Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   4 *
   5 * Copyright (c) 2003 Intracom S.A.
   6 *  by Pantelis Antoniou <panto@intracom.gr>
   7 *
   8 * 2005 (c) MontaVista Software, Inc.
   9 * Vitaly Bordug <vbordug@ru.mvista.com>
  10 *
  11 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  12 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
 
 
 
 
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/kernel.h>
  17#include <linux/types.h>
  18#include <linux/string.h>
  19#include <linux/ptrace.h>
  20#include <linux/errno.h>
  21#include <linux/ioport.h>
  22#include <linux/slab.h>
  23#include <linux/interrupt.h>
  24#include <linux/delay.h>
  25#include <linux/netdevice.h>
  26#include <linux/etherdevice.h>
  27#include <linux/skbuff.h>
  28#include <linux/spinlock.h>
 
  29#include <linux/ethtool.h>
  30#include <linux/bitops.h>
  31#include <linux/fs.h>
  32#include <linux/platform_device.h>
  33#include <linux/phy.h>
  34#include <linux/phylink.h>
  35#include <linux/property.h>
  36#include <linux/of.h>
  37#include <linux/of_mdio.h>
 
 
  38#include <linux/of_net.h>
  39#include <linux/pgtable.h>
  40#include <linux/rtnetlink.h>
  41
  42#include <linux/vmalloc.h>
  43#include <asm/irq.h>
  44#include <linux/uaccess.h>
  45
  46#include "fs_enet.h"
  47
  48/*************************************************/
  49
  50MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  51MODULE_DESCRIPTION("Freescale Ethernet Driver");
  52MODULE_LICENSE("GPL");
  53
  54static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  55module_param(fs_enet_debug, int, 0);
  56MODULE_PARM_DESC(fs_enet_debug,
  57		 "Freescale bitmapped debugging message enable value");
  58
  59#define RX_RING_SIZE	32
  60#define TX_RING_SIZE	64
  61
  62#ifdef CONFIG_NET_POLL_CONTROLLER
  63static void fs_enet_netpoll(struct net_device *dev);
  64#endif
  65
  66static void fs_set_multicast_list(struct net_device *dev)
  67{
  68	struct fs_enet_private *fep = netdev_priv(dev);
  69
  70	(*fep->ops->set_multicast_list)(dev);
  71}
  72
  73static int fs_eth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  74{
  75	struct fs_enet_private *fep = netdev_priv(dev);
  76
  77	return phylink_mii_ioctl(fep->phylink, ifr, cmd);
  78}
  79
  80static void skb_align(struct sk_buff *skb, int align)
  81{
  82	int off = ((unsigned long)skb->data) & (align - 1);
  83
  84	if (off)
  85		skb_reserve(skb, align - off);
  86}
  87
  88/* NAPI function */
  89static int fs_enet_napi(struct napi_struct *napi, int budget)
  90{
  91	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  92	const struct fs_platform_info *fpi = fep->fpi;
  93	struct net_device *dev = fep->ndev;
  94	int curidx, dirtyidx, received = 0;
  95	int do_wake = 0, do_restart = 0;
  96	int tx_left = TX_RING_SIZE;
  97	struct sk_buff *skb, *skbn;
  98	cbd_t __iomem *bdp;
 
 
  99	u16 pkt_len, sc;
 
 
 
 100
 101	spin_lock(&fep->tx_lock);
 102	bdp = fep->dirty_tx;
 103
 104	/* clear status bits for napi*/
 105	(*fep->ops->napi_clear_event)(dev);
 106
 
 107	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
 108		dirtyidx = bdp - fep->tx_bd_base;
 109
 110		if (fep->tx_free == fep->tx_ring)
 111			break;
 112
 113		skb = fep->tx_skbuff[dirtyidx];
 114
 115		 /* Check for errors. */
 
 
 116		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 117			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 
 118			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
 119				dev->stats.tx_heartbeat_errors++;
 120			if (sc & BD_ENET_TX_LC)	/* Late collision */
 121				dev->stats.tx_window_errors++;
 122			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
 123				dev->stats.tx_aborted_errors++;
 124			if (sc & BD_ENET_TX_UN)	/* Underrun */
 125				dev->stats.tx_fifo_errors++;
 126			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
 127				dev->stats.tx_carrier_errors++;
 128
 129			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 130				dev->stats.tx_errors++;
 131				do_restart = 1;
 132			}
 133		} else {
 134			dev->stats.tx_packets++;
 135		}
 136
 137		if (sc & BD_ENET_TX_READY) {
 138			dev_warn(fep->dev,
 139				 "HEY! Enet xmit interrupt and TX_READY.\n");
 140		}
 141
 142		/* Deferred means some collisions occurred during transmit,
 
 143		 * but we eventually sent the packet OK.
 144		 */
 145		if (sc & BD_ENET_TX_DEF)
 146			dev->stats.collisions++;
 147
 148		/* unmap */
 149		if (fep->mapped_as_page[dirtyidx])
 150			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 151				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 152		else
 153			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 154					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 155
 156		/* Free the sk buffer associated with this last transmit. */
 
 
 157		if (skb) {
 158			dev_kfree_skb(skb);
 159			fep->tx_skbuff[dirtyidx] = NULL;
 160		}
 161
 162		/* Update pointer to next buffer descriptor to be transmitted.
 
 163		 */
 164		if ((sc & BD_ENET_TX_WRAP) == 0)
 165			bdp++;
 166		else
 167			bdp = fep->tx_bd_base;
 168
 169		/* Since we have freed up a buffer, the ring is no longer full.
 
 
 170		 */
 171		if (++fep->tx_free == MAX_SKB_FRAGS)
 172			do_wake = 1;
 173		tx_left--;
 174	}
 175
 176	fep->dirty_tx = bdp;
 177
 178	if (do_restart)
 179		(*fep->ops->tx_restart)(dev);
 180
 181	spin_unlock(&fep->tx_lock);
 182
 183	if (do_wake)
 184		netif_wake_queue(dev);
 185
 186	/* First, grab all of the stats for the incoming packet.
 
 187	 * These get messed up if we get called due to a busy condition.
 188	 */
 189	bdp = fep->cur_rx;
 190
 191	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
 192	       received < budget) {
 193		curidx = bdp - fep->rx_bd_base;
 194
 195		/* Since we have allocated space to hold a complete frame,
 
 196		 * the last indicator should be set.
 197		 */
 198		if ((sc & BD_ENET_RX_LAST) == 0)
 199			dev_warn(fep->dev, "rcv is not +last\n");
 200
 201		/* Check for errors. */
 
 
 202		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 203			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 204			dev->stats.rx_errors++;
 205			/* Frame too long or too short. */
 206			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 207				dev->stats.rx_length_errors++;
 208			/* Frame alignment */
 209			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 210				dev->stats.rx_frame_errors++;
 211			/* CRC Error */
 212			if (sc & BD_ENET_RX_CR)
 213				dev->stats.rx_crc_errors++;
 214			/* FIFO overrun */
 215			if (sc & BD_ENET_RX_OV)
 216				dev->stats.rx_crc_errors++;
 217
 218			skbn = fep->rx_skbuff[curidx];
 219		} else {
 220			skb = fep->rx_skbuff[curidx];
 221
 222			/* Process the incoming frame */
 
 
 223			dev->stats.rx_packets++;
 224			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
 225			dev->stats.rx_bytes += pkt_len + 4;
 226
 227			if (pkt_len <= fpi->rx_copybreak) {
 228				/* +2 to make IP header L1 cache aligned */
 229				skbn = netdev_alloc_skb(dev, pkt_len + 2);
 230				if (skbn) {
 231					skb_reserve(skbn, 2);	/* align IP header */
 232					skb_copy_from_linear_data(skb, skbn->data,
 233								  pkt_len);
 234					swap(skb, skbn);
 235					dma_sync_single_for_cpu(fep->dev,
 236								CBDR_BUFADDR(bdp),
 237								L1_CACHE_ALIGN(pkt_len),
 238								DMA_FROM_DEVICE);
 239				}
 240			} else {
 241				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 242
 243				if (skbn) {
 244					dma_addr_t dma;
 245
 246					skb_align(skbn, ENET_RX_ALIGN);
 247
 248					dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 249							 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 250							 DMA_FROM_DEVICE);
 251
 252					dma = dma_map_single(fep->dev, skbn->data,
 253							     L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 254							     DMA_FROM_DEVICE);
 
 
 255					CBDW_BUFADDR(bdp, dma);
 256				}
 257			}
 258
 259			if (skbn) {
 260				skb_put(skb, pkt_len);	/* Make room */
 261				skb->protocol = eth_type_trans(skb, dev);
 262				received++;
 263				netif_receive_skb(skb);
 264			} else {
 265				dev->stats.rx_dropped++;
 266				skbn = skb;
 267			}
 268		}
 269
 270		fep->rx_skbuff[curidx] = skbn;
 271		CBDW_DATLEN(bdp, 0);
 272		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 273
 274		/* Update BD pointer to next entry */
 
 
 275		if ((sc & BD_ENET_RX_WRAP) == 0)
 276			bdp++;
 277		else
 278			bdp = fep->rx_bd_base;
 279
 280		(*fep->ops->rx_bd_done)(dev);
 281	}
 282
 283	fep->cur_rx = bdp;
 284
 285	if (received < budget && tx_left) {
 286		/* done */
 287		napi_complete_done(napi, received);
 288		(*fep->ops->napi_enable)(dev);
 289
 290		return received;
 291	}
 292
 293	return budget;
 294}
 295
 296/* The interrupt handler.
 
