Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 *
5 * Copyright (c) 2003 Intracom S.A.
6 * by Pantelis Antoniou <panto@intracom.gr>
7 *
8 * 2005 (c) MontaVista Software, Inc.
9 * Vitaly Bordug <vbordug@ru.mvista.com>
10 *
11 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
12 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 */
14
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/string.h>
19#include <linux/ptrace.h>
20#include <linux/errno.h>
21#include <linux/ioport.h>
22#include <linux/slab.h>
23#include <linux/interrupt.h>
24#include <linux/delay.h>
25#include <linux/netdevice.h>
26#include <linux/etherdevice.h>
27#include <linux/skbuff.h>
28#include <linux/spinlock.h>
29#include <linux/ethtool.h>
30#include <linux/bitops.h>
31#include <linux/fs.h>
32#include <linux/platform_device.h>
33#include <linux/phy.h>
34#include <linux/phylink.h>
35#include <linux/property.h>
36#include <linux/of.h>
37#include <linux/of_mdio.h>
38#include <linux/of_net.h>
39#include <linux/pgtable.h>
40#include <linux/rtnetlink.h>
41
42#include <linux/vmalloc.h>
43#include <asm/irq.h>
44#include <linux/uaccess.h>
45
46#include "fs_enet.h"
47
48/*************************************************/
49
50MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
51MODULE_DESCRIPTION("Freescale Ethernet Driver");
52MODULE_LICENSE("GPL");
53
54static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
55module_param(fs_enet_debug, int, 0);
56MODULE_PARM_DESC(fs_enet_debug,
57 "Freescale bitmapped debugging message enable value");
58
59#define RX_RING_SIZE 32
60#define TX_RING_SIZE 64
61
62#ifdef CONFIG_NET_POLL_CONTROLLER
63static void fs_enet_netpoll(struct net_device *dev);
64#endif
65
66static void fs_set_multicast_list(struct net_device *dev)
67{
68 struct fs_enet_private *fep = netdev_priv(dev);
69
70 (*fep->ops->set_multicast_list)(dev);
71}
72
73static int fs_eth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
74{
75 struct fs_enet_private *fep = netdev_priv(dev);
76
77 return phylink_mii_ioctl(fep->phylink, ifr, cmd);
78}
79
80static void skb_align(struct sk_buff *skb, int align)
81{
82 int off = ((unsigned long)skb->data) & (align - 1);
83
84 if (off)
85 skb_reserve(skb, align - off);
86}
87
88/* NAPI function */
89static int fs_enet_napi(struct napi_struct *napi, int budget)
90{
91 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
92 const struct fs_platform_info *fpi = fep->fpi;
93 struct net_device *dev = fep->ndev;
94 int curidx, dirtyidx, received = 0;
95 int do_wake = 0, do_restart = 0;
96 int tx_left = TX_RING_SIZE;
97 struct sk_buff *skb, *skbn;
98 cbd_t __iomem *bdp;
99 u16 pkt_len, sc;
100
101 spin_lock(&fep->tx_lock);
102 bdp = fep->dirty_tx;
103
104 /* clear status bits for napi*/
105 (*fep->ops->napi_clear_event)(dev);
106
107 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
108 dirtyidx = bdp - fep->tx_bd_base;
109
110 if (fep->tx_free == fep->tx_ring)
111 break;
112
113 skb = fep->tx_skbuff[dirtyidx];
114
115 /* Check for errors. */
116 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
117 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
118 if (sc & BD_ENET_TX_HB) /* No heartbeat */
119 dev->stats.tx_heartbeat_errors++;
120 if (sc & BD_ENET_TX_LC) /* Late collision */
121 dev->stats.tx_window_errors++;
122 if (sc & BD_ENET_TX_RL) /* Retrans limit */
123 dev->stats.tx_aborted_errors++;
124 if (sc & BD_ENET_TX_UN) /* Underrun */
125 dev->stats.tx_fifo_errors++;
126 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
127 dev->stats.tx_carrier_errors++;
128
129 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
130 dev->stats.tx_errors++;
131 do_restart = 1;
132 }
133 } else {
134 dev->stats.tx_packets++;
135 }
136
137 if (sc & BD_ENET_TX_READY) {
138 dev_warn(fep->dev,
139 "HEY! Enet xmit interrupt and TX_READY.\n");
140 }
141
142 /* Deferred means some collisions occurred during transmit,
143 * but we eventually sent the packet OK.
144 */
145 if (sc & BD_ENET_TX_DEF)
146 dev->stats.collisions++;
147
148 /* unmap */
149 if (fep->mapped_as_page[dirtyidx])
150 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
151 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
152 else
153 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
154 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
155
156 /* Free the sk buffer associated with this last transmit. */
157 if (skb) {
158 dev_kfree_skb(skb);
159 fep->tx_skbuff[dirtyidx] = NULL;
160 }
161
162 /* Update pointer to next buffer descriptor to be transmitted.
163 */
164 if ((sc & BD_ENET_TX_WRAP) == 0)
165 bdp++;
166 else
167 bdp = fep->tx_bd_base;
168
169 /* Since we have freed up a buffer, the ring is no longer full.
170 */
171 if (++fep->tx_free == MAX_SKB_FRAGS)
172 do_wake = 1;
173 tx_left--;
174 }
175
176 fep->dirty_tx = bdp;
177
178 if (do_restart)
179 (*fep->ops->tx_restart)(dev);
180
181 spin_unlock(&fep->tx_lock);
182
183 if (do_wake)
184 netif_wake_queue(dev);
185
186 /* First, grab all of the stats for the incoming packet.
187 * These get messed up if we get called due to a busy condition.
188 */
189 bdp = fep->cur_rx;
190
191 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
192 received < budget) {
193 curidx = bdp - fep->rx_bd_base;
194
195 /* Since we have allocated space to hold a complete frame,
196 * the last indicator should be set.
197 */
198 if ((sc & BD_ENET_RX_LAST) == 0)
199 dev_warn(fep->dev, "rcv is not +last\n");
200
201 /* Check for errors. */
202 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
203 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
204 dev->stats.rx_errors++;
205 /* Frame too long or too short. */
206 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
207 dev->stats.rx_length_errors++;
208 /* Frame alignment */
209 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
210 dev->stats.rx_frame_errors++;
211 /* CRC Error */
212 if (sc & BD_ENET_RX_CR)
213 dev->stats.rx_crc_errors++;
214 /* FIFO overrun */
215 if (sc & BD_ENET_RX_OV)
216 dev->stats.rx_crc_errors++;
217
218 skbn = fep->rx_skbuff[curidx];
219 } else {
220 skb = fep->rx_skbuff[curidx];
221
222 /* Process the incoming frame */
223 dev->stats.rx_packets++;
224 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
225 dev->stats.rx_bytes += pkt_len + 4;
226
227 if (pkt_len <= fpi->rx_copybreak) {
228 /* +2 to make IP header L1 cache aligned */
229 skbn = netdev_alloc_skb(dev, pkt_len + 2);
230 if (skbn) {
231 skb_reserve(skbn, 2); /* align IP header */
232 skb_copy_from_linear_data(skb, skbn->data,
233 pkt_len);
234 swap(skb, skbn);
235 dma_sync_single_for_cpu(fep->dev,
236 CBDR_BUFADDR(bdp),
237 L1_CACHE_ALIGN(pkt_len),
238 DMA_FROM_DEVICE);
239 }
240 } else {
241 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
242
243 if (skbn) {
244 dma_addr_t dma;
245
246 skb_align(skbn, ENET_RX_ALIGN);
247
248 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
249 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
250 DMA_FROM_DEVICE);
251
252 dma = dma_map_single(fep->dev, skbn->data,
253 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
254 DMA_FROM_DEVICE);
255 CBDW_BUFADDR(bdp, dma);
256 }
257 }
258
259 if (skbn) {
260 skb_put(skb, pkt_len); /* Make room */
261 skb->protocol = eth_type_trans(skb, dev);
262 received++;
263 netif_receive_skb(skb);
264 } else {
265 dev->stats.rx_dropped++;
266 skbn = skb;
267 }
268 }
269
270 fep->rx_skbuff[curidx] = skbn;
271 CBDW_DATLEN(bdp, 0);
272 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
273
274 /* Update BD pointer to next entry */
275 if ((sc & BD_ENET_RX_WRAP) == 0)
276 bdp++;
277 else
278 bdp = fep->rx_bd_base;
279
280 (*fep->ops->rx_bd_done)(dev);
281 }
282
283 fep->cur_rx = bdp;
284
285 if (received < budget && tx_left) {
286 /* done */
287 napi_complete_done(napi, received);
288 (*fep->ops->napi_enable)(dev);
289
290 return received;
291 }
292
293 return budget;
294}
295
296/* The interrupt handler.
