741/**
 742 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 743 * @hw: pointer to the HW struct
 744 */
 745static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 746{
 747	struct ice_switch_info *sw = hw->switch_info;
 748	struct ice_vsi_list_map_info *v_pos_map;
 749	struct ice_vsi_list_map_info *v_tmp_map;
 750	struct ice_sw_recipe *recps;
 751	u8 i;
 752
 753	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 754				 list_entry) {
 755		list_del(&v_pos_map->list_entry);
 756		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 757	}
 758	recps = sw->recp_list;
 759	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
 760		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
 761
 762		recps[i].root_rid = i;
 763		list_for_each_entry_safe(rg_entry, tmprg_entry,
 764					 &recps[i].rg_list, l_entry) {
 765			list_del(&rg_entry->l_entry);
 766			devm_kfree(ice_hw_to_dev(hw), rg_entry);
 767		}
 768
 769		if (recps[i].adv_rule) {
 770			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
 771			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
 772
 773			mutex_destroy(&recps[i].filt_rule_lock);
 774			list_for_each_entry_safe(lst_itr, tmp_entry,
 775						 &recps[i].filt_rules,
 776						 list_entry) {
 777				list_del(&lst_itr->list_entry);
 778				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
 779				devm_kfree(ice_hw_to_dev(hw), lst_itr);
 780			}
 781		} else {
 782			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
 783
 784			mutex_destroy(&recps[i].filt_rule_lock);
 785			list_for_each_entry_safe(lst_itr, tmp_entry,
 786						 &recps[i].filt_rules,
 787						 list_entry) {
 788				list_del(&lst_itr->list_entry);
 789				devm_kfree(ice_hw_to_dev(hw), lst_itr);
 790			}
 791		}
 792		if (recps[i].root_buf)
 793			devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
 794	}
 795	ice_rm_all_sw_replay_rule_info(hw);
 796	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
 797	devm_kfree(ice_hw_to_dev(hw), sw);
 798}
 799
 800/**
 801 * ice_get_fw_log_cfg - get FW logging configuration
 802 * @hw: pointer to the HW struct
 803 */
 804static int ice_get_fw_log_cfg(struct ice_hw *hw)
 805{
 806	struct ice_aq_desc desc;
 807	__le16 *config;
 808	int status;
 809	u16 size;
 810
 811	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
 812	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
 813	if (!config)
 814		return -ENOMEM;
 815
 816	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
 817
 818	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
 819	if (!status) {
 820		u16 i;
 821
 822		/* Save FW logging information into the HW structure */
 823		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 824			u16 v, m, flgs;
 825
 826			v = le16_to_cpu(config[i]);
 827			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 828			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
 829
 830			if (m < ICE_AQC_FW_LOG_ID_MAX)
 831				hw->fw_log.evnts[m].cur = flgs;
 832		}
 833	}
 834
 835	devm_kfree(ice_hw_to_dev(hw), config);
 836
 837	return status;
 838}
 839
 840/**
 841 * ice_cfg_fw_log - configure FW logging
 842 * @hw: pointer to the HW struct
 843 * @enable: enable certain FW logging events if true, disable all if false
 844 *
 845 * This function enables/disables the FW logging via Rx CQ events and a UART
 846 * port based on predetermined configurations. FW logging via the Rx CQ can be
 847 * enabled/disabled for individual PF's. However, FW logging via the UART can
 848 * only be enabled/disabled for all PFs on the same device.
 849 *
 850 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
 851 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
 852 * before initializing the device.
 853 *
 854 * When re/configuring FW logging, callers need to update the "cfg" elements of
 855 * the hw->fw_log.evnts array with the desired logging event configurations for
 856 * modules of interest. When disabling FW logging completely, the callers can
 857 * just pass false in the "enable" parameter. On completion, the function will
 858 * update the "cur" element of the hw->fw_log.evnts array with the resulting
 859 * logging event configurations of the modules that are being re/configured. FW
 860 * logging modules that are not part of a reconfiguration operation retain their
 861 * previous states.
 862 *
 863 * Before resetting the device, it is recommended that the driver disables FW
 864 * logging before shutting down the control queue. When disabling FW logging
 865 * ("enable" = false), the latest configurations of FW logging events stored in
 866 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
 867 * a device reset.
 868 *
 869 * When enabling FW logging to emit log messages via the Rx CQ during the
 870 * device's initialization phase, a mechanism alternative to interrupt handlers
 871 * needs to be used to extract FW log messages from the Rx CQ periodically and
 872 * to prevent the Rx CQ from being full and stalling other types of control
 873 * messages from FW to SW. Interrupts are typically disabled during the device's
 874 * initialization phase.
 875 */
 876static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
 877{
 878	struct ice_aqc_fw_logging *cmd;
 879	u16 i, chgs = 0, len = 0;
 880	struct ice_aq_desc desc;
 881	__le16 *data = NULL;
 882	u8 actv_evnts = 0;
 883	void *buf = NULL;
 884	int status = 0;
 885
 886	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
 887		return 0;
 888
 889	/* Disable FW logging only when the control queue is still responsive */
 890	if (!enable &&
 891	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
 892		return 0;
 893
 894	/* Get current FW log settings */
 895	status = ice_get_fw_log_cfg(hw);
 896	if (status)
 897		return status;
 898
 899	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
 900	cmd = &desc.params.fw_logging;
 901
 902	/* Indicate which controls are valid */
 903	if (hw->fw_log.cq_en)
 904		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
 905
 906	if (hw->fw_log.uart_en)
 907		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
 908
 909	if (enable) {
 910		/* Fill in an array of entries with FW logging modules and
 911		 * logging events being reconfigured.
 912		 */
 913		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 914			u16 val;
 915
 916			/* Keep track of enabled event types */
 917			actv_evnts |= hw->fw_log.evnts[i].cfg;
 918
 919			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
 920				continue;
 921
 922			if (!data) {
 923				data = devm_kcalloc(ice_hw_to_dev(hw),
 924						    ICE_AQC_FW_LOG_ID_MAX,
 925						    sizeof(*data),
 926						    GFP_KERNEL);
 927				if (!data)
 928					return -ENOMEM;
 929			}
 930
 931			val = i << ICE_AQC_FW_LOG_ID_S;
 932			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
 933			data[chgs++] = cpu_to_le16(val);
 934		}
 935
 936		/* Only enable FW logging if at least one module is specified.
 937		 * If FW logging is currently enabled but all modules are not
 938		 * enabled to emit log messages, disable FW logging altogether.
 939		 */
 940		if (actv_evnts) {
 941			/* Leave if there is effectively no change */
 942			if (!chgs)
 943				goto out;
 944
 945			if (hw->fw_log.cq_en)
 946				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
 947
 948			if (hw->fw_log.uart_en)
 949				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
 950
 951			buf = data;
 952			len = sizeof(*data) * chgs;
 953			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 954		}
 955	}
 956
 957	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
 958	if (!status) {
 959		/* Update the current configuration to reflect events enabled.
 960		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
 961		 * logging mode is enabled for the device. They do not reflect
 962		 * actual modules being enabled to emit log messages. So, their
 963		 * values remain unchanged even when all modules are disabled.
 964		 */
 965		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
 966
 967		hw->fw_log.actv_evnts = actv_evnts;
 968		for (i = 0; i < cnt; i++) {
 969			u16 v, m;
 970
 971			if (!enable) {
 972				/* When disabling all FW logging events as part
 973				 * of device's de-initialization, the original
 974				 * configurations are retained, and can be used
 975				 * to reconfigure FW logging later if the device
 976				 * is re-initialized.
 977				 */
 978				hw->fw_log.evnts[i].cur = 0;
 979				continue;
 980			}
 981
 982			v = le16_to_cpu(data[i]);
 983			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 984			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
 985		}
 986	}
 987
 988out:
 989	if (data)
 990		devm_kfree(ice_hw_to_dev(hw), data);
 991
 992	return status;
 993}
 994
 995/**
 996 * ice_output_fw_log
 997 * @hw: pointer to the HW struct
 998 * @desc: pointer to the AQ message descriptor
 999 * @buf: pointer to the buffer accompanying the AQ message
1000 *
1001 * Formats a FW Log message and outputs it via the standard driver logs.
1002 */
1003void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
1004{
1005	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
1006	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
1007			le16_to_cpu(desc->datalen));
1008	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
1009}
1010
1011/**
1012 * ice_get_itr_intrl_gran
1013 * @hw: pointer to the HW struct
1014 *
1015 * Determines the ITR/INTRL granularities based on the maximum aggregate
1016 * bandwidth according to the device's configuration during power-on.
1017 */
1018static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1019{
1020	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
1021			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
1022			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
1023
1024	switch (max_agg_bw) {
1025	case ICE_MAX_AGG_BW_200G:
1026	case ICE_MAX_AGG_BW_100G:
1027	case ICE_MAX_AGG_BW_50G:
1028		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1029		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1030		break;
1031	case ICE_MAX_AGG_BW_25G:
1032		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1033		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1034		break;
1035	}
1036}
1037
1038/**
1039 * ice_init_hw - main hardware initialization routine
1040 * @hw: pointer to the hardware structure
1041 */
1042int ice_init_hw(struct ice_hw *hw)
1043{
1044	struct ice_aqc_get_phy_caps_data *pcaps;
 
1045	u16 mac_buf_len;
1046	void *mac_buf;
1047	int status;
1048
1049	/* Set MAC type based on DeviceID */
1050	status = ice_set_mac_type(hw);
1051	if (status)
1052		return status;
1053
1054	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
1055			 PF_FUNC_RID_FUNC_NUM_M) >>
1056		PF_FUNC_RID_FUNC_NUM_S;
1057
1058	status = ice_reset(hw, ICE_RESET_PFR);
1059	if (status)
1060		return status;
1061
1062	ice_get_itr_intrl_gran(hw);
1063
1064	status = ice_create_all_ctrlq(hw);
1065	if (status)
1066		goto err_unroll_cqinit;
1067
1068	/* Enable FW logging. Not fatal if this fails. */
1069	status = ice_cfg_fw_log(hw, true);
1070	if (status)
1071		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
 
1072
1073	status = ice_clear_pf_cfg(hw);
1074	if (status)
1075		goto err_unroll_cqinit;
1076
1077	/* Set bit to enable Flow Director filters */
1078	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1079	INIT_LIST_HEAD(&hw->fdir_list_head);
1080
1081	ice_clear_pxe_mode(hw);
1082
1083	status = ice_init_nvm(hw);
1084	if (status)
1085		goto err_unroll_cqinit;
1086
1087	status = ice_get_caps(hw);
1088	if (status)
1089		goto err_unroll_cqinit;
1090
1091	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1092				     sizeof(*hw->port_info), GFP_KERNEL);
 
 
1093	if (!hw->port_info) {
1094		status = -ENOMEM;
1095		goto err_unroll_cqinit;
1096	}
1097
 
1098	/* set the back pointer to HW */
1099	hw->port_info->hw = hw;
1100
1101	/* Initialize port_info struct with switch configuration data */
1102	status = ice_get_initial_sw_cfg(hw);
1103	if (status)
1104		goto err_unroll_alloc;
1105
1106	hw->evb_veb = true;
1107
1108	/* init xarray for identifying scheduling nodes uniquely */
1109	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1110
1111	/* Query the allocated resources for Tx scheduler */
1112	status = ice_sched_query_res_alloc(hw);
1113	if (status) {
1114		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1115		goto err_unroll_alloc;
1116	}
1117	ice_sched_get_psm_clk_freq(hw);
1118
1119	/* Initialize port_info struct with scheduler data */
1120	status = ice_sched_init_port(hw->port_info);
1121	if (status)
1122		goto err_unroll_sched;
1123
1124	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1125	if (!pcaps) {
1126		status = -ENOMEM;
1127		goto err_unroll_sched;
1128	}
1129
1130	/* Initialize port_info struct with PHY capabilities */
1131	status = ice_aq_get_phy_caps(hw->port_info, false,
1132				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1133				     NULL);
1134	devm_kfree(ice_hw_to_dev(hw), pcaps);
1135	if (status)
1136		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1137			 status);
1138
1139	/* Initialize port_info struct with link information */
1140	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1141	if (status)
1142		goto err_unroll_sched;
1143
1144	/* need a valid SW entry point to build a Tx tree */
1145	if (!hw->sw_entry_point_layer) {
1146		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1147		status = -EIO;
1148		goto err_unroll_sched;
1149	}
1150	INIT_LIST_HEAD(&hw->agg_list);
1151	/* Initialize max burst size */
1152	if (!hw->max_burst_size)
1153		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1154
1155	status = ice_init_fltr_mgmt_struct(hw);
1156	if (status)
1157		goto err_unroll_sched;
1158
1159	/* Get MAC information */
1160	/* A single port can report up to two (LAN and WoL) addresses */
1161	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1162			       sizeof(struct ice_aqc_manage_mac_read_resp),
1163			       GFP_KERNEL);
1164	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1165
1166	if (!mac_buf) {
1167		status = -ENOMEM;
1168		goto err_unroll_fltr_mgmt_struct;
1169	}
1170
 
1171	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1172	devm_kfree(ice_hw_to_dev(hw), mac_buf);
1173
1174	if (status)
1175		goto err_unroll_fltr_mgmt_struct;
1176	/* enable jumbo frame support at MAC level */
1177	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1178	if (status)
1179		goto err_unroll_fltr_mgmt_struct;
1180	/* Obtain counter base index which would be used by flow director */
1181	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1182	if (status)
1183		goto err_unroll_fltr_mgmt_struct;
1184	status = ice_init_hw_tbls(hw);
1185	if (status)
1186		goto err_unroll_fltr_mgmt_struct;
1187	mutex_init(&hw->tnl_lock);
 