 297 * This is called from the MPC core interrupt.
 298 */
 299static irqreturn_t
 300fs_enet_interrupt(int irq, void *dev_id)
 301{
 302	struct net_device *dev = dev_id;
 303	u32 int_events, int_clr_events;
 304	struct fs_enet_private *fep;
 305	int nr, napi_ok, handled;
 
 
 
 
 306
 307	fep = netdev_priv(dev);
 
 308
 309	nr = 0;
 310	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 311		nr++;
 312
 313		int_clr_events = int_events;
 314		int_clr_events &= ~fep->ev_napi;
 315
 316		(*fep->ops->clear_int_events)(dev, int_clr_events);
 317
 318		if (int_events & fep->ev_err)
 319			(*fep->ops->ev_error)(dev, int_events);
 320
 321		if (int_events & fep->ev) {
 322			napi_ok = napi_schedule_prep(&fep->napi);
 323
 324			(*fep->ops->napi_disable)(dev);
 325			(*fep->ops->clear_int_events)(dev, fep->ev_napi);
 326
 327			/* NOTE: it is possible for FCCs in NAPI mode
 328			 * to submit a spurious interrupt while in poll
 329			 */
 330			if (napi_ok)
 331				__napi_schedule(&fep->napi);
 332		}
 
 333	}
 334
 335	handled = nr > 0;
 336	return IRQ_RETVAL(handled);
 337}
 338
 339void fs_init_bds(struct net_device *dev)
 340{
 341	struct fs_enet_private *fep = netdev_priv(dev);
 342	struct sk_buff *skb;
 343	cbd_t __iomem *bdp;
 
 344	int i;
 345
 346	fs_cleanup_bds(dev);
 347
 348	fep->dirty_tx = fep->tx_bd_base;
 349	fep->cur_tx = fep->tx_bd_base;
 350	fep->tx_free = fep->tx_ring;
 351	fep->cur_rx = fep->rx_bd_base;
 352
 353	/* Initialize the receive buffer descriptors */
 
 
 354	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 355		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 356		if (!skb)
 357			break;
 358
 359		skb_align(skb, ENET_RX_ALIGN);
 360		fep->rx_skbuff[i] = skb;
 361		CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skb->data,
 362						 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 363						 DMA_FROM_DEVICE));
 
 364		CBDW_DATLEN(bdp, 0);	/* zero */
 365		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 366			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 367	}
 368
 369	/* if we failed, fillup remainder */
 
 370	for (; i < fep->rx_ring; i++, bdp++) {
 371		fep->rx_skbuff[i] = NULL;
 372		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 373	}
 374
 375	/* ...and the same for transmit. */
 
 
 376	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 377		fep->tx_skbuff[i] = NULL;
 378		CBDW_BUFADDR(bdp, 0);
 379		CBDW_DATLEN(bdp, 0);
 380		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 381	}
 382}
 383
 384void fs_cleanup_bds(struct net_device *dev)
 385{
 386	struct fs_enet_private *fep = netdev_priv(dev);
 387	struct sk_buff *skb;
 388	cbd_t __iomem *bdp;
 389	int i;
 390
 391	/* Reset SKB transmit buffers. */
 
 
 392	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 393		skb = fep->tx_skbuff[i];
 394		if (!skb)
 395			continue;
 396
 397		/* unmap */
 398		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 399				 skb->len, DMA_TO_DEVICE);
 400
 401		fep->tx_skbuff[i] = NULL;
 402		dev_kfree_skb(skb);
 403	}
 404
 405	/* Reset SKB receive buffers */
 
 
 406	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 407		skb = fep->rx_skbuff[i];
 408		if (!skb)
 409			continue;
 410
 411		/* unmap */
 412		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 413				 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 414				 DMA_FROM_DEVICE);
 415
 416		fep->rx_skbuff[i] = NULL;
 417
 418		dev_kfree_skb(skb);
 419	}
 420}
 421
 
 
 422#ifdef CONFIG_FS_ENET_MPC5121_FEC
 423/* MPC5121 FEC requires 4-byte alignment for TX data buffer! */
 
 
 424static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 425					       struct sk_buff *skb)
 426{
 427	struct sk_buff *new_skb;
 428
 429	if (skb_linearize(skb))
 430		return NULL;
 431
 432	/* Alloc new skb */
 433	new_skb = netdev_alloc_skb(dev, skb->len + 4);
 434	if (!new_skb)
 435		return NULL;
 436
 437	/* Make sure new skb is properly aligned */
 438	skb_align(new_skb, 4);
 439
 440	/* Copy data to new skb ... */
 441	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 442	skb_put(new_skb, skb->len);
 443
 444	/* ... and free an old one */
 445	dev_kfree_skb_any(skb);
 446
 447	return new_skb;
 448}
 449#endif
 450
 451static netdev_tx_t
 452fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 453{
 454	struct fs_enet_private *fep = netdev_priv(dev);
 455	int curidx, nr_frags, len;
 456	cbd_t __iomem *bdp;
 457	skb_frag_t *frag;
 458	u16 sc;
 
 
 
 459#ifdef CONFIG_FS_ENET_MPC5121_FEC
 460	int i, is_aligned = 1;
 
 461
 462	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 463		is_aligned = 0;
 464	} else {
 465		nr_frags = skb_shinfo(skb)->nr_frags;
 466		frag = skb_shinfo(skb)->frags;
 467		for (i = 0; i < nr_frags; i++, frag++) {
 468			if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
 469				is_aligned = 0;
 470				break;
 471			}
 472		}
 473	}
 474
 475	if (!is_aligned) {
 476		skb = tx_skb_align_workaround(dev, skb);
 477		if (!skb) {
 478			/* We have lost packet due to memory allocation error
 
 479			 * in tx_skb_align_workaround(). Hopefully original
 480			 * skb is still valid, so try transmit it later.
 481			 */
 482			return NETDEV_TX_BUSY;
 483		}
 484	}
 485#endif
 486
 487	spin_lock(&fep->tx_lock);
 488
 489	/* Fill in a Tx ring entry */
 
 
 490	bdp = fep->cur_tx;
 491
 492	nr_frags = skb_shinfo(skb)->nr_frags;
 493	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 494		netif_stop_queue(dev);
 495		spin_unlock(&fep->tx_lock);
 496
 497		/* Ooops.  All transmit buffers are full.  Bail out.
 
 498		 * This should not happen, since the tx queue should be stopped.
 499		 */
 500		dev_warn(fep->dev, "tx queue full!.\n");
 501		return NETDEV_TX_BUSY;
 502	}
 503
 504	curidx = bdp - fep->tx_bd_base;
 505
 506	len = skb->len;
 507	dev->stats.tx_bytes += len;
 508	if (nr_frags)
 509		len -= skb->data_len;
 510
 511	fep->tx_free -= nr_frags + 1;
 512	/* Push the data cache so the CPM does not get stale memory data.
 
