Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
 
   4#include <linux/ptp_classify.h>
   5#include <linux/posix-clock.h>
   6#include "i40e.h"
   7#include "i40e_devids.h"
   8
   9/* The XL710 timesync is very much like Intel's 82599 design when it comes to
  10 * the fundamental clock design. However, the clock operations are much simpler
  11 * in the XL710 because the device supports a full 64 bits of nanoseconds.
  12 * Because the field is so wide, we can forgo the cycle counter and just
  13 * operate with the nanosecond field directly without fear of overflow.
  14 *
  15 * Much like the 82599, the update period is dependent upon the link speed:
  16 * At 40Gb, 25Gb, or no link, the period is 1.6ns.
  17 * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
  18 * At 1Gb link, the period is multiplied by 20. (32ns)
  19 * 1588 functionality is not supported at 100Mbps.
  20 */
  21#define I40E_PTP_40GB_INCVAL		0x0199999999ULL
  22#define I40E_PTP_10GB_INCVAL_MULT	2
  23#define I40E_PTP_5GB_INCVAL_MULT	2
  24#define I40E_PTP_1GB_INCVAL_MULT	20
  25#define I40E_ISGN			0x80000000
  26
  27#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
  28#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
  29					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
  30#define I40E_SUBDEV_ID_25G_PTP_PIN	0xB
  31
  32enum i40e_ptp_pin {
  33	SDP3_2 = 0,
  34	SDP3_3,
  35	GPIO_4
  36};
  37
  38enum i40e_can_set_pins {
  39	CANT_DO_PINS = -1,
  40	CAN_SET_PINS,
  41	CAN_DO_PINS
  42};
  43
  44static struct ptp_pin_desc sdp_desc[] = {
  45	/* name     idx      func      chan */
  46	{"SDP3_2", SDP3_2, PTP_PF_NONE, 0},
  47	{"SDP3_3", SDP3_3, PTP_PF_NONE, 1},
  48	{"GPIO_4", GPIO_4, PTP_PF_NONE, 1},
  49};
  50
  51enum i40e_ptp_gpio_pin_state {
  52	end = -2,
  53	invalid,
  54	off,
  55	in_A,
  56	in_B,
  57	out_A,
  58	out_B,
  59};
  60
  61static const char * const i40e_ptp_gpio_pin_state2str[] = {
  62	"off", "in_A", "in_B", "out_A", "out_B"
  63};
  64
  65enum i40e_ptp_led_pin_state {
  66	led_end = -2,
  67	low = 0,
  68	high,
  69};
  70
  71struct i40e_ptp_pins_settings {
  72	enum i40e_ptp_gpio_pin_state sdp3_2;
  73	enum i40e_ptp_gpio_pin_state sdp3_3;
  74	enum i40e_ptp_gpio_pin_state gpio_4;
  75	enum i40e_ptp_led_pin_state led2_0;
  76	enum i40e_ptp_led_pin_state led2_1;
  77	enum i40e_ptp_led_pin_state led3_0;
  78	enum i40e_ptp_led_pin_state led3_1;
  79};
  80
  81static const struct i40e_ptp_pins_settings
  82	i40e_ptp_pin_led_allowed_states[] = {
  83	{off,	off,	off,		high,	high,	high,	high},
  84	{off,	in_A,	off,		high,	high,	high,	low},
  85	{off,	out_A,	off,		high,	low,	high,	high},
  86	{off,	in_B,	off,		high,	high,	high,	low},
  87	{off,	out_B,	off,		high,	low,	high,	high},
  88	{in_A,	off,	off,		high,	high,	high,	low},
  89	{in_A,	in_B,	off,		high,	high,	high,	low},
  90	{in_A,	out_B,	off,		high,	low,	high,	high},
  91	{out_A,	off,	off,		high,	low,	high,	high},
  92	{out_A,	in_B,	off,		high,	low,	high,	high},
  93	{in_B,	off,	off,		high,	high,	high,	low},
  94	{in_B,	in_A,	off,		high,	high,	high,	low},
  95	{in_B,	out_A,	off,		high,	low,	high,	high},
  96	{out_B,	off,	off,		high,	low,	high,	high},
  97	{out_B,	in_A,	off,		high,	low,	high,	high},
  98	{off,	off,	in_A,		high,	high,	low,	high},
  99	{off,	out_A,	in_A,		high,	low,	low,	high},
 100	{off,	in_B,	in_A,		high,	high,	low,	low},
 101	{off,	out_B,	in_A,		high,	low,	low,	high},
 102	{out_A,	off,	in_A,		high,	low,	low,	high},
 103	{out_A,	in_B,	in_A,		high,	low,	low,	high},
 104	{in_B,	off,	in_A,		high,	high,	low,	low},
 105	{in_B,	out_A,	in_A,		high,	low,	low,	high},
 106	{out_B,	off,	in_A,		high,	low,	low,	high},
 107	{off,	off,	out_A,		low,	high,	high,	high},
 108	{off,	in_A,	out_A,		low,	high,	high,	low},
 109	{off,	in_B,	out_A,		low,	high,	high,	low},
 110	{off,	out_B,	out_A,		low,	low,	high,	high},
 111	{in_A,	off,	out_A,		low,	high,	high,	low},
 112	{in_A,	in_B,	out_A,		low,	high,	high,	low},
 113	{in_A,	out_B,	out_A,		low,	low,	high,	high},
 114	{in_B,	off,	out_A,		low,	high,	high,	low},
 115	{in_B,	in_A,	out_A,		low,	high,	high,	low},
 116	{out_B,	off,	out_A,		low,	low,	high,	high},
 117	{out_B,	in_A,	out_A,		low,	low,	high,	high},
 118	{off,	off,	in_B,		high,	high,	low,	high},
 119	{off,	in_A,	in_B,		high,	high,	low,	low},
 120	{off,	out_A,	in_B,		high,	low,	low,	high},
 121	{off,	out_B,	in_B,		high,	low,	low,	high},
 122	{in_A,	off,	in_B,		high,	high,	low,	low},
 123	{in_A,	out_B,	in_B,		high,	low,	low,	high},
 124	{out_A,	off,	in_B,		high,	low,	low,	high},
 125	{out_B,	off,	in_B,		high,	low,	low,	high},
 126	{out_B,	in_A,	in_B,		high,	low,	low,	high},
 127	{off,	off,	out_B,		low,	high,	high,	high},
 128	{off,	in_A,	out_B,		low,	high,	high,	low},
 129	{off,	out_A,	out_B,		low,	low,	high,	high},
 130	{off,	in_B,	out_B,		low,	high,	high,	low},
 131	{in_A,	off,	out_B,		low,	high,	high,	low},
 132	{in_A,	in_B,	out_B,		low,	high,	high,	low},
 133	{out_A,	off,	out_B,		low,	low,	high,	high},
 134	{out_A,	in_B,	out_B,		low,	low,	high,	high},
 135	{in_B,	off,	out_B,		low,	high,	high,	low},
 136	{in_B,	in_A,	out_B,		low,	high,	high,	low},
 137	{in_B,	out_A,	out_B,		low,	low,	high,	high},
 138	{end,	end,	end,	led_end, led_end, led_end, led_end}
 139};
 140
 141static int i40e_ptp_set_pins(struct i40e_pf *pf,
 142			     struct i40e_ptp_pins_settings *pins);
 143
 144/**
 145 * i40e_ptp_extts0_work - workqueue task function
 146 * @work: workqueue task structure
 147 *
 148 * Service for PTP external clock event
 149 **/
 150static void i40e_ptp_extts0_work(struct work_struct *work)
 151{
 152	struct i40e_pf *pf = container_of(work, struct i40e_pf,
 153					  ptp_extts0_work);
 154	struct i40e_hw *hw = &pf->hw;
 155	struct ptp_clock_event event;
 156	u32 hi, lo;
 157
 158	/* Event time is captured by one of the two matched registers
 159	 *      PRTTSYN_EVNT_L: 32 LSB of sampled time event
 160	 *      PRTTSYN_EVNT_H: 32 MSB of sampled time event
 161	 * Event is defined in PRTTSYN_EVNT_0 register
 162	 */
 163	lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0));
 164	hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0));
 165
 166	event.timestamp = (((u64)hi) << 32) | lo;
 167
 168	event.type = PTP_CLOCK_EXTTS;
 169	event.index = hw->pf_id;
 170
 171	/* fire event */
 172	ptp_clock_event(pf->ptp_clock, &event);
 173}
 174
 175/**
 176 * i40e_is_ptp_pin_dev - check if device supports PTP pins
 177 * @hw: pointer to the hardware structure
 178 *
 179 * Return true if device supports PTP pins, false otherwise.
 180 **/
 181static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw)
 182{
 183	return hw->device_id == I40E_DEV_ID_25G_SFP28 &&
 184	       hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN;
 185}
 186
 187/**
 188 * i40e_can_set_pins - check possibility of manipulating the pins
 189 * @pf: board private structure
 190 *
 191 * Check if all conditions are satisfied to manipulate PTP pins.
 192 * Return CAN_SET_PINS if pins can be set on a specific PF or
 193 * return CAN_DO_PINS if pins can be manipulated within a NIC or
 194 * return CANT_DO_PINS otherwise.
 195 **/
 196static enum i40e_can_set_pins i40e_can_set_pins(struct i40e_pf *pf)
 197{
 198	if (!i40e_is_ptp_pin_dev(&pf->hw)) {
 199		dev_warn(&pf->pdev->dev,
 200			 "PTP external clock not supported.\n");
 201		return CANT_DO_PINS;
 202	}
 203
 204	if (!pf->ptp_pins) {
 205		dev_warn(&pf->pdev->dev,
 206			 "PTP PIN manipulation not allowed.\n");
 207		return CANT_DO_PINS;
 208	}
 209
 210	if (pf->hw.pf_id) {
 211		dev_warn(&pf->pdev->dev,
 212			 "PTP PINs should be accessed via PF0.\n");
 213		return CAN_DO_PINS;
 214	}
 215
 216	return CAN_SET_PINS;
 217}
 218
 219/**
 220 * i40_ptp_reset_timing_events - Reset PTP timing events
 221 * @pf: Board private structure
 222 *
 223 * This function resets timing events for pf.
 224 **/
 225static void i40_ptp_reset_timing_events(struct i40e_pf *pf)
 226{
 227	u32 i;
 228
 229	spin_lock_bh(&pf->ptp_rx_lock);
 230	for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) {
 231		/* reading and automatically clearing timing events registers */
 232		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i));
 233		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i));
 234		pf->latch_events[i] = 0;
 235	}
 236	/* reading and automatically clearing timing events registers */
 237	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L);
 238	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H);
 239
 240	pf->tx_hwtstamp_timeouts = 0;
 241	pf->tx_hwtstamp_skipped = 0;
 242	pf->rx_hwtstamp_cleared = 0;
 243	pf->latch_event_flags = 0;
 244	spin_unlock_bh(&pf->ptp_rx_lock);
 245}
 246
 247/**
 248 * i40e_ptp_verify - check pins
 249 * @ptp: ptp clock
 250 * @pin: pin index
 251 * @func: assigned function
 252 * @chan: channel
 253 *
 254 * Check pins consistency.
 255 * Return 0 on success or error on failure.
 256 **/
 257static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
 258			   enum ptp_pin_function func, unsigned int chan)
 259{
 260	switch (func) {
 261	case PTP_PF_NONE:
 262	case PTP_PF_EXTTS:
 263	case PTP_PF_PEROUT:
 264		break;
 265	case PTP_PF_PHYSYNC:
 266		return -EOPNOTSUPP;
 267	}
 268	return 0;
 269}
 270
 271/**
 272 * i40e_ptp_read - Read the PHC time from the device
 273 * @pf: Board private structure
 274 * @ts: timespec structure to hold the current time value
 275 * @sts: structure to hold the system time before and after reading the PHC
 276 *
 277 * This function reads the PRTTSYN_TIME registers and stores them in a
 278 * timespec. However, since the registers are 64 bits of nanoseconds, we must
 279 * convert the result to a timespec before we can return.
 280 **/
 281static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
 282			  struct ptp_system_timestamp *sts)
 283{
 284	struct i40e_hw *hw = &pf->hw;
 285	u32 hi, lo;
 286	u64 ns;
 287
 288	/* The timer latches on the lowest register read. */
 289	ptp_read_system_prets(sts);
 290	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
 291	ptp_read_system_postts(sts);
 292	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
 293
 294	ns = (((u64)hi) << 32) | lo;
 295
 296	*ts = ns_to_timespec64(ns);
 297}
 298
 299/**
 300 * i40e_ptp_write - Write the PHC time to the device
 301 * @pf: Board private structure
 302 * @ts: timespec structure that holds the new time value
 303 *
 304 * This function writes the PRTTSYN_TIME registers with the user value. Since
 305 * we receive a timespec from the stack, we must convert that timespec into
 306 * nanoseconds before programming the registers.
 307 **/
 308static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
 309{
 310	struct i40e_hw *hw = &pf->hw;
 311	u64 ns = timespec64_to_ns(ts);
 312
 313	/* The timer will not update until the high register is written, so
 314	 * write the low register first.
