Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Xilinx CAN device driver
   3 *
   4 * Copyright (C) 2012 - 2022 Xilinx, Inc.
   5 * Copyright (C) 2009 PetaLogix. All rights reserved.
   6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
   7 *
   8 * Description:
   9 * This driver is developed for AXI CAN IP, AXI CANFD IP, CANPS and CANFD PS Controller.
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/ethtool.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/netdevice.h>
  22#include <linux/of.h>
 
  23#include <linux/platform_device.h>
  24#include <linux/property.h>
  25#include <linux/skbuff.h>
  26#include <linux/spinlock.h>
  27#include <linux/string.h>
  28#include <linux/types.h>
  29#include <linux/can/dev.h>
  30#include <linux/can/error.h>
  31#include <linux/phy/phy.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/reset.h>
  34#include <linux/u64_stats_sync.h>
  35
  36#define DRIVER_NAME	"xilinx_can"
  37
  38/* CAN registers set */
  39enum xcan_reg {
  40	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
  41	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
  42	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
  43	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
  44	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
  45	XCAN_ESR_OFFSET		= 0x14, /* Error status */
  46	XCAN_SR_OFFSET		= 0x18, /* Status */
  47	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
  48	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
  49	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
  50
  51	/* not on CAN FD cores */
  52	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
  53	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
  54	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
  55
  56	/* only on CAN FD cores */
  57	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
  58					  * Prescaler
  59					  */
  60	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
  61	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
  62
  63	/* only on AXI CAN cores */
  64	XCAN_ECC_CFG_OFFSET	= 0xC8, /* ECC Configuration */
  65	XCAN_TXTLFIFO_ECC_OFFSET	= 0xCC, /* TXTL FIFO ECC error counter */
  66	XCAN_TXOLFIFO_ECC_OFFSET	= 0xD0, /* TXOL FIFO ECC error counter */
  67	XCAN_RXFIFO_ECC_OFFSET	= 0xD4, /* RX FIFO ECC error counter */
  68
  69	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
  70	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
  71	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
  72	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
  73	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
  74	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
  75	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
  76};
  77
  78#define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
  79#define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
  80#define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
  81#define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
  82#define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
  83
  84#define XCAN_CANFD_FRAME_SIZE		0x48
  85#define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
  86					 XCAN_CANFD_FRAME_SIZE * (n))
  87#define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
  88					 XCAN_CANFD_FRAME_SIZE * (n))
  89#define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
  90					 XCAN_CANFD_FRAME_SIZE * (n))
  91
  92/* the single TX mailbox used by this driver on CAN FD HW */
  93#define XCAN_TX_MAILBOX_IDX		0
  94
  95/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  96#define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
  97#define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
  98#define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
  99#define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
 100#define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
 101#define XCAN_BRPR_TDCO_MASK		GENMASK(12, 8)  /* TDCO */
 102#define XCAN_2_BRPR_TDCO_MASK		GENMASK(13, 8)  /* TDCO for CANFD 2.0 */
 103#define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
 104#define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
 105#define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
 106#define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
 107#define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
 108#define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
 109#define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
 110#define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
 111#define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
 112#define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
 113#define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
 114#define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
 115#define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
 116#define XCAN_SR_TDCV_MASK		GENMASK(22, 16) /* TDCV Value */
 117#define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
 118#define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
 119#define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
 120#define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
 121#define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
 122#define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
 123#define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
 124#define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
 125#define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
 126#define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
 127#define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
 128#define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
 129#define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
 130#define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
 131#define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
 132#define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
 133#define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
 134#define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
 135#define XCAN_IXR_E2BERX_MASK		BIT(23) /* RX FIFO two bit ECC error */
 136#define XCAN_IXR_E1BERX_MASK		BIT(22) /* RX FIFO one bit ECC error */
 137#define XCAN_IXR_E2BETXOL_MASK		BIT(21) /* TXOL FIFO two bit ECC error */
 138#define XCAN_IXR_E1BETXOL_MASK		BIT(20) /* TXOL FIFO One bit ECC error */
 139#define XCAN_IXR_E2BETXTL_MASK		BIT(19) /* TXTL FIFO Two bit ECC error */
 140#define XCAN_IXR_E1BETXTL_MASK		BIT(18) /* TXTL FIFO One bit ECC error */
 141#define XCAN_IXR_ECC_MASK		(XCAN_IXR_E2BERX_MASK | \
 142					XCAN_IXR_E1BERX_MASK | \
 143					XCAN_IXR_E2BETXOL_MASK | \
 144					XCAN_IXR_E1BETXOL_MASK | \
 145					XCAN_IXR_E2BETXTL_MASK | \
 146					XCAN_IXR_E1BETXTL_MASK)
 147#define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
 148#define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
 149#define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
 150#define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
 151#define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
 152#define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
 153#define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
 154#define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
 155#define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
 156#define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
 157#define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
 158#define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
 159#define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
 160#define XCAN_ECC_CFG_REECRX_MASK	BIT(2) /* Reset RX FIFO ECC error counters */
 161#define XCAN_ECC_CFG_REECTXOL_MASK	BIT(1) /* Reset TXOL FIFO ECC error counters */
 162#define XCAN_ECC_CFG_REECTXTL_MASK	BIT(0) /* Reset TXTL FIFO ECC error counters */
 163#define XCAN_ECC_1BIT_CNT_MASK		GENMASK(15, 0) /* FIFO ECC 1bit count mask */
 164#define XCAN_ECC_2BIT_CNT_MASK		GENMASK(31, 16) /* FIFO ECC 2bit count mask */
 165
 166/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 167#define XCAN_BRPR_TDC_ENABLE		BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
 168#define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
 169#define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
 170#define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
 171#define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
 172#define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
 173#define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
 174#define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
 175#define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
 176
 177/* CAN frame length constants */
 178#define XCAN_FRAME_MAX_DATA_LEN		8
 179#define XCANFD_DW_BYTES			4
 180#define XCAN_TIMEOUT			(1 * HZ)
 181
 182/* TX-FIFO-empty interrupt available */
 183#define XCAN_FLAG_TXFEMP	0x0001
 184/* RX Match Not Finished interrupt available */
 185#define XCAN_FLAG_RXMNF		0x0002
 186/* Extended acceptance filters with control at 0xE0 */
 187#define XCAN_FLAG_EXT_FILTERS	0x0004
 188/* TX mailboxes instead of TX FIFO */
 189#define XCAN_FLAG_TX_MAILBOXES	0x0008
 190/* RX FIFO with each buffer in separate registers at 0x1100
 191 * instead of the regular FIFO at 0x50
 192 */
 193#define XCAN_FLAG_RX_FIFO_MULTI	0x0010
 194#define XCAN_FLAG_CANFD_2	0x0020
 195
 196enum xcan_ip_type {
 197	XAXI_CAN = 0,
 198	XZYNQ_CANPS,
 199	XAXI_CANFD,
 200	XAXI_CANFD_2_0,
 201};
 202
 203struct xcan_devtype_data {
 204	enum xcan_ip_type cantype;
 205	unsigned int flags;
 206	const struct can_bittiming_const *bittiming_const;
 207	const char *bus_clk_name;
 208	unsigned int btr_ts2_shift;
 209	unsigned int btr_sjw_shift;
 210};
 211
 212/**
 213 * struct xcan_priv - This definition define CAN driver instance
 214 * @can:			CAN private data structure.