 513	 */
 514	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 515					 skb->data, len, DMA_TO_DEVICE));
 516	CBDW_DATLEN(bdp, len);
 517
 518	fep->mapped_as_page[curidx] = 0;
 519	frag = skb_shinfo(skb)->frags;
 520	while (nr_frags) {
 521		CBDC_SC(bdp,
 522			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 523			BD_ENET_TX_TC);
 524		CBDS_SC(bdp, BD_ENET_TX_READY);
 525
 526		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
 527			bdp++;
 528			curidx++;
 529		} else {
 530			bdp = fep->tx_bd_base;
 531			curidx = 0;
 532		}
 533
 534		len = skb_frag_size(frag);
 535		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 536						   DMA_TO_DEVICE));
 537		CBDW_DATLEN(bdp, len);
 538
 539		fep->tx_skbuff[curidx] = NULL;
 540		fep->mapped_as_page[curidx] = 1;
 541
 542		frag++;
 543		nr_frags--;
 544	}
 545
 546	/* Trigger transmission start */
 547	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 548	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
 549
 550	/* note that while FEC does not have this bit
 551	 * it marks it as available for software use
 552	 * yay for hw reuse :)
 553	 */
 554	if (skb->len <= 60)
 555		sc |= BD_ENET_TX_PAD;
 556
 557	CBDC_SC(bdp, BD_ENET_TX_STATS);
 558	CBDS_SC(bdp, sc);
 559
 560	/* Save skb pointer. */
 561	fep->tx_skbuff[curidx] = skb;
 562
 563	/* If this was the last BD in the ring, start at the beginning again. */
 564	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 565		bdp++;
 566	else
 567		bdp = fep->tx_bd_base;
 568
 569	fep->cur_tx = bdp;
 570
 571	if (fep->tx_free < MAX_SKB_FRAGS)
 572		netif_stop_queue(dev);
 573
 574	skb_tx_timestamp(skb);
 575
 576	(*fep->ops->tx_kickstart)(dev);
 577
 578	spin_unlock(&fep->tx_lock);
 579
 580	return NETDEV_TX_OK;
 581}
 582
 583static void fs_timeout_work(struct work_struct *work)
 584{
 585	struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
 586						   timeout_work);
 587	struct net_device *dev = fep->ndev;
 588	unsigned long flags;
 589	int wake = 0;
 590
 591	dev->stats.tx_errors++;
 592
 593	/* In the event a timeout was detected, but the netdev is brought down
 594	 * shortly after, it no longer makes sense to try to recover from the
 595	 * timeout. netif_running() will return false when called from the
 596	 * .ndo_close() callback. Calling the following recovery code while
 597	 * called from .ndo_close() could deadlock on rtnl.
 598	 */
 599	if (!netif_running(dev))
 600		return;
 601
 602	rtnl_lock();
 603	phylink_stop(fep->phylink);
 604	phylink_start(fep->phylink);
 605	rtnl_unlock();
 
 606
 607	spin_lock_irqsave(&fep->lock, flags);
 608	wake = fep->tx_free >= MAX_SKB_FRAGS &&
 609	       !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 610	spin_unlock_irqrestore(&fep->lock, flags);
 611
 612	if (wake)
 613		netif_wake_queue(dev);
 614}
 615
 616static void fs_timeout(struct net_device *dev, unsigned int txqueue)
 617{
 618	struct fs_enet_private *fep = netdev_priv(dev);
 619
 620	schedule_work(&fep->timeout_work);
 621}
 622
 623static void fs_mac_link_up(struct phylink_config *config,
 624			   struct phy_device *phy,
 625			   unsigned int mode, phy_interface_t interface,
 626			   int speed, int duplex,
 627			   bool tx_pause, bool rx_pause)
 628{
 629	struct net_device *ndev = to_net_dev(config->dev);
 630	struct fs_enet_private *fep = netdev_priv(ndev);
 631	unsigned long flags;
 632
 633	spin_lock_irqsave(&fep->lock, flags);
 634	fep->ops->restart(ndev, interface, speed, duplex);
 635	spin_unlock_irqrestore(&fep->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636}
 637
 638static void fs_mac_link_down(struct phylink_config *config,
 639			     unsigned int mode, phy_interface_t interface)
 640{
 641	struct net_device *ndev = to_net_dev(config->dev);
 642	struct fs_enet_private *fep = netdev_priv(ndev);
 643	unsigned long flags;
 644
 645	spin_lock_irqsave(&fep->lock, flags);
 646	fep->ops->stop(ndev);
 
 
 
 
 
 647	spin_unlock_irqrestore(&fep->lock, flags);
 648}
 649
 650static void fs_mac_config(struct phylink_config *config, unsigned int mode,
 651			  const struct phylink_link_state *state)
 652{
 653	/* Nothing to do */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654}
 655
 656static int fs_enet_open(struct net_device *dev)
 657{
 658	struct fs_enet_private *fep = netdev_priv(dev);
 659	int r;
 660	int err;
 661
 662	/* to initialize the fep->cur_rx,...
 663	 * not doing this, will cause a crash in fs_enet_napi
 664	 */
 665	fs_init_bds(fep->ndev);
 666
 667	napi_enable(&fep->napi);
 668
 669	/* Install our interrupt handler. */
 670	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 671			"fs_enet-mac", dev);
 672	if (r != 0) {
 673		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 674		napi_disable(&fep->napi);
 675		return -EINVAL;
 676	}
 677
 678	err = phylink_of_phy_connect(fep->phylink, fep->dev->of_node, 0);
 679	if (err) {
 680		free_irq(fep->interrupt, dev);
 681		napi_disable(&fep->napi);
 682		return err;
 683	}
 684	phylink_start(fep->phylink);
 685
 686	netif_start_queue(dev);
 687
 688	return 0;
 689}
 690
 691static int fs_enet_close(struct net_device *dev)
 692{
 693	struct fs_enet_private *fep = netdev_priv(dev);
 694	unsigned long flags;
 695
 696	netif_stop_queue(dev);
 
 697	napi_disable(&fep->napi);
 698	cancel_work(&fep->timeout_work);
 699	phylink_stop(fep->phylink);
 700
 701	spin_lock_irqsave(&fep->lock, flags);
 702	spin_lock(&fep->tx_lock);
 703	(*fep->ops->stop)(dev);
 704	spin_unlock(&fep->tx_lock);
 705	spin_unlock_irqrestore(&fep->lock, flags);
 706	phylink_disconnect_phy(fep->phylink);
 707
 708	/* release any irqs */
 
 709	free_irq(fep->interrupt, dev);
 710
 711	return 0;
 712}
 713
 
 
 714static void fs_get_drvinfo(struct net_device *dev,
 715			   struct ethtool_drvinfo *info)
 716{
 717	strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 718}
 719
 720static int fs_get_regs_len(struct net_device *dev)
 721{
 722	struct fs_enet_private *fep = netdev_priv(dev);
 723
 724	return (*fep->ops->get_regs_len)(dev);
 725}
 726
 727static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 728			void *p)
 729{
 730	struct fs_enet_private *fep = netdev_priv(dev);
 731	unsigned long flags;
 732	int r, len;
 733
 734	len = regs->len;
 735
 736	spin_lock_irqsave(&fep->lock, flags);
 737	r = (*fep->ops->get_regs)(dev, p, &len);
 738	spin_unlock_irqrestore(&fep->lock, flags);
 739
 740	if (r == 0)
 741		regs->version = 0;
 742}
 743
 744static u32 fs_get_msglevel(struct net_device *dev)
 745{
 746	struct fs_enet_private *fep = netdev_priv(dev);
 747
 748	return fep->msg_enable;
 749}
 750
 751static void fs_set_msglevel(struct net_device *dev, u32 value)
 752{
 753	struct fs_enet_private *fep = netdev_priv(dev);
 754
 755	fep->msg_enable = value;
 756}
 757
 758static int fs_get_tunable(struct net_device *dev,
 759			  const struct ethtool_tunable *tuna, void *data)
 760{
 761	struct fs_enet_private *fep = netdev_priv(dev);
 762	struct fs_platform_info *fpi = fep->fpi;
 763	int ret = 0;
 764
 765	switch (tuna->id) {
 766	case ETHTOOL_RX_COPYBREAK:
 767		*(u32 *)data = fpi->rx_copybreak;
 768		break;
 769	default:
 770		ret = -EINVAL;
 771		break;
 772	}
 773
 774	return ret;
 775}
 776
 777static int fs_set_tunable(struct net_device *dev,
 778			  const struct ethtool_tunable *tuna, const void *data)
 779{
 780	struct fs_enet_private *fep = netdev_priv(dev);
 781	struct fs_platform_info *fpi = fep->fpi;
 782	int ret = 0;
 783
 784	switch (tuna->id) {
 785	case ETHTOOL_RX_COPYBREAK:
 786		fpi->rx_copybreak = *(u32 *)data;
 787		break;
 788	default:
 789		ret = -EINVAL;
 790		break;
 791	}
 792
 793	return ret;
 794}
 795
 796static int fs_ethtool_set_link_ksettings(struct net_device *dev,
 797					 const struct ethtool_link_ksettings *cmd)
 798{
 799	struct fs_enet_private *fep = netdev_priv(dev);
 800
 801	return phylink_ethtool_ksettings_set(fep->phylink, cmd);
 802}
 803
 804static int fs_ethtool_get_link_ksettings(struct net_device *dev,
 805					 struct ethtool_link_ksettings *cmd)
 806{
 807	struct fs_enet_private *fep = netdev_priv(dev);
 808
 809	return phylink_ethtool_ksettings_get(fep->phylink, cmd);
 810}
 811
 812static const struct ethtool_ops fs_ethtool_ops = {
 813	.get_drvinfo = fs_get_drvinfo,
 814	.get_regs_len = fs_get_regs_len,
 815	.nway_reset = phy_ethtool_nway_reset,
 816	.get_link = ethtool_op_get_link,
 817	.get_msglevel = fs_get_msglevel,
 818	.set_msglevel = fs_set_msglevel,
 819	.get_regs = fs_get_regs,
 820	.get_ts_info = ethtool_op_get_ts_info,
 821	.get_link_ksettings = fs_ethtool_get_link_ksettings,
 822	.set_link_ksettings = fs_ethtool_set_link_ksettings,
 823	.get_tunable = fs_get_tunable,
 824	.set_tunable = fs_set_tunable,
 825};
 826
 