 
1188	return 0;
1189
1190err_unroll_fltr_mgmt_struct:
1191	ice_cleanup_fltr_mgmt_struct(hw);
1192err_unroll_sched:
1193	ice_sched_cleanup_all(hw);
1194err_unroll_alloc:
1195	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1196err_unroll_cqinit:
1197	ice_destroy_all_ctrlq(hw);
1198	return status;
1199}
1200
1201/**
1202 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1203 * @hw: pointer to the hardware structure
1204 *
1205 * This should be called only during nominal operation, not as a result of
1206 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1207 * applicable initializations if it fails for any reason.
1208 */
1209void ice_deinit_hw(struct ice_hw *hw)
1210{
1211	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1212	ice_cleanup_fltr_mgmt_struct(hw);
1213
1214	ice_sched_cleanup_all(hw);
1215	ice_sched_clear_agg(hw);
1216	ice_free_seg(hw);
1217	ice_free_hw_tbls(hw);
1218	mutex_destroy(&hw->tnl_lock);
1219
1220	if (hw->port_info) {
1221		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1222		hw->port_info = NULL;
1223	}
1224
1225	/* Attempt to disable FW logging before shutting down control queues */
1226	ice_cfg_fw_log(hw, false);
1227	ice_destroy_all_ctrlq(hw);
1228
1229	/* Clear VSI contexts if not already cleared */
1230	ice_clear_all_vsi_ctx(hw);
1231}
1232
1233/**
1234 * ice_check_reset - Check to see if a global reset is complete
1235 * @hw: pointer to the hardware structure
1236 */
1237int ice_check_reset(struct ice_hw *hw)
1238{
1239	u32 cnt, reg = 0, grst_timeout, uld_mask;
1240
1241	/* Poll for Device Active state in case a recent CORER, GLOBR,
1242	 * or EMPR has occurred. The grst delay value is in 100ms units.
1243	 * Add 1sec for outstanding AQ commands that can take a long time.
1244	 */
1245	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1246			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1247
1248	for (cnt = 0; cnt < grst_timeout; cnt++) {
1249		mdelay(100);
1250		reg = rd32(hw, GLGEN_RSTAT);
1251		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1252			break;
1253	}
1254
1255	if (cnt == grst_timeout) {
1256		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1257		return -EIO;
1258	}
1259
1260#define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1261				 GLNVM_ULD_PCIER_DONE_1_M |\
1262				 GLNVM_ULD_CORER_DONE_M |\
1263				 GLNVM_ULD_GLOBR_DONE_M |\
1264				 GLNVM_ULD_POR_DONE_M |\
1265				 GLNVM_ULD_POR_DONE_1_M |\
1266				 GLNVM_ULD_PCIER_DONE_2_M)
1267
1268	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1269					  GLNVM_ULD_PE_DONE_M : 0);
1270
1271	/* Device is Active; check Global Reset processes are done */
1272	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1273		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1274		if (reg == uld_mask) {
1275			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1276			break;
1277		}
1278		mdelay(10);
1279	}
1280
1281	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1282		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1283			  reg);
1284		return -EIO;
1285	}
1286
1287	return 0;
1288}
1289
1290/**
1291 * ice_pf_reset - Reset the PF
1292 * @hw: pointer to the hardware structure
1293 *
1294 * If a global reset has been triggered, this function checks
1295 * for its completion and then issues the PF reset
1296 */
1297static int ice_pf_reset(struct ice_hw *hw)
1298{
1299	u32 cnt, reg;
1300
1301	/* If at function entry a global reset was already in progress, i.e.
1302	 * state is not 'device active' or any of the reset done bits are not
1303	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1304	 * global reset is done.
1305	 */
1306	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1307	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1308		/* poll on global reset currently in progress until done */
1309		if (ice_check_reset(hw))
1310			return -EIO;
1311
1312		return 0;
1313	}
1314
1315	/* Reset the PF */
1316	reg = rd32(hw, PFGEN_CTRL);
1317
1318	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1319
1320	/* Wait for the PFR to complete. The wait time is the global config lock
1321	 * timeout plus the PFR timeout which will account for a possible reset
1322	 * that is occurring during a download package operation.
1323	 */
1324	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1325	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1326		reg = rd32(hw, PFGEN_CTRL);
1327		if (!(reg & PFGEN_CTRL_PFSWR_M))
1328			break;
1329
1330		mdelay(1);
1331	}
1332
1333	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1334		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1335		return -EIO;
1336	}
1337
1338	return 0;
1339}
1340
1341/**
1342 * ice_reset - Perform different types of reset
1343 * @hw: pointer to the hardware structure
1344 * @req: reset request
1345 *
1346 * This function triggers a reset as specified by the req parameter.
1347 *
1348 * Note:
1349 * If anything other than a PF reset is triggered, PXE mode is restored.
1350 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1351 * interface has been restored in the rebuild flow.
1352 */
1353int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1354{
1355	u32 val = 0;
1356
1357	switch (req) {
1358	case ICE_RESET_PFR:
1359		return ice_pf_reset(hw);
1360	case ICE_RESET_CORER:
1361		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1362		val = GLGEN_RTRIG_CORER_M;
1363		break;
1364	case ICE_RESET_GLOBR:
1365		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1366		val = GLGEN_RTRIG_GLOBR_M;
1367		break;
1368	default:
1369		return -EINVAL;
1370	}
1371
1372	val |= rd32(hw, GLGEN_RTRIG);
1373	wr32(hw, GLGEN_RTRIG, val);
1374	ice_flush(hw);
1375
1376	/* wait for the FW to be ready */
1377	return ice_check_reset(hw);
1378}
1379
1380/**
1381 * ice_copy_rxq_ctx_to_hw
1382 * @hw: pointer to the hardware structure
1383 * @ice_rxq_ctx: pointer to the rxq context
1384 * @rxq_index: the index of the Rx queue
1385 *
1386 * Copies rxq context from dense structure to HW register space
1387 */
1388static int
1389ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1390{
1391	u8 i;
1392
1393	if (!ice_rxq_ctx)
1394		return -EINVAL;
1395
1396	if (rxq_index > QRX_CTRL_MAX_INDEX)
1397		return -EINVAL;
1398
1399	/* Copy each dword separately to HW */
1400	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1401		wr32(hw, QRX_CONTEXT(i, rxq_index),
1402		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1403
1404		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1405			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1406	}
1407
1408	return 0;
1409}
1410
1411/* LAN Rx Queue Context */
1412static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1413	/* Field		Width	LSB */
1414	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1415	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1416	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1417	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1418	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1419	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1420	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1421	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1422	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1423	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1424	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1425	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1426	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1427	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1428	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1429	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1430	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1431	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1432	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1433	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1434	{ 0 }
1435};
1436
1437/**
1438 * ice_write_rxq_ctx
1439 * @hw: pointer to the hardware structure
1440 * @rlan_ctx: pointer to the rxq context
1441 * @rxq_index: the index of the Rx queue
1442 *
1443 * Converts rxq context from sparse to dense structure and then writes
1444 * it to HW register space and enables the hardware to prefetch descriptors
1445 * instead of only fetching them on demand
1446 */
1447int
1448ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1449		  u32 rxq_index)
1450{
1451	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1452
1453	if (!rlan_ctx)
1454		return -EINVAL;
1455
1456	rlan_ctx->prefena = 1;
1457
1458	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1459	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1460}
1461
1462/* LAN Tx Queue Context */
1463const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1464				    /* Field			Width	LSB */
1465	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1466	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1467	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1468	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1469	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1470	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1471	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1472	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1473	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1474	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1475	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1476	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1477	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1478	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1479	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1480	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1481	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1482	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1483	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1484	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1485	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1486	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1487	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1488	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1489	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1490	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1491	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1492	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1493	{ 0 }
1494};
1495
1496/* Sideband Queue command wrappers */
1497
1498/**
1499 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1500 * @hw: pointer to the HW struct
1501 * @desc: descriptor describing the command
1502 * @buf: buffer to use for indirect commands (NULL for direct commands)
1503 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1504 * @cd: pointer to command details structure
1505 */
1506static int
1507ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1508		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1509{
1510	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1511			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1512}
1513
1514/**
1515 * ice_sbq_rw_reg - Fill Sideband Queue command
1516 * @hw: pointer to the HW struct
1517 * @in: message info to be filled in descriptor
 
1518 */
1519int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1520{
1521	struct ice_sbq_cmd_desc desc = {0};
1522	struct ice_sbq_msg_req msg = {0};
1523	u16 msg_len;
1524	int status;
1525
1526	msg_len = sizeof(msg);
1527
1528	msg.dest_dev = in->dest_dev;
1529	msg.opcode = in->opcode;
1530	msg.flags = ICE_SBQ_MSG_FLAGS;
1531	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1532	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1533	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1534
1535	if (in->opcode)
1536		msg.data = cpu_to_le32(in->data);
1537	else
1538		/* data read comes back in completion, so shorten the struct by
1539		 * sizeof(msg.data)
1540		 */
1541		msg_len -= sizeof(msg.data);
1542
1543	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1544	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1545	desc.param0.cmd_len = cpu_to_le16(msg_len);
1546	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1547	if (!status && !in->opcode)
1548		in->data = le32_to_cpu
1549			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1550	return status;
1551}
1552
1553/* FW Admin Queue command wrappers */
1554
1555/* Software lock/mutex that is meant to be held while the Global Config Lock
1556 * in firmware is acquired by the software to prevent most (but not all) types
1557 * of AQ commands from being sent to FW
1558 */
1559DEFINE_MUTEX(ice_global_cfg_lock_sw);
1560
1561/**
1562 * ice_should_retry_sq_send_cmd
1563 * @opcode: AQ opcode
1564 *
1565 * Decide if we should retry the send command routine for the ATQ, depending
1566 * on the opcode.
1567 */
1568static bool ice_should_retry_sq_send_cmd(u16 opcode)
1569{
1570	switch (opcode) {
1571	case ice_aqc_opc_get_link_topo:
1572	case ice_aqc_opc_lldp_stop:
1573	case ice_aqc_opc_lldp_start:
1574	case ice_aqc_opc_lldp_filter_ctrl:
1575		return true;
1576	}
1577
1578	return false;
1579}
1580
1581/**
1582 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1583 * @hw: pointer to the HW struct
1584 * @cq: pointer to the specific Control queue
1585 * @desc: prefilled descriptor describing the command
1586 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1587 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1588 * @cd: pointer to command details structure
1589 *
1590 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1591 * Queue if the EBUSY AQ error is returned.
1592 */
1593static int
1594ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1595		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1596		      struct ice_sq_cd *cd)
1597{
1598	struct ice_aq_desc desc_cpy;
1599	bool is_cmd_for_retry;
1600	u8 *buf_cpy = NULL;
1601	u8 idx = 0;
1602	u16 opcode;
1603	int status;
1604
1605	opcode = le16_to_cpu(desc->opcode);
1606	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1607	memset(&desc_cpy, 0, sizeof(desc_cpy));
1608
1609	if (is_cmd_for_retry) {
1610		if (buf) {
1611			buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1612			if (!buf_cpy)
1613				return -ENOMEM;
1614		}
1615
1616		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1617	}
1618
1619	do {
1620		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1621
1622		if (!is_cmd_for_retry || !status ||
1623		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1624			break;
1625
1626		if (buf_cpy)
1627			memcpy(buf, buf_cpy, buf_size);
1628
1629		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1630
1631		mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1632
1633	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1634
1635	kfree(buf_cpy);
1636
1637	return status;
1638}
1639
1640/**
1641 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1642 * @hw: pointer to the HW struct
1643 * @desc: descriptor describing the command
1644 * @buf: buffer to use for indirect commands (NULL for direct commands)
1645 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1646 * @cd: pointer to command details structure
1647 *
1648 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1649 */
1650int
1651ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1652		u16 buf_size, struct ice_sq_cd *cd)
1653{
1654	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1655	bool lock_acquired = false;
1656	int status;
1657
1658	/* When a package download is in process (i.e. when the firmware's
1659	 * Global Configuration Lock resource is held), only the Download
1660	 * Package, Get Version, Get Package Info List, Upload Section,
1661	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1662	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1663	 * Recipes to Profile Association, and Release Resource (with resource
1664	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1665	 * must block until the package download completes and the Global Config
1666	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1667	 */
1668	switch (le16_to_cpu(desc->opcode)) {
1669	case ice_aqc_opc_download_pkg:
1670	case ice_aqc_opc_get_pkg_info_list:
1671	case ice_aqc_opc_get_ver:
1672	case ice_aqc_opc_upload_section:
1673	case ice_aqc_opc_update_pkg:
1674	case ice_aqc_opc_set_port_params:
1675	case ice_aqc_opc_get_vlan_mode_parameters:
1676	case ice_aqc_opc_set_vlan_mode_parameters:
 
 
1677	case ice_aqc_opc_add_recipe:
1678	case ice_aqc_opc_recipe_to_profile:
1679	case ice_aqc_opc_get_recipe:
1680	case ice_aqc_opc_get_recipe_to_profile:
1681		break;
1682	case ice_aqc_opc_release_res:
1683		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1684			break;
1685		fallthrough;
1686	default:
1687		mutex_lock(&ice_global_cfg_lock_sw);
1688		lock_acquired = true;
1689		break;
1690	}
1691
1692	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1693	if (lock_acquired)
1694		mutex_unlock(&ice_global_cfg_lock_sw);
1695
1696	return status;
1697}
1698
1699/**
1700 * ice_aq_get_fw_ver
1701 * @hw: pointer to the HW struct
1702 * @cd: pointer to command details structure or NULL
1703 *
1704 * Get the firmware version (0x0001) from the admin queue commands
1705 */
1706int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1707{
1708	struct ice_aqc_get_ver *resp;
1709	struct ice_aq_desc desc;
1710	int status;
1711
1712	resp = &desc.params.get_ver;
1713
1714	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1715
1716	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1717
1718	if (!status) {
1719		hw->fw_branch = resp->fw_branch;
1720		hw->fw_maj_ver = resp->fw_major;
1721		hw->fw_min_ver = resp->fw_minor;
1722		hw->fw_patch = resp->fw_patch;
1723		hw->fw_build = le32_to_cpu(resp->fw_build);
1724		hw->api_branch = resp->api_branch;
1725		hw->api_maj_ver = resp->api_major;
1726		hw->api_min_ver = resp->api_minor;
1727		hw->api_patch = resp->api_patch;
1728	}
1729
1730	return status;
1731}
1732
1733/**
1734 * ice_aq_send_driver_ver
1735 * @hw: pointer to the HW struct
1736 * @dv: driver's major, minor version
1737 * @cd: pointer to command details structure or NULL
1738 *
1739 * Send the driver version (0x0002) to the firmware
1740 */
1741int
1742ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1743		       struct ice_sq_cd *cd)
1744{
1745	struct ice_aqc_driver_ver *cmd;
1746	struct ice_aq_desc desc;
1747	u16 len;
1748
1749	cmd = &desc.params.driver_ver;
1750
1751	if (!dv)
1752		return -EINVAL;
1753
1754	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1755
1756	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1757	cmd->major_ver = dv->major_ver;
1758	cmd->minor_ver = dv->minor_ver;
1759	cmd->build_ver = dv->build_ver;
1760	cmd->subbuild_ver = dv->subbuild_ver;
1761
1762	len = 0;
1763	while (len < sizeof(dv->driver_string) &&
1764	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1765		len++;
1766
1767	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1768}
1769
1770/**
1771 * ice_aq_q_shutdown
1772 * @hw: pointer to the HW struct
1773 * @unloading: is the driver unloading itself
1774 *
1775 * Tell the Firmware that we're shutting down the AdminQ and whether
1776 * or not the driver is unloading as well (0x0003).
1777 */
1778int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1779{
1780	struct ice_aqc_q_shutdown *cmd;
1781	struct ice_aq_desc desc;
1782
1783	cmd = &desc.params.q_shutdown;
1784
1785	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1786
1787	if (unloading)
1788		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1789
1790	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1791}
1792
1793/**
1794 * ice_aq_req_res
1795 * @hw: pointer to the HW struct
1796 * @res: resource ID
1797 * @access: access type
1798 * @sdp_number: resource number
1799 * @timeout: the maximum time in ms that the driver may hold the resource
1800 * @cd: pointer to command details structure or NULL
1801 *
1802 * Requests common resource using the admin queue commands (0x0008).
1803 * When attempting to acquire the Global Config Lock, the driver can
1804 * learn of three states:
1805 *  1) 0 -         acquired lock, and can perform download package
1806 *  2) -EIO -      did not get lock, driver should fail to load
1807 *  3) -EALREADY - did not get lock, but another driver has
1808 *                 successfully downloaded the package; the driver does
1809 *                 not have to download the package and can continue
1810 *                 loading
1811 *
1812 * Note that if the caller is in an acquire lock, perform action, release lock
1813 * phase of operation, it is possible that the FW may detect a timeout and issue
1814 * a CORER. In this case, the driver will receive a CORER interrupt and will
1815 * have to determine its cause. The calling thread that is handling this flow
1816 * will likely get an error propagated back to it indicating the Download
1817 * Package, Update Package or the Release Resource AQ commands timed out.
1818 */
1819static int
1820ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1821	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1822	       struct ice_sq_cd *cd)
1823{
1824	struct ice_aqc_req_res *cmd_resp;
1825	struct ice_aq_desc desc;
1826	int status;
1827
1828	cmd_resp = &desc.params.res_owner;
1829
1830	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1831
1832	cmd_resp->res_id = cpu_to_le16(res);
1833	cmd_resp->access_type = cpu_to_le16(access);
1834	cmd_resp->res_number = cpu_to_le32(sdp_number);
1835	cmd_resp->timeout = cpu_to_le32(*timeout);
1836	*timeout = 0;
1837
1838	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1839
1840	/* The completion specifies the maximum time in ms that the driver
1841	 * may hold the resource in the Timeout field.
1842	 */
1843
1844	/* Global config lock response utilizes an additional status field.
1845	 *
1846	 * If the Global config lock resource is held by some other driver, the
1847	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1848	 * and the timeout field indicates the maximum time the current owner
1849	 * of the resource has to free it.
1850	 */
1851	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1852		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1853			*timeout = le32_to_cpu(cmd_resp->timeout);
1854			return 0;
1855		} else if (le16_to_cpu(cmd_resp->status) ==
1856			   ICE_AQ_RES_GLBL_IN_PROG) {
1857			*timeout = le32_to_cpu(cmd_resp->timeout);
1858			return -EIO;
1859		} else if (le16_to_cpu(cmd_resp->status) ==
1860			   ICE_AQ_RES_GLBL_DONE) {
1861			return -EALREADY;
1862		}
1863
1864		/* invalid FW response, force a timeout immediately */
1865		*timeout = 0;
1866		return -EIO;
1867	}
1868
1869	/* If the resource is held by some other driver, the command completes
1870	 * with a busy return value and the timeout field indicates the maximum
1871	 * time the current owner of the resource has to free it.
1872	 */
1873	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1874		*timeout = le32_to_cpu(cmd_resp->timeout);
1875
1876	return status;
1877}
1878
1879/**
1880 * ice_aq_release_res
1881 * @hw: pointer to the HW struct
1882 * @res: resource ID
1883 * @sdp_number: resource number
1884 * @cd: pointer to command details structure or NULL
1885 *
1886 * release common resource using the admin queue commands (0x0009)
1887 */
1888static int
1889ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1890		   struct ice_sq_cd *cd)
1891{
1892	struct ice_aqc_req_res *cmd;
1893	struct ice_aq_desc desc;
1894
1895	cmd = &desc.params.res_owner;
1896
1897	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1898
1899	cmd->res_id = cpu_to_le16(res);
1900	cmd->res_number = cpu_to_le32(sdp_number);
1901
1902	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1903}
1904
1905/**
1906 * ice_acquire_res
1907 * @hw: pointer to the HW structure
1908 * @res: resource ID
1909 * @access: access type (read or write)
1910 * @timeout: timeout in milliseconds
1911 *
1912 * This function will attempt to acquire the ownership of a resource.
1913 */
1914int
1915ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1916		enum ice_aq_res_access_type access, u32 timeout)
1917{
1918#define ICE_RES_POLLING_DELAY_MS	10
1919	u32 delay = ICE_RES_POLLING_DELAY_MS;
1920	u32 time_left = timeout;
1921	int status;
1922
1923	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1924
1925	/* A return code of -EALREADY means that another driver has
1926	 * previously acquired the resource and performed any necessary updates;
1927	 * in this case the caller does not obtain the resource and has no
1928	 * further work to do.
1929	 */
1930	if (status == -EALREADY)
1931		goto ice_acquire_res_exit;
1932
1933	if (status)
1934		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1935
1936	/* If necessary, poll until the current lock owner timeouts */
1937	timeout = time_left;
1938	while (status && timeout && time_left) {
1939		mdelay(delay);
1940		timeout = (timeout > delay) ? timeout - delay : 0;
1941		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1942
1943		if (status == -EALREADY)
1944			/* lock free, but no work to do */
1945			break;
1946
1947		if (!status)
1948			/* lock acquired */
1949			break;
1950	}
1951	if (status && status != -EALREADY)
1952		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1953
1954ice_acquire_res_exit:
1955	if (status == -EALREADY) {
1956		if (access == ICE_RES_WRITE)
1957			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1958		else
1959			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1960	}
1961	return status;
1962}
1963
1964/**
1965 * ice_release_res
1966 * @hw: pointer to the HW structure
1967 * @res: resource ID
1968 *
1969 * This function will release a resource using the proper Admin Command.
1970 */
1971void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1972{
1973	u32 total_delay = 0;
1974	int status;
1975
1976	status = ice_aq_release_res(hw, res, 0, NULL);
1977
1978	/* there are some rare cases when trying to release the resource
1979	 * results in an admin queue timeout, so handle them correctly
1980	 */
1981	while ((status == -EIO) && (total_delay < hw->adminq.sq_cmd_timeout)) {
1982		mdelay(1);
1983		status = ice_aq_release_res(hw, res, 0, NULL);
1984		total_delay++;
1985	}
 