 215 * @tx_lock:			Lock for synchronizing TX interrupt handling
 216 * @tx_head:			Tx CAN packets ready to send on the queue
 217 * @tx_tail:			Tx CAN packets successfully sended on the queue
 218 * @tx_max:			Maximum number packets the driver can send
 219 * @napi:			NAPI structure
 220 * @read_reg:			For reading data from CAN registers
 221 * @write_reg:			For writing data to CAN registers
 222 * @dev:			Network device data structure
 223 * @reg_base:			Ioremapped address to registers
 224 * @irq_flags:			For request_irq()
 225 * @bus_clk:			Pointer to struct clk
 226 * @can_clk:			Pointer to struct clk
 227 * @devtype:			Device type specific constants
 228 * @transceiver:		Optional pointer to associated CAN transceiver
 229 * @rstc:			Pointer to reset control
 230 * @ecc_enable:			ECC enable flag
 231 * @syncp:			synchronization for ECC error stats
 232 * @ecc_rx_2_bit_errors:	RXFIFO 2bit ECC count
 233 * @ecc_rx_1_bit_errors:	RXFIFO 1bit ECC count
 234 * @ecc_txol_2_bit_errors:	TXOLFIFO 2bit ECC count
 235 * @ecc_txol_1_bit_errors:	TXOLFIFO 1bit ECC count
 236 * @ecc_txtl_2_bit_errors:	TXTLFIFO 2bit ECC count
 237 * @ecc_txtl_1_bit_errors:	TXTLFIFO 1bit ECC count
 238 */
 239struct xcan_priv {
 240	struct can_priv can;
 241	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
 242	unsigned int tx_head;
 243	unsigned int tx_tail;
 244	unsigned int tx_max;
 245	struct napi_struct napi;
 246	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 247	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 248			  u32 val);
 249	struct device *dev;
 250	void __iomem *reg_base;
 251	unsigned long irq_flags;
 252	struct clk *bus_clk;
 253	struct clk *can_clk;
 254	struct xcan_devtype_data devtype;
 255	struct phy *transceiver;
 256	struct reset_control *rstc;
 257	bool ecc_enable;
 258	struct u64_stats_sync syncp;
 259	u64_stats_t ecc_rx_2_bit_errors;
 260	u64_stats_t ecc_rx_1_bit_errors;
 261	u64_stats_t ecc_txol_2_bit_errors;
 262	u64_stats_t ecc_txol_1_bit_errors;
 263	u64_stats_t ecc_txtl_2_bit_errors;
 264	u64_stats_t ecc_txtl_1_bit_errors;
 265};
 266
 267/* CAN Bittiming constants as per Xilinx CAN specs */
 268static const struct can_bittiming_const xcan_bittiming_const = {
 269	.name = DRIVER_NAME,
 270	.tseg1_min = 1,
 271	.tseg1_max = 16,
 272	.tseg2_min = 1,
 273	.tseg2_max = 8,
 274	.sjw_max = 4,
 275	.brp_min = 1,
 276	.brp_max = 256,
 277	.brp_inc = 1,
 278};
 279
 280/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
 281static const struct can_bittiming_const xcan_bittiming_const_canfd = {
 282	.name = DRIVER_NAME,
 283	.tseg1_min = 1,
 284	.tseg1_max = 64,
 285	.tseg2_min = 1,
 286	.tseg2_max = 16,
 287	.sjw_max = 16,
 288	.brp_min = 1,
 289	.brp_max = 256,
 290	.brp_inc = 1,
 291};
 292
 293/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
 294static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
 295	.name = DRIVER_NAME,
 296	.tseg1_min = 1,
 297	.tseg1_max = 16,
 298	.tseg2_min = 1,
 299	.tseg2_max = 8,
 300	.sjw_max = 8,
 301	.brp_min = 1,
 302	.brp_max = 256,
 303	.brp_inc = 1,
 304};
 305
 306/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
 307static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
 308	.name = DRIVER_NAME,
 309	.tseg1_min = 1,
 310	.tseg1_max = 256,
 311	.tseg2_min = 1,
 312	.tseg2_max = 128,
 313	.sjw_max = 128,
 314	.brp_min = 1,
 315	.brp_max = 256,
 316	.brp_inc = 1,
 317};
 318
 319/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
 320static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
 321	.name = DRIVER_NAME,
 322	.tseg1_min = 1,
 323	.tseg1_max = 32,
 324	.tseg2_min = 1,
 325	.tseg2_max = 16,
 326	.sjw_max = 16,
 327	.brp_min = 1,
 328	.brp_max = 256,
 329	.brp_inc = 1,
 330};
 331
 332/* Transmission Delay Compensation constants for CANFD 1.0 */
 333static const struct can_tdc_const xcan_tdc_const_canfd = {
 334	.tdcv_min = 0,
 335	.tdcv_max = 0, /* Manual mode not supported. */
 336	.tdco_min = 0,
 337	.tdco_max = 32,
 338	.tdcf_min = 0, /* Filter window not supported */
 339	.tdcf_max = 0,
 340};
 341
 342/* Transmission Delay Compensation constants for CANFD 2.0 */
 343static const struct can_tdc_const xcan_tdc_const_canfd2 = {
 344	.tdcv_min = 0,
 345	.tdcv_max = 0, /* Manual mode not supported. */
 346	.tdco_min = 0,
 347	.tdco_max = 64,
 348	.tdcf_min = 0, /* Filter window not supported */
 349	.tdcf_max = 0,
 350};
 351
 352enum xcan_stats_type {
 353	XCAN_ECC_RX_2_BIT_ERRORS,
 354	XCAN_ECC_RX_1_BIT_ERRORS,
 355	XCAN_ECC_TXOL_2_BIT_ERRORS,
 356	XCAN_ECC_TXOL_1_BIT_ERRORS,
 357	XCAN_ECC_TXTL_2_BIT_ERRORS,
 358	XCAN_ECC_TXTL_1_BIT_ERRORS,
 359};
 360
 361static const char xcan_priv_flags_strings[][ETH_GSTRING_LEN] = {
 362	[XCAN_ECC_RX_2_BIT_ERRORS] = "ecc_rx_2_bit_errors",
 363	[XCAN_ECC_RX_1_BIT_ERRORS] = "ecc_rx_1_bit_errors",
 364	[XCAN_ECC_TXOL_2_BIT_ERRORS] = "ecc_txol_2_bit_errors",
 365	[XCAN_ECC_TXOL_1_BIT_ERRORS] = "ecc_txol_1_bit_errors",
 366	[XCAN_ECC_TXTL_2_BIT_ERRORS] = "ecc_txtl_2_bit_errors",
 367	[XCAN_ECC_TXTL_1_BIT_ERRORS] = "ecc_txtl_1_bit_errors",
 368};
 369
 370/**
 371 * xcan_write_reg_le - Write a value to the device register little endian
 372 * @priv:	Driver private data structure
 373 * @reg:	Register offset
 374 * @val:	Value to write at the Register offset
 375 *
 376 * Write data to the paricular CAN register
 377 */
 378static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 379			      u32 val)
 380{
 381	iowrite32(val, priv->reg_base + reg);
 382}
 383
 384/**
 385 * xcan_read_reg_le - Read a value from the device register little endian
 386 * @priv:	Driver private data structure
 387 * @reg:	Register offset
 388 *
 389 * Read data from the particular CAN register
 390 * Return: value read from the CAN register
 391 */
 392static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 393{
 394	return ioread32(priv->reg_base + reg);
 395}
 396
 397/**
 398 * xcan_write_reg_be - Write a value to the device register big endian
 399 * @priv:	Driver private data structure
 400 * @reg:	Register offset
 401 * @val:	Value to write at the Register offset
 402 *
 403 * Write data to the paricular CAN register
 404 */
 405static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 406			      u32 val)
 407{
 408	iowrite32be(val, priv->reg_base + reg);
 409}
 410
 411/**
 412 * xcan_read_reg_be - Read a value from the device register big endian
 413 * @priv:	Driver private data structure
 414 * @reg:	Register offset
 415 *
 416 * Read data from the particular CAN register
 417 * Return: value read from the CAN register
 418 */
 419static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 420{
 421	return ioread32be(priv->reg_base + reg);
 422}
 423
 424/**
 425 * xcan_rx_int_mask - Get the mask for the receive interrupt
 426 * @priv:	Driver private data structure
 427 *
 428 * Return: The receive interrupt mask used by the driver on this HW
 429 */
 430static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
 431{
 432	/* RXNEMP is better suited for our use case as it cannot be cleared
 433	 * while the FIFO is non-empty, but CAN FD HW does not have it
 434	 */
 435	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
 436		return XCAN_IXR_RXOK_MASK;
 437	else
 438		return XCAN_IXR_RXNEMP_MASK;
 439}
 440
 441/**
 442 * set_reset_mode - Resets the CAN device mode
 443 * @ndev:	Pointer to net_device structure
 444 *
 445 * This is the driver reset mode routine.The driver
 446 * enters into configuration mode.
 447 *
 448 * Return: 0 on success and failure value on error
 449 */
 450static int set_reset_mode(struct net_device *ndev)
 451{
 452	struct xcan_priv *priv = netdev_priv(ndev);
 453	unsigned long timeout;
 454
 455	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 456
 457	timeout = jiffies + XCAN_TIMEOUT;
 458	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 459		if (time_after(jiffies, timeout)) {
 460			netdev_warn(ndev, "timed out for config mode\n");
 461			return -ETIMEDOUT;
 462		}
 463		usleep_range(500, 10000);
 464	}
 465
 466	/* reset clears FIFOs */
 467	priv->tx_head = 0;
 468	priv->tx_tail = 0;
 469
 470	return 0;
 471}
 472
 473/**
 474 * xcan_set_bittiming - CAN set bit timing routine
 475 * @ndev:	Pointer to net_device structure
 476 *
 477 * This is the driver set bittiming  routine.