 315	 */
 316	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
 317	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
 318}
 319
 320/**
 321 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
 322 * @hwtstamps: Timestamp structure to update
 323 * @timestamp: Timestamp from the hardware
 324 *
 325 * We need to convert the NIC clock value into a hwtstamp which can be used by
 326 * the upper level timestamping functions. Since the timestamp is simply a 64-
 327 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
 328 **/
 329static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
 330					 u64 timestamp)
 331{
 332	memset(hwtstamps, 0, sizeof(*hwtstamps));
 333
 334	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
 335}
 336
 337/**
 338 * i40e_ptp_adjfine - Adjust the PHC frequency
 339 * @ptp: The PTP clock structure
 340 * @scaled_ppm: Scaled parts per million adjustment from base
 341 *
 342 * Adjust the frequency of the PHC by the indicated delta from the base
 343 * frequency.
 344 *
 345 * Scaled parts per million is ppm with a 16 bit binary fractional field.
 346 **/
 347static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
 348{
 349	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 350	struct i40e_hw *hw = &pf->hw;
 351	u64 adj, base_adj;
 352
 353	smp_mb(); /* Force any pending update before accessing. */
 354	base_adj = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult);
 355
 356	adj = adjust_by_scaled_ppm(base_adj, scaled_ppm);
 357
 358	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
 359	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
 360
 361	return 0;
 362}
 363
 364/**
 365 * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins
 366 * @pf: the PF private data structure
 367 *
 368 * Configure 1PPS signal used for PTP pins
 369 **/
 370static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf)
 371{
 372	struct i40e_hw *hw = &pf->hw;
 373	struct timespec64 now;
 374	u64 ns;
 375
 376	wr32(hw, I40E_PRTTSYN_AUX_0(1), 0);
 377	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
 378	wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE);
 379
 380	i40e_ptp_read(pf, &now, NULL);
 381	now.tv_sec += I40E_PTP_2_SEC_DELAY;
 382	now.tv_nsec = 0;
 383	ns = timespec64_to_ns(&now);
 384
 385	/* I40E_PRTTSYN_TGT_L(1) */
 386	wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF);
 387	/* I40E_PRTTSYN_TGT_H(1) */
 388	wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32);
 389	wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND);
 390	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
 391	wr32(hw, I40E_PRTTSYN_AUX_0(1),
 392	     I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD);
 393}
 394
 395/**
 396 * i40e_ptp_adjtime - Adjust the PHC time
 397 * @ptp: The PTP clock structure
 398 * @delta: Offset in nanoseconds to adjust the PHC time by
 399 *
 400 * Adjust the current clock time by a delta specified in nanoseconds.
 401 **/
 402static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
 403{
 404	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 405	struct i40e_hw *hw = &pf->hw;
 406
 407	mutex_lock(&pf->tmreg_lock);
 408
 409	if (delta > -999999900LL && delta < 999999900LL) {
 410		int neg_adj = 0;
 411		u32 timadj;
 412		u64 tohw;
 413
 414		if (delta < 0) {
 415			neg_adj = 1;
 416			tohw = -delta;
 417		} else {
 418			tohw = delta;
 419		}
 420
 421		timadj = tohw & 0x3FFFFFFF;
 422		if (neg_adj)
 423			timadj |= I40E_ISGN;
 424		wr32(hw, I40E_PRTTSYN_ADJ, timadj);
 425	} else {
 426		struct timespec64 then, now;
 427
 428		then = ns_to_timespec64(delta);
 429		i40e_ptp_read(pf, &now, NULL);
 430		now = timespec64_add(now, then);
 431		i40e_ptp_write(pf, (const struct timespec64 *)&now);
 432		i40e_ptp_set_1pps_signal_hw(pf);
 433	}
 434
 435	mutex_unlock(&pf->tmreg_lock);
 436
 437	return 0;
 438}
 439
 440/**
 441 * i40e_ptp_gettimex - Get the time of the PHC
 442 * @ptp: The PTP clock structure
 443 * @ts: timespec structure to hold the current time value
 444 * @sts: structure to hold the system time before and after reading the PHC
 445 *
 446 * Read the device clock and return the correct value on ns, after converting it
 447 * into a timespec struct.
 448 **/
 449static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
 450			     struct ptp_system_timestamp *sts)
 451{
 452	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 453
 454	mutex_lock(&pf->tmreg_lock);
 455	i40e_ptp_read(pf, ts, sts);
 456	mutex_unlock(&pf->tmreg_lock);
 457
 458	return 0;
 459}
 460
 461/**
 462 * i40e_ptp_settime - Set the time of the PHC
 463 * @ptp: The PTP clock structure
 464 * @ts: timespec64 structure that holds the new time value
 465 *
 466 * Set the device clock to the user input value. The conversion from timespec
 467 * to ns happens in the write function.
 468 **/
 469static int i40e_ptp_settime(struct ptp_clock_info *ptp,
 470			    const struct timespec64 *ts)
 471{
 472	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 473
 474	mutex_lock(&pf->tmreg_lock);
 475	i40e_ptp_write(pf, ts);
 476	mutex_unlock(&pf->tmreg_lock);
 477
 478	return 0;
 479}
 480
 481/**
 482 * i40e_pps_configure - configure PPS events
 483 * @ptp: ptp clock
 484 * @rq: clock request
 485 * @on: status
 486 *
 487 * Configure PPS events for external clock source.
 488 * Return 0 on success or error on failure.
 489 **/
 490static int i40e_pps_configure(struct ptp_clock_info *ptp,
 491			      struct ptp_clock_request *rq,
 492			      int on)
 493{
 494	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 495
 496	if (!!on)
 497		i40e_ptp_set_1pps_signal_hw(pf);
 498
 499	return 0;
 500}
 501
 502/**
 503 * i40e_pin_state - determine PIN state
 504 * @index: PIN index
 505 * @func: function assigned to PIN
 506 *
 507 * Determine PIN state based on PIN index and function assigned.
 508 * Return PIN state.
 509 **/
 510static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func)
 511{
 512	enum i40e_ptp_gpio_pin_state state = off;
 513
 514	if (index == 0 && func == PTP_PF_EXTTS)
 515		state = in_A;
 516	if (index == 1 && func == PTP_PF_EXTTS)
 517		state = in_B;
 518	if (index == 0 && func == PTP_PF_PEROUT)
 519		state = out_A;
 520	if (index == 1 && func == PTP_PF_PEROUT)
 521		state = out_B;
 522
 523	return state;
 524}
 525
 526/**
 527 * i40e_ptp_enable_pin - enable PINs.
 528 * @pf: private board structure
 529 * @chan: channel
 530 * @func: PIN function
 531 * @on: state
 532 *
 533 * Enable PTP pins for external clock source.
 534 * Return 0 on success or error code on failure.
 535 **/
 536static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan,
 537			       enum ptp_pin_function func, int on)
 538{
 539	enum i40e_ptp_gpio_pin_state *pin = NULL;
 540	struct i40e_ptp_pins_settings pins;
 541	int pin_index;
 542
 543	/* Use PF0 to set pins. Return success for user space tools */
 544	if (pf->hw.pf_id)
 545		return 0;
 546
 547	/* Preserve previous state of pins that we don't touch */
 548	pins.sdp3_2 = pf->ptp_pins->sdp3_2;
 549	pins.sdp3_3 = pf->ptp_pins->sdp3_3;
 550	pins.gpio_4 = pf->ptp_pins->gpio_4;
 551
 552	/* To turn on the pin - find the corresponding one based on
 553	 * the given index. To to turn the function off - find
 554	 * which pin had it assigned. Don't use ptp_find_pin here
 555	 * because it tries to lock the pincfg_mux which is locked by
 556	 * ptp_pin_store() that calls here.
 557	 */
 558	if (on) {
 559		pin_index = ptp_find_pin(pf->ptp_clock, func, chan);
 560		if (pin_index < 0)
 561			return -EBUSY;
 562
 563		switch (pin_index) {
 564		case SDP3_2:
 565			pin = &pins.sdp3_2;
 566			break;
 567		case SDP3_3:
 568			pin = &pins.sdp3_3;
 569			break;
 570		case GPIO_4:
 571			pin = &pins.gpio_4;
 572			break;
 573		default:
 574			return -EINVAL;
 575		}
 576
 577		*pin = i40e_pin_state(chan, func);
 578	} else {
 579		pins.sdp3_2 = off;
 580		pins.sdp3_3 = off;
 581		pins.gpio_4 = off;
 582	}
 583
 584	return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0;
 585}
 586
 587/**
 588 * i40e_ptp_feature_enable - Enable external clock pins
 589 * @ptp: The PTP clock structure
 590 * @rq: The PTP clock request structure
 591 * @on: To turn feature on/off
 592 *
 593 * Setting on/off PTP PPS feature for pin.
 594 **/
 595static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
 596				   struct ptp_clock_request *rq,
 597				   int on)
 598{
 599	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 600
 601	enum ptp_pin_function func;
 602	unsigned int chan;
 603
 604	/* TODO: Implement flags handling for EXTTS and PEROUT */
 605	switch (rq->type) {
 606	case PTP_CLK_REQ_EXTTS:
 607		func = PTP_PF_EXTTS;
 608		chan = rq->extts.index;
 609		break;
 610	case PTP_CLK_REQ_PEROUT:
 611		func = PTP_PF_PEROUT;
 612		chan = rq->perout.index;
 613		break;
 614	case PTP_CLK_REQ_PPS:
 615		return i40e_pps_configure(ptp, rq, on);
 616	default:
 617		return -EOPNOTSUPP;
 618	}
 619
 620	return i40e_ptp_enable_pin(pf, chan, func, on);
 621}
 622
 623/**
 624 * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
 625 * @pf: the PF data structure
 626 *
 627 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
 628 * for noticed latch events. This allows the driver to keep track of the first
 629 * time a latch event was noticed which will be used to help clear out Rx
 630 * timestamps for packets that got dropped or lost.
 631 *
 632 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
 633 * expected to be called only while under the ptp_rx_lock.
 634 **/
 635static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
 636{
 637	struct i40e_hw *hw = &pf->hw;
 638	u32 prttsyn_stat, new_latch_events;
 639	int  i;
 640
 641	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
 642	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
 643
 644	/* Update the jiffies time for any newly latched timestamp. This
 645	 * ensures that we store the time that we first discovered a timestamp
 646	 * was latched by the hardware. The service task will later determine
 647	 * if we should free the latch and drop that timestamp should too much
 648	 * time pass. This flow ensures that we only update jiffies for new
 649	 * events latched since the last time we checked, and not all events
 650	 * currently latched, so that the service task accounting remains
 651	 * accurate.
 652	 */
 653	for (i = 0; i < 4; i++) {
 654		if (new_latch_events & BIT(i))
 655			pf->latch_events[i] = jiffies;
 656	}
 657
 658	/* Finally, we store the current status of the Rx timestamp latches */
 659	pf->latch_event_flags = prttsyn_stat;
 660
 661	return prttsyn_stat;
 662}
 663
 664/**
 665 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
 666 * @pf: The PF private data structure
 667 *
 668 * This watchdog task is scheduled to detect error case where hardware has
 669 * dropped an Rx packet that was timestamped when the ring is full. The
 670 * particular error is rare but leaves the device in a state unable to timestamp
 671 * any future packets.
 672 **/
 673void i40e_ptp_rx_hang(struct i40e_pf *pf)
 674{
 675	struct i40e_hw *hw = &pf->hw;
 676	unsigned int i, cleared = 0;
 677
 678	/* Since we cannot turn off the Rx timestamp logic if the device is
 679	 * configured for Tx timestamping, we check if Rx timestamping is
 680	 * configured. We don't want to spuriously warn about Rx timestamp
 681	 * hangs if we don't care about the timestamps.
 682	 */
 683	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx)
 684		return;
 685
 686	spin_lock_bh(&pf->ptp_rx_lock);
 687
 688	/* Update current latch times for Rx events */
 689	i40e_ptp_get_rx_events(pf);
 690
 691	/* Check all the currently latched Rx events and see whether they have
 692	 * been latched for over a second. It is assumed that any timestamp
 693	 * should have been cleared within this time, or else it was captured
 694	 * for a dropped frame that the driver never received. Thus, we will
 695	 * clear any timestamp that has been latched for over 1 second.
 696	 */
 697	for (i = 0; i < 4; i++) {
 698		if ((pf->latch_event_flags & BIT(i)) &&
 699		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
 700			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
 701			pf->latch_event_flags &= ~BIT(i);
 702			cleared++;
 703		}
 704	}
 705
 706	spin_unlock_bh(&pf->ptp_rx_lock);
 707
 708	/* Log a warning if more than 2 timestamps got dropped in the same
 709	 * check. We don't want to warn about all drops because it can occur
 710	 * in normal scenarios such as PTP frames on multicast addresses we
 711	 * aren't listening to. However, administrator should know if this is
 712	 * the reason packets aren't receiving timestamps.