297 * This is called from the MPC core interrupt.
298 */
299static irqreturn_t
300fs_enet_interrupt(int irq, void *dev_id)
301{
302 struct net_device *dev = dev_id;
303 u32 int_events, int_clr_events;
304 struct fs_enet_private *fep;
305 int nr, napi_ok, handled;
306
307 fep = netdev_priv(dev);
308
309 nr = 0;
310 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
311 nr++;
312
313 int_clr_events = int_events;
314 int_clr_events &= ~fep->ev_napi;
315
316 (*fep->ops->clear_int_events)(dev, int_clr_events);
317
318 if (int_events & fep->ev_err)
319 (*fep->ops->ev_error)(dev, int_events);
320
321 if (int_events & fep->ev) {
322 napi_ok = napi_schedule_prep(&fep->napi);
323
324 (*fep->ops->napi_disable)(dev);
325 (*fep->ops->clear_int_events)(dev, fep->ev_napi);
326
327 /* NOTE: it is possible for FCCs in NAPI mode
328 * to submit a spurious interrupt while in poll
329 */
330 if (napi_ok)
331 __napi_schedule(&fep->napi);
332 }
333 }
334
335 handled = nr > 0;
336 return IRQ_RETVAL(handled);
337}
338
339void fs_init_bds(struct net_device *dev)
340{
341 struct fs_enet_private *fep = netdev_priv(dev);
342 struct sk_buff *skb;
343 cbd_t __iomem *bdp;
344 int i;
345
346 fs_cleanup_bds(dev);
347
348 fep->dirty_tx = fep->tx_bd_base;
349 fep->cur_tx = fep->tx_bd_base;
350 fep->tx_free = fep->tx_ring;
351 fep->cur_rx = fep->rx_bd_base;
352
353 /* Initialize the receive buffer descriptors */
354 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
355 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
356 if (!skb)
357 break;
358
359 skb_align(skb, ENET_RX_ALIGN);
360 fep->rx_skbuff[i] = skb;
361 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skb->data,
362 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
363 DMA_FROM_DEVICE));
364 CBDW_DATLEN(bdp, 0); /* zero */
365 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
366 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
367 }
368
369 /* if we failed, fillup remainder */
370 for (; i < fep->rx_ring; i++, bdp++) {
371 fep->rx_skbuff[i] = NULL;
372 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
373 }
374
375 /* ...and the same for transmit. */
376 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
377 fep->tx_skbuff[i] = NULL;
378 CBDW_BUFADDR(bdp, 0);
379 CBDW_DATLEN(bdp, 0);
380 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
381 }
382}
383
384void fs_cleanup_bds(struct net_device *dev)
385{
386 struct fs_enet_private *fep = netdev_priv(dev);
387 struct sk_buff *skb;
388 cbd_t __iomem *bdp;
389 int i;
390
391 /* Reset SKB transmit buffers. */
392 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
393 skb = fep->tx_skbuff[i];
394 if (!skb)
395 continue;
396
397 /* unmap */
398 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
399 skb->len, DMA_TO_DEVICE);
400
401 fep->tx_skbuff[i] = NULL;
402 dev_kfree_skb(skb);
403 }
404
405 /* Reset SKB receive buffers */
406 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
407 skb = fep->rx_skbuff[i];
408 if (!skb)
409 continue;
410
411 /* unmap */
412 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
413 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
414 DMA_FROM_DEVICE);
415
416 fep->rx_skbuff[i] = NULL;
417
418 dev_kfree_skb(skb);
419 }
420}
421
422#ifdef CONFIG_FS_ENET_MPC5121_FEC
423/* MPC5121 FEC requires 4-byte alignment for TX data buffer! */
424static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
425 struct sk_buff *skb)
426{
427 struct sk_buff *new_skb;
428
429 if (skb_linearize(skb))
430 return NULL;
431
432 /* Alloc new skb */
433 new_skb = netdev_alloc_skb(dev, skb->len + 4);
434 if (!new_skb)
435 return NULL;
436
437 /* Make sure new skb is properly aligned */
438 skb_align(new_skb, 4);
439
440 /* Copy data to new skb ... */
441 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
442 skb_put(new_skb, skb->len);
443
444 /* ... and free an old one */
445 dev_kfree_skb_any(skb);
446
447 return new_skb;
448}
449#endif
450
451static netdev_tx_t
452fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
453{
454 struct fs_enet_private *fep = netdev_priv(dev);
455 int curidx, nr_frags, len;
456 cbd_t __iomem *bdp;
457 skb_frag_t *frag;
458 u16 sc;
459#ifdef CONFIG_FS_ENET_MPC5121_FEC
460 int i, is_aligned = 1;
461
462 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
463 is_aligned = 0;
464 } else {
465 nr_frags = skb_shinfo(skb)->nr_frags;
466 frag = skb_shinfo(skb)->frags;
467 for (i = 0; i < nr_frags; i++, frag++) {
468 if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
469 is_aligned = 0;
470 break;
471 }
472 }
473 }
474
475 if (!is_aligned) {
476 skb = tx_skb_align_workaround(dev, skb);
477 if (!skb) {
478 /* We have lost packet due to memory allocation error
479 * in tx_skb_align_workaround(). Hopefully original
480 * skb is still valid, so try transmit it later.
481 */
482 return NETDEV_TX_BUSY;
483 }
484 }
485#endif
486
487 spin_lock(&fep->tx_lock);
488
489 /* Fill in a Tx ring entry */
490 bdp = fep->cur_tx;
491
492 nr_frags = skb_shinfo(skb)->nr_frags;
493 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
494 netif_stop_queue(dev);
495 spin_unlock(&fep->tx_lock);
496
497 /* Ooops. All transmit buffers are full. Bail out.
498 * This should not happen, since the tx queue should be stopped.
499 */
500 dev_warn(fep->dev, "tx queue full!.\n");
501 return NETDEV_TX_BUSY;
502 }
503
504 curidx = bdp - fep->tx_bd_base;
505
506 len = skb->len;
507 dev->stats.tx_bytes += len;
508 if (nr_frags)
509 len -= skb->data_len;
510
511 fep->tx_free -= nr_frags + 1;
512 /* Push the data cache so the CPM does not get stale memory data.
513 */
514 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
515 skb->data, len, DMA_TO_DEVICE));
516 CBDW_DATLEN(bdp, len);
517
518 fep->mapped_as_page[curidx] = 0;
519 frag = skb_shinfo(skb)->frags;
520 while (nr_frags) {
521 CBDC_SC(bdp,
522 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
523 BD_ENET_TX_TC);
524 CBDS_SC(bdp, BD_ENET_TX_READY);
525
526 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
527 bdp++;
528 curidx++;
529 } else {
530 bdp = fep->tx_bd_base;
531 curidx = 0;
532 }
533
534 len = skb_frag_size(frag);
535 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
536 DMA_TO_DEVICE));
537 CBDW_DATLEN(bdp, len);
538
539 fep->tx_skbuff[curidx] = NULL;
540 fep->mapped_as_page[curidx] = 1;
541
542 frag++;
543 nr_frags--;
544 }
545
546 /* Trigger transmission start */
547 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
548 BD_ENET_TX_LAST | BD_ENET_TX_TC;
549
550 /* note that while FEC does not have this bit
551 * it marks it as available for software use
552 * yay for hw reuse :)
553 */
554 if (skb->len <= 60)
555 sc |= BD_ENET_TX_PAD;
556
557 CBDC_SC(bdp, BD_ENET_TX_STATS);
558 CBDS_SC(bdp, sc);
559
560 /* Save skb pointer. */
561 fep->tx_skbuff[curidx] = skb;
562
563 /* If this was the last BD in the ring, start at the beginning again. */
564 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
565 bdp++;
566 else
567 bdp = fep->tx_bd_base;
568
569 fep->cur_tx = bdp;
570
571 if (fep->tx_free < MAX_SKB_FRAGS)
572 netif_stop_queue(dev);
573
574 skb_tx_timestamp(skb);
575
576 (*fep->ops->tx_kickstart)(dev);
577
578 spin_unlock(&fep->tx_lock);
579
580 return NETDEV_TX_OK;
581}
582
583static void fs_timeout_work(struct work_struct *work)
584{
585 struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
586 timeout_work);
587 struct net_device *dev = fep->ndev;
588 unsigned long flags;
589 int wake = 0;
590
591 dev->stats.tx_errors++;
592
593 /* In the event a timeout was detected, but the netdev is brought down
594 * shortly after, it no longer makes sense to try to recover from the
595 * timeout. netif_running() will return false when called from the
596 * .ndo_close() callback. Calling the following recovery code while
597 * called from .ndo_close() could deadlock on rtnl.