 478 * Return: 0 on success and failure value on error
 479 */
 480static int xcan_set_bittiming(struct net_device *ndev)
 481{
 482	struct xcan_priv *priv = netdev_priv(ndev);
 483	struct can_bittiming *bt = &priv->can.bittiming;
 484	struct can_bittiming *dbt = &priv->can.data_bittiming;
 485	u32 btr0, btr1;
 486	u32 is_config_mode;
 487
 488	/* Check whether Xilinx CAN is in configuration mode.
 489	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 490	 */
 491	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 492				XCAN_SR_CONFIG_MASK;
 493	if (!is_config_mode) {
 494		netdev_alert(ndev,
 495			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
 496		return -EPERM;
 497	}
 498
 499	/* Setting Baud Rate prescaler value in BRPR Register */
 500	btr0 = (bt->brp - 1);
 501
 502	/* Setting Time Segment 1 in BTR Register */
 503	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 504
 505	/* Setting Time Segment 2 in BTR Register */
 506	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 507
 508	/* Setting Synchronous jump width in BTR Register */
 509	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
 510
 511	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 512	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 513
 514	if (priv->devtype.cantype == XAXI_CANFD ||
 515	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 516		/* Setting Baud Rate prescaler value in F_BRPR Register */
 517		btr0 = dbt->brp - 1;
 518		if (can_tdc_is_enabled(&priv->can)) {
 519			if (priv->devtype.cantype == XAXI_CANFD)
 520				btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 521					XCAN_BRPR_TDC_ENABLE;
 522			else
 523				btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 524					XCAN_BRPR_TDC_ENABLE;
 525		}
 526
 527		/* Setting Time Segment 1 in BTR Register */
 528		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
 529
 530		/* Setting Time Segment 2 in BTR Register */
 531		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 532
 533		/* Setting Synchronous jump width in BTR Register */
 534		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
 535
 536		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
 537		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
 538	}
 539
 540	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 541		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
 542		   priv->read_reg(priv, XCAN_BTR_OFFSET));
 543
 544	return 0;
 545}
 546
 547/**
 548 * xcan_chip_start - This the drivers start routine
 549 * @ndev:	Pointer to net_device structure
 550 *
 551 * This is the drivers start routine.
 552 * Based on the State of the CAN device it puts
 553 * the CAN device into a proper mode.
 554 *
 555 * Return: 0 on success and failure value on error
 556 */
 557static int xcan_chip_start(struct net_device *ndev)
 558{
 559	struct xcan_priv *priv = netdev_priv(ndev);
 560	u32 reg_msr;
 561	int err;
 562	u32 ier;
 563
 564	/* Check if it is in reset mode */
 565	err = set_reset_mode(ndev);
 566	if (err < 0)
 567		return err;
 568
 569	err = xcan_set_bittiming(ndev);
 570	if (err < 0)
 571		return err;
 572
 573	/* Enable interrupts
 574	 *
 575	 * We enable the ERROR interrupt even with
 576	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
 577	 * dedicated interrupt for a state change to
 578	 * ERROR_WARNING/ERROR_PASSIVE.
 579	 */
 580	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
 581		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
 582		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 583		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
 584
 585	if (priv->ecc_enable)
 586		ier |= XCAN_IXR_ECC_MASK;
 587
 588	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
 589		ier |= XCAN_IXR_RXMNF_MASK;
 590
 591	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 592
 593	/* Check whether it is loopback mode or normal mode  */
 594	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
 595		reg_msr = XCAN_MSR_LBACK_MASK;
 596	else
 597		reg_msr = 0x0;
 598
 599	/* enable the first extended filter, if any, as cores with extended
 600	 * filtering default to non-receipt if all filters are disabled
 601	 */
 602	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
 603		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
 604
 605	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 606	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 607
 608	netdev_dbg(ndev, "status:#x%08x\n",
 609		   priv->read_reg(priv, XCAN_SR_OFFSET));
 610
 611	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 612	return 0;
 613}
 614
 615/**
 616 * xcan_do_set_mode - This sets the mode of the driver
 617 * @ndev:	Pointer to net_device structure
 618 * @mode:	Tells the mode of the driver
 619 *
 620 * This check the drivers state and calls the corresponding modes to set.
 621 *
 622 * Return: 0 on success and failure value on error
 623 */
 624static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 625{
 626	int ret;
 627
 628	switch (mode) {
 629	case CAN_MODE_START:
 630		ret = xcan_chip_start(ndev);
 631		if (ret < 0) {
 632			netdev_err(ndev, "xcan_chip_start failed!\n");
 633			return ret;
 634		}
 635		netif_wake_queue(ndev);
 636		break;
 637	default:
 638		ret = -EOPNOTSUPP;
 639		break;
 640	}
 641
 642	return ret;
 643}
 644
 645/**
 646 * xcan_write_frame - Write a frame to HW
 647 * @ndev:		Pointer to net_device structure
 648 * @skb:		sk_buff pointer that contains data to be Txed
 649 * @frame_offset:	Register offset to write the frame to
 650 */
 651static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
 652			     int frame_offset)
 653{
 654	u32 id, dlc, data[2] = {0, 0};
 655	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 656	u32 ramoff, dwindex = 0, i;
 657	struct xcan_priv *priv = netdev_priv(ndev);
 658
 659	/* Watch carefully on the bit sequence */
 660	if (cf->can_id & CAN_EFF_FLAG) {
 661		/* Extended CAN ID format */
 662		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 663			XCAN_IDR_ID2_MASK;
 664		id |= (((cf->can_id & CAN_EFF_MASK) >>
 665			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
 666			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 667
 668		/* The substibute remote TX request bit should be "1"
 669		 * for extended frames as in the Xilinx CAN datasheet
 670		 */
 671		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 672
 673		if (cf->can_id & CAN_RTR_FLAG)
 674			/* Extended frames remote TX request */
 675			id |= XCAN_IDR_RTR_MASK;
 676	} else {
 677		/* Standard CAN ID format */
 678		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 679			XCAN_IDR_ID1_MASK;
 680
 681		if (cf->can_id & CAN_RTR_FLAG)
 682			/* Standard frames remote TX request */
 683			id |= XCAN_IDR_SRR_MASK;
 684	}
 685
 686	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
 687	if (can_is_canfd_skb(skb)) {
 688		if (cf->flags & CANFD_BRS)
 689			dlc |= XCAN_DLCR_BRS_MASK;
 690		dlc |= XCAN_DLCR_EDL_MASK;
 691	}
 692
 693	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
 694	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
 695		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
 696	else
 697		can_put_echo_skb(skb, ndev, 0, 0);
 698
 699	priv->tx_head++;
 700
 701	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
 702	/* If the CAN frame is RTR frame this write triggers transmission
 703	 * (not on CAN FD)
 704	 */
 705	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
 706	if (priv->devtype.cantype == XAXI_CANFD ||
 707	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 708		for (i = 0; i < cf->len; i += 4) {
 709			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
 710					(dwindex * XCANFD_DW_BYTES);
 711			priv->write_reg(priv, ramoff,
 712					be32_to_cpup((__be32 *)(cf->data + i)));
 713			dwindex++;
 714		}
 715	} else {
 716		if (cf->len > 0)
 717			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 718		if (cf->len > 4)
 719			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 720
 721		if (!(cf->can_id & CAN_RTR_FLAG)) {
 722			priv->write_reg(priv,
 723					XCAN_FRAME_DW1_OFFSET(frame_offset),
 724					data[0]);
 725			/* If the CAN frame is Standard/Extended frame this
 726			 * write triggers transmission (not on CAN FD)
 727			 */
 728			priv->write_reg(priv,
 729					XCAN_FRAME_DW2_OFFSET(frame_offset),
 730					data[1]);
 731		}
 732	}
 733}
 734
 735/**
 736 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
 737 * @skb:	sk_buff pointer that contains data to be Txed
 738 * @ndev:	Pointer to net_device structure
 739 *
 740 * Return: 0 on success, -ENOSPC if FIFO is full.