 
1986}
1987
1988/**
1989 * ice_aq_alloc_free_res - command to allocate/free resources
1990 * @hw: pointer to the HW struct
1991 * @num_entries: number of resource entries in buffer
1992 * @buf: Indirect buffer to hold data parameters and response
1993 * @buf_size: size of buffer for indirect commands
1994 * @opc: pass in the command opcode
1995 * @cd: pointer to command details structure or NULL
1996 *
1997 * Helper function to allocate/free resources using the admin queue commands
1998 */
1999int
2000ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
2001		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2002		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2003{
2004	struct ice_aqc_alloc_free_res_cmd *cmd;
2005	struct ice_aq_desc desc;
2006
2007	cmd = &desc.params.sw_res_ctrl;
2008
2009	if (!buf)
2010		return -EINVAL;
2011
2012	if (buf_size < flex_array_size(buf, elem, num_entries))
2013		return -EINVAL;
2014
2015	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2016
2017	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2018
2019	cmd->num_entries = cpu_to_le16(num_entries);
2020
2021	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2022}
2023
2024/**
2025 * ice_alloc_hw_res - allocate resource
2026 * @hw: pointer to the HW struct
2027 * @type: type of resource
2028 * @num: number of resources to allocate
2029 * @btm: allocate from bottom
2030 * @res: pointer to array that will receive the resources
2031 */
2032int
2033ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2034{
2035	struct ice_aqc_alloc_free_res_elem *buf;
2036	u16 buf_len;
2037	int status;
2038
2039	buf_len = struct_size(buf, elem, num);
2040	buf = kzalloc(buf_len, GFP_KERNEL);
2041	if (!buf)
2042		return -ENOMEM;
2043
2044	/* Prepare buffer to allocate resource. */
2045	buf->num_elems = cpu_to_le16(num);
2046	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2047				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2048	if (btm)
2049		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2050
2051	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
2052				       ice_aqc_opc_alloc_res, NULL);
2053	if (status)
2054		goto ice_alloc_res_exit;
2055
2056	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2057
2058ice_alloc_res_exit:
2059	kfree(buf);
2060	return status;
2061}
2062
2063/**
2064 * ice_free_hw_res - free allocated HW resource
2065 * @hw: pointer to the HW struct
2066 * @type: type of resource to free
2067 * @num: number of resources
2068 * @res: pointer to array that contains the resources to free
2069 */
2070int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2071{
2072	struct ice_aqc_alloc_free_res_elem *buf;
2073	u16 buf_len;
2074	int status;
2075
2076	buf_len = struct_size(buf, elem, num);
2077	buf = kzalloc(buf_len, GFP_KERNEL);
2078	if (!buf)
2079		return -ENOMEM;
2080
2081	/* Prepare buffer to free resource. */
2082	buf->num_elems = cpu_to_le16(num);
2083	buf->res_type = cpu_to_le16(type);
2084	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2085
2086	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
2087				       ice_aqc_opc_free_res, NULL);
2088	if (status)
2089		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2090
2091	kfree(buf);
2092	return status;
2093}
2094
2095/**
2096 * ice_get_num_per_func - determine number of resources per PF
2097 * @hw: pointer to the HW structure
2098 * @max: value to be evenly split between each PF
2099 *
2100 * Determine the number of valid functions by going through the bitmap returned
2101 * from parsing capabilities and use this to calculate the number of resources
2102 * per PF based on the max value passed in.
2103 */
2104static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2105{
2106	u8 funcs;
2107
2108#define ICE_CAPS_VALID_FUNCS_M	0xFF
2109	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2110			 ICE_CAPS_VALID_FUNCS_M);
2111
2112	if (!funcs)
2113		return 0;
2114
2115	return max / funcs;
2116}
2117
2118/**
2119 * ice_parse_common_caps - parse common device/function capabilities
2120 * @hw: pointer to the HW struct
2121 * @caps: pointer to common capabilities structure
2122 * @elem: the capability element to parse
2123 * @prefix: message prefix for tracing capabilities
2124 *
2125 * Given a capability element, extract relevant details into the common
2126 * capability structure.
2127 *
2128 * Returns: true if the capability matches one of the common capability ids,
2129 * false otherwise.
2130 */
2131static bool
2132ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2133		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2134{
2135	u32 logical_id = le32_to_cpu(elem->logical_id);
2136	u32 phys_id = le32_to_cpu(elem->phys_id);
2137	u32 number = le32_to_cpu(elem->number);
2138	u16 cap = le16_to_cpu(elem->cap);
2139	bool found = true;
2140
2141	switch (cap) {
2142	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2143		caps->valid_functions = number;
2144		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2145			  caps->valid_functions);
2146		break;
2147	case ICE_AQC_CAPS_SRIOV:
2148		caps->sr_iov_1_1 = (number == 1);
2149		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2150			  caps->sr_iov_1_1);
2151		break;
2152	case ICE_AQC_CAPS_DCB:
2153		caps->dcb = (number == 1);
2154		caps->active_tc_bitmap = logical_id;
2155		caps->maxtc = phys_id;
2156		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2157		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2158			  caps->active_tc_bitmap);
2159		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2160		break;
2161	case ICE_AQC_CAPS_RSS:
2162		caps->rss_table_size = number;
2163		caps->rss_table_entry_width = logical_id;
2164		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2165			  caps->rss_table_size);
2166		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2167			  caps->rss_table_entry_width);
2168		break;
2169	case ICE_AQC_CAPS_RXQS:
2170		caps->num_rxq = number;
2171		caps->rxq_first_id = phys_id;
2172		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2173			  caps->num_rxq);
2174		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2175			  caps->rxq_first_id);
2176		break;
2177	case ICE_AQC_CAPS_TXQS:
2178		caps->num_txq = number;
2179		caps->txq_first_id = phys_id;
2180		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2181			  caps->num_txq);
2182		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2183			  caps->txq_first_id);
2184		break;
2185	case ICE_AQC_CAPS_MSIX:
2186		caps->num_msix_vectors = number;
2187		caps->msix_vector_first_id = phys_id;
2188		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2189			  caps->num_msix_vectors);
2190		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2191			  caps->msix_vector_first_id);
2192		break;
2193	case ICE_AQC_CAPS_PENDING_NVM_VER:
2194		caps->nvm_update_pending_nvm = true;
2195		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2196		break;
2197	case ICE_AQC_CAPS_PENDING_OROM_VER:
2198		caps->nvm_update_pending_orom = true;
2199		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2200		break;
2201	case ICE_AQC_CAPS_PENDING_NET_VER:
2202		caps->nvm_update_pending_netlist = true;
2203		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2204		break;
2205	case ICE_AQC_CAPS_NVM_MGMT:
2206		caps->nvm_unified_update =
2207			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2208			true : false;
2209		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2210			  caps->nvm_unified_update);
2211		break;
2212	case ICE_AQC_CAPS_RDMA:
2213		caps->rdma = (number == 1);
2214		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2215		break;
2216	case ICE_AQC_CAPS_MAX_MTU:
2217		caps->max_mtu = number;
2218		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2219			  prefix, caps->max_mtu);
2220		break;
2221	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2222		caps->pcie_reset_avoidance = (number > 0);
2223		ice_debug(hw, ICE_DBG_INIT,
2224			  "%s: pcie_reset_avoidance = %d\n", prefix,
2225			  caps->pcie_reset_avoidance);
2226		break;
2227	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2228		caps->reset_restrict_support = (number == 1);
2229		ice_debug(hw, ICE_DBG_INIT,
2230			  "%s: reset_restrict_support = %d\n", prefix,
2231			  caps->reset_restrict_support);
2232		break;
 
 
 
 
 
 
 
 
 
 
 
2233	default:
2234		/* Not one of the recognized common capabilities */
2235		found = false;
2236	}
2237
2238	return found;
2239}
2240
2241/**
2242 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2243 * @hw: pointer to the HW structure
2244 * @caps: pointer to capabilities structure to fix
2245 *
2246 * Re-calculate the capabilities that are dependent on the number of physical
2247 * ports; i.e. some features are not supported or function differently on
2248 * devices with more than 4 ports.
2249 */
2250static void
2251ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2252{
2253	/* This assumes device capabilities are always scanned before function
2254	 * capabilities during the initialization flow.
2255	 */
2256	if (hw->dev_caps.num_funcs > 4) {
2257		/* Max 4 TCs per port */
2258		caps->maxtc = 4;
2259		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2260			  caps->maxtc);
2261		if (caps->rdma) {
2262			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2263			caps->rdma = 0;
2264		}
2265
2266		/* print message only when processing device capabilities
2267		 * during initialization.
2268		 */
2269		if (caps == &hw->dev_caps.common_cap)
2270			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2271	}
2272}
2273
2274/**
2275 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2276 * @hw: pointer to the HW struct
2277 * @func_p: pointer to function capabilities structure
2278 * @cap: pointer to the capability element to parse
2279 *
2280 * Extract function capabilities for ICE_AQC_CAPS_VF.
2281 */
2282static void
2283ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2284		       struct ice_aqc_list_caps_elem *cap)
2285{
2286	u32 logical_id = le32_to_cpu(cap->logical_id);
2287	u32 number = le32_to_cpu(cap->number);
2288
2289	func_p->num_allocd_vfs = number;
2290	func_p->vf_base_id = logical_id;
2291	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2292		  func_p->num_allocd_vfs);
2293	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2294		  func_p->vf_base_id);
2295}
2296
2297/**
2298 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2299 * @hw: pointer to the HW struct
2300 * @func_p: pointer to function capabilities structure
2301 * @cap: pointer to the capability element to parse
2302 *
2303 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2304 */
2305static void
2306ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2307			struct ice_aqc_list_caps_elem *cap)
2308{
2309	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2310	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2311		  le32_to_cpu(cap->number));
2312	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2313		  func_p->guar_num_vsi);
2314}
2315
2316/**
2317 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2318 * @hw: pointer to the HW struct
2319 * @func_p: pointer to function capabilities structure
2320 * @cap: pointer to the capability element to parse
2321 *
2322 * Extract function capabilities for ICE_AQC_CAPS_1588.
2323 */
2324static void
2325ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2326			 struct ice_aqc_list_caps_elem *cap)
2327{
2328	struct ice_ts_func_info *info = &func_p->ts_func_info;
2329	u32 number = le32_to_cpu(cap->number);
2330
2331	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2332	func_p->common_cap.ieee_1588 = info->ena;
2333
2334	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2335	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2336	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2337	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2338
2339	info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2340	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
 
 
 
 
 
2341
2342	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2343		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2344	} else {
2345		/* Unknown clock frequency, so assume a (probably incorrect)
2346		 * default to avoid out-of-bounds look ups of frequency
2347		 * related information.
2348		 */
2349		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2350			  info->clk_freq);
2351		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2352	}
2353
2354	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2355		  func_p->common_cap.ieee_1588);
2356	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2357		  info->src_tmr_owned);
2358	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2359		  info->tmr_ena);
2360	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2361		  info->tmr_index_owned);
2362	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2363		  info->tmr_index_assoc);
2364	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2365		  info->clk_freq);
2366	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2367		  info->clk_src);
2368}
2369
2370/**
2371 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2372 * @hw: pointer to the HW struct
2373 * @func_p: pointer to function capabilities structure
2374 *
2375 * Extract function capabilities for ICE_AQC_CAPS_FD.
2376 */
2377static void
2378ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2379{
2380	u32 reg_val, val;
2381
2382	reg_val = rd32(hw, GLQF_FD_SIZE);
2383	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2384		GLQF_FD_SIZE_FD_GSIZE_S;
2385	func_p->fd_fltr_guar =
2386		ice_get_num_per_func(hw, val);
2387	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2388		GLQF_FD_SIZE_FD_BSIZE_S;
2389	func_p->fd_fltr_best_effort = val;
 
 
 
 
 
2390
2391	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2392		  func_p->fd_fltr_guar);
2393	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2394		  func_p->fd_fltr_best_effort);
2395}
2396
2397/**
2398 * ice_parse_func_caps - Parse function capabilities
2399 * @hw: pointer to the HW struct
2400 * @func_p: pointer to function capabilities structure
2401 * @buf: buffer containing the function capability records
2402 * @cap_count: the number of capabilities
2403 *
2404 * Helper function to parse function (0x000A) capabilities list. For
2405 * capabilities shared between device and function, this relies on
2406 * ice_parse_common_caps.
2407 *
2408 * Loop through the list of provided capabilities and extract the relevant
2409 * data into the function capabilities structured.
2410 */
2411static void
2412ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2413		    void *buf, u32 cap_count)
2414{
2415	struct ice_aqc_list_caps_elem *cap_resp;
2416	u32 i;
2417
2418	cap_resp = buf;
2419
2420	memset(func_p, 0, sizeof(*func_p));
2421
2422	for (i = 0; i < cap_count; i++) {
2423		u16 cap = le16_to_cpu(cap_resp[i].cap);
2424		bool found;
2425
2426		found = ice_parse_common_caps(hw, &func_p->common_cap,
2427					      &cap_resp[i], "func caps");
2428
2429		switch (cap) {
2430		case ICE_AQC_CAPS_VF:
2431			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2432			break;
2433		case ICE_AQC_CAPS_VSI:
2434			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2435			break;
2436		case ICE_AQC_CAPS_1588:
2437			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2438			break;
2439		case ICE_AQC_CAPS_FD:
2440			ice_parse_fdir_func_caps(hw, func_p);
2441			break;
2442		default:
2443			/* Don't list common capabilities as unknown */
2444			if (!found)
2445				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2446					  i, cap);
2447			break;
2448		}
2449	}
2450
2451	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2452}
2453
2454/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2455 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2456 * @hw: pointer to the HW struct
2457 * @dev_p: pointer to device capabilities structure
2458 * @cap: capability element to parse
2459 *
2460 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2461 */
2462static void
2463ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2464			      struct ice_aqc_list_caps_elem *cap)
2465{
2466	u32 number = le32_to_cpu(cap->number);
2467
2468	dev_p->num_funcs = hweight32(number);
2469	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2470		  dev_p->num_funcs);
 