 713	 */
 714	if (cleared > 2)
 715		dev_dbg(&pf->pdev->dev,
 716			"Dropped %d missed RXTIME timestamp events\n",
 717			cleared);
 718
 719	/* Finally, update the rx_hwtstamp_cleared counter */
 720	pf->rx_hwtstamp_cleared += cleared;
 721}
 722
 723/**
 724 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
 725 * @pf: The PF private data structure
 726 *
 727 * This watchdog task is run periodically to make sure that we clear the Tx
 728 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
 729 * time. It is unexpected in the normal case but if it occurs it results in
 730 * permanently preventing timestamps of future packets.
 731 **/
 732void i40e_ptp_tx_hang(struct i40e_pf *pf)
 733{
 734	struct sk_buff *skb;
 735
 736	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx)
 737		return;
 738
 739	/* Nothing to do if we're not already waiting for a timestamp */
 740	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
 741		return;
 742
 743	/* We already have a handler routine which is run when we are notified
 744	 * of a Tx timestamp in the hardware. If we don't get an interrupt
 745	 * within a second it is reasonable to assume that we never will.
 746	 */
 747	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
 748		skb = pf->ptp_tx_skb;
 749		pf->ptp_tx_skb = NULL;
 750		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
 751
 752		/* Free the skb after we clear the bitlock */
 753		dev_kfree_skb_any(skb);
 754		pf->tx_hwtstamp_timeouts++;
 755	}
 756}
 757
 758/**
 759 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
 760 * @pf: Board private structure
 761 *
 762 * Read the value of the Tx timestamp from the registers, convert it into a
 763 * value consumable by the stack, and store that result into the shhwtstamps
 764 * struct before returning it up the stack.
 765 **/
 766void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
 767{
 768	struct skb_shared_hwtstamps shhwtstamps;
 769	struct sk_buff *skb = pf->ptp_tx_skb;
 770	struct i40e_hw *hw = &pf->hw;
 771	u32 hi, lo;
 772	u64 ns;
 773
 774	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx)
 775		return;
 776
 777	/* don't attempt to timestamp if we don't have an skb */
 778	if (!pf->ptp_tx_skb)
 779		return;
 780
 781	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
 782	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
 783
 784	ns = (((u64)hi) << 32) | lo;
 785	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
 786
 787	/* Clear the bit lock as soon as possible after reading the register,
 788	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
 789	 * applications might wake up and attempt to request another transmit
 790	 * timestamp prior to the bit lock being cleared.
 791	 */
 792	pf->ptp_tx_skb = NULL;
 793	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
 794
 795	/* Notify the stack and free the skb after we've unlocked */
 796	skb_tstamp_tx(skb, &shhwtstamps);
 797	dev_kfree_skb_any(skb);
 798}
 799
 800/**
 801 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
 802 * @pf: Board private structure
 803 * @skb: Particular skb to send timestamp with
 804 * @index: Index into the receive timestamp registers for the timestamp
 805 *
 806 * The XL710 receives a notification in the receive descriptor with an offset
 807 * into the set of RXTIME registers where the timestamp is for that skb. This
 808 * function goes and fetches the receive timestamp from that offset, if a valid
 809 * one exists. The RXTIME registers are in ns, so we must convert the result
 810 * first.
 811 **/
 812void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
 813{
 814	u32 prttsyn_stat, hi, lo;
 815	struct i40e_hw *hw;
 816	u64 ns;
 817
 818	/* Since we cannot turn off the Rx timestamp logic if the device is
 819	 * doing Tx timestamping, check if Rx timestamping is configured.
 820	 */
 821	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx)
 822		return;
 823
 824	hw = &pf->hw;
 825
 826	spin_lock_bh(&pf->ptp_rx_lock);
 827
 828	/* Get current Rx events and update latch times */
 829	prttsyn_stat = i40e_ptp_get_rx_events(pf);
 830
 831	/* TODO: Should we warn about missing Rx timestamp event? */
 832	if (!(prttsyn_stat & BIT(index))) {
 833		spin_unlock_bh(&pf->ptp_rx_lock);
 834		return;
 835	}
 836
 837	/* Clear the latched event since we're about to read its register */
 838	pf->latch_event_flags &= ~BIT(index);
 839
 840	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
 841	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
 842
 843	spin_unlock_bh(&pf->ptp_rx_lock);
 844
 845	ns = (((u64)hi) << 32) | lo;
 846
 847	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
 848}
 849
 850/**
 851 * i40e_ptp_set_increment - Utility function to update clock increment rate
 852 * @pf: Board private structure
 853 *
 854 * During a link change, the DMA frequency that drives the 1588 logic will
 855 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
 856 * we must update the increment value per clock tick.
 857 **/
 858void i40e_ptp_set_increment(struct i40e_pf *pf)
 859{
 860	struct i40e_link_status *hw_link_info;
 861	struct i40e_hw *hw = &pf->hw;
 862	u64 incval;
 863	u32 mult;
 864
 865	hw_link_info = &hw->phy.link_info;
 866
 867	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
 868
 869	switch (hw_link_info->link_speed) {
 870	case I40E_LINK_SPEED_10GB:
 871		mult = I40E_PTP_10GB_INCVAL_MULT;
 872		break;
 873	case I40E_LINK_SPEED_5GB:
 874		mult = I40E_PTP_5GB_INCVAL_MULT;
 875		break;
 876	case I40E_LINK_SPEED_1GB:
 877		mult = I40E_PTP_1GB_INCVAL_MULT;
 878		break;
 879	case I40E_LINK_SPEED_100MB:
 880	{
 881		static int warn_once;
 882
 883		if (!warn_once) {
 884			dev_warn(&pf->pdev->dev,
 885				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
 886			warn_once++;
 887		}
 888		mult = 0;
 889		break;
 890	}
 891	case I40E_LINK_SPEED_40GB:
 892	default:
 893		mult = 1;
 894		break;
 895	}
 896
 897	/* The increment value is calculated by taking the base 40GbE incvalue
 898	 * and multiplying it by a factor based on the link speed.
 899	 */
 900	incval = I40E_PTP_40GB_INCVAL * mult;
 901
 902	/* Write the new increment value into the increment register. The
 903	 * hardware will not update the clock until both registers have been
 904	 * written.
 905	 */
 906	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
 907	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
 908
 909	/* Update the base adjustement value. */
 910	WRITE_ONCE(pf->ptp_adj_mult, mult);
 911	smp_mb(); /* Force the above update. */
 912}
 913
 914/**
 915 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
 916 * @pf: Board private structure
 917 * @ifr: ioctl data
 918 *
 919 * Obtain the current hardware timestamping settigs as requested. To do this,
 920 * keep a shadow copy of the timestamp settings rather than attempting to
 921 * deconstruct it from the registers.
 922 **/
 923int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
 924{
 925	struct hwtstamp_config *config = &pf->tstamp_config;
 926
 927	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
 928		return -EOPNOTSUPP;
 929
 930	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 931		-EFAULT : 0;
 932}
 933
 934/**
 935 * i40e_ptp_free_pins - free memory used by PTP pins
 936 * @pf: Board private structure
 937 *
 938 * Release memory allocated for PTP pins.
 939 **/
 940static void i40e_ptp_free_pins(struct i40e_pf *pf)
 941{
 942	if (i40e_is_ptp_pin_dev(&pf->hw)) {
 943		kfree(pf->ptp_pins);
 944		kfree(pf->ptp_caps.pin_config);
 945		pf->ptp_pins = NULL;
 946	}
 947}
 948
 949/**
 950 * i40e_ptp_set_pin_hw - Set HW GPIO pin
 951 * @hw: pointer to the hardware structure
 952 * @pin: pin index
 953 * @state: pin state
 954 *
 955 * Set status of GPIO pin for external clock handling.
 956 **/
 957static void i40e_ptp_set_pin_hw(struct i40e_hw *hw,
 958				unsigned int pin,
 959				enum i40e_ptp_gpio_pin_state state)
 960{
 961	switch (state) {
 962	case off:
 963		wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0);
 964		break;
 965	case in_A:
 966		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
 967		     I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0);
 968		break;
 969	case in_B:
 970		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
 971		     I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0);
 972		break;
 973	case out_A:
 974		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
 975		     I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1);
 976		break;
 977	case out_B:
 978		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
 979		     I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1);
 980		break;
 981	default:
 982		break;
 983	}
 984}
 985
 986/**
 987 * i40e_ptp_set_led_hw - Set HW GPIO led
 988 * @hw: pointer to the hardware structure
 989 * @led: led index
 990 * @state: led state
 991 *
 992 * Set status of GPIO led for external clock handling.
 993 **/
 994static void i40e_ptp_set_led_hw(struct i40e_hw *hw,
 995				unsigned int led,
 996				enum i40e_ptp_led_pin_state state)
 997{
 998	switch (state) {
 999	case low:
1000		wr32(hw, I40E_GLGEN_GPIO_SET,
1001		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led);
1002		break;
1003	case high:
1004		wr32(hw, I40E_GLGEN_GPIO_SET,
1005		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA |
1006		     I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led);
1007		break;
1008	default:
1009		break;
1010	}
1011}
1012
1013/**
1014 * i40e_ptp_init_leds_hw - init LEDs
1015 * @hw: pointer to a hardware structure
1016 *
1017 * Set initial state of LEDs
1018 **/
1019static void i40e_ptp_init_leds_hw(struct i40e_hw *hw)
1020{
1021	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0),
1022	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1023	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1),
1024	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1025	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0),
1026	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1027	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1),
1028	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1029}
1030
1031/**
1032 * i40e_ptp_set_pins_hw - Set HW GPIO pins
1033 * @pf: Board private structure
1034 *
1035 * This function sets GPIO pins for PTP
1036 **/
1037static void i40e_ptp_set_pins_hw(struct i40e_pf *pf)
1038{
1039	const struct i40e_ptp_pins_settings *pins = pf->ptp_pins;
1040	struct i40e_hw *hw = &pf->hw;
1041
1042	/* pin must be disabled before it may be used */
1043	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1044	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1045	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1046
1047	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2);
1048	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3);
1049	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4);
1050
1051	i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0);
1052	i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1);
1053	i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0);
1054	i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1);
1055
1056	dev_info(&pf->pdev->dev,
1057		 "PTP configuration set to: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1058		 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1059		 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1060		 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1061}
1062
1063/**
1064 * i40e_ptp_set_pins - set PTP pins in HW
1065 * @pf: Board private structure
1066 * @pins: PTP pins to be applied
1067 *
1068 * Validate and set PTP pins in HW for specific PF.
1069 * Return 0 on success or negative value on error.
1070 **/
1071static int i40e_ptp_set_pins(struct i40e_pf *pf,
1072			     struct i40e_ptp_pins_settings *pins)
1073{
1074	enum i40e_can_set_pins pin_caps = i40e_can_set_pins(pf);
1075	int i = 0;
1076
1077	if (pin_caps == CANT_DO_PINS)
1078		return -EOPNOTSUPP;
1079	else if (pin_caps == CAN_DO_PINS)
1080		return 0;
1081
1082	if (pins->sdp3_2 == invalid)
1083		pins->sdp3_2 = pf->ptp_pins->sdp3_2;
1084	if (pins->sdp3_3 == invalid)
1085		pins->sdp3_3 = pf->ptp_pins->sdp3_3;
1086	if (pins->gpio_4 == invalid)
1087		pins->gpio_4 = pf->ptp_pins->gpio_4;
1088	while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) {
1089		if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 &&
1090		    pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 &&
1091		    pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) {
1092			pins->led2_0 =
1093				i40e_ptp_pin_led_allowed_states[i].led2_0;
1094			pins->led2_1 =
1095				i40e_ptp_pin_led_allowed_states[i].led2_1;
1096			pins->led3_0 =
1097				i40e_ptp_pin_led_allowed_states[i].led3_0;
1098			pins->led3_1 =
1099				i40e_ptp_pin_led_allowed_states[i].led3_1;
1100			break;
1101		}
1102		i++;
1103	}
1104	if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) {
1105		dev_warn(&pf->pdev->dev,
1106			 "Unsupported PTP pin configuration: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1107			 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1108			 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1109			 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1110
1111		return -EPERM;
1112	}
1113	memcpy(pf->ptp_pins, pins, sizeof(*pins));
1114	i40e_ptp_set_pins_hw(pf);
1115	i40_ptp_reset_timing_events(pf);
1116
1117	return 0;
1118}
1119
1120/**
1121 * i40e_ptp_alloc_pins - allocate PTP pins structure
1122 * @pf: Board private structure
1123 *
1124 * allocate PTP pins structure
1125 **/
1126int i40e_ptp_alloc_pins(struct i40e_pf *pf)
1127{
1128	if (!i40e_is_ptp_pin_dev(&pf->hw))
1129		return 0;
1130
1131	pf->ptp_pins =
1132		kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL);
1133
1134	if (!pf->ptp_pins) {
1135		dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n");
1136		return -ENOMEM;
1137	}
1138
1139	pf->ptp_pins->sdp3_2 = off;
1140	pf->ptp_pins->sdp3_3 = off;
1141	pf->ptp_pins->gpio_4 = off;
1142	pf->ptp_pins->led2_0 = high;
1143	pf->ptp_pins->led2_1 = high;
1144	pf->ptp_pins->led3_0 = high;
1145	pf->ptp_pins->led3_1 = high;
1146
1147	/* Use PF0 to set pins in HW. Return success for user space tools */
1148	if (pf->hw.pf_id)
1149		return 0;
1150
1151	i40e_ptp_init_leds_hw(&pf->hw);
1152	i40e_ptp_set_pins_hw(pf);
1153
1154	return 0;
1155}
1156
1157/**
1158 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
1159 * @pf: Board private structure
1160 * @config: hwtstamp settings requested or saved
1161 *
1162 * Control hardware registers to enter the specific mode requested by the
1163 * user. Also used during reset path to ensure that timestamp settings are
1164 * maintained.