 741 */
 742static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
 743{
 744	struct xcan_priv *priv = netdev_priv(ndev);
 745	unsigned long flags;
 746
 747	/* Check if the TX buffer is full */
 748	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 749			XCAN_SR_TXFLL_MASK))
 750		return -ENOSPC;
 751
 752	spin_lock_irqsave(&priv->tx_lock, flags);
 753
 754	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
 755
 756	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
 757	if (priv->tx_max > 1)
 758		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
 759
 760	/* Check if the TX buffer is full */
 761	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 762		netif_stop_queue(ndev);
 763
 764	spin_unlock_irqrestore(&priv->tx_lock, flags);
 765
 766	return 0;
 767}
 768
 769/**
 770 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
 771 * @skb:	sk_buff pointer that contains data to be Txed
 772 * @ndev:	Pointer to net_device structure
 773 *
 774 * Return: 0 on success, -ENOSPC if there is no space
 775 */
 776static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
 777{
 778	struct xcan_priv *priv = netdev_priv(ndev);
 779	unsigned long flags;
 780
 781	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
 782		     BIT(XCAN_TX_MAILBOX_IDX)))
 783		return -ENOSPC;
 784
 785	spin_lock_irqsave(&priv->tx_lock, flags);
 786
 787	xcan_write_frame(ndev, skb,
 788			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
 789
 790	/* Mark buffer as ready for transmit */
 791	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
 792
 793	netif_stop_queue(ndev);
 794
 795	spin_unlock_irqrestore(&priv->tx_lock, flags);
 796
 797	return 0;
 798}
 799
 800/**
 801 * xcan_start_xmit - Starts the transmission
 802 * @skb:	sk_buff pointer that contains data to be Txed
 803 * @ndev:	Pointer to net_device structure
 804 *
 805 * This function is invoked from upper layers to initiate transmission.
 806 *
 807 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
 808 */
 809static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 810{
 811	struct xcan_priv *priv = netdev_priv(ndev);
 812	int ret;
 813
 814	if (can_dev_dropped_skb(ndev, skb))
 815		return NETDEV_TX_OK;
 816
 817	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
 818		ret = xcan_start_xmit_mailbox(skb, ndev);
 819	else
 820		ret = xcan_start_xmit_fifo(skb, ndev);
 821
 822	if (ret < 0) {
 823		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
 824		netif_stop_queue(ndev);
 825		return NETDEV_TX_BUSY;
 826	}
 827
 828	return NETDEV_TX_OK;
 829}
 830
 831/**
 832 * xcan_rx -  Is called from CAN isr to complete the received
 833 *		frame  processing
 834 * @ndev:	Pointer to net_device structure
 835 * @frame_base:	Register offset to the frame to be read
 836 *
 837 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 838 * does minimal processing and invokes "netif_receive_skb" to complete further
 839 * processing.
 840 * Return: 1 on success and 0 on failure.
 841 */
 842static int xcan_rx(struct net_device *ndev, int frame_base)
 843{
 844	struct xcan_priv *priv = netdev_priv(ndev);
 845	struct net_device_stats *stats = &ndev->stats;
 846	struct can_frame *cf;
 847	struct sk_buff *skb;
 848	u32 id_xcan, dlc, data[2] = {0, 0};
 849
 850	skb = alloc_can_skb(ndev, &cf);
 851	if (unlikely(!skb)) {
 852		stats->rx_dropped++;
 853		return 0;
 854	}
 855
 856	/* Read a frame from Xilinx zynq CANPS */
 857	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 858	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
 859				   XCAN_DLCR_DLC_SHIFT;
 860
 861	/* Change Xilinx CAN data length format to socketCAN data format */
 862	cf->len = can_cc_dlc2len(dlc);
 863
 864	/* Change Xilinx CAN ID format to socketCAN ID format */
 865	if (id_xcan & XCAN_IDR_IDE_MASK) {
 866		/* The received frame is an Extended format frame */
 867		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 868		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 869				XCAN_IDR_ID2_SHIFT;
 870		cf->can_id |= CAN_EFF_FLAG;
 871		if (id_xcan & XCAN_IDR_RTR_MASK)
 872			cf->can_id |= CAN_RTR_FLAG;
 873	} else {
 874		/* The received frame is a standard format frame */
 875		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 876				XCAN_IDR_ID1_SHIFT;
 877		if (id_xcan & XCAN_IDR_SRR_MASK)
 878			cf->can_id |= CAN_RTR_FLAG;
 879	}
 880
 881	/* DW1/DW2 must always be read to remove message from RXFIFO */
 882	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
 883	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
 884
 885	if (!(cf->can_id & CAN_RTR_FLAG)) {
 886		/* Change Xilinx CAN data format to socketCAN data format */
 887		if (cf->len > 0)
 888			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 889		if (cf->len > 4)
 890			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 891
 892		stats->rx_bytes += cf->len;
 893	}
 894	stats->rx_packets++;
 895
 896	netif_receive_skb(skb);
 897
 898	return 1;
 899}
 900
 901/**
 902 * xcanfd_rx -  Is called from CAN isr to complete the received
 903 *		frame  processing
 904 * @ndev:	Pointer to net_device structure
 905 * @frame_base:	Register offset to the frame to be read
 906 *
 907 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 908 * does minimal processing and invokes "netif_receive_skb" to complete further
 909 * processing.
 910 * Return: 1 on success and 0 on failure.
 911 */
 912static int xcanfd_rx(struct net_device *ndev, int frame_base)
 913{
 914	struct xcan_priv *priv = netdev_priv(ndev);
 915	struct net_device_stats *stats = &ndev->stats;
 916	struct canfd_frame *cf;
 917	struct sk_buff *skb;
 918	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
 919
 920	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 921	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
 922	if (dlc & XCAN_DLCR_EDL_MASK)
 923		skb = alloc_canfd_skb(ndev, &cf);
 924	else
 925		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
 926
 927	if (unlikely(!skb)) {
 928		stats->rx_dropped++;
 929		return 0;
 930	}
 931
 932	/* Change Xilinx CANFD data length format to socketCAN data
 933	 * format
 934	 */
 935	if (dlc & XCAN_DLCR_EDL_MASK)
 936		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 937				  XCAN_DLCR_DLC_SHIFT);
 938	else
 939		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 940					  XCAN_DLCR_DLC_SHIFT);
 941
 942	/* Change Xilinx CAN ID format to socketCAN ID format */
 943	if (id_xcan & XCAN_IDR_IDE_MASK) {
 944		/* The received frame is an Extended format frame */
 945		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 946		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 947				XCAN_IDR_ID2_SHIFT;
 948		cf->can_id |= CAN_EFF_FLAG;
 949		if (id_xcan & XCAN_IDR_RTR_MASK)
 950			cf->can_id |= CAN_RTR_FLAG;
 951	} else {
 952		/* The received frame is a standard format frame */
 953		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 954				XCAN_IDR_ID1_SHIFT;
 955		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
 956					XCAN_IDR_SRR_MASK))
 957			cf->can_id |= CAN_RTR_FLAG;
 958	}
 959
 960	/* Check the frame received is FD or not*/
 961	if (dlc & XCAN_DLCR_EDL_MASK) {
 962		for (i = 0; i < cf->len; i += 4) {
 963			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
 964					(dwindex * XCANFD_DW_BYTES);
 965			data[0] = priv->read_reg(priv, dw_offset);
 966			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 967			dwindex++;
 968		}
 969	} else {
 970		for (i = 0; i < cf->len; i += 4) {
 971			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
 972			data[0] = priv->read_reg(priv, dw_offset + i);
 973			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 974		}
 975	}
 976
 977	if (!(cf->can_id & CAN_RTR_FLAG))
 978		stats->rx_bytes += cf->len;
 979	stats->rx_packets++;
 980
 981	netif_receive_skb(skb);
 982
 983	return 1;
 984}
 985
 986/**
 987 * xcan_current_error_state - Get current error state from HW
 988 * @ndev:	Pointer to net_device structure
 989 *
 990 * Checks the current CAN error state from the HW. Note that this
 991 * only checks for ERROR_PASSIVE and ERROR_WARNING.
 992 *
 993 * Return:
 994 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
 995 * otherwise.
 996 */
 997static enum can_state xcan_current_error_state(struct net_device *ndev)
 998{
 999	struct xcan_priv *priv = netdev_priv(ndev);
1000	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
1001
1002	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
1003		return CAN_STATE_ERROR_PASSIVE;
1004	else if (status & XCAN_SR_ERRWRN_MASK)
1005		return CAN_STATE_ERROR_WARNING;
1006	else
1007		return CAN_STATE_ERROR_ACTIVE;
1008}
1009
1010/**
1011 * xcan_set_error_state - Set new CAN error state
1012 * @ndev:	Pointer to net_device structure
1013 * @new_state:	The new CAN state to be set
1014 * @cf:		Error frame to be populated or NULL
1015 *
1016 * Set new CAN error state for the device, updating statistics and
1017 * populating the error frame if given.
1018 */
1019static void xcan_set_error_state(struct net_device *ndev,
1020				 enum can_state new_state,
1021				 struct can_frame *cf)
1022{
1023	struct xcan_priv *priv = netdev_priv(ndev);
1024	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
1025	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
1026	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
1027	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
1028	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
1029
1030	/* non-ERROR states are handled elsewhere */
1031	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
1032		return;
1033
1034	can_change_state(ndev, cf, tx_state, rx_state);
1035
1036	if (cf) {
1037		cf->can_id |= CAN_ERR_CNT;
1038		cf->data[6] = txerr;
1039		cf->data[7] = rxerr;
1040	}
1041}
1042
1043/**
1044 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
1045 * @ndev:	Pointer to net_device structure
1046 *
1047 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
1048 * the performed RX/TX has caused it to drop to a lesser state and set
1049 * the interface state accordingly.