598 */
599 if (!netif_running(dev))
600 return;
601
602 rtnl_lock();
603 phylink_stop(fep->phylink);
604 phylink_start(fep->phylink);
605 rtnl_unlock();
606
607 spin_lock_irqsave(&fep->lock, flags);
608 wake = fep->tx_free >= MAX_SKB_FRAGS &&
609 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
610 spin_unlock_irqrestore(&fep->lock, flags);
611
612 if (wake)
613 netif_wake_queue(dev);
614}
615
616static void fs_timeout(struct net_device *dev, unsigned int txqueue)
617{
618 struct fs_enet_private *fep = netdev_priv(dev);
619
620 schedule_work(&fep->timeout_work);
621}
622
623static void fs_mac_link_up(struct phylink_config *config,
624 struct phy_device *phy,
625 unsigned int mode, phy_interface_t interface,
626 int speed, int duplex,
627 bool tx_pause, bool rx_pause)
628{
629 struct net_device *ndev = to_net_dev(config->dev);
630 struct fs_enet_private *fep = netdev_priv(ndev);
631 unsigned long flags;
632
633 spin_lock_irqsave(&fep->lock, flags);
634 fep->ops->restart(ndev, interface, speed, duplex);
635 spin_unlock_irqrestore(&fep->lock, flags);
636}
637
638static void fs_mac_link_down(struct phylink_config *config,
639 unsigned int mode, phy_interface_t interface)
640{
641 struct net_device *ndev = to_net_dev(config->dev);
642 struct fs_enet_private *fep = netdev_priv(ndev);
643 unsigned long flags;
644
645 spin_lock_irqsave(&fep->lock, flags);
646 fep->ops->stop(ndev);
647 spin_unlock_irqrestore(&fep->lock, flags);
648}
649
650static void fs_mac_config(struct phylink_config *config, unsigned int mode,
651 const struct phylink_link_state *state)
652{
653 /* Nothing to do */
654}
655
656static int fs_enet_open(struct net_device *dev)
657{
658 struct fs_enet_private *fep = netdev_priv(dev);
659 int r;
660 int err;
661
662 /* to initialize the fep->cur_rx,...
663 * not doing this, will cause a crash in fs_enet_napi
664 */
665 fs_init_bds(fep->ndev);
666
667 napi_enable(&fep->napi);
668
669 /* Install our interrupt handler. */
670 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
671 "fs_enet-mac", dev);
672 if (r != 0) {
673 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
674 napi_disable(&fep->napi);
675 return -EINVAL;
676 }
677
678 err = phylink_of_phy_connect(fep->phylink, fep->dev->of_node, 0);
679 if (err) {
680 free_irq(fep->interrupt, dev);
681 napi_disable(&fep->napi);
682 return err;
683 }
684 phylink_start(fep->phylink);
685
686 netif_start_queue(dev);
687
688 return 0;
689}
690
691static int fs_enet_close(struct net_device *dev)
692{
693 struct fs_enet_private *fep = netdev_priv(dev);
694 unsigned long flags;
695
696 netif_stop_queue(dev);
697 napi_disable(&fep->napi);
698 cancel_work(&fep->timeout_work);
699 phylink_stop(fep->phylink);
700
701 spin_lock_irqsave(&fep->lock, flags);
702 spin_lock(&fep->tx_lock);
703 (*fep->ops->stop)(dev);
704 spin_unlock(&fep->tx_lock);
705 spin_unlock_irqrestore(&fep->lock, flags);
706 phylink_disconnect_phy(fep->phylink);
707
708 /* release any irqs */
709 free_irq(fep->interrupt, dev);
710
711 return 0;
712}
713
714static void fs_get_drvinfo(struct net_device *dev,
715 struct ethtool_drvinfo *info)
716{
717 strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
718}
719
720static int fs_get_regs_len(struct net_device *dev)
721{
722 struct fs_enet_private *fep = netdev_priv(dev);
723
724 return (*fep->ops->get_regs_len)(dev);
725}
726
727static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
728 void *p)
729{
730 struct fs_enet_private *fep = netdev_priv(dev);
731 unsigned long flags;
732 int r, len;
733
734 len = regs->len;
735
736 spin_lock_irqsave(&fep->lock, flags);
737 r = (*fep->ops->get_regs)(dev, p, &len);
738 spin_unlock_irqrestore(&fep->lock, flags);
739
740 if (r == 0)
741 regs->version = 0;
742}
743
744static u32 fs_get_msglevel(struct net_device *dev)
745{
746 struct fs_enet_private *fep = netdev_priv(dev);
747
748 return fep->msg_enable;
749}
750
751static void fs_set_msglevel(struct net_device *dev, u32 value)
752{
753 struct fs_enet_private *fep = netdev_priv(dev);
754
755 fep->msg_enable = value;
756}
757
758static int fs_get_tunable(struct net_device *dev,
759 const struct ethtool_tunable *tuna, void *data)
760{
761 struct fs_enet_private *fep = netdev_priv(dev);
762 struct fs_platform_info *fpi = fep->fpi;
763 int ret = 0;
764
765 switch (tuna->id) {
766 case ETHTOOL_RX_COPYBREAK:
767 *(u32 *)data = fpi->rx_copybreak;
768 break;
769 default:
770 ret = -EINVAL;
771 break;
772 }
773
774 return ret;
775}
776
777static int fs_set_tunable(struct net_device *dev,
778 const struct ethtool_tunable *tuna, const void *data)
779{
780 struct fs_enet_private *fep = netdev_priv(dev);
781 struct fs_platform_info *fpi = fep->fpi;
782 int ret = 0;
783
784 switch (tuna->id) {
785 case ETHTOOL_RX_COPYBREAK:
786 fpi->rx_copybreak = *(u32 *)data;
787 break;
788 default:
789 ret = -EINVAL;
790 break;
791 }
792
793 return ret;
794}
795
796static int fs_ethtool_set_link_ksettings(struct net_device *dev,
797 const struct ethtool_link_ksettings *cmd)
798{
799 struct fs_enet_private *fep = netdev_priv(dev);
800
801 return phylink_ethtool_ksettings_set(fep->phylink, cmd);
802}
803
804static int fs_ethtool_get_link_ksettings(struct net_device *dev,
805 struct ethtool_link_ksettings *cmd)
806{
807 struct fs_enet_private *fep = netdev_priv(dev);
808
809 return phylink_ethtool_ksettings_get(fep->phylink, cmd);
810}
811
812static const struct ethtool_ops fs_ethtool_ops = {
813 .get_drvinfo = fs_get_drvinfo,
814 .get_regs_len = fs_get_regs_len,
815 .nway_reset = phy_ethtool_nway_reset,
816 .get_link = ethtool_op_get_link,
817 .get_msglevel = fs_get_msglevel,
818 .set_msglevel = fs_set_msglevel,
819 .get_regs = fs_get_regs,
820 .get_ts_info = ethtool_op_get_ts_info,
821 .get_link_ksettings = fs_ethtool_get_link_ksettings,
822 .set_link_ksettings = fs_ethtool_set_link_ksettings,
823 .get_tunable = fs_get_tunable,
824 .set_tunable = fs_set_tunable,
825};
826
827#ifdef CONFIG_FS_ENET_HAS_FEC
828#define IS_FEC(ops) ((ops) == &fs_fec_ops)
829#else
830#define IS_FEC(ops) 0
831#endif
832
833static const struct net_device_ops fs_enet_netdev_ops = {
834 .ndo_open = fs_enet_open,
835 .ndo_stop = fs_enet_close,
836 .ndo_start_xmit = fs_enet_start_xmit,
837 .ndo_tx_timeout = fs_timeout,
838 .ndo_set_rx_mode = fs_set_multicast_list,
839 .ndo_eth_ioctl = fs_eth_ioctl,
840 .ndo_validate_addr = eth_validate_addr,
841 .ndo_set_mac_address = eth_mac_addr,