1165 *
1166 * Note: modifies config in place, and may update the requested mode to be
1167 * more broad if the specific filter is not directly supported.
1168 **/
1169static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
1170				       struct hwtstamp_config *config)
1171{
1172	struct i40e_hw *hw = &pf->hw;
1173	u32 tsyntype, regval;
1174
1175	/* Selects external trigger to cause event */
1176	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1177	/* Bit 17:16 is EVNTLVL, 01B rising edge */
1178	regval &= 0;
1179	regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT);
1180	/* regval: 0001 0000 0000 0000 0000 */
1181	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1182
1183	/* Enabel interrupts */
1184	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1185	regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT;
1186	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1187
1188	INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work);
1189
1190	switch (config->tx_type) {
1191	case HWTSTAMP_TX_OFF:
1192		pf->ptp_tx = false;
1193		break;
1194	case HWTSTAMP_TX_ON:
1195		pf->ptp_tx = true;
1196		break;
1197	default:
1198		return -ERANGE;
1199	}
1200
1201	switch (config->rx_filter) {
1202	case HWTSTAMP_FILTER_NONE:
1203		pf->ptp_rx = false;
1204		/* We set the type to V1, but do not enable UDP packet
1205		 * recognition. In this way, we should be as close to
1206		 * disabling PTP Rx timestamps as possible since V1 packets
1207		 * are always UDP, since L2 packets are a V2 feature.
1208		 */
1209		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
1210		break;
1211	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1212	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1213	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1214		if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps))
1215			return -ERANGE;
1216		pf->ptp_rx = true;
1217		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
1218			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
1219			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1220		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1221		break;
1222	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1223	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1224	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1225	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1226	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1227	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1228		if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps))
1229			return -ERANGE;
1230		fallthrough;
1231	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1232	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1233	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1234		pf->ptp_rx = true;
1235		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
1236			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
1237		if (test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) {
1238			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1239			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1240		} else {
1241			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1242		}
1243		break;
1244	case HWTSTAMP_FILTER_NTP_ALL:
1245	case HWTSTAMP_FILTER_ALL:
1246	default:
1247		return -ERANGE;
1248	}
1249
1250	/* Clear out all 1588-related registers to clear and unlatch them. */
1251	spin_lock_bh(&pf->ptp_rx_lock);
1252	rd32(hw, I40E_PRTTSYN_STAT_0);
1253	rd32(hw, I40E_PRTTSYN_TXTIME_H);
1254	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
1255	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
1256	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
1257	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
1258	pf->latch_event_flags = 0;
1259	spin_unlock_bh(&pf->ptp_rx_lock);
1260
1261	/* Enable/disable the Tx timestamp interrupt based on user input. */
1262	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1263	if (pf->ptp_tx)
1264		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1265	else
1266		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1267	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1268
1269	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
1270	if (pf->ptp_tx)
1271		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1272	else
1273		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1274	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
1275
1276	/* Although there is no simple on/off switch for Rx, we "disable" Rx
1277	 * timestamps by setting to V1 only mode and clear the UDP
1278	 * recognition. This ought to disable all PTP Rx timestamps as V1
1279	 * packets are always over UDP. Note that software is configured to
1280	 * ignore Rx timestamps via the pf->ptp_rx flag.
1281	 */
1282	regval = rd32(hw, I40E_PRTTSYN_CTL1);
1283	/* clear everything but the enable bit */
1284	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1285	/* now enable bits for desired Rx timestamps */
1286	regval |= tsyntype;
1287	wr32(hw, I40E_PRTTSYN_CTL1, regval);
1288
1289	return 0;
1290}
1291
1292/**
1293 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
1294 * @pf: Board private structure
1295 * @ifr: ioctl data
1296 *
1297 * Respond to the user filter requests and make the appropriate hardware
1298 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
1299 * logic, so keep track in software of whether to indicate these timestamps
1300 * or not.
1301 *
1302 * It is permissible to "upgrade" the user request to a broader filter, as long
1303 * as the user receives the timestamps they care about and the user is notified
1304 * the filter has been broadened.
1305 **/
1306int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
1307{
1308	struct hwtstamp_config config;
1309	int err;
1310
1311	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
1312		return -EOPNOTSUPP;
1313
1314	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1315		return -EFAULT;
1316
1317	err = i40e_ptp_set_timestamp_mode(pf, &config);
1318	if (err)
1319		return err;
1320
1321	/* save these settings for future reference */
1322	pf->tstamp_config = config;
1323
1324	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1325		-EFAULT : 0;
1326}
1327
1328/**
1329 * i40e_init_pin_config - initialize pins.
1330 * @pf: private board structure
1331 *
1332 * Initialize pins for external clock source.
1333 * Return 0 on success or error code on failure.
1334 **/
1335static int i40e_init_pin_config(struct i40e_pf *pf)
1336{
1337	int i;
1338
1339	pf->ptp_caps.n_pins = 3;
1340	pf->ptp_caps.n_ext_ts = 2;
1341	pf->ptp_caps.pps = 1;
1342	pf->ptp_caps.n_per_out = 2;
1343
1344	pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins,
1345					  sizeof(*pf->ptp_caps.pin_config),
1346					  GFP_KERNEL);
1347	if (!pf->ptp_caps.pin_config)
1348		return -ENOMEM;
1349
1350	for (i = 0; i < pf->ptp_caps.n_pins; i++) {
1351		snprintf(pf->ptp_caps.pin_config[i].name,
1352			 sizeof(pf->ptp_caps.pin_config[i].name),
1353			 "%s", sdp_desc[i].name);
1354		pf->ptp_caps.pin_config[i].index = sdp_desc[i].index;
1355		pf->ptp_caps.pin_config[i].func = PTP_PF_NONE;
1356		pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan;
1357	}
1358
1359	pf->ptp_caps.verify = i40e_ptp_verify;
1360	pf->ptp_caps.enable = i40e_ptp_feature_enable;
1361
1362	pf->ptp_caps.pps = 1;
1363
1364	return 0;
1365}
1366
1367/**
1368 * i40e_ptp_create_clock - Create PTP clock device for userspace
1369 * @pf: Board private structure
1370 *
1371 * This function creates a new PTP clock device. It only creates one if we
1372 * don't already have one, so it is safe to call. Will return error if it
1373 * can't create one, but success if we already have a device. Should be used
1374 * by i40e_ptp_init to create clock initially, and prevent global resets from
1375 * creating new clock devices.
1376 **/
1377static long i40e_ptp_create_clock(struct i40e_pf *pf)
1378{
1379	/* no need to create a clock device if we already have one */
1380	if (!IS_ERR_OR_NULL(pf->ptp_clock))
1381		return 0;
1382
1383	strscpy(pf->ptp_caps.name, i40e_driver_name,
1384		sizeof(pf->ptp_caps.name) - 1);
1385	pf->ptp_caps.owner = THIS_MODULE;
1386	pf->ptp_caps.max_adj = 999999999;
1387	pf->ptp_caps.adjfine = i40e_ptp_adjfine;
1388	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
1389	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
1390	pf->ptp_caps.settime64 = i40e_ptp_settime;
1391	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1392		int err = i40e_init_pin_config(pf);
1393
1394		if (err)
1395			return err;
1396	}
1397
1398	/* Attempt to register the clock before enabling the hardware. */
1399	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
1400	if (IS_ERR(pf->ptp_clock))
1401		return PTR_ERR(pf->ptp_clock);
1402
1403	/* clear the hwtstamp settings here during clock create, instead of
1404	 * during regular init, so that we can maintain settings across a
1405	 * reset or suspend.
1406	 */
1407	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1408	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1409
1410	/* Set the previous "reset" time to the current Kernel clock time */
1411	ktime_get_real_ts64(&pf->ptp_prev_hw_time);
1412	pf->ptp_reset_start = ktime_get();
1413
1414	return 0;
1415}
1416
1417/**
1418 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
1419 * @pf: Board private structure
1420 *
1421 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
1422 * be called at the end of preparing to reset, just before hardware reset
1423 * occurs, in order to preserve the PTP time as close as possible across
1424 * resets.
1425 */
1426void i40e_ptp_save_hw_time(struct i40e_pf *pf)
1427{
1428	/* don't try to access the PTP clock if it's not enabled */
1429	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
1430		return;
1431
1432	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
1433	/* Get a monotonic starting time for this reset */
1434	pf->ptp_reset_start = ktime_get();
1435}
1436
1437/**
1438 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
1439 * @pf: Board private structure
1440 *
1441 * Restore the PTP hardware clock registers. We previously cached the PTP
1442 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
1443 * update this value based on the time delta since the time was saved, using
1444 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
1445 *
1446 * This ensures that the hardware clock is restored to nearly what it should
1447 * have been if a reset had not occurred.
1448 */
1449void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
1450{
1451	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
1452
1453	/* Update the previous HW time with the ktime delta */
1454	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
1455
1456	/* Restore the hardware clock registers */
1457	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
1458}
1459
1460/**
1461 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
1462 * @pf: Board private structure
1463 *
1464 * This function sets device up for 1588 support. The first time it is run, it
1465 * will create a PHC clock device. It does not create a clock device if one
1466 * already exists. It also reconfigures the device after a reset.
1467 *
1468 * The first time a clock is created, i40e_ptp_create_clock will set
1469 * pf->ptp_prev_hw_time to the current system time. During resets, it is
1470 * expected that this timespec will be set to the last known PTP clock time,
1471 * in order to preserve the clock time as close as possible across a reset.
1472 **/
1473void i40e_ptp_init(struct i40e_pf *pf)
1474{
1475	struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
1476	struct net_device *netdev = vsi->netdev;
1477	struct i40e_hw *hw = &pf->hw;
1478	u32 pf_id;
1479	long err;
1480
1481	/* Only one PF is assigned to control 1588 logic per port. Do not
1482	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
1483	 */
1484	pf_id = FIELD_GET(I40E_PRTTSYN_CTL0_PF_ID_MASK,
1485			  rd32(hw, I40E_PRTTSYN_CTL0));
1486	if (hw->pf_id != pf_id) {
1487		clear_bit(I40E_FLAG_PTP_ENA, pf->flags);
1488		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
1489			 __func__,
1490			 netdev->name);
1491		return;
1492	}
1493
1494	mutex_init(&pf->tmreg_lock);
1495	spin_lock_init(&pf->ptp_rx_lock);
1496
1497	/* ensure we have a clock device */
1498	err = i40e_ptp_create_clock(pf);
1499	if (err) {
1500		pf->ptp_clock = NULL;
1501		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
1502			__func__);
1503	} else if (pf->ptp_clock) {
1504		u32 regval;
1505
1506		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
1507			dev_info(&pf->pdev->dev, "PHC enabled\n");
1508		set_bit(I40E_FLAG_PTP_ENA, pf->flags);
1509
1510		/* Ensure the clocks are running. */
1511		regval = rd32(hw, I40E_PRTTSYN_CTL0);
1512		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
1513		wr32(hw, I40E_PRTTSYN_CTL0, regval);
1514		regval = rd32(hw, I40E_PRTTSYN_CTL1);
1515		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1516		wr32(hw, I40E_PRTTSYN_CTL1, regval);
1517
1518		/* Set the increment value per clock tick. */
1519		i40e_ptp_set_increment(pf);
1520
1521		/* reset timestamping mode */
1522		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
1523
1524		/* Restore the clock time based on last known value */
1525		i40e_ptp_restore_hw_time(pf);
1526	}
1527
1528	i40e_ptp_set_1pps_signal_hw(pf);
1529}
1530
1531/**
1532 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
1533 * @pf: Board private structure
1534 *
1535 * This function handles the cleanup work required from the initialization by
1536 * clearing out the important information and unregistering the PHC.
1537 **/
1538void i40e_ptp_stop(struct i40e_pf *pf)
1539{
1540	struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf);
1541	struct i40e_hw *hw = &pf->hw;
1542	u32 regval;
1543
1544	clear_bit(I40E_FLAG_PTP_ENA, pf->flags);
1545	pf->ptp_tx = false;
1546	pf->ptp_rx = false;
1547
1548	if (pf->ptp_tx_skb) {
1549		struct sk_buff *skb = pf->ptp_tx_skb;
1550
1551		pf->ptp_tx_skb = NULL;
1552		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
1553		dev_kfree_skb_any(skb);
1554	}
1555
1556	if (pf->ptp_clock) {
1557		ptp_clock_unregister(pf->ptp_clock);
1558		pf->ptp_clock = NULL;
1559		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
1560			 main_vsi->netdev->name);
1561	}
1562
1563	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1564		i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1565		i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1566		i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1567	}
1568
1569	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1570	regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK;
1571	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1572
1573	/* Disable interrupts */
1574	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1575	regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK;
1576	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1577
1578	i40e_ptp_free_pins(pf);
1579}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include "i40e.h"
   5#include <linux/ptp_classify.h>
   6#include <linux/posix-clock.h>
 
 
   7
   8/* The XL710 timesync is very much like Intel's 82599 design when it comes to
   9 * the fundamental clock design. However, the clock operations are much simpler
  10 * in the XL710 because the device supports a full 64 bits of nanoseconds.
