Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
   3
   4/*
   5 *	e100.c: Intel(R) PRO/100 ethernet driver
   6 *
   7 *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
   8 *	original e100 driver, but better described as a munging of
   9 *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  10 *
  11 *	References:
  12 *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
  13 *		Open Source Software Developers Manual,
  14 *		http://sourceforge.net/projects/e1000
  15 *
  16 *
  17 *	                      Theory of Operation
  18 *
  19 *	I.   General
  20 *
  21 *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  22 *	controller family, which includes the 82557, 82558, 82559, 82550,
  23 *	82551, and 82562 devices.  82558 and greater controllers
  24 *	integrate the Intel 82555 PHY.  The controllers are used in
  25 *	server and client network interface cards, as well as in
  26 *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  27 *	configurations.  8255x supports a 32-bit linear addressing
  28 *	mode and operates at 33Mhz PCI clock rate.
  29 *
  30 *	II.  Driver Operation
  31 *
  32 *	Memory-mapped mode is used exclusively to access the device's
  33 *	shared-memory structure, the Control/Status Registers (CSR). All
  34 *	setup, configuration, and control of the device, including queuing
  35 *	of Tx, Rx, and configuration commands is through the CSR.
  36 *	cmd_lock serializes accesses to the CSR command register.  cb_lock
  37 *	protects the shared Command Block List (CBL).
  38 *
  39 *	8255x is highly MII-compliant and all access to the PHY go
  40 *	through the Management Data Interface (MDI).  Consequently, the
  41 *	driver leverages the mii.c library shared with other MII-compliant
  42 *	devices.
  43 *
  44 *	Big- and Little-Endian byte order as well as 32- and 64-bit
  45 *	archs are supported.  Weak-ordered memory and non-cache-coherent
  46 *	archs are supported.
  47 *
  48 *	III. Transmit
  49 *
  50 *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
  51 *	together in a fixed-size ring (CBL) thus forming the flexible mode
  52 *	memory structure.  A TCB marked with the suspend-bit indicates
  53 *	the end of the ring.  The last TCB processed suspends the
  54 *	controller, and the controller can be restarted by issue a CU
  55 *	resume command to continue from the suspend point, or a CU start
  56 *	command to start at a given position in the ring.
  57 *
  58 *	Non-Tx commands (config, multicast setup, etc) are linked
  59 *	into the CBL ring along with Tx commands.  The common structure
  60 *	used for both Tx and non-Tx commands is the Command Block (CB).
  61 *
  62 *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
  63 *	is the next CB to check for completion; cb_to_send is the first
  64 *	CB to start on in case of a previous failure to resume.  CB clean
  65 *	up happens in interrupt context in response to a CU interrupt.
  66 *	cbs_avail keeps track of number of free CB resources available.
  67 *
  68 * 	Hardware padding of short packets to minimum packet size is
  69 * 	enabled.  82557 pads with 7Eh, while the later controllers pad
  70 * 	with 00h.
  71 *
  72 *	IV.  Receive
  73 *
  74 *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
  75 *	Descriptors (RFD) + data buffer, thus forming the simplified mode
  76 *	memory structure.  Rx skbs are allocated to contain both the RFD
  77 *	and the data buffer, but the RFD is pulled off before the skb is
  78 *	indicated.  The data buffer is aligned such that encapsulated
  79 *	protocol headers are u32-aligned.  Since the RFD is part of the
  80 *	mapped shared memory, and completion status is contained within
  81 *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
  82 *	view from software and hardware.
  83 *
  84 *	In order to keep updates to the RFD link field from colliding with
  85 *	hardware writes to mark packets complete, we use the feature that
  86 *	hardware will not write to a size 0 descriptor and mark the previous
  87 *	packet as end-of-list (EL).   After updating the link, we remove EL
  88 *	and only then restore the size such that hardware may use the
  89 *	previous-to-end RFD.
  90 *
  91 *	Under typical operation, the  receive unit (RU) is start once,
  92 *	and the controller happily fills RFDs as frames arrive.  If
  93 *	replacement RFDs cannot be allocated, or the RU goes non-active,
  94 *	the RU must be restarted.  Frame arrival generates an interrupt,
  95 *	and Rx indication and re-allocation happen in the same context,
  96 *	therefore no locking is required.  A software-generated interrupt
  97 *	is generated from the watchdog to recover from a failed allocation
  98 *	scenario where all Rx resources have been indicated and none re-
  99 *	placed.
 100 *
 101 *	V.   Miscellaneous
 102 *
 103 * 	VLAN offloading of tagging, stripping and filtering is not
 104 * 	supported, but driver will accommodate the extra 4-byte VLAN tag
 105 * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
 106 * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 107 * 	not supported (hardware limitation).
 108 *
 109 * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 110 *
 111 * 	Thanks to JC (jchapman@katalix.com) for helping with
 112 * 	testing/troubleshooting the development driver.
 113 *
 114 * 	TODO:
 115 * 	o several entry points race with dev->close
 116 * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
 117 *
 118 *	FIXES:
 119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 120 *	- Stratus87247: protect MDI control register manipulations
 121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
 122 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
 123 */
 124
 125#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 126
 127#include <linux/hardirq.h>
 128#include <linux/interrupt.h>
 129#include <linux/module.h>
 130#include <linux/moduleparam.h>
 131#include <linux/kernel.h>
 132#include <linux/types.h>
 133#include <linux/sched.h>
 134#include <linux/slab.h>
 135#include <linux/delay.h>
 136#include <linux/init.h>
 137#include <linux/pci.h>
 138#include <linux/dma-mapping.h>
 139#include <linux/dmapool.h>
 140#include <linux/netdevice.h>
 141#include <linux/etherdevice.h>
 142#include <linux/mii.h>
 143#include <linux/if_vlan.h>
 144#include <linux/skbuff.h>
 145#include <linux/ethtool.h>
 146#include <linux/string.h>
 147#include <linux/firmware.h>
 148#include <linux/rtnetlink.h>
 149#include <linux/unaligned.h>
 150
 151
 152#define DRV_NAME		"e100"
 153#define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
 154#define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
 155
 156#define E100_WATCHDOG_PERIOD	(2 * HZ)
 157#define E100_NAPI_WEIGHT	16
 158
 159#define FIRMWARE_D101M		"e100/d101m_ucode.bin"
 160#define FIRMWARE_D101S		"e100/d101s_ucode.bin"
 161#define FIRMWARE_D102E		"e100/d102e_ucode.bin"
 162
 163MODULE_DESCRIPTION(DRV_DESCRIPTION);
 
 164MODULE_LICENSE("GPL v2");
 165MODULE_FIRMWARE(FIRMWARE_D101M);
 166MODULE_FIRMWARE(FIRMWARE_D101S);
 167MODULE_FIRMWARE(FIRMWARE_D102E);
 168
 169static int debug = 3;
 170static int eeprom_bad_csum_allow = 0;
 171static int use_io = 0;
 172module_param(debug, int, 0);
 173module_param(eeprom_bad_csum_allow, int, 0444);
 174module_param(use_io, int, 0444);
 175MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 176MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
 177MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
 178
 179#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 180	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 181	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
 182static const struct pci_device_id e100_id_table[] = {
 183	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 184	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 185	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
 186	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
 187	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
 188	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
 189	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
 190	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
 191	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
 192	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
 193	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
 194	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
 195	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
 196	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
 197	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
 198	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
 199	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
 200	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
 201	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
 202	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
 203	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
 204	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
 205	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
 206	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
 207	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
 208	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
 209	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
 210	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
 211	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
 212	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
 213	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
 214	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
 215	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
 216	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
 217	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
 218	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
 219	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
 220	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
 221	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
 222	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
 223	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
 224	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
 225	{ 0, }
 226};
 227MODULE_DEVICE_TABLE(pci, e100_id_table);
 228
 229enum mac {
 230	mac_82557_D100_A  = 0,
 231	mac_82557_D100_B  = 1,
 232	mac_82557_D100_C  = 2,
 233	mac_82558_D101_A4 = 4,
 234	mac_82558_D101_B0 = 5,
 235	mac_82559_D101M   = 8,
 236	mac_82559_D101S   = 9,
 237	mac_82550_D102    = 12,
 238	mac_82550_D102_C  = 13,
 239	mac_82551_E       = 14,
 240	mac_82551_F       = 15,
 241	mac_82551_10      = 16,
 242	mac_unknown       = 0xFF,
 243};
 244
 245enum phy {
 246	phy_100a     = 0x000003E0,
 247	phy_100c     = 0x035002A8,
 248	phy_82555_tx = 0x015002A8,
 249	phy_nsc_tx   = 0x5C002000,
 250	phy_82562_et = 0x033002A8,
 251	phy_82562_em = 0x032002A8,
 252	phy_82562_ek = 0x031002A8,
 253	phy_82562_eh = 0x017002A8,
 254	phy_82552_v  = 0xd061004d,
 255	phy_unknown  = 0xFFFFFFFF,
 256};
 257
 258/* CSR (Control/Status Registers) */
 259struct csr {
 260	struct {
 261		u8 status;
 262		u8 stat_ack;
 263		u8 cmd_lo;
 264		u8 cmd_hi;
 265		u32 gen_ptr;
 266	} scb;
 267	u32 port;
 268	u16 flash_ctrl;
 269	u8 eeprom_ctrl_lo;
 270	u8 eeprom_ctrl_hi;
 271	u32 mdi_ctrl;
 272	u32 rx_dma_count;
 273};
 274
 275enum scb_status {
 276	rus_no_res       = 0x08,
 277	rus_ready        = 0x10,
 278	rus_mask         = 0x3C,
 279};
 280
 281enum ru_state  {
 282	RU_SUSPENDED = 0,
 283	RU_RUNNING	 = 1,
 284	RU_UNINITIALIZED = -1,
 285};
 286
 287enum scb_stat_ack {
 288	stat_ack_not_ours    = 0x00,
 289	stat_ack_sw_gen      = 0x04,
 290	stat_ack_rnr         = 0x10,
 291	stat_ack_cu_idle     = 0x20,
 292	stat_ack_frame_rx    = 0x40,
 293	stat_ack_cu_cmd_done = 0x80,
 294	stat_ack_not_present = 0xFF,
 295	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
 296	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
 297};
 298
 299enum scb_cmd_hi {
 300	irq_mask_none = 0x00,
 301	irq_mask_all  = 0x01,
 302	irq_sw_gen    = 0x02,
 303};
 304
 305enum scb_cmd_lo {
 306	cuc_nop        = 0x00,
 307	ruc_start      = 0x01,
 308	ruc_load_base  = 0x06,
 309	cuc_start      = 0x10,
 310	cuc_resume     = 0x20,
 311	cuc_dump_addr  = 0x40,
 312	cuc_dump_stats = 0x50,
 313	cuc_load_base  = 0x60,
 314	cuc_dump_reset = 0x70,
 315};
 316
 317enum cuc_dump {
 318	cuc_dump_complete       = 0x0000A005,
 319	cuc_dump_reset_complete = 0x0000A007,
 320};
 321
 322enum port {
 323	software_reset  = 0x0000,
 324	selftest        = 0x0001,
 325	selective_reset = 0x0002,
 326};
 327
 328enum eeprom_ctrl_lo {
 329	eesk = 0x01,
 330	eecs = 0x02,
 331	eedi = 0x04,
 332	eedo = 0x08,
 333};
 334
 335enum mdi_ctrl {
 336	mdi_write = 0x04000000,
 337	mdi_read  = 0x08000000,
 338	mdi_ready = 0x10000000,
 339};
 340
 341enum eeprom_op {
 342	op_write = 0x05,
 343	op_read  = 0x06,
 344	op_ewds  = 0x10,
 345	op_ewen  = 0x13,
 346};
 347
 348enum eeprom_offsets {
 349	eeprom_cnfg_mdix  = 0x03,
 350	eeprom_phy_iface  = 0x06,
 351	eeprom_id         = 0x0A,
 352	eeprom_config_asf = 0x0D,
 353	eeprom_smbus_addr = 0x90,
 354};
 355
 356enum eeprom_cnfg_mdix {
 357	eeprom_mdix_enabled = 0x0080,
 358};
 359
 360enum eeprom_phy_iface {
 361	NoSuchPhy = 0,
 362	I82553AB,
 363	I82553C,
 364	I82503,
 365	DP83840,
 366	S80C240,
 367	S80C24,
 368	I82555,
 369	DP83840A = 10,
 370};
 371
 372enum eeprom_id {
 373	eeprom_id_wol = 0x0020,
 374};
 375
 376enum eeprom_config_asf {
 377	eeprom_asf = 0x8000,
 378	eeprom_gcl = 0x4000,
 379};
 380
 381enum cb_status {
 382	cb_complete = 0x8000,
 383	cb_ok       = 0x2000,
 384};
 385
 386/*
 387 * cb_command - Command Block flags
 388 * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
 389 */
 390enum cb_command {
 391	cb_nop    = 0x0000,
 392	cb_iaaddr = 0x0001,
 393	cb_config = 0x0002,
 394	cb_multi  = 0x0003,
 395	cb_tx     = 0x0004,
 396	cb_ucode  = 0x0005,
 397	cb_dump   = 0x0006,
 398	cb_tx_sf  = 0x0008,
 399	cb_tx_nc  = 0x0010,
 400	cb_cid    = 0x1f00,
 401	cb_i      = 0x2000,
 402	cb_s      = 0x4000,
 403	cb_el     = 0x8000,
 404};
 405
 406struct rfd {
 407	__le16 status;
 408	__le16 command;
 409	__le32 link;
 410	__le32 rbd;
 411	__le16 actual_size;
 412	__le16 size;
 413};
 414
 415struct rx {
 416	struct rx *next, *prev;
 417	struct sk_buff *skb;
 418	dma_addr_t dma_addr;
 419};
 420
 421#if defined(__BIG_ENDIAN_BITFIELD)
 422#define X(a,b)	b,a
 423#else
 424#define X(a,b)	a,b
 425#endif
 426struct config {
 427/*0*/	u8 X(byte_count:6, pad0:2);
 428/*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
 429/*2*/	u8 adaptive_ifs;
 430/*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
 431	   term_write_cache_line:1), pad3:4);
 432/*4*/	u8 X(rx_dma_max_count:7, pad4:1);
 433/*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
 434/*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
 435	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
 436	   rx_save_overruns : 1), rx_save_bad_frames : 1);
 437/*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
 438	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
 439	   tx_dynamic_tbd:1);
 440/*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
 441/*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
 442	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
 443/*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
 444	   loopback:2);
 445/*11*/	u8 X(linear_priority:3, pad11:5);
 446/*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
 447/*13*/	u8 ip_addr_lo;
 448/*14*/	u8 ip_addr_hi;
 449/*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
 450	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
 451	   pad15_2:1), crs_or_cdt:1);
 452/*16*/	u8 fc_delay_lo;
 453/*17*/	u8 fc_delay_hi;
 454/*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
 455	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
 456/*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
 457	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
 458	   full_duplex_force:1), full_duplex_pin:1);
 459/*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
 460/*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
 461/*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
 462	u8 pad_d102[9];
 463};
 464
 465#define E100_MAX_MULTICAST_ADDRS	64
 466struct multi {
 467	__le16 count;
 468	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
 469};
 470
 471/* Important: keep total struct u32-aligned */
 472#define UCODE_SIZE			134
 473struct cb {
 474	__le16 status;
 475	__le16 command;
 476	__le32 link;
 477	union {
 478		u8 iaaddr[ETH_ALEN];
 479		__le32 ucode[UCODE_SIZE];
 480		struct config config;
 481		struct multi multi;
 482		struct {
 483			u32 tbd_array;
 484			u16 tcb_byte_count;
 485			u8 threshold;
 486			u8 tbd_count;
 487			struct {
 488				__le32 buf_addr;
 489				__le16 size;
 490				u16 eol;
 491			} tbd;
 492		} tcb;
 493		__le32 dump_buffer_addr;
 494	} u;
 495	struct cb *next, *prev;
 496	dma_addr_t dma_addr;
 497	struct sk_buff *skb;
 498};
 499
 500enum loopback {
 501	lb_none = 0, lb_mac = 1, lb_phy = 3,
 502};
 503
 504struct stats {
 505	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
 506		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
 507		tx_multiple_collisions, tx_total_collisions;
 508	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
 509		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
 510		rx_short_frame_errors;
 511	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
 512	__le16 xmt_tco_frames, rcv_tco_frames;
 513	__le32 complete;
 514};
 515
 516struct mem {
 517	struct {
 518		u32 signature;
 519		u32 result;
 520	} selftest;
 521	struct stats stats;
 522	u8 dump_buf[596];
 523};
 524
 525struct param_range {
 526	u32 min;
 527	u32 max;
 528	u32 count;
 529};
 530
 531struct params {
 532	struct param_range rfds;
 533	struct param_range cbs;
 534};
 535
 536struct nic {
 537	/* Begin: frequently used values: keep adjacent for cache effect */
 538	u32 msg_enable				____cacheline_aligned;
 539	struct net_device *netdev;
 540	struct pci_dev *pdev;
 541	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
 542
 543	struct rx *rxs				____cacheline_aligned;
 544	struct rx *rx_to_use;
 545	struct rx *rx_to_clean;
 546	struct rfd blank_rfd;
 547	enum ru_state ru_running;
 548
 549	spinlock_t cb_lock			____cacheline_aligned;
 550	spinlock_t cmd_lock;
 551	struct csr __iomem *csr;
 552	enum scb_cmd_lo cuc_cmd;
 553	unsigned int cbs_avail;
 554	struct napi_struct napi;
 555	struct cb *cbs;
 556	struct cb *cb_to_use;
 557	struct cb *cb_to_send;
 558	struct cb *cb_to_clean;
 559	__le16 tx_command;
 560	/* End: frequently used values: keep adjacent for cache effect */
 561
 562	enum {
 563		ich                = (1 << 0),
 564		promiscuous        = (1 << 1),
 565		multicast_all      = (1 << 2),
 566		wol_magic          = (1 << 3),
 567		ich_10h_workaround = (1 << 4),
 568	} flags					____cacheline_aligned;
 569
 570	enum mac mac;
 571	enum phy phy;
 572	struct params params;
 573	struct timer_list watchdog;
 574	struct mii_if_info mii;
 575	struct work_struct tx_timeout_task;
 576	enum loopback loopback;
 577
 578	struct mem *mem;
 579	dma_addr_t dma_addr;
 580
 581	struct dma_pool *cbs_pool;
 582	dma_addr_t cbs_dma_addr;
 583	u8 adaptive_ifs;
 584	u8 tx_threshold;
 585	u32 tx_frames;
 586	u32 tx_collisions;
 587	u32 tx_deferred;
 588	u32 tx_single_collisions;
 589	u32 tx_multiple_collisions;
 590	u32 tx_fc_pause;
 591	u32 tx_tco_frames;
 592
 593	u32 rx_fc_pause;
 594	u32 rx_fc_unsupported;
 595	u32 rx_tco_frames;
 596	u32 rx_short_frame_errors;
 597	u32 rx_over_length_errors;
 598
 599	u16 eeprom_wc;
 600	__le16 eeprom[256];
 601	spinlock_t mdio_lock;
 602	const struct firmware *fw;
 603};
 604
 605static inline void e100_write_flush(struct nic *nic)
 606{
 607	/* Flush previous PCI writes through intermediate bridges
 608	 * by doing a benign read */
 609	(void)ioread8(&nic->csr->scb.status);
 610}
 611
 612static void e100_enable_irq(struct nic *nic)
 613{
 614	unsigned long flags;
 615
 616	spin_lock_irqsave(&nic->cmd_lock, flags);
 617	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
 618	e100_write_flush(nic);
 619	spin_unlock_irqrestore(&nic->cmd_lock, flags);
 620}
 621
 622static void e100_disable_irq(struct nic *nic)
 623{
 624	unsigned long flags;
 625
 626	spin_lock_irqsave(&nic->cmd_lock, flags);
 627	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
 628	e100_write_flush(nic);
 629	spin_unlock_irqrestore(&nic->cmd_lock, flags);
 630}
 631
 632static void e100_hw_reset(struct nic *nic)
 633{
 634	/* Put CU and RU into idle with a selective reset to get
 635	 * device off of PCI bus */
 636	iowrite32(selective_reset, &nic->csr->port);
 637	e100_write_flush(nic); udelay(20);
 638
 639	/* Now fully reset device */
 640	iowrite32(software_reset, &nic->csr->port);
 641	e100_write_flush(nic); udelay(20);
 642
 643	/* Mask off our interrupt line - it's unmasked after reset */
 644	e100_disable_irq(nic);
 645}
 646
 647static int e100_self_test(struct nic *nic)
 648{
 649	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
 650
 651	/* Passing the self-test is a pretty good indication
 652	 * that the device can DMA to/from host memory */
 653
 654	nic->mem->selftest.signature = 0;
 655	nic->mem->selftest.result = 0xFFFFFFFF;
 656
 657	iowrite32(selftest | dma_addr, &nic->csr->port);
 658	e100_write_flush(nic);
 659	/* Wait 10 msec for self-test to complete */
 660	msleep(10);
 661
 662	/* Interrupts are enabled after self-test */
 663	e100_disable_irq(nic);
 664
 665	/* Check results of self-test */
 666	if (nic->mem->selftest.result != 0) {
 667		netif_err(nic, hw, nic->netdev,
 668			  "Self-test failed: result=0x%08X\n",
 669			  nic->mem->selftest.result);
 670		return -ETIMEDOUT;
 671	}
 672	if (nic->mem->selftest.signature == 0) {
 673		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
 674		return -ETIMEDOUT;
 675	}
 676
 677	return 0;
 678}
 679
 680static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
 681{
 682	u32 cmd_addr_data[3];
 683	u8 ctrl;
 684	int i, j;
 685
 686	/* Three cmds: write/erase enable, write data, write/erase disable */
 687	cmd_addr_data[0] = op_ewen << (addr_len - 2);
 688	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
 689		le16_to_cpu(data);
 690	cmd_addr_data[2] = op_ewds << (addr_len - 2);
 691
 692	/* Bit-bang cmds to write word to eeprom */
 693	for (j = 0; j < 3; j++) {
 694
 695		/* Chip select */
 696		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 697		e100_write_flush(nic); udelay(4);
 698
 699		for (i = 31; i >= 0; i--) {
 700			ctrl = (cmd_addr_data[j] & (1 << i)) ?