1050 */
1051static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
1052{
1053	struct xcan_priv *priv = netdev_priv(ndev);
1054	enum can_state old_state = priv->can.state;
1055	enum can_state new_state;
1056
1057	/* changing error state due to successful frame RX/TX can only
1058	 * occur from these states
1059	 */
1060	if (old_state != CAN_STATE_ERROR_WARNING &&
1061	    old_state != CAN_STATE_ERROR_PASSIVE)
1062		return;
1063
1064	new_state = xcan_current_error_state(ndev);
1065
1066	if (new_state != old_state) {
1067		struct sk_buff *skb;
1068		struct can_frame *cf;
1069
1070		skb = alloc_can_err_skb(ndev, &cf);
1071
1072		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1073
1074		if (skb)
1075			netif_rx(skb);
1076	}
1077}
1078
1079/**
1080 * xcan_err_interrupt - error frame Isr
1081 * @ndev:	net_device pointer
1082 * @isr:	interrupt status register value
1083 *
1084 * This is the CAN error interrupt and it will
1085 * check the type of error and forward the error
1086 * frame to upper layers.
1087 */
1088static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1089{
1090	struct xcan_priv *priv = netdev_priv(ndev);
1091	struct net_device_stats *stats = &ndev->stats;
1092	struct can_frame cf = { };
1093	u32 err_status;
1094
1095	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1096	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1097
1098	if (isr & XCAN_IXR_BSOFF_MASK) {
1099		priv->can.state = CAN_STATE_BUS_OFF;
1100		priv->can.can_stats.bus_off++;
1101		/* Leave device in Config Mode in bus-off state */
1102		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1103		can_bus_off(ndev);
1104		cf.can_id |= CAN_ERR_BUSOFF;
1105	} else {
1106		enum can_state new_state = xcan_current_error_state(ndev);
1107
1108		if (new_state != priv->can.state)
1109			xcan_set_error_state(ndev, new_state, &cf);
1110	}
1111
1112	/* Check for Arbitration lost interrupt */
1113	if (isr & XCAN_IXR_ARBLST_MASK) {
1114		priv->can.can_stats.arbitration_lost++;
1115		cf.can_id |= CAN_ERR_LOSTARB;
1116		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1117	}
1118
1119	/* Check for RX FIFO Overflow interrupt */
1120	if (isr & XCAN_IXR_RXOFLW_MASK) {
1121		stats->rx_over_errors++;
1122		stats->rx_errors++;
1123		cf.can_id |= CAN_ERR_CRTL;
1124		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1125	}
1126
1127	/* Check for RX Match Not Finished interrupt */
1128	if (isr & XCAN_IXR_RXMNF_MASK) {
1129		stats->rx_dropped++;
1130		stats->rx_errors++;
1131		netdev_err(ndev, "RX match not finished, frame discarded\n");
1132		cf.can_id |= CAN_ERR_CRTL;
1133		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1134	}
1135
1136	/* Check for error interrupt */
1137	if (isr & XCAN_IXR_ERROR_MASK) {
1138		bool berr_reporting = false;
1139
1140		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1141			berr_reporting = true;
1142			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1143		}
1144
1145		/* Check for Ack error interrupt */
1146		if (err_status & XCAN_ESR_ACKER_MASK) {
1147			stats->tx_errors++;
1148			if (berr_reporting) {
1149				cf.can_id |= CAN_ERR_ACK;
1150				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1151			}
1152		}
1153
1154		/* Check for Bit error interrupt */
1155		if (err_status & XCAN_ESR_BERR_MASK) {
1156			stats->tx_errors++;
1157			if (berr_reporting) {
1158				cf.can_id |= CAN_ERR_PROT;
1159				cf.data[2] = CAN_ERR_PROT_BIT;
1160			}
1161		}
1162
1163		/* Check for Stuff error interrupt */
1164		if (err_status & XCAN_ESR_STER_MASK) {
1165			stats->rx_errors++;
1166			if (berr_reporting) {
1167				cf.can_id |= CAN_ERR_PROT;
1168				cf.data[2] = CAN_ERR_PROT_STUFF;
1169			}
1170		}
1171
1172		/* Check for Form error interrupt */
1173		if (err_status & XCAN_ESR_FMER_MASK) {
1174			stats->rx_errors++;
1175			if (berr_reporting) {
1176				cf.can_id |= CAN_ERR_PROT;
1177				cf.data[2] = CAN_ERR_PROT_FORM;
1178			}
1179		}
1180
1181		/* Check for CRC error interrupt */
1182		if (err_status & XCAN_ESR_CRCER_MASK) {
1183			stats->rx_errors++;
1184			if (berr_reporting) {
1185				cf.can_id |= CAN_ERR_PROT;
1186				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1187			}
1188		}
1189		priv->can.can_stats.bus_error++;
1190	}
1191
1192	if (priv->ecc_enable && isr & XCAN_IXR_ECC_MASK) {
1193		u32 reg_rx_ecc, reg_txol_ecc, reg_txtl_ecc;
1194
1195		reg_rx_ecc = priv->read_reg(priv, XCAN_RXFIFO_ECC_OFFSET);
1196		reg_txol_ecc = priv->read_reg(priv, XCAN_TXOLFIFO_ECC_OFFSET);
1197		reg_txtl_ecc = priv->read_reg(priv, XCAN_TXTLFIFO_ECC_OFFSET);
1198
1199		/* The counter reaches its maximum at 0xffff and does not overflow.
1200		 * Accept the small race window between reading and resetting ECC counters.
1201		 */
1202		priv->write_reg(priv, XCAN_ECC_CFG_OFFSET, XCAN_ECC_CFG_REECRX_MASK |
1203				XCAN_ECC_CFG_REECTXOL_MASK | XCAN_ECC_CFG_REECTXTL_MASK);
1204
1205		u64_stats_update_begin(&priv->syncp);
1206
1207		if (isr & XCAN_IXR_E2BERX_MASK) {
1208			u64_stats_add(&priv->ecc_rx_2_bit_errors,
1209				      FIELD_GET(XCAN_ECC_2BIT_CNT_MASK, reg_rx_ecc));
1210		}
1211
1212		if (isr & XCAN_IXR_E1BERX_MASK) {
1213			u64_stats_add(&priv->ecc_rx_1_bit_errors,
1214				      FIELD_GET(XCAN_ECC_1BIT_CNT_MASK, reg_rx_ecc));
1215		}
1216
1217		if (isr & XCAN_IXR_E2BETXOL_MASK) {
1218			u64_stats_add(&priv->ecc_txol_2_bit_errors,
1219				      FIELD_GET(XCAN_ECC_2BIT_CNT_MASK, reg_txol_ecc));
1220		}
1221
1222		if (isr & XCAN_IXR_E1BETXOL_MASK) {
1223			u64_stats_add(&priv->ecc_txol_1_bit_errors,
1224				      FIELD_GET(XCAN_ECC_1BIT_CNT_MASK, reg_txol_ecc));
1225		}
1226
1227		if (isr & XCAN_IXR_E2BETXTL_MASK) {
1228			u64_stats_add(&priv->ecc_txtl_2_bit_errors,
1229				      FIELD_GET(XCAN_ECC_2BIT_CNT_MASK, reg_txtl_ecc));
1230		}
1231
1232		if (isr & XCAN_IXR_E1BETXTL_MASK) {
1233			u64_stats_add(&priv->ecc_txtl_1_bit_errors,
1234				      FIELD_GET(XCAN_ECC_1BIT_CNT_MASK, reg_txtl_ecc));
1235		}
1236
1237		u64_stats_update_end(&priv->syncp);
1238	}
1239
1240	if (cf.can_id) {
1241		struct can_frame *skb_cf;
1242		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1243
1244		if (skb) {
1245			skb_cf->can_id |= cf.can_id;
1246			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1247			netif_rx(skb);
1248		}
1249	}
1250
1251	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1252		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1253}
1254
1255/**
1256 * xcan_state_interrupt - It will check the state of the CAN device
1257 * @ndev:	net_device pointer
1258 * @isr:	interrupt status register value
1259 *
1260 * This will checks the state of the CAN device
1261 * and puts the device into appropriate state.
1262 */
1263static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1264{
1265	struct xcan_priv *priv = netdev_priv(ndev);
1266
1267	/* Check for Sleep interrupt if set put CAN device in sleep state */
1268	if (isr & XCAN_IXR_SLP_MASK)
1269		priv->can.state = CAN_STATE_SLEEPING;
1270
1271	/* Check for Wake up interrupt if set put CAN device in Active state */
1272	if (isr & XCAN_IXR_WKUP_MASK)
1273		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1274}
1275
1276/**
1277 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1278 * @priv:	Driver private data structure
1279 *
1280 * Return: Register offset of the next frame in RX FIFO.