 
 827#ifdef CONFIG_FS_ENET_HAS_FEC
 828#define IS_FEC(ops) ((ops) == &fs_fec_ops)
 829#else
 830#define IS_FEC(ops) 0
 831#endif
 832
 833static const struct net_device_ops fs_enet_netdev_ops = {
 834	.ndo_open		= fs_enet_open,
 835	.ndo_stop		= fs_enet_close,
 836	.ndo_start_xmit		= fs_enet_start_xmit,
 837	.ndo_tx_timeout		= fs_timeout,
 838	.ndo_set_rx_mode	= fs_set_multicast_list,
 839	.ndo_eth_ioctl		= fs_eth_ioctl,
 840	.ndo_validate_addr	= eth_validate_addr,
 841	.ndo_set_mac_address	= eth_mac_addr,
 842#ifdef CONFIG_NET_POLL_CONTROLLER
 843	.ndo_poll_controller	= fs_enet_netpoll,
 844#endif
 845};
 846
 847static const struct phylink_mac_ops fs_enet_phylink_mac_ops = {
 848	.mac_config = fs_mac_config,
 849	.mac_link_down = fs_mac_link_down,
 850	.mac_link_up = fs_mac_link_up,
 851};
 852
 853static int fs_enet_probe(struct platform_device *ofdev)
 854{
 855	int privsize, len, ret = -ENODEV;
 856	struct fs_platform_info *fpi;
 857	struct fs_enet_private *fep;
 858	phy_interface_t phy_mode;
 859	const struct fs_ops *ops;
 860	struct net_device *ndev;
 861	struct phylink *phylink;
 
 862	const u32 *data;
 863	struct clk *clk;
 
 
 
 864
 865	ops = device_get_match_data(&ofdev->dev);
 866	if (!ops)
 867		return -EINVAL;
 868
 869	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 870	if (!fpi)
 871		return -ENOMEM;
 872
 873	if (!IS_FEC(ops)) {
 874		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 875		if (!data || len != 4)
 876			goto out_free_fpi;
 877
 878		fpi->cp_command = *data;
 879	}
 880
 881	ret = of_get_phy_mode(ofdev->dev.of_node, &phy_mode);
 882	if (ret) {
 883		/* For compatibility, if the mode isn't specified in DT,
 884		 * assume MII
 885		 */
 886		phy_mode = PHY_INTERFACE_MODE_MII;
 887	}
 888
 889	fpi->rx_ring = RX_RING_SIZE;
 890	fpi->tx_ring = TX_RING_SIZE;
 891	fpi->rx_copybreak = 240;
 892	fpi->napi_weight = 17;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893
 894	/* make clock lookup non-fatal (the driver is shared among platforms),
 895	 * but require enable to succeed when a clock was specified/found,
 896	 * keep a reference to the clock upon successful acquisition
 897	 */
 898	clk = devm_clk_get_optional_enabled(&ofdev->dev, "per");
 899	if (IS_ERR(clk))
 900		goto out_free_fpi;
 
 
 
 
 
 901
 902	privsize = sizeof(*fep) +
 903		   sizeof(struct sk_buff **) *
 904		     (fpi->rx_ring + fpi->tx_ring) +
 905		   sizeof(char) * fpi->tx_ring;
 906
 907	ndev = alloc_etherdev(privsize);
 908	if (!ndev) {
 909		ret = -ENOMEM;
 910		goto out_free_fpi;
 911	}
 912
 913	SET_NETDEV_DEV(ndev, &ofdev->dev);
 914	platform_set_drvdata(ofdev, ndev);
 915
 916	fep = netdev_priv(ndev);
 917	fep->dev = &ofdev->dev;
 918	fep->ndev = ndev;
 919	fep->fpi = fpi;
 920	fep->ops = ops;
 921
 922	fep->phylink_config.dev = &ndev->dev;
 923	fep->phylink_config.type = PHYLINK_NETDEV;
 924	fep->phylink_config.mac_capabilities = MAC_10 | MAC_100;
 925
 926	__set_bit(PHY_INTERFACE_MODE_MII,
 927		  fep->phylink_config.supported_interfaces);
 928
 929	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec"))
 930		__set_bit(PHY_INTERFACE_MODE_RMII,
 931			  fep->phylink_config.supported_interfaces);
 932
 933	phylink = phylink_create(&fep->phylink_config, dev_fwnode(fep->dev),
 934				 phy_mode, &fs_enet_phylink_mac_ops);
 935	if (IS_ERR(phylink)) {
 936		ret = PTR_ERR(phylink);
 937		goto out_free_dev;
 938	}
 939
 940	fep->phylink = phylink;
 941
 942	ret = fep->ops->setup_data(ndev);
 943	if (ret)
 944		goto out_phylink;
 945
 946	fep->rx_skbuff = (struct sk_buff **)&fep[1];
 947	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
 948	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
 949				       fpi->tx_ring);
 950
 951	spin_lock_init(&fep->lock);
 952	spin_lock_init(&fep->tx_lock);
 953
 954	of_get_ethdev_address(ofdev->dev.of_node, ndev);
 955
 956	ret = fep->ops->allocate_bd(ndev);
 957	if (ret)
 958		goto out_cleanup_data;
 959
 960	fep->rx_bd_base = fep->ring_base;
 961	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
 962
 963	fep->tx_ring = fpi->tx_ring;
 964	fep->rx_ring = fpi->rx_ring;
 965
 966	ndev->netdev_ops = &fs_enet_netdev_ops;
 967	ndev->watchdog_timeo = 2 * HZ;
 968	INIT_WORK(&fep->timeout_work, fs_timeout_work);
 969	netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
 970			      fpi->napi_weight);
 971
 972	ndev->ethtool_ops = &fs_ethtool_ops;
 973
 
 
 974	ndev->features |= NETIF_F_SG;
 975
 976	ret = register_netdev(ndev);
 977	if (ret)
 978		goto out_free_bd;
 979
 980	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
 981
 982	return 0;
 983
 984out_free_bd:
 985	fep->ops->free_bd(ndev);
 986out_cleanup_data:
 987	fep->ops->cleanup_data(ndev);
 988out_phylink:
 989	phylink_destroy(fep->phylink);
 990out_free_dev:
 991	free_netdev(ndev);
 
 
 
 
 
 
 992out_free_fpi:
 993	kfree(fpi);
 994	return ret;
 995}
 996
 997static void fs_enet_remove(struct platform_device *ofdev)
 998{
 999	struct net_device *ndev = platform_get_drvdata(ofdev);
1000	struct fs_enet_private *fep = netdev_priv(ndev);
1001
1002	unregister_netdev(ndev);
1003
1004	fep->ops->free_bd(ndev);
1005	fep->ops->cleanup_data(ndev);
1006	dev_set_drvdata(fep->dev, NULL);
1007	phylink_destroy(fep->phylink);
 
 
 
1008	free_netdev(ndev);
 
1009}
1010
1011static const struct of_device_id fs_enet_match[] = {
1012#ifdef CONFIG_FS_ENET_HAS_SCC
1013	{
1014		.compatible = "fsl,cpm1-scc-enet",
1015		.data = (void *)&fs_scc_ops,
1016	},
1017	{
1018		.compatible = "fsl,cpm2-scc-enet",
1019		.data = (void *)&fs_scc_ops,
1020	},
1021#endif
1022#ifdef CONFIG_FS_ENET_HAS_FCC
1023	{
1024		.compatible = "fsl,cpm2-fcc-enet",
1025		.data = (void *)&fs_fcc_ops,
1026	},
1027#endif
1028#ifdef CONFIG_FS_ENET_HAS_FEC
1029#ifdef CONFIG_FS_ENET_MPC5121_FEC
1030	{
1031		.compatible = "fsl,mpc5121-fec",
1032		.data = (void *)&fs_fec_ops,
1033	},
1034	{
1035		.compatible = "fsl,mpc5125-fec",
1036		.data = (void *)&fs_fec_ops,
1037	},
1038#else
1039	{
1040		.compatible = "fsl,pq1-fec-enet",
1041		.data = (void *)&fs_fec_ops,
1042	},
1043#endif
1044#endif
1045	{}
1046};
1047MODULE_DEVICE_TABLE(of, fs_enet_match);
1048
1049static struct platform_driver fs_enet_driver = {
1050	.driver = {
1051		.name = "fs_enet",
1052		.of_match_table = fs_enet_match,
1053	},
1054	.probe = fs_enet_probe,
1055	.remove = fs_enet_remove,
1056};
1057
1058#ifdef CONFIG_NET_POLL_CONTROLLER
1059static void fs_enet_netpoll(struct net_device *dev)
1060{
1061	disable_irq(dev->irq);
1062	fs_enet_interrupt(dev->irq, dev);
1063	enable_irq(dev->irq);
1064}
1065#endif
1066
1067module_platform_driver(fs_enet_driver);
v6.2
 