  11 * Because the field is so wide, we can forgo the cycle counter and just
  12 * operate with the nanosecond field directly without fear of overflow.
  13 *
  14 * Much like the 82599, the update period is dependent upon the link speed:
  15 * At 40Gb, 25Gb, or no link, the period is 1.6ns.
  16 * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
  17 * At 1Gb link, the period is multiplied by 20. (32ns)
  18 * 1588 functionality is not supported at 100Mbps.
  19 */
  20#define I40E_PTP_40GB_INCVAL		0x0199999999ULL
  21#define I40E_PTP_10GB_INCVAL_MULT	2
  22#define I40E_PTP_5GB_INCVAL_MULT	2
  23#define I40E_PTP_1GB_INCVAL_MULT	20
  24#define I40E_ISGN			0x80000000
  25
  26#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
  27#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
  28					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
  29#define I40E_SUBDEV_ID_25G_PTP_PIN	0xB
  30
  31enum i40e_ptp_pin {
  32	SDP3_2 = 0,
  33	SDP3_3,
  34	GPIO_4
  35};
  36
  37enum i40e_can_set_pins_t {
  38	CANT_DO_PINS = -1,
  39	CAN_SET_PINS,
  40	CAN_DO_PINS
  41};
  42
  43static struct ptp_pin_desc sdp_desc[] = {
  44	/* name     idx      func      chan */
  45	{"SDP3_2", SDP3_2, PTP_PF_NONE, 0},
  46	{"SDP3_3", SDP3_3, PTP_PF_NONE, 1},
  47	{"GPIO_4", GPIO_4, PTP_PF_NONE, 1},
  48};
  49
  50enum i40e_ptp_gpio_pin_state {
  51	end = -2,
  52	invalid,
  53	off,
  54	in_A,
  55	in_B,
  56	out_A,
  57	out_B,
  58};
  59
  60static const char * const i40e_ptp_gpio_pin_state2str[] = {
  61	"off", "in_A", "in_B", "out_A", "out_B"
  62};
  63
  64enum i40e_ptp_led_pin_state {
  65	led_end = -2,
  66	low = 0,
  67	high,
  68};
  69
  70struct i40e_ptp_pins_settings {
  71	enum i40e_ptp_gpio_pin_state sdp3_2;
  72	enum i40e_ptp_gpio_pin_state sdp3_3;
  73	enum i40e_ptp_gpio_pin_state gpio_4;
  74	enum i40e_ptp_led_pin_state led2_0;
  75	enum i40e_ptp_led_pin_state led2_1;
  76	enum i40e_ptp_led_pin_state led3_0;
  77	enum i40e_ptp_led_pin_state led3_1;
  78};
  79
  80static const struct i40e_ptp_pins_settings
  81	i40e_ptp_pin_led_allowed_states[] = {
  82	{off,	off,	off,		high,	high,	high,	high},
  83	{off,	in_A,	off,		high,	high,	high,	low},
  84	{off,	out_A,	off,		high,	low,	high,	high},
  85	{off,	in_B,	off,		high,	high,	high,	low},
  86	{off,	out_B,	off,		high,	low,	high,	high},
  87	{in_A,	off,	off,		high,	high,	high,	low},
  88	{in_A,	in_B,	off,		high,	high,	high,	low},
  89	{in_A,	out_B,	off,		high,	low,	high,	high},
  90	{out_A,	off,	off,		high,	low,	high,	high},
  91	{out_A,	in_B,	off,		high,	low,	high,	high},
  92	{in_B,	off,	off,		high,	high,	high,	low},
  93	{in_B,	in_A,	off,		high,	high,	high,	low},
  94	{in_B,	out_A,	off,		high,	low,	high,	high},
  95	{out_B,	off,	off,		high,	low,	high,	high},
  96	{out_B,	in_A,	off,		high,	low,	high,	high},
  97	{off,	off,	in_A,		high,	high,	low,	high},
  98	{off,	out_A,	in_A,		high,	low,	low,	high},
  99	{off,	in_B,	in_A,		high,	high,	low,	low},
 100	{off,	out_B,	in_A,		high,	low,	low,	high},
 101	{out_A,	off,	in_A,		high,	low,	low,	high},
 102	{out_A,	in_B,	in_A,		high,	low,	low,	high},
 103	{in_B,	off,	in_A,		high,	high,	low,	low},
 104	{in_B,	out_A,	in_A,		high,	low,	low,	high},
 105	{out_B,	off,	in_A,		high,	low,	low,	high},
 106	{off,	off,	out_A,		low,	high,	high,	high},
 107	{off,	in_A,	out_A,		low,	high,	high,	low},
 108	{off,	in_B,	out_A,		low,	high,	high,	low},
 109	{off,	out_B,	out_A,		low,	low,	high,	high},
 110	{in_A,	off,	out_A,		low,	high,	high,	low},
 111	{in_A,	in_B,	out_A,		low,	high,	high,	low},
 112	{in_A,	out_B,	out_A,		low,	low,	high,	high},
 113	{in_B,	off,	out_A,		low,	high,	high,	low},
 114	{in_B,	in_A,	out_A,		low,	high,	high,	low},
 115	{out_B,	off,	out_A,		low,	low,	high,	high},
 116	{out_B,	in_A,	out_A,		low,	low,	high,	high},
 117	{off,	off,	in_B,		high,	high,	low,	high},
 118	{off,	in_A,	in_B,		high,	high,	low,	low},
 119	{off,	out_A,	in_B,		high,	low,	low,	high},
 120	{off,	out_B,	in_B,		high,	low,	low,	high},
 121	{in_A,	off,	in_B,		high,	high,	low,	low},
 122	{in_A,	out_B,	in_B,		high,	low,	low,	high},
 123	{out_A,	off,	in_B,		high,	low,	low,	high},
 124	{out_B,	off,	in_B,		high,	low,	low,	high},
 125	{out_B,	in_A,	in_B,		high,	low,	low,	high},
 126	{off,	off,	out_B,		low,	high,	high,	high},
 127	{off,	in_A,	out_B,		low,	high,	high,	low},
 128	{off,	out_A,	out_B,		low,	low,	high,	high},
 129	{off,	in_B,	out_B,		low,	high,	high,	low},
 130	{in_A,	off,	out_B,		low,	high,	high,	low},
 131	{in_A,	in_B,	out_B,		low,	high,	high,	low},
 132	{out_A,	off,	out_B,		low,	low,	high,	high},
 133	{out_A,	in_B,	out_B,		low,	low,	high,	high},
 134	{in_B,	off,	out_B,		low,	high,	high,	low},
 135	{in_B,	in_A,	out_B,		low,	high,	high,	low},
 136	{in_B,	out_A,	out_B,		low,	low,	high,	high},
 137	{end,	end,	end,	led_end, led_end, led_end, led_end}
 138};
 139
 140static int i40e_ptp_set_pins(struct i40e_pf *pf,
 141			     struct i40e_ptp_pins_settings *pins);
 142
 143/**
 144 * i40e_ptp_extts0_work - workqueue task function
 145 * @work: workqueue task structure
 146 *
 147 * Service for PTP external clock event
 148 **/
 149static void i40e_ptp_extts0_work(struct work_struct *work)
 150{
 151	struct i40e_pf *pf = container_of(work, struct i40e_pf,
 152					  ptp_extts0_work);
 153	struct i40e_hw *hw = &pf->hw;
 154	struct ptp_clock_event event;
 155	u32 hi, lo;
 156
 157	/* Event time is captured by one of the two matched registers
 158	 *      PRTTSYN_EVNT_L: 32 LSB of sampled time event
 159	 *      PRTTSYN_EVNT_H: 32 MSB of sampled time event
 160	 * Event is defined in PRTTSYN_EVNT_0 register
 161	 */
 162	lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0));
 163	hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0));
 164
 165	event.timestamp = (((u64)hi) << 32) | lo;
 166
 167	event.type = PTP_CLOCK_EXTTS;
 168	event.index = hw->pf_id;
 169
 170	/* fire event */
 171	ptp_clock_event(pf->ptp_clock, &event);
 172}
 173
 174/**
 175 * i40e_is_ptp_pin_dev - check if device supports PTP pins
 176 * @hw: pointer to the hardware structure
 177 *
 178 * Return true if device supports PTP pins, false otherwise.
 179 **/
 180static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw)
 181{
 182	return hw->device_id == I40E_DEV_ID_25G_SFP28 &&
 183	       hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN;
 184}
 185
 186/**
 187 * i40e_can_set_pins - check possibility of manipulating the pins
 188 * @pf: board private structure
 189 *
 190 * Check if all conditions are satisfied to manipulate PTP pins.
 191 * Return CAN_SET_PINS if pins can be set on a specific PF or
 192 * return CAN_DO_PINS if pins can be manipulated within a NIC or
 193 * return CANT_DO_PINS otherwise.
 194 **/
 195static enum i40e_can_set_pins_t i40e_can_set_pins(struct i40e_pf *pf)
 196{
 197	if (!i40e_is_ptp_pin_dev(&pf->hw)) {
 198		dev_warn(&pf->pdev->dev,
 199			 "PTP external clock not supported.\n");
 200		return CANT_DO_PINS;
 201	}
 202
 203	if (!pf->ptp_pins) {
 204		dev_warn(&pf->pdev->dev,
 205			 "PTP PIN manipulation not allowed.\n");
 206		return CANT_DO_PINS;
 207	}
 208
 209	if (pf->hw.pf_id) {
 210		dev_warn(&pf->pdev->dev,
 211			 "PTP PINs should be accessed via PF0.\n");
 212		return CAN_DO_PINS;
 213	}
 214
 215	return CAN_SET_PINS;
 216}
 217
 218/**
 219 * i40_ptp_reset_timing_events - Reset PTP timing events
 220 * @pf: Board private structure
 221 *
 222 * This function resets timing events for pf.
 223 **/
 224static void i40_ptp_reset_timing_events(struct i40e_pf *pf)
 225{
 226	u32 i;
 227
 228	spin_lock_bh(&pf->ptp_rx_lock);
 229	for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) {
 230		/* reading and automatically clearing timing events registers */
 231		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i));
 232		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i));
 233		pf->latch_events[i] = 0;
 234	}
 235	/* reading and automatically clearing timing events registers */
 236	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L);
 237	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H);
 238
 239	pf->tx_hwtstamp_timeouts = 0;
 240	pf->tx_hwtstamp_skipped = 0;
 241	pf->rx_hwtstamp_cleared = 0;
 242	pf->latch_event_flags = 0;
 243	spin_unlock_bh(&pf->ptp_rx_lock);
 244}
 245
 246/**
 247 * i40e_ptp_verify - check pins
 248 * @ptp: ptp clock
 249 * @pin: pin index
 250 * @func: assigned function
 251 * @chan: channel
 252 *
 253 * Check pins consistency.
 254 * Return 0 on success or error on failure.
 255 **/
 256static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
 257			   enum ptp_pin_function func, unsigned int chan)
 258{
 259	switch (func) {
 260	case PTP_PF_NONE:
 261	case PTP_PF_EXTTS:
 262	case PTP_PF_PEROUT:
 263		break;
 264	case PTP_PF_PHYSYNC:
 265		return -EOPNOTSUPP;
 266	}
 267	return 0;
 268}
 269
 270/**
 271 * i40e_ptp_read - Read the PHC time from the device
 272 * @pf: Board private structure
 273 * @ts: timespec structure to hold the current time value
 274 * @sts: structure to hold the system time before and after reading the PHC
 275 *
 276 * This function reads the PRTTSYN_TIME registers and stores them in a
 277 * timespec. However, since the registers are 64 bits of nanoseconds, we must
 278 * convert the result to a timespec before we can return.
 279 **/
 280static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
 281			  struct ptp_system_timestamp *sts)
 282{
 283	struct i40e_hw *hw = &pf->hw;
 284	u32 hi, lo;
 285	u64 ns;
 286
 287	/* The timer latches on the lowest register read. */
 288	ptp_read_system_prets(sts);
 289	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
 290	ptp_read_system_postts(sts);
 291	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
 292
 293	ns = (((u64)hi) << 32) | lo;
 294
 295	*ts = ns_to_timespec64(ns);
 296}
 297
 298/**
 299 * i40e_ptp_write - Write the PHC time to the device
 300 * @pf: Board private structure
 301 * @ts: timespec structure that holds the new time value
 302 *
 303 * This function writes the PRTTSYN_TIME registers with the user value. Since
 304 * we receive a timespec from the stack, we must convert that timespec into
 305 * nanoseconds before programming the registers.
 306 **/
 307static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
 308{
 309	struct i40e_hw *hw = &pf->hw;
 310	u64 ns = timespec64_to_ns(ts);
 311
 312	/* The timer will not update until the high register is written, so
 313	 * write the low register first.