1281 */
1282static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1283{
1284	int offset;
1285
1286	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1287		u32 fsr, mask;
1288
1289		/* clear RXOK before the is-empty check so that any newly
1290		 * received frame will reassert it without a race
1291		 */
1292		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1293
1294		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1295
1296		/* check if RX FIFO is empty */
1297		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1298			mask = XCAN_2_FSR_FL_MASK;
1299		else
1300			mask = XCAN_FSR_FL_MASK;
1301
1302		if (!(fsr & mask))
1303			return -ENOENT;
1304
1305		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1306			offset =
1307			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1308		else
1309			offset =
1310			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1311
1312	} else {
1313		/* check if RX FIFO is empty */
1314		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1315		      XCAN_IXR_RXNEMP_MASK))
1316			return -ENOENT;
1317
1318		/* frames are read from a static offset */
1319		offset = XCAN_RXFIFO_OFFSET;
1320	}
1321
1322	return offset;
1323}
1324
1325/**
1326 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1327 * @napi:	napi structure pointer
1328 * @quota:	Max number of rx packets to be processed.
1329 *
1330 * This is the poll routine for rx part.
1331 * It will process the packets maximux quota value.
1332 *
1333 * Return: number of packets received
1334 */
1335static int xcan_rx_poll(struct napi_struct *napi, int quota)
1336{
1337	struct net_device *ndev = napi->dev;
1338	struct xcan_priv *priv = netdev_priv(ndev);
1339	u32 ier;
1340	int work_done = 0;
1341	int frame_offset;
1342
1343	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1344	       (work_done < quota)) {
1345		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1346			work_done += xcanfd_rx(ndev, frame_offset);
1347		else
1348			work_done += xcan_rx(ndev, frame_offset);
1349
1350		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1351			/* increment read index */
1352			priv->write_reg(priv, XCAN_FSR_OFFSET,
1353					XCAN_FSR_IRI_MASK);
1354		else
1355			/* clear rx-not-empty (will actually clear only if
1356			 * empty)
1357			 */
1358			priv->write_reg(priv, XCAN_ICR_OFFSET,
1359					XCAN_IXR_RXNEMP_MASK);
1360	}
1361
1362	if (work_done)
1363		xcan_update_error_state_after_rxtx(ndev);
1364
1365	if (work_done < quota) {
1366		if (napi_complete_done(napi, work_done)) {
1367			ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1368			ier |= xcan_rx_int_mask(priv);
1369			priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1370		}
1371	}
1372	return work_done;
1373}
1374
1375/**
1376 * xcan_tx_interrupt - Tx Done Isr
1377 * @ndev:	net_device pointer
1378 * @isr:	Interrupt status register value
1379 */
1380static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1381{
1382	struct xcan_priv *priv = netdev_priv(ndev);
1383	struct net_device_stats *stats = &ndev->stats;
1384	unsigned int frames_in_fifo;
1385	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1386	unsigned long flags;
1387	int retries = 0;
1388
1389	/* Synchronize with xmit as we need to know the exact number
1390	 * of frames in the FIFO to stay in sync due to the TXFEMP
1391	 * handling.
1392	 * This also prevents a race between netif_wake_queue() and
1393	 * netif_stop_queue().
1394	 */
1395	spin_lock_irqsave(&priv->tx_lock, flags);
1396
1397	frames_in_fifo = priv->tx_head - priv->tx_tail;
1398
1399	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1400		/* clear TXOK anyway to avoid getting back here */
1401		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1402		spin_unlock_irqrestore(&priv->tx_lock, flags);
1403		return;
1404	}
1405
1406	/* Check if 2 frames were sent (TXOK only means that at least 1
1407	 * frame was sent).
1408	 */
1409	if (frames_in_fifo > 1) {
1410		WARN_ON(frames_in_fifo > priv->tx_max);
1411
1412		/* Synchronize TXOK and isr so that after the loop:
1413		 * (1) isr variable is up-to-date at least up to TXOK clear
1414		 *     time. This avoids us clearing a TXOK of a second frame
1415		 *     but not noticing that the FIFO is now empty and thus
1416		 *     marking only a single frame as sent.
1417		 * (2) No TXOK is left. Having one could mean leaving a
1418		 *     stray TXOK as we might process the associated frame
1419		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1420		 *     clear to satisfy (1).
1421		 */
1422		while ((isr & XCAN_IXR_TXOK_MASK) &&
1423		       !WARN_ON(++retries == 100)) {
1424			priv->write_reg(priv, XCAN_ICR_OFFSET,
1425					XCAN_IXR_TXOK_MASK);
1426			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1427		}
1428
1429		if (isr & XCAN_IXR_TXFEMP_MASK) {
1430			/* nothing in FIFO anymore */
1431			frames_sent = frames_in_fifo;
1432		}
1433	} else {
1434		/* single frame in fifo, just clear TXOK */
1435		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1436	}
1437
1438	while (frames_sent--) {
1439		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1440						    priv->tx_max, NULL);
1441		priv->tx_tail++;
1442		stats->tx_packets++;
1443	}
1444
1445	netif_wake_queue(ndev);
1446
1447	spin_unlock_irqrestore(&priv->tx_lock, flags);
1448
1449	xcan_update_error_state_after_rxtx(ndev);
1450}
1451
1452/**
1453 * xcan_interrupt - CAN Isr
1454 * @irq:	irq number
1455 * @dev_id:	device id pointer
1456 *
1457 * This is the xilinx CAN Isr. It checks for the type of interrupt
1458 * and invokes the corresponding ISR.
1459 *
1460 * Return:
1461 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1462 */
1463static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1464{
1465	struct net_device *ndev = (struct net_device *)dev_id;
1466	struct xcan_priv *priv = netdev_priv(ndev);
1467	u32 isr_errors, mask;
1468	u32 isr, ier;
 
1469	u32 rx_int_mask = xcan_rx_int_mask(priv);
1470
1471	/* Get the interrupt status from Xilinx CAN */
1472	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1473	if (!isr)
1474		return IRQ_NONE;
1475
1476	/* Check for the type of interrupt and Processing it */
1477	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1478		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1479				XCAN_IXR_WKUP_MASK));
1480		xcan_state_interrupt(ndev, isr);
1481	}
1482
1483	/* Check for Tx interrupt and Processing it */
1484	if (isr & XCAN_IXR_TXOK_MASK)
1485		xcan_tx_interrupt(ndev, isr);
1486
1487	mask = XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1488		XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1489		XCAN_IXR_RXMNF_MASK;
1490
1491	if (priv->ecc_enable)
1492		mask |= XCAN_IXR_ECC_MASK;
1493
1494	/* Check for the type of error interrupt and Processing it */
1495	isr_errors = isr & mask;
 
 
1496	if (isr_errors) {
1497		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1498		xcan_err_interrupt(ndev, isr);
1499	}
1500
1501	/* Check for the type of receive interrupt and Processing it */
1502	if (isr & rx_int_mask) {
1503		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1504		ier &= ~rx_int_mask;
1505		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1506		napi_schedule(&priv->napi);
1507	}
1508	return IRQ_HANDLED;
1509}
1510
1511/**
1512 * xcan_chip_stop - Driver stop routine
1513 * @ndev:	Pointer to net_device structure
1514 *
1515 * This is the drivers stop routine. It will disable the
1516 * interrupts and put the device into configuration mode.
1517 */
1518static void xcan_chip_stop(struct net_device *ndev)
1519{
1520	struct xcan_priv *priv = netdev_priv(ndev);
1521	int ret;
1522
1523	/* Disable interrupts and leave the can in configuration mode */
1524	ret = set_reset_mode(ndev);
1525	if (ret < 0)
1526		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1527
1528	priv->can.state = CAN_STATE_STOPPED;
1529}
1530
1531/**
1532 * xcan_open - Driver open routine
1533 * @ndev:	Pointer to net_device structure
1534 *
1535 * This is the driver open routine.