842#ifdef CONFIG_NET_POLL_CONTROLLER
843 .ndo_poll_controller = fs_enet_netpoll,
844#endif
845};
846
847static const struct phylink_mac_ops fs_enet_phylink_mac_ops = {
848 .mac_config = fs_mac_config,
849 .mac_link_down = fs_mac_link_down,
850 .mac_link_up = fs_mac_link_up,
851};
852
853static int fs_enet_probe(struct platform_device *ofdev)
854{
855 int privsize, len, ret = -ENODEV;
856 struct fs_platform_info *fpi;
857 struct fs_enet_private *fep;
858 phy_interface_t phy_mode;
859 const struct fs_ops *ops;
860 struct net_device *ndev;
861 struct phylink *phylink;
862 const u32 *data;
863 struct clk *clk;
864
865 ops = device_get_match_data(&ofdev->dev);
866 if (!ops)
867 return -EINVAL;
868
869 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
870 if (!fpi)
871 return -ENOMEM;
872
873 if (!IS_FEC(ops)) {
874 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
875 if (!data || len != 4)
876 goto out_free_fpi;
877
878 fpi->cp_command = *data;
879 }
880
881 ret = of_get_phy_mode(ofdev->dev.of_node, &phy_mode);
882 if (ret) {
883 /* For compatibility, if the mode isn't specified in DT,
884 * assume MII
885 */
886 phy_mode = PHY_INTERFACE_MODE_MII;
887 }
888
889 fpi->rx_ring = RX_RING_SIZE;
890 fpi->tx_ring = TX_RING_SIZE;
891 fpi->rx_copybreak = 240;
892 fpi->napi_weight = 17;
893
894 /* make clock lookup non-fatal (the driver is shared among platforms),
895 * but require enable to succeed when a clock was specified/found,
896 * keep a reference to the clock upon successful acquisition
897 */
898 clk = devm_clk_get_optional_enabled(&ofdev->dev, "per");
899 if (IS_ERR(clk))
900 goto out_free_fpi;
901
902 privsize = sizeof(*fep) +
903 sizeof(struct sk_buff **) *
904 (fpi->rx_ring + fpi->tx_ring) +
905 sizeof(char) * fpi->tx_ring;
906
907 ndev = alloc_etherdev(privsize);
908 if (!ndev) {
909 ret = -ENOMEM;
910 goto out_free_fpi;
911 }
912
913 SET_NETDEV_DEV(ndev, &ofdev->dev);
914 platform_set_drvdata(ofdev, ndev);
915
916 fep = netdev_priv(ndev);
917 fep->dev = &ofdev->dev;
918 fep->ndev = ndev;
919 fep->fpi = fpi;
920 fep->ops = ops;
921
922 fep->phylink_config.dev = &ndev->dev;
923 fep->phylink_config.type = PHYLINK_NETDEV;
924 fep->phylink_config.mac_capabilities = MAC_10 | MAC_100;
925
926 __set_bit(PHY_INTERFACE_MODE_MII,
927 fep->phylink_config.supported_interfaces);
928
929 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec"))
930 __set_bit(PHY_INTERFACE_MODE_RMII,
931 fep->phylink_config.supported_interfaces);
932
933 phylink = phylink_create(&fep->phylink_config, dev_fwnode(fep->dev),
934 phy_mode, &fs_enet_phylink_mac_ops);
935 if (IS_ERR(phylink)) {
936 ret = PTR_ERR(phylink);
937 goto out_free_dev;
938 }
939
940 fep->phylink = phylink;
941
942 ret = fep->ops->setup_data(ndev);
943 if (ret)
944 goto out_phylink;
945
946 fep->rx_skbuff = (struct sk_buff **)&fep[1];
947 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
948 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
949 fpi->tx_ring);
950
951 spin_lock_init(&fep->lock);
952 spin_lock_init(&fep->tx_lock);
953
954 of_get_ethdev_address(ofdev->dev.of_node, ndev);
955
956 ret = fep->ops->allocate_bd(ndev);
957 if (ret)
958 goto out_cleanup_data;
959
960 fep->rx_bd_base = fep->ring_base;
961 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
962
963 fep->tx_ring = fpi->tx_ring;
964 fep->rx_ring = fpi->rx_ring;
965
966 ndev->netdev_ops = &fs_enet_netdev_ops;
967 ndev->watchdog_timeo = 2 * HZ;
968 INIT_WORK(&fep->timeout_work, fs_timeout_work);
969 netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
970 fpi->napi_weight);
971
972 ndev->ethtool_ops = &fs_ethtool_ops;
973
974 ndev->features |= NETIF_F_SG;
975
976 ret = register_netdev(ndev);
977 if (ret)
978 goto out_free_bd;
979
980 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
981
982 return 0;
983
984out_free_bd:
985 fep->ops->free_bd(ndev);
986out_cleanup_data:
987 fep->ops->cleanup_data(ndev);
988out_phylink:
989 phylink_destroy(fep->phylink);
990out_free_dev:
991 free_netdev(ndev);
992out_free_fpi:
993 kfree(fpi);
994 return ret;
995}
996
997static void fs_enet_remove(struct platform_device *ofdev)
998{
999 struct net_device *ndev = platform_get_drvdata(ofdev);
1000 struct fs_enet_private *fep = netdev_priv(ndev);
1001
1002 unregister_netdev(ndev);
1003
1004 fep->ops->free_bd(ndev);
1005 fep->ops->cleanup_data(ndev);
1006 dev_set_drvdata(fep->dev, NULL);
1007 phylink_destroy(fep->phylink);
1008 free_netdev(ndev);
1009}
1010
1011static const struct of_device_id fs_enet_match[] = {
1012#ifdef CONFIG_FS_ENET_HAS_SCC
1013 {
1014 .compatible = "fsl,cpm1-scc-enet",
1015 .data = (void *)&fs_scc_ops,
1016 },
1017 {
1018 .compatible = "fsl,cpm2-scc-enet",
1019 .data = (void *)&fs_scc_ops,
1020 },
1021#endif
1022#ifdef CONFIG_FS_ENET_HAS_FCC
1023 {
1024 .compatible = "fsl,cpm2-fcc-enet",
1025 .data = (void *)&fs_fcc_ops,
1026 },
1027#endif
1028#ifdef CONFIG_FS_ENET_HAS_FEC
1029#ifdef CONFIG_FS_ENET_MPC5121_FEC
1030 {
1031 .compatible = "fsl,mpc5121-fec",
1032 .data = (void *)&fs_fec_ops,
1033 },
1034 {
1035 .compatible = "fsl,mpc5125-fec",
1036 .data = (void *)&fs_fec_ops,
1037 },
1038#else
1039 {
1040 .compatible = "fsl,pq1-fec-enet",
1041 .data = (void *)&fs_fec_ops,
1042 },
1043#endif
1044#endif
1045 {}
1046};
1047MODULE_DEVICE_TABLE(of, fs_enet_match);
1048
1049static struct platform_driver fs_enet_driver = {
1050 .driver = {
1051 .name = "fs_enet",
1052 .of_match_table = fs_enet_match,
1053 },
1054 .probe = fs_enet_probe,
1055 .remove = fs_enet_remove,
1056};
1057
1058#ifdef CONFIG_NET_POLL_CONTROLLER
1059static void fs_enet_netpoll(struct net_device *dev)
1060{
1061 disable_irq(dev->irq);
1062 fs_enet_interrupt(dev->irq, dev);
1063 enable_irq(dev->irq);
1064}
1065#endif
1066
1067module_platform_driver(fs_enet_driver);
1/*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/string.h>
22#include <linux/ptrace.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/slab.h>
26#include <linux/interrupt.h>
27#include <linux/delay.h>
28#include <linux/netdevice.h>
29#include <linux/etherdevice.h>
30#include <linux/skbuff.h>
31#include <linux/spinlock.h>
32#include <linux/mii.h>
33#include <linux/ethtool.h>
34#include <linux/bitops.h>
35#include <linux/fs.h>
36#include <linux/platform_device.h>
37#include <linux/phy.h>
38#include <linux/of.h>
39#include <linux/of_mdio.h>
40#include <linux/of_platform.h>
41#include <linux/of_gpio.h>
42#include <linux/of_net.h>
43#include <linux/pgtable.h>