   1/*
   2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   3 *
   4 * Copyright (c) 2003 Intracom S.A.
   5 *  by Pantelis Antoniou <panto@intracom.gr>
   6 *
   7 * 2005 (c) MontaVista Software, Inc.
   8 * Vitaly Bordug <vbordug@ru.mvista.com>
   9 *
  10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/string.h>
  22#include <linux/ptrace.h>
  23#include <linux/errno.h>
  24#include <linux/ioport.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/delay.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/spinlock.h>
  32#include <linux/mii.h>
  33#include <linux/ethtool.h>
  34#include <linux/bitops.h>
  35#include <linux/fs.h>
  36#include <linux/platform_device.h>
  37#include <linux/phy.h>
 
 
  38#include <linux/of.h>
  39#include <linux/of_mdio.h>
  40#include <linux/of_platform.h>
  41#include <linux/of_gpio.h>
  42#include <linux/of_net.h>
  43#include <linux/pgtable.h>
 
  44
  45#include <linux/vmalloc.h>
  46#include <asm/irq.h>
  47#include <linux/uaccess.h>
  48
  49#include "fs_enet.h"
  50
  51/*************************************************/
  52
  53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  54MODULE_DESCRIPTION("Freescale Ethernet Driver");
  55MODULE_LICENSE("GPL");
  56
  57static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  58module_param(fs_enet_debug, int, 0);
  59MODULE_PARM_DESC(fs_enet_debug,
  60		 "Freescale bitmapped debugging message enable value");
  61
  62#define RX_RING_SIZE	32
  63#define TX_RING_SIZE	64
  64
  65#ifdef CONFIG_NET_POLL_CONTROLLER
  66static void fs_enet_netpoll(struct net_device *dev);
  67#endif
  68
  69static void fs_set_multicast_list(struct net_device *dev)
  70{
  71	struct fs_enet_private *fep = netdev_priv(dev);
  72
  73	(*fep->ops->set_multicast_list)(dev);
  74}
  75
 
 
 
 
 
 
 
  76static void skb_align(struct sk_buff *skb, int align)
  77{
  78	int off = ((unsigned long)skb->data) & (align - 1);
  79
  80	if (off)
  81		skb_reserve(skb, align - off);
  82}
  83
  84/* NAPI function */
  85static int fs_enet_napi(struct napi_struct *napi, int budget)
  86{
  87	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
 
  88	struct net_device *dev = fep->ndev;
  89	const struct fs_platform_info *fpi = fep->fpi;
 
 
 
  90	cbd_t __iomem *bdp;
  91	struct sk_buff *skb, *skbn;
  92	int received = 0;
  93	u16 pkt_len, sc;
  94	int curidx;
  95	int dirtyidx, do_wake, do_restart;
  96	int tx_left = TX_RING_SIZE;
  97
  98	spin_lock(&fep->tx_lock);
  99	bdp = fep->dirty_tx;
 100
 101	/* clear status bits for napi*/
 102	(*fep->ops->napi_clear_event)(dev);
 103
 104	do_wake = do_restart = 0;
 105	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
 106		dirtyidx = bdp - fep->tx_bd_base;
 107
 108		if (fep->tx_free == fep->tx_ring)
 109			break;
 110
 111		skb = fep->tx_skbuff[dirtyidx];
 112
 113		/*
 114		 * Check for errors.
 115		 */
 116		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 117			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 118
 119			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
 120				dev->stats.tx_heartbeat_errors++;
 121			if (sc & BD_ENET_TX_LC)	/* Late collision */
 122				dev->stats.tx_window_errors++;
 123			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
 124				dev->stats.tx_aborted_errors++;
 125			if (sc & BD_ENET_TX_UN)	/* Underrun */
 126				dev->stats.tx_fifo_errors++;
 127			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
 128				dev->stats.tx_carrier_errors++;
 129
 130			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 131				dev->stats.tx_errors++;
 132				do_restart = 1;
 133			}
 134		} else
 135			dev->stats.tx_packets++;
 
 136
 137		if (sc & BD_ENET_TX_READY) {
 138			dev_warn(fep->dev,
 139				 "HEY! Enet xmit interrupt and TX_READY.\n");
 140		}
 141
 142		/*
 143		 * Deferred means some collisions occurred during transmit,
 144		 * but we eventually sent the packet OK.
 145		 */
 146		if (sc & BD_ENET_TX_DEF)
 147			dev->stats.collisions++;
 148
 149		/* unmap */
 150		if (fep->mapped_as_page[dirtyidx])
 151			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 152				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 153		else
 154			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 155					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 156
 157		/*
 158		 * Free the sk buffer associated with this last transmit.
 159		 */
 160		if (skb) {
 161			dev_kfree_skb(skb);
 162			fep->tx_skbuff[dirtyidx] = NULL;
 163		}
 164
 165		/*
 166		 * Update pointer to next buffer descriptor to be transmitted.
 167		 */
 168		if ((sc & BD_ENET_TX_WRAP) == 0)
 169			bdp++;
 170		else
 171			bdp = fep->tx_bd_base;
 172
 173		/*
 174		 * Since we have freed up a buffer, the ring is no longer
 175		 * full.
 176		 */
 177		if (++fep->tx_free == MAX_SKB_FRAGS)
 178			do_wake = 1;
 179		tx_left--;
 180	}
 181
 182	fep->dirty_tx = bdp;
 183
 184	if (do_restart)
 185		(*fep->ops->tx_restart)(dev);
 186
 187	spin_unlock(&fep->tx_lock);
 188
 189	if (do_wake)
 190		netif_wake_queue(dev);
 191
 192	/*
 193	 * First, grab all of the stats for the incoming packet.
 194	 * These get messed up if we get called due to a busy condition.
 195	 */
 196	bdp = fep->cur_rx;
 197
 198	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
 199	       received < budget) {
 200		curidx = bdp - fep->rx_bd_base;
 201
 202		/*
 203		 * Since we have allocated space to hold a complete frame,
 204		 * the last indicator should be set.
 205		 */
 206		if ((sc & BD_ENET_RX_LAST) == 0)
 207			dev_warn(fep->dev, "rcv is not +last\n");
 208
 209		/*
 210		 * Check for errors.
 211		 */
 212		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 213			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 214			dev->stats.rx_errors++;
 215			/* Frame too long or too short. */
 216			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 217				dev->stats.rx_length_errors++;
 218			/* Frame alignment */
 219			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 220				dev->stats.rx_frame_errors++;
 221			/* CRC Error */
 222			if (sc & BD_ENET_RX_CR)
 223				dev->stats.rx_crc_errors++;
 224			/* FIFO overrun */
 225			if (sc & BD_ENET_RX_OV)
 226				dev->stats.rx_crc_errors++;
 227
 228			skbn = fep->rx_skbuff[curidx];
 229		} else {
 230			skb = fep->rx_skbuff[curidx];
 231
 232			/*
 233			 * Process the incoming frame.
 234			 */
 235			dev->stats.rx_packets++;
 236			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
 237			dev->stats.rx_bytes += pkt_len + 4;
 238
 239			if (pkt_len <= fpi->rx_copybreak) {
 240				/* +2 to make IP header L1 cache aligned */
 241				skbn = netdev_alloc_skb(dev, pkt_len + 2);
 242				if (skbn != NULL) {
 243					skb_reserve(skbn, 2);	/* align IP header */
 244					skb_copy_from_linear_data(skb,
 245						      skbn->data, pkt_len);
 246					swap(skb, skbn);
 247					dma_sync_single_for_cpu(fep->dev,
 248						CBDR_BUFADDR(bdp),
 249						L1_CACHE_ALIGN(pkt_len),
 250						DMA_FROM_DEVICE);
 251				}
 252			} else {
 253				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 254
 255				if (skbn) {
 256					dma_addr_t dma;
 257
 258					skb_align(skbn, ENET_RX_ALIGN);
 259
 260					dma_unmap_single(fep->dev,
 261						CBDR_BUFADDR(bdp),
 262						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 263						DMA_FROM_DEVICE);
 264
 265					dma = dma_map_single(fep->dev,
 266						skbn->data,
 267						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 268						DMA_FROM_DEVICE);
 269					CBDW_BUFADDR(bdp, dma);
 270				}
 271			}
 272
 273			if (skbn != NULL) {
 274				skb_put(skb, pkt_len);	/* Make room */
 275				skb->protocol = eth_type_trans(skb, dev);
 276				received++;
 277				netif_receive_skb(skb);
 278			} else {
 279				dev->stats.rx_dropped++;
 280				skbn = skb;
 281			}
 282		}
 283
 284		fep->rx_skbuff[curidx] = skbn;
 285		CBDW_DATLEN(bdp, 0);
 286		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 287
 288		/*
 289		 * Update BD pointer to next entry.
 290		 */
 291		if ((sc & BD_ENET_RX_WRAP) == 0)
 292			bdp++;
 293		else
 294			bdp = fep->rx_bd_base;
 295
 296		(*fep->ops->rx_bd_done)(dev);
 297	}
 298
 299	fep->cur_rx = bdp;
 300
 301	if (received < budget && tx_left) {
 302		/* done */
 303		napi_complete_done(napi, received);
 304		(*fep->ops->napi_enable)(dev);
 305
 306		return received;
 307	}
 308
 309	return budget;
 310}
 311
 312/*
 313 * The interrupt handler.
 314 * This is called from the MPC core interrupt.
 315 */
 316static irqreturn_t
 317fs_enet_interrupt(int irq, void *dev_id)
 318{
 319	struct net_device *dev = dev_id;
 