 
2471}
2472
2473/**
2474 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2475 * @hw: pointer to the HW struct
2476 * @dev_p: pointer to device capabilities structure
2477 * @cap: capability element to parse
2478 *
2479 * Parse ICE_AQC_CAPS_VF for device capabilities.
2480 */
2481static void
2482ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2483		      struct ice_aqc_list_caps_elem *cap)
2484{
2485	u32 number = le32_to_cpu(cap->number);
2486
2487	dev_p->num_vfs_exposed = number;
2488	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2489		  dev_p->num_vfs_exposed);
2490}
2491
2492/**
2493 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2494 * @hw: pointer to the HW struct
2495 * @dev_p: pointer to device capabilities structure
2496 * @cap: capability element to parse
2497 *
2498 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2499 */
2500static void
2501ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2502		       struct ice_aqc_list_caps_elem *cap)
2503{
2504	u32 number = le32_to_cpu(cap->number);
2505
2506	dev_p->num_vsi_allocd_to_host = number;
2507	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2508		  dev_p->num_vsi_allocd_to_host);
2509}
2510
2511/**
2512 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2513 * @hw: pointer to the HW struct
2514 * @dev_p: pointer to device capabilities structure
2515 * @cap: capability element to parse
2516 *
2517 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2518 */
2519static void
2520ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2521			struct ice_aqc_list_caps_elem *cap)
2522{
2523	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2524	u32 logical_id = le32_to_cpu(cap->logical_id);
2525	u32 phys_id = le32_to_cpu(cap->phys_id);
2526	u32 number = le32_to_cpu(cap->number);
2527
2528	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2529	dev_p->common_cap.ieee_1588 = info->ena;
2530
2531	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2532	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2533	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2534
2535	info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2536	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2537	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2538
2539	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
 
2540
2541	info->ena_ports = logical_id;
2542	info->tmr_own_map = phys_id;
2543
2544	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2545		  dev_p->common_cap.ieee_1588);
2546	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2547		  info->tmr0_owner);
2548	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2549		  info->tmr0_owned);
2550	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2551		  info->tmr0_ena);
2552	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2553		  info->tmr1_owner);
2554	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2555		  info->tmr1_owned);
2556	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2557		  info->tmr1_ena);
2558	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2559		  info->ts_ll_read);
 
 
2560	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2561		  info->ena_ports);
2562	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2563		  info->tmr_own_map);
2564}
2565
2566/**
2567 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2568 * @hw: pointer to the HW struct
2569 * @dev_p: pointer to device capabilities structure
2570 * @cap: capability element to parse
2571 *
2572 * Parse ICE_AQC_CAPS_FD for device capabilities.
2573 */
2574static void
2575ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2576			struct ice_aqc_list_caps_elem *cap)
2577{
2578	u32 number = le32_to_cpu(cap->number);
2579
2580	dev_p->num_flow_director_fltr = number;
2581	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2582		  dev_p->num_flow_director_fltr);
2583}
2584
2585/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2586 * ice_parse_dev_caps - Parse device capabilities
2587 * @hw: pointer to the HW struct
2588 * @dev_p: pointer to device capabilities structure
2589 * @buf: buffer containing the device capability records
2590 * @cap_count: the number of capabilities
2591 *
2592 * Helper device to parse device (0x000B) capabilities list. For
2593 * capabilities shared between device and function, this relies on
2594 * ice_parse_common_caps.
2595 *
2596 * Loop through the list of provided capabilities and extract the relevant
2597 * data into the device capabilities structured.
2598 */
2599static void
2600ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2601		   void *buf, u32 cap_count)
2602{
2603	struct ice_aqc_list_caps_elem *cap_resp;
2604	u32 i;
2605
2606	cap_resp = buf;
2607
2608	memset(dev_p, 0, sizeof(*dev_p));
2609
2610	for (i = 0; i < cap_count; i++) {
2611		u16 cap = le16_to_cpu(cap_resp[i].cap);
2612		bool found;
2613
2614		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2615					      &cap_resp[i], "dev caps");
2616
2617		switch (cap) {
2618		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2619			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2620			break;
2621		case ICE_AQC_CAPS_VF:
2622			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2623			break;
2624		case ICE_AQC_CAPS_VSI:
2625			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2626			break;
2627		case ICE_AQC_CAPS_1588:
2628			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2629			break;
2630		case  ICE_AQC_CAPS_FD:
2631			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2632			break;
 
 
 
 
 
 
2633		default:
2634			/* Don't list common capabilities as unknown */
2635			if (!found)
2636				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2637					  i, cap);
2638			break;
2639		}
2640	}
2641
2642	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2643}
2644
2645/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2646 * ice_aq_list_caps - query function/device capabilities
2647 * @hw: pointer to the HW struct
2648 * @buf: a buffer to hold the capabilities
2649 * @buf_size: size of the buffer
2650 * @cap_count: if not NULL, set to the number of capabilities reported
2651 * @opc: capabilities type to discover, device or function
2652 * @cd: pointer to command details structure or NULL
2653 *
2654 * Get the function (0x000A) or device (0x000B) capabilities description from
2655 * firmware and store it in the buffer.
2656 *
2657 * If the cap_count pointer is not NULL, then it is set to the number of
2658 * capabilities firmware will report. Note that if the buffer size is too
2659 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2660 * cap_count will still be updated in this case. It is recommended that the
2661 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2662 * firmware could return) to avoid this.
2663 */
2664int
2665ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2666		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2667{
2668	struct ice_aqc_list_caps *cmd;
2669	struct ice_aq_desc desc;
2670	int status;
2671
2672	cmd = &desc.params.get_cap;
2673
2674	if (opc != ice_aqc_opc_list_func_caps &&
2675	    opc != ice_aqc_opc_list_dev_caps)
2676		return -EINVAL;
2677
2678	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2679	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2680
2681	if (cap_count)
2682		*cap_count = le32_to_cpu(cmd->count);
2683
2684	return status;
2685}
2686
2687/**
2688 * ice_discover_dev_caps - Read and extract device capabilities
2689 * @hw: pointer to the hardware structure
2690 * @dev_caps: pointer to device capabilities structure
2691 *
2692 * Read the device capabilities and extract them into the dev_caps structure
2693 * for later use.
2694 */
2695int
2696ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2697{
2698	u32 cap_count = 0;
2699	void *cbuf;
2700	int status;
2701
2702	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2703	if (!cbuf)
2704		return -ENOMEM;
2705
2706	/* Although the driver doesn't know the number of capabilities the
2707	 * device will return, we can simply send a 4KB buffer, the maximum
2708	 * possible size that firmware can return.
2709	 */
2710	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2711
2712	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2713				  ice_aqc_opc_list_dev_caps, NULL);
2714	if (!status)
2715		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2716	kfree(cbuf);
2717
2718	return status;
2719}
2720
2721/**
2722 * ice_discover_func_caps - Read and extract function capabilities
2723 * @hw: pointer to the hardware structure
2724 * @func_caps: pointer to function capabilities structure
2725 *
2726 * Read the function capabilities and extract them into the func_caps structure
2727 * for later use.
2728 */
2729static int
2730ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2731{
2732	u32 cap_count = 0;
2733	void *cbuf;
2734	int status;
2735
2736	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2737	if (!cbuf)
2738		return -ENOMEM;
2739
2740	/* Although the driver doesn't know the number of capabilities the
2741	 * device will return, we can simply send a 4KB buffer, the maximum
2742	 * possible size that firmware can return.
2743	 */
2744	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2745
2746	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2747				  ice_aqc_opc_list_func_caps, NULL);
2748	if (!status)
2749		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2750	kfree(cbuf);
2751
2752	return status;
2753}
2754
2755/**
2756 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2757 * @hw: pointer to the hardware structure
2758 */
2759void ice_set_safe_mode_caps(struct ice_hw *hw)
2760{
2761	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2762	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2763	struct ice_hw_common_caps cached_caps;
2764	u32 num_funcs;
2765
2766	/* cache some func_caps values that should be restored after memset */
2767	cached_caps = func_caps->common_cap;
2768
2769	/* unset func capabilities */
2770	memset(func_caps, 0, sizeof(*func_caps));
2771
2772#define ICE_RESTORE_FUNC_CAP(name) \
2773	func_caps->common_cap.name = cached_caps.name
2774
2775	/* restore cached values */
2776	ICE_RESTORE_FUNC_CAP(valid_functions);
2777	ICE_RESTORE_FUNC_CAP(txq_first_id);
2778	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2779	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2780	ICE_RESTORE_FUNC_CAP(max_mtu);
2781	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2782	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2783	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2784	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2785
2786	/* one Tx and one Rx queue in safe mode */
2787	func_caps->common_cap.num_rxq = 1;
2788	func_caps->common_cap.num_txq = 1;
2789
2790	/* two MSIX vectors, one for traffic and one for misc causes */
2791	func_caps->common_cap.num_msix_vectors = 2;
2792	func_caps->guar_num_vsi = 1;
2793
2794	/* cache some dev_caps values that should be restored after memset */
2795	cached_caps = dev_caps->common_cap;
2796	num_funcs = dev_caps->num_funcs;
2797
2798	/* unset dev capabilities */
2799	memset(dev_caps, 0, sizeof(*dev_caps));
2800
2801#define ICE_RESTORE_DEV_CAP(name) \
2802	dev_caps->common_cap.name = cached_caps.name
2803
2804	/* restore cached values */
2805	ICE_RESTORE_DEV_CAP(valid_functions);
2806	ICE_RESTORE_DEV_CAP(txq_first_id);
2807	ICE_RESTORE_DEV_CAP(rxq_first_id);
2808	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2809	ICE_RESTORE_DEV_CAP(max_mtu);
2810	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2811	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2812	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2813	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2814	dev_caps->num_funcs = num_funcs;
2815
2816	/* one Tx and one Rx queue per function in safe mode */
2817	dev_caps->common_cap.num_rxq = num_funcs;
2818	dev_caps->common_cap.num_txq = num_funcs;
2819
2820	/* two MSIX vectors per function */
2821	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2822}
2823
2824/**
2825 * ice_get_caps - get info about the HW
2826 * @hw: pointer to the hardware structure
2827 */
2828int ice_get_caps(struct ice_hw *hw)
2829{
2830	int status;
2831
2832	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2833	if (status)
2834		return status;
2835
2836	return ice_discover_func_caps(hw, &hw->func_caps);
2837}
2838
2839/**
2840 * ice_aq_manage_mac_write - manage MAC address write command
2841 * @hw: pointer to the HW struct
2842 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2843 * @flags: flags to control write behavior
2844 * @cd: pointer to command details structure or NULL
2845 *
2846 * This function is used to write MAC address to the NVM (0x0108).
2847 */
2848int
2849ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2850			struct ice_sq_cd *cd)
2851{
2852	struct ice_aqc_manage_mac_write *cmd;
2853	struct ice_aq_desc desc;
2854
2855	cmd = &desc.params.mac_write;
2856	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2857
2858	cmd->flags = flags;
2859	ether_addr_copy(cmd->mac_addr, mac_addr);
2860
2861	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2862}
2863
2864/**
2865 * ice_aq_clear_pxe_mode
2866 * @hw: pointer to the HW struct
2867 *
2868 * Tell the firmware that the driver is taking over from PXE (0x0110).
2869 */
2870static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2871{
2872	struct ice_aq_desc desc;
2873
2874	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2875	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2876
2877	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2878}
2879
2880/**
2881 * ice_clear_pxe_mode - clear pxe operations mode
2882 * @hw: pointer to the HW struct
2883 *
2884 * Make sure all PXE mode settings are cleared, including things
2885 * like descriptor fetch/write-back mode.
2886 */
2887void ice_clear_pxe_mode(struct ice_hw *hw)
2888{
2889	if (ice_check_sq_alive(hw, &hw->adminq))
2890		ice_aq_clear_pxe_mode(hw);
2891}
2892
2893/**
2894 * ice_aq_set_port_params - set physical port parameters.
2895 * @pi: pointer to the port info struct
2896 * @double_vlan: if set double VLAN is enabled
2897 * @cd: pointer to command details structure or NULL
2898 *
2899 * Set Physical port parameters (0x0203)
2900 */
2901int
2902ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2903		       struct ice_sq_cd *cd)
2904
2905{
2906	struct ice_aqc_set_port_params *cmd;
2907	struct ice_hw *hw = pi->hw;
2908	struct ice_aq_desc desc;
2909	u16 cmd_flags = 0;
2910
2911	cmd = &desc.params.set_port_params;
2912
2913	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2914	if (double_vlan)
2915		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2916	cmd->cmd_flags = cpu_to_le16(cmd_flags);
2917
 
 
 
2918	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2919}
2920
2921/**
2922 * ice_is_100m_speed_supported
2923 * @hw: pointer to the HW struct
2924 *
2925 * returns true if 100M speeds are supported by the device,
2926 * false otherwise.
2927 */
2928bool ice_is_100m_speed_supported(struct ice_hw *hw)
2929{
2930	switch (hw->device_id) {
2931	case ICE_DEV_ID_E822C_SGMII:
2932	case ICE_DEV_ID_E822L_SGMII:
2933	case ICE_DEV_ID_E823L_1GBE:
2934	case ICE_DEV_ID_E823C_SGMII:
2935		return true;
2936	default:
2937		return false;
2938	}
2939}
2940
2941/**
2942 * ice_get_link_speed_based_on_phy_type - returns link speed
2943 * @phy_type_low: lower part of phy_type
2944 * @phy_type_high: higher part of phy_type
2945 *
2946 * This helper function will convert an entry in PHY type structure
2947 * [phy_type_low, phy_type_high] to its corresponding link speed.
2948 * Note: In the structure of [phy_type_low, phy_type_high], there should
2949 * be one bit set, as this function will convert one PHY type to its
2950 * speed.
2951 * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
2952 * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
 
 
 
2953 */
2954static u16
2955ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2956{
2957	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2958	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2959
2960	switch (phy_type_low) {
2961	case ICE_PHY_TYPE_LOW_100BASE_TX:
2962	case ICE_PHY_TYPE_LOW_100M_SGMII:
2963		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2964		break;
2965	case ICE_PHY_TYPE_LOW_1000BASE_T:
2966	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2967	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2968	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2969	case ICE_PHY_TYPE_LOW_1G_SGMII:
2970		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2971		break;
2972	case ICE_PHY_TYPE_LOW_2500BASE_T:
2973	case ICE_PHY_TYPE_LOW_2500BASE_X:
2974	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2975		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2976		break;
2977	case ICE_PHY_TYPE_LOW_5GBASE_T:
2978	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2979		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2980		break;
2981	case ICE_PHY_TYPE_LOW_10GBASE_T:
2982	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2983	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2984	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2985	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2986	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2987	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2988		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2989		break;
2990	case ICE_PHY_TYPE_LOW_25GBASE_T:
2991	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2992	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2993	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2994	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2995	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2996	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2997	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2998	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2999	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3000	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3001		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3002		break;
3003	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3004	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3005	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3006	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3007	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3008	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3009		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3010		break;
3011	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3012	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3013	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3014	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3015	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3016	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3017	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3018	case ICE_PHY_TYPE_LOW_50G_AUI2:
3019	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3020	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3021	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3022	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3023	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3024	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3025	case ICE_PHY_TYPE_LOW_50G_AUI1:
3026		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3027		break;
3028	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3029	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3030	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3031	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3032	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3033	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3034	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3035	case ICE_PHY_TYPE_LOW_100G_AUI4:
3036	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3037	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3038	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3039	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3040	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3041		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3042		break;
3043	default:
3044		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3045		break;
3046	}
3047
3048	switch (phy_type_high) {
3049	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3050	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3051	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3052	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3053	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3054		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3055		break;
 
 
 
 
 
 
 
 
 