 701				eecs | eedi : eecs;
 702			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 703			e100_write_flush(nic); udelay(4);
 704
 705			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 706			e100_write_flush(nic); udelay(4);
 707		}
 708		/* Wait 10 msec for cmd to complete */
 709		msleep(10);
 710
 711		/* Chip deselect */
 712		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 713		e100_write_flush(nic); udelay(4);
 714	}
 715};
 716
 717/* General technique stolen from the eepro100 driver - very clever */
 718static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
 719{
 720	u32 cmd_addr_data;
 721	u16 data = 0;
 722	u8 ctrl;
 723	int i;
 724
 725	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
 726
 727	/* Chip select */
 728	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 729	e100_write_flush(nic); udelay(4);
 730
 731	/* Bit-bang to read word from eeprom */
 732	for (i = 31; i >= 0; i--) {
 733		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
 734		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 735		e100_write_flush(nic); udelay(4);
 736
 737		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 738		e100_write_flush(nic); udelay(4);
 739
 740		/* Eeprom drives a dummy zero to EEDO after receiving
 741		 * complete address.  Use this to adjust addr_len. */
 742		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
 743		if (!(ctrl & eedo) && i > 16) {
 744			*addr_len -= (i - 16);
 745			i = 17;
 746		}
 747
 748		data = (data << 1) | (ctrl & eedo ? 1 : 0);
 749	}
 750
 751	/* Chip deselect */
 752	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 753	e100_write_flush(nic); udelay(4);
 754
 755	return cpu_to_le16(data);
 756};
 757
 758/* Load entire EEPROM image into driver cache and validate checksum */
 759static int e100_eeprom_load(struct nic *nic)
 760{
 761	u16 addr, addr_len = 8, checksum = 0;
 762
 763	/* Try reading with an 8-bit addr len to discover actual addr len */
 764	e100_eeprom_read(nic, &addr_len, 0);
 765	nic->eeprom_wc = 1 << addr_len;
 766
 767	for (addr = 0; addr < nic->eeprom_wc; addr++) {
 768		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
 769		if (addr < nic->eeprom_wc - 1)
 770			checksum += le16_to_cpu(nic->eeprom[addr]);
 771	}
 772
 773	/* The checksum, stored in the last word, is calculated such that
 774	 * the sum of words should be 0xBABA */
 775	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
 776		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
 777		if (!eeprom_bad_csum_allow)
 778			return -EAGAIN;
 779	}
 780
 781	return 0;
 782}
 783
 784/* Save (portion of) driver EEPROM cache to device and update checksum */
 785static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
 786{
 787	u16 addr, addr_len = 8, checksum = 0;
 788
 789	/* Try reading with an 8-bit addr len to discover actual addr len */
 790	e100_eeprom_read(nic, &addr_len, 0);
 791	nic->eeprom_wc = 1 << addr_len;
 792
 793	if (start + count >= nic->eeprom_wc)
 794		return -EINVAL;
 795
 796	for (addr = start; addr < start + count; addr++)
 797		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
 798
 799	/* The checksum, stored in the last word, is calculated such that
 800	 * the sum of words should be 0xBABA */
 801	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
 802		checksum += le16_to_cpu(nic->eeprom[addr]);
 803	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
 804	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
 805		nic->eeprom[nic->eeprom_wc - 1]);
 806
 807	return 0;
 808}
 809
 810#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
 811#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
 812static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
 813{
 814	unsigned long flags;
 815	unsigned int i;
 816	int err = 0;
 817
 818	spin_lock_irqsave(&nic->cmd_lock, flags);
 819
 820	/* Previous command is accepted when SCB clears */
 821	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
 822		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
 823			break;
 824		cpu_relax();
 825		if (unlikely(i > E100_WAIT_SCB_FAST))
 826			udelay(5);
 827	}
 828	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
 829		err = -EAGAIN;
 830		goto err_unlock;
 831	}
 832
 833	if (unlikely(cmd != cuc_resume))
 834		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
 835	iowrite8(cmd, &nic->csr->scb.cmd_lo);
 836
 837err_unlock:
 838	spin_unlock_irqrestore(&nic->cmd_lock, flags);
 839
 840	return err;
 841}
 842
 843static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
 844	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
 845{
 846	struct cb *cb;
 847	unsigned long flags;
 848	int err;
 849
 850	spin_lock_irqsave(&nic->cb_lock, flags);
 851
 852	if (unlikely(!nic->cbs_avail)) {
 853		err = -ENOMEM;
 854		goto err_unlock;
 855	}
 856
 857	cb = nic->cb_to_use;
 858	nic->cb_to_use = cb->next;
 859	nic->cbs_avail--;
 860	cb->skb = skb;
 861
 862	err = cb_prepare(nic, cb, skb);
 863	if (err)
 864		goto err_unlock;
 865
 866	if (unlikely(!nic->cbs_avail))
 867		err = -ENOSPC;
 868
 869
 870	/* Order is important otherwise we'll be in a race with h/w:
 871	 * set S-bit in current first, then clear S-bit in previous. */
 872	cb->command |= cpu_to_le16(cb_s);
 873	dma_wmb();
 874	cb->prev->command &= cpu_to_le16(~cb_s);
 875
 876	while (nic->cb_to_send != nic->cb_to_use) {
 877		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
 878			nic->cb_to_send->dma_addr))) {
 879			/* Ok, here's where things get sticky.  It's
 880			 * possible that we can't schedule the command
 881			 * because the controller is too busy, so
 882			 * let's just queue the command and try again
 883			 * when another command is scheduled. */
 884			if (err == -ENOSPC) {
 885				//request a reset
 886				schedule_work(&nic->tx_timeout_task);
 887			}
 888			break;
 889		} else {
 890			nic->cuc_cmd = cuc_resume;
 891			nic->cb_to_send = nic->cb_to_send->next;
 892		}
 893	}
 894
 895err_unlock:
 896	spin_unlock_irqrestore(&nic->cb_lock, flags);
 897
 898	return err;
 899}
 900
 901static int mdio_read(struct net_device *netdev, int addr, int reg)
 902{
 903	struct nic *nic = netdev_priv(netdev);
 904	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
 905}
 906
 907static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
 908{
 909	struct nic *nic = netdev_priv(netdev);
 910
 911	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
 912}
 913
 914/* the standard mdio_ctrl() function for usual MII-compliant hardware */
 915static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
 916{
 917	u32 data_out = 0;
 918	unsigned int i;
 919	unsigned long flags;
 920
 921
 922	/*
 923	 * Stratus87247: we shouldn't be writing the MDI control
 924	 * register until the Ready bit shows True.  Also, since
 925	 * manipulation of the MDI control registers is a multi-step
 926	 * procedure it should be done under lock.
 927	 */
 928	spin_lock_irqsave(&nic->mdio_lock, flags);
 929	for (i = 100; i; --i) {
 930		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
 931			break;
 932		udelay(20);
 933	}
 934	if (unlikely(!i)) {
 935		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
 936		spin_unlock_irqrestore(&nic->mdio_lock, flags);
 937		return 0;		/* No way to indicate timeout error */
 938	}
 939	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
 940
 941	for (i = 0; i < 100; i++) {
 942		udelay(20);
 943		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
 944			break;
 945	}
 946	spin_unlock_irqrestore(&nic->mdio_lock, flags);
 947	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
 948		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
 949		     dir == mdi_read ? "READ" : "WRITE",
 950		     addr, reg, data, data_out);
 951	return (u16)data_out;
 952}
 953
 954/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
 955static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
 956				 u32 addr,
 957				 u32 dir,
 958				 u32 reg,
 959				 u16 data)
 960{
 961	if ((reg == MII_BMCR) && (dir == mdi_write)) {
 962		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
 963			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
 964							MII_ADVERTISE);
 965
 966			/*
 967			 * Workaround Si issue where sometimes the part will not
 968			 * autoneg to 100Mbps even when advertised.
 969			 */
 970			if (advert & ADVERTISE_100FULL)
 971				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
 972			else if (advert & ADVERTISE_100HALF)
 973				data |= BMCR_SPEED100;
 974		}
 975	}
 976	return mdio_ctrl_hw(nic, addr, dir, reg, data);
 977}
 978
 979/* Fully software-emulated mdio_ctrl() function for cards without
 980 * MII-compliant PHYs.
 981 * For now, this is mainly geared towards 80c24 support; in case of further
 982 * requirements for other types (i82503, ...?) either extend this mechanism
 983 * or split it, whichever is cleaner.
 984 */
 985static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
 986				      u32 addr,
 987				      u32 dir,
 988				      u32 reg,
 989				      u16 data)
 990{
 991	/* might need to allocate a netdev_priv'ed register array eventually
 992	 * to be able to record state changes, but for now
 993	 * some fully hardcoded register handling ought to be ok I guess. */
 994
 995	if (dir == mdi_read) {
 996		switch (reg) {
 997		case MII_BMCR:
 998			/* Auto-negotiation, right? */
 999			return  BMCR_ANENABLE |
1000				BMCR_FULLDPLX;
1001		case MII_BMSR:
1002			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1003				BMSR_ANEGCAPABLE |
1004				BMSR_10FULL;
1005		case MII_ADVERTISE:
1006			/* 80c24 is a "combo card" PHY, right? */
1007			return	ADVERTISE_10HALF |
1008				ADVERTISE_10FULL;
1009		default:
1010			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1011				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1012				     dir == mdi_read ? "READ" : "WRITE",
1013				     addr, reg, data);
1014			return 0xFFFF;
1015		}
1016	} else {
1017		switch (reg) {
1018		default:
1019			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1020				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1021				     dir == mdi_read ? "READ" : "WRITE",
1022				     addr, reg, data);
1023			return 0xFFFF;
1024		}
1025	}
1026}
1027static inline int e100_phy_supports_mii(struct nic *nic)
1028{
1029	/* for now, just check it by comparing whether we
1030	   are using MII software emulation.
1031	*/
1032	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1033}
1034
1035static void e100_get_defaults(struct nic *nic)
1036{
1037	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1038	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1039
1040	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1041	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1042	if (nic->mac == mac_unknown)
1043		nic->mac = mac_82557_D100_A;
1044
1045	nic->params.rfds = rfds;
1046	nic->params.cbs = cbs;
1047
1048	/* Quadwords to DMA into FIFO before starting frame transmit */
1049	nic->tx_threshold = 0xE0;
1050
1051	/* no interrupt for every tx completion, delay = 256us if not 557 */
1052	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1053		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1054
1055	/* Template for a freshly allocated RFD */
1056	nic->blank_rfd.command = 0;
1057	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1058	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1059
1060	/* MII setup */
1061	nic->mii.phy_id_mask = 0x1F;
1062	nic->mii.reg_num_mask = 0x1F;
1063	nic->mii.dev = nic->netdev;
1064	nic->mii.mdio_read = mdio_read;
1065	nic->mii.mdio_write = mdio_write;
1066}
1067
1068static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1069{
1070	struct config *config = &cb->u.config;
1071	u8 *c = (u8 *)config;
1072	struct net_device *netdev = nic->netdev;
1073
1074	cb->command = cpu_to_le16(cb_config);
1075
1076	memset(config, 0, sizeof(struct config));
1077
1078	config->byte_count = 0x16;		/* bytes in this struct */
1079	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1080	config->direct_rx_dma = 0x1;		/* reserved */
1081	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1082	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1083	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1084	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1085	if (e100_phy_supports_mii(nic))
1086		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1087	config->pad10 = 0x6;
1088	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1089	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1090	config->ifs = 0x6;			/* x16 = inter frame spacing */
1091	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1092	config->pad15_1 = 0x1;
1093	config->pad15_2 = 0x1;
1094	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1095	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1096	config->tx_padding = 0x1;		/* 1=pad short frames */
1097	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1098	config->pad18 = 0x1;
1099	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1100	config->pad20_1 = 0x1F;
1101	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1102	config->pad21_1 = 0x5;
1103
1104	config->adaptive_ifs = nic->adaptive_ifs;
1105	config->loopback = nic->loopback;
1106
1107	if (nic->mii.force_media && nic->mii.full_duplex)
1108		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1109
1110	if (nic->flags & promiscuous || nic->loopback) {
1111		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1112		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1113		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1114	}
1115
1116	if (unlikely(netdev->features & NETIF_F_RXFCS))
1117		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1118
1119	if (nic->flags & multicast_all)
1120		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1121
1122	/* disable WoL when up */
1123	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1124		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1125
1126	if (nic->mac >= mac_82558_D101_A4) {
1127		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1128		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1129		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1130		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1131		if (nic->mac >= mac_82559_D101M) {
1132			config->tno_intr = 0x1;		/* TCO stats enable */
1133			/* Enable TCO in extended config */
1134			if (nic->mac >= mac_82551_10) {
1135				config->byte_count = 0x20; /* extended bytes */
1136				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1137			}
1138		} else {
1139			config->standard_stat_counter = 0x0;
1140		}
1141	}
1142
1143	if (netdev->features & NETIF_F_RXALL) {
1144		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1145		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1146		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1147	}
1148
1149	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1150		     c + 0);
1151	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1152		     c + 8);
1153	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1154		     c + 16);
1155	return 0;
1156}
1157
1158/*************************************************************************
1159*  CPUSaver parameters
1160*
1161*  All CPUSaver parameters are 16-bit literals that are part of a
1162*  "move immediate value" instruction.  By changing the value of
1163*  the literal in the instruction before the code is loaded, the
1164*  driver can change the algorithm.
1165*
1166*  INTDELAY - This loads the dead-man timer with its initial value.
1167*    When this timer expires the interrupt is asserted, and the
1168*    timer is reset each time a new packet is received.  (see
1169*    BUNDLEMAX below to set the limit on number of chained packets)
1170*    The current default is 0x600 or 1536.  Experiments show that
1171*    the value should probably stay within the 0x200 - 0x1000.
1172*
1173*  BUNDLEMAX -
1174*    This sets the maximum number of frames that will be bundled.  In
1175*    some situations, such as the TCP windowing algorithm, it may be
1176*    better to limit the growth of the bundle size than let it go as
1177*    high as it can, because that could cause too much added latency.
1178*    The default is six, because this is the number of packets in the
1179*    default TCP window size.  A value of 1 would make CPUSaver indicate
1180*    an interrupt for every frame received.  If you do not want to put
1181*    a limit on the bundle size, set this value to xFFFF.
1182*
1183*  BUNDLESMALL -
1184*    This contains a bit-mask describing the minimum size frame that
1185*    will be bundled.  The default masks the lower 7 bits, which means
1186*    that any frame less than 128 bytes in length will not be bundled,
1187*    but will instead immediately generate an interrupt.  This does
1188*    not affect the current bundle in any way.  Any frame that is 128
1189*    bytes or large will be bundled normally.  This feature is meant
1190*    to provide immediate indication of ACK frames in a TCP environment.
1191*    Customers were seeing poor performance when a machine with CPUSaver
1192*    enabled was sending but not receiving.  The delay introduced when
1193*    the ACKs were received was enough to reduce total throughput, because
1194*    the sender would sit idle until the ACK was finally seen.
1195*
1196*    The current default is 0xFF80, which masks out the lower 7 bits.
1197*    This means that any frame which is x7F (127) bytes or smaller
1198*    will cause an immediate interrupt.  Because this value must be a
1199*    bit mask, there are only a few valid values that can be used.  To
1200*    turn this feature off, the driver can write the value xFFFF to the
1201*    lower word of this instruction (in the same way that the other
1202*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1203*    cause an interrupt to be generated for every frame, because all
1204*    standard Ethernet frames are <= 2047 bytes in length.
1205*************************************************************************/
1206
1207/* if you wish to disable the ucode functionality, while maintaining the
1208 * workarounds it provides, set the following defines to:
1209 * BUNDLESMALL 0
1210 * BUNDLEMAX 1
1211 * INTDELAY 1
1212 */
1213#define BUNDLESMALL 1
1214#define BUNDLEMAX (u16)6
1215#define INTDELAY (u16)1536 /* 0x600 */
1216
1217/* Initialize firmware */
1218static const struct firmware *e100_request_firmware(struct nic *nic)
1219{
1220	const char *fw_name;
1221	const struct firmware *fw = nic->fw;
1222	u8 timer, bundle, min_size;
1223	int err = 0;
1224	bool required = false;
1225
1226	/* do not load u-code for ICH devices */
1227	if (nic->flags & ich)
1228		return NULL;
1229
1230	/* Search for ucode match against h/w revision
1231	 *
1232	 * Based on comments in the source code for the FreeBSD fxp
1233	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1234	 *
1235	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1236	 *     with Inline Receive)."
1237	 *
1238	 * So we must fail if it cannot be loaded.
1239	 *
1240	 * The other microcode files are only required for the optional
1241	 * CPUSaver feature.  Nice to have, but no reason to fail.
1242	 */
1243	if (nic->mac == mac_82559_D101M) {
1244		fw_name = FIRMWARE_D101M;
1245	} else if (nic->mac == mac_82559_D101S) {
1246		fw_name = FIRMWARE_D101S;
1247	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1248		fw_name = FIRMWARE_D102E;
1249		required = true;
1250	} else { /* No ucode on other devices */
1251		return NULL;
1252	}
1253
1254	/* If the firmware has not previously been loaded, request a pointer
1255	 * to it. If it was previously loaded, we are reinitializing the
1256	 * adapter, possibly in a resume from hibernate, in which case
1257	 * request_firmware() cannot be used.
1258	 */
1259	if (!fw)
1260		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1261
1262	if (err) {
1263		if (required) {
1264			netif_err(nic, probe, nic->netdev,
1265				  "Failed to load firmware \"%s\": %d\n",
1266				  fw_name, err);
1267			return ERR_PTR(err);
1268		} else {
1269			netif_info(nic, probe, nic->netdev,
1270				   "CPUSaver disabled. Needs \"%s\": %d\n",
1271				   fw_name, err);
1272			return NULL;
1273		}
1274	}
1275
1276	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1277	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1278	if (fw->size != UCODE_SIZE * 4 + 3) {
1279		netif_err(nic, probe, nic->netdev,
1280			  "Firmware \"%s\" has wrong size %zu\n",
1281			  fw_name, fw->size);
1282		release_firmware(fw);
1283		return ERR_PTR(-EINVAL);
1284	}
1285
1286	/* Read timer, bundle and min_size from end of firmware blob */
1287	timer = fw->data[UCODE_SIZE * 4];
1288	bundle = fw->data[UCODE_SIZE * 4 + 1];
1289	min_size = fw->data[UCODE_SIZE * 4 + 2];
1290
1291	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1292	    min_size >= UCODE_SIZE) {
1293		netif_err(nic, probe, nic->netdev,
1294			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1295			  fw_name, timer, bundle, min_size);
1296		release_firmware(fw);
1297		return ERR_PTR(-EINVAL);
1298	}
1299
1300	/* OK, firmware is validated and ready to use. Save a pointer
1301	 * to it in the nic */
1302	nic->fw = fw;
1303	return fw;
1304}
1305
1306static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1307			     struct sk_buff *skb)
1308{
1309	const struct firmware *fw = (void *)skb;
1310	u8 timer, bundle, min_size;
1311
1312	/* It's not a real skb; we just abused the fact that e100_exec_cb
1313	   will pass it through to here... */
1314	cb->skb = NULL;
1315
1316	/* firmware is stored as little endian already */
1317	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1318
1319	/* Read timer, bundle and min_size from end of firmware blob */
1320	timer = fw->data[UCODE_SIZE * 4];
1321	bundle = fw->data[UCODE_SIZE * 4 + 1];
1322	min_size = fw->data[UCODE_SIZE * 4 + 2];
1323
1324	/* Insert user-tunable settings in cb->u.ucode */
1325	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1326	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1327	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1328	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1329	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1330	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1331
1332	cb->command = cpu_to_le16(cb_ucode | cb_el);
1333	return 0;
1334}
1335
1336static inline int e100_load_ucode_wait(struct nic *nic)
1337{
1338	const struct firmware *fw;
1339	int err = 0, counter = 50;
1340	struct cb *cb = nic->cb_to_clean;
1341
1342	fw = e100_request_firmware(nic);
1343	/* If it's NULL, then no ucode is required */
1344	if (IS_ERR_OR_NULL(fw))
1345		return PTR_ERR_OR_ZERO(fw);
1346
1347	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1348		netif_err(nic, probe, nic->netdev,
1349			  "ucode cmd failed with error %d\n", err);
1350
1351	/* must restart cuc */
1352	nic->cuc_cmd = cuc_start;
1353
1354	/* wait for completion */
1355	e100_write_flush(nic);
1356	udelay(10);
1357
1358	/* wait for possibly (ouch) 500ms */
1359	while (!(cb->status & cpu_to_le16(cb_complete))) {
1360		msleep(10);
1361		if (!--counter) break;
1362	}
1363
1364	/* ack any interrupts, something could have been set */
1365	iowrite8(~0, &nic->csr->scb.stat_ack);
1366
1367	/* if the command failed, or is not OK, notify and return */
1368	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1369		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1370		err = -EPERM;
1371	}
1372
1373	return err;
1374}
1375
1376static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1377	struct sk_buff *skb)
1378{
1379	cb->command = cpu_to_le16(cb_iaaddr);
1380	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1381	return 0;
1382}
1383
1384static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1385{
1386	cb->command = cpu_to_le16(cb_dump);
1387	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1388		offsetof(struct mem, dump_buf));
1389	return 0;
1390}
1391
1392static int e100_phy_check_without_mii(struct nic *nic)
1393{
1394	u8 phy_type;
1395	int without_mii;
1396
1397	phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1398
1399	switch (phy_type) {
1400	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1401	case I82503: /* Non-MII PHY; UNTESTED! */
1402	case S80C24: /* Non-MII PHY; tested and working */
1403		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1404		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1405		 * doesn't have a programming interface of any sort.  The
1406		 * media is sensed automatically based on how the link partner
1407		 * is configured.  This is, in essence, manual configuration.
1408		 */
1409		netif_info(nic, probe, nic->netdev,
1410			   "found MII-less i82503 or 80c24 or other PHY\n");
1411
1412		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1413		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1414
1415		/* these might be needed for certain MII-less cards...
1416		 * nic->flags |= ich;
1417		 * nic->flags |= ich_10h_workaround; */
1418
1419		without_mii = 1;
1420		break;
1421	default:
1422		without_mii = 0;
1423		break;
1424	}
1425	return without_mii;
1426}
1427
1428#define NCONFIG_AUTO_SWITCH	0x0080
1429#define MII_NSC_CONG		MII_RESV1
1430#define NSC_CONG_ENABLE		0x0100
1431#define NSC_CONG_TXREADY	0x0400
1432static int e100_phy_init(struct nic *nic)
1433{
1434	struct net_device *netdev = nic->netdev;
1435	u32 addr;
1436	u16 bmcr, stat, id_lo, id_hi, cong;
1437
1438	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1439	for (addr = 0; addr < 32; addr++) {
1440		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1441		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1442		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1443		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1444		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1445			break;
1446	}
1447	if (addr == 32) {
1448		/* uhoh, no PHY detected: check whether we seem to be some
1449		 * weird, rare variant which is *known* to not have any MII.
1450		 * But do this AFTER MII checking only, since this does
1451		 * lookup of EEPROM values which may easily be unreliable. */
1452		if (e100_phy_check_without_mii(nic))
1453			return 0; /* simply return and hope for the best */
1454		else {
1455			/* for unknown cases log a fatal error */
1456			netif_err(nic, hw, nic->netdev,
1457				  "Failed to locate any known PHY, aborting\n");
1458			return -EAGAIN;
1459		}
1460	} else
1461		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1462			     "phy_addr = %d\n", nic->mii.phy_id);
1463
1464	/* Get phy ID */
1465	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1466	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1467	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1468	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1469		     "phy ID = 0x%08X\n", nic->phy);
1470
1471	/* Select the phy and isolate the rest */
1472	for (addr = 0; addr < 32; addr++) {
1473		if (addr != nic->mii.phy_id) {
1474			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1475		} else if (nic->phy != phy_82552_v) {
1476			bmcr = mdio_read(netdev, addr, MII_BMCR);
1477			mdio_write(netdev, addr, MII_BMCR,
1478				bmcr & ~BMCR_ISOLATE);
1479		}
1480	}
1481	/*
1482	 * Workaround for 82552:
1483	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1484	 * other phy_id's) using bmcr value from addr discovery loop above.