 314	 */
 315	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
 316	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
 317}
 318
 319/**
 320 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
 321 * @hwtstamps: Timestamp structure to update
 322 * @timestamp: Timestamp from the hardware
 323 *
 324 * We need to convert the NIC clock value into a hwtstamp which can be used by
 325 * the upper level timestamping functions. Since the timestamp is simply a 64-
 326 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
 327 **/
 328static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
 329					 u64 timestamp)
 330{
 331	memset(hwtstamps, 0, sizeof(*hwtstamps));
 332
 333	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
 334}
 335
 336/**
 337 * i40e_ptp_adjfine - Adjust the PHC frequency
 338 * @ptp: The PTP clock structure
 339 * @scaled_ppm: Scaled parts per million adjustment from base
 340 *
 341 * Adjust the frequency of the PHC by the indicated delta from the base
 342 * frequency.
 343 *
 344 * Scaled parts per million is ppm with a 16 bit binary fractional field.
 345 **/
 346static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
 347{
 348	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 349	struct i40e_hw *hw = &pf->hw;
 350	u64 adj, base_adj;
 351
 352	smp_mb(); /* Force any pending update before accessing. */
 353	base_adj = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult);
 354
 355	adj = adjust_by_scaled_ppm(base_adj, scaled_ppm);
 356
 357	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
 358	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
 359
 360	return 0;
 361}
 362
 363/**
 364 * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins
 365 * @pf: the PF private data structure
 366 *
 367 * Configure 1PPS signal used for PTP pins
 368 **/
 369static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf)
 370{
 371	struct i40e_hw *hw = &pf->hw;
 372	struct timespec64 now;
 373	u64 ns;
 374
 375	wr32(hw, I40E_PRTTSYN_AUX_0(1), 0);
 376	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
 377	wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE);
 378
 379	i40e_ptp_read(pf, &now, NULL);
 380	now.tv_sec += I40E_PTP_2_SEC_DELAY;
 381	now.tv_nsec = 0;
 382	ns = timespec64_to_ns(&now);
 383
 384	/* I40E_PRTTSYN_TGT_L(1) */
 385	wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF);
 386	/* I40E_PRTTSYN_TGT_H(1) */
 387	wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32);
 388	wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND);
 389	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
 390	wr32(hw, I40E_PRTTSYN_AUX_0(1),
 391	     I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD);
 392}
 393
 394/**
 395 * i40e_ptp_adjtime - Adjust the PHC time
 396 * @ptp: The PTP clock structure
 397 * @delta: Offset in nanoseconds to adjust the PHC time by
 398 *
 399 * Adjust the current clock time by a delta specified in nanoseconds.
 400 **/
 401static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
 402{
 403	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 404	struct i40e_hw *hw = &pf->hw;
 405
 406	mutex_lock(&pf->tmreg_lock);
 407
 408	if (delta > -999999900LL && delta < 999999900LL) {
 409		int neg_adj = 0;
 410		u32 timadj;
 411		u64 tohw;
 412
 413		if (delta < 0) {
 414			neg_adj = 1;
 415			tohw = -delta;
 416		} else {
 417			tohw = delta;
 418		}
 419
 420		timadj = tohw & 0x3FFFFFFF;
 421		if (neg_adj)
 422			timadj |= I40E_ISGN;
 423		wr32(hw, I40E_PRTTSYN_ADJ, timadj);
 424	} else {
 425		struct timespec64 then, now;
 426
 427		then = ns_to_timespec64(delta);
 428		i40e_ptp_read(pf, &now, NULL);
 429		now = timespec64_add(now, then);
 430		i40e_ptp_write(pf, (const struct timespec64 *)&now);
 431		i40e_ptp_set_1pps_signal_hw(pf);
 432	}
 433
 434	mutex_unlock(&pf->tmreg_lock);
 435
 436	return 0;
 437}
 438
 439/**
 440 * i40e_ptp_gettimex - Get the time of the PHC
 441 * @ptp: The PTP clock structure
 442 * @ts: timespec structure to hold the current time value
 443 * @sts: structure to hold the system time before and after reading the PHC
 444 *
 445 * Read the device clock and return the correct value on ns, after converting it
 446 * into a timespec struct.
 447 **/
 448static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
 449			     struct ptp_system_timestamp *sts)
 450{
 451	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 452
 453	mutex_lock(&pf->tmreg_lock);
 454	i40e_ptp_read(pf, ts, sts);
 455	mutex_unlock(&pf->tmreg_lock);
 456
 457	return 0;
 458}
 459
 460/**
 461 * i40e_ptp_settime - Set the time of the PHC
 462 * @ptp: The PTP clock structure
 463 * @ts: timespec64 structure that holds the new time value
 464 *
 465 * Set the device clock to the user input value. The conversion from timespec
 466 * to ns happens in the write function.
 467 **/
 468static int i40e_ptp_settime(struct ptp_clock_info *ptp,
 469			    const struct timespec64 *ts)
 470{
 471	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 472
 473	mutex_lock(&pf->tmreg_lock);
 474	i40e_ptp_write(pf, ts);
 475	mutex_unlock(&pf->tmreg_lock);
 476
 477	return 0;
 478}
 479
 480/**
 481 * i40e_pps_configure - configure PPS events
 482 * @ptp: ptp clock
 483 * @rq: clock request
 484 * @on: status
 485 *
 486 * Configure PPS events for external clock source.
 487 * Return 0 on success or error on failure.
 488 **/
 489static int i40e_pps_configure(struct ptp_clock_info *ptp,
 490			      struct ptp_clock_request *rq,
 491			      int on)
 492{
 493	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 494
 495	if (!!on)
 496		i40e_ptp_set_1pps_signal_hw(pf);
 497
 498	return 0;
 499}
 500
 501/**
 502 * i40e_pin_state - determine PIN state
 503 * @index: PIN index
 504 * @func: function assigned to PIN
 505 *
 506 * Determine PIN state based on PIN index and function assigned.
 507 * Return PIN state.
 508 **/
 509static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func)
 510{
 511	enum i40e_ptp_gpio_pin_state state = off;
 512
 513	if (index == 0 && func == PTP_PF_EXTTS)
 514		state = in_A;
 515	if (index == 1 && func == PTP_PF_EXTTS)
 516		state = in_B;
 517	if (index == 0 && func == PTP_PF_PEROUT)
 518		state = out_A;
 519	if (index == 1 && func == PTP_PF_PEROUT)
 520		state = out_B;
 521
 522	return state;
 523}
 524
 525/**
 526 * i40e_ptp_enable_pin - enable PINs.
 527 * @pf: private board structure
 528 * @chan: channel
 529 * @func: PIN function
 530 * @on: state
 531 *
 532 * Enable PTP pins for external clock source.
 533 * Return 0 on success or error code on failure.
 534 **/
 535static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan,
 536			       enum ptp_pin_function func, int on)
 537{
 538	enum i40e_ptp_gpio_pin_state *pin = NULL;
 539	struct i40e_ptp_pins_settings pins;
 540	int pin_index;
 541
 542	/* Use PF0 to set pins. Return success for user space tools */
 543	if (pf->hw.pf_id)
 544		return 0;
 545
 546	/* Preserve previous state of pins that we don't touch */
 547	pins.sdp3_2 = pf->ptp_pins->sdp3_2;
 548	pins.sdp3_3 = pf->ptp_pins->sdp3_3;
 549	pins.gpio_4 = pf->ptp_pins->gpio_4;
 550
 551	/* To turn on the pin - find the corresponding one based on
 552	 * the given index. To to turn the function off - find
 553	 * which pin had it assigned. Don't use ptp_find_pin here
 554	 * because it tries to lock the pincfg_mux which is locked by
 555	 * ptp_pin_store() that calls here.
 556	 */
 557	if (on) {
 558		pin_index = ptp_find_pin(pf->ptp_clock, func, chan);
 559		if (pin_index < 0)
 560			return -EBUSY;
 561
 562		switch (pin_index) {
 563		case SDP3_2:
 564			pin = &pins.sdp3_2;
 565			break;
 566		case SDP3_3:
 567			pin = &pins.sdp3_3;
 568			break;
 569		case GPIO_4:
 570			pin = &pins.gpio_4;
 571			break;
 572		default:
 573			return -EINVAL;
 574		}
 575
 576		*pin = i40e_pin_state(chan, func);
 577	} else {
 578		pins.sdp3_2 = off;
 579		pins.sdp3_3 = off;
 580		pins.gpio_4 = off;
 581	}
 582
 583	return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0;
 584}
 585
 586/**
 587 * i40e_ptp_feature_enable - Enable external clock pins
 588 * @ptp: The PTP clock structure
 589 * @rq: The PTP clock request structure
 590 * @on: To turn feature on/off
 591 *
 592 * Setting on/off PTP PPS feature for pin.
 593 **/
 594static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
 595				   struct ptp_clock_request *rq,
 596				   int on)
 597{
 598	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 599
 600	enum ptp_pin_function func;
 601	unsigned int chan;
 602
 603	/* TODO: Implement flags handling for EXTTS and PEROUT */
 604	switch (rq->type) {
 605	case PTP_CLK_REQ_EXTTS:
 606		func = PTP_PF_EXTTS;
 607		chan = rq->extts.index;
 608		break;
 609	case PTP_CLK_REQ_PEROUT:
 610		func = PTP_PF_PEROUT;
 611		chan = rq->perout.index;
 612		break;
 613	case PTP_CLK_REQ_PPS:
 614		return i40e_pps_configure(ptp, rq, on);
 615	default:
 616		return -EOPNOTSUPP;
 617	}
 618
 619	return i40e_ptp_enable_pin(pf, chan, func, on);
 620}
 621
 622/**
 623 * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
 624 * @pf: the PF data structure
 625 *
 626 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
 627 * for noticed latch events. This allows the driver to keep track of the first
 628 * time a latch event was noticed which will be used to help clear out Rx
 629 * timestamps for packets that got dropped or lost.
 630 *
 631 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
 632 * expected to be called only while under the ptp_rx_lock.
 633 **/
 634static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
 635{
 636	struct i40e_hw *hw = &pf->hw;
 637	u32 prttsyn_stat, new_latch_events;
 638	int  i;
 639
 640	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
 641	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
 642
 643	/* Update the jiffies time for any newly latched timestamp. This
 644	 * ensures that we store the time that we first discovered a timestamp
 645	 * was latched by the hardware. The service task will later determine
 646	 * if we should free the latch and drop that timestamp should too much
 647	 * time pass. This flow ensures that we only update jiffies for new
 648	 * events latched since the last time we checked, and not all events
 649	 * currently latched, so that the service task accounting remains
 650	 * accurate.
 651	 */
 652	for (i = 0; i < 4; i++) {
 653		if (new_latch_events & BIT(i))
 654			pf->latch_events[i] = jiffies;
 655	}
 656
 657	/* Finally, we store the current status of the Rx timestamp latches */
 658	pf->latch_event_flags = prttsyn_stat;
 659
 660	return prttsyn_stat;
 661}
 662
 663/**
 664 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
 665 * @pf: The PF private data structure
 666 *
 667 * This watchdog task is scheduled to detect error case where hardware has
 668 * dropped an Rx packet that was timestamped when the ring is full. The
 669 * particular error is rare but leaves the device in a state unable to timestamp
 670 * any future packets.
 671 **/
 672void i40e_ptp_rx_hang(struct i40e_pf *pf)
 673{
 674	struct i40e_hw *hw = &pf->hw;
 675	unsigned int i, cleared = 0;
 676
 677	/* Since we cannot turn off the Rx timestamp logic if the device is
 678	 * configured for Tx timestamping, we check if Rx timestamping is
 679	 * configured. We don't want to spuriously warn about Rx timestamp
 680	 * hangs if we don't care about the timestamps.
 681	 */
 682	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
 683		return;
 684
 685	spin_lock_bh(&pf->ptp_rx_lock);
 686
 687	/* Update current latch times for Rx events */
 688	i40e_ptp_get_rx_events(pf);
 689
 690	/* Check all the currently latched Rx events and see whether they have
 691	 * been latched for over a second. It is assumed that any timestamp
 692	 * should have been cleared within this time, or else it was captured
 693	 * for a dropped frame that the driver never received. Thus, we will
 694	 * clear any timestamp that has been latched for over 1 second.
 695	 */
 696	for (i = 0; i < 4; i++) {
 697		if ((pf->latch_event_flags & BIT(i)) &&
 698		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
 699			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
 700			pf->latch_event_flags &= ~BIT(i);
 701			cleared++;
 702		}
 703	}
 704
 705	spin_unlock_bh(&pf->ptp_rx_lock);
 706
 707	/* Log a warning if more than 2 timestamps got dropped in the same
 708	 * check. We don't want to warn about all drops because it can occur
 709	 * in normal scenarios such as PTP frames on multicast addresses we
 710	 * aren't listening to. However, administrator should know if this is
 711	 * the reason packets aren't receiving timestamps.