 
3056	default:
3057		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3058		break;
3059	}
3060
3061	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3062	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3063		return ICE_AQ_LINK_SPEED_UNKNOWN;
3064	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3065		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3066		return ICE_AQ_LINK_SPEED_UNKNOWN;
3067	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3068		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3069		return speed_phy_type_low;
3070	else
3071		return speed_phy_type_high;
3072}
3073
3074/**
3075 * ice_update_phy_type
3076 * @phy_type_low: pointer to the lower part of phy_type
3077 * @phy_type_high: pointer to the higher part of phy_type
3078 * @link_speeds_bitmap: targeted link speeds bitmap
3079 *
3080 * Note: For the link_speeds_bitmap structure, you can check it at
3081 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3082 * link_speeds_bitmap include multiple speeds.
3083 *
3084 * Each entry in this [phy_type_low, phy_type_high] structure will
3085 * present a certain link speed. This helper function will turn on bits
3086 * in [phy_type_low, phy_type_high] structure based on the value of
3087 * link_speeds_bitmap input parameter.
3088 */
3089void
3090ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3091		    u16 link_speeds_bitmap)
3092{
3093	u64 pt_high;
3094	u64 pt_low;
3095	int index;
3096	u16 speed;
3097
3098	/* We first check with low part of phy_type */
3099	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3100		pt_low = BIT_ULL(index);
3101		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3102
3103		if (link_speeds_bitmap & speed)
3104			*phy_type_low |= BIT_ULL(index);
3105	}
3106
3107	/* We then check with high part of phy_type */
3108	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3109		pt_high = BIT_ULL(index);
3110		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3111
3112		if (link_speeds_bitmap & speed)
3113			*phy_type_high |= BIT_ULL(index);
3114	}
3115}
3116
3117/**
3118 * ice_aq_set_phy_cfg
3119 * @hw: pointer to the HW struct
3120 * @pi: port info structure of the interested logical port
3121 * @cfg: structure with PHY configuration data to be set
3122 * @cd: pointer to command details structure or NULL
3123 *
3124 * Set the various PHY configuration parameters supported on the Port.
3125 * One or more of the Set PHY config parameters may be ignored in an MFP
3126 * mode as the PF may not have the privilege to set some of the PHY Config
3127 * parameters. This status will be indicated by the command response (0x0601).
3128 */
3129int
3130ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3131		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3132{
3133	struct ice_aq_desc desc;
3134	int status;
3135
3136	if (!cfg)
3137		return -EINVAL;
3138
3139	/* Ensure that only valid bits of cfg->caps can be turned on. */
3140	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3141		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3142			  cfg->caps);
3143
3144		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3145	}
3146
3147	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3148	desc.params.set_phy.lport_num = pi->lport;
3149	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3150
3151	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3152	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3153		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3154	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3155		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3156	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3157	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3158		  cfg->low_power_ctrl_an);
3159	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3160	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3161	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3162		  cfg->link_fec_opt);
3163
3164	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3165	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3166		status = 0;
3167
3168	if (!status)
3169		pi->phy.curr_user_phy_cfg = *cfg;
3170
3171	return status;
3172}
3173
3174/**
3175 * ice_update_link_info - update status of the HW network link
3176 * @pi: port info structure of the interested logical port
3177 */
3178int ice_update_link_info(struct ice_port_info *pi)
3179{
3180	struct ice_link_status *li;
3181	int status;
3182
3183	if (!pi)
3184		return -EINVAL;
3185
3186	li = &pi->phy.link_info;
3187
3188	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3189	if (status)
3190		return status;
3191
3192	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3193		struct ice_aqc_get_phy_caps_data *pcaps;
3194		struct ice_hw *hw;
3195
3196		hw = pi->hw;
3197		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
3198				     GFP_KERNEL);
3199		if (!pcaps)
3200			return -ENOMEM;
3201
3202		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3203					     pcaps, NULL);
3204
3205		devm_kfree(ice_hw_to_dev(hw), pcaps);
3206	}
3207
3208	return status;
3209}
3210
3211/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3212 * ice_cache_phy_user_req
3213 * @pi: port information structure
3214 * @cache_data: PHY logging data
3215 * @cache_mode: PHY logging mode
3216 *
3217 * Log the user request on (FC, FEC, SPEED) for later use.
3218 */
3219static void
3220ice_cache_phy_user_req(struct ice_port_info *pi,
3221		       struct ice_phy_cache_mode_data cache_data,
3222		       enum ice_phy_cache_mode cache_mode)
3223{
3224	if (!pi)
3225		return;
3226
3227	switch (cache_mode) {
3228	case ICE_FC_MODE:
3229		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3230		break;
3231	case ICE_SPEED_MODE:
3232		pi->phy.curr_user_speed_req =
3233			cache_data.data.curr_user_speed_req;
3234		break;
3235	case ICE_FEC_MODE:
3236		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3237		break;
3238	default:
3239		break;
3240	}
3241}
3242
3243/**
3244 * ice_caps_to_fc_mode
3245 * @caps: PHY capabilities
3246 *
3247 * Convert PHY FC capabilities to ice FC mode
3248 */
3249enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3250{
3251	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3252	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3253		return ICE_FC_FULL;
3254
3255	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3256		return ICE_FC_TX_PAUSE;
3257
3258	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3259		return ICE_FC_RX_PAUSE;
3260
3261	return ICE_FC_NONE;
3262}
3263
3264/**
3265 * ice_caps_to_fec_mode
3266 * @caps: PHY capabilities
3267 * @fec_options: Link FEC options
3268 *
3269 * Convert PHY FEC capabilities to ice FEC mode
3270 */
3271enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3272{
3273	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3274		return ICE_FEC_AUTO;
3275
3276	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3277			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3278			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3279			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3280		return ICE_FEC_BASER;
3281
3282	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3283			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3284			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3285		return ICE_FEC_RS;
3286
3287	return ICE_FEC_NONE;
3288}
3289
3290/**
3291 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3292 * @pi: port information structure
3293 * @cfg: PHY configuration data to set FC mode
3294 * @req_mode: FC mode to configure
3295 */
3296int
3297ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3298	       enum ice_fc_mode req_mode)
3299{
3300	struct ice_phy_cache_mode_data cache_data;
3301	u8 pause_mask = 0x0;
3302
3303	if (!pi || !cfg)
3304		return -EINVAL;
3305
3306	switch (req_mode) {
3307	case ICE_FC_FULL:
3308		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3309		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3310		break;
3311	case ICE_FC_RX_PAUSE:
3312		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3313		break;
3314	case ICE_FC_TX_PAUSE:
3315		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3316		break;
3317	default:
3318		break;
3319	}
3320
3321	/* clear the old pause settings */
3322	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3323		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3324
3325	/* set the new capabilities */
3326	cfg->caps |= pause_mask;
3327
3328	/* Cache user FC request */
3329	cache_data.data.curr_user_fc_req = req_mode;
3330	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3331
3332	return 0;
3333}
3334
3335/**
3336 * ice_set_fc
3337 * @pi: port information structure
3338 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3339 * @ena_auto_link_update: enable automatic link update
3340 *
3341 * Set the requested flow control mode.
3342 */
3343int
3344ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3345{
 
3346	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3347	struct ice_aqc_get_phy_caps_data *pcaps;
3348	struct ice_hw *hw;
3349	int status;
3350
3351	if (!pi || !aq_failures)
3352		return -EINVAL;
3353
3354	*aq_failures = 0;
3355	hw = pi->hw;
3356
3357	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3358	if (!pcaps)
3359		return -ENOMEM;
3360
3361	/* Get the current PHY config */
3362	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3363				     pcaps, NULL);
3364	if (status) {
3365		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3366		goto out;
3367	}
3368
3369	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3370
3371	/* Configure the set PHY data */
3372	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3373	if (status)
3374		goto out;
3375
3376	/* If the capabilities have changed, then set the new config */
3377	if (cfg.caps != pcaps->caps) {
3378		int retry_count, retry_max = 10;
3379
3380		/* Auto restart link so settings take effect */
3381		if (ena_auto_link_update)
3382			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3383
3384		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3385		if (status) {
3386			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3387			goto out;
3388		}
3389
3390		/* Update the link info
3391		 * It sometimes takes a really long time for link to
3392		 * come back from the atomic reset. Thus, we wait a
3393		 * little bit.
3394		 */
3395		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3396			status = ice_update_link_info(pi);
3397
3398			if (!status)
3399				break;
3400
3401			mdelay(100);
3402		}
3403
3404		if (status)
3405			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3406	}
3407
3408out:
3409	devm_kfree(ice_hw_to_dev(hw), pcaps);
3410	return status;
3411}
3412
3413/**
3414 * ice_phy_caps_equals_cfg
3415 * @phy_caps: PHY capabilities
3416 * @phy_cfg: PHY configuration
3417 *
3418 * Helper function to determine if PHY capabilities matches PHY
3419 * configuration
3420 */
3421bool
3422ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3423			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3424{
3425	u8 caps_mask, cfg_mask;
3426
3427	if (!phy_caps || !phy_cfg)
3428		return false;
3429
3430	/* These bits are not common between capabilities and configuration.
3431	 * Do not use them to determine equality.
3432	 */
3433	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3434					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3435	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3436
3437	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3438	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3439	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3440	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3441	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3442	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3443	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3444		return false;
3445
3446	return true;
3447}
3448
3449/**
3450 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3451 * @pi: port information structure
3452 * @caps: PHY ability structure to copy date from
3453 * @cfg: PHY configuration structure to copy data to
3454 *
3455 * Helper function to copy AQC PHY get ability data to PHY set configuration
3456 * data structure
3457 */
3458void
3459ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3460			 struct ice_aqc_get_phy_caps_data *caps,
3461			 struct ice_aqc_set_phy_cfg_data *cfg)
3462{
3463	if (!pi || !caps || !cfg)
3464		return;
3465
3466	memset(cfg, 0, sizeof(*cfg));
3467	cfg->phy_type_low = caps->phy_type_low;
3468	cfg->phy_type_high = caps->phy_type_high;
3469	cfg->caps = caps->caps;
3470	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3471	cfg->eee_cap = caps->eee_cap;
3472	cfg->eeer_value = caps->eeer_value;
3473	cfg->link_fec_opt = caps->link_fec_options;
3474	cfg->module_compliance_enforcement =
3475		caps->module_compliance_enforcement;
3476}
3477
3478/**
3479 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3480 * @pi: port information structure
3481 * @cfg: PHY configuration data to set FEC mode
3482 * @fec: FEC mode to configure
3483 */
3484int
3485ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3486		enum ice_fec_mode fec)
3487{
3488	struct ice_aqc_get_phy_caps_data *pcaps;
3489	struct ice_hw *hw;
3490	int status;
3491
3492	if (!pi || !cfg)
3493		return -EINVAL;
3494
3495	hw = pi->hw;
3496
3497	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3498	if (!pcaps)
3499		return -ENOMEM;
3500
3501	status = ice_aq_get_phy_caps(pi, false,
3502				     (ice_fw_supports_report_dflt_cfg(hw) ?
3503				      ICE_AQC_REPORT_DFLT_CFG :
3504				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3505	if (status)
3506		goto out;
3507
3508	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3509	cfg->link_fec_opt = pcaps->link_fec_options;
3510
3511	switch (fec) {
3512	case ICE_FEC_BASER:
3513		/* Clear RS bits, and AND BASE-R ability
3514		 * bits and OR request bits.
3515		 */
3516		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3517			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3518		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3519			ICE_AQC_PHY_FEC_25G_KR_REQ;
3520		break;
3521	case ICE_FEC_RS:
3522		/* Clear BASE-R bits, and AND RS ability
3523		 * bits and OR request bits.
3524		 */
3525		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3526		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3527			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3528		break;
3529	case ICE_FEC_NONE:
3530		/* Clear all FEC option bits. */
3531		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3532		break;
3533	case ICE_FEC_AUTO:
3534		/* AND auto FEC bit, and all caps bits. */
3535		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3536		cfg->link_fec_opt |= pcaps->link_fec_options;
3537		break;
3538	default:
3539		status = -EINVAL;
3540		break;
3541	}
3542
3543	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3544	    !ice_fw_supports_report_dflt_cfg(hw)) {
3545		struct ice_link_default_override_tlv tlv = { 0 };
3546
3547		status = ice_get_link_default_override(&tlv, pi);
3548		if (status)
3549			goto out;
3550
3551		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3552		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3553			cfg->link_fec_opt = tlv.fec_options;
3554	}
3555
3556out:
3557	kfree(pcaps);
3558
3559	return status;
3560}
3561
3562/**
3563 * ice_get_link_status - get status of the HW network link
3564 * @pi: port information structure
3565 * @link_up: pointer to bool (true/false = linkup/linkdown)
3566 *
3567 * Variable link_up is true if link is up, false if link is down.
3568 * The variable link_up is invalid if status is non zero. As a
3569 * result of this call, link status reporting becomes enabled
3570 */
3571int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3572{
3573	struct ice_phy_info *phy_info;
3574	int status = 0;
3575
3576	if (!pi || !link_up)
3577		return -EINVAL;
3578
3579	phy_info = &pi->phy;
3580
3581	if (phy_info->get_link_info) {
3582		status = ice_update_link_info(pi);
3583
3584		if (status)
3585			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3586				  status);
3587	}
3588
3589	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3590
3591	return status;
3592}
3593
3594/**
3595 * ice_aq_set_link_restart_an
3596 * @pi: pointer to the port information structure
3597 * @ena_link: if true: enable link, if false: disable link
3598 * @cd: pointer to command details structure or NULL
3599 *
3600 * Sets up the link and restarts the Auto-Negotiation over the link.
3601 */
3602int
3603ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3604			   struct ice_sq_cd *cd)
3605{
3606	struct ice_aqc_restart_an *cmd;
3607	struct ice_aq_desc desc;
3608
3609	cmd = &desc.params.restart_an;
3610
3611	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3612
3613	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3614	cmd->lport_num = pi->lport;
3615	if (ena_link)
3616		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3617	else
3618		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3619
3620	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3621}
3622
3623/**
3624 * ice_aq_set_event_mask
3625 * @hw: pointer to the HW struct
3626 * @port_num: port number of the physical function
3627 * @mask: event mask to be set
3628 * @cd: pointer to command details structure or NULL
3629 *
3630 * Set event mask (0x0613)
3631 */
3632int
3633ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3634		      struct ice_sq_cd *cd)
3635{
3636	struct ice_aqc_set_event_mask *cmd;
3637	struct ice_aq_desc desc;
3638
3639	cmd = &desc.params.set_event_mask;
3640
3641	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3642
3643	cmd->lport_num = port_num;
3644
3645	cmd->event_mask = cpu_to_le16(mask);
3646	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3647}
3648
3649/**
3650 * ice_aq_set_mac_loopback
3651 * @hw: pointer to the HW struct
3652 * @ena_lpbk: Enable or Disable loopback
3653 * @cd: pointer to command details structure or NULL
3654 *
3655 * Enable/disable loopback on a given port
3656 */
3657int
3658ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3659{
3660	struct ice_aqc_set_mac_lb *cmd;
3661	struct ice_aq_desc desc;
3662
3663	cmd = &desc.params.set_mac_lb;
3664
3665	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3666	if (ena_lpbk)
3667		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3668
3669	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3670}
3671
3672/**
3673 * ice_aq_set_port_id_led
3674 * @pi: pointer to the port information
3675 * @is_orig_mode: is this LED set to original mode (by the net-list)
3676 * @cd: pointer to command details structure or NULL
3677 *
3678 * Set LED value for the given port (0x06e9)
3679 */
3680int
3681ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3682		       struct ice_sq_cd *cd)
3683{
3684	struct ice_aqc_set_port_id_led *cmd;
3685	struct ice_hw *hw = pi->hw;
3686	struct ice_aq_desc desc;
3687
3688	cmd = &desc.params.set_port_id_led;
3689
3690	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3691
3692	if (is_orig_mode)
3693		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3694	else
3695		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3696
3697	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3698}
3699
3700/**
3701 * ice_aq_get_port_options
3702 * @hw: pointer to the HW struct
3703 * @options: buffer for the resultant port options
3704 * @option_count: input - size of the buffer in port options structures,
3705 *                output - number of returned port options
3706 * @lport: logical port to call the command with (optional)
3707 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3708 *               when PF owns more than 1 port it must be true
3709 * @active_option_idx: index of active port option in returned buffer
3710 * @active_option_valid: active option in returned buffer is valid
3711 * @pending_option_idx: index of pending port option in returned buffer
3712 * @pending_option_valid: pending option in returned buffer is valid
3713 *
3714 * Calls Get Port Options AQC (0x06ea) and verifies result.
3715 */
3716int
3717ice_aq_get_port_options(struct ice_hw *hw,
3718			struct ice_aqc_get_port_options_elem *options,
3719			u8 *option_count, u8 lport, bool lport_valid,
3720			u8 *active_option_idx, bool *active_option_valid,
3721			u8 *pending_option_idx, bool *pending_option_valid)
3722{
3723	struct ice_aqc_get_port_options *cmd;
3724	struct ice_aq_desc desc;
3725	int status;
3726	u8 i;
3727
3728	/* options buffer shall be able to hold max returned options */
3729	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3730		return -EINVAL;
3731
3732	cmd = &desc.params.get_port_options;
3733	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3734
3735	if (lport_valid)
3736		cmd->lport_num = lport;
3737	cmd->lport_num_valid = lport_valid;
3738
3739	status = ice_aq_send_cmd(hw, &desc, options,
3740				 *option_count * sizeof(*options), NULL);
3741	if (status)
3742		return status;
3743
3744	/* verify direct FW response & set output parameters */
3745	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3746				  cmd->port_options_count);
3747	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3748	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3749					 cmd->port_options);
3750	if (*active_option_valid) {
3751		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3752					       cmd->port_options);
3753		if (*active_option_idx > (*option_count - 1))
3754			return -EIO;
3755		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3756			  *active_option_idx);
3757	}
3758
3759	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3760					  cmd->pending_port_option_status);
3761	if (*pending_option_valid) {
3762		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3763						cmd->pending_port_option_status);
3764		if (*pending_option_idx > (*option_count - 1))
3765			return -EIO;
3766		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3767			  *pending_option_idx);
3768	}
3769
3770	/* mask output options fields */
3771	for (i = 0; i < *option_count; i++) {
3772		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3773					   options[i].pmd);
3774		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3775						      options[i].max_lane_speed);
3776		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3777			  options[i].pmd, options[i].max_lane_speed);
3778	}
3779
3780	return 0;
3781}
3782
3783/**
3784 * ice_aq_set_port_option
3785 * @hw: pointer to the HW struct
3786 * @lport: logical port to call the command with
3787 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3788 *               when PF owns more than 1 port it must be true
3789 * @new_option: new port option to be written
3790 *
3791 * Calls Set Port Options AQC (0x06eb).
3792 */
3793int
3794ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3795		       u8 new_option)
3796{
3797	struct ice_aqc_set_port_option *cmd;
3798	struct ice_aq_desc desc;
3799
3800	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3801		return -EINVAL;
3802
3803	cmd = &desc.params.set_port_option;
3804	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3805
3806	if (lport_valid)
3807		cmd->lport_num = lport;
3808
3809	cmd->lport_num_valid = lport_valid;
3810	cmd->selected_port_option = new_option;
3811
3812	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3813}
3814
3815/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3816 * ice_aq_sff_eeprom
3817 * @hw: pointer to the HW struct
3818 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3819 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3820 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3821 * @page: QSFP page
3822 * @set_page: set or ignore the page
3823 * @data: pointer to data buffer to be read/written to the I2C device.
3824 * @length: 1-16 for read, 1 for write.
3825 * @write: 0 read, 1 for write.
3826 * @cd: pointer to command details structure or NULL
3827 *
3828 * Read/Write SFF EEPROM (0x06EE)
3829 */
3830int
3831ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3832		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3833		  bool write, struct ice_sq_cd *cd)
3834{
3835	struct ice_aqc_sff_eeprom *cmd;
3836	struct ice_aq_desc desc;
 