44
45#include <linux/vmalloc.h>
46#include <asm/irq.h>
47#include <linux/uaccess.h>
48
49#include "fs_enet.h"
50
51/*************************************************/
52
53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54MODULE_DESCRIPTION("Freescale Ethernet Driver");
55MODULE_LICENSE("GPL");
56
57static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
58module_param(fs_enet_debug, int, 0);
59MODULE_PARM_DESC(fs_enet_debug,
60 "Freescale bitmapped debugging message enable value");
61
62#define RX_RING_SIZE 32
63#define TX_RING_SIZE 64
64
65#ifdef CONFIG_NET_POLL_CONTROLLER
66static void fs_enet_netpoll(struct net_device *dev);
67#endif
68
69static void fs_set_multicast_list(struct net_device *dev)
70{
71 struct fs_enet_private *fep = netdev_priv(dev);
72
73 (*fep->ops->set_multicast_list)(dev);
74}
75
76static void skb_align(struct sk_buff *skb, int align)
77{
78 int off = ((unsigned long)skb->data) & (align - 1);
79
80 if (off)
81 skb_reserve(skb, align - off);
82}
83
84/* NAPI function */
85static int fs_enet_napi(struct napi_struct *napi, int budget)
86{
87 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
88 struct net_device *dev = fep->ndev;
89 const struct fs_platform_info *fpi = fep->fpi;
90 cbd_t __iomem *bdp;
91 struct sk_buff *skb, *skbn;
92 int received = 0;
93 u16 pkt_len, sc;
94 int curidx;
95 int dirtyidx, do_wake, do_restart;
96 int tx_left = TX_RING_SIZE;
97
98 spin_lock(&fep->tx_lock);
99 bdp = fep->dirty_tx;
100
101 /* clear status bits for napi*/
102 (*fep->ops->napi_clear_event)(dev);
103
104 do_wake = do_restart = 0;
105 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
106 dirtyidx = bdp - fep->tx_bd_base;
107
108 if (fep->tx_free == fep->tx_ring)
109 break;
110
111 skb = fep->tx_skbuff[dirtyidx];
112
113 /*
114 * Check for errors.
115 */
116 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
117 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
118
119 if (sc & BD_ENET_TX_HB) /* No heartbeat */
120 dev->stats.tx_heartbeat_errors++;
121 if (sc & BD_ENET_TX_LC) /* Late collision */
122 dev->stats.tx_window_errors++;
123 if (sc & BD_ENET_TX_RL) /* Retrans limit */
124 dev->stats.tx_aborted_errors++;
125 if (sc & BD_ENET_TX_UN) /* Underrun */
126 dev->stats.tx_fifo_errors++;
127 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
128 dev->stats.tx_carrier_errors++;
129
130 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
131 dev->stats.tx_errors++;
132 do_restart = 1;
133 }
134 } else
135 dev->stats.tx_packets++;
136
137 if (sc & BD_ENET_TX_READY) {
138 dev_warn(fep->dev,
139 "HEY! Enet xmit interrupt and TX_READY.\n");
140 }
141
142 /*
143 * Deferred means some collisions occurred during transmit,
144 * but we eventually sent the packet OK.
145 */
146 if (sc & BD_ENET_TX_DEF)
147 dev->stats.collisions++;
148
149 /* unmap */
150 if (fep->mapped_as_page[dirtyidx])
151 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
152 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
153 else
154 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
155 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
156
157 /*
158 * Free the sk buffer associated with this last transmit.
159 */
160 if (skb) {
161 dev_kfree_skb(skb);
162 fep->tx_skbuff[dirtyidx] = NULL;
163 }
164
165 /*
166 * Update pointer to next buffer descriptor to be transmitted.
167 */
168 if ((sc & BD_ENET_TX_WRAP) == 0)
169 bdp++;
170 else
171 bdp = fep->tx_bd_base;
172
173 /*
174 * Since we have freed up a buffer, the ring is no longer
175 * full.
176 */
177 if (++fep->tx_free == MAX_SKB_FRAGS)
178 do_wake = 1;
179 tx_left--;
180 }
181
182 fep->dirty_tx = bdp;
183
184 if (do_restart)
185 (*fep->ops->tx_restart)(dev);
186
187 spin_unlock(&fep->tx_lock);
188
189 if (do_wake)
190 netif_wake_queue(dev);
191
192 /*
193 * First, grab all of the stats for the incoming packet.
194 * These get messed up if we get called due to a busy condition.
195 */
196 bdp = fep->cur_rx;
197
198 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
199 received < budget) {
200 curidx = bdp - fep->rx_bd_base;
201
202 /*
203 * Since we have allocated space to hold a complete frame,
204 * the last indicator should be set.
205 */
206 if ((sc & BD_ENET_RX_LAST) == 0)
207 dev_warn(fep->dev, "rcv is not +last\n");
208
209 /*
210 * Check for errors.
211 */
212 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
213 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
214 dev->stats.rx_errors++;
215 /* Frame too long or too short. */
216 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
217 dev->stats.rx_length_errors++;
218 /* Frame alignment */
219 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
220 dev->stats.rx_frame_errors++;
221 /* CRC Error */
222 if (sc & BD_ENET_RX_CR)
223 dev->stats.rx_crc_errors++;
224 /* FIFO overrun */
225 if (sc & BD_ENET_RX_OV)
226 dev->stats.rx_crc_errors++;
227
228 skbn = fep->rx_skbuff[curidx];
229 } else {
230 skb = fep->rx_skbuff[curidx];
231
232 /*
233 * Process the incoming frame.
234 */
235 dev->stats.rx_packets++;
236 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
237 dev->stats.rx_bytes += pkt_len + 4;
238
239 if (pkt_len <= fpi->rx_copybreak) {
240 /* +2 to make IP header L1 cache aligned */
241 skbn = netdev_alloc_skb(dev, pkt_len + 2);
242 if (skbn != NULL) {
243 skb_reserve(skbn, 2); /* align IP header */
244 skb_copy_from_linear_data(skb,
245 skbn->data, pkt_len);
246 swap(skb, skbn);
247 dma_sync_single_for_cpu(fep->dev,
248 CBDR_BUFADDR(bdp),
249 L1_CACHE_ALIGN(pkt_len),
250 DMA_FROM_DEVICE);
251 }
252 } else {
253 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
254
255 if (skbn) {
256 dma_addr_t dma;
257
258 skb_align(skbn, ENET_RX_ALIGN);
259
260 dma_unmap_single(fep->dev,
261 CBDR_BUFADDR(bdp),
262 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
263 DMA_FROM_DEVICE);
264
265 dma = dma_map_single(fep->dev,
266 skbn->data,
267 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
268 DMA_FROM_DEVICE);
269 CBDW_BUFADDR(bdp, dma);
270 }
271 }
272
273 if (skbn != NULL) {
274 skb_put(skb, pkt_len); /* Make room */
275 skb->protocol = eth_type_trans(skb, dev);
276 received++;
277 netif_receive_skb(skb);
278 } else {
279 dev->stats.rx_dropped++;
280 skbn = skb;
281 }
282 }
283
284 fep->rx_skbuff[curidx] = skbn;
285 CBDW_DATLEN(bdp, 0);
286 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
287
288 /*
289 * Update BD pointer to next entry.