 712	 */
 713	if (cleared > 2)
 714		dev_dbg(&pf->pdev->dev,
 715			"Dropped %d missed RXTIME timestamp events\n",
 716			cleared);
 717
 718	/* Finally, update the rx_hwtstamp_cleared counter */
 719	pf->rx_hwtstamp_cleared += cleared;
 720}
 721
 722/**
 723 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
 724 * @pf: The PF private data structure
 725 *
 726 * This watchdog task is run periodically to make sure that we clear the Tx
 727 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
 728 * time. It is unexpected in the normal case but if it occurs it results in
 729 * permanently preventing timestamps of future packets.
 730 **/
 731void i40e_ptp_tx_hang(struct i40e_pf *pf)
 732{
 733	struct sk_buff *skb;
 734
 735	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
 736		return;
 737
 738	/* Nothing to do if we're not already waiting for a timestamp */
 739	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
 740		return;
 741
 742	/* We already have a handler routine which is run when we are notified
 743	 * of a Tx timestamp in the hardware. If we don't get an interrupt
 744	 * within a second it is reasonable to assume that we never will.
 745	 */
 746	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
 747		skb = pf->ptp_tx_skb;
 748		pf->ptp_tx_skb = NULL;
 749		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
 750
 751		/* Free the skb after we clear the bitlock */
 752		dev_kfree_skb_any(skb);
 753		pf->tx_hwtstamp_timeouts++;
 754	}
 755}
 756
 757/**
 758 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
 759 * @pf: Board private structure
 760 *
 761 * Read the value of the Tx timestamp from the registers, convert it into a
 762 * value consumable by the stack, and store that result into the shhwtstamps
 763 * struct before returning it up the stack.
 764 **/
 765void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
 766{
 767	struct skb_shared_hwtstamps shhwtstamps;
 768	struct sk_buff *skb = pf->ptp_tx_skb;
 769	struct i40e_hw *hw = &pf->hw;
 770	u32 hi, lo;
 771	u64 ns;
 772
 773	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
 774		return;
 775
 776	/* don't attempt to timestamp if we don't have an skb */
 777	if (!pf->ptp_tx_skb)
 778		return;
 779
 780	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
 781	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
 782
 783	ns = (((u64)hi) << 32) | lo;
 784	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
 785
 786	/* Clear the bit lock as soon as possible after reading the register,
 787	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
 788	 * applications might wake up and attempt to request another transmit
 789	 * timestamp prior to the bit lock being cleared.
 790	 */
 791	pf->ptp_tx_skb = NULL;
 792	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
 793
 794	/* Notify the stack and free the skb after we've unlocked */
 795	skb_tstamp_tx(skb, &shhwtstamps);
 796	dev_kfree_skb_any(skb);
 797}
 798
 799/**
 800 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
 801 * @pf: Board private structure
 802 * @skb: Particular skb to send timestamp with
 803 * @index: Index into the receive timestamp registers for the timestamp
 804 *
 805 * The XL710 receives a notification in the receive descriptor with an offset
 806 * into the set of RXTIME registers where the timestamp is for that skb. This
 807 * function goes and fetches the receive timestamp from that offset, if a valid
 808 * one exists. The RXTIME registers are in ns, so we must convert the result
 809 * first.
 810 **/
 811void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
 812{
 813	u32 prttsyn_stat, hi, lo;
 814	struct i40e_hw *hw;
 815	u64 ns;
 816
 817	/* Since we cannot turn off the Rx timestamp logic if the device is
 818	 * doing Tx timestamping, check if Rx timestamping is configured.
 819	 */
 820	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
 821		return;
 822
 823	hw = &pf->hw;
 824
 825	spin_lock_bh(&pf->ptp_rx_lock);
 826
 827	/* Get current Rx events and update latch times */
 828	prttsyn_stat = i40e_ptp_get_rx_events(pf);
 829
 830	/* TODO: Should we warn about missing Rx timestamp event? */
 831	if (!(prttsyn_stat & BIT(index))) {
 832		spin_unlock_bh(&pf->ptp_rx_lock);
 833		return;
 834	}
 835
 836	/* Clear the latched event since we're about to read its register */
 837	pf->latch_event_flags &= ~BIT(index);
 838
 839	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
 840	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
 841
 842	spin_unlock_bh(&pf->ptp_rx_lock);
 843
 844	ns = (((u64)hi) << 32) | lo;
 845
 846	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
 847}
 848
 849/**
 850 * i40e_ptp_set_increment - Utility function to update clock increment rate
 851 * @pf: Board private structure
 852 *
 853 * During a link change, the DMA frequency that drives the 1588 logic will
 854 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
 855 * we must update the increment value per clock tick.
 856 **/
 857void i40e_ptp_set_increment(struct i40e_pf *pf)
 858{
 859	struct i40e_link_status *hw_link_info;
 860	struct i40e_hw *hw = &pf->hw;
 861	u64 incval;
 862	u32 mult;
 863
 864	hw_link_info = &hw->phy.link_info;
 865
 866	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
 867
 868	switch (hw_link_info->link_speed) {
 869	case I40E_LINK_SPEED_10GB:
 870		mult = I40E_PTP_10GB_INCVAL_MULT;
 871		break;
 872	case I40E_LINK_SPEED_5GB:
 873		mult = I40E_PTP_5GB_INCVAL_MULT;
 874		break;
 875	case I40E_LINK_SPEED_1GB:
 876		mult = I40E_PTP_1GB_INCVAL_MULT;
 877		break;
 878	case I40E_LINK_SPEED_100MB:
 879	{
 880		static int warn_once;
 881
 882		if (!warn_once) {
 883			dev_warn(&pf->pdev->dev,
 884				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
 885			warn_once++;
 886		}
 887		mult = 0;
 888		break;
 889	}
 890	case I40E_LINK_SPEED_40GB:
 891	default:
 892		mult = 1;
 893		break;
 894	}
 895
 896	/* The increment value is calculated by taking the base 40GbE incvalue
 897	 * and multiplying it by a factor based on the link speed.
 898	 */
 899	incval = I40E_PTP_40GB_INCVAL * mult;
 900
 901	/* Write the new increment value into the increment register. The
 902	 * hardware will not update the clock until both registers have been
 903	 * written.
 904	 */
 905	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
 906	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
 907
 908	/* Update the base adjustement value. */
 909	WRITE_ONCE(pf->ptp_adj_mult, mult);
 910	smp_mb(); /* Force the above update. */
 911}
 912
 913/**
 914 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
 915 * @pf: Board private structure
 916 * @ifr: ioctl data
 917 *
 918 * Obtain the current hardware timestamping settigs as requested. To do this,
 919 * keep a shadow copy of the timestamp settings rather than attempting to
 920 * deconstruct it from the registers.
 921 **/
 922int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
 923{
 924	struct hwtstamp_config *config = &pf->tstamp_config;
 925
 926	if (!(pf->flags & I40E_FLAG_PTP))
 927		return -EOPNOTSUPP;
 928
 929	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 930		-EFAULT : 0;
 931}
 932
 933/**
 934 * i40e_ptp_free_pins - free memory used by PTP pins
 935 * @pf: Board private structure
 936 *
 937 * Release memory allocated for PTP pins.
 938 **/
 939static void i40e_ptp_free_pins(struct i40e_pf *pf)
 940{
 941	if (i40e_is_ptp_pin_dev(&pf->hw)) {
 942		kfree(pf->ptp_pins);
 943		kfree(pf->ptp_caps.pin_config);
 944		pf->ptp_pins = NULL;
 945	}
 946}
 947
 948/**
 949 * i40e_ptp_set_pin_hw - Set HW GPIO pin
 950 * @hw: pointer to the hardware structure
 951 * @pin: pin index
 952 * @state: pin state
 953 *
 954 * Set status of GPIO pin for external clock handling.
 955 **/
 956static void i40e_ptp_set_pin_hw(struct i40e_hw *hw,
 957				unsigned int pin,
 958				enum i40e_ptp_gpio_pin_state state)
 959{
 960	switch (state) {
 961	case off:
 962		wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0);
 963		break;
 964	case in_A:
 965		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
 966		     I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0);
 967		break;
 968	case in_B:
 969		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
 970		     I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0);
 971		break;
 972	case out_A:
 973		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
 974		     I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1);
 975		break;
 976	case out_B:
 977		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
 978		     I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1);
 979		break;
 980	default:
 981		break;
 982	}
 983}
 984
 985/**
 986 * i40e_ptp_set_led_hw - Set HW GPIO led
 987 * @hw: pointer to the hardware structure
 988 * @led: led index
 989 * @state: led state
 990 *
 991 * Set status of GPIO led for external clock handling.
 992 **/
 993static void i40e_ptp_set_led_hw(struct i40e_hw *hw,
 994				unsigned int led,
 995				enum i40e_ptp_led_pin_state state)
 996{
 997	switch (state) {
 998	case low:
 999		wr32(hw, I40E_GLGEN_GPIO_SET,
1000		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led);
1001		break;
1002	case high:
1003		wr32(hw, I40E_GLGEN_GPIO_SET,
1004		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA |
1005		     I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led);
1006		break;
1007	default:
1008		break;
1009	}
1010}
1011
1012/**
1013 * i40e_ptp_init_leds_hw - init LEDs
1014 * @hw: pointer to a hardware structure
1015 *
1016 * Set initial state of LEDs
1017 **/
1018static void i40e_ptp_init_leds_hw(struct i40e_hw *hw)
1019{
1020	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0),
1021	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1022	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1),
1023	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1024	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0),
1025	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1026	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1),
1027	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1028}
1029
1030/**
1031 * i40e_ptp_set_pins_hw - Set HW GPIO pins
1032 * @pf: Board private structure
1033 *
1034 * This function sets GPIO pins for PTP
1035 **/
1036static void i40e_ptp_set_pins_hw(struct i40e_pf *pf)
1037{
1038	const struct i40e_ptp_pins_settings *pins = pf->ptp_pins;
1039	struct i40e_hw *hw = &pf->hw;
1040
1041	/* pin must be disabled before it may be used */
1042	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1043	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1044	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1045
1046	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2);
1047	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3);
1048	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4);
1049
1050	i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0);
1051	i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1);
1052	i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0);
1053	i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1);
1054
1055	dev_info(&pf->pdev->dev,
1056		 "PTP configuration set to: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1057		 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1058		 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1059		 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1060}
1061
1062/**
1063 * i40e_ptp_set_pins - set PTP pins in HW
1064 * @pf: Board private structure
1065 * @pins: PTP pins to be applied
1066 *
1067 * Validate and set PTP pins in HW for specific PF.
1068 * Return 0 on success or negative value on error.
1069 **/
1070static int i40e_ptp_set_pins(struct i40e_pf *pf,
1071			     struct i40e_ptp_pins_settings *pins)
1072{
1073	enum i40e_can_set_pins_t pin_caps = i40e_can_set_pins(pf);
1074	int i = 0;
1075
1076	if (pin_caps == CANT_DO_PINS)
1077		return -EOPNOTSUPP;
1078	else if (pin_caps == CAN_DO_PINS)
1079		return 0;
1080
1081	if (pins->sdp3_2 == invalid)
1082		pins->sdp3_2 = pf->ptp_pins->sdp3_2;
1083	if (pins->sdp3_3 == invalid)
1084		pins->sdp3_3 = pf->ptp_pins->sdp3_3;
1085	if (pins->gpio_4 == invalid)
1086		pins->gpio_4 = pf->ptp_pins->gpio_4;
1087	while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) {
1088		if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 &&
1089		    pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 &&
1090		    pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) {
1091			pins->led2_0 =
1092				i40e_ptp_pin_led_allowed_states[i].led2_0;
1093			pins->led2_1 =
1094				i40e_ptp_pin_led_allowed_states[i].led2_1;
1095			pins->led3_0 =
1096				i40e_ptp_pin_led_allowed_states[i].led3_0;
1097			pins->led3_1 =
1098				i40e_ptp_pin_led_allowed_states[i].led3_1;
1099			break;
1100		}
1101		i++;
1102	}
1103	if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) {
1104		dev_warn(&pf->pdev->dev,
1105			 "Unsupported PTP pin configuration: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1106			 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1107			 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1108			 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1109
1110		return -EPERM;
1111	}
1112	memcpy(pf->ptp_pins, pins, sizeof(*pins));
1113	i40e_ptp_set_pins_hw(pf);
1114	i40_ptp_reset_timing_events(pf);
1115
1116	return 0;
1117}
1118
1119/**
1120 * i40e_ptp_alloc_pins - allocate PTP pins structure
1121 * @pf: Board private structure
1122 *
1123 * allocate PTP pins structure
1124 **/
1125int i40e_ptp_alloc_pins(struct i40e_pf *pf)
1126{
1127	if (!i40e_is_ptp_pin_dev(&pf->hw))
1128		return 0;
1129
1130	pf->ptp_pins =
1131		kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL);
1132
1133	if (!pf->ptp_pins) {
1134		dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n");
1135		return -I40E_ERR_NO_MEMORY;
1136	}
1137
1138	pf->ptp_pins->sdp3_2 = off;
1139	pf->ptp_pins->sdp3_3 = off;
1140	pf->ptp_pins->gpio_4 = off;
1141	pf->ptp_pins->led2_0 = high;
1142	pf->ptp_pins->led2_1 = high;
1143	pf->ptp_pins->led3_0 = high;
1144	pf->ptp_pins->led3_1 = high;
1145
1146	/* Use PF0 to set pins in HW. Return success for user space tools */
1147	if (pf->hw.pf_id)
1148		return 0;
1149
1150	i40e_ptp_init_leds_hw(&pf->hw);
1151	i40e_ptp_set_pins_hw(pf);
1152
1153	return 0;
1154}
1155
1156/**
1157 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
1158 * @pf: Board private structure
1159 * @config: hwtstamp settings requested or saved
1160 *
1161 * Control hardware registers to enter the specific mode requested by the
1162 * user. Also used during reset path to ensure that timestamp settings are
1163 * maintained.