3837	int status;
3838
3839	if (!data || (mem_addr & 0xff00))
3840		return -EINVAL;
3841
3842	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3843	cmd = &desc.params.read_write_sff_param;
3844	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3845	cmd->lport_num = (u8)(lport & 0xff);
3846	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3847	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3848					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3849					((set_page <<
3850					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3851					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3852	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3853	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3854	if (write)
3855		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3856
3857	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3858	return status;
3859}
3860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3861/**
3862 * __ice_aq_get_set_rss_lut
3863 * @hw: pointer to the hardware structure
3864 * @params: RSS LUT parameters
3865 * @set: set true to set the table, false to get the table
3866 *
3867 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3868 */
3869static int
3870__ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
 
3871{
3872	u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3873	struct ice_aqc_get_set_rss_lut *cmd_resp;
 
 
 
3874	struct ice_aq_desc desc;
3875	int status;
3876	u8 *lut;
3877
3878	if (!params)
3879		return -EINVAL;
3880
3881	vsi_handle = params->vsi_handle;
3882	lut = params->lut;
3883
3884	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3885		return -EINVAL;
3886
3887	lut_size = params->lut_size;
3888	lut_type = params->lut_type;
3889	glob_lut_idx = params->global_lut_id;
3890	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3891
3892	cmd_resp = &desc.params.get_set_rss_lut;
3893
3894	if (set) {
3895		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3896		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3897	} else {
3898		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3899	}
3900
3901	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3902					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3903					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3904				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3905
3906	switch (lut_type) {
3907	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3908	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3909	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3910		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3911			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3912		break;
3913	default:
3914		status = -EINVAL;
3915		goto ice_aq_get_set_rss_lut_exit;
3916	}
3917
3918	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3919		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3920			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3921
3922		if (!set)
3923			goto ice_aq_get_set_rss_lut_send;
3924	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3925		if (!set)
3926			goto ice_aq_get_set_rss_lut_send;
3927	} else {
3928		goto ice_aq_get_set_rss_lut_send;
3929	}
3930
3931	/* LUT size is only valid for Global and PF table types */
3932	switch (lut_size) {
3933	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3934		break;
3935	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3936		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3937			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3938			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3939		break;
3940	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3941		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3942			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3943				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3944				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3945			break;
3946		}
3947		fallthrough;
3948	default:
3949		status = -EINVAL;
3950		goto ice_aq_get_set_rss_lut_exit;
3951	}
3952
3953ice_aq_get_set_rss_lut_send:
3954	cmd_resp->flags = cpu_to_le16(flags);
3955	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3956
3957ice_aq_get_set_rss_lut_exit:
3958	return status;
3959}
3960
3961/**
3962 * ice_aq_get_rss_lut
3963 * @hw: pointer to the hardware structure
3964 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3965 *
3966 * get the RSS lookup table, PF or VSI type
3967 */
3968int
3969ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3970{
3971	return __ice_aq_get_set_rss_lut(hw, get_params, false);
3972}
3973
3974/**
3975 * ice_aq_set_rss_lut
3976 * @hw: pointer to the hardware structure
3977 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3978 *
3979 * set the RSS lookup table, PF or VSI type
3980 */
3981int
3982ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3983{
3984	return __ice_aq_get_set_rss_lut(hw, set_params, true);
3985}
3986
3987/**
3988 * __ice_aq_get_set_rss_key
3989 * @hw: pointer to the HW struct
3990 * @vsi_id: VSI FW index
3991 * @key: pointer to key info struct
3992 * @set: set true to set the key, false to get the key
3993 *
3994 * get (0x0B04) or set (0x0B02) the RSS key per VSI
3995 */
3996static int
3997__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3998			 struct ice_aqc_get_set_rss_keys *key, bool set)
3999{
4000	struct ice_aqc_get_set_rss_key *cmd_resp;
4001	u16 key_size = sizeof(*key);
4002	struct ice_aq_desc desc;
4003
4004	cmd_resp = &desc.params.get_set_rss_key;
4005
4006	if (set) {
4007		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4008		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4009	} else {
4010		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4011	}
4012
4013	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
4014					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
4015					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
4016				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
4017
4018	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4019}
4020
4021/**
4022 * ice_aq_get_rss_key
4023 * @hw: pointer to the HW struct
4024 * @vsi_handle: software VSI handle
4025 * @key: pointer to key info struct
4026 *
4027 * get the RSS key per VSI
4028 */
4029int
4030ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4031		   struct ice_aqc_get_set_rss_keys *key)
4032{
4033	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4034		return -EINVAL;
4035
4036	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4037					key, false);
4038}
4039
4040/**
4041 * ice_aq_set_rss_key
4042 * @hw: pointer to the HW struct
4043 * @vsi_handle: software VSI handle
4044 * @keys: pointer to key info struct
4045 *
4046 * set the RSS key per VSI
4047 */
4048int
4049ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4050		   struct ice_aqc_get_set_rss_keys *keys)
4051{
4052	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4053		return -EINVAL;
4054
4055	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4056					keys, true);
4057}
4058
4059/**
4060 * ice_aq_add_lan_txq
4061 * @hw: pointer to the hardware structure
4062 * @num_qgrps: Number of added queue groups
4063 * @qg_list: list of queue groups to be added
4064 * @buf_size: size of buffer for indirect command
4065 * @cd: pointer to command details structure or NULL
4066 *
4067 * Add Tx LAN queue (0x0C30)
4068 *
4069 * NOTE:
4070 * Prior to calling add Tx LAN queue:
4071 * Initialize the following as part of the Tx queue context:
4072 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4073 * Cache profile and Packet shaper profile.
4074 *
4075 * After add Tx LAN queue AQ command is completed:
4076 * Interrupts should be associated with specific queues,
4077 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4078 * flow.
4079 */
4080static int
4081ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4082		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4083		   struct ice_sq_cd *cd)
4084{
4085	struct ice_aqc_add_tx_qgrp *list;
4086	struct ice_aqc_add_txqs *cmd;
4087	struct ice_aq_desc desc;
4088	u16 i, sum_size = 0;
4089
4090	cmd = &desc.params.add_txqs;
4091
4092	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4093
4094	if (!qg_list)
4095		return -EINVAL;
4096
4097	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4098		return -EINVAL;
4099
4100	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4101		sum_size += struct_size(list, txqs, list->num_txqs);
4102		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4103						      list->num_txqs);
4104	}
4105
4106	if (buf_size != sum_size)
4107		return -EINVAL;
4108
4109	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4110
4111	cmd->num_qgrps = num_qgrps;
4112
4113	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4114}
4115
4116/**
4117 * ice_aq_dis_lan_txq
4118 * @hw: pointer to the hardware structure
4119 * @num_qgrps: number of groups in the list
4120 * @qg_list: the list of groups to disable
4121 * @buf_size: the total size of the qg_list buffer in bytes
4122 * @rst_src: if called due to reset, specifies the reset source
4123 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4124 * @cd: pointer to command details structure or NULL
4125 *
4126 * Disable LAN Tx queue (0x0C31)
4127 */
4128static int
4129ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4130		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4131		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4132		   struct ice_sq_cd *cd)
4133{
4134	struct ice_aqc_dis_txq_item *item;
4135	struct ice_aqc_dis_txqs *cmd;
4136	struct ice_aq_desc desc;
 
4137	u16 i, sz = 0;
4138	int status;
4139
4140	cmd = &desc.params.dis_txqs;
4141	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4142
4143	/* qg_list can be NULL only in VM/VF reset flow */
4144	if (!qg_list && !rst_src)
4145		return -EINVAL;
4146
4147	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4148		return -EINVAL;
4149
4150	cmd->num_entries = num_qgrps;
4151
4152	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4153					    ICE_AQC_Q_DIS_TIMEOUT_M);
4154
4155	switch (rst_src) {
4156	case ICE_VM_RESET:
4157		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4158		cmd->vmvf_and_timeout |=
4159			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4160		break;
4161	case ICE_VF_RESET:
4162		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4163		/* In this case, FW expects vmvf_num to be absolute VF ID */
4164		cmd->vmvf_and_timeout |=
4165			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
4166				    ICE_AQC_Q_DIS_VMVF_NUM_M);
4167		break;
4168	case ICE_NO_RESET:
4169	default:
4170		break;
4171	}
4172
 
 
4173	/* flush pipe on time out */
4174	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4175	/* If no queue group info, we are in a reset flow. Issue the AQ */
4176	if (!qg_list)
4177		goto do_aq;
4178
4179	/* set RD bit to indicate that command buffer is provided by the driver
4180	 * and it needs to be read by the firmware
4181	 */
4182	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4183
4184	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4185		u16 item_size = struct_size(item, q_id, item->num_qs);
4186
4187		/* If the num of queues is even, add 2 bytes of padding */
4188		if ((item->num_qs % 2) == 0)
4189			item_size += 2;
4190
4191		sz += item_size;
4192
4193		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4194	}
4195
4196	if (buf_size != sz)
4197		return -EINVAL;
4198
4199do_aq:
4200	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4201	if (status) {
4202		if (!qg_list)
4203			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4204				  vmvf_num, hw->adminq.sq_last_status);
4205		else
4206			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4207				  le16_to_cpu(qg_list[0].q_id[0]),
4208				  hw->adminq.sq_last_status);
4209	}
4210	return status;
4211}
4212
4213/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4214 * ice_aq_add_rdma_qsets
4215 * @hw: pointer to the hardware structure
4216 * @num_qset_grps: Number of RDMA Qset groups
4217 * @qset_list: list of Qset groups to be added
4218 * @buf_size: size of buffer for indirect command
4219 * @cd: pointer to command details structure or NULL
4220 *
4221 * Add Tx RDMA Qsets (0x0C33)
4222 */
4223static int
4224ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4225		      struct ice_aqc_add_rdma_qset_data *qset_list,
4226		      u16 buf_size, struct ice_sq_cd *cd)
4227{
4228	struct ice_aqc_add_rdma_qset_data *list;
4229	struct ice_aqc_add_rdma_qset *cmd;
4230	struct ice_aq_desc desc;
4231	u16 i, sum_size = 0;
4232
4233	cmd = &desc.params.add_rdma_qset;
4234
4235	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4236
4237	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4238		return -EINVAL;
4239
4240	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4241		u16 num_qsets = le16_to_cpu(list->num_qsets);
4242
4243		sum_size += struct_size(list, rdma_qsets, num_qsets);
4244		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4245							     num_qsets);
4246	}
4247
4248	if (buf_size != sum_size)
4249		return -EINVAL;
4250
4251	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4252
4253	cmd->num_qset_grps = num_qset_grps;
4254
4255	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4256}
4257
4258/* End of FW Admin Queue command wrappers */
4259
4260/**
4261 * ice_write_byte - write a byte to a packed context structure
4262 * @src_ctx:  the context structure to read from
4263 * @dest_ctx: the context to be written to
4264 * @ce_info:  a description of the struct to be filled
4265 */
4266static void
4267ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4268{
4269	u8 src_byte, dest_byte, mask;
4270	u8 *from, *dest;
4271	u16 shift_width;
4272
4273	/* copy from the next struct field */
4274	from = src_ctx + ce_info->offset;
4275
4276	/* prepare the bits and mask */
4277	shift_width = ce_info->lsb % 8;
4278	mask = (u8)(BIT(ce_info->width) - 1);
4279
4280	src_byte = *from;
 
4281	src_byte &= mask;
4282
4283	/* shift to correct alignment */
4284	mask <<= shift_width;
4285	src_byte <<= shift_width;
4286
4287	/* get the current bits from the target bit string */
4288	dest = dest_ctx + (ce_info->lsb / 8);
4289
4290	memcpy(&dest_byte, dest, sizeof(dest_byte));
4291
4292	dest_byte &= ~mask;	/* get the bits not changing */
4293	dest_byte |= src_byte;	/* add in the new bits */
4294
4295	/* put it all back */
4296	memcpy(dest, &dest_byte, sizeof(dest_byte));
4297}
4298
4299/**
4300 * ice_write_word - write a word to a packed context structure
4301 * @src_ctx:  the context structure to read from
4302 * @dest_ctx: the context to be written to
4303 * @ce_info:  a description of the struct to be filled
4304 */
4305static void
4306ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4307{
4308	u16 src_word, mask;
4309	__le16 dest_word;
4310	u8 *from, *dest;
4311	u16 shift_width;
4312
4313	/* copy from the next struct field */
4314	from = src_ctx + ce_info->offset;
4315
4316	/* prepare the bits and mask */
4317	shift_width = ce_info->lsb % 8;
4318	mask = BIT(ce_info->width) - 1;
4319
4320	/* don't swizzle the bits until after the mask because the mask bits
4321	 * will be in a different bit position on big endian machines
4322	 */
4323	src_word = *(u16 *)from;
 
4324	src_word &= mask;
4325
4326	/* shift to correct alignment */
4327	mask <<= shift_width;
4328	src_word <<= shift_width;
4329
4330	/* get the current bits from the target bit string */
4331	dest = dest_ctx + (ce_info->lsb / 8);
4332
4333	memcpy(&dest_word, dest, sizeof(dest_word));
4334
4335	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4336	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4337
4338	/* put it all back */
4339	memcpy(dest, &dest_word, sizeof(dest_word));
4340}
4341
4342/**
4343 * ice_write_dword - write a dword to a packed context structure
4344 * @src_ctx:  the context structure to read from
4345 * @dest_ctx: the context to be written to
4346 * @ce_info:  a description of the struct to be filled
4347 */
4348static void
4349ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4350{
4351	u32 src_dword, mask;
4352	__le32 dest_dword;
4353	u8 *from, *dest;
4354	u16 shift_width;
4355
4356	/* copy from the next struct field */
4357	from = src_ctx + ce_info->offset;
4358
4359	/* prepare the bits and mask */
4360	shift_width = ce_info->lsb % 8;
4361
4362	/* if the field width is exactly 32 on an x86 machine, then the shift
4363	 * operation will not work because the SHL instructions count is masked
4364	 * to 5 bits so the shift will do nothing
4365	 */
4366	if (ce_info->width < 32)
4367		mask = BIT(ce_info->width) - 1;
4368	else
4369		mask = (u32)~0;
4370
4371	/* don't swizzle the bits until after the mask because the mask bits
4372	 * will be in a different bit position on big endian machines
4373	 */
4374	src_dword = *(u32 *)from;
 