1536 * Return: 0 on success and failure value on error
1537 */
1538static int xcan_open(struct net_device *ndev)
1539{
1540	struct xcan_priv *priv = netdev_priv(ndev);
1541	int ret;
1542
1543	ret = phy_power_on(priv->transceiver);
1544	if (ret)
1545		return ret;
1546
1547	ret = pm_runtime_get_sync(priv->dev);
1548	if (ret < 0) {
1549		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1550			   __func__, ret);
1551		goto err;
1552	}
1553
1554	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1555			  ndev->name, ndev);
1556	if (ret < 0) {
1557		netdev_err(ndev, "irq allocation for CAN failed\n");
1558		goto err;
1559	}
1560
1561	/* Set chip into reset mode */
1562	ret = set_reset_mode(ndev);
1563	if (ret < 0) {
1564		netdev_err(ndev, "mode resetting failed!\n");
1565		goto err_irq;
1566	}
1567
1568	/* Common open */
1569	ret = open_candev(ndev);
1570	if (ret)
1571		goto err_irq;
1572
1573	ret = xcan_chip_start(ndev);
1574	if (ret < 0) {
1575		netdev_err(ndev, "xcan_chip_start failed!\n");
1576		goto err_candev;
1577	}
1578
1579	napi_enable(&priv->napi);
1580	netif_start_queue(ndev);
1581
1582	return 0;
1583
1584err_candev:
1585	close_candev(ndev);
1586err_irq:
1587	free_irq(ndev->irq, ndev);
1588err:
1589	pm_runtime_put(priv->dev);
1590	phy_power_off(priv->transceiver);
1591
1592	return ret;
1593}
1594
1595/**
1596 * xcan_close - Driver close routine
1597 * @ndev:	Pointer to net_device structure
1598 *
1599 * Return: 0 always
1600 */
1601static int xcan_close(struct net_device *ndev)
1602{
1603	struct xcan_priv *priv = netdev_priv(ndev);
1604
1605	netif_stop_queue(ndev);
1606	napi_disable(&priv->napi);
1607	xcan_chip_stop(ndev);
1608	free_irq(ndev->irq, ndev);
1609	close_candev(ndev);
1610
1611	pm_runtime_put(priv->dev);
1612	phy_power_off(priv->transceiver);
1613
1614	return 0;
1615}
1616
1617/**
1618 * xcan_get_berr_counter - error counter routine
1619 * @ndev:	Pointer to net_device structure
1620 * @bec:	Pointer to can_berr_counter structure
1621 *
1622 * This is the driver error counter routine.
1623 * Return: 0 on success and failure value on error
1624 */
1625static int xcan_get_berr_counter(const struct net_device *ndev,
1626				 struct can_berr_counter *bec)
1627{
1628	struct xcan_priv *priv = netdev_priv(ndev);
1629	int ret;
1630
1631	ret = pm_runtime_get_sync(priv->dev);
1632	if (ret < 0) {
1633		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1634			   __func__, ret);
1635		pm_runtime_put(priv->dev);
1636		return ret;
1637	}
1638
1639	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1640	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1641			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1642
1643	pm_runtime_put(priv->dev);
1644
1645	return 0;
1646}
1647
1648/**
1649 * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1650 * @ndev:	Pointer to net_device structure
1651 * @tdcv:	Pointer to TDCV value
1652 *
1653 * Return: 0 on success
1654 */
1655static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1656{
1657	struct xcan_priv *priv = netdev_priv(ndev);
1658
1659	*tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1660
1661	return 0;
1662}
1663
1664static void xcan_get_strings(struct net_device *ndev, u32 stringset, u8 *buf)
1665{
1666	switch (stringset) {
1667	case ETH_SS_STATS:
1668		memcpy(buf, &xcan_priv_flags_strings,
1669		       sizeof(xcan_priv_flags_strings));
1670	}
1671}
1672
1673static int xcan_get_sset_count(struct net_device *netdev, int sset)
1674{
1675	switch (sset) {
1676	case ETH_SS_STATS:
1677		return ARRAY_SIZE(xcan_priv_flags_strings);
1678	default:
1679		return -EOPNOTSUPP;
1680	}
1681}
1682
1683static void xcan_get_ethtool_stats(struct net_device *ndev,
1684				   struct ethtool_stats *stats, u64 *data)
1685{
1686	struct xcan_priv *priv = netdev_priv(ndev);
1687	unsigned int start;
1688
1689	do {
1690		start = u64_stats_fetch_begin(&priv->syncp);
1691
1692		data[XCAN_ECC_RX_2_BIT_ERRORS] = u64_stats_read(&priv->ecc_rx_2_bit_errors);
1693		data[XCAN_ECC_RX_1_BIT_ERRORS] = u64_stats_read(&priv->ecc_rx_1_bit_errors);
1694		data[XCAN_ECC_TXOL_2_BIT_ERRORS] = u64_stats_read(&priv->ecc_txol_2_bit_errors);
1695		data[XCAN_ECC_TXOL_1_BIT_ERRORS] = u64_stats_read(&priv->ecc_txol_1_bit_errors);
1696		data[XCAN_ECC_TXTL_2_BIT_ERRORS] = u64_stats_read(&priv->ecc_txtl_2_bit_errors);
1697		data[XCAN_ECC_TXTL_1_BIT_ERRORS] = u64_stats_read(&priv->ecc_txtl_1_bit_errors);
1698	} while (u64_stats_fetch_retry(&priv->syncp, start));
1699}
1700
1701static const struct net_device_ops xcan_netdev_ops = {
1702	.ndo_open	= xcan_open,
1703	.ndo_stop	= xcan_close,
1704	.ndo_start_xmit	= xcan_start_xmit,
1705	.ndo_change_mtu	= can_change_mtu,
1706};
1707
1708static const struct ethtool_ops xcan_ethtool_ops = {
1709	.get_ts_info = ethtool_op_get_ts_info,
1710	.get_strings = xcan_get_strings,
1711	.get_sset_count = xcan_get_sset_count,
1712	.get_ethtool_stats = xcan_get_ethtool_stats,
1713};
1714
1715/**
1716 * xcan_suspend - Suspend method for the driver
1717 * @dev:	Address of the device structure
1718 *
1719 * Put the driver into low power mode.
1720 * Return: 0 on success and failure value on error
1721 */
1722static int __maybe_unused xcan_suspend(struct device *dev)
1723{
1724	struct net_device *ndev = dev_get_drvdata(dev);
1725
1726	if (netif_running(ndev)) {
1727		netif_stop_queue(ndev);
1728		netif_device_detach(ndev);
1729		xcan_chip_stop(ndev);
1730	}
1731
1732	return pm_runtime_force_suspend(dev);
1733}
1734
1735/**
1736 * xcan_resume - Resume from suspend
1737 * @dev:	Address of the device structure
1738 *
1739 * Resume operation after suspend.
1740 * Return: 0 on success and failure value on error
1741 */
1742static int __maybe_unused xcan_resume(struct device *dev)
1743{
1744	struct net_device *ndev = dev_get_drvdata(dev);
1745	int ret;
1746
1747	ret = pm_runtime_force_resume(dev);
1748	if (ret) {
1749		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1750		return ret;
1751	}
1752
1753	if (netif_running(ndev)) {
1754		ret = xcan_chip_start(ndev);
1755		if (ret) {
1756			dev_err(dev, "xcan_chip_start failed on resume\n");
1757			return ret;
1758		}
1759
1760		netif_device_attach(ndev);
1761		netif_start_queue(ndev);
1762	}
1763
1764	return 0;
1765}
1766
1767/**
1768 * xcan_runtime_suspend - Runtime suspend method for the driver
1769 * @dev:	Address of the device structure
1770 *
1771 * Put the driver into low power mode.
1772 * Return: 0 always
1773 */
1774static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1775{
1776	struct net_device *ndev = dev_get_drvdata(dev);
1777	struct xcan_priv *priv = netdev_priv(ndev);
1778
1779	clk_disable_unprepare(priv->bus_clk);
1780	clk_disable_unprepare(priv->can_clk);
1781
1782	return 0;
1783}
1784
1785/**
1786 * xcan_runtime_resume - Runtime resume from suspend
1787 * @dev:	Address of the device structure
1788 *
1789 * Resume operation after suspend.