290 */
291 if ((sc & BD_ENET_RX_WRAP) == 0)
292 bdp++;
293 else
294 bdp = fep->rx_bd_base;
295
296 (*fep->ops->rx_bd_done)(dev);
297 }
298
299 fep->cur_rx = bdp;
300
301 if (received < budget && tx_left) {
302 /* done */
303 napi_complete_done(napi, received);
304 (*fep->ops->napi_enable)(dev);
305
306 return received;
307 }
308
309 return budget;
310}
311
312/*
313 * The interrupt handler.
314 * This is called from the MPC core interrupt.
315 */
316static irqreturn_t
317fs_enet_interrupt(int irq, void *dev_id)
318{
319 struct net_device *dev = dev_id;
320 struct fs_enet_private *fep;
321 const struct fs_platform_info *fpi;
322 u32 int_events;
323 u32 int_clr_events;
324 int nr, napi_ok;
325 int handled;
326
327 fep = netdev_priv(dev);
328 fpi = fep->fpi;
329
330 nr = 0;
331 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
332 nr++;
333
334 int_clr_events = int_events;
335 int_clr_events &= ~fep->ev_napi;
336
337 (*fep->ops->clear_int_events)(dev, int_clr_events);
338
339 if (int_events & fep->ev_err)
340 (*fep->ops->ev_error)(dev, int_events);
341
342 if (int_events & fep->ev) {
343 napi_ok = napi_schedule_prep(&fep->napi);
344
345 (*fep->ops->napi_disable)(dev);
346 (*fep->ops->clear_int_events)(dev, fep->ev_napi);
347
348 /* NOTE: it is possible for FCCs in NAPI mode */
349 /* to submit a spurious interrupt while in poll */
350 if (napi_ok)
351 __napi_schedule(&fep->napi);
352 }
353
354 }
355
356 handled = nr > 0;
357 return IRQ_RETVAL(handled);
358}
359
360void fs_init_bds(struct net_device *dev)
361{
362 struct fs_enet_private *fep = netdev_priv(dev);
363 cbd_t __iomem *bdp;
364 struct sk_buff *skb;
365 int i;
366
367 fs_cleanup_bds(dev);
368
369 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
370 fep->tx_free = fep->tx_ring;
371 fep->cur_rx = fep->rx_bd_base;
372
373 /*
374 * Initialize the receive buffer descriptors.
375 */
376 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
377 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
378 if (skb == NULL)
379 break;
380
381 skb_align(skb, ENET_RX_ALIGN);
382 fep->rx_skbuff[i] = skb;
383 CBDW_BUFADDR(bdp,
384 dma_map_single(fep->dev, skb->data,
385 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
386 DMA_FROM_DEVICE));
387 CBDW_DATLEN(bdp, 0); /* zero */
388 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
389 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
390 }
391 /*
392 * if we failed, fillup remainder
393 */
394 for (; i < fep->rx_ring; i++, bdp++) {
395 fep->rx_skbuff[i] = NULL;
396 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
397 }
398
399 /*
400 * ...and the same for transmit.
401 */
402 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
403 fep->tx_skbuff[i] = NULL;
404 CBDW_BUFADDR(bdp, 0);
405 CBDW_DATLEN(bdp, 0);
406 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
407 }
408}
409
410void fs_cleanup_bds(struct net_device *dev)
411{
412 struct fs_enet_private *fep = netdev_priv(dev);
413 struct sk_buff *skb;
414 cbd_t __iomem *bdp;
415 int i;
416
417 /*
418 * Reset SKB transmit buffers.
419 */
420 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
421 if ((skb = fep->tx_skbuff[i]) == NULL)
422 continue;
423
424 /* unmap */
425 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
426 skb->len, DMA_TO_DEVICE);
427
428 fep->tx_skbuff[i] = NULL;
429 dev_kfree_skb(skb);
430 }
431
432 /*
433 * Reset SKB receive buffers
434 */
435 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
436 if ((skb = fep->rx_skbuff[i]) == NULL)
437 continue;
438
439 /* unmap */
440 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
441 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
442 DMA_FROM_DEVICE);
443
444 fep->rx_skbuff[i] = NULL;
445
446 dev_kfree_skb(skb);
447 }
448}
449
450/**********************************************************************************/
451
452#ifdef CONFIG_FS_ENET_MPC5121_FEC
453/*
454 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
455 */
456static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
457 struct sk_buff *skb)
458{
459 struct sk_buff *new_skb;
460
461 if (skb_linearize(skb))
462 return NULL;
463
464 /* Alloc new skb */
465 new_skb = netdev_alloc_skb(dev, skb->len + 4);
466 if (!new_skb)
467 return NULL;
468
469 /* Make sure new skb is properly aligned */
470 skb_align(new_skb, 4);
471
472 /* Copy data to new skb ... */
473 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
474 skb_put(new_skb, skb->len);
475
476 /* ... and free an old one */
477 dev_kfree_skb_any(skb);
478
479 return new_skb;
480}
481#endif
482
483static netdev_tx_t
484fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
485{
486 struct fs_enet_private *fep = netdev_priv(dev);
487 cbd_t __iomem *bdp;
488 int curidx;
489 u16 sc;
490 int nr_frags;
491 skb_frag_t *frag;
492 int len;
493#ifdef CONFIG_FS_ENET_MPC5121_FEC
494 int is_aligned = 1;
495 int i;
496
497 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
498 is_aligned = 0;
499 } else {
500 nr_frags = skb_shinfo(skb)->nr_frags;
501 frag = skb_shinfo(skb)->frags;
502 for (i = 0; i < nr_frags; i++, frag++) {
503 if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
504 is_aligned = 0;
505 break;
506 }
507 }
508 }
509
510 if (!is_aligned) {
511 skb = tx_skb_align_workaround(dev, skb);
512 if (!skb) {
513 /*
514 * We have lost packet due to memory allocation error
515 * in tx_skb_align_workaround(). Hopefully original
516 * skb is still valid, so try transmit it later.
517 */
518 return NETDEV_TX_BUSY;
519 }
520 }
521#endif
522
523 spin_lock(&fep->tx_lock);
524
525 /*
526 * Fill in a Tx ring entry
527 */
528 bdp = fep->cur_tx;
529
530 nr_frags = skb_shinfo(skb)->nr_frags;
531 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
532 netif_stop_queue(dev);
533 spin_unlock(&fep->tx_lock);
534
535 /*
536 * Ooops. All transmit buffers are full. Bail out.
537 * This should not happen, since the tx queue should be stopped.
538 */
539 dev_warn(fep->dev, "tx queue full!.\n");
540 return NETDEV_TX_BUSY;
541 }
542
543 curidx = bdp - fep->tx_bd_base;
544
545 len = skb->len;
546 dev->stats.tx_bytes += len;
547 if (nr_frags)
548 len -= skb->data_len;
549 fep->tx_free -= nr_frags + 1;
550 /*
551 * Push the data cache so the CPM does not get stale memory data.