4375	src_dword &= mask;
4376
4377	/* shift to correct alignment */
4378	mask <<= shift_width;
4379	src_dword <<= shift_width;
4380
4381	/* get the current bits from the target bit string */
4382	dest = dest_ctx + (ce_info->lsb / 8);
4383
4384	memcpy(&dest_dword, dest, sizeof(dest_dword));
4385
4386	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4387	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4388
4389	/* put it all back */
4390	memcpy(dest, &dest_dword, sizeof(dest_dword));
4391}
4392
4393/**
4394 * ice_write_qword - write a qword to a packed context structure
4395 * @src_ctx:  the context structure to read from
4396 * @dest_ctx: the context to be written to
4397 * @ce_info:  a description of the struct to be filled
4398 */
4399static void
4400ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4401{
4402	u64 src_qword, mask;
4403	__le64 dest_qword;
4404	u8 *from, *dest;
4405	u16 shift_width;
4406
4407	/* copy from the next struct field */
4408	from = src_ctx + ce_info->offset;
4409
4410	/* prepare the bits and mask */
4411	shift_width = ce_info->lsb % 8;
4412
4413	/* if the field width is exactly 64 on an x86 machine, then the shift
4414	 * operation will not work because the SHL instructions count is masked
4415	 * to 6 bits so the shift will do nothing
4416	 */
4417	if (ce_info->width < 64)
4418		mask = BIT_ULL(ce_info->width) - 1;
4419	else
4420		mask = (u64)~0;
4421
4422	/* don't swizzle the bits until after the mask because the mask bits
4423	 * will be in a different bit position on big endian machines
4424	 */
4425	src_qword = *(u64 *)from;
 
4426	src_qword &= mask;
4427
4428	/* shift to correct alignment */
4429	mask <<= shift_width;
4430	src_qword <<= shift_width;
4431
4432	/* get the current bits from the target bit string */
4433	dest = dest_ctx + (ce_info->lsb / 8);
4434
4435	memcpy(&dest_qword, dest, sizeof(dest_qword));
4436
4437	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4438	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4439
4440	/* put it all back */
4441	memcpy(dest, &dest_qword, sizeof(dest_qword));
4442}
4443
4444/**
4445 * ice_set_ctx - set context bits in packed structure
4446 * @hw: pointer to the hardware structure
4447 * @src_ctx:  pointer to a generic non-packed context structure
4448 * @dest_ctx: pointer to memory for the packed structure
4449 * @ce_info:  a description of the structure to be transformed
4450 */
4451int
4452ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4453	    const struct ice_ctx_ele *ce_info)
4454{
4455	int f;
4456
4457	for (f = 0; ce_info[f].width; f++) {
4458		/* We have to deal with each element of the FW response
4459		 * using the correct size so that we are correct regardless
4460		 * of the endianness of the machine.
4461		 */
4462		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4463			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4464				  f, ce_info[f].width, ce_info[f].size_of);
4465			continue;
4466		}
4467		switch (ce_info[f].size_of) {
4468		case sizeof(u8):
4469			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4470			break;
4471		case sizeof(u16):
4472			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4473			break;
4474		case sizeof(u32):
4475			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4476			break;
4477		case sizeof(u64):
4478			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4479			break;
4480		default:
4481			return -EINVAL;
4482		}
4483	}
4484
4485	return 0;
4486}
4487
4488/**
4489 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4490 * @hw: pointer to the HW struct
4491 * @vsi_handle: software VSI handle
4492 * @tc: TC number
4493 * @q_handle: software queue handle
4494 */
4495struct ice_q_ctx *
4496ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4497{
4498	struct ice_vsi_ctx *vsi;
4499	struct ice_q_ctx *q_ctx;
4500
4501	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4502	if (!vsi)
4503		return NULL;
4504	if (q_handle >= vsi->num_lan_q_entries[tc])
4505		return NULL;
4506	if (!vsi->lan_q_ctx[tc])
4507		return NULL;
4508	q_ctx = vsi->lan_q_ctx[tc];
4509	return &q_ctx[q_handle];
4510}
4511
4512/**
4513 * ice_ena_vsi_txq
4514 * @pi: port information structure
4515 * @vsi_handle: software VSI handle
4516 * @tc: TC number
4517 * @q_handle: software queue handle
4518 * @num_qgrps: Number of added queue groups
4519 * @buf: list of queue groups to be added
4520 * @buf_size: size of buffer for indirect command
4521 * @cd: pointer to command details structure or NULL
4522 *
4523 * This function adds one LAN queue
4524 */
4525int
4526ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4527		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4528		struct ice_sq_cd *cd)
4529{
4530	struct ice_aqc_txsched_elem_data node = { 0 };
4531	struct ice_sched_node *parent;
4532	struct ice_q_ctx *q_ctx;
4533	struct ice_hw *hw;
4534	int status;
4535
4536	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4537		return -EIO;
4538
4539	if (num_qgrps > 1 || buf->num_txqs > 1)
4540		return -ENOSPC;
4541
4542	hw = pi->hw;
4543
4544	if (!ice_is_vsi_valid(hw, vsi_handle))
4545		return -EINVAL;
4546
4547	mutex_lock(&pi->sched_lock);
4548
4549	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4550	if (!q_ctx) {
4551		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4552			  q_handle);
4553		status = -EINVAL;
4554		goto ena_txq_exit;
4555	}
4556
4557	/* find a parent node */
4558	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4559					    ICE_SCHED_NODE_OWNER_LAN);
4560	if (!parent) {
4561		status = -EINVAL;
4562		goto ena_txq_exit;
4563	}
4564
4565	buf->parent_teid = parent->info.node_teid;
4566	node.parent_teid = parent->info.node_teid;
4567	/* Mark that the values in the "generic" section as valid. The default
4568	 * value in the "generic" section is zero. This means that :
4569	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4570	 * - 0 priority among siblings, indicated by Bit 1-3.
4571	 * - WFQ, indicated by Bit 4.
4572	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4573	 * Bit 5-6.
4574	 * - Bit 7 is reserved.
4575	 * Without setting the generic section as valid in valid_sections, the
4576	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4577	 */
4578	buf->txqs[0].info.valid_sections =
4579		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4580		ICE_AQC_ELEM_VALID_EIR;
4581	buf->txqs[0].info.generic = 0;
4582	buf->txqs[0].info.cir_bw.bw_profile_idx =
4583		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4584	buf->txqs[0].info.cir_bw.bw_alloc =
4585		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4586	buf->txqs[0].info.eir_bw.bw_profile_idx =
4587		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4588	buf->txqs[0].info.eir_bw.bw_alloc =
4589		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4590
4591	/* add the LAN queue */
4592	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4593	if (status) {
4594		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4595			  le16_to_cpu(buf->txqs[0].txq_id),
4596			  hw->adminq.sq_last_status);
4597		goto ena_txq_exit;
4598	}
4599
4600	node.node_teid = buf->txqs[0].q_teid;
4601	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4602	q_ctx->q_handle = q_handle;
4603	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4604
4605	/* add a leaf node into scheduler tree queue layer */
4606	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4607	if (!status)
4608		status = ice_sched_replay_q_bw(pi, q_ctx);
4609
4610ena_txq_exit:
4611	mutex_unlock(&pi->sched_lock);
4612	return status;
4613}
4614
4615/**
4616 * ice_dis_vsi_txq
4617 * @pi: port information structure
4618 * @vsi_handle: software VSI handle
4619 * @tc: TC number
4620 * @num_queues: number of queues
4621 * @q_handles: pointer to software queue handle array
4622 * @q_ids: pointer to the q_id array
4623 * @q_teids: pointer to queue node teids
4624 * @rst_src: if called due to reset, specifies the reset source
4625 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4626 * @cd: pointer to command details structure or NULL
4627 *
4628 * This function removes queues and their corresponding nodes in SW DB
4629 */
4630int
4631ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4632		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4633		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4634		struct ice_sq_cd *cd)
4635{
4636	struct ice_aqc_dis_txq_item *qg_list;
 
4637	struct ice_q_ctx *q_ctx;
4638	int status = -ENOENT;
4639	struct ice_hw *hw;
4640	u16 i, buf_size;
4641
4642	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4643		return -EIO;
4644
4645	hw = pi->hw;
4646
4647	if (!num_queues) {
4648		/* if queue is disabled already yet the disable queue command
4649		 * has to be sent to complete the VF reset, then call
4650		 * ice_aq_dis_lan_txq without any queue information
4651		 */
4652		if (rst_src)
4653			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4654						  vmvf_num, NULL);
4655		return -EIO;
4656	}
4657
4658	buf_size = struct_size(qg_list, q_id, 1);
4659	qg_list = kzalloc(buf_size, GFP_KERNEL);
4660	if (!qg_list)
4661		return -ENOMEM;
4662
4663	mutex_lock(&pi->sched_lock);
4664
4665	for (i = 0; i < num_queues; i++) {
4666		struct ice_sched_node *node;
4667
4668		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4669		if (!node)
4670			continue;
4671		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4672		if (!q_ctx) {
4673			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4674				  q_handles[i]);
4675			continue;
4676		}
4677		if (q_ctx->q_handle != q_handles[i]) {
4678			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4679				  q_ctx->q_handle, q_handles[i]);
4680			continue;
4681		}
4682		qg_list->parent_teid = node->info.parent_teid;
4683		qg_list->num_qs = 1;
4684		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4685		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4686					    vmvf_num, cd);
4687
4688		if (status)
4689			break;
4690		ice_free_sched_node(pi, node);
4691		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
 
4692	}
4693	mutex_unlock(&pi->sched_lock);
4694	kfree(qg_list);
4695	return status;
4696}
4697
4698/**
4699 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4700 * @pi: port information structure
4701 * @vsi_handle: software VSI handle
4702 * @tc_bitmap: TC bitmap
4703 * @maxqs: max queues array per TC
4704 * @owner: LAN or RDMA
4705 *
4706 * This function adds/updates the VSI queues per TC.
4707 */
4708static int
4709ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4710	       u16 *maxqs, u8 owner)
4711{
4712	int status = 0;
4713	u8 i;
4714
4715	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4716		return -EIO;
4717
4718	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4719		return -EINVAL;
4720
4721	mutex_lock(&pi->sched_lock);
4722
4723	ice_for_each_traffic_class(i) {
4724		/* configuration is possible only if TC node is present */
4725		if (!ice_sched_get_tc_node(pi, i))
4726			continue;
4727
4728		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4729					   ice_is_tc_ena(tc_bitmap, i));
4730		if (status)
4731			break;
4732	}
4733
4734	mutex_unlock(&pi->sched_lock);
4735	return status;
4736}
4737
4738/**
4739 * ice_cfg_vsi_lan - configure VSI LAN queues
4740 * @pi: port information structure
4741 * @vsi_handle: software VSI handle
4742 * @tc_bitmap: TC bitmap
4743 * @max_lanqs: max LAN queues array per TC
4744 *
4745 * This function adds/updates the VSI LAN queues per TC.
4746 */
4747int
4748ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4749		u16 *max_lanqs)
4750{
4751	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4752			      ICE_SCHED_NODE_OWNER_LAN);
4753}
4754
4755/**
4756 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4757 * @pi: port information structure
4758 * @vsi_handle: software VSI handle
4759 * @tc_bitmap: TC bitmap
4760 * @max_rdmaqs: max RDMA queues array per TC
4761 *
4762 * This function adds/updates the VSI RDMA queues per TC.
4763 */
4764int
4765ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4766		 u16 *max_rdmaqs)
4767{
4768	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4769			      ICE_SCHED_NODE_OWNER_RDMA);
4770}
4771
4772/**
4773 * ice_ena_vsi_rdma_qset
4774 * @pi: port information structure
4775 * @vsi_handle: software VSI handle
4776 * @tc: TC number
4777 * @rdma_qset: pointer to RDMA Qset
4778 * @num_qsets: number of RDMA Qsets
4779 * @qset_teid: pointer to Qset node TEIDs
4780 *
4781 * This function adds RDMA Qset
4782 */
4783int
4784ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4785		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4786{
4787	struct ice_aqc_txsched_elem_data node = { 0 };
4788	struct ice_aqc_add_rdma_qset_data *buf;
4789	struct ice_sched_node *parent;
4790	struct ice_hw *hw;
4791	u16 i, buf_size;
4792	int ret;
4793
4794	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4795		return -EIO;
4796	hw = pi->hw;
4797
4798	if (!ice_is_vsi_valid(hw, vsi_handle))
4799		return -EINVAL;
4800
4801	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4802	buf = kzalloc(buf_size, GFP_KERNEL);
4803	if (!buf)
4804		return -ENOMEM;
4805	mutex_lock(&pi->sched_lock);
4806
4807	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4808					    ICE_SCHED_NODE_OWNER_RDMA);
4809	if (!parent) {
4810		ret = -EINVAL;
4811		goto rdma_error_exit;
4812	}
4813	buf->parent_teid = parent->info.node_teid;
4814	node.parent_teid = parent->info.node_teid;
4815
4816	buf->num_qsets = cpu_to_le16(num_qsets);
4817	for (i = 0; i < num_qsets; i++) {
4818		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4819		buf->rdma_qsets[i].info.valid_sections =
4820			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4821			ICE_AQC_ELEM_VALID_EIR;
4822		buf->rdma_qsets[i].info.generic = 0;
4823		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4824			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4825		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4826			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4827		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4828			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4829		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4830			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4831	}
4832	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4833	if (ret) {
4834		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4835		goto rdma_error_exit;
4836	}
4837	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4838	for (i = 0; i < num_qsets; i++) {
4839		node.node_teid = buf->rdma_qsets[i].qset_teid;
4840		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4841					 &node, NULL);
4842		if (ret)
4843			break;
4844		qset_teid[i] = le32_to_cpu(node.node_teid);
4845	}
4846rdma_error_exit:
4847	mutex_unlock(&pi->sched_lock);
4848	kfree(buf);
4849	return ret;
4850}
4851
4852/**
4853 * ice_dis_vsi_rdma_qset - free RDMA resources
4854 * @pi: port_info struct
4855 * @count: number of RDMA Qsets to free
4856 * @qset_teid: TEID of Qset node
4857 * @q_id: list of queue IDs being disabled
4858 */
4859int
4860ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4861		      u16 *q_id)
4862{
4863	struct ice_aqc_dis_txq_item *qg_list;
 