 320	struct fs_enet_private *fep;
 321	const struct fs_platform_info *fpi;
 322	u32 int_events;
 323	u32 int_clr_events;
 324	int nr, napi_ok;
 325	int handled;
 326
 327	fep = netdev_priv(dev);
 328	fpi = fep->fpi;
 329
 330	nr = 0;
 331	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 332		nr++;
 333
 334		int_clr_events = int_events;
 335		int_clr_events &= ~fep->ev_napi;
 336
 337		(*fep->ops->clear_int_events)(dev, int_clr_events);
 338
 339		if (int_events & fep->ev_err)
 340			(*fep->ops->ev_error)(dev, int_events);
 341
 342		if (int_events & fep->ev) {
 343			napi_ok = napi_schedule_prep(&fep->napi);
 344
 345			(*fep->ops->napi_disable)(dev);
 346			(*fep->ops->clear_int_events)(dev, fep->ev_napi);
 347
 348			/* NOTE: it is possible for FCCs in NAPI mode    */
 349			/* to submit a spurious interrupt while in poll  */
 
 350			if (napi_ok)
 351				__napi_schedule(&fep->napi);
 352		}
 353
 354	}
 355
 356	handled = nr > 0;
 357	return IRQ_RETVAL(handled);
 358}
 359
 360void fs_init_bds(struct net_device *dev)
 361{
 362	struct fs_enet_private *fep = netdev_priv(dev);
 
 363	cbd_t __iomem *bdp;
 364	struct sk_buff *skb;
 365	int i;
 366
 367	fs_cleanup_bds(dev);
 368
 369	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 
 370	fep->tx_free = fep->tx_ring;
 371	fep->cur_rx = fep->rx_bd_base;
 372
 373	/*
 374	 * Initialize the receive buffer descriptors.
 375	 */
 376	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 377		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 378		if (skb == NULL)
 379			break;
 380
 381		skb_align(skb, ENET_RX_ALIGN);
 382		fep->rx_skbuff[i] = skb;
 383		CBDW_BUFADDR(bdp,
 384			dma_map_single(fep->dev, skb->data,
 385				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 386				DMA_FROM_DEVICE));
 387		CBDW_DATLEN(bdp, 0);	/* zero */
 388		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 389			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 390	}
 391	/*
 392	 * if we failed, fillup remainder
 393	 */
 394	for (; i < fep->rx_ring; i++, bdp++) {
 395		fep->rx_skbuff[i] = NULL;
 396		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 397	}
 398
 399	/*
 400	 * ...and the same for transmit.
 401	 */
 402	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 403		fep->tx_skbuff[i] = NULL;
 404		CBDW_BUFADDR(bdp, 0);
 405		CBDW_DATLEN(bdp, 0);
 406		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 407	}
 408}
 409
 410void fs_cleanup_bds(struct net_device *dev)
 411{
 412	struct fs_enet_private *fep = netdev_priv(dev);
 413	struct sk_buff *skb;
 414	cbd_t __iomem *bdp;
 415	int i;
 416
 417	/*
 418	 * Reset SKB transmit buffers.
 419	 */
 420	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 421		if ((skb = fep->tx_skbuff[i]) == NULL)
 
 422			continue;
 423
 424		/* unmap */
 425		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 426				skb->len, DMA_TO_DEVICE);
 427
 428		fep->tx_skbuff[i] = NULL;
 429		dev_kfree_skb(skb);
 430	}
 431
 432	/*
 433	 * Reset SKB receive buffers
 434	 */
 435	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 436		if ((skb = fep->rx_skbuff[i]) == NULL)
 
 437			continue;
 438
 439		/* unmap */
 440		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 441			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 442			DMA_FROM_DEVICE);
 443
 444		fep->rx_skbuff[i] = NULL;
 445
 446		dev_kfree_skb(skb);
 447	}
 448}
 449
 450/**********************************************************************************/
 451
 452#ifdef CONFIG_FS_ENET_MPC5121_FEC
 453/*
 454 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
 455 */
 456static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 457					       struct sk_buff *skb)
 458{
 459	struct sk_buff *new_skb;
 460
 461	if (skb_linearize(skb))
 462		return NULL;
 463
 464	/* Alloc new skb */
 465	new_skb = netdev_alloc_skb(dev, skb->len + 4);
 466	if (!new_skb)
 467		return NULL;
 468
 469	/* Make sure new skb is properly aligned */
 470	skb_align(new_skb, 4);
 471
 472	/* Copy data to new skb ... */
 473	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 474	skb_put(new_skb, skb->len);
 475
 476	/* ... and free an old one */
 477	dev_kfree_skb_any(skb);
 478
 479	return new_skb;
 480}
 481#endif
 482
 483static netdev_tx_t
 484fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 485{
 486	struct fs_enet_private *fep = netdev_priv(dev);
 
 487	cbd_t __iomem *bdp;
 488	int curidx;
 489	u16 sc;
 490	int nr_frags;
 491	skb_frag_t *frag;
 492	int len;
 493#ifdef CONFIG_FS_ENET_MPC5121_FEC
 494	int is_aligned = 1;
 495	int i;
 496
 497	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 498		is_aligned = 0;
 499	} else {
 500		nr_frags = skb_shinfo(skb)->nr_frags;
 501		frag = skb_shinfo(skb)->frags;
 502		for (i = 0; i < nr_frags; i++, frag++) {
 503			if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
 504				is_aligned = 0;
 505				break;
 506			}
 507		}
 508	}
 509
 510	if (!is_aligned) {
 511		skb = tx_skb_align_workaround(dev, skb);
 512		if (!skb) {
 513			/*
 514			 * We have lost packet due to memory allocation error
 515			 * in tx_skb_align_workaround(). Hopefully original
 516			 * skb is still valid, so try transmit it later.
 517			 */
 518			return NETDEV_TX_BUSY;
 519		}
 520	}
 521#endif
 522
 523	spin_lock(&fep->tx_lock);
 524
 525	/*
 526	 * Fill in a Tx ring entry
 527	 */
 528	bdp = fep->cur_tx;
 529
 530	nr_frags = skb_shinfo(skb)->nr_frags;
 531	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 532		netif_stop_queue(dev);
 533		spin_unlock(&fep->tx_lock);
 534
 535		/*
 536		 * Ooops.  All transmit buffers are full.  Bail out.
 537		 * This should not happen, since the tx queue should be stopped.
 538		 */
 539		dev_warn(fep->dev, "tx queue full!.\n");
 540		return NETDEV_TX_BUSY;
 541	}
 542
 543	curidx = bdp - fep->tx_bd_base;
 544
 545	len = skb->len;
 546	dev->stats.tx_bytes += len;
 547	if (nr_frags)
 548		len -= skb->data_len;
 
 549	fep->tx_free -= nr_frags + 1;
 550	/*
 551	 * Push the data cache so the CPM does not get stale memory data.
 552	 */
 553	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 554				skb->data, len, DMA_TO_DEVICE));
 555	CBDW_DATLEN(bdp, len);
 556
 557	fep->mapped_as_page[curidx] = 0;
 558	frag = skb_shinfo(skb)->frags;
 559	while (nr_frags) {
 560		CBDC_SC(bdp,
 561			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 562			BD_ENET_TX_TC);
 563		CBDS_SC(bdp, BD_ENET_TX_READY);
 564
 565		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
 566			bdp++;
 567			curidx++;
 568		} else {
 569			bdp = fep->tx_bd_base;
 570			curidx = 0;
 571		}
 572
 573		len = skb_frag_size(frag);
 574		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 575						   DMA_TO_DEVICE));
 576		CBDW_DATLEN(bdp, len);
 577
 578		fep->tx_skbuff[curidx] = NULL;
 579		fep->mapped_as_page[curidx] = 1;
 580
 581		frag++;
 582		nr_frags--;
 583	}
 584
 585	/* Trigger transmission start */
 586	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 587	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
 588
 589	/* note that while FEC does not have this bit
 590	 * it marks it as available for software use
 591	 * yay for hw reuse :) */
 
 592	if (skb->len <= 60)
 593		sc |= BD_ENET_TX_PAD;
 