1485	 */
1486	if (nic->phy == phy_82552_v)
1487		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1488			bmcr & ~BMCR_ISOLATE);
1489
1490	/* Handle National tx phys */
1491#define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1492	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1493		/* Disable congestion control */
1494		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1495		cong |= NSC_CONG_TXREADY;
1496		cong &= ~NSC_CONG_ENABLE;
1497		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1498	}
1499
1500	if (nic->phy == phy_82552_v) {
1501		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1502
1503		/* assign special tweaked mdio_ctrl() function */
1504		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1505
1506		/* Workaround Si not advertising flow-control during autoneg */
1507		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1508		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1509
1510		/* Reset for the above changes to take effect */
1511		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1512		bmcr |= BMCR_RESET;
1513		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1514	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1515	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1516	   (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1517		/* enable/disable MDI/MDI-X auto-switching. */
1518		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1519				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1520	}
1521
1522	return 0;
1523}
1524
1525static int e100_hw_init(struct nic *nic)
1526{
1527	int err = 0;
1528
1529	e100_hw_reset(nic);
1530
1531	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1532	if ((err = e100_self_test(nic)))
1533		return err;
1534
1535	if ((err = e100_phy_init(nic)))
1536		return err;
1537	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1538		return err;
1539	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1540		return err;
1541	if ((err = e100_load_ucode_wait(nic)))
1542		return err;
1543	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1544		return err;
1545	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1546		return err;
1547	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1548		nic->dma_addr + offsetof(struct mem, stats))))
1549		return err;
1550	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1551		return err;
1552
1553	e100_disable_irq(nic);
1554
1555	return 0;
1556}
1557
1558static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1559{
1560	struct net_device *netdev = nic->netdev;
1561	struct netdev_hw_addr *ha;
1562	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1563
1564	cb->command = cpu_to_le16(cb_multi);
1565	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1566	i = 0;
1567	netdev_for_each_mc_addr(ha, netdev) {
1568		if (i == count)
1569			break;
1570		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1571			ETH_ALEN);
1572	}
1573	return 0;
1574}
1575
1576static void e100_set_multicast_list(struct net_device *netdev)
1577{
1578	struct nic *nic = netdev_priv(netdev);
1579
1580	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1581		     "mc_count=%d, flags=0x%04X\n",
1582		     netdev_mc_count(netdev), netdev->flags);
1583
1584	if (netdev->flags & IFF_PROMISC)
1585		nic->flags |= promiscuous;
1586	else
1587		nic->flags &= ~promiscuous;
1588
1589	if (netdev->flags & IFF_ALLMULTI ||
1590		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1591		nic->flags |= multicast_all;
1592	else
1593		nic->flags &= ~multicast_all;
1594
1595	e100_exec_cb(nic, NULL, e100_configure);
1596	e100_exec_cb(nic, NULL, e100_multi);
1597}
1598
1599static void e100_update_stats(struct nic *nic)
1600{
1601	struct net_device *dev = nic->netdev;
1602	struct net_device_stats *ns = &dev->stats;
1603	struct stats *s = &nic->mem->stats;
1604	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1605		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1606		&s->complete;
1607
1608	/* Device's stats reporting may take several microseconds to
1609	 * complete, so we're always waiting for results of the
1610	 * previous command. */
1611
1612	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1613		*complete = 0;
1614		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1615		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1616		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1617		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1618		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1619		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1620		ns->collisions += nic->tx_collisions;
1621		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1622			le32_to_cpu(s->tx_lost_crs);
1623		nic->rx_short_frame_errors +=
1624			le32_to_cpu(s->rx_short_frame_errors);
1625		ns->rx_length_errors = nic->rx_short_frame_errors +
1626			nic->rx_over_length_errors;
1627		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1628		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1629		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1630		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1631		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1632		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1633			le32_to_cpu(s->rx_alignment_errors) +
1634			le32_to_cpu(s->rx_short_frame_errors) +
1635			le32_to_cpu(s->rx_cdt_errors);
1636		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1637		nic->tx_single_collisions +=
1638			le32_to_cpu(s->tx_single_collisions);
1639		nic->tx_multiple_collisions +=
1640			le32_to_cpu(s->tx_multiple_collisions);
1641		if (nic->mac >= mac_82558_D101_A4) {
1642			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1643			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1644			nic->rx_fc_unsupported +=
1645				le32_to_cpu(s->fc_rcv_unsupported);
1646			if (nic->mac >= mac_82559_D101M) {
1647				nic->tx_tco_frames +=
1648					le16_to_cpu(s->xmt_tco_frames);
1649				nic->rx_tco_frames +=
1650					le16_to_cpu(s->rcv_tco_frames);
1651			}
1652		}
1653	}
1654
1655
1656	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1657		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1658			     "exec cuc_dump_reset failed\n");
1659}
1660
1661static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1662{
1663	/* Adjust inter-frame-spacing (IFS) between two transmits if
1664	 * we're getting collisions on a half-duplex connection. */
1665
1666	if (duplex == DUPLEX_HALF) {
1667		u32 prev = nic->adaptive_ifs;
1668		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1669
1670		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1671		   (nic->tx_frames > min_frames)) {
1672			if (nic->adaptive_ifs < 60)
1673				nic->adaptive_ifs += 5;
1674		} else if (nic->tx_frames < min_frames) {
1675			if (nic->adaptive_ifs >= 5)
1676				nic->adaptive_ifs -= 5;
1677		}
1678		if (nic->adaptive_ifs != prev)
1679			e100_exec_cb(nic, NULL, e100_configure);
1680	}
1681}
1682
1683static void e100_watchdog(struct timer_list *t)
1684{
1685	struct nic *nic = from_timer(nic, t, watchdog);
1686	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1687	u32 speed;
1688
1689	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1690		     "right now = %ld\n", jiffies);
1691
1692	/* mii library handles link maintenance tasks */
1693
1694	mii_ethtool_gset(&nic->mii, &cmd);
1695	speed = ethtool_cmd_speed(&cmd);
1696
1697	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1698		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1699			    speed == SPEED_100 ? 100 : 10,
1700			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1701	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1702		netdev_info(nic->netdev, "NIC Link is Down\n");
1703	}
1704
1705	mii_check_link(&nic->mii);
1706
1707	/* Software generated interrupt to recover from (rare) Rx
1708	 * allocation failure.
1709	 * Unfortunately have to use a spinlock to not re-enable interrupts
1710	 * accidentally, due to hardware that shares a register between the
1711	 * interrupt mask bit and the SW Interrupt generation bit */
1712	spin_lock_irq(&nic->cmd_lock);
1713	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1714	e100_write_flush(nic);
1715	spin_unlock_irq(&nic->cmd_lock);
1716
1717	e100_update_stats(nic);
1718	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1719
1720	if (nic->mac <= mac_82557_D100_C)
1721		/* Issue a multicast command to workaround a 557 lock up */
1722		e100_set_multicast_list(nic->netdev);
1723
1724	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1725		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1726		nic->flags |= ich_10h_workaround;
1727	else
1728		nic->flags &= ~ich_10h_workaround;
1729
1730	mod_timer(&nic->watchdog,
1731		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1732}
1733
1734static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1735	struct sk_buff *skb)
1736{
1737	dma_addr_t dma_addr;
1738	cb->command = nic->tx_command;
1739
1740	dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1741				  DMA_TO_DEVICE);
1742	/* If we can't map the skb, have the upper layer try later */
1743	if (dma_mapping_error(&nic->pdev->dev, dma_addr))
1744		return -ENOMEM;
1745
1746	/*
1747	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1748	 * testing, ie sending frames with bad CRC.
1749	 */
1750	if (unlikely(skb->no_fcs))
1751		cb->command |= cpu_to_le16(cb_tx_nc);
1752	else
1753		cb->command &= ~cpu_to_le16(cb_tx_nc);
1754
1755	/* interrupt every 16 packets regardless of delay */
1756	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1757		cb->command |= cpu_to_le16(cb_i);
1758	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1759	cb->u.tcb.tcb_byte_count = 0;
1760	cb->u.tcb.threshold = nic->tx_threshold;
1761	cb->u.tcb.tbd_count = 1;
1762	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1763	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1764	skb_tx_timestamp(skb);
1765	return 0;
1766}
1767
1768static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1769				   struct net_device *netdev)
1770{
1771	struct nic *nic = netdev_priv(netdev);
1772	int err;
1773
1774	if (nic->flags & ich_10h_workaround) {
1775		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1776		   Issue a NOP command followed by a 1us delay before
1777		   issuing the Tx command. */
1778		if (e100_exec_cmd(nic, cuc_nop, 0))
1779			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1780				     "exec cuc_nop failed\n");
1781		udelay(1);
1782	}
1783
1784	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1785
1786	switch (err) {
1787	case -ENOSPC:
1788		/* We queued the skb, but now we're out of space. */
1789		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1790			     "No space for CB\n");
1791		netif_stop_queue(netdev);
1792		break;
1793	case -ENOMEM:
1794		/* This is a hard error - log it. */
1795		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1796			     "Out of Tx resources, returning skb\n");
1797		netif_stop_queue(netdev);
1798		return NETDEV_TX_BUSY;
1799	}
1800
1801	return NETDEV_TX_OK;
1802}
1803
1804static int e100_tx_clean(struct nic *nic)
1805{
1806	struct net_device *dev = nic->netdev;
1807	struct cb *cb;
1808	int tx_cleaned = 0;
1809
1810	spin_lock(&nic->cb_lock);
1811
1812	/* Clean CBs marked complete */
1813	for (cb = nic->cb_to_clean;
1814	    cb->status & cpu_to_le16(cb_complete);
1815	    cb = nic->cb_to_clean = cb->next) {
1816		dma_rmb(); /* read skb after status */
1817		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1818			     "cb[%d]->status = 0x%04X\n",
1819			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1820			     cb->status);
1821
1822		if (likely(cb->skb != NULL)) {
1823			dev->stats.tx_packets++;
1824			dev->stats.tx_bytes += cb->skb->len;
1825
1826			dma_unmap_single(&nic->pdev->dev,
1827					 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1828					 le16_to_cpu(cb->u.tcb.tbd.size),
1829					 DMA_TO_DEVICE);
1830			dev_kfree_skb_any(cb->skb);
1831			cb->skb = NULL;
1832			tx_cleaned = 1;
1833		}
1834		cb->status = 0;
1835		nic->cbs_avail++;
1836	}
1837
1838	spin_unlock(&nic->cb_lock);
1839
1840	/* Recover from running out of Tx resources in xmit_frame */
1841	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1842		netif_wake_queue(nic->netdev);
1843
1844	return tx_cleaned;
1845}
1846
1847static void e100_clean_cbs(struct nic *nic)
1848{
1849	if (nic->cbs) {
1850		while (nic->cbs_avail != nic->params.cbs.count) {
1851			struct cb *cb = nic->cb_to_clean;
1852			if (cb->skb) {
1853				dma_unmap_single(&nic->pdev->dev,
1854						 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1855						 le16_to_cpu(cb->u.tcb.tbd.size),
1856						 DMA_TO_DEVICE);
1857				dev_kfree_skb(cb->skb);
1858			}
1859			nic->cb_to_clean = nic->cb_to_clean->next;
1860			nic->cbs_avail++;
1861		}
1862		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1863		nic->cbs = NULL;
1864		nic->cbs_avail = 0;
1865	}
1866	nic->cuc_cmd = cuc_start;
1867	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1868		nic->cbs;
1869}
1870
1871static int e100_alloc_cbs(struct nic *nic)
1872{
1873	struct cb *cb;
1874	unsigned int i, count = nic->params.cbs.count;
1875
1876	nic->cuc_cmd = cuc_start;
1877	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1878	nic->cbs_avail = 0;
1879
1880	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1881				   &nic->cbs_dma_addr);
1882	if (!nic->cbs)
1883		return -ENOMEM;
1884
1885	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1886		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1887		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1888
1889		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1890		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1891			((i+1) % count) * sizeof(struct cb));
1892	}
1893
1894	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1895	nic->cbs_avail = count;
1896
1897	return 0;
1898}
1899
1900static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1901{
1902	if (!nic->rxs) return;
1903	if (RU_SUSPENDED != nic->ru_running) return;
1904
1905	/* handle init time starts */
1906	if (!rx) rx = nic->rxs;
1907
1908	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1909	if (rx->skb) {
1910		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1911		nic->ru_running = RU_RUNNING;
1912	}
1913}
1914
1915#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1916static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1917{
1918	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1919		return -ENOMEM;
1920
1921	/* Init, and map the RFD. */
1922	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1923	rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1924				      RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1925
1926	if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1927		dev_kfree_skb_any(rx->skb);
1928		rx->skb = NULL;
1929		rx->dma_addr = 0;
1930		return -ENOMEM;
1931	}
1932
1933	/* Link the RFD to end of RFA by linking previous RFD to
1934	 * this one.  We are safe to touch the previous RFD because
1935	 * it is protected by the before last buffer's el bit being set */
1936	if (rx->prev->skb) {
1937		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1938		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1939		dma_sync_single_for_device(&nic->pdev->dev,
1940					   rx->prev->dma_addr,
1941					   sizeof(struct rfd),
1942					   DMA_BIDIRECTIONAL);
1943	}
1944
1945	return 0;
1946}
1947
1948static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1949	unsigned int *work_done, unsigned int work_to_do)
1950{
1951	struct net_device *dev = nic->netdev;
1952	struct sk_buff *skb = rx->skb;
1953	struct rfd *rfd = (struct rfd *)skb->data;
1954	u16 rfd_status, actual_size;
1955	u16 fcs_pad = 0;
1956
1957	if (unlikely(work_done && *work_done >= work_to_do))
1958		return -EAGAIN;
1959
1960	/* Need to sync before taking a peek at cb_complete bit */
1961	dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1962				sizeof(struct rfd), DMA_BIDIRECTIONAL);
1963	rfd_status = le16_to_cpu(rfd->status);
1964
1965	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1966		     "status=0x%04X\n", rfd_status);
1967	dma_rmb(); /* read size after status bit */
1968
1969	/* If data isn't ready, nothing to indicate */
1970	if (unlikely(!(rfd_status & cb_complete))) {
1971		/* If the next buffer has the el bit, but we think the receiver
1972		 * is still running, check to see if it really stopped while
1973		 * we had interrupts off.
1974		 * This allows for a fast restart without re-enabling
1975		 * interrupts */
1976		if ((le16_to_cpu(rfd->command) & cb_el) &&
1977		    (RU_RUNNING == nic->ru_running))
1978
1979			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1980				nic->ru_running = RU_SUSPENDED;
1981		dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1982					   sizeof(struct rfd),
1983					   DMA_FROM_DEVICE);
1984		return -ENODATA;
1985	}
1986
1987	/* Get actual data size */
1988	if (unlikely(dev->features & NETIF_F_RXFCS))
1989		fcs_pad = 4;
1990	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1991	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1992		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1993
1994	/* Get data */
1995	dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
1996			 DMA_BIDIRECTIONAL);
1997
1998	/* If this buffer has the el bit, but we think the receiver
1999	 * is still running, check to see if it really stopped while
2000	 * we had interrupts off.
2001	 * This allows for a fast restart without re-enabling interrupts.
2002	 * This can happen when the RU sees the size change but also sees
2003	 * the el bit set. */
2004	if ((le16_to_cpu(rfd->command) & cb_el) &&
2005	    (RU_RUNNING == nic->ru_running)) {
2006
2007	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2008		nic->ru_running = RU_SUSPENDED;
2009	}
2010
2011	/* Pull off the RFD and put the actual data (minus eth hdr) */
2012	skb_reserve(skb, sizeof(struct rfd));
2013	skb_put(skb, actual_size);
2014	skb->protocol = eth_type_trans(skb, nic->netdev);
2015
2016	/* If we are receiving all frames, then don't bother
2017	 * checking for errors.
2018	 */
2019	if (unlikely(dev->features & NETIF_F_RXALL)) {
2020		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2021			/* Received oversized frame, but keep it. */
2022			nic->rx_over_length_errors++;
2023		goto process_skb;
2024	}
2025
2026	if (unlikely(!(rfd_status & cb_ok))) {
2027		/* Don't indicate if hardware indicates errors */
2028		dev_kfree_skb_any(skb);
2029	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2030		/* Don't indicate oversized frames */
2031		nic->rx_over_length_errors++;
2032		dev_kfree_skb_any(skb);
2033	} else {
2034process_skb:
2035		dev->stats.rx_packets++;
2036		dev->stats.rx_bytes += (actual_size - fcs_pad);
2037		netif_receive_skb(skb);
2038		if (work_done)
2039			(*work_done)++;
2040	}
2041
2042	rx->skb = NULL;
2043
2044	return 0;
2045}
2046
2047static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2048	unsigned int work_to_do)
2049{
2050	struct rx *rx;
2051	int restart_required = 0, err = 0;
2052	struct rx *old_before_last_rx, *new_before_last_rx;
2053	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2054
2055	/* Indicate newly arrived packets */
2056	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2057		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2058		/* Hit quota or no more to clean */
2059		if (-EAGAIN == err || -ENODATA == err)
2060			break;
2061	}
2062
2063
2064	/* On EAGAIN, hit quota so have more work to do, restart once
2065	 * cleanup is complete.
2066	 * Else, are we already rnr? then pay attention!!! this ensures that
2067	 * the state machine progression never allows a start with a
2068	 * partially cleaned list, avoiding a race between hardware
2069	 * and rx_to_clean when in NAPI mode */
2070	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2071		restart_required = 1;
2072
2073	old_before_last_rx = nic->rx_to_use->prev->prev;
2074	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2075
2076	/* Alloc new skbs to refill list */
2077	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2078		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2079			break; /* Better luck next time (see watchdog) */
2080	}
2081
2082	new_before_last_rx = nic->rx_to_use->prev->prev;
2083	if (new_before_last_rx != old_before_last_rx) {
2084		/* Set the el-bit on the buffer that is before the last buffer.
2085		 * This lets us update the next pointer on the last buffer
2086		 * without worrying about hardware touching it.
2087		 * We set the size to 0 to prevent hardware from touching this
2088		 * buffer.
2089		 * When the hardware hits the before last buffer with el-bit
2090		 * and size of 0, it will RNR interrupt, the RUS will go into
2091		 * the No Resources state.  It will not complete nor write to
2092		 * this buffer. */
2093		new_before_last_rfd =
2094			(struct rfd *)new_before_last_rx->skb->data;
2095		new_before_last_rfd->size = 0;
2096		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2097		dma_sync_single_for_device(&nic->pdev->dev,
2098					   new_before_last_rx->dma_addr,
2099					   sizeof(struct rfd),
2100					   DMA_BIDIRECTIONAL);
2101
2102		/* Now that we have a new stopping point, we can clear the old
2103		 * stopping point.  We must sync twice to get the proper
2104		 * ordering on the hardware side of things. */
2105		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2106		dma_sync_single_for_device(&nic->pdev->dev,
2107					   old_before_last_rx->dma_addr,
2108					   sizeof(struct rfd),
2109					   DMA_BIDIRECTIONAL);
2110		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2111							+ ETH_FCS_LEN);
2112		dma_sync_single_for_device(&nic->pdev->dev,
2113					   old_before_last_rx->dma_addr,
2114					   sizeof(struct rfd),
2115					   DMA_BIDIRECTIONAL);
2116	}
2117
2118	if (restart_required) {
2119		// ack the rnr?
2120		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2121		e100_start_receiver(nic, nic->rx_to_clean);
2122		if (work_done)
2123			(*work_done)++;
2124	}
2125}
2126
2127static void e100_rx_clean_list(struct nic *nic)
2128{
2129	struct rx *rx;
2130	unsigned int i, count = nic->params.rfds.count;
2131
2132	nic->ru_running = RU_UNINITIALIZED;
2133
2134	if (nic->rxs) {
2135		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2136			if (rx->skb) {
2137				dma_unmap_single(&nic->pdev->dev,
2138						 rx->dma_addr, RFD_BUF_LEN,
2139						 DMA_BIDIRECTIONAL);
2140				dev_kfree_skb(rx->skb);
2141			}
2142		}
2143		kfree(nic->rxs);
2144		nic->rxs = NULL;
2145	}
2146
2147	nic->rx_to_use = nic->rx_to_clean = NULL;
2148}
2149
2150static int e100_rx_alloc_list(struct nic *nic)
2151{
2152	struct rx *rx;
2153	unsigned int i, count = nic->params.rfds.count;
2154	struct rfd *before_last;
2155
2156	nic->rx_to_use = nic->rx_to_clean = NULL;
2157	nic->ru_running = RU_UNINITIALIZED;
2158
2159	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2160		return -ENOMEM;
2161
2162	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2163		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2164		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2165		if (e100_rx_alloc_skb(nic, rx)) {
2166			e100_rx_clean_list(nic);
2167			return -ENOMEM;
2168		}
2169	}
2170	/* Set the el-bit on the buffer that is before the last buffer.
2171	 * This lets us update the next pointer on the last buffer without
2172	 * worrying about hardware touching it.
2173	 * We set the size to 0 to prevent hardware from touching this buffer.
2174	 * When the hardware hits the before last buffer with el-bit and size
2175	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2176	 * state.  It will not complete nor write to this buffer. */
2177	rx = nic->rxs->prev->prev;
2178	before_last = (struct rfd *)rx->skb->data;
2179	before_last->command |= cpu_to_le16(cb_el);
2180	before_last->size = 0;
2181	dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2182				   sizeof(struct rfd), DMA_BIDIRECTIONAL);
2183
2184	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2185	nic->ru_running = RU_SUSPENDED;
2186
2187	return 0;
2188}
2189
2190static irqreturn_t e100_intr(int irq, void *dev_id)
2191{
2192	struct net_device *netdev = dev_id;
2193	struct nic *nic = netdev_priv(netdev);
2194	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2195
2196	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2197		     "stat_ack = 0x%02X\n", stat_ack);
2198
2199	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2200	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2201		return IRQ_NONE;
2202
2203	/* Ack interrupt(s) */
2204	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2205
2206	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2207	if (stat_ack & stat_ack_rnr)
2208		nic->ru_running = RU_SUSPENDED;
2209
2210	if (likely(napi_schedule_prep(&nic->napi))) {
2211		e100_disable_irq(nic);
2212		__napi_schedule(&nic->napi);
2213	}
2214
2215	return IRQ_HANDLED;
2216}
2217
2218static int e100_poll(struct napi_struct *napi, int budget)
2219{
2220	struct nic *nic = container_of(napi, struct nic, napi);
2221	unsigned int work_done = 0;
2222
2223	e100_rx_clean(nic, &work_done, budget);
2224	e100_tx_clean(nic);
2225
2226	/* If budget fully consumed, continue polling */
2227	if (work_done == budget)
2228		return budget;
2229
2230	/* only re-enable interrupt if stack agrees polling is really done */
2231	if (likely(napi_complete_done(napi, work_done)))
2232		e100_enable_irq(nic);
2233
2234	return work_done;
2235}
2236
2237#ifdef CONFIG_NET_POLL_CONTROLLER
2238static void e100_netpoll(struct net_device *netdev)
2239{
2240	struct nic *nic = netdev_priv(netdev);
2241
2242	e100_disable_irq(nic);
2243	e100_intr(nic->pdev->irq, netdev);
2244	e100_tx_clean(nic);
2245	e100_enable_irq(nic);
2246}
2247#endif
2248
2249static int e100_set_mac_address(struct net_device *netdev, void *p)
2250{
2251	struct nic *nic = netdev_priv(netdev);
2252	struct sockaddr *addr = p;
2253
2254	if (!is_valid_ether_addr(addr->sa_data))
2255		return -EADDRNOTAVAIL;
2256
2257	eth_hw_addr_set(netdev, addr->sa_data);
2258	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2259
2260	return 0;
2261}
2262
2263static int e100_asf(struct nic *nic)
2264{
2265	/* ASF can be enabled from eeprom */
2266	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2267	   (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2268	   !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2269	   ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2270}
2271
2272static int e100_up(struct nic *nic)
2273{
2274	int err;
2275
2276	if ((err = e100_rx_alloc_list(nic)))
2277		return err;
2278	if ((err = e100_alloc_cbs(nic)))
2279		goto err_rx_clean_list;
2280	if ((err = e100_hw_init(nic)))
2281		goto err_clean_cbs;
2282	e100_set_multicast_list(nic->netdev);
2283	e100_start_receiver(nic, NULL);
2284	mod_timer(&nic->watchdog, jiffies);
2285	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2286		nic->netdev->name, nic->netdev)))
2287		goto err_no_irq;
2288	netif_wake_queue(nic->netdev);
2289	napi_enable(&nic->napi);
2290	/* enable ints _after_ enabling poll, preventing a race between
2291	 * disable ints+schedule */
2292	e100_enable_irq(nic);
2293	return 0;
2294
2295err_no_irq:
2296	del_timer_sync(&nic->watchdog);
2297err_clean_cbs:
2298	e100_clean_cbs(nic);
2299err_rx_clean_list:
2300	e100_rx_clean_list(nic);
2301	return err;
2302}
2303
2304static void e100_down(struct nic *nic)
2305{
2306	/* wait here for poll to complete */
2307	napi_disable(&nic->napi);
2308	netif_stop_queue(nic->netdev);
2309	e100_hw_reset(nic);
2310	free_irq(nic->pdev->irq, nic->netdev);
2311	del_timer_sync(&nic->watchdog);
2312	netif_carrier_off(nic->netdev);
2313	e100_clean_cbs(nic);
2314	e100_rx_clean_list(nic);
2315}
2316
2317static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2318{
2319	struct nic *nic = netdev_priv(netdev);
2320
2321	/* Reset outside of interrupt context, to avoid request_irq
2322	 * in interrupt context */
2323	schedule_work(&nic->tx_timeout_task);
2324}
2325
2326static void e100_tx_timeout_task(struct work_struct *work)
2327{
2328	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2329	struct net_device *netdev = nic->netdev;
2330
2331	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2332		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2333
2334	rtnl_lock();
2335	if (netif_running(netdev)) {
2336		e100_down(netdev_priv(netdev));
2337		e100_up(netdev_priv(netdev));
2338	}
2339	rtnl_unlock();
2340}
2341
2342static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2343{
2344	int err;
2345	struct sk_buff *skb;
2346
2347	/* Use driver resources to perform internal MAC or PHY
2348	 * loopback test.  A single packet is prepared and transmitted
2349	 * in loopback mode, and the test passes if the received
2350	 * packet compares byte-for-byte to the transmitted packet. */
2351
2352	if ((err = e100_rx_alloc_list(nic)))
2353		return err;
2354	if ((err = e100_alloc_cbs(nic)))
2355		goto err_clean_rx;
2356
2357	/* ICH PHY loopback is broken so do MAC loopback instead */
2358	if (nic->flags & ich && loopback_mode == lb_phy)
2359		loopback_mode = lb_mac;
2360
2361	nic->loopback = loopback_mode;
2362	if ((err = e100_hw_init(nic)))
2363		goto err_loopback_none;
2364
2365	if (loopback_mode == lb_phy)
2366		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2367			BMCR_LOOPBACK);
2368
2369	e100_start_receiver(nic, NULL);
2370
2371	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2372		err = -ENOMEM;
2373		goto err_loopback_none;
2374	}
2375	skb_put(skb, ETH_DATA_LEN);
2376	memset(skb->data, 0xFF, ETH_DATA_LEN);
2377	e100_xmit_frame(skb, nic->netdev);
2378
2379	msleep(10);
2380
2381	dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2382				RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2383
2384	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2385	   skb->data, ETH_DATA_LEN))
2386		err = -EAGAIN;
2387
2388err_loopback_none:
2389	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2390	nic->loopback = lb_none;
2391	e100_clean_cbs(nic);
2392	e100_hw_reset(nic);
2393err_clean_rx:
2394	e100_rx_clean_list(nic);
2395	return err;
2396}
2397
2398#define MII_LED_CONTROL	0x1B
2399#define E100_82552_LED_OVERRIDE 0x19
2400#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2401#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2402
2403static int e100_get_link_ksettings(struct net_device *netdev,
2404				   struct ethtool_link_ksettings *cmd)
2405{
2406	struct nic *nic = netdev_priv(netdev);
2407
2408	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2409
2410	return 0;
2411}
2412
2413static int e100_set_link_ksettings(struct net_device *netdev,
2414				   const struct ethtool_link_ksettings *cmd)
2415{
2416	struct nic *nic = netdev_priv(netdev);
2417	int err;
2418
2419	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2420	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2421	e100_exec_cb(nic, NULL, e100_configure);
2422
2423	return err;
2424}
2425
2426static void e100_get_drvinfo(struct net_device *netdev,
2427	struct ethtool_drvinfo *info)
2428{
2429	struct nic *nic = netdev_priv(netdev);
2430	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2431	strscpy(info->bus_info, pci_name(nic->pdev),
2432		sizeof(info->bus_info));
2433}
2434
2435#define E100_PHY_REGS 0x1D
2436static int e100_get_regs_len(struct net_device *netdev)
2437{
2438	struct nic *nic = netdev_priv(netdev);
2439
2440	/* We know the number of registers, and the size of the dump buffer.