4864	struct ice_hw *hw;
4865	int status = 0;
4866	u16 qg_size;
4867	int i;
4868
4869	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4870		return -EIO;
4871
4872	hw = pi->hw;
4873
4874	qg_size = struct_size(qg_list, q_id, 1);
4875	qg_list = kzalloc(qg_size, GFP_KERNEL);
4876	if (!qg_list)
4877		return -ENOMEM;
4878
4879	mutex_lock(&pi->sched_lock);
4880
4881	for (i = 0; i < count; i++) {
4882		struct ice_sched_node *node;
4883
4884		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4885		if (!node)
4886			continue;
4887
4888		qg_list->parent_teid = node->info.parent_teid;
4889		qg_list->num_qs = 1;
4890		qg_list->q_id[0] =
4891			cpu_to_le16(q_id[i] |
4892				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4893
4894		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4895					    ICE_NO_RESET, 0, NULL);
4896		if (status)
4897			break;
4898
4899		ice_free_sched_node(pi, node);
4900	}
4901
4902	mutex_unlock(&pi->sched_lock);
4903	kfree(qg_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4904	return status;
4905}
4906
4907/**
4908 * ice_replay_pre_init - replay pre initialization
4909 * @hw: pointer to the HW struct
4910 *
4911 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4912 */
4913static int ice_replay_pre_init(struct ice_hw *hw)
4914{
4915	struct ice_switch_info *sw = hw->switch_info;
4916	u8 i;
4917
4918	/* Delete old entries from replay filter list head if there is any */
4919	ice_rm_all_sw_replay_rule_info(hw);
4920	/* In start of replay, move entries into replay_rules list, it
4921	 * will allow adding rules entries back to filt_rules list,
4922	 * which is operational list.
4923	 */
4924	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4925		list_replace_init(&sw->recp_list[i].filt_rules,
4926				  &sw->recp_list[i].filt_replay_rules);
4927	ice_sched_replay_agg_vsi_preinit(hw);
4928
4929	return 0;
4930}
4931
4932/**
4933 * ice_replay_vsi - replay VSI configuration
4934 * @hw: pointer to the HW struct
4935 * @vsi_handle: driver VSI handle
4936 *
4937 * Restore all VSI configuration after reset. It is required to call this
4938 * function with main VSI first.
4939 */
4940int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4941{
4942	int status;
4943
4944	if (!ice_is_vsi_valid(hw, vsi_handle))
4945		return -EINVAL;
4946
4947	/* Replay pre-initialization if there is any */
4948	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4949		status = ice_replay_pre_init(hw);
4950		if (status)
4951			return status;
4952	}
4953	/* Replay per VSI all RSS configurations */
4954	status = ice_replay_rss_cfg(hw, vsi_handle);
4955	if (status)
4956		return status;
4957	/* Replay per VSI all filters */
4958	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4959	if (!status)
4960		status = ice_replay_vsi_agg(hw, vsi_handle);
4961	return status;
4962}
4963
4964/**
4965 * ice_replay_post - post replay configuration cleanup
4966 * @hw: pointer to the HW struct
4967 *
4968 * Post replay cleanup.
4969 */
4970void ice_replay_post(struct ice_hw *hw)
4971{
4972	/* Delete old entries from replay filter list head */
4973	ice_rm_all_sw_replay_rule_info(hw);
4974	ice_sched_replay_agg(hw);
4975}
4976
4977/**
4978 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4979 * @hw: ptr to the hardware info
4980 * @reg: offset of 64 bit HW register to read from
4981 * @prev_stat_loaded: bool to specify if previous stats are loaded
4982 * @prev_stat: ptr to previous loaded stat value
4983 * @cur_stat: ptr to current stat value
4984 */
4985void
4986ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4987		  u64 *prev_stat, u64 *cur_stat)
4988{
4989	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4990
4991	/* device stats are not reset at PFR, they likely will not be zeroed
4992	 * when the driver starts. Thus, save the value from the first read
4993	 * without adding to the statistic value so that we report stats which
4994	 * count up from zero.
4995	 */
4996	if (!prev_stat_loaded) {
4997		*prev_stat = new_data;
4998		return;
4999	}
5000
5001	/* Calculate the difference between the new and old values, and then
5002	 * add it to the software stat value.
5003	 */
5004	if (new_data >= *prev_stat)
5005		*cur_stat += new_data - *prev_stat;
5006	else
5007		/* to manage the potential roll-over */
5008		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5009
5010	/* Update the previously stored value to prepare for next read */
5011	*prev_stat = new_data;
5012}
5013
5014/**
5015 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5016 * @hw: ptr to the hardware info
5017 * @reg: offset of HW register to read from
5018 * @prev_stat_loaded: bool to specify if previous stats are loaded
5019 * @prev_stat: ptr to previous loaded stat value
5020 * @cur_stat: ptr to current stat value
5021 */
5022void
5023ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5024		  u64 *prev_stat, u64 *cur_stat)
5025{
5026	u32 new_data;
5027
5028	new_data = rd32(hw, reg);
5029
5030	/* device stats are not reset at PFR, they likely will not be zeroed
5031	 * when the driver starts. Thus, save the value from the first read
5032	 * without adding to the statistic value so that we report stats which
5033	 * count up from zero.
5034	 */
5035	if (!prev_stat_loaded) {
5036		*prev_stat = new_data;
5037		return;
5038	}
5039
5040	/* Calculate the difference between the new and old values, and then
5041	 * add it to the software stat value.
5042	 */
5043	if (new_data >= *prev_stat)
5044		*cur_stat += new_data - *prev_stat;
5045	else
5046		/* to manage the potential roll-over */
5047		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5048
5049	/* Update the previously stored value to prepare for next read */
5050	*prev_stat = new_data;
5051}
5052
5053/**
5054 * ice_sched_query_elem - query element information from HW
5055 * @hw: pointer to the HW struct
5056 * @node_teid: node TEID to be queried
5057 * @buf: buffer to element information
5058 *
5059 * This function queries HW element information
5060 */
5061int
5062ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5063		     struct ice_aqc_txsched_elem_data *buf)
5064{
5065	u16 buf_size, num_elem_ret = 0;
5066	int status;
5067
5068	buf_size = sizeof(*buf);
5069	memset(buf, 0, buf_size);
5070	buf->node_teid = cpu_to_le32(node_teid);
5071	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5072					  NULL);
5073	if (status || num_elem_ret != 1)
5074		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5075	return status;
5076}
5077
5078/**
5079 * ice_aq_read_i2c
5080 * @hw: pointer to the hw struct
5081 * @topo_addr: topology address for a device to communicate with
5082 * @bus_addr: 7-bit I2C bus address
5083 * @addr: I2C memory address (I2C offset) with up to 16 bits
5084 * @params: I2C parameters: bit [7] - Repeated start,
5085 *			    bits [6:5] data offset size,
5086 *			    bit [4] - I2C address type,
5087 *			    bits [3:0] - data size to read (0-16 bytes)
5088 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5089 * @cd: pointer to command details structure or NULL
5090 *
5091 * Read I2C (0x06E2)
5092 */
5093int
5094ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5095		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5096		struct ice_sq_cd *cd)
5097{
5098	struct ice_aq_desc desc = { 0 };
5099	struct ice_aqc_i2c *cmd;
5100	u8 data_size;
5101	int status;
5102
5103	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5104	cmd = &desc.params.read_write_i2c;
5105
5106	if (!data)
5107		return -EINVAL;
5108
5109	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5110
5111	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5112	cmd->topo_addr = topo_addr;
5113	cmd->i2c_params = params;
5114	cmd->i2c_addr = addr;
5115
5116	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5117	if (!status) {
5118		struct ice_aqc_read_i2c_resp *resp;
5119		u8 i;
5120
5121		resp = &desc.params.read_i2c_resp;
5122		for (i = 0; i < data_size; i++) {
5123			*data = resp->i2c_data[i];
5124			data++;
5125		}
5126	}
5127
5128	return status;
5129}
5130
5131/**
5132 * ice_aq_write_i2c
5133 * @hw: pointer to the hw struct
5134 * @topo_addr: topology address for a device to communicate with
5135 * @bus_addr: 7-bit I2C bus address
5136 * @addr: I2C memory address (I2C offset) with up to 16 bits
5137 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5138 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5139 * @cd: pointer to command details structure or NULL
5140 *
5141 * Write I2C (0x06E3)
5142 *
5143 * * Return:
5144 * * 0             - Successful write to the i2c device
5145 * * -EINVAL       - Data size greater than 4 bytes
5146 * * -EIO          - FW error
5147 */
5148int
5149ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5150		 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5151		 struct ice_sq_cd *cd)
5152{
5153	struct ice_aq_desc desc = { 0 };
5154	struct ice_aqc_i2c *cmd;
5155	u8 data_size;
5156
5157	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5158	cmd = &desc.params.read_write_i2c;
5159
5160	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5161
5162	/* data_size limited to 4 */
5163	if (data_size > 4)
5164		return -EINVAL;
5165
5166	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5167	cmd->topo_addr = topo_addr;
5168	cmd->i2c_params = params;
5169	cmd->i2c_addr = addr;
5170
5171	memcpy(cmd->i2c_data, data, data_size);
5172
5173	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5174}
5175
5176/**
5177 * ice_aq_set_driver_param - Set driver parameter to share via firmware
5178 * @hw: pointer to the HW struct
5179 * @idx: parameter index to set
5180 * @value: the value to set the parameter to
5181 * @cd: pointer to command details structure or NULL
5182 *
5183 * Set the value of one of the software defined parameters. All PFs connected
5184 * to this device can read the value using ice_aq_get_driver_param.
5185 *
5186 * Note that firmware provides no synchronization or locking, and will not
5187 * save the parameter value during a device reset. It is expected that
5188 * a single PF will write the parameter value, while all other PFs will only
5189 * read it.
5190 */
5191int
5192ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5193			u32 value, struct ice_sq_cd *cd)
5194{
5195	struct ice_aqc_driver_shared_params *cmd;
5196	struct ice_aq_desc desc;
5197
5198	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5199		return -EIO;
5200
5201	cmd = &desc.params.drv_shared_params;
5202
5203	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5204
5205	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
5206	cmd->param_indx = idx;
5207	cmd->param_val = cpu_to_le32(value);
5208
5209	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5210}
5211
5212/**
5213 * ice_aq_get_driver_param - Get driver parameter shared via firmware
5214 * @hw: pointer to the HW struct
5215 * @idx: parameter index to set
5216 * @value: storage to return the shared parameter
5217 * @cd: pointer to command details structure or NULL
5218 *
5219 * Get the value of one of the software defined parameters.
5220 *
5221 * Note that firmware provides no synchronization or locking. It is expected
5222 * that only a single PF will write a given parameter.
5223 */
5224int
5225ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5226			u32 *value, struct ice_sq_cd *cd)
5227{
5228	struct ice_aqc_driver_shared_params *cmd;
5229	struct ice_aq_desc desc;
5230	int status;
5231
5232	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5233		return -EIO;
5234
5235	cmd = &desc.params.drv_shared_params;
5236
5237	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5238
5239	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
5240	cmd->param_indx = idx;
5241
5242	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5243	if (status)
5244		return status;
5245
5246	*value = le32_to_cpu(cmd->param_val);
5247
5248	return 0;
5249}
5250
5251/**
5252 * ice_aq_set_gpio
5253 * @hw: pointer to the hw struct
5254 * @gpio_ctrl_handle: GPIO controller node handle
5255 * @pin_idx: IO Number of the GPIO that needs to be set
5256 * @value: SW provide IO value to set in the LSB
5257 * @cd: pointer to command details structure or NULL
5258 *
5259 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5260 */
5261int
5262ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5263		struct ice_sq_cd *cd)
5264{
5265	struct ice_aqc_gpio *cmd;
5266	struct ice_aq_desc desc;
5267
5268	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5269	cmd = &desc.params.read_write_gpio;
5270	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5271	cmd->gpio_num = pin_idx;
5272	cmd->gpio_val = value ? 1 : 0;
5273
5274	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5275}
5276
5277/**
5278 * ice_aq_get_gpio
5279 * @hw: pointer to the hw struct
5280 * @gpio_ctrl_handle: GPIO controller node handle
5281 * @pin_idx: IO Number of the GPIO that needs to be set
5282 * @value: IO value read
5283 * @cd: pointer to command details structure or NULL
5284 *
5285 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5286 * the topology
5287 */
5288int
5289ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5290		bool *value, struct ice_sq_cd *cd)
5291{
5292	struct ice_aqc_gpio *cmd;
5293	struct ice_aq_desc desc;
5294	int status;
5295
5296	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5297	cmd = &desc.params.read_write_gpio;
5298	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5299	cmd->gpio_num = pin_idx;
5300
5301	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5302	if (status)
5303		return status;
5304
5305	*value = !!cmd->gpio_val;
5306	return 0;
5307}
5308
5309/**
5310 * ice_is_fw_api_min_ver
5311 * @hw: pointer to the hardware structure
5312 * @maj: major version
5313 * @min: minor version
5314 * @patch: patch version
5315 *
5316 * Checks if the firmware API is minimum version
5317 */
5318static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5319{
5320	if (hw->api_maj_ver == maj) {
5321		if (hw->api_min_ver > min)
5322			return true;
5323		if (hw->api_min_ver == min && hw->api_patch >= patch)
5324			return true;
5325	} else if (hw->api_maj_ver > maj) {
5326		return true;
5327	}
5328
5329	return false;
5330}
5331
5332/**
5333 * ice_fw_supports_link_override
5334 * @hw: pointer to the hardware structure
5335 *
5336 * Checks if the firmware supports link override
5337 */
5338bool ice_fw_supports_link_override(struct ice_hw *hw)
5339{
5340	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5341				     ICE_FW_API_LINK_OVERRIDE_MIN,
5342				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5343}
5344
5345/**
5346 * ice_get_link_default_override
5347 * @ldo: pointer to the link default override struct
5348 * @pi: pointer to the port info struct
5349 *
5350 * Gets the link default override for a port
5351 */
5352int
5353ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5354			      struct ice_port_info *pi)
5355{
5356	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5357	struct ice_hw *hw = pi->hw;
5358	int status;
5359
5360	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5361					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5362	if (status) {
5363		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5364		return status;
5365	}
5366
5367	/* Each port has its own config; calculate for our port */
5368	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5369		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5370
5371	/* link options first */
5372	status = ice_read_sr_word(hw, tlv_start, &buf);
5373	if (status) {
5374		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5375		return status;
5376	}
5377	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5378	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5379		ICE_LINK_OVERRIDE_PHY_CFG_S;
5380
5381	/* link PHY config */
5382	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5383	status = ice_read_sr_word(hw, offset, &buf);
5384	if (status) {
5385		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5386		return status;
5387	}
5388	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5389
5390	/* PHY types low */
5391	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5392	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5393		status = ice_read_sr_word(hw, (offset + i), &buf);
5394		if (status) {
5395			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5396			return status;
5397		}
5398		/* shift 16 bits at a time to fill 64 bits */
5399		ldo->phy_type_low |= ((u64)buf << (i * 16));
5400	}
5401
5402	/* PHY types high */
5403	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5404		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5405	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5406		status = ice_read_sr_word(hw, (offset + i), &buf);
5407		if (status) {
5408			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5409			return status;
5410		}
5411		/* shift 16 bits at a time to fill 64 bits */
5412		ldo->phy_type_high |= ((u64)buf << (i * 16));
5413	}
5414
5415	return status;
5416}
5417
5418/**
5419 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5420 * @caps: get PHY capability data
5421 */
5422bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5423{
5424	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5425	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5426				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5427				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5428		return true;
5429
5430	return false;
5431}
5432
5433/**
5434 * ice_aq_set_lldp_mib - Set the LLDP MIB
5435 * @hw: pointer to the HW struct
5436 * @mib_type: Local, Remote or both Local and Remote MIBs
5437 * @buf: pointer to the caller-supplied buffer to store the MIB block
5438 * @buf_size: size of the buffer (in bytes)
5439 * @cd: pointer to command details structure or NULL
5440 *
5441 * Set the LLDP MIB. (0x0A08)
5442 */
5443int
5444ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5445		    struct ice_sq_cd *cd)
5446{
5447	struct ice_aqc_lldp_set_local_mib *cmd;
5448	struct ice_aq_desc desc;
5449
5450	cmd = &desc.params.lldp_set_mib;
5451
5452	if (buf_size == 0 || !buf)
5453		return -EINVAL;
5454
5455	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5456
5457	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5458	desc.datalen = cpu_to_le16(buf_size);
5459
5460	cmd->type = mib_type;
5461	cmd->length = cpu_to_le16(buf_size);
5462
5463	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5464}
5465
5466/**
5467 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5468 * @hw: pointer to HW struct
5469 */
5470bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5471{
5472	if (hw->mac_type != ICE_MAC_E810)
5473		return false;
5474
5475	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5476				     ICE_FW_API_LLDP_FLTR_MIN,
5477				     ICE_FW_API_LLDP_FLTR_PATCH);
5478}
5479
5480/**
5481 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5482 * @hw: pointer to HW struct
5483 * @vsi_num: absolute HW index for VSI
5484 * @add: boolean for if adding or removing a filter
5485 */
5486int
5487ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5488{
5489	struct ice_aqc_lldp_filter_ctrl *cmd;
5490	struct ice_aq_desc desc;
5491
5492	cmd = &desc.params.lldp_filter_ctrl;
5493
5494	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5495
5496	if (add)
5497		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5498	else
5499		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5500
5501	cmd->vsi_num = cpu_to_le16(vsi_num);
5502
5503	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5504}
5505
5506/**
 
 
 
 
 
 
 
 
 
 
 
 
 
5507 * ice_fw_supports_report_dflt_cfg
5508 * @hw: pointer to the hardware structure
5509 *
5510 * Checks if the firmware supports report default configuration
5511 */
5512bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5513{
5514	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5515				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
5516				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5517}
5518
5519/* each of the indexes into the following array match the speed of a return
5520 * value from the list of AQ returned speeds like the range:
5521 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5522 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5523 * array. The array is defined as 15 elements long because the link_speed
5524 * returned by the firmware is a 16 bit * value, but is indexed
5525 * by [fls(speed) - 1]
5526 */
5527static const u32 ice_aq_to_link_speed[] = {
5528	SPEED_10,	/* BIT(0) */
5529	SPEED_100,
5530	SPEED_1000,
5531	SPEED_2500,
5532	SPEED_5000,
5533	SPEED_10000,
5534	SPEED_20000,
5535	SPEED_25000,
5536	SPEED_40000,
5537	SPEED_50000,
5538	SPEED_100000,	/* BIT(10) */
 
5539};
5540
5541/**
5542 * ice_get_link_speed - get integer speed from table
5543 * @index: array index from fls(aq speed) - 1
5544 *
5545 * Returns: u32 value containing integer speed
5546 */
5547u32 ice_get_link_speed(u16 index)
5548{
5549	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5550		return 0;
5551
5552	return ice_aq_to_link_speed[index];
5553}