 594	CBDC_SC(bdp, BD_ENET_TX_STATS);
 595	CBDS_SC(bdp, sc);
 596
 597	/* Save skb pointer. */
 598	fep->tx_skbuff[curidx] = skb;
 599
 600	/* If this was the last BD in the ring, start at the beginning again. */
 601	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 602		bdp++;
 603	else
 604		bdp = fep->tx_bd_base;
 
 605	fep->cur_tx = bdp;
 606
 607	if (fep->tx_free < MAX_SKB_FRAGS)
 608		netif_stop_queue(dev);
 609
 610	skb_tx_timestamp(skb);
 611
 612	(*fep->ops->tx_kickstart)(dev);
 613
 614	spin_unlock(&fep->tx_lock);
 615
 616	return NETDEV_TX_OK;
 617}
 618
 619static void fs_timeout_work(struct work_struct *work)
 620{
 621	struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
 622						   timeout_work);
 623	struct net_device *dev = fep->ndev;
 624	unsigned long flags;
 625	int wake = 0;
 626
 627	dev->stats.tx_errors++;
 628
 629	spin_lock_irqsave(&fep->lock, flags);
 
 
 
 
 
 
 
 630
 631	if (dev->flags & IFF_UP) {
 632		phy_stop(dev->phydev);
 633		(*fep->ops->stop)(dev);
 634		(*fep->ops->restart)(dev);
 635	}
 636
 637	phy_start(dev->phydev);
 638	wake = fep->tx_free >= MAX_SKB_FRAGS &&
 639	       !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 640	spin_unlock_irqrestore(&fep->lock, flags);
 641
 642	if (wake)
 643		netif_wake_queue(dev);
 644}
 645
 646static void fs_timeout(struct net_device *dev, unsigned int txqueue)
 647{
 648	struct fs_enet_private *fep = netdev_priv(dev);
 649
 650	schedule_work(&fep->timeout_work);
 651}
 652
 653/*-----------------------------------------------------------------------------
 654 *  generic link-change handler - should be sufficient for most cases
 655 *-----------------------------------------------------------------------------*/
 656static void generic_adjust_link(struct  net_device *dev)
 
 657{
 658	struct fs_enet_private *fep = netdev_priv(dev);
 659	struct phy_device *phydev = dev->phydev;
 660	int new_state = 0;
 661
 662	if (phydev->link) {
 663		/* adjust to duplex mode */
 664		if (phydev->duplex != fep->oldduplex) {
 665			new_state = 1;
 666			fep->oldduplex = phydev->duplex;
 667		}
 668
 669		if (phydev->speed != fep->oldspeed) {
 670			new_state = 1;
 671			fep->oldspeed = phydev->speed;
 672		}
 673
 674		if (!fep->oldlink) {
 675			new_state = 1;
 676			fep->oldlink = 1;
 677		}
 678
 679		if (new_state)
 680			fep->ops->restart(dev);
 681	} else if (fep->oldlink) {
 682		new_state = 1;
 683		fep->oldlink = 0;
 684		fep->oldspeed = 0;
 685		fep->oldduplex = -1;
 686	}
 687
 688	if (new_state && netif_msg_link(fep))
 689		phy_print_status(phydev);
 690}
 691
 692
 693static void fs_adjust_link(struct net_device *dev)
 694{
 695	struct fs_enet_private *fep = netdev_priv(dev);
 
 696	unsigned long flags;
 697
 698	spin_lock_irqsave(&fep->lock, flags);
 699
 700	if(fep->ops->adjust_link)
 701		fep->ops->adjust_link(dev);
 702	else
 703		generic_adjust_link(dev);
 704
 705	spin_unlock_irqrestore(&fep->lock, flags);
 706}
 707
 708static int fs_init_phy(struct net_device *dev)
 
 709{
 710	struct fs_enet_private *fep = netdev_priv(dev);
 711	struct phy_device *phydev;
 712	phy_interface_t iface;
 713
 714	fep->oldlink = 0;
 715	fep->oldspeed = 0;
 716	fep->oldduplex = -1;
 717
 718	iface = fep->fpi->use_rmii ?
 719		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
 720
 721	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
 722				iface);
 723	if (!phydev) {
 724		dev_err(&dev->dev, "Could not attach to PHY\n");
 725		return -ENODEV;
 726	}
 727
 728	return 0;
 729}
 730
 731static int fs_enet_open(struct net_device *dev)
 732{
 733	struct fs_enet_private *fep = netdev_priv(dev);
 734	int r;
 735	int err;
 736
 737	/* to initialize the fep->cur_rx,... */
 738	/* not doing this, will cause a crash in fs_enet_napi */
 
 739	fs_init_bds(fep->ndev);
 740
 741	napi_enable(&fep->napi);
 742
 743	/* Install our interrupt handler. */
 744	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 745			"fs_enet-mac", dev);
 746	if (r != 0) {
 747		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 748		napi_disable(&fep->napi);
 749		return -EINVAL;
 750	}
 751
 752	err = fs_init_phy(dev);
 753	if (err) {
 754		free_irq(fep->interrupt, dev);
 755		napi_disable(&fep->napi);
 756		return err;
 757	}
 758	phy_start(dev->phydev);
 759
 760	netif_start_queue(dev);
 761
 762	return 0;
 763}
 764
 765static int fs_enet_close(struct net_device *dev)
 766{
 767	struct fs_enet_private *fep = netdev_priv(dev);
 768	unsigned long flags;
 769
 770	netif_stop_queue(dev);
 771	netif_carrier_off(dev);
 772	napi_disable(&fep->napi);
 773	cancel_work_sync(&fep->timeout_work);
 774	phy_stop(dev->phydev);
 775
 776	spin_lock_irqsave(&fep->lock, flags);
 777	spin_lock(&fep->tx_lock);
 778	(*fep->ops->stop)(dev);
 779	spin_unlock(&fep->tx_lock);
 780	spin_unlock_irqrestore(&fep->lock, flags);
 
 781
 782	/* release any irqs */
 783	phy_disconnect(dev->phydev);
 784	free_irq(fep->interrupt, dev);
 785
 786	return 0;
 787}
 788
 789/*************************************************************************/
 790
 791static void fs_get_drvinfo(struct net_device *dev,
 792			    struct ethtool_drvinfo *info)
 793{
 794	strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 795}
 796
 797static int fs_get_regs_len(struct net_device *dev)
 798{
 799	struct fs_enet_private *fep = netdev_priv(dev);
 800
 801	return (*fep->ops->get_regs_len)(dev);
 802}
 803
 804static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 805			 void *p)
 806{
 807	struct fs_enet_private *fep = netdev_priv(dev);
 808	unsigned long flags;
 809	int r, len;
 810
 811	len = regs->len;
 812
 813	spin_lock_irqsave(&fep->lock, flags);
 814	r = (*fep->ops->get_regs)(dev, p, &len);
 815	spin_unlock_irqrestore(&fep->lock, flags);
 816
 817	if (r == 0)
 818		regs->version = 0;
 819}
 820
 821static u32 fs_get_msglevel(struct net_device *dev)
 822{
 823	struct fs_enet_private *fep = netdev_priv(dev);
 
 824	return fep->msg_enable;
 825}
 826
 827static void fs_set_msglevel(struct net_device *dev, u32 value)
 828{
 829	struct fs_enet_private *fep = netdev_priv(dev);
 
 830	fep->msg_enable = value;
 831}
 832
 833static int fs_get_tunable(struct net_device *dev,
 834			  const struct ethtool_tunable *tuna, void *data)
 835{
 836	struct fs_enet_private *fep = netdev_priv(dev);
 837	struct fs_platform_info *fpi = fep->fpi;
 838	int ret = 0;
 839
 840	switch (tuna->id) {
 841	case ETHTOOL_RX_COPYBREAK:
 842		*(u32 *)data = fpi->rx_copybreak;
 843		break;
 844	default:
 845		ret = -EINVAL;
 846		break;
 847	}
 848
 849	return ret;
 850}
 851
 852static int fs_set_tunable(struct net_device *dev,
 853			  const struct ethtool_tunable *tuna, const void *data)
 854{
 855	struct fs_enet_private *fep = netdev_priv(dev);
 856	struct fs_platform_info *fpi = fep->fpi;
 857	int ret = 0;
 858
 859	switch (tuna->id) {
 860	case ETHTOOL_RX_COPYBREAK:
 861		fpi->rx_copybreak = *(u32 *)data;
 862		break;
 863	default:
 864		ret = -EINVAL;
 865		break;
 866	}
 867
 868	return ret;
 869}
 870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871static const struct ethtool_ops fs_ethtool_ops = {
 872	.get_drvinfo = fs_get_drvinfo,
 873	.get_regs_len = fs_get_regs_len,
 874	.nway_reset = phy_ethtool_nway_reset,
 875	.get_link = ethtool_op_get_link,
 876	.get_msglevel = fs_get_msglevel,
 877	.set_msglevel = fs_set_msglevel,
 878	.get_regs = fs_get_regs,
 879	.get_ts_info = ethtool_op_get_ts_info,
 880	.get_link_ksettings = phy_ethtool_get_link_ksettings,
 881	.set_link_ksettings = phy_ethtool_set_link_ksettings,
 882	.get_tunable = fs_get_tunable,
 883	.set_tunable = fs_set_tunable,
 884};
 885
 886/**************************************************************************************/
 887
 888#ifdef CONFIG_FS_ENET_HAS_FEC
 889#define IS_FEC(match) ((match)->data == &fs_fec_ops)
 890#else
 891#define IS_FEC(match) 0
 892#endif
 893
 894static const struct net_device_ops fs_enet_netdev_ops = {
 895	.ndo_open		= fs_enet_open,
 896	.ndo_stop		= fs_enet_close,
 897	.ndo_start_xmit		= fs_enet_start_xmit,
 898	.ndo_tx_timeout		= fs_timeout,
 899	.ndo_set_rx_mode	= fs_set_multicast_list,
 900	.ndo_eth_ioctl		= phy_do_ioctl_running,
 901	.ndo_validate_addr	= eth_validate_addr,
 902	.ndo_set_mac_address	= eth_mac_addr,
 903#ifdef CONFIG_NET_POLL_CONTROLLER
 904	.ndo_poll_controller	= fs_enet_netpoll,
 905#endif
 906};
 907
 908static const struct of_device_id fs_enet_match[];
 