2441	 * Calculate the total size in bytes.
2442	 */
2443	return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2444}
2445
2446static void e100_get_regs(struct net_device *netdev,
2447	struct ethtool_regs *regs, void *p)
2448{
2449	struct nic *nic = netdev_priv(netdev);
2450	u32 *buff = p;
2451	int i;
2452
2453	regs->version = (1 << 24) | nic->pdev->revision;
2454	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2455		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2456		ioread16(&nic->csr->scb.status);
2457	for (i = 0; i < E100_PHY_REGS; i++)
2458		/* Note that we read the registers in reverse order. This
2459		 * ordering is the ABI apparently used by ethtool and other
2460		 * applications.
2461		 */
2462		buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2463					E100_PHY_REGS - 1 - i);
2464	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2465	e100_exec_cb(nic, NULL, e100_dump);
2466	msleep(10);
2467	memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2468	       sizeof(nic->mem->dump_buf));
2469}
2470
2471static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2472{
2473	struct nic *nic = netdev_priv(netdev);
2474	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2475	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2476}
2477
2478static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2479{
2480	struct nic *nic = netdev_priv(netdev);
2481
2482	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2483	    !device_can_wakeup(&nic->pdev->dev))
2484		return -EOPNOTSUPP;
2485
2486	if (wol->wolopts)
2487		nic->flags |= wol_magic;
2488	else
2489		nic->flags &= ~wol_magic;
2490
2491	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2492
2493	e100_exec_cb(nic, NULL, e100_configure);
2494
2495	return 0;
2496}
2497
2498static u32 e100_get_msglevel(struct net_device *netdev)
2499{
2500	struct nic *nic = netdev_priv(netdev);
2501	return nic->msg_enable;
2502}
2503
2504static void e100_set_msglevel(struct net_device *netdev, u32 value)
2505{
2506	struct nic *nic = netdev_priv(netdev);
2507	nic->msg_enable = value;
2508}
2509
2510static int e100_nway_reset(struct net_device *netdev)
2511{
2512	struct nic *nic = netdev_priv(netdev);
2513	return mii_nway_restart(&nic->mii);
2514}
2515
2516static u32 e100_get_link(struct net_device *netdev)
2517{
2518	struct nic *nic = netdev_priv(netdev);
2519	return mii_link_ok(&nic->mii);
2520}
2521
2522static int e100_get_eeprom_len(struct net_device *netdev)
2523{
2524	struct nic *nic = netdev_priv(netdev);
2525	return nic->eeprom_wc << 1;
2526}
2527
2528#define E100_EEPROM_MAGIC	0x1234
2529static int e100_get_eeprom(struct net_device *netdev,
2530	struct ethtool_eeprom *eeprom, u8 *bytes)
2531{
2532	struct nic *nic = netdev_priv(netdev);
2533
2534	eeprom->magic = E100_EEPROM_MAGIC;
2535	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2536
2537	return 0;
2538}
2539
2540static int e100_set_eeprom(struct net_device *netdev,
2541	struct ethtool_eeprom *eeprom, u8 *bytes)
2542{
2543	struct nic *nic = netdev_priv(netdev);
2544
2545	if (eeprom->magic != E100_EEPROM_MAGIC)
2546		return -EINVAL;
2547
2548	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2549
2550	return e100_eeprom_save(nic, eeprom->offset >> 1,
2551		(eeprom->len >> 1) + 1);
2552}
2553
2554static void e100_get_ringparam(struct net_device *netdev,
2555			       struct ethtool_ringparam *ring,
2556			       struct kernel_ethtool_ringparam *kernel_ring,
2557			       struct netlink_ext_ack *extack)
2558{
2559	struct nic *nic = netdev_priv(netdev);
2560	struct param_range *rfds = &nic->params.rfds;
2561	struct param_range *cbs = &nic->params.cbs;
2562
2563	ring->rx_max_pending = rfds->max;
2564	ring->tx_max_pending = cbs->max;
2565	ring->rx_pending = rfds->count;
2566	ring->tx_pending = cbs->count;
2567}
2568
2569static int e100_set_ringparam(struct net_device *netdev,
2570			      struct ethtool_ringparam *ring,
2571			      struct kernel_ethtool_ringparam *kernel_ring,
2572			      struct netlink_ext_ack *extack)
2573{
2574	struct nic *nic = netdev_priv(netdev);
2575	struct param_range *rfds = &nic->params.rfds;
2576	struct param_range *cbs = &nic->params.cbs;
2577
2578	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2579		return -EINVAL;
2580
2581	if (netif_running(netdev))
2582		e100_down(nic);
2583	rfds->count = max(ring->rx_pending, rfds->min);
2584	rfds->count = min(rfds->count, rfds->max);
2585	cbs->count = max(ring->tx_pending, cbs->min);
2586	cbs->count = min(cbs->count, cbs->max);
2587	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2588		   rfds->count, cbs->count);
2589	if (netif_running(netdev))
2590		e100_up(nic);
2591
2592	return 0;
2593}
2594
2595static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2596	"Link test     (on/offline)",
2597	"Eeprom test   (on/offline)",
2598	"Self test        (offline)",
2599	"Mac loopback     (offline)",
2600	"Phy loopback     (offline)",
2601};
2602#define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2603
2604static void e100_diag_test(struct net_device *netdev,
2605	struct ethtool_test *test, u64 *data)
2606{
2607	struct ethtool_cmd cmd;
2608	struct nic *nic = netdev_priv(netdev);
2609	int i;
2610
2611	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2612	data[0] = !mii_link_ok(&nic->mii);
2613	data[1] = e100_eeprom_load(nic);
2614	if (test->flags & ETH_TEST_FL_OFFLINE) {
2615
2616		/* save speed, duplex & autoneg settings */
2617		mii_ethtool_gset(&nic->mii, &cmd);
2618
2619		if (netif_running(netdev))
2620			e100_down(nic);
2621		data[2] = e100_self_test(nic);
2622		data[3] = e100_loopback_test(nic, lb_mac);
2623		data[4] = e100_loopback_test(nic, lb_phy);
2624
2625		/* restore speed, duplex & autoneg settings */
2626		mii_ethtool_sset(&nic->mii, &cmd);
2627
2628		if (netif_running(netdev))
2629			e100_up(nic);
2630	}
2631	for (i = 0; i < E100_TEST_LEN; i++)
2632		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2633
2634	msleep_interruptible(4 * 1000);
2635}
2636
2637static int e100_set_phys_id(struct net_device *netdev,
2638			    enum ethtool_phys_id_state state)
2639{
2640	struct nic *nic = netdev_priv(netdev);
2641	enum led_state {
2642		led_on     = 0x01,
2643		led_off    = 0x04,
2644		led_on_559 = 0x05,
2645		led_on_557 = 0x07,
2646	};
2647	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2648		MII_LED_CONTROL;
2649	u16 leds = 0;
2650
2651	switch (state) {
2652	case ETHTOOL_ID_ACTIVE:
2653		return 2;
2654
2655	case ETHTOOL_ID_ON:
2656		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2657		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2658		break;
2659
2660	case ETHTOOL_ID_OFF:
2661		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2662		break;
2663
2664	case ETHTOOL_ID_INACTIVE:
2665		break;
2666	}
2667
2668	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2669	return 0;
2670}
2671
2672static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2673	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2674	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2675	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2676	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2677	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2678	"tx_heartbeat_errors", "tx_window_errors",
2679	/* device-specific stats */
2680	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2681	"tx_flow_control_pause", "rx_flow_control_pause",
2682	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2683	"rx_short_frame_errors", "rx_over_length_errors",
2684};
2685#define E100_NET_STATS_LEN	21
2686#define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2687
2688static int e100_get_sset_count(struct net_device *netdev, int sset)
2689{
2690	switch (sset) {
2691	case ETH_SS_TEST:
2692		return E100_TEST_LEN;
2693	case ETH_SS_STATS:
2694		return E100_STATS_LEN;
2695	default:
2696		return -EOPNOTSUPP;
2697	}
2698}
2699
2700static void e100_get_ethtool_stats(struct net_device *netdev,
2701	struct ethtool_stats *stats, u64 *data)
2702{
2703	struct nic *nic = netdev_priv(netdev);
2704	int i;
2705
2706	for (i = 0; i < E100_NET_STATS_LEN; i++)
2707		data[i] = ((unsigned long *)&netdev->stats)[i];
2708
2709	data[i++] = nic->tx_deferred;
2710	data[i++] = nic->tx_single_collisions;
2711	data[i++] = nic->tx_multiple_collisions;
2712	data[i++] = nic->tx_fc_pause;
2713	data[i++] = nic->rx_fc_pause;
2714	data[i++] = nic->rx_fc_unsupported;
2715	data[i++] = nic->tx_tco_frames;
2716	data[i++] = nic->rx_tco_frames;
2717	data[i++] = nic->rx_short_frame_errors;
2718	data[i++] = nic->rx_over_length_errors;
2719}
2720
2721static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2722{
2723	switch (stringset) {
2724	case ETH_SS_TEST:
2725		memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
2726		break;
2727	case ETH_SS_STATS:
2728		memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
2729		break;
2730	}
2731}
2732
2733static const struct ethtool_ops e100_ethtool_ops = {
2734	.get_drvinfo		= e100_get_drvinfo,
2735	.get_regs_len		= e100_get_regs_len,
2736	.get_regs		= e100_get_regs,
2737	.get_wol		= e100_get_wol,
2738	.set_wol		= e100_set_wol,
2739	.get_msglevel		= e100_get_msglevel,
2740	.set_msglevel		= e100_set_msglevel,
2741	.nway_reset		= e100_nway_reset,
2742	.get_link		= e100_get_link,
2743	.get_eeprom_len		= e100_get_eeprom_len,
2744	.get_eeprom		= e100_get_eeprom,
2745	.set_eeprom		= e100_set_eeprom,
2746	.get_ringparam		= e100_get_ringparam,
2747	.set_ringparam		= e100_set_ringparam,
2748	.self_test		= e100_diag_test,
2749	.get_strings		= e100_get_strings,
2750	.set_phys_id		= e100_set_phys_id,
2751	.get_ethtool_stats	= e100_get_ethtool_stats,
2752	.get_sset_count		= e100_get_sset_count,
2753	.get_ts_info		= ethtool_op_get_ts_info,
2754	.get_link_ksettings	= e100_get_link_ksettings,
2755	.set_link_ksettings	= e100_set_link_ksettings,
2756};
2757
2758static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2759{
2760	struct nic *nic = netdev_priv(netdev);
2761
2762	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2763}
2764
2765static int e100_alloc(struct nic *nic)
2766{
2767	nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2768				      &nic->dma_addr, GFP_KERNEL);
2769	return nic->mem ? 0 : -ENOMEM;
2770}
2771
2772static void e100_free(struct nic *nic)
2773{
2774	if (nic->mem) {
2775		dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2776				  nic->mem, nic->dma_addr);
2777		nic->mem = NULL;
2778	}
2779}
2780
2781static int e100_open(struct net_device *netdev)
2782{
2783	struct nic *nic = netdev_priv(netdev);
2784	int err = 0;
2785
2786	netif_carrier_off(netdev);
2787	if ((err = e100_up(nic)))
2788		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2789	return err;
2790}
2791
2792static int e100_close(struct net_device *netdev)
2793{
2794	e100_down(netdev_priv(netdev));
2795	return 0;
2796}
2797
2798static int e100_set_features(struct net_device *netdev,
2799			     netdev_features_t features)
2800{
2801	struct nic *nic = netdev_priv(netdev);
2802	netdev_features_t changed = features ^ netdev->features;
2803
2804	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2805		return 0;
2806
2807	netdev->features = features;
2808	e100_exec_cb(nic, NULL, e100_configure);
2809	return 1;
2810}
2811
2812static const struct net_device_ops e100_netdev_ops = {
2813	.ndo_open		= e100_open,
2814	.ndo_stop		= e100_close,
2815	.ndo_start_xmit		= e100_xmit_frame,
2816	.ndo_validate_addr	= eth_validate_addr,
2817	.ndo_set_rx_mode	= e100_set_multicast_list,
2818	.ndo_set_mac_address	= e100_set_mac_address,
2819	.ndo_eth_ioctl		= e100_do_ioctl,
2820	.ndo_tx_timeout		= e100_tx_timeout,
2821#ifdef CONFIG_NET_POLL_CONTROLLER
2822	.ndo_poll_controller	= e100_netpoll,
2823#endif
2824	.ndo_set_features	= e100_set_features,
2825};
2826
2827static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2828{
2829	struct net_device *netdev;
2830	struct nic *nic;
2831	int err;
2832
2833	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2834		return -ENOMEM;
2835
2836	netdev->hw_features |= NETIF_F_RXFCS;
2837	netdev->priv_flags |= IFF_SUPP_NOFCS;
2838	netdev->hw_features |= NETIF_F_RXALL;
2839
2840	netdev->netdev_ops = &e100_netdev_ops;
2841	netdev->ethtool_ops = &e100_ethtool_ops;
2842	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2843	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
2844
2845	nic = netdev_priv(netdev);
2846	netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2847	nic->netdev = netdev;
2848	nic->pdev = pdev;
2849	nic->msg_enable = (1 << debug) - 1;
2850	nic->mdio_ctrl = mdio_ctrl_hw;
2851	pci_set_drvdata(pdev, netdev);
2852
2853	if ((err = pci_enable_device(pdev))) {
2854		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2855		goto err_out_free_dev;
2856	}
2857
2858	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2859		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2860		err = -ENODEV;
2861		goto err_out_disable_pdev;
2862	}
2863
2864	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2865		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2866		goto err_out_disable_pdev;
2867	}
2868
2869	if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2870		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2871		goto err_out_free_res;
2872	}
2873
2874	SET_NETDEV_DEV(netdev, &pdev->dev);
2875
2876	if (use_io)
2877		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2878
2879	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2880	if (!nic->csr) {
2881		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2882		err = -ENOMEM;
2883		goto err_out_free_res;
2884	}
2885
2886	if (ent->driver_data)
2887		nic->flags |= ich;
2888	else
2889		nic->flags &= ~ich;
2890
2891	e100_get_defaults(nic);
2892
2893	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2894	if (nic->mac < mac_82558_D101_A4)
2895		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2896
2897	/* locks must be initialized before calling hw_reset */
2898	spin_lock_init(&nic->cb_lock);
2899	spin_lock_init(&nic->cmd_lock);
2900	spin_lock_init(&nic->mdio_lock);
2901
2902	/* Reset the device before pci_set_master() in case device is in some
2903	 * funky state and has an interrupt pending - hint: we don't have the
2904	 * interrupt handler registered yet. */
2905	e100_hw_reset(nic);
2906
2907	pci_set_master(pdev);
2908
2909	timer_setup(&nic->watchdog, e100_watchdog, 0);
2910
2911	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2912
2913	if ((err = e100_alloc(nic))) {
2914		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2915		goto err_out_iounmap;
2916	}
2917
2918	if ((err = e100_eeprom_load(nic)))
2919		goto err_out_free;
2920
2921	e100_phy_init(nic);
2922
2923	eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
2924	if (!is_valid_ether_addr(netdev->dev_addr)) {
2925		if (!eeprom_bad_csum_allow) {
2926			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2927			err = -EAGAIN;
2928			goto err_out_free;
2929		} else {
2930			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2931		}
2932	}
2933
2934	/* Wol magic packet can be enabled from eeprom */
2935	if ((nic->mac >= mac_82558_D101_A4) &&
2936	   (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2937		nic->flags |= wol_magic;
2938		device_set_wakeup_enable(&pdev->dev, true);
2939	}
2940
2941	/* ack any pending wake events, disable PME */
2942	pci_pme_active(pdev, false);
2943
2944	strcpy(netdev->name, "eth%d");
2945	if ((err = register_netdev(netdev))) {
2946		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2947		goto err_out_free;
2948	}
2949	nic->cbs_pool = dma_pool_create(netdev->name,
2950			   &nic->pdev->dev,
2951			   nic->params.cbs.max * sizeof(struct cb),
2952			   sizeof(u32),
2953			   0);
2954	if (!nic->cbs_pool) {
2955		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2956		err = -ENOMEM;
2957		goto err_out_pool;
2958	}
2959	netif_info(nic, probe, nic->netdev,
2960		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2961		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2962		   pdev->irq, netdev->dev_addr);
2963
2964	return 0;
2965
2966err_out_pool:
2967	unregister_netdev(netdev);
2968err_out_free:
2969	e100_free(nic);
2970err_out_iounmap:
2971	pci_iounmap(pdev, nic->csr);
2972err_out_free_res:
2973	pci_release_regions(pdev);
2974err_out_disable_pdev:
2975	pci_disable_device(pdev);
2976err_out_free_dev:
2977	free_netdev(netdev);
2978	return err;
2979}
2980
2981static void e100_remove(struct pci_dev *pdev)
2982{
2983	struct net_device *netdev = pci_get_drvdata(pdev);
2984
2985	if (netdev) {
2986		struct nic *nic = netdev_priv(netdev);
2987		unregister_netdev(netdev);
2988		e100_free(nic);
2989		pci_iounmap(pdev, nic->csr);
2990		dma_pool_destroy(nic->cbs_pool);
2991		free_netdev(netdev);
2992		pci_release_regions(pdev);
2993		pci_disable_device(pdev);
2994	}
2995}
2996
2997#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2998#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
2999#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3000static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3001{
3002	struct net_device *netdev = pci_get_drvdata(pdev);
3003	struct nic *nic = netdev_priv(netdev);
3004
3005	netif_device_detach(netdev);
3006
3007	if (netif_running(netdev))
3008		e100_down(nic);
3009
3010	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3011		/* enable reverse auto-negotiation */
3012		if (nic->phy == phy_82552_v) {
3013			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3014			                           E100_82552_SMARTSPEED);
3015
3016			mdio_write(netdev, nic->mii.phy_id,
3017			           E100_82552_SMARTSPEED, smartspeed |
3018			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3019		}
3020		*enable_wake = true;
3021	} else {
3022		*enable_wake = false;
3023	}
3024
3025	pci_disable_device(pdev);
3026}
3027
3028static int __e100_power_off(struct pci_dev *pdev, bool wake)
3029{
3030	if (wake)
3031		return pci_prepare_to_sleep(pdev);
3032
3033	pci_wake_from_d3(pdev, false);
3034	pci_set_power_state(pdev, PCI_D3hot);
3035
3036	return 0;
3037}
3038
3039static int e100_suspend(struct device *dev_d)
3040{
3041	bool wake;
3042
3043	__e100_shutdown(to_pci_dev(dev_d), &wake);
3044
3045	return 0;
3046}
3047
3048static int e100_resume(struct device *dev_d)
3049{
3050	struct net_device *netdev = dev_get_drvdata(dev_d);
3051	struct nic *nic = netdev_priv(netdev);
3052	int err;
3053
3054	err = pci_enable_device(to_pci_dev(dev_d));
3055	if (err) {
3056		netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3057		return err;
3058	}
3059	pci_set_master(to_pci_dev(dev_d));
3060
3061	/* disable reverse auto-negotiation */
3062	if (nic->phy == phy_82552_v) {
3063		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3064		                           E100_82552_SMARTSPEED);
3065
3066		mdio_write(netdev, nic->mii.phy_id,
3067		           E100_82552_SMARTSPEED,
3068		           smartspeed & ~(E100_82552_REV_ANEG));
3069	}
3070
3071	if (netif_running(netdev))
3072		e100_up(nic);
3073
3074	netif_device_attach(netdev);
3075
3076	return 0;
3077}
3078
3079static void e100_shutdown(struct pci_dev *pdev)
3080{
3081	bool wake;
3082	__e100_shutdown(pdev, &wake);
3083	if (system_state == SYSTEM_POWER_OFF)
3084		__e100_power_off(pdev, wake);
3085}
3086
3087/* ------------------ PCI Error Recovery infrastructure  -------------- */
3088/**
3089 * e100_io_error_detected - called when PCI error is detected.
3090 * @pdev: Pointer to PCI device
3091 * @state: The current pci connection state
3092 */
3093static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3094{
3095	struct net_device *netdev = pci_get_drvdata(pdev);
3096	struct nic *nic = netdev_priv(netdev);
3097
3098	netif_device_detach(netdev);
3099
3100	if (state == pci_channel_io_perm_failure)
3101		return PCI_ERS_RESULT_DISCONNECT;
3102
3103	if (netif_running(netdev))
3104		e100_down(nic);
3105	pci_disable_device(pdev);
3106
3107	/* Request a slot reset. */
3108	return PCI_ERS_RESULT_NEED_RESET;
3109}
3110
3111/**
3112 * e100_io_slot_reset - called after the pci bus has been reset.
3113 * @pdev: Pointer to PCI device
3114 *
3115 * Restart the card from scratch.
3116 */
3117static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3118{
3119	struct net_device *netdev = pci_get_drvdata(pdev);
3120	struct nic *nic = netdev_priv(netdev);
3121
3122	if (pci_enable_device(pdev)) {
3123		pr_err("Cannot re-enable PCI device after reset\n");
3124		return PCI_ERS_RESULT_DISCONNECT;
3125	}
3126	pci_set_master(pdev);
3127
3128	/* Only one device per card can do a reset */
3129	if (0 != PCI_FUNC(pdev->devfn))
3130		return PCI_ERS_RESULT_RECOVERED;
3131	e100_hw_reset(nic);
3132	e100_phy_init(nic);
3133
3134	return PCI_ERS_RESULT_RECOVERED;
3135}
3136
3137/**
3138 * e100_io_resume - resume normal operations
3139 * @pdev: Pointer to PCI device
3140 *
3141 * Resume normal operations after an error recovery
3142 * sequence has been completed.
3143 */
3144static void e100_io_resume(struct pci_dev *pdev)
3145{
3146	struct net_device *netdev = pci_get_drvdata(pdev);
3147	struct nic *nic = netdev_priv(netdev);
3148
3149	/* ack any pending wake events, disable PME */
3150	pci_enable_wake(pdev, PCI_D0, 0);
3151
3152	netif_device_attach(netdev);
3153	if (netif_running(netdev)) {
3154		e100_open(netdev);
3155		mod_timer(&nic->watchdog, jiffies);
3156	}
3157}
3158
3159static const struct pci_error_handlers e100_err_handler = {
3160	.error_detected = e100_io_error_detected,
3161	.slot_reset = e100_io_slot_reset,
3162	.resume = e100_io_resume,
3163};
3164
3165static DEFINE_SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3166
3167static struct pci_driver e100_driver = {
3168	.name =         DRV_NAME,
3169	.id_table =     e100_id_table,
3170	.probe =        e100_probe,
3171	.remove =       e100_remove,
3172
3173	/* Power Management hooks */
3174	.driver.pm =	pm_sleep_ptr(&e100_pm_ops),
3175
3176	.shutdown =     e100_shutdown,
3177	.err_handler = &e100_err_handler,
3178};
3179
3180static int __init e100_init_module(void)
3181{
3182	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3183		pr_info("%s\n", DRV_DESCRIPTION);
3184		pr_info("%s\n", DRV_COPYRIGHT);
3185	}
3186	return pci_register_driver(&e100_driver);
3187}
3188
3189static void __exit e100_cleanup_module(void)
3190{
3191	pci_unregister_driver(&e100_driver);
3192}
3193
3194module_init(e100_init_module);
3195module_exit(e100_cleanup_module);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
   3
   4/*
   5 *	e100.c: Intel(R) PRO/100 ethernet driver
   6 *
   7 *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
   8 *	original e100 driver, but better described as a munging of
   9 *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  10 *
  11 *	References:
  12 *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
  13 *		Open Source Software Developers Manual,
  14 *		http://sourceforge.net/projects/e1000
  15 *
  16 *
  17 *	                      Theory of Operation
  18 *
  19 *	I.   General
  20 *
  21 *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  22 *	controller family, which includes the 82557, 82558, 82559, 82550,
  23 *	82551, and 82562 devices.  82558 and greater controllers
  24 *	integrate the Intel 82555 PHY.  The controllers are used in
  25 *	server and client network interface cards, as well as in
  26 *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  27 *	configurations.  8255x supports a 32-bit linear addressing
  28 *	mode and operates at 33Mhz PCI clock rate.