552 */
553 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
554 skb->data, len, DMA_TO_DEVICE));
555 CBDW_DATLEN(bdp, len);
556
557 fep->mapped_as_page[curidx] = 0;
558 frag = skb_shinfo(skb)->frags;
559 while (nr_frags) {
560 CBDC_SC(bdp,
561 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
562 BD_ENET_TX_TC);
563 CBDS_SC(bdp, BD_ENET_TX_READY);
564
565 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
566 bdp++;
567 curidx++;
568 } else {
569 bdp = fep->tx_bd_base;
570 curidx = 0;
571 }
572
573 len = skb_frag_size(frag);
574 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
575 DMA_TO_DEVICE));
576 CBDW_DATLEN(bdp, len);
577
578 fep->tx_skbuff[curidx] = NULL;
579 fep->mapped_as_page[curidx] = 1;
580
581 frag++;
582 nr_frags--;
583 }
584
585 /* Trigger transmission start */
586 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
587 BD_ENET_TX_LAST | BD_ENET_TX_TC;
588
589 /* note that while FEC does not have this bit
590 * it marks it as available for software use
591 * yay for hw reuse :) */
592 if (skb->len <= 60)
593 sc |= BD_ENET_TX_PAD;
594 CBDC_SC(bdp, BD_ENET_TX_STATS);
595 CBDS_SC(bdp, sc);
596
597 /* Save skb pointer. */
598 fep->tx_skbuff[curidx] = skb;
599
600 /* If this was the last BD in the ring, start at the beginning again. */
601 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
602 bdp++;
603 else
604 bdp = fep->tx_bd_base;
605 fep->cur_tx = bdp;
606
607 if (fep->tx_free < MAX_SKB_FRAGS)
608 netif_stop_queue(dev);
609
610 skb_tx_timestamp(skb);
611
612 (*fep->ops->tx_kickstart)(dev);
613
614 spin_unlock(&fep->tx_lock);
615
616 return NETDEV_TX_OK;
617}
618
619static void fs_timeout_work(struct work_struct *work)
620{
621 struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
622 timeout_work);
623 struct net_device *dev = fep->ndev;
624 unsigned long flags;
625 int wake = 0;
626
627 dev->stats.tx_errors++;
628
629 spin_lock_irqsave(&fep->lock, flags);
630
631 if (dev->flags & IFF_UP) {
632 phy_stop(dev->phydev);
633 (*fep->ops->stop)(dev);
634 (*fep->ops->restart)(dev);
635 }
636
637 phy_start(dev->phydev);
638 wake = fep->tx_free >= MAX_SKB_FRAGS &&
639 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
640 spin_unlock_irqrestore(&fep->lock, flags);
641
642 if (wake)
643 netif_wake_queue(dev);
644}
645
646static void fs_timeout(struct net_device *dev, unsigned int txqueue)
647{
648 struct fs_enet_private *fep = netdev_priv(dev);
649
650 schedule_work(&fep->timeout_work);
651}
652
653/*-----------------------------------------------------------------------------
654 * generic link-change handler - should be sufficient for most cases
655 *-----------------------------------------------------------------------------*/
656static void generic_adjust_link(struct net_device *dev)
657{
658 struct fs_enet_private *fep = netdev_priv(dev);
659 struct phy_device *phydev = dev->phydev;
660 int new_state = 0;
661
662 if (phydev->link) {
663 /* adjust to duplex mode */
664 if (phydev->duplex != fep->oldduplex) {
665 new_state = 1;
666 fep->oldduplex = phydev->duplex;
667 }
668
669 if (phydev->speed != fep->oldspeed) {
670 new_state = 1;
671 fep->oldspeed = phydev->speed;
672 }
673
674 if (!fep->oldlink) {
675 new_state = 1;
676 fep->oldlink = 1;
677 }
678
679 if (new_state)
680 fep->ops->restart(dev);
681 } else if (fep->oldlink) {
682 new_state = 1;
683 fep->oldlink = 0;
684 fep->oldspeed = 0;
685 fep->oldduplex = -1;
686 }
687
688 if (new_state && netif_msg_link(fep))
689 phy_print_status(phydev);
690}
691
692
693static void fs_adjust_link(struct net_device *dev)
694{
695 struct fs_enet_private *fep = netdev_priv(dev);
696 unsigned long flags;
697
698 spin_lock_irqsave(&fep->lock, flags);
699
700 if(fep->ops->adjust_link)
701 fep->ops->adjust_link(dev);
702 else
703 generic_adjust_link(dev);
704
705 spin_unlock_irqrestore(&fep->lock, flags);
706}
707
708static int fs_init_phy(struct net_device *dev)
709{
710 struct fs_enet_private *fep = netdev_priv(dev);
711 struct phy_device *phydev;
712 phy_interface_t iface;
713
714 fep->oldlink = 0;
715 fep->oldspeed = 0;
716 fep->oldduplex = -1;
717
718 iface = fep->fpi->use_rmii ?
719 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
720
721 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
722 iface);
723 if (!phydev) {
724 dev_err(&dev->dev, "Could not attach to PHY\n");
725 return -ENODEV;
726 }
727
728 return 0;
729}
730
731static int fs_enet_open(struct net_device *dev)
732{
733 struct fs_enet_private *fep = netdev_priv(dev);
734 int r;
735 int err;
736
737 /* to initialize the fep->cur_rx,... */
738 /* not doing this, will cause a crash in fs_enet_napi */
739 fs_init_bds(fep->ndev);
740
741 napi_enable(&fep->napi);
742
743 /* Install our interrupt handler. */
744 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
745 "fs_enet-mac", dev);
746 if (r != 0) {
747 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
748 napi_disable(&fep->napi);
749 return -EINVAL;
750 }
751
752 err = fs_init_phy(dev);
753 if (err) {
754 free_irq(fep->interrupt, dev);
755 napi_disable(&fep->napi);
756 return err;
757 }
758 phy_start(dev->phydev);
759
760 netif_start_queue(dev);
761
762 return 0;
763}
764
765static int fs_enet_close(struct net_device *dev)
766{
767 struct fs_enet_private *fep = netdev_priv(dev);
768 unsigned long flags;
769
770 netif_stop_queue(dev);
771 netif_carrier_off(dev);
772 napi_disable(&fep->napi);
773 cancel_work_sync(&fep->timeout_work);
774 phy_stop(dev->phydev);
775
776 spin_lock_irqsave(&fep->lock, flags);
777 spin_lock(&fep->tx_lock);
778 (*fep->ops->stop)(dev);
779 spin_unlock(&fep->tx_lock);
780 spin_unlock_irqrestore(&fep->lock, flags);
781
782 /* release any irqs */
783 phy_disconnect(dev->phydev);
784 free_irq(fep->interrupt, dev);
785
786 return 0;
787}
788
789/*************************************************************************/
790
791static void fs_get_drvinfo(struct net_device *dev,
792 struct ethtool_drvinfo *info)
793{
794 strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
795}
796
797static int fs_get_regs_len(struct net_device *dev)
798{
799 struct fs_enet_private *fep = netdev_priv(dev);
800
801 return (*fep->ops->get_regs_len)(dev);
802}
803
804static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
805 void *p)
806{
807 struct fs_enet_private *fep = netdev_priv(dev);
808 unsigned long flags;
809 int r, len;
810
811 len = regs->len;
812
813 spin_lock_irqsave(&fep->lock, flags);
814 r = (*fep->ops->get_regs)(dev, p, &len);
815 spin_unlock_irqrestore(&fep->lock, flags);
816
817 if (r == 0)
818 regs->version = 0;
819}
820
821static u32 fs_get_msglevel(struct net_device *dev)
822{
823 struct fs_enet_private *fep = netdev_priv(dev);
824 return fep->msg_enable;
825}
826
827static void fs_set_msglevel(struct net_device *dev, u32 value)
828{
829 struct fs_enet_private *fep = netdev_priv(dev);
830 fep->msg_enable = value;
831}
832
833static int fs_get_tunable(struct net_device *dev,
834 const struct ethtool_tunable *tuna, void *data)
835{
836 struct fs_enet_private *fep = netdev_priv(dev);
837 struct fs_platform_info *fpi = fep->fpi;
838 int ret = 0;
839
840 switch (tuna->id) {
841 case ETHTOOL_RX_COPYBREAK:
842 *(u32 *)data = fpi->rx_copybreak;
843 break;
844 default:
845 ret = -EINVAL;
846 break;
847 }
848
849 return ret;
850}
851
852static int fs_set_tunable(struct net_device *dev,
853 const struct ethtool_tunable *tuna, const void *data)
854{
855 struct fs_enet_private *fep = netdev_priv(dev);
856 struct fs_platform_info *fpi = fep->fpi;
857 int ret = 0;
858
859 switch (tuna->id) {
860 case ETHTOOL_RX_COPYBREAK:
861 fpi->rx_copybreak = *(u32 *)data;
862 break;
863 default:
864 ret = -EINVAL;
865 break;
866 }
867
868 return ret;
869}
870
871static const struct ethtool_ops fs_ethtool_ops = {
872 .get_drvinfo = fs_get_drvinfo,
873 .get_regs_len = fs_get_regs_len,
874 .nway_reset = phy_ethtool_nway_reset,
875 .get_link = ethtool_op_get_link,
876 .get_msglevel = fs_get_msglevel,
877 .set_msglevel = fs_set_msglevel,
878 .get_regs = fs_get_regs,
879 .get_ts_info = ethtool_op_get_ts_info,
880 .get_link_ksettings = phy_ethtool_get_link_ksettings,
881 .set_link_ksettings = phy_ethtool_set_link_ksettings,
882 .get_tunable = fs_get_tunable,
883 .set_tunable = fs_set_tunable,
884};
885
886/**************************************************************************************/
887
888#ifdef CONFIG_FS_ENET_HAS_FEC
889#define IS_FEC(match) ((match)->data == &fs_fec_ops)
890#else
891#define IS_FEC(match) 0
892#endif
893
894static const struct net_device_ops fs_enet_netdev_ops = {
895 .ndo_open = fs_enet_open,
896 .ndo_stop = fs_enet_close,
897 .ndo_start_xmit = fs_enet_start_xmit,
898 .ndo_tx_timeout = fs_timeout,
899 .ndo_set_rx_mode = fs_set_multicast_list,
900 .ndo_eth_ioctl = phy_do_ioctl_running,
901 .ndo_validate_addr = eth_validate_addr,
902 .ndo_set_mac_address = eth_mac_addr,
903#ifdef CONFIG_NET_POLL_CONTROLLER
904 .ndo_poll_controller = fs_enet_netpoll,
905#endif
906};
907
908static const struct of_device_id fs_enet_match[];
909static int fs_enet_probe(struct platform_device *ofdev)
910{
911 const struct of_device_id *match;
912 struct net_device *ndev;
913 struct fs_enet_private *fep;
914 struct fs_platform_info *fpi;
915 const u32 *data;
916 struct clk *clk;
917 int err;
918 const char *phy_connection_type;
919 int privsize, len, ret = -ENODEV;
920
921 match = of_match_device(fs_enet_match, &ofdev->dev);
922 if (!match)
923 return -EINVAL;
924
925 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
926 if (!fpi)
927 return -ENOMEM;
928
929 if (!IS_FEC(match)) {
930 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
931 if (!data || len != 4)
932 goto out_free_fpi;
933
934 fpi->cp_command = *data;
935 }
936
937 fpi->rx_ring = RX_RING_SIZE;
938 fpi->tx_ring = TX_RING_SIZE;
939 fpi->rx_copybreak = 240;
940 fpi->napi_weight = 17;
941 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
942 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
943 err = of_phy_register_fixed_link(ofdev->dev.of_node);
944 if (err)
945 goto out_free_fpi;
946
947 /* In the case of a fixed PHY, the DT node associated
948 * to the PHY is the Ethernet MAC DT node.