 
 
 
 
 909static int fs_enet_probe(struct platform_device *ofdev)
 910{
 911	const struct of_device_id *match;
 
 
 
 
 912	struct net_device *ndev;
 913	struct fs_enet_private *fep;
 914	struct fs_platform_info *fpi;
 915	const u32 *data;
 916	struct clk *clk;
 917	int err;
 918	const char *phy_connection_type;
 919	int privsize, len, ret = -ENODEV;
 920
 921	match = of_match_device(fs_enet_match, &ofdev->dev);
 922	if (!match)
 923		return -EINVAL;
 924
 925	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 926	if (!fpi)
 927		return -ENOMEM;
 928
 929	if (!IS_FEC(match)) {
 930		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 931		if (!data || len != 4)
 932			goto out_free_fpi;
 933
 934		fpi->cp_command = *data;
 935	}
 936
 
 
 
 
 
 
 
 
 937	fpi->rx_ring = RX_RING_SIZE;
 938	fpi->tx_ring = TX_RING_SIZE;
 939	fpi->rx_copybreak = 240;
 940	fpi->napi_weight = 17;
 941	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
 942	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
 943		err = of_phy_register_fixed_link(ofdev->dev.of_node);
 944		if (err)
 945			goto out_free_fpi;
 946
 947		/* In the case of a fixed PHY, the DT node associated
 948		 * to the PHY is the Ethernet MAC DT node.
 949		 */
 950		fpi->phy_node = of_node_get(ofdev->dev.of_node);
 951	}
 952
 953	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
 954		phy_connection_type = of_get_property(ofdev->dev.of_node,
 955						"phy-connection-type", NULL);
 956		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
 957			fpi->use_rmii = 1;
 958	}
 959
 960	/* make clock lookup non-fatal (the driver is shared among platforms),
 961	 * but require enable to succeed when a clock was specified/found,
 962	 * keep a reference to the clock upon successful acquisition
 963	 */
 964	clk = devm_clk_get(&ofdev->dev, "per");
 965	if (!IS_ERR(clk)) {
 966		ret = clk_prepare_enable(clk);
 967		if (ret)
 968			goto out_deregister_fixed_link;
 969
 970		fpi->clk_per = clk;
 971	}
 972
 973	privsize = sizeof(*fep) +
 974	           sizeof(struct sk_buff **) *
 975		     (fpi->rx_ring + fpi->tx_ring) +
 976		   sizeof(char) * fpi->tx_ring;
 977
 978	ndev = alloc_etherdev(privsize);
 979	if (!ndev) {
 980		ret = -ENOMEM;
 981		goto out_put;
 982	}
 983
 984	SET_NETDEV_DEV(ndev, &ofdev->dev);
 985	platform_set_drvdata(ofdev, ndev);
 986
 987	fep = netdev_priv(ndev);
 988	fep->dev = &ofdev->dev;
 989	fep->ndev = ndev;
 990	fep->fpi = fpi;
 991	fep->ops = match->data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992
 993	ret = fep->ops->setup_data(ndev);
 994	if (ret)
 995		goto out_free_dev;
 996
 997	fep->rx_skbuff = (struct sk_buff **)&fep[1];
 998	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
 999	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1000				       fpi->tx_ring);
1001
1002	spin_lock_init(&fep->lock);
1003	spin_lock_init(&fep->tx_lock);
1004
1005	of_get_ethdev_address(ofdev->dev.of_node, ndev);
1006
1007	ret = fep->ops->allocate_bd(ndev);
1008	if (ret)
1009		goto out_cleanup_data;
1010
1011	fep->rx_bd_base = fep->ring_base;
1012	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1013
1014	fep->tx_ring = fpi->tx_ring;
1015	fep->rx_ring = fpi->rx_ring;
1016
1017	ndev->netdev_ops = &fs_enet_netdev_ops;
1018	ndev->watchdog_timeo = 2 * HZ;
1019	INIT_WORK(&fep->timeout_work, fs_timeout_work);
1020	netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
1021			      fpi->napi_weight);
1022
1023	ndev->ethtool_ops = &fs_ethtool_ops;
1024
1025	netif_carrier_off(ndev);
1026
1027	ndev->features |= NETIF_F_SG;
1028
1029	ret = register_netdev(ndev);
1030	if (ret)
1031		goto out_free_bd;
1032
1033	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1034
1035	return 0;
1036
1037out_free_bd:
1038	fep->ops->free_bd(ndev);
1039out_cleanup_data:
1040	fep->ops->cleanup_data(ndev);
 
 
1041out_free_dev:
1042	free_netdev(ndev);
1043out_put:
1044	clk_disable_unprepare(fpi->clk_per);
1045out_deregister_fixed_link:
1046	of_node_put(fpi->phy_node);
1047	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1048		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1049out_free_fpi:
1050	kfree(fpi);
1051	return ret;
1052}
1053
1054static int fs_enet_remove(struct platform_device *ofdev)
1055{
1056	struct net_device *ndev = platform_get_drvdata(ofdev);
1057	struct fs_enet_private *fep = netdev_priv(ndev);
1058
1059	unregister_netdev(ndev);
1060
1061	fep->ops->free_bd(ndev);
1062	fep->ops->cleanup_data(ndev);
1063	dev_set_drvdata(fep->dev, NULL);
1064	of_node_put(fep->fpi->phy_node);
1065	clk_disable_unprepare(fep->fpi->clk_per);
1066	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1067		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1068	free_netdev(ndev);
1069	return 0;
1070}
1071
1072static const struct of_device_id fs_enet_match[] = {
1073#ifdef CONFIG_FS_ENET_HAS_SCC
1074	{
1075		.compatible = "fsl,cpm1-scc-enet",
1076		.data = (void *)&fs_scc_ops,
1077	},
1078	{
1079		.compatible = "fsl,cpm2-scc-enet",
1080		.data = (void *)&fs_scc_ops,
1081	},
1082#endif
1083#ifdef CONFIG_FS_ENET_HAS_FCC
1084	{
1085		.compatible = "fsl,cpm2-fcc-enet",
1086		.data = (void *)&fs_fcc_ops,
1087	},
1088#endif
1089#ifdef CONFIG_FS_ENET_HAS_FEC
1090#ifdef CONFIG_FS_ENET_MPC5121_FEC
1091	{
1092		.compatible = "fsl,mpc5121-fec",
1093		.data = (void *)&fs_fec_ops,
1094	},
1095	{
1096		.compatible = "fsl,mpc5125-fec",
1097		.data = (void *)&fs_fec_ops,
1098	},
1099#else
1100	{
1101		.compatible = "fsl,pq1-fec-enet",
1102		.data = (void *)&fs_fec_ops,
1103	},
1104#endif
1105#endif
1106	{}
1107};
1108MODULE_DEVICE_TABLE(of, fs_enet_match);
1109
1110static struct platform_driver fs_enet_driver = {
1111	.driver = {
1112		.name = "fs_enet",
1113		.of_match_table = fs_enet_match,
1114	},
1115	.probe = fs_enet_probe,
1116	.remove = fs_enet_remove,
1117};
1118
1119#ifdef CONFIG_NET_POLL_CONTROLLER
1120static void fs_enet_netpoll(struct net_device *dev)
1121{
1122       disable_irq(dev->irq);
1123       fs_enet_interrupt(dev->irq, dev);
1124       enable_irq(dev->irq);
1125}
1126#endif
1127
1128module_platform_driver(fs_enet_driver);