  29 *
  30 *	II.  Driver Operation
  31 *
  32 *	Memory-mapped mode is used exclusively to access the device's
  33 *	shared-memory structure, the Control/Status Registers (CSR). All
  34 *	setup, configuration, and control of the device, including queuing
  35 *	of Tx, Rx, and configuration commands is through the CSR.
  36 *	cmd_lock serializes accesses to the CSR command register.  cb_lock
  37 *	protects the shared Command Block List (CBL).
  38 *
  39 *	8255x is highly MII-compliant and all access to the PHY go
  40 *	through the Management Data Interface (MDI).  Consequently, the
  41 *	driver leverages the mii.c library shared with other MII-compliant
  42 *	devices.
  43 *
  44 *	Big- and Little-Endian byte order as well as 32- and 64-bit
  45 *	archs are supported.  Weak-ordered memory and non-cache-coherent
  46 *	archs are supported.
  47 *
  48 *	III. Transmit
  49 *
  50 *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
  51 *	together in a fixed-size ring (CBL) thus forming the flexible mode
  52 *	memory structure.  A TCB marked with the suspend-bit indicates
  53 *	the end of the ring.  The last TCB processed suspends the
  54 *	controller, and the controller can be restarted by issue a CU
  55 *	resume command to continue from the suspend point, or a CU start
  56 *	command to start at a given position in the ring.
  57 *
  58 *	Non-Tx commands (config, multicast setup, etc) are linked
  59 *	into the CBL ring along with Tx commands.  The common structure
  60 *	used for both Tx and non-Tx commands is the Command Block (CB).
  61 *
  62 *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
  63 *	is the next CB to check for completion; cb_to_send is the first
  64 *	CB to start on in case of a previous failure to resume.  CB clean
  65 *	up happens in interrupt context in response to a CU interrupt.
  66 *	cbs_avail keeps track of number of free CB resources available.
  67 *
  68 * 	Hardware padding of short packets to minimum packet size is
  69 * 	enabled.  82557 pads with 7Eh, while the later controllers pad
  70 * 	with 00h.
  71 *
  72 *	IV.  Receive
  73 *
  74 *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
  75 *	Descriptors (RFD) + data buffer, thus forming the simplified mode
  76 *	memory structure.  Rx skbs are allocated to contain both the RFD
  77 *	and the data buffer, but the RFD is pulled off before the skb is
  78 *	indicated.  The data buffer is aligned such that encapsulated
  79 *	protocol headers are u32-aligned.  Since the RFD is part of the
  80 *	mapped shared memory, and completion status is contained within
  81 *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
  82 *	view from software and hardware.
  83 *
  84 *	In order to keep updates to the RFD link field from colliding with
  85 *	hardware writes to mark packets complete, we use the feature that
  86 *	hardware will not write to a size 0 descriptor and mark the previous
  87 *	packet as end-of-list (EL).   After updating the link, we remove EL
  88 *	and only then restore the size such that hardware may use the
  89 *	previous-to-end RFD.
  90 *
  91 *	Under typical operation, the  receive unit (RU) is start once,
  92 *	and the controller happily fills RFDs as frames arrive.  If
  93 *	replacement RFDs cannot be allocated, or the RU goes non-active,
  94 *	the RU must be restarted.  Frame arrival generates an interrupt,
  95 *	and Rx indication and re-allocation happen in the same context,
  96 *	therefore no locking is required.  A software-generated interrupt
  97 *	is generated from the watchdog to recover from a failed allocation
  98 *	scenario where all Rx resources have been indicated and none re-
  99 *	placed.
 100 *
 101 *	V.   Miscellaneous
 102 *
 103 * 	VLAN offloading of tagging, stripping and filtering is not
 104 * 	supported, but driver will accommodate the extra 4-byte VLAN tag
 105 * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
 106 * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 107 * 	not supported (hardware limitation).
 108 *
 109 * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 110 *
 111 * 	Thanks to JC (jchapman@katalix.com) for helping with
 112 * 	testing/troubleshooting the development driver.
 113 *
 114 * 	TODO:
 115 * 	o several entry points race with dev->close
 116 * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
 117 *
 118 *	FIXES:
 119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 120 *	- Stratus87247: protect MDI control register manipulations
 121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
 122 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
 123 */
 124
 125#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 126
 127#include <linux/hardirq.h>
 128#include <linux/interrupt.h>
 129#include <linux/module.h>
 130#include <linux/moduleparam.h>
 131#include <linux/kernel.h>
 132#include <linux/types.h>
 133#include <linux/sched.h>
 134#include <linux/slab.h>
 135#include <linux/delay.h>
 136#include <linux/init.h>
 137#include <linux/pci.h>
 138#include <linux/dma-mapping.h>
 139#include <linux/dmapool.h>
 140#include <linux/netdevice.h>
 141#include <linux/etherdevice.h>
 142#include <linux/mii.h>
 143#include <linux/if_vlan.h>
 144#include <linux/skbuff.h>
 145#include <linux/ethtool.h>
 146#include <linux/string.h>
 147#include <linux/firmware.h>
 148#include <linux/rtnetlink.h>
 149#include <asm/unaligned.h>
 150
 151
 152#define DRV_NAME		"e100"
 153#define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
 154#define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
 155
 156#define E100_WATCHDOG_PERIOD	(2 * HZ)
 157#define E100_NAPI_WEIGHT	16
 158
 159#define FIRMWARE_D101M		"e100/d101m_ucode.bin"
 160#define FIRMWARE_D101S		"e100/d101s_ucode.bin"
 161#define FIRMWARE_D102E		"e100/d102e_ucode.bin"
 162
 163MODULE_DESCRIPTION(DRV_DESCRIPTION);
 164MODULE_AUTHOR(DRV_COPYRIGHT);
 165MODULE_LICENSE("GPL v2");
 166MODULE_FIRMWARE(FIRMWARE_D101M);
 167MODULE_FIRMWARE(FIRMWARE_D101S);
 168MODULE_FIRMWARE(FIRMWARE_D102E);
 169
 170static int debug = 3;
 171static int eeprom_bad_csum_allow = 0;
 172static int use_io = 0;
 173module_param(debug, int, 0);
 174module_param(eeprom_bad_csum_allow, int, 0);
 175module_param(use_io, int, 0);
 176MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 177MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
 178MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
 179
 180#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 181	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 182	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
 183static const struct pci_device_id e100_id_table[] = {
 184	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 185	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 186	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
 187	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
 188	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
 189	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
 190	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
 191	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
 192	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
 193	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
 194	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
 195	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
 196	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
 197	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
 198	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
 199	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
 200	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
 201	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
 202	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
 203	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
 204	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
 205	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
 206	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
 207	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
 208	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
 209	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
 210	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
 211	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
 212	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
 213	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
 214	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
 215	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
 216	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
 217	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
 218	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
 219	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
 220	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
 221	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
 222	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
 223	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
 224	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
 225	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
 226	{ 0, }
 227};
 228MODULE_DEVICE_TABLE(pci, e100_id_table);
 229
 230enum mac {
 231	mac_82557_D100_A  = 0,
 232	mac_82557_D100_B  = 1,
 233	mac_82557_D100_C  = 2,
 234	mac_82558_D101_A4 = 4,
 235	mac_82558_D101_B0 = 5,
 236	mac_82559_D101M   = 8,
 237	mac_82559_D101S   = 9,
 238	mac_82550_D102    = 12,
 239	mac_82550_D102_C  = 13,
 240	mac_82551_E       = 14,
 241	mac_82551_F       = 15,
 242	mac_82551_10      = 16,
 243	mac_unknown       = 0xFF,
 244};
 245
 246enum phy {
 247	phy_100a     = 0x000003E0,
 248	phy_100c     = 0x035002A8,
 249	phy_82555_tx = 0x015002A8,
 250	phy_nsc_tx   = 0x5C002000,
 251	phy_82562_et = 0x033002A8,
 252	phy_82562_em = 0x032002A8,
 253	phy_82562_ek = 0x031002A8,
 254	phy_82562_eh = 0x017002A8,
 255	phy_82552_v  = 0xd061004d,
 256	phy_unknown  = 0xFFFFFFFF,
 257};
 258
 259/* CSR (Control/Status Registers) */
 260struct csr {
 261	struct {
 262		u8 status;
 263		u8 stat_ack;
 264		u8 cmd_lo;
 265		u8 cmd_hi;
 266		u32 gen_ptr;
 267	} scb;
 268	u32 port;
 269	u16 flash_ctrl;
 270	u8 eeprom_ctrl_lo;
 271	u8 eeprom_ctrl_hi;
 272	u32 mdi_ctrl;
 273	u32 rx_dma_count;
 274};
 275
 276enum scb_status {
 277	rus_no_res       = 0x08,
 278	rus_ready        = 0x10,
 279	rus_mask         = 0x3C,
 280};
 281
 282enum ru_state  {
 283	RU_SUSPENDED = 0,
 284	RU_RUNNING	 = 1,
 285	RU_UNINITIALIZED = -1,
 286};
 287
 288enum scb_stat_ack {
 289	stat_ack_not_ours    = 0x00,
 290	stat_ack_sw_gen      = 0x04,
 291	stat_ack_rnr         = 0x10,
 292	stat_ack_cu_idle     = 0x20,
 293	stat_ack_frame_rx    = 0x40,
 294	stat_ack_cu_cmd_done = 0x80,
 295	stat_ack_not_present = 0xFF,
 296	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
 297	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
 298};
 299
 300enum scb_cmd_hi {
 301	irq_mask_none = 0x00,
 302	irq_mask_all  = 0x01,
 303	irq_sw_gen    = 0x02,
 304};
 305
 306enum scb_cmd_lo {
 307	cuc_nop        = 0x00,
 308	ruc_start      = 0x01,
 309	ruc_load_base  = 0x06,
 310	cuc_start      = 0x10,
 311	cuc_resume     = 0x20,
 312	cuc_dump_addr  = 0x40,
 313	cuc_dump_stats = 0x50,
 314	cuc_load_base  = 0x60,
 315	cuc_dump_reset = 0x70,
 316};
 317
 318enum cuc_dump {
 319	cuc_dump_complete       = 0x0000A005,
 320	cuc_dump_reset_complete = 0x0000A007,
 321};
 322
 323enum port {
 324	software_reset  = 0x0000,
 325	selftest        = 0x0001,
 326	selective_reset = 0x0002,
 327};
 328
 329enum eeprom_ctrl_lo {
 330	eesk = 0x01,
 331	eecs = 0x02,
 332	eedi = 0x04,
 333	eedo = 0x08,
 334};
 335
 336enum mdi_ctrl {
 337	mdi_write = 0x04000000,
 338	mdi_read  = 0x08000000,
 339	mdi_ready = 0x10000000,
 340};
 341
 342enum eeprom_op {
 343	op_write = 0x05,
 344	op_read  = 0x06,
 345	op_ewds  = 0x10,
 346	op_ewen  = 0x13,
 347};
 348
 349enum eeprom_offsets {
 350	eeprom_cnfg_mdix  = 0x03,
 351	eeprom_phy_iface  = 0x06,
 352	eeprom_id         = 0x0A,
 353	eeprom_config_asf = 0x0D,
 354	eeprom_smbus_addr = 0x90,
 355};
 356
 357enum eeprom_cnfg_mdix {
 358	eeprom_mdix_enabled = 0x0080,
 359};
 360
 361enum eeprom_phy_iface {
 362	NoSuchPhy = 0,
 363	I82553AB,
 364	I82553C,
 365	I82503,
 366	DP83840,
 367	S80C240,
 368	S80C24,
 369	I82555,
 370	DP83840A = 10,
 371};
 372
 373enum eeprom_id {
 374	eeprom_id_wol = 0x0020,
 375};
 376
 377enum eeprom_config_asf {
 378	eeprom_asf = 0x8000,
 379	eeprom_gcl = 0x4000,
 380};
 381
 382enum cb_status {
 383	cb_complete = 0x8000,
 384	cb_ok       = 0x2000,
 385};
 386
 387/*
 388 * cb_command - Command Block flags
 389 * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
 390 */
 391enum cb_command {
 392	cb_nop    = 0x0000,
 393	cb_iaaddr = 0x0001,
 394	cb_config = 0x0002,
 395	cb_multi  = 0x0003,
 396	cb_tx     = 0x0004,
 397	cb_ucode  = 0x0005,
 398	cb_dump   = 0x0006,
 399	cb_tx_sf  = 0x0008,
 400	cb_tx_nc  = 0x0010,
 401	cb_cid    = 0x1f00,
 402	cb_i      = 0x2000,
 403	cb_s      = 0x4000,
 404	cb_el     = 0x8000,
 405};
 406
 407struct rfd {
 408	__le16 status;
 409	__le16 command;
 410	__le32 link;
 411	__le32 rbd;
 412	__le16 actual_size;
 413	__le16 size;
 414};
 415
 416struct rx {
 417	struct rx *next, *prev;
 418	struct sk_buff *skb;
 419	dma_addr_t dma_addr;
 420};
 421
 422#if defined(__BIG_ENDIAN_BITFIELD)
 423#define X(a,b)	b,a
 424#else
 425#define X(a,b)	a,b
 426#endif
 427struct config {
 428/*0*/	u8 X(byte_count:6, pad0:2);
 429/*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
 430/*2*/	u8 adaptive_ifs;
 431/*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
 432	   term_write_cache_line:1), pad3:4);
 433/*4*/	u8 X(rx_dma_max_count:7, pad4:1);
 434/*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
 435/*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
 436	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
 437	   rx_save_overruns : 1), rx_save_bad_frames : 1);
 438/*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
 439	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
 440	   tx_dynamic_tbd:1);
 441/*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
 442/*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
 443	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
 444/*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
 445	   loopback:2);
 446/*11*/	u8 X(linear_priority:3, pad11:5);
 447/*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
 448/*13*/	u8 ip_addr_lo;
 449/*14*/	u8 ip_addr_hi;
 450/*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
 451	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
 452	   pad15_2:1), crs_or_cdt:1);
 453/*16*/	u8 fc_delay_lo;
 454/*17*/	u8 fc_delay_hi;
 455/*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
 456	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
 457/*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
 458	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
 459	   full_duplex_force:1), full_duplex_pin:1);
 460/*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
 461/*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
 462/*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
 463	u8 pad_d102[9];
 464};
 465
 466#define E100_MAX_MULTICAST_ADDRS	64
 467struct multi {
 468	__le16 count;
 469	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
 470};
 471
 472/* Important: keep total struct u32-aligned */
 473#define UCODE_SIZE			134
 474struct cb {
 475	__le16 status;
 476	__le16 command;
 477	__le32 link;
 478	union {
 479		u8 iaaddr[ETH_ALEN];
 480		__le32 ucode[UCODE_SIZE];
 481		struct config config;
 482		struct multi multi;
 483		struct {
 484			u32 tbd_array;
 485			u16 tcb_byte_count;
 486			u8 threshold;
 487			u8 tbd_count;
 488			struct {
 489				__le32 buf_addr;
 490				__le16 size;
 491				u16 eol;
 492			} tbd;
 493		} tcb;
 494		__le32 dump_buffer_addr;
 495	} u;
 496	struct cb *next, *prev;
 497	dma_addr_t dma_addr;
 498	struct sk_buff *skb;
 499};
 500
 501enum loopback {
 502	lb_none = 0, lb_mac = 1, lb_phy = 3,
 503};
 504
 505struct stats {
 506	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
 507		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
 508		tx_multiple_collisions, tx_total_collisions;
 509	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
 510		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
 511		rx_short_frame_errors;
 512	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
 513	__le16 xmt_tco_frames, rcv_tco_frames;
 514	__le32 complete;
 515};
 516
 517struct mem {
 518	struct {
 519		u32 signature;
 520		u32 result;
 521	} selftest;
 522	struct stats stats;
 523	u8 dump_buf[596];
 524};
 525
 526struct param_range {
 527	u32 min;
 528	u32 max;
 529	u32 count;
 530};
 531
 532struct params {
 533	struct param_range rfds;
 534	struct param_range cbs;
 535};
 536
 537struct nic {
 538	/* Begin: frequently used values: keep adjacent for cache effect */
 539	u32 msg_enable				____cacheline_aligned;
 540	struct net_device *netdev;
 541	struct pci_dev *pdev;
 542	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
 543
 544	struct rx *rxs				____cacheline_aligned;
 545	struct rx *rx_to_use;
 546	struct rx *rx_to_clean;
 547	struct rfd blank_rfd;
 548	enum ru_state ru_running;
 549
 550	spinlock_t cb_lock			____cacheline_aligned;
 551	spinlock_t cmd_lock;
 552	struct csr __iomem *csr;
 553	enum scb_cmd_lo cuc_cmd;
 554	unsigned int cbs_avail;
 555	struct napi_struct napi;
 556	struct cb *cbs;
 557	struct cb *cb_to_use;
 558	struct cb *cb_to_send;
 559	struct cb *cb_to_clean;
 560	__le16 tx_command;
 561	/* End: frequently used values: keep adjacent for cache effect */
 562
 563	enum {
 564		ich                = (1 << 0),
 565		promiscuous        = (1 << 1),
 566		multicast_all      = (1 << 2),
 567		wol_magic          = (1 << 3),
 568		ich_10h_workaround = (1 << 4),
 569	} flags					____cacheline_aligned;
 570
 571	enum mac mac;
 572	enum phy phy;
 573	struct params params;
 574	struct timer_list watchdog;
 575	struct mii_if_info mii;
 576	struct work_struct tx_timeout_task;
 577	enum loopback loopback;
 578
 579	struct mem *mem;
 580	dma_addr_t dma_addr;
 581
 582	struct dma_pool *cbs_pool;
 583	dma_addr_t cbs_dma_addr;
 584	u8 adaptive_ifs;
 585	u8 tx_threshold;
 586	u32 tx_frames;
 587	u32 tx_collisions;
 588	u32 tx_deferred;
 589	u32 tx_single_collisions;
 590	u32 tx_multiple_collisions;
 591	u32 tx_fc_pause;
 592	u32 tx_tco_frames;
 593
 594	u32 rx_fc_pause;
 595	u32 rx_fc_unsupported;
 596	u32 rx_tco_frames;
 597	u32 rx_short_frame_errors;
 598	u32 rx_over_length_errors;
 599
 600	u16 eeprom_wc;
 601	__le16 eeprom[256];
 602	spinlock_t mdio_lock;
 603	const struct firmware *fw;
 604};
 605
 606static inline void e100_write_flush(struct nic *nic)
 607{
 608	/* Flush previous PCI writes through intermediate bridges
 609	 * by doing a benign read */
 610	(void)ioread8(&nic->csr->scb.status);
 611}
 612
 613static void e100_enable_irq(struct nic *nic)
 614{
 615	unsigned long flags;
 616
 617	spin_lock_irqsave(&nic->cmd_lock, flags);
 618	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
 619	e100_write_flush(nic);
 620	spin_unlock_irqrestore(&nic->cmd_lock, flags);
 621}
 622
 623static void e100_disable_irq(struct nic *nic)
 624{
 625	unsigned long flags;
 626
 627	spin_lock_irqsave(&nic->cmd_lock, flags);
 628	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
 629	e100_write_flush(nic);
 630	spin_unlock_irqrestore(&nic->cmd_lock, flags);
 631}
 632
 633static void e100_hw_reset(struct nic *nic)
 634{
 635	/* Put CU and RU into idle with a selective reset to get
 636	 * device off of PCI bus */
 637	iowrite32(selective_reset, &nic->csr->port);
 638	e100_write_flush(nic); udelay(20);
 639
 640	/* Now fully reset device */
 641	iowrite32(software_reset, &nic->csr->port);
 642	e100_write_flush(nic); udelay(20);
 643
 644	/* Mask off our interrupt line - it's unmasked after reset */
 645	e100_disable_irq(nic);
 646}
 647
 648static int e100_self_test(struct nic *nic)
 649{
 650	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
 651
 652	/* Passing the self-test is a pretty good indication
 653	 * that the device can DMA to/from host memory */
 654
 655	nic->mem->selftest.signature = 0;
 656	nic->mem->selftest.result = 0xFFFFFFFF;
 657
 658	iowrite32(selftest | dma_addr, &nic->csr->port);
 659	e100_write_flush(nic);
 660	/* Wait 10 msec for self-test to complete */
 661	msleep(10);
 662
 663	/* Interrupts are enabled after self-test */
 664	e100_disable_irq(nic);
 665
 666	/* Check results of self-test */
 667	if (nic->mem->selftest.result != 0) {
 668		netif_err(nic, hw, nic->netdev,
 669			  "Self-test failed: result=0x%08X\n",
 670			  nic->mem->selftest.result);
 671		return -ETIMEDOUT;
 672	}
 673	if (nic->mem->selftest.signature == 0) {
 674		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
 675		return -ETIMEDOUT;
 676	}
 677
 678	return 0;
 679}
 680
 681static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
 682{
 683	u32 cmd_addr_data[3];
 684	u8 ctrl;
 685	int i, j;
 686
 687	/* Three cmds: write/erase enable, write data, write/erase disable */
 688	cmd_addr_data[0] = op_ewen << (addr_len - 2);
 689	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
 690		le16_to_cpu(data);
 691	cmd_addr_data[2] = op_ewds << (addr_len - 2);
 692
 693	/* Bit-bang cmds to write word to eeprom */
 694	for (j = 0; j < 3; j++) {
 695
 696		/* Chip select */
 697		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 698		e100_write_flush(nic); udelay(4);
 699
 700		for (i = 31; i >= 0; i--) {
 701			ctrl = (cmd_addr_data[j] & (1 << i)) ?