949 */
950 fpi->phy_node = of_node_get(ofdev->dev.of_node);
951 }
952
953 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
954 phy_connection_type = of_get_property(ofdev->dev.of_node,
955 "phy-connection-type", NULL);
956 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
957 fpi->use_rmii = 1;
958 }
959
960 /* make clock lookup non-fatal (the driver is shared among platforms),
961 * but require enable to succeed when a clock was specified/found,
962 * keep a reference to the clock upon successful acquisition
963 */
964 clk = devm_clk_get(&ofdev->dev, "per");
965 if (!IS_ERR(clk)) {
966 ret = clk_prepare_enable(clk);
967 if (ret)
968 goto out_deregister_fixed_link;
969
970 fpi->clk_per = clk;
971 }
972
973 privsize = sizeof(*fep) +
974 sizeof(struct sk_buff **) *
975 (fpi->rx_ring + fpi->tx_ring) +
976 sizeof(char) * fpi->tx_ring;
977
978 ndev = alloc_etherdev(privsize);
979 if (!ndev) {
980 ret = -ENOMEM;
981 goto out_put;
982 }
983
984 SET_NETDEV_DEV(ndev, &ofdev->dev);
985 platform_set_drvdata(ofdev, ndev);
986
987 fep = netdev_priv(ndev);
988 fep->dev = &ofdev->dev;
989 fep->ndev = ndev;
990 fep->fpi = fpi;
991 fep->ops = match->data;
992
993 ret = fep->ops->setup_data(ndev);
994 if (ret)
995 goto out_free_dev;
996
997 fep->rx_skbuff = (struct sk_buff **)&fep[1];
998 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
999 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1000 fpi->tx_ring);
1001
1002 spin_lock_init(&fep->lock);
1003 spin_lock_init(&fep->tx_lock);
1004
1005 of_get_ethdev_address(ofdev->dev.of_node, ndev);
1006
1007 ret = fep->ops->allocate_bd(ndev);
1008 if (ret)
1009 goto out_cleanup_data;
1010
1011 fep->rx_bd_base = fep->ring_base;
1012 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1013
1014 fep->tx_ring = fpi->tx_ring;
1015 fep->rx_ring = fpi->rx_ring;
1016
1017 ndev->netdev_ops = &fs_enet_netdev_ops;
1018 ndev->watchdog_timeo = 2 * HZ;
1019 INIT_WORK(&fep->timeout_work, fs_timeout_work);
1020 netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
1021 fpi->napi_weight);
1022
1023 ndev->ethtool_ops = &fs_ethtool_ops;
1024
1025 netif_carrier_off(ndev);
1026
1027 ndev->features |= NETIF_F_SG;
1028
1029 ret = register_netdev(ndev);
1030 if (ret)
1031 goto out_free_bd;
1032
1033 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1034
1035 return 0;
1036
1037out_free_bd:
1038 fep->ops->free_bd(ndev);
1039out_cleanup_data:
1040 fep->ops->cleanup_data(ndev);
1041out_free_dev:
1042 free_netdev(ndev);
1043out_put:
1044 clk_disable_unprepare(fpi->clk_per);
1045out_deregister_fixed_link:
1046 of_node_put(fpi->phy_node);
1047 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1048 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1049out_free_fpi:
1050 kfree(fpi);
1051 return ret;
1052}
1053
1054static int fs_enet_remove(struct platform_device *ofdev)
1055{
1056 struct net_device *ndev = platform_get_drvdata(ofdev);
1057 struct fs_enet_private *fep = netdev_priv(ndev);
1058
1059 unregister_netdev(ndev);
1060
1061 fep->ops->free_bd(ndev);
1062 fep->ops->cleanup_data(ndev);
1063 dev_set_drvdata(fep->dev, NULL);
1064 of_node_put(fep->fpi->phy_node);
1065 clk_disable_unprepare(fep->fpi->clk_per);
1066 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1067 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1068 free_netdev(ndev);
1069 return 0;
1070}
1071
1072static const struct of_device_id fs_enet_match[] = {
1073#ifdef CONFIG_FS_ENET_HAS_SCC
1074 {
1075 .compatible = "fsl,cpm1-scc-enet",
1076 .data = (void *)&fs_scc_ops,
1077 },
1078 {
1079 .compatible = "fsl,cpm2-scc-enet",
1080 .data = (void *)&fs_scc_ops,
1081 },
1082#endif
1083#ifdef CONFIG_FS_ENET_HAS_FCC
1084 {
1085 .compatible = "fsl,cpm2-fcc-enet",
1086 .data = (void *)&fs_fcc_ops,
1087 },
1088#endif
1089#ifdef CONFIG_FS_ENET_HAS_FEC
1090#ifdef CONFIG_FS_ENET_MPC5121_FEC
1091 {
1092 .compatible = "fsl,mpc5121-fec",
1093 .data = (void *)&fs_fec_ops,
1094 },
1095 {
1096 .compatible = "fsl,mpc5125-fec",
1097 .data = (void *)&fs_fec_ops,
1098 },
1099#else
1100 {
1101 .compatible = "fsl,pq1-fec-enet",
1102 .data = (void *)&fs_fec_ops,
1103 },
1104#endif
1105#endif
1106 {}
1107};
1108MODULE_DEVICE_TABLE(of, fs_enet_match);
1109
1110static struct platform_driver fs_enet_driver = {
1111 .driver = {
1112 .name = "fs_enet",
1113 .of_match_table = fs_enet_match,
1114 },
1115 .probe = fs_enet_probe,
1116 .remove = fs_enet_remove,
1117};
1118
1119#ifdef CONFIG_NET_POLL_CONTROLLER
1120static void fs_enet_netpoll(struct net_device *dev)
1121{
1122 disable_irq(dev->irq);
1123 fs_enet_interrupt(dev->irq, dev);
1124 enable_irq(dev->irq);
1125}
1126#endif
1127
1128module_platform_driver(fs_enet_driver);