1164 *
1165 * Note: modifies config in place, and may update the requested mode to be
1166 * more broad if the specific filter is not directly supported.
1167 **/
1168static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
1169				       struct hwtstamp_config *config)
1170{
1171	struct i40e_hw *hw = &pf->hw;
1172	u32 tsyntype, regval;
1173
1174	/* Selects external trigger to cause event */
1175	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1176	/* Bit 17:16 is EVNTLVL, 01B rising edge */
1177	regval &= 0;
1178	regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT);
1179	/* regval: 0001 0000 0000 0000 0000 */
1180	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1181
1182	/* Enabel interrupts */
1183	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1184	regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT;
1185	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1186
1187	INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work);
1188
1189	switch (config->tx_type) {
1190	case HWTSTAMP_TX_OFF:
1191		pf->ptp_tx = false;
1192		break;
1193	case HWTSTAMP_TX_ON:
1194		pf->ptp_tx = true;
1195		break;
1196	default:
1197		return -ERANGE;
1198	}
1199
1200	switch (config->rx_filter) {
1201	case HWTSTAMP_FILTER_NONE:
1202		pf->ptp_rx = false;
1203		/* We set the type to V1, but do not enable UDP packet
1204		 * recognition. In this way, we should be as close to
1205		 * disabling PTP Rx timestamps as possible since V1 packets
1206		 * are always UDP, since L2 packets are a V2 feature.
1207		 */
1208		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
1209		break;
1210	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1211	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1212	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1213		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1214			return -ERANGE;
1215		pf->ptp_rx = true;
1216		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
1217			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
1218			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1219		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1220		break;
1221	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1222	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1223	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1224	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1225	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1226	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1227		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1228			return -ERANGE;
1229		fallthrough;
1230	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1231	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1232	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1233		pf->ptp_rx = true;
1234		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
1235			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
1236		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
1237			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1238			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1239		} else {
1240			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1241		}
1242		break;
1243	case HWTSTAMP_FILTER_NTP_ALL:
1244	case HWTSTAMP_FILTER_ALL:
1245	default:
1246		return -ERANGE;
1247	}
1248
1249	/* Clear out all 1588-related registers to clear and unlatch them. */
1250	spin_lock_bh(&pf->ptp_rx_lock);
1251	rd32(hw, I40E_PRTTSYN_STAT_0);
1252	rd32(hw, I40E_PRTTSYN_TXTIME_H);
1253	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
1254	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
1255	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
1256	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
1257	pf->latch_event_flags = 0;
1258	spin_unlock_bh(&pf->ptp_rx_lock);
1259
1260	/* Enable/disable the Tx timestamp interrupt based on user input. */
1261	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1262	if (pf->ptp_tx)
1263		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1264	else
1265		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1266	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1267
1268	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
1269	if (pf->ptp_tx)
1270		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1271	else
1272		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1273	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
1274
1275	/* Although there is no simple on/off switch for Rx, we "disable" Rx
1276	 * timestamps by setting to V1 only mode and clear the UDP
1277	 * recognition. This ought to disable all PTP Rx timestamps as V1
1278	 * packets are always over UDP. Note that software is configured to
1279	 * ignore Rx timestamps via the pf->ptp_rx flag.
1280	 */
1281	regval = rd32(hw, I40E_PRTTSYN_CTL1);
1282	/* clear everything but the enable bit */
1283	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1284	/* now enable bits for desired Rx timestamps */
1285	regval |= tsyntype;
1286	wr32(hw, I40E_PRTTSYN_CTL1, regval);
1287
1288	return 0;
1289}
1290
1291/**
1292 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
1293 * @pf: Board private structure
1294 * @ifr: ioctl data
1295 *
1296 * Respond to the user filter requests and make the appropriate hardware
1297 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
1298 * logic, so keep track in software of whether to indicate these timestamps
1299 * or not.
1300 *
1301 * It is permissible to "upgrade" the user request to a broader filter, as long
1302 * as the user receives the timestamps they care about and the user is notified
1303 * the filter has been broadened.
1304 **/
1305int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
1306{
1307	struct hwtstamp_config config;
1308	int err;
1309
1310	if (!(pf->flags & I40E_FLAG_PTP))
1311		return -EOPNOTSUPP;
1312
1313	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1314		return -EFAULT;
1315
1316	err = i40e_ptp_set_timestamp_mode(pf, &config);
1317	if (err)
1318		return err;
1319
1320	/* save these settings for future reference */
1321	pf->tstamp_config = config;
1322
1323	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1324		-EFAULT : 0;
1325}
1326
1327/**
1328 * i40e_init_pin_config - initialize pins.
1329 * @pf: private board structure
1330 *
1331 * Initialize pins for external clock source.
1332 * Return 0 on success or error code on failure.
1333 **/
1334static int i40e_init_pin_config(struct i40e_pf *pf)
1335{
1336	int i;
1337
1338	pf->ptp_caps.n_pins = 3;
1339	pf->ptp_caps.n_ext_ts = 2;
1340	pf->ptp_caps.pps = 1;
1341	pf->ptp_caps.n_per_out = 2;
1342
1343	pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins,
1344					  sizeof(*pf->ptp_caps.pin_config),
1345					  GFP_KERNEL);
1346	if (!pf->ptp_caps.pin_config)
1347		return -ENOMEM;
1348
1349	for (i = 0; i < pf->ptp_caps.n_pins; i++) {
1350		snprintf(pf->ptp_caps.pin_config[i].name,
1351			 sizeof(pf->ptp_caps.pin_config[i].name),
1352			 "%s", sdp_desc[i].name);
1353		pf->ptp_caps.pin_config[i].index = sdp_desc[i].index;
1354		pf->ptp_caps.pin_config[i].func = PTP_PF_NONE;
1355		pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan;
1356	}
1357
1358	pf->ptp_caps.verify = i40e_ptp_verify;
1359	pf->ptp_caps.enable = i40e_ptp_feature_enable;
1360
1361	pf->ptp_caps.pps = 1;
1362
1363	return 0;
1364}
1365
1366/**
1367 * i40e_ptp_create_clock - Create PTP clock device for userspace
1368 * @pf: Board private structure
1369 *
1370 * This function creates a new PTP clock device. It only creates one if we
1371 * don't already have one, so it is safe to call. Will return error if it
1372 * can't create one, but success if we already have a device. Should be used
1373 * by i40e_ptp_init to create clock initially, and prevent global resets from
1374 * creating new clock devices.
1375 **/
1376static long i40e_ptp_create_clock(struct i40e_pf *pf)
1377{
1378	/* no need to create a clock device if we already have one */
1379	if (!IS_ERR_OR_NULL(pf->ptp_clock))
1380		return 0;
1381
1382	strscpy(pf->ptp_caps.name, i40e_driver_name,
1383		sizeof(pf->ptp_caps.name) - 1);
1384	pf->ptp_caps.owner = THIS_MODULE;
1385	pf->ptp_caps.max_adj = 999999999;
1386	pf->ptp_caps.adjfine = i40e_ptp_adjfine;
1387	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
1388	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
1389	pf->ptp_caps.settime64 = i40e_ptp_settime;
1390	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1391		int err = i40e_init_pin_config(pf);
1392
1393		if (err)
1394			return err;
1395	}
1396
1397	/* Attempt to register the clock before enabling the hardware. */
1398	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
1399	if (IS_ERR(pf->ptp_clock))
1400		return PTR_ERR(pf->ptp_clock);
1401
1402	/* clear the hwtstamp settings here during clock create, instead of
1403	 * during regular init, so that we can maintain settings across a
1404	 * reset or suspend.
1405	 */
1406	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1407	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1408
1409	/* Set the previous "reset" time to the current Kernel clock time */
1410	ktime_get_real_ts64(&pf->ptp_prev_hw_time);
1411	pf->ptp_reset_start = ktime_get();
1412
1413	return 0;
1414}
1415
1416/**
1417 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
1418 * @pf: Board private structure
1419 *
1420 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
1421 * be called at the end of preparing to reset, just before hardware reset
1422 * occurs, in order to preserve the PTP time as close as possible across
1423 * resets.
1424 */
1425void i40e_ptp_save_hw_time(struct i40e_pf *pf)
1426{
1427	/* don't try to access the PTP clock if it's not enabled */
1428	if (!(pf->flags & I40E_FLAG_PTP))
1429		return;
1430
1431	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
1432	/* Get a monotonic starting time for this reset */
1433	pf->ptp_reset_start = ktime_get();
1434}
1435
1436/**
1437 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
1438 * @pf: Board private structure
1439 *
1440 * Restore the PTP hardware clock registers. We previously cached the PTP
1441 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
1442 * update this value based on the time delta since the time was saved, using
1443 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
1444 *
1445 * This ensures that the hardware clock is restored to nearly what it should
1446 * have been if a reset had not occurred.
1447 */
1448void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
1449{
1450	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
1451
1452	/* Update the previous HW time with the ktime delta */
1453	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
1454
1455	/* Restore the hardware clock registers */
1456	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
1457}
1458
1459/**
1460 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
1461 * @pf: Board private structure
1462 *
1463 * This function sets device up for 1588 support. The first time it is run, it
1464 * will create a PHC clock device. It does not create a clock device if one
1465 * already exists. It also reconfigures the device after a reset.
1466 *
1467 * The first time a clock is created, i40e_ptp_create_clock will set
1468 * pf->ptp_prev_hw_time to the current system time. During resets, it is
1469 * expected that this timespec will be set to the last known PTP clock time,
1470 * in order to preserve the clock time as close as possible across a reset.
1471 **/
1472void i40e_ptp_init(struct i40e_pf *pf)
1473{
1474	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
 
1475	struct i40e_hw *hw = &pf->hw;
1476	u32 pf_id;
1477	long err;
1478
1479	/* Only one PF is assigned to control 1588 logic per port. Do not
1480	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
1481	 */
1482	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
1483		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
1484	if (hw->pf_id != pf_id) {
1485		pf->flags &= ~I40E_FLAG_PTP;
1486		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
1487			 __func__,
1488			 netdev->name);
1489		return;
1490	}
1491
1492	mutex_init(&pf->tmreg_lock);
1493	spin_lock_init(&pf->ptp_rx_lock);
1494
1495	/* ensure we have a clock device */
1496	err = i40e_ptp_create_clock(pf);
1497	if (err) {
1498		pf->ptp_clock = NULL;
1499		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
1500			__func__);
1501	} else if (pf->ptp_clock) {
1502		u32 regval;
1503
1504		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
1505			dev_info(&pf->pdev->dev, "PHC enabled\n");
1506		pf->flags |= I40E_FLAG_PTP;
1507
1508		/* Ensure the clocks are running. */
1509		regval = rd32(hw, I40E_PRTTSYN_CTL0);
1510		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
1511		wr32(hw, I40E_PRTTSYN_CTL0, regval);
1512		regval = rd32(hw, I40E_PRTTSYN_CTL1);
1513		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1514		wr32(hw, I40E_PRTTSYN_CTL1, regval);
1515
1516		/* Set the increment value per clock tick. */
1517		i40e_ptp_set_increment(pf);
1518
1519		/* reset timestamping mode */
1520		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
1521
1522		/* Restore the clock time based on last known value */
1523		i40e_ptp_restore_hw_time(pf);
1524	}
1525
1526	i40e_ptp_set_1pps_signal_hw(pf);
1527}
1528
1529/**
1530 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
1531 * @pf: Board private structure
1532 *
1533 * This function handles the cleanup work required from the initialization by
1534 * clearing out the important information and unregistering the PHC.
1535 **/
1536void i40e_ptp_stop(struct i40e_pf *pf)
1537{
 
1538	struct i40e_hw *hw = &pf->hw;
1539	u32 regval;
1540
1541	pf->flags &= ~I40E_FLAG_PTP;
1542	pf->ptp_tx = false;
1543	pf->ptp_rx = false;
1544
1545	if (pf->ptp_tx_skb) {
1546		struct sk_buff *skb = pf->ptp_tx_skb;
1547
1548		pf->ptp_tx_skb = NULL;
1549		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
1550		dev_kfree_skb_any(skb);
1551	}
1552
1553	if (pf->ptp_clock) {
1554		ptp_clock_unregister(pf->ptp_clock);
1555		pf->ptp_clock = NULL;
1556		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
1557			 pf->vsi[pf->lan_vsi]->netdev->name);
1558	}
1559
1560	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1561		i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1562		i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1563		i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1564	}
1565
1566	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1567	regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK;
1568	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1569
1570	/* Disable interrupts */
1571	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1572	regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK;
1573	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1574
1575	i40e_ptp_free_pins(pf);
1576}