 702				eecs | eedi : eecs;
 703			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 704			e100_write_flush(nic); udelay(4);
 705
 706			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 707			e100_write_flush(nic); udelay(4);
 708		}
 709		/* Wait 10 msec for cmd to complete */
 710		msleep(10);
 711
 712		/* Chip deselect */
 713		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 714		e100_write_flush(nic); udelay(4);
 715	}
 716};
 717
 718/* General technique stolen from the eepro100 driver - very clever */
 719static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
 720{
 721	u32 cmd_addr_data;
 722	u16 data = 0;
 723	u8 ctrl;
 724	int i;
 725
 726	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
 727
 728	/* Chip select */
 729	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 730	e100_write_flush(nic); udelay(4);
 731
 732	/* Bit-bang to read word from eeprom */
 733	for (i = 31; i >= 0; i--) {
 734		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
 735		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 736		e100_write_flush(nic); udelay(4);
 737
 738		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 739		e100_write_flush(nic); udelay(4);
 740
 741		/* Eeprom drives a dummy zero to EEDO after receiving
 742		 * complete address.  Use this to adjust addr_len. */
 743		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
 744		if (!(ctrl & eedo) && i > 16) {
 745			*addr_len -= (i - 16);
 746			i = 17;
 747		}
 748
 749		data = (data << 1) | (ctrl & eedo ? 1 : 0);
 750	}
 751
 752	/* Chip deselect */
 753	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 754	e100_write_flush(nic); udelay(4);
 755
 756	return cpu_to_le16(data);
 757};
 758
 759/* Load entire EEPROM image into driver cache and validate checksum */
 760static int e100_eeprom_load(struct nic *nic)
 761{
 762	u16 addr, addr_len = 8, checksum = 0;
 763
 764	/* Try reading with an 8-bit addr len to discover actual addr len */
 765	e100_eeprom_read(nic, &addr_len, 0);
 766	nic->eeprom_wc = 1 << addr_len;
 767
 768	for (addr = 0; addr < nic->eeprom_wc; addr++) {
 769		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
 770		if (addr < nic->eeprom_wc - 1)
 771			checksum += le16_to_cpu(nic->eeprom[addr]);
 772	}
 773
 774	/* The checksum, stored in the last word, is calculated such that
 775	 * the sum of words should be 0xBABA */
 776	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
 777		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
 778		if (!eeprom_bad_csum_allow)
 779			return -EAGAIN;
 780	}
 781
 782	return 0;
 783}
 784
 785/* Save (portion of) driver EEPROM cache to device and update checksum */
 786static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
 787{
 788	u16 addr, addr_len = 8, checksum = 0;
 789
 790	/* Try reading with an 8-bit addr len to discover actual addr len */
 791	e100_eeprom_read(nic, &addr_len, 0);
 792	nic->eeprom_wc = 1 << addr_len;
 793
 794	if (start + count >= nic->eeprom_wc)
 795		return -EINVAL;
 796
 797	for (addr = start; addr < start + count; addr++)
 798		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
 799
 800	/* The checksum, stored in the last word, is calculated such that
 801	 * the sum of words should be 0xBABA */
 802	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
 803		checksum += le16_to_cpu(nic->eeprom[addr]);
 804	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
 805	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
 806		nic->eeprom[nic->eeprom_wc - 1]);
 807
 808	return 0;
 809}
 810
 811#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
 812#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
 813static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
 814{
 815	unsigned long flags;
 816	unsigned int i;
 817	int err = 0;
 818
 819	spin_lock_irqsave(&nic->cmd_lock, flags);
 820
 821	/* Previous command is accepted when SCB clears */
 822	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
 823		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
 824			break;
 825		cpu_relax();
 826		if (unlikely(i > E100_WAIT_SCB_FAST))
 827			udelay(5);
 828	}
 829	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
 830		err = -EAGAIN;
 831		goto err_unlock;
 832	}
 833
 834	if (unlikely(cmd != cuc_resume))
 835		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
 836	iowrite8(cmd, &nic->csr->scb.cmd_lo);
 837
 838err_unlock:
 839	spin_unlock_irqrestore(&nic->cmd_lock, flags);
 840
 841	return err;
 842}
 843
 844static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
 845	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
 846{
 847	struct cb *cb;
 848	unsigned long flags;
 849	int err;
 850
 851	spin_lock_irqsave(&nic->cb_lock, flags);
 852
 853	if (unlikely(!nic->cbs_avail)) {
 854		err = -ENOMEM;
 855		goto err_unlock;
 856	}
 857
 858	cb = nic->cb_to_use;
 859	nic->cb_to_use = cb->next;
 860	nic->cbs_avail--;
 861	cb->skb = skb;
 862
 863	err = cb_prepare(nic, cb, skb);
 864	if (err)
 865		goto err_unlock;
 866
 867	if (unlikely(!nic->cbs_avail))
 868		err = -ENOSPC;
 869
 870
 871	/* Order is important otherwise we'll be in a race with h/w:
 872	 * set S-bit in current first, then clear S-bit in previous. */
 873	cb->command |= cpu_to_le16(cb_s);
 874	dma_wmb();
 875	cb->prev->command &= cpu_to_le16(~cb_s);
 876
 877	while (nic->cb_to_send != nic->cb_to_use) {
 878		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
 879			nic->cb_to_send->dma_addr))) {
 880			/* Ok, here's where things get sticky.  It's
 881			 * possible that we can't schedule the command
 882			 * because the controller is too busy, so
 883			 * let's just queue the command and try again
 884			 * when another command is scheduled. */
 885			if (err == -ENOSPC) {
 886				//request a reset
 887				schedule_work(&nic->tx_timeout_task);
 888			}
 889			break;
 890		} else {
 891			nic->cuc_cmd = cuc_resume;
 892			nic->cb_to_send = nic->cb_to_send->next;
 893		}
 894	}
 895
 896err_unlock:
 897	spin_unlock_irqrestore(&nic->cb_lock, flags);
 898
 899	return err;
 900}
 901
 902static int mdio_read(struct net_device *netdev, int addr, int reg)
 903{
 904	struct nic *nic = netdev_priv(netdev);
 905	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
 906}
 907
 908static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
 909{
 910	struct nic *nic = netdev_priv(netdev);
 911
 912	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
 913}
 914
 915/* the standard mdio_ctrl() function for usual MII-compliant hardware */
 916static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
 917{
 918	u32 data_out = 0;
 919	unsigned int i;
 920	unsigned long flags;
 921
 922
 923	/*
 924	 * Stratus87247: we shouldn't be writing the MDI control
 925	 * register until the Ready bit shows True.  Also, since
 926	 * manipulation of the MDI control registers is a multi-step
 927	 * procedure it should be done under lock.
 928	 */
 929	spin_lock_irqsave(&nic->mdio_lock, flags);
 930	for (i = 100; i; --i) {
 931		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
 932			break;
 933		udelay(20);
 934	}
 935	if (unlikely(!i)) {
 936		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
 937		spin_unlock_irqrestore(&nic->mdio_lock, flags);
 938		return 0;		/* No way to indicate timeout error */
 939	}
 940	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
 941
 942	for (i = 0; i < 100; i++) {
 943		udelay(20);
 944		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
 945			break;
 946	}
 947	spin_unlock_irqrestore(&nic->mdio_lock, flags);
 948	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
 949		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
 950		     dir == mdi_read ? "READ" : "WRITE",
 951		     addr, reg, data, data_out);
 952	return (u16)data_out;
 953}
 954
 955/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
 956static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
 957				 u32 addr,
 958				 u32 dir,
 959				 u32 reg,
 960				 u16 data)
 961{
 962	if ((reg == MII_BMCR) && (dir == mdi_write)) {
 963		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
 964			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
 965							MII_ADVERTISE);
 966
 967			/*
 968			 * Workaround Si issue where sometimes the part will not
 969			 * autoneg to 100Mbps even when advertised.
 970			 */
 971			if (advert & ADVERTISE_100FULL)
 972				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
 973			else if (advert & ADVERTISE_100HALF)
 974				data |= BMCR_SPEED100;
 975		}
 976	}
 977	return mdio_ctrl_hw(nic, addr, dir, reg, data);
 978}
 979
 980/* Fully software-emulated mdio_ctrl() function for cards without
 981 * MII-compliant PHYs.
 982 * For now, this is mainly geared towards 80c24 support; in case of further
 983 * requirements for other types (i82503, ...?) either extend this mechanism
 984 * or split it, whichever is cleaner.
 985 */
 986static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
 987				      u32 addr,
 988				      u32 dir,
 989				      u32 reg,
 990				      u16 data)
 991{
 992	/* might need to allocate a netdev_priv'ed register array eventually
 993	 * to be able to record state changes, but for now
 994	 * some fully hardcoded register handling ought to be ok I guess. */
 995
 996	if (dir == mdi_read) {
 997		switch (reg) {
 998		case MII_BMCR:
 999			/* Auto-negotiation, right? */
1000			return  BMCR_ANENABLE |
1001				BMCR_FULLDPLX;
1002		case MII_BMSR:
1003			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1004				BMSR_ANEGCAPABLE |
1005				BMSR_10FULL;
1006		case MII_ADVERTISE:
1007			/* 80c24 is a "combo card" PHY, right? */
1008			return	ADVERTISE_10HALF |
1009				ADVERTISE_10FULL;
1010		default:
1011			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1012				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1013				     dir == mdi_read ? "READ" : "WRITE",
1014				     addr, reg, data);
1015			return 0xFFFF;
1016		}
1017	} else {
1018		switch (reg) {
1019		default:
1020			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1021				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1022				     dir == mdi_read ? "READ" : "WRITE",
1023				     addr, reg, data);
1024			return 0xFFFF;
1025		}
1026	}
1027}
1028static inline int e100_phy_supports_mii(struct nic *nic)
1029{
1030	/* for now, just check it by comparing whether we
1031	   are using MII software emulation.
1032	*/
1033	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1034}
1035
1036static void e100_get_defaults(struct nic *nic)
1037{
1038	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1039	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1040
1041	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1042	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1043	if (nic->mac == mac_unknown)
1044		nic->mac = mac_82557_D100_A;
1045
1046	nic->params.rfds = rfds;
1047	nic->params.cbs = cbs;
1048
1049	/* Quadwords to DMA into FIFO before starting frame transmit */
1050	nic->tx_threshold = 0xE0;
1051
1052	/* no interrupt for every tx completion, delay = 256us if not 557 */
1053	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1054		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1055
1056	/* Template for a freshly allocated RFD */
1057	nic->blank_rfd.command = 0;
1058	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1059	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1060
1061	/* MII setup */
1062	nic->mii.phy_id_mask = 0x1F;
1063	nic->mii.reg_num_mask = 0x1F;
1064	nic->mii.dev = nic->netdev;
1065	nic->mii.mdio_read = mdio_read;
1066	nic->mii.mdio_write = mdio_write;
1067}
1068
1069static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1070{
1071	struct config *config = &cb->u.config;
1072	u8 *c = (u8 *)config;
1073	struct net_device *netdev = nic->netdev;
1074
1075	cb->command = cpu_to_le16(cb_config);
1076
1077	memset(config, 0, sizeof(struct config));
1078
1079	config->byte_count = 0x16;		/* bytes in this struct */
1080	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1081	config->direct_rx_dma = 0x1;		/* reserved */
1082	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1083	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1084	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1085	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1086	if (e100_phy_supports_mii(nic))
1087		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1088	config->pad10 = 0x6;
1089	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1090	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1091	config->ifs = 0x6;			/* x16 = inter frame spacing */
1092	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1093	config->pad15_1 = 0x1;
1094	config->pad15_2 = 0x1;
1095	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1096	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1097	config->tx_padding = 0x1;		/* 1=pad short frames */
1098	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1099	config->pad18 = 0x1;
1100	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1101	config->pad20_1 = 0x1F;
1102	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1103	config->pad21_1 = 0x5;
1104
1105	config->adaptive_ifs = nic->adaptive_ifs;
1106	config->loopback = nic->loopback;
1107
1108	if (nic->mii.force_media && nic->mii.full_duplex)
1109		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1110
1111	if (nic->flags & promiscuous || nic->loopback) {
1112		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1113		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1114		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1115	}
1116
1117	if (unlikely(netdev->features & NETIF_F_RXFCS))
1118		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1119
1120	if (nic->flags & multicast_all)
1121		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1122
1123	/* disable WoL when up */
1124	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1125		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1126
1127	if (nic->mac >= mac_82558_D101_A4) {
1128		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1129		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1130		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1131		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1132		if (nic->mac >= mac_82559_D101M) {
1133			config->tno_intr = 0x1;		/* TCO stats enable */
1134			/* Enable TCO in extended config */
1135			if (nic->mac >= mac_82551_10) {
1136				config->byte_count = 0x20; /* extended bytes */
1137				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1138			}
1139		} else {
1140			config->standard_stat_counter = 0x0;
1141		}
1142	}
1143
1144	if (netdev->features & NETIF_F_RXALL) {
1145		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1146		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1147		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1148	}
1149
1150	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1151		     c + 0);
1152	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1153		     c + 8);
1154	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1155		     c + 16);
1156	return 0;
1157}
1158
1159/*************************************************************************
1160*  CPUSaver parameters
1161*
1162*  All CPUSaver parameters are 16-bit literals that are part of a
1163*  "move immediate value" instruction.  By changing the value of
1164*  the literal in the instruction before the code is loaded, the
1165*  driver can change the algorithm.
1166*
1167*  INTDELAY - This loads the dead-man timer with its initial value.
1168*    When this timer expires the interrupt is asserted, and the
1169*    timer is reset each time a new packet is received.  (see
1170*    BUNDLEMAX below to set the limit on number of chained packets)
1171*    The current default is 0x600 or 1536.  Experiments show that
1172*    the value should probably stay within the 0x200 - 0x1000.
1173*
1174*  BUNDLEMAX -
1175*    This sets the maximum number of frames that will be bundled.  In
1176*    some situations, such as the TCP windowing algorithm, it may be
1177*    better to limit the growth of the bundle size than let it go as
1178*    high as it can, because that could cause too much added latency.
1179*    The default is six, because this is the number of packets in the
1180*    default TCP window size.  A value of 1 would make CPUSaver indicate
1181*    an interrupt for every frame received.  If you do not want to put
1182*    a limit on the bundle size, set this value to xFFFF.
1183*
1184*  BUNDLESMALL -
1185*    This contains a bit-mask describing the minimum size frame that
1186*    will be bundled.  The default masks the lower 7 bits, which means
1187*    that any frame less than 128 bytes in length will not be bundled,
1188*    but will instead immediately generate an interrupt.  This does
1189*    not affect the current bundle in any way.  Any frame that is 128
1190*    bytes or large will be bundled normally.  This feature is meant
1191*    to provide immediate indication of ACK frames in a TCP environment.
1192*    Customers were seeing poor performance when a machine with CPUSaver
1193*    enabled was sending but not receiving.  The delay introduced when
1194*    the ACKs were received was enough to reduce total throughput, because
1195*    the sender would sit idle until the ACK was finally seen.
1196*
1197*    The current default is 0xFF80, which masks out the lower 7 bits.
1198*    This means that any frame which is x7F (127) bytes or smaller
1199*    will cause an immediate interrupt.  Because this value must be a
1200*    bit mask, there are only a few valid values that can be used.  To
1201*    turn this feature off, the driver can write the value xFFFF to the
1202*    lower word of this instruction (in the same way that the other
1203*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1204*    cause an interrupt to be generated for every frame, because all
1205*    standard Ethernet frames are <= 2047 bytes in length.
1206*************************************************************************/
1207
1208/* if you wish to disable the ucode functionality, while maintaining the
1209 * workarounds it provides, set the following defines to:
1210 * BUNDLESMALL 0
1211 * BUNDLEMAX 1
1212 * INTDELAY 1
1213 */
1214#define BUNDLESMALL 1
1215#define BUNDLEMAX (u16)6
1216#define INTDELAY (u16)1536 /* 0x600 */
1217
1218/* Initialize firmware */
1219static const struct firmware *e100_request_firmware(struct nic *nic)
1220{
1221	const char *fw_name;
1222	const struct firmware *fw = nic->fw;
1223	u8 timer, bundle, min_size;
1224	int err = 0;
1225	bool required = false;
1226
1227	/* do not load u-code for ICH devices */
1228	if (nic->flags & ich)
1229		return NULL;
1230
1231	/* Search for ucode match against h/w revision
1232	 *
1233	 * Based on comments in the source code for the FreeBSD fxp
1234	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1235	 *
1236	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1237	 *     with Inline Receive)."
1238	 *
1239	 * So we must fail if it cannot be loaded.
1240	 *
1241	 * The other microcode files are only required for the optional
1242	 * CPUSaver feature.  Nice to have, but no reason to fail.
1243	 */
1244	if (nic->mac == mac_82559_D101M) {
1245		fw_name = FIRMWARE_D101M;
1246	} else if (nic->mac == mac_82559_D101S) {
1247		fw_name = FIRMWARE_D101S;
1248	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1249		fw_name = FIRMWARE_D102E;
1250		required = true;
1251	} else { /* No ucode on other devices */
1252		return NULL;
1253	}
1254
1255	/* If the firmware has not previously been loaded, request a pointer
1256	 * to it. If it was previously loaded, we are reinitializing the
1257	 * adapter, possibly in a resume from hibernate, in which case
1258	 * request_firmware() cannot be used.
1259	 */
1260	if (!fw)
1261		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1262
1263	if (err) {
1264		if (required) {
1265			netif_err(nic, probe, nic->netdev,
1266				  "Failed to load firmware \"%s\": %d\n",
1267				  fw_name, err);
1268			return ERR_PTR(err);
1269		} else {
1270			netif_info(nic, probe, nic->netdev,
1271				   "CPUSaver disabled. Needs \"%s\": %d\n",
1272				   fw_name, err);
1273			return NULL;
1274		}
1275	}
1276
1277	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1278	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1279	if (fw->size != UCODE_SIZE * 4 + 3) {
1280		netif_err(nic, probe, nic->netdev,
1281			  "Firmware \"%s\" has wrong size %zu\n",
1282			  fw_name, fw->size);
1283		release_firmware(fw);
1284		return ERR_PTR(-EINVAL);
1285	}
1286
1287	/* Read timer, bundle and min_size from end of firmware blob */
1288	timer = fw->data[UCODE_SIZE * 4];
1289	bundle = fw->data[UCODE_SIZE * 4 + 1];
1290	min_size = fw->data[UCODE_SIZE * 4 + 2];
1291
1292	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1293	    min_size >= UCODE_SIZE) {
1294		netif_err(nic, probe, nic->netdev,
1295			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1296			  fw_name, timer, bundle, min_size);
1297		release_firmware(fw);
1298		return ERR_PTR(-EINVAL);
1299	}
1300
1301	/* OK, firmware is validated and ready to use. Save a pointer
1302	 * to it in the nic */
1303	nic->fw = fw;
1304	return fw;
1305}
1306
1307static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1308			     struct sk_buff *skb)
1309{
1310	const struct firmware *fw = (void *)skb;
1311	u8 timer, bundle, min_size;
1312
1313	/* It's not a real skb; we just abused the fact that e100_exec_cb
1314	   will pass it through to here... */
1315	cb->skb = NULL;
1316
1317	/* firmware is stored as little endian already */
1318	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1319
1320	/* Read timer, bundle and min_size from end of firmware blob */
1321	timer = fw->data[UCODE_SIZE * 4];
1322	bundle = fw->data[UCODE_SIZE * 4 + 1];
1323	min_size = fw->data[UCODE_SIZE * 4 + 2];
1324
1325	/* Insert user-tunable settings in cb->u.ucode */
1326	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1327	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1328	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1329	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1330	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1331	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1332
1333	cb->command = cpu_to_le16(cb_ucode | cb_el);
1334	return 0;
1335}
1336
1337static inline int e100_load_ucode_wait(struct nic *nic)
1338{
1339	const struct firmware *fw;
1340	int err = 0, counter = 50;
1341	struct cb *cb = nic->cb_to_clean;
1342
1343	fw = e100_request_firmware(nic);
1344	/* If it's NULL, then no ucode is required */
1345	if (IS_ERR_OR_NULL(fw))
1346		return PTR_ERR_OR_ZERO(fw);
1347
1348	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1349		netif_err(nic, probe, nic->netdev,
1350			  "ucode cmd failed with error %d\n", err);
1351
1352	/* must restart cuc */
1353	nic->cuc_cmd = cuc_start;
1354
1355	/* wait for completion */
1356	e100_write_flush(nic);
1357	udelay(10);
1358
1359	/* wait for possibly (ouch) 500ms */
1360	while (!(cb->status & cpu_to_le16(cb_complete))) {
1361		msleep(10);
1362		if (!--counter) break;
1363	}
1364
1365	/* ack any interrupts, something could have been set */
1366	iowrite8(~0, &nic->csr->scb.stat_ack);
1367
1368	/* if the command failed, or is not OK, notify and return */
1369	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1370		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1371		err = -EPERM;
1372	}
1373
1374	return err;
1375}
1376
1377static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1378	struct sk_buff *skb)
1379{
1380	cb->command = cpu_to_le16(cb_iaaddr);
1381	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1382	return 0;
1383}
1384
1385static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1386{
1387	cb->command = cpu_to_le16(cb_dump);
1388	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1389		offsetof(struct mem, dump_buf));
1390	return 0;
1391}
1392
1393static int e100_phy_check_without_mii(struct nic *nic)
1394{
1395	u8 phy_type;
1396	int without_mii;
1397
1398	phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1399
1400	switch (phy_type) {
1401	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1402	case I82503: /* Non-MII PHY; UNTESTED! */
1403	case S80C24: /* Non-MII PHY; tested and working */
1404		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1405		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1406		 * doesn't have a programming interface of any sort.  The
1407		 * media is sensed automatically based on how the link partner
1408		 * is configured.  This is, in essence, manual configuration.
1409		 */
1410		netif_info(nic, probe, nic->netdev,
1411			   "found MII-less i82503 or 80c24 or other PHY\n");
1412
1413		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1414		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1415
1416		/* these might be needed for certain MII-less cards...
1417		 * nic->flags |= ich;
1418		 * nic->flags |= ich_10h_workaround; */
1419
1420		without_mii = 1;
1421		break;
1422	default:
1423		without_mii = 0;
1424		break;
1425	}
1426	return without_mii;
1427}
1428
1429#define NCONFIG_AUTO_SWITCH	0x0080
1430#define MII_NSC_CONG		MII_RESV1
1431#define NSC_CONG_ENABLE		0x0100
1432#define NSC_CONG_TXREADY	0x0400
1433static int e100_phy_init(struct nic *nic)
1434{
1435	struct net_device *netdev = nic->netdev;
1436	u32 addr;
1437	u16 bmcr, stat, id_lo, id_hi, cong;
1438
1439	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1440	for (addr = 0; addr < 32; addr++) {
1441		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1442		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1443		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1444		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1445		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1446			break;
1447	}
1448	if (addr == 32) {
1449		/* uhoh, no PHY detected: check whether we seem to be some
1450		 * weird, rare variant which is *known* to not have any MII.
1451		 * But do this AFTER MII checking only, since this does
1452		 * lookup of EEPROM values which may easily be unreliable. */
1453		if (e100_phy_check_without_mii(nic))
1454			return 0; /* simply return and hope for the best */
1455		else {
1456			/* for unknown cases log a fatal error */
1457			netif_err(nic, hw, nic->netdev,
1458				  "Failed to locate any known PHY, aborting\n");
1459			return -EAGAIN;
1460		}
1461	} else
1462		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1463			     "phy_addr = %d\n", nic->mii.phy_id);
1464
1465	/* Get phy ID */
1466	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1467	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1468	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1469	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1470		     "phy ID = 0x%08X\n", nic->phy);
1471
1472	/* Select the phy and isolate the rest */
1473	for (addr = 0; addr < 32; addr++) {
1474		if (addr != nic->mii.phy_id) {
1475			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1476		} else if (nic->phy != phy_82552_v) {
1477			bmcr = mdio_read(netdev, addr, MII_BMCR);
1478			mdio_write(netdev, addr, MII_BMCR,
1479				bmcr & ~BMCR_ISOLATE);
1480		}
1481	}
1482	/*
1483	 * Workaround for 82552:
1484	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1485	 * other phy_id's) using bmcr value from addr discovery loop above.
1486	 */
1487	if (nic->phy == phy_82552_v)
1488		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1489			bmcr & ~BMCR_ISOLATE);
1490
1491	/* Handle National tx phys */
1492#define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1493	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1494		/* Disable congestion control */
1495		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1496		cong |= NSC_CONG_TXREADY;
1497		cong &= ~NSC_CONG_ENABLE;
1498		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1499	}
1500
1501	if (nic->phy == phy_82552_v) {
1502		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1503
1504		/* assign special tweaked mdio_ctrl() function */
1505		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1506
1507		/* Workaround Si not advertising flow-control during autoneg */
1508		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1509		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1510
1511		/* Reset for the above changes to take effect */
1512		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1513		bmcr |= BMCR_RESET;
1514		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1515	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1516	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1517	   (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1518		/* enable/disable MDI/MDI-X auto-switching. */
1519		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1520				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1521	}
1522
1523	return 0;
1524}
1525
1526static int e100_hw_init(struct nic *nic)
1527{
1528	int err = 0;
1529
1530	e100_hw_reset(nic);
1531
1532	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1533	if ((err = e100_self_test(nic)))
1534		return err;
1535
1536	if ((err = e100_phy_init(nic)))
1537		return err;
1538	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1539		return err;
1540	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1541		return err;
1542	if ((err = e100_load_ucode_wait(nic)))
1543		return err;
1544	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1545		return err;
1546	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1547		return err;
1548	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1549		nic->dma_addr + offsetof(struct mem, stats))))
1550		return err;
1551	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1552		return err;
1553
1554	e100_disable_irq(nic);
1555
1556	return 0;
1557}
1558
1559static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1560{
1561	struct net_device *netdev = nic->netdev;
1562	struct netdev_hw_addr *ha;
1563	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1564
1565	cb->command = cpu_to_le16(cb_multi);
1566	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1567	i = 0;
1568	netdev_for_each_mc_addr(ha, netdev) {
1569		if (i == count)
1570			break;
1571		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1572			ETH_ALEN);
1573	}
1574	return 0;
1575}
1576
1577static void e100_set_multicast_list(struct net_device *netdev)
1578{
1579	struct nic *nic = netdev_priv(netdev);
1580
1581	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1582		     "mc_count=%d, flags=0x%04X\n",
1583		     netdev_mc_count(netdev), netdev->flags);
1584
1585	if (netdev->flags & IFF_PROMISC)
1586		nic->flags |= promiscuous;
1587	else
1588		nic->flags &= ~promiscuous;
1589
1590	if (netdev->flags & IFF_ALLMULTI ||
1591		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1592		nic->flags |= multicast_all;
1593	else
1594		nic->flags &= ~multicast_all;
1595
1596	e100_exec_cb(nic, NULL, e100_configure);
1597	e100_exec_cb(nic, NULL, e100_multi);
1598}
1599
1600static void e100_update_stats(struct nic *nic)
1601{
1602	struct net_device *dev = nic->netdev;
1603	struct net_device_stats *ns = &dev->stats;
1604	struct stats *s = &nic->mem->stats;
1605	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1606		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1607		&s->complete;
1608
1609	/* Device's stats reporting may take several microseconds to
1610	 * complete, so we're always waiting for results of the
1611	 * previous command. */
1612
1613	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1614		*complete = 0;
1615		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1616		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1617		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1618		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1619		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1620		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1621		ns->collisions += nic->tx_collisions;
1622		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1623			le32_to_cpu(s->tx_lost_crs);
1624		nic->rx_short_frame_errors +=
1625			le32_to_cpu(s->rx_short_frame_errors);
1626		ns->rx_length_errors = nic->rx_short_frame_errors +
1627			nic->rx_over_length_errors;
1628		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1629		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1630		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1631		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1632		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1633		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1634			le32_to_cpu(s->rx_alignment_errors) +
1635			le32_to_cpu(s->rx_short_frame_errors) +
1636			le32_to_cpu(s->rx_cdt_errors);
1637		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1638		nic->tx_single_collisions +=
1639			le32_to_cpu(s->tx_single_collisions);
1640		nic->tx_multiple_collisions +=
1641			le32_to_cpu(s->tx_multiple_collisions);
1642		if (nic->mac >= mac_82558_D101_A4) {
1643			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1644			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1645			nic->rx_fc_unsupported +=
1646				le32_to_cpu(s->fc_rcv_unsupported);
1647			if (nic->mac >= mac_82559_D101M) {
1648				nic->tx_tco_frames +=
1649					le16_to_cpu(s->xmt_tco_frames);
1650				nic->rx_tco_frames +=
1651					le16_to_cpu(s->rcv_tco_frames);
1652			}
1653		}
1654	}
1655
1656
1657	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1658		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1659			     "exec cuc_dump_reset failed\n");
1660}
1661
1662static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1663{
1664	/* Adjust inter-frame-spacing (IFS) between two transmits if
1665	 * we're getting collisions on a half-duplex connection. */
1666
1667	if (duplex == DUPLEX_HALF) {
1668		u32 prev = nic->adaptive_ifs;
1669		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1670
1671		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1672		   (nic->tx_frames > min_frames)) {
1673			if (nic->adaptive_ifs < 60)
1674				nic->adaptive_ifs += 5;
1675		} else if (nic->tx_frames < min_frames) {
1676			if (nic->adaptive_ifs >= 5)
1677				nic->adaptive_ifs -= 5;
1678		}
1679		if (nic->adaptive_ifs != prev)
1680			e100_exec_cb(nic, NULL, e100_configure);
1681	}
1682}
1683
1684static void e100_watchdog(struct timer_list *t)
1685{
1686	struct nic *nic = from_timer(nic, t, watchdog);
1687	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1688	u32 speed;
1689
1690	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1691		     "right now = %ld\n", jiffies);
1692
1693	/* mii library handles link maintenance tasks */
1694
1695	mii_ethtool_gset(&nic->mii, &cmd);
1696	speed = ethtool_cmd_speed(&cmd);
1697
1698	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1699		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1700			    speed == SPEED_100 ? 100 : 10,
1701			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1702	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1703		netdev_info(nic->netdev, "NIC Link is Down\n");
1704	}
1705
1706	mii_check_link(&nic->mii);
1707
1708	/* Software generated interrupt to recover from (rare) Rx
1709	 * allocation failure.
1710	 * Unfortunately have to use a spinlock to not re-enable interrupts
1711	 * accidentally, due to hardware that shares a register between the
1712	 * interrupt mask bit and the SW Interrupt generation bit */
1713	spin_lock_irq(&nic->cmd_lock);
1714	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1715	e100_write_flush(nic);
1716	spin_unlock_irq(&nic->cmd_lock);
1717
1718	e100_update_stats(nic);
1719	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1720
1721	if (nic->mac <= mac_82557_D100_C)
1722		/* Issue a multicast command to workaround a 557 lock up */
1723		e100_set_multicast_list(nic->netdev);
1724
1725	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1726		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1727		nic->flags |= ich_10h_workaround;
1728	else
1729		nic->flags &= ~ich_10h_workaround;
1730
1731	mod_timer(&nic->watchdog,
1732		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1733}
1734
1735static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1736	struct sk_buff *skb)
1737{
1738	dma_addr_t dma_addr;
1739	cb->command = nic->tx_command;
1740
1741	dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1742				  DMA_TO_DEVICE);
1743	/* If we can't map the skb, have the upper layer try later */
1744	if (dma_mapping_error(&nic->pdev->dev, dma_addr))
1745		return -ENOMEM;
1746
1747	/*
1748	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1749	 * testing, ie sending frames with bad CRC.
1750	 */
1751	if (unlikely(skb->no_fcs))
1752		cb->command |= cpu_to_le16(cb_tx_nc);
1753	else
1754		cb->command &= ~cpu_to_le16(cb_tx_nc);
1755
1756	/* interrupt every 16 packets regardless of delay */
1757	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1758		cb->command |= cpu_to_le16(cb_i);
1759	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1760	cb->u.tcb.tcb_byte_count = 0;
1761	cb->u.tcb.threshold = nic->tx_threshold;
1762	cb->u.tcb.tbd_count = 1;
1763	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1764	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1765	skb_tx_timestamp(skb);
1766	return 0;
1767}
1768
1769static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1770				   struct net_device *netdev)
1771{
1772	struct nic *nic = netdev_priv(netdev);
1773	int err;
1774
1775	if (nic->flags & ich_10h_workaround) {
1776		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1777		   Issue a NOP command followed by a 1us delay before
1778		   issuing the Tx command. */
1779		if (e100_exec_cmd(nic, cuc_nop, 0))
1780			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1781				     "exec cuc_nop failed\n");
1782		udelay(1);
1783	}
1784
1785	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1786
1787	switch (err) {
1788	case -ENOSPC:
1789		/* We queued the skb, but now we're out of space. */
1790		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1791			     "No space for CB\n");
1792		netif_stop_queue(netdev);
1793		break;
1794	case -ENOMEM:
1795		/* This is a hard error - log it. */
1796		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1797			     "Out of Tx resources, returning skb\n");
1798		netif_stop_queue(netdev);
1799		return NETDEV_TX_BUSY;
1800	}
1801
1802	return NETDEV_TX_OK;
1803}
1804
1805static int e100_tx_clean(struct nic *nic)
1806{
1807	struct net_device *dev = nic->netdev;
1808	struct cb *cb;
1809	int tx_cleaned = 0;
1810
1811	spin_lock(&nic->cb_lock);
1812
1813	/* Clean CBs marked complete */
1814	for (cb = nic->cb_to_clean;
1815	    cb->status & cpu_to_le16(cb_complete);
1816	    cb = nic->cb_to_clean = cb->next) {
1817		dma_rmb(); /* read skb after status */
1818		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1819			     "cb[%d]->status = 0x%04X\n",
1820			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1821			     cb->status);
1822
1823		if (likely(cb->skb != NULL)) {
1824			dev->stats.tx_packets++;
1825			dev->stats.tx_bytes += cb->skb->len;
1826
1827			dma_unmap_single(&nic->pdev->dev,
1828					 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1829					 le16_to_cpu(cb->u.tcb.tbd.size),
1830					 DMA_TO_DEVICE);
1831			dev_kfree_skb_any(cb->skb);
1832			cb->skb = NULL;
1833			tx_cleaned = 1;
1834		}
1835		cb->status = 0;
1836		nic->cbs_avail++;
1837	}
1838
1839	spin_unlock(&nic->cb_lock);
1840
1841	/* Recover from running out of Tx resources in xmit_frame */
1842	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1843		netif_wake_queue(nic->netdev);
1844
1845	return tx_cleaned;
1846}
1847
1848static void e100_clean_cbs(struct nic *nic)
1849{
1850	if (nic->cbs) {
1851		while (nic->cbs_avail != nic->params.cbs.count) {
1852			struct cb *cb = nic->cb_to_clean;
1853			if (cb->skb) {
1854				dma_unmap_single(&nic->pdev->dev,
1855						 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1856						 le16_to_cpu(cb->u.tcb.tbd.size),
1857						 DMA_TO_DEVICE);
1858				dev_kfree_skb(cb->skb);
1859			}
1860			nic->cb_to_clean = nic->cb_to_clean->next;
1861			nic->cbs_avail++;
1862		}
1863		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1864		nic->cbs = NULL;
1865		nic->cbs_avail = 0;
1866	}
1867	nic->cuc_cmd = cuc_start;
1868	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1869		nic->cbs;
1870}
1871
1872static int e100_alloc_cbs(struct nic *nic)
1873{
1874	struct cb *cb;
1875	unsigned int i, count = nic->params.cbs.count;
1876
1877	nic->cuc_cmd = cuc_start;
1878	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1879	nic->cbs_avail = 0;
1880
1881	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1882				   &nic->cbs_dma_addr);
1883	if (!nic->cbs)
1884		return -ENOMEM;
1885
1886	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1887		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1888		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1889
1890		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1891		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1892			((i+1) % count) * sizeof(struct cb));
1893	}
1894
1895	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1896	nic->cbs_avail = count;
1897
1898	return 0;
1899}
1900
1901static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1902{
1903	if (!nic->rxs) return;
1904	if (RU_SUSPENDED != nic->ru_running) return;
1905
1906	/* handle init time starts */
1907	if (!rx) rx = nic->rxs;
1908
1909	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1910	if (rx->skb) {
1911		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1912		nic->ru_running = RU_RUNNING;
1913	}
1914}
1915
1916#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1917static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1918{
1919	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1920		return -ENOMEM;
1921
1922	/* Init, and map the RFD. */
1923	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1924	rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1925				      RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1926
1927	if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1928		dev_kfree_skb_any(rx->skb);
1929		rx->skb = NULL;
1930		rx->dma_addr = 0;
1931		return -ENOMEM;
1932	}
1933
1934	/* Link the RFD to end of RFA by linking previous RFD to
1935	 * this one.  We are safe to touch the previous RFD because
1936	 * it is protected by the before last buffer's el bit being set */
1937	if (rx->prev->skb) {
1938		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1939		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1940		dma_sync_single_for_device(&nic->pdev->dev,
1941					   rx->prev->dma_addr,
1942					   sizeof(struct rfd),
1943					   DMA_BIDIRECTIONAL);
1944	}
1945
1946	return 0;
1947}
1948
1949static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1950	unsigned int *work_done, unsigned int work_to_do)
1951{
1952	struct net_device *dev = nic->netdev;
1953	struct sk_buff *skb = rx->skb;
1954	struct rfd *rfd = (struct rfd *)skb->data;
1955	u16 rfd_status, actual_size;
1956	u16 fcs_pad = 0;
1957
1958	if (unlikely(work_done && *work_done >= work_to_do))
1959		return -EAGAIN;
1960
1961	/* Need to sync before taking a peek at cb_complete bit */
1962	dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1963				sizeof(struct rfd), DMA_BIDIRECTIONAL);
1964	rfd_status = le16_to_cpu(rfd->status);
1965
1966	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1967		     "status=0x%04X\n", rfd_status);
1968	dma_rmb(); /* read size after status bit */
1969
1970	/* If data isn't ready, nothing to indicate */
1971	if (unlikely(!(rfd_status & cb_complete))) {
1972		/* If the next buffer has the el bit, but we think the receiver
1973		 * is still running, check to see if it really stopped while
1974		 * we had interrupts off.
1975		 * This allows for a fast restart without re-enabling
1976		 * interrupts */
1977		if ((le16_to_cpu(rfd->command) & cb_el) &&
1978		    (RU_RUNNING == nic->ru_running))
1979
1980			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1981				nic->ru_running = RU_SUSPENDED;
1982		dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1983					   sizeof(struct rfd),
1984					   DMA_FROM_DEVICE);
1985		return -ENODATA;
1986	}
1987
1988	/* Get actual data size */
1989	if (unlikely(dev->features & NETIF_F_RXFCS))
1990		fcs_pad = 4;
1991	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1992	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1993		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1994
1995	/* Get data */
1996	dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
1997			 DMA_BIDIRECTIONAL);
1998
1999	/* If this buffer has the el bit, but we think the receiver
2000	 * is still running, check to see if it really stopped while
2001	 * we had interrupts off.
2002	 * This allows for a fast restart without re-enabling interrupts.
2003	 * This can happen when the RU sees the size change but also sees
2004	 * the el bit set. */
2005	if ((le16_to_cpu(rfd->command) & cb_el) &&
2006	    (RU_RUNNING == nic->ru_running)) {
2007
2008	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2009		nic->ru_running = RU_SUSPENDED;
2010	}
2011
2012	/* Pull off the RFD and put the actual data (minus eth hdr) */
2013	skb_reserve(skb, sizeof(struct rfd));
2014	skb_put(skb, actual_size);
2015	skb->protocol = eth_type_trans(skb, nic->netdev);
2016
2017	/* If we are receiving all frames, then don't bother
2018	 * checking for errors.
2019	 */
2020	if (unlikely(dev->features & NETIF_F_RXALL)) {
2021		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2022			/* Received oversized frame, but keep it. */
2023			nic->rx_over_length_errors++;
2024		goto process_skb;
2025	}
2026
2027	if (unlikely(!(rfd_status & cb_ok))) {
2028		/* Don't indicate if hardware indicates errors */
2029		dev_kfree_skb_any(skb);
2030	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2031		/* Don't indicate oversized frames */
2032		nic->rx_over_length_errors++;
2033		dev_kfree_skb_any(skb);
2034	} else {
2035process_skb:
2036		dev->stats.rx_packets++;
2037		dev->stats.rx_bytes += (actual_size - fcs_pad);
2038		netif_receive_skb(skb);
2039		if (work_done)
2040			(*work_done)++;
2041	}
2042
2043	rx->skb = NULL;
2044
2045	return 0;
2046}
2047
2048static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2049	unsigned int work_to_do)
2050{
2051	struct rx *rx;
2052	int restart_required = 0, err = 0;
2053	struct rx *old_before_last_rx, *new_before_last_rx;
2054	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2055
2056	/* Indicate newly arrived packets */
2057	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2058		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2059		/* Hit quota or no more to clean */
2060		if (-EAGAIN == err || -ENODATA == err)
2061			break;
2062	}
2063
2064
2065	/* On EAGAIN, hit quota so have more work to do, restart once
2066	 * cleanup is complete.
2067	 * Else, are we already rnr? then pay attention!!! this ensures that
2068	 * the state machine progression never allows a start with a
2069	 * partially cleaned list, avoiding a race between hardware
2070	 * and rx_to_clean when in NAPI mode */
2071	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2072		restart_required = 1;
2073
2074	old_before_last_rx = nic->rx_to_use->prev->prev;
2075	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2076
2077	/* Alloc new skbs to refill list */
2078	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2079		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2080			break; /* Better luck next time (see watchdog) */
2081	}
2082
2083	new_before_last_rx = nic->rx_to_use->prev->prev;
2084	if (new_before_last_rx != old_before_last_rx) {
2085		/* Set the el-bit on the buffer that is before the last buffer.
2086		 * This lets us update the next pointer on the last buffer
2087		 * without worrying about hardware touching it.
2088		 * We set the size to 0 to prevent hardware from touching this
2089		 * buffer.
2090		 * When the hardware hits the before last buffer with el-bit
2091		 * and size of 0, it will RNR interrupt, the RUS will go into
2092		 * the No Resources state.  It will not complete nor write to
2093		 * this buffer. */
2094		new_before_last_rfd =
2095			(struct rfd *)new_before_last_rx->skb->data;
2096		new_before_last_rfd->size = 0;
2097		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2098		dma_sync_single_for_device(&nic->pdev->dev,
2099					   new_before_last_rx->dma_addr,
2100					   sizeof(struct rfd),
2101					   DMA_BIDIRECTIONAL);
2102
2103		/* Now that we have a new stopping point, we can clear the old
2104		 * stopping point.  We must sync twice to get the proper
2105		 * ordering on the hardware side of things. */
2106		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2107		dma_sync_single_for_device(&nic->pdev->dev,
2108					   old_before_last_rx->dma_addr,
2109					   sizeof(struct rfd),
2110					   DMA_BIDIRECTIONAL);
2111		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2112							+ ETH_FCS_LEN);
2113		dma_sync_single_for_device(&nic->pdev->dev,
2114					   old_before_last_rx->dma_addr,
2115					   sizeof(struct rfd),
2116					   DMA_BIDIRECTIONAL);
2117	}
2118
2119	if (restart_required) {
2120		// ack the rnr?
2121		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2122		e100_start_receiver(nic, nic->rx_to_clean);
2123		if (work_done)
2124			(*work_done)++;
2125	}
2126}
2127
2128static void e100_rx_clean_list(struct nic *nic)
2129{
2130	struct rx *rx;
2131	unsigned int i, count = nic->params.rfds.count;
2132
2133	nic->ru_running = RU_UNINITIALIZED;
2134
2135	if (nic->rxs) {
2136		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2137			if (rx->skb) {
2138				dma_unmap_single(&nic->pdev->dev,
2139						 rx->dma_addr, RFD_BUF_LEN,
2140						 DMA_BIDIRECTIONAL);
2141				dev_kfree_skb(rx->skb);
2142			}
2143		}
2144		kfree(nic->rxs);
2145		nic->rxs = NULL;
2146	}
2147
2148	nic->rx_to_use = nic->rx_to_clean = NULL;
2149}
2150
2151static int e100_rx_alloc_list(struct nic *nic)
2152{
2153	struct rx *rx;
2154	unsigned int i, count = nic->params.rfds.count;
2155	struct rfd *before_last;
2156
2157	nic->rx_to_use = nic->rx_to_clean = NULL;
2158	nic->ru_running = RU_UNINITIALIZED;
2159
2160	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2161		return -ENOMEM;
2162
2163	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2164		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2165		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2166		if (e100_rx_alloc_skb(nic, rx)) {
2167			e100_rx_clean_list(nic);
2168			return -ENOMEM;
2169		}
2170	}
2171	/* Set the el-bit on the buffer that is before the last buffer.
2172	 * This lets us update the next pointer on the last buffer without
2173	 * worrying about hardware touching it.
2174	 * We set the size to 0 to prevent hardware from touching this buffer.
2175	 * When the hardware hits the before last buffer with el-bit and size
2176	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2177	 * state.  It will not complete nor write to this buffer. */
2178	rx = nic->rxs->prev->prev;
2179	before_last = (struct rfd *)rx->skb->data;
2180	before_last->command |= cpu_to_le16(cb_el);
2181	before_last->size = 0;
2182	dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2183				   sizeof(struct rfd), DMA_BIDIRECTIONAL);
2184
2185	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2186	nic->ru_running = RU_SUSPENDED;
2187
2188	return 0;
2189}
2190
2191static irqreturn_t e100_intr(int irq, void *dev_id)
2192{
2193	struct net_device *netdev = dev_id;
2194	struct nic *nic = netdev_priv(netdev);
2195	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2196
2197	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2198		     "stat_ack = 0x%02X\n", stat_ack);
2199
2200	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2201	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2202		return IRQ_NONE;
2203
2204	/* Ack interrupt(s) */
2205	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2206
2207	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2208	if (stat_ack & stat_ack_rnr)
2209		nic->ru_running = RU_SUSPENDED;
2210
2211	if (likely(napi_schedule_prep(&nic->napi))) {
2212		e100_disable_irq(nic);
2213		__napi_schedule(&nic->napi);
2214	}
2215
2216	return IRQ_HANDLED;
2217}
2218
2219static int e100_poll(struct napi_struct *napi, int budget)
2220{
2221	struct nic *nic = container_of(napi, struct nic, napi);
2222	unsigned int work_done = 0;
2223
2224	e100_rx_clean(nic, &work_done, budget);
2225	e100_tx_clean(nic);
2226
2227	/* If budget fully consumed, continue polling */
2228	if (work_done == budget)
2229		return budget;
2230
2231	/* only re-enable interrupt if stack agrees polling is really done */
2232	if (likely(napi_complete_done(napi, work_done)))
2233		e100_enable_irq(nic);
2234
2235	return work_done;
2236}
2237
2238#ifdef CONFIG_NET_POLL_CONTROLLER
2239static void e100_netpoll(struct net_device *netdev)
2240{
2241	struct nic *nic = netdev_priv(netdev);
2242
2243	e100_disable_irq(nic);
2244	e100_intr(nic->pdev->irq, netdev);
2245	e100_tx_clean(nic);
2246	e100_enable_irq(nic);
2247}
2248#endif
2249
2250static int e100_set_mac_address(struct net_device *netdev, void *p)
2251{
2252	struct nic *nic = netdev_priv(netdev);
2253	struct sockaddr *addr = p;
2254
2255	if (!is_valid_ether_addr(addr->sa_data))
2256		return -EADDRNOTAVAIL;
2257
2258	eth_hw_addr_set(netdev, addr->sa_data);
2259	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2260
2261	return 0;
2262}
2263
2264static int e100_asf(struct nic *nic)
2265{
2266	/* ASF can be enabled from eeprom */
2267	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2268	   (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2269	   !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2270	   ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2271}
2272
2273static int e100_up(struct nic *nic)
2274{
2275	int err;
2276
2277	if ((err = e100_rx_alloc_list(nic)))
2278		return err;
2279	if ((err = e100_alloc_cbs(nic)))
2280		goto err_rx_clean_list;
2281	if ((err = e100_hw_init(nic)))
2282		goto err_clean_cbs;
2283	e100_set_multicast_list(nic->netdev);
2284	e100_start_receiver(nic, NULL);
2285	mod_timer(&nic->watchdog, jiffies);
2286	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2287		nic->netdev->name, nic->netdev)))
2288		goto err_no_irq;
2289	netif_wake_queue(nic->netdev);
2290	napi_enable(&nic->napi);
2291	/* enable ints _after_ enabling poll, preventing a race between
2292	 * disable ints+schedule */
2293	e100_enable_irq(nic);
2294	return 0;
2295
2296err_no_irq:
2297	del_timer_sync(&nic->watchdog);
2298err_clean_cbs:
2299	e100_clean_cbs(nic);
2300err_rx_clean_list:
2301	e100_rx_clean_list(nic);
2302	return err;
2303}
2304
2305static void e100_down(struct nic *nic)
2306{
2307	/* wait here for poll to complete */
2308	napi_disable(&nic->napi);
2309	netif_stop_queue(nic->netdev);
2310	e100_hw_reset(nic);
2311	free_irq(nic->pdev->irq, nic->netdev);
2312	del_timer_sync(&nic->watchdog);
2313	netif_carrier_off(nic->netdev);
2314	e100_clean_cbs(nic);
2315	e100_rx_clean_list(nic);
2316}
2317
2318static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2319{
2320	struct nic *nic = netdev_priv(netdev);
2321
2322	/* Reset outside of interrupt context, to avoid request_irq
2323	 * in interrupt context */
2324	schedule_work(&nic->tx_timeout_task);
2325}
2326
2327static void e100_tx_timeout_task(struct work_struct *work)
2328{
2329	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2330	struct net_device *netdev = nic->netdev;
2331
2332	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2333		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2334
2335	rtnl_lock();
2336	if (netif_running(netdev)) {
2337		e100_down(netdev_priv(netdev));
2338		e100_up(netdev_priv(netdev));
2339	}
2340	rtnl_unlock();
2341}
2342
2343static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2344{
2345	int err;
2346	struct sk_buff *skb;
2347
2348	/* Use driver resources to perform internal MAC or PHY
2349	 * loopback test.  A single packet is prepared and transmitted
2350	 * in loopback mode, and the test passes if the received
2351	 * packet compares byte-for-byte to the transmitted packet. */
2352
2353	if ((err = e100_rx_alloc_list(nic)))
2354		return err;
2355	if ((err = e100_alloc_cbs(nic)))
2356		goto err_clean_rx;
2357
2358	/* ICH PHY loopback is broken so do MAC loopback instead */
2359	if (nic->flags & ich && loopback_mode == lb_phy)
2360		loopback_mode = lb_mac;
2361
2362	nic->loopback = loopback_mode;
2363	if ((err = e100_hw_init(nic)))
2364		goto err_loopback_none;
2365
2366	if (loopback_mode == lb_phy)
2367		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2368			BMCR_LOOPBACK);
2369
2370	e100_start_receiver(nic, NULL);
2371
2372	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2373		err = -ENOMEM;
2374		goto err_loopback_none;
2375	}
2376	skb_put(skb, ETH_DATA_LEN);
2377	memset(skb->data, 0xFF, ETH_DATA_LEN);
2378	e100_xmit_frame(skb, nic->netdev);
2379
2380	msleep(10);
2381
2382	dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2383				RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2384
2385	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2386	   skb->data, ETH_DATA_LEN))
2387		err = -EAGAIN;
2388
2389err_loopback_none:
2390	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2391	nic->loopback = lb_none;
2392	e100_clean_cbs(nic);
2393	e100_hw_reset(nic);
2394err_clean_rx:
2395	e100_rx_clean_list(nic);
2396	return err;
2397}
2398
2399#define MII_LED_CONTROL	0x1B
2400#define E100_82552_LED_OVERRIDE 0x19
2401#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2402#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2403
2404static int e100_get_link_ksettings(struct net_device *netdev,
2405				   struct ethtool_link_ksettings *cmd)
2406{
2407	struct nic *nic = netdev_priv(netdev);
2408
2409	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2410
2411	return 0;
2412}
2413
2414static int e100_set_link_ksettings(struct net_device *netdev,
2415				   const struct ethtool_link_ksettings *cmd)
2416{
2417	struct nic *nic = netdev_priv(netdev);
2418	int err;
2419
2420	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2421	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2422	e100_exec_cb(nic, NULL, e100_configure);
2423
2424	return err;
2425}
2426
2427static void e100_get_drvinfo(struct net_device *netdev,
2428	struct ethtool_drvinfo *info)
2429{
2430	struct nic *nic = netdev_priv(netdev);
2431	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2432	strscpy(info->bus_info, pci_name(nic->pdev),
2433		sizeof(info->bus_info));
2434}
2435
2436#define E100_PHY_REGS 0x1D
2437static int e100_get_regs_len(struct net_device *netdev)
2438{
2439	struct nic *nic = netdev_priv(netdev);
2440
2441	/* We know the number of registers, and the size of the dump buffer.
2442	 * Calculate the total size in bytes.
2443	 */
2444	return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2445}
2446
2447static void e100_get_regs(struct net_device *netdev,
2448	struct ethtool_regs *regs, void *p)
2449{
2450	struct nic *nic = netdev_priv(netdev);
2451	u32 *buff = p;
2452	int i;
2453
2454	regs->version = (1 << 24) | nic->pdev->revision;
2455	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2456		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2457		ioread16(&nic->csr->scb.status);
2458	for (i = 0; i < E100_PHY_REGS; i++)
2459		/* Note that we read the registers in reverse order. This
2460		 * ordering is the ABI apparently used by ethtool and other
2461		 * applications.
2462		 */
2463		buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2464					E100_PHY_REGS - 1 - i);
2465	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2466	e100_exec_cb(nic, NULL, e100_dump);
2467	msleep(10);
2468	memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2469	       sizeof(nic->mem->dump_buf));
2470}
2471
2472static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2473{
2474	struct nic *nic = netdev_priv(netdev);
2475	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2476	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2477}
2478
2479static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2480{
2481	struct nic *nic = netdev_priv(netdev);
2482
2483	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2484	    !device_can_wakeup(&nic->pdev->dev))
2485		return -EOPNOTSUPP;
2486
2487	if (wol->wolopts)
2488		nic->flags |= wol_magic;
2489	else
2490		nic->flags &= ~wol_magic;
2491
2492	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2493
2494	e100_exec_cb(nic, NULL, e100_configure);
2495
2496	return 0;
2497}
2498
2499static u32 e100_get_msglevel(struct net_device *netdev)
2500{
2501	struct nic *nic = netdev_priv(netdev);
2502	return nic->msg_enable;
2503}
2504
2505static void e100_set_msglevel(struct net_device *netdev, u32 value)
2506{
2507	struct nic *nic = netdev_priv(netdev);
2508	nic->msg_enable = value;
2509}
2510
2511static int e100_nway_reset(struct net_device *netdev)
2512{
2513	struct nic *nic = netdev_priv(netdev);
2514	return mii_nway_restart(&nic->mii);
2515}
2516
2517static u32 e100_get_link(struct net_device *netdev)
2518{
2519	struct nic *nic = netdev_priv(netdev);
2520	return mii_link_ok(&nic->mii);
2521}
2522
2523static int e100_get_eeprom_len(struct net_device *netdev)
2524{
2525	struct nic *nic = netdev_priv(netdev);
2526	return nic->eeprom_wc << 1;
2527}
2528
2529#define E100_EEPROM_MAGIC	0x1234
2530static int e100_get_eeprom(struct net_device *netdev,
2531	struct ethtool_eeprom *eeprom, u8 *bytes)
2532{
2533	struct nic *nic = netdev_priv(netdev);
2534
2535	eeprom->magic = E100_EEPROM_MAGIC;
2536	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2537
2538	return 0;
2539}
2540
2541static int e100_set_eeprom(struct net_device *netdev,
2542	struct ethtool_eeprom *eeprom, u8 *bytes)
2543{
2544	struct nic *nic = netdev_priv(netdev);
2545
2546	if (eeprom->magic != E100_EEPROM_MAGIC)
2547		return -EINVAL;
2548
2549	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2550
2551	return e100_eeprom_save(nic, eeprom->offset >> 1,
2552		(eeprom->len >> 1) + 1);
2553}
2554
2555static void e100_get_ringparam(struct net_device *netdev,
2556			       struct ethtool_ringparam *ring,
2557			       struct kernel_ethtool_ringparam *kernel_ring,
2558			       struct netlink_ext_ack *extack)
2559{
2560	struct nic *nic = netdev_priv(netdev);
2561	struct param_range *rfds = &nic->params.rfds;
2562	struct param_range *cbs = &nic->params.cbs;
2563
2564	ring->rx_max_pending = rfds->max;
2565	ring->tx_max_pending = cbs->max;
2566	ring->rx_pending = rfds->count;
2567	ring->tx_pending = cbs->count;
2568}
2569
2570static int e100_set_ringparam(struct net_device *netdev,
2571			      struct ethtool_ringparam *ring,
2572			      struct kernel_ethtool_ringparam *kernel_ring,
2573			      struct netlink_ext_ack *extack)
2574{
2575	struct nic *nic = netdev_priv(netdev);
2576	struct param_range *rfds = &nic->params.rfds;
2577	struct param_range *cbs = &nic->params.cbs;
2578
2579	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2580		return -EINVAL;
2581
2582	if (netif_running(netdev))
2583		e100_down(nic);
2584	rfds->count = max(ring->rx_pending, rfds->min);
2585	rfds->count = min(rfds->count, rfds->max);
2586	cbs->count = max(ring->tx_pending, cbs->min);
2587	cbs->count = min(cbs->count, cbs->max);
2588	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2589		   rfds->count, cbs->count);
2590	if (netif_running(netdev))
2591		e100_up(nic);
2592
2593	return 0;
2594}
2595
2596static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2597	"Link test     (on/offline)",
2598	"Eeprom test   (on/offline)",
2599	"Self test        (offline)",
2600	"Mac loopback     (offline)",
2601	"Phy loopback     (offline)",
2602};
2603#define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2604
2605static void e100_diag_test(struct net_device *netdev,
2606	struct ethtool_test *test, u64 *data)
2607{
2608	struct ethtool_cmd cmd;
2609	struct nic *nic = netdev_priv(netdev);
2610	int i;
2611
2612	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2613	data[0] = !mii_link_ok(&nic->mii);
2614	data[1] = e100_eeprom_load(nic);
2615	if (test->flags & ETH_TEST_FL_OFFLINE) {
2616
2617		/* save speed, duplex & autoneg settings */
2618		mii_ethtool_gset(&nic->mii, &cmd);
2619
2620		if (netif_running(netdev))
2621			e100_down(nic);
2622		data[2] = e100_self_test(nic);
2623		data[3] = e100_loopback_test(nic, lb_mac);
2624		data[4] = e100_loopback_test(nic, lb_phy);
2625
2626		/* restore speed, duplex & autoneg settings */
2627		mii_ethtool_sset(&nic->mii, &cmd);
2628
2629		if (netif_running(netdev))
2630			e100_up(nic);
2631	}
2632	for (i = 0; i < E100_TEST_LEN; i++)
2633		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2634
2635	msleep_interruptible(4 * 1000);
2636}
2637
2638static int e100_set_phys_id(struct net_device *netdev,
2639			    enum ethtool_phys_id_state state)
2640{
2641	struct nic *nic = netdev_priv(netdev);
2642	enum led_state {
2643		led_on     = 0x01,
2644		led_off    = 0x04,
2645		led_on_559 = 0x05,
2646		led_on_557 = 0x07,
2647	};
2648	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2649		MII_LED_CONTROL;
2650	u16 leds = 0;
2651
2652	switch (state) {
2653	case ETHTOOL_ID_ACTIVE:
2654		return 2;
2655
2656	case ETHTOOL_ID_ON:
2657		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2658		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2659		break;
2660
2661	case ETHTOOL_ID_OFF:
2662		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2663		break;
2664
2665	case ETHTOOL_ID_INACTIVE:
2666		break;
2667	}
2668
2669	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2670	return 0;
2671}
2672
2673static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2674	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2675	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2676	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2677	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2678	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2679	"tx_heartbeat_errors", "tx_window_errors",
2680	/* device-specific stats */
2681	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2682	"tx_flow_control_pause", "rx_flow_control_pause",
2683	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2684	"rx_short_frame_errors", "rx_over_length_errors",
2685};
2686#define E100_NET_STATS_LEN	21
2687#define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2688
2689static int e100_get_sset_count(struct net_device *netdev, int sset)
2690{
2691	switch (sset) {
2692	case ETH_SS_TEST:
2693		return E100_TEST_LEN;
2694	case ETH_SS_STATS:
2695		return E100_STATS_LEN;
2696	default:
2697		return -EOPNOTSUPP;
2698	}
2699}
2700
2701static void e100_get_ethtool_stats(struct net_device *netdev,
2702	struct ethtool_stats *stats, u64 *data)
2703{
2704	struct nic *nic = netdev_priv(netdev);
2705	int i;
2706
2707	for (i = 0; i < E100_NET_STATS_LEN; i++)
2708		data[i] = ((unsigned long *)&netdev->stats)[i];
2709
2710	data[i++] = nic->tx_deferred;
2711	data[i++] = nic->tx_single_collisions;
2712	data[i++] = nic->tx_multiple_collisions;
2713	data[i++] = nic->tx_fc_pause;
2714	data[i++] = nic->rx_fc_pause;
2715	data[i++] = nic->rx_fc_unsupported;
2716	data[i++] = nic->tx_tco_frames;
2717	data[i++] = nic->rx_tco_frames;
2718	data[i++] = nic->rx_short_frame_errors;
2719	data[i++] = nic->rx_over_length_errors;
2720}
2721
2722static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2723{
2724	switch (stringset) {
2725	case ETH_SS_TEST:
2726		memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
2727		break;
2728	case ETH_SS_STATS:
2729		memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
2730		break;
2731	}
2732}
2733
2734static const struct ethtool_ops e100_ethtool_ops = {
2735	.get_drvinfo		= e100_get_drvinfo,
2736	.get_regs_len		= e100_get_regs_len,
2737	.get_regs		= e100_get_regs,
2738	.get_wol		= e100_get_wol,
2739	.set_wol		= e100_set_wol,
2740	.get_msglevel		= e100_get_msglevel,
2741	.set_msglevel		= e100_set_msglevel,
2742	.nway_reset		= e100_nway_reset,
2743	.get_link		= e100_get_link,
2744	.get_eeprom_len		= e100_get_eeprom_len,
2745	.get_eeprom		= e100_get_eeprom,
2746	.set_eeprom		= e100_set_eeprom,
2747	.get_ringparam		= e100_get_ringparam,
2748	.set_ringparam		= e100_set_ringparam,
2749	.self_test		= e100_diag_test,
2750	.get_strings		= e100_get_strings,
2751	.set_phys_id		= e100_set_phys_id,
2752	.get_ethtool_stats	= e100_get_ethtool_stats,
2753	.get_sset_count		= e100_get_sset_count,
2754	.get_ts_info		= ethtool_op_get_ts_info,
2755	.get_link_ksettings	= e100_get_link_ksettings,
2756	.set_link_ksettings	= e100_set_link_ksettings,
2757};
2758
2759static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2760{
2761	struct nic *nic = netdev_priv(netdev);
2762
2763	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2764}
2765
2766static int e100_alloc(struct nic *nic)
2767{
2768	nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2769				      &nic->dma_addr, GFP_KERNEL);
2770	return nic->mem ? 0 : -ENOMEM;
2771}
2772
2773static void e100_free(struct nic *nic)
2774{
2775	if (nic->mem) {
2776		dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2777				  nic->mem, nic->dma_addr);
2778		nic->mem = NULL;
2779	}
2780}
2781
2782static int e100_open(struct net_device *netdev)
2783{
2784	struct nic *nic = netdev_priv(netdev);
2785	int err = 0;
2786
2787	netif_carrier_off(netdev);
2788	if ((err = e100_up(nic)))
2789		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2790	return err;
2791}
2792
2793static int e100_close(struct net_device *netdev)
2794{
2795	e100_down(netdev_priv(netdev));
2796	return 0;
2797}
2798
2799static int e100_set_features(struct net_device *netdev,
2800			     netdev_features_t features)
2801{
2802	struct nic *nic = netdev_priv(netdev);
2803	netdev_features_t changed = features ^ netdev->features;
2804
2805	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2806		return 0;
2807
2808	netdev->features = features;
2809	e100_exec_cb(nic, NULL, e100_configure);
2810	return 1;
2811}
2812
2813static const struct net_device_ops e100_netdev_ops = {
2814	.ndo_open		= e100_open,
2815	.ndo_stop		= e100_close,
2816	.ndo_start_xmit		= e100_xmit_frame,
2817	.ndo_validate_addr	= eth_validate_addr,
2818	.ndo_set_rx_mode	= e100_set_multicast_list,
2819	.ndo_set_mac_address	= e100_set_mac_address,
2820	.ndo_eth_ioctl		= e100_do_ioctl,
2821	.ndo_tx_timeout		= e100_tx_timeout,
2822#ifdef CONFIG_NET_POLL_CONTROLLER
2823	.ndo_poll_controller	= e100_netpoll,
2824#endif
2825	.ndo_set_features	= e100_set_features,
2826};
2827
2828static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2829{
2830	struct net_device *netdev;
2831	struct nic *nic;
2832	int err;
2833
2834	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2835		return -ENOMEM;
2836
2837	netdev->hw_features |= NETIF_F_RXFCS;
2838	netdev->priv_flags |= IFF_SUPP_NOFCS;
2839	netdev->hw_features |= NETIF_F_RXALL;
2840
2841	netdev->netdev_ops = &e100_netdev_ops;
2842	netdev->ethtool_ops = &e100_ethtool_ops;
2843	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2844	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2845
2846	nic = netdev_priv(netdev);
2847	netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2848	nic->netdev = netdev;
2849	nic->pdev = pdev;
2850	nic->msg_enable = (1 << debug) - 1;
2851	nic->mdio_ctrl = mdio_ctrl_hw;
2852	pci_set_drvdata(pdev, netdev);
2853
2854	if ((err = pci_enable_device(pdev))) {
2855		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2856		goto err_out_free_dev;
2857	}
2858
2859	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2860		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2861		err = -ENODEV;
2862		goto err_out_disable_pdev;
2863	}
2864
2865	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2866		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2867		goto err_out_disable_pdev;
2868	}
2869
2870	if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2871		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2872		goto err_out_free_res;
2873	}
2874
2875	SET_NETDEV_DEV(netdev, &pdev->dev);
2876
2877	if (use_io)
2878		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2879
2880	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2881	if (!nic->csr) {
2882		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2883		err = -ENOMEM;
2884		goto err_out_free_res;
2885	}
2886
2887	if (ent->driver_data)
2888		nic->flags |= ich;
2889	else
2890		nic->flags &= ~ich;
2891
2892	e100_get_defaults(nic);
2893
2894	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2895	if (nic->mac < mac_82558_D101_A4)
2896		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2897
2898	/* locks must be initialized before calling hw_reset */
2899	spin_lock_init(&nic->cb_lock);
2900	spin_lock_init(&nic->cmd_lock);
2901	spin_lock_init(&nic->mdio_lock);
2902
2903	/* Reset the device before pci_set_master() in case device is in some
2904	 * funky state and has an interrupt pending - hint: we don't have the
2905	 * interrupt handler registered yet. */
2906	e100_hw_reset(nic);
2907
2908	pci_set_master(pdev);
2909
2910	timer_setup(&nic->watchdog, e100_watchdog, 0);
2911
2912	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2913
2914	if ((err = e100_alloc(nic))) {
2915		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2916		goto err_out_iounmap;
2917	}
2918
2919	if ((err = e100_eeprom_load(nic)))
2920		goto err_out_free;
2921
2922	e100_phy_init(nic);
2923
2924	eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
2925	if (!is_valid_ether_addr(netdev->dev_addr)) {
2926		if (!eeprom_bad_csum_allow) {
2927			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2928			err = -EAGAIN;
2929			goto err_out_free;
2930		} else {
2931			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2932		}
2933	}
2934
2935	/* Wol magic packet can be enabled from eeprom */
2936	if ((nic->mac >= mac_82558_D101_A4) &&
2937	   (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2938		nic->flags |= wol_magic;
2939		device_set_wakeup_enable(&pdev->dev, true);
2940	}
2941
2942	/* ack any pending wake events, disable PME */
2943	pci_pme_active(pdev, false);
2944
2945	strcpy(netdev->name, "eth%d");
2946	if ((err = register_netdev(netdev))) {
2947		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2948		goto err_out_free;
2949	}
2950	nic->cbs_pool = dma_pool_create(netdev->name,
2951			   &nic->pdev->dev,
2952			   nic->params.cbs.max * sizeof(struct cb),
2953			   sizeof(u32),
2954			   0);
2955	if (!nic->cbs_pool) {
2956		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2957		err = -ENOMEM;
2958		goto err_out_pool;
2959	}
2960	netif_info(nic, probe, nic->netdev,
2961		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2962		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2963		   pdev->irq, netdev->dev_addr);
2964
2965	return 0;
2966
2967err_out_pool:
2968	unregister_netdev(netdev);
2969err_out_free:
2970	e100_free(nic);
2971err_out_iounmap:
2972	pci_iounmap(pdev, nic->csr);
2973err_out_free_res:
2974	pci_release_regions(pdev);
2975err_out_disable_pdev:
2976	pci_disable_device(pdev);
2977err_out_free_dev:
2978	free_netdev(netdev);
2979	return err;
2980}
2981
2982static void e100_remove(struct pci_dev *pdev)
2983{
2984	struct net_device *netdev = pci_get_drvdata(pdev);
2985
2986	if (netdev) {
2987		struct nic *nic = netdev_priv(netdev);
2988		unregister_netdev(netdev);
2989		e100_free(nic);
2990		pci_iounmap(pdev, nic->csr);
2991		dma_pool_destroy(nic->cbs_pool);
2992		free_netdev(netdev);
2993		pci_release_regions(pdev);
2994		pci_disable_device(pdev);
2995	}
2996}
2997
2998#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2999#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3000#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3001static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3002{
3003	struct net_device *netdev = pci_get_drvdata(pdev);
3004	struct nic *nic = netdev_priv(netdev);
3005
3006	netif_device_detach(netdev);
3007
3008	if (netif_running(netdev))
3009		e100_down(nic);
3010
3011	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3012		/* enable reverse auto-negotiation */
3013		if (nic->phy == phy_82552_v) {
3014			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3015			                           E100_82552_SMARTSPEED);
3016
3017			mdio_write(netdev, nic->mii.phy_id,
3018			           E100_82552_SMARTSPEED, smartspeed |
3019			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3020		}
3021		*enable_wake = true;
3022	} else {
3023		*enable_wake = false;
3024	}
3025
3026	pci_disable_device(pdev);
3027}
3028
3029static int __e100_power_off(struct pci_dev *pdev, bool wake)
3030{
3031	if (wake)
3032		return pci_prepare_to_sleep(pdev);
3033
3034	pci_wake_from_d3(pdev, false);
3035	pci_set_power_state(pdev, PCI_D3hot);
3036
3037	return 0;
3038}
3039
3040static int __maybe_unused e100_suspend(struct device *dev_d)
3041{
3042	bool wake;
3043
3044	__e100_shutdown(to_pci_dev(dev_d), &wake);
3045
3046	return 0;
3047}
3048
3049static int __maybe_unused e100_resume(struct device *dev_d)
3050{
3051	struct net_device *netdev = dev_get_drvdata(dev_d);
3052	struct nic *nic = netdev_priv(netdev);
3053	int err;
3054
3055	err = pci_enable_device(to_pci_dev(dev_d));
3056	if (err) {
3057		netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3058		return err;
3059	}
3060	pci_set_master(to_pci_dev(dev_d));
3061
3062	/* disable reverse auto-negotiation */
3063	if (nic->phy == phy_82552_v) {
3064		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3065		                           E100_82552_SMARTSPEED);
3066
3067		mdio_write(netdev, nic->mii.phy_id,
3068		           E100_82552_SMARTSPEED,
3069		           smartspeed & ~(E100_82552_REV_ANEG));
3070	}
3071
3072	if (netif_running(netdev))
3073		e100_up(nic);
3074
3075	netif_device_attach(netdev);
3076
3077	return 0;
3078}
3079
3080static void e100_shutdown(struct pci_dev *pdev)
3081{
3082	bool wake;
3083	__e100_shutdown(pdev, &wake);
3084	if (system_state == SYSTEM_POWER_OFF)
3085		__e100_power_off(pdev, wake);
3086}
3087
3088/* ------------------ PCI Error Recovery infrastructure  -------------- */
3089/**
3090 * e100_io_error_detected - called when PCI error is detected.
3091 * @pdev: Pointer to PCI device
3092 * @state: The current pci connection state
3093 */
3094static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3095{
3096	struct net_device *netdev = pci_get_drvdata(pdev);
3097	struct nic *nic = netdev_priv(netdev);
3098
3099	netif_device_detach(netdev);
3100
3101	if (state == pci_channel_io_perm_failure)
3102		return PCI_ERS_RESULT_DISCONNECT;
3103
3104	if (netif_running(netdev))
3105		e100_down(nic);
3106	pci_disable_device(pdev);
3107
3108	/* Request a slot reset. */
3109	return PCI_ERS_RESULT_NEED_RESET;
3110}
3111
3112/**
3113 * e100_io_slot_reset - called after the pci bus has been reset.
3114 * @pdev: Pointer to PCI device
3115 *
3116 * Restart the card from scratch.
3117 */
3118static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3119{
3120	struct net_device *netdev = pci_get_drvdata(pdev);
3121	struct nic *nic = netdev_priv(netdev);
3122
3123	if (pci_enable_device(pdev)) {
3124		pr_err("Cannot re-enable PCI device after reset\n");
3125		return PCI_ERS_RESULT_DISCONNECT;
3126	}
3127	pci_set_master(pdev);
3128
3129	/* Only one device per card can do a reset */
3130	if (0 != PCI_FUNC(pdev->devfn))
3131		return PCI_ERS_RESULT_RECOVERED;
3132	e100_hw_reset(nic);
3133	e100_phy_init(nic);
3134
3135	return PCI_ERS_RESULT_RECOVERED;
3136}
3137
3138/**
3139 * e100_io_resume - resume normal operations
3140 * @pdev: Pointer to PCI device
3141 *
3142 * Resume normal operations after an error recovery
3143 * sequence has been completed.
3144 */
3145static void e100_io_resume(struct pci_dev *pdev)
3146{
3147	struct net_device *netdev = pci_get_drvdata(pdev);
3148	struct nic *nic = netdev_priv(netdev);
3149
3150	/* ack any pending wake events, disable PME */
3151	pci_enable_wake(pdev, PCI_D0, 0);
3152
3153	netif_device_attach(netdev);
3154	if (netif_running(netdev)) {
3155		e100_open(netdev);
3156		mod_timer(&nic->watchdog, jiffies);
3157	}
3158}
3159
3160static const struct pci_error_handlers e100_err_handler = {
3161	.error_detected = e100_io_error_detected,
3162	.slot_reset = e100_io_slot_reset,
3163	.resume = e100_io_resume,
3164};
3165
3166static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3167
3168static struct pci_driver e100_driver = {
3169	.name =         DRV_NAME,
3170	.id_table =     e100_id_table,
3171	.probe =        e100_probe,
3172	.remove =       e100_remove,
3173
3174	/* Power Management hooks */
3175	.driver.pm =	&e100_pm_ops,
3176
3177	.shutdown =     e100_shutdown,
3178	.err_handler = &e100_err_handler,
3179};
3180
3181static int __init e100_init_module(void)
3182{
3183	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3184		pr_info("%s\n", DRV_DESCRIPTION);
3185		pr_info("%s\n", DRV_COPYRIGHT);
3186	}
3187	return pci_register_driver(&e100_driver);
3188}
3189
3190static void __exit e100_cleanup_module(void)
3191{
3192	pci_unregister_driver(&e100_driver);
3193}
3194
3195module_init(e100_init_module);
3196module_exit(e100_cleanup_module);