1790 * Return: 0 on success and failure value on error
1791 */
1792static int __maybe_unused xcan_runtime_resume(struct device *dev)
1793{
1794	struct net_device *ndev = dev_get_drvdata(dev);
1795	struct xcan_priv *priv = netdev_priv(ndev);
1796	int ret;
1797
1798	ret = clk_prepare_enable(priv->bus_clk);
1799	if (ret) {
1800		dev_err(dev, "Cannot enable clock.\n");
1801		return ret;
1802	}
1803	ret = clk_prepare_enable(priv->can_clk);
1804	if (ret) {
1805		dev_err(dev, "Cannot enable clock.\n");
1806		clk_disable_unprepare(priv->bus_clk);
1807		return ret;
1808	}
1809
1810	return 0;
1811}
1812
1813static const struct dev_pm_ops xcan_dev_pm_ops = {
1814	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1815	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1816};
1817
1818static const struct xcan_devtype_data xcan_zynq_data = {
1819	.cantype = XZYNQ_CANPS,
1820	.flags = XCAN_FLAG_TXFEMP,
1821	.bittiming_const = &xcan_bittiming_const,
1822	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1823	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1824	.bus_clk_name = "pclk",
1825};
1826
1827static const struct xcan_devtype_data xcan_axi_data = {
1828	.cantype = XAXI_CAN,
1829	.bittiming_const = &xcan_bittiming_const,
1830	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1831	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1832	.bus_clk_name = "s_axi_aclk",
1833};
1834
1835static const struct xcan_devtype_data xcan_canfd_data = {
1836	.cantype = XAXI_CANFD,
1837	.flags = XCAN_FLAG_EXT_FILTERS |
1838		 XCAN_FLAG_RXMNF |
1839		 XCAN_FLAG_TX_MAILBOXES |
1840		 XCAN_FLAG_RX_FIFO_MULTI,
1841	.bittiming_const = &xcan_bittiming_const_canfd,
1842	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1843	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1844	.bus_clk_name = "s_axi_aclk",
1845};
1846
1847static const struct xcan_devtype_data xcan_canfd2_data = {
1848	.cantype = XAXI_CANFD_2_0,
1849	.flags = XCAN_FLAG_EXT_FILTERS |
1850		 XCAN_FLAG_RXMNF |
1851		 XCAN_FLAG_TX_MAILBOXES |
1852		 XCAN_FLAG_CANFD_2 |
1853		 XCAN_FLAG_RX_FIFO_MULTI,
1854	.bittiming_const = &xcan_bittiming_const_canfd2,
1855	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1856	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1857	.bus_clk_name = "s_axi_aclk",
1858};
1859
1860/* Match table for OF platform binding */
1861static const struct of_device_id xcan_of_match[] = {
1862	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1863	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1864	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1865	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1866	{ /* end of list */ },
1867};
1868MODULE_DEVICE_TABLE(of, xcan_of_match);
1869
1870/**
1871 * xcan_probe - Platform registration call
1872 * @pdev:	Handle to the platform device structure
1873 *
1874 * This function does all the memory allocation and registration for the CAN
1875 * device.
1876 *
1877 * Return: 0 on success and failure value on error
1878 */
1879static int xcan_probe(struct platform_device *pdev)
1880{
1881	struct net_device *ndev;
1882	struct xcan_priv *priv;
1883	struct phy *transceiver;
1884	const struct xcan_devtype_data *devtype;
1885	void __iomem *addr;
1886	int ret;
1887	int rx_max, tx_max;
1888	u32 hw_tx_max = 0, hw_rx_max = 0;
1889	const char *hw_tx_max_property;
1890
1891	/* Get the virtual base address for the device */
1892	addr = devm_platform_ioremap_resource(pdev, 0);
1893	if (IS_ERR(addr)) {
1894		ret = PTR_ERR(addr);
1895		goto err;
1896	}
1897
1898	devtype = device_get_match_data(&pdev->dev);
 
 
1899
1900	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1901			     "tx-mailbox-count" : "tx-fifo-depth";
1902
1903	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1904				   &hw_tx_max);
1905	if (ret < 0) {
1906		dev_err(&pdev->dev, "missing %s property\n",
1907			hw_tx_max_property);
1908		goto err;
1909	}
1910
1911	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1912				   &hw_rx_max);
1913	if (ret < 0) {
1914		dev_err(&pdev->dev,
1915			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1916		goto err;
1917	}
1918
1919	/* With TX FIFO:
1920	 *
1921	 * There is no way to directly figure out how many frames have been
1922	 * sent when the TXOK interrupt is processed. If TXFEMP
1923	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1924	 * to determine if 1 or 2 frames have been sent.
1925	 * Theoretically we should be able to use TXFWMEMP to determine up
1926	 * to 3 frames, but it seems that after putting a second frame in the
1927	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1928	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1929	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1930	 * completely synchronized with the rest of the bits?
1931	 *
1932	 * With TX mailboxes:
1933	 *
1934	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1935	 * we submit frames one at a time.
1936	 */
1937	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1938	    (devtype->flags & XCAN_FLAG_TXFEMP))
1939		tx_max = min(hw_tx_max, 2U);
1940	else
1941		tx_max = 1;
1942
1943	rx_max = hw_rx_max;
1944
1945	/* Create a CAN device instance */
1946	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1947	if (!ndev)
1948		return -ENOMEM;
1949
1950	priv = netdev_priv(ndev);
1951	priv->ecc_enable = of_property_read_bool(pdev->dev.of_node, "xlnx,has-ecc");
1952	priv->dev = &pdev->dev;
1953	priv->can.bittiming_const = devtype->bittiming_const;
1954	priv->can.do_set_mode = xcan_do_set_mode;
1955	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1956	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1957					CAN_CTRLMODE_BERR_REPORTING;
1958	priv->rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1959	if (IS_ERR(priv->rstc)) {
1960		dev_err(&pdev->dev, "Cannot get CAN reset.\n");
1961		ret = PTR_ERR(priv->rstc);
1962		goto err_free;
1963	}
1964
1965	ret = reset_control_reset(priv->rstc);
1966	if (ret)
1967		goto err_free;
1968
1969	if (devtype->cantype == XAXI_CANFD) {
1970		priv->can.data_bittiming_const =
1971			&xcan_data_bittiming_const_canfd;
1972		priv->can.tdc_const = &xcan_tdc_const_canfd;
1973	}
1974
1975	if (devtype->cantype == XAXI_CANFD_2_0) {
1976		priv->can.data_bittiming_const =
1977			&xcan_data_bittiming_const_canfd2;
1978		priv->can.tdc_const = &xcan_tdc_const_canfd2;
1979	}
1980
1981	if (devtype->cantype == XAXI_CANFD ||
1982	    devtype->cantype == XAXI_CANFD_2_0) {
1983		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1984						CAN_CTRLMODE_TDC_AUTO;
1985		priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1986	}
1987
1988	priv->reg_base = addr;
1989	priv->tx_max = tx_max;
1990	priv->devtype = *devtype;
1991	spin_lock_init(&priv->tx_lock);
1992
1993	/* Get IRQ for the device */
1994	ret = platform_get_irq(pdev, 0);
1995	if (ret < 0)
1996		goto err_reset;
1997
1998	ndev->irq = ret;
1999
2000	ndev->flags |= IFF_ECHO;	/* We support local echo */
2001
2002	platform_set_drvdata(pdev, ndev);
2003	SET_NETDEV_DEV(ndev, &pdev->dev);
2004	ndev->netdev_ops = &xcan_netdev_ops;
2005	ndev->ethtool_ops = &xcan_ethtool_ops;
2006
2007	/* Getting the CAN can_clk info */
2008	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
2009	if (IS_ERR(priv->can_clk)) {
2010		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
2011				    "device clock not found\n");
2012		goto err_reset;
2013	}
2014
2015	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
2016	if (IS_ERR(priv->bus_clk)) {
2017		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
2018				    "bus clock not found\n");
2019		goto err_reset;
2020	}
2021
2022	transceiver = devm_phy_optional_get(&pdev->dev, NULL);
2023	if (IS_ERR(transceiver)) {
2024		ret = PTR_ERR(transceiver);
2025		dev_err_probe(&pdev->dev, ret, "failed to get phy\n");
2026		goto err_reset;
2027	}
2028	priv->transceiver = transceiver;
2029
2030	priv->write_reg = xcan_write_reg_le;
2031	priv->read_reg = xcan_read_reg_le;
2032
2033	pm_runtime_enable(&pdev->dev);
2034	ret = pm_runtime_get_sync(&pdev->dev);
2035	if (ret < 0) {
2036		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
2037			   __func__, ret);
2038		goto err_disableclks;
2039	}
2040
2041	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
2042		priv->write_reg = xcan_write_reg_be;
2043		priv->read_reg = xcan_read_reg_be;
2044	}
2045
2046	priv->can.clock.freq = clk_get_rate(priv->can_clk);
2047
2048	netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
2049
2050	ret = register_candev(ndev);
2051	if (ret) {
2052		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
2053		goto err_disableclks;
2054	}
2055
2056	of_can_transceiver(ndev);
2057	pm_runtime_put(&pdev->dev);
2058
2059	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
2060		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
2061		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
2062	}
2063
2064	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
2065		   priv->reg_base, ndev->irq, priv->can.clock.freq,
2066		   hw_tx_max, priv->tx_max);
2067
2068	if (priv->ecc_enable) {
2069		/* Reset FIFO ECC counters */
2070		priv->write_reg(priv, XCAN_ECC_CFG_OFFSET, XCAN_ECC_CFG_REECRX_MASK |
2071			XCAN_ECC_CFG_REECTXOL_MASK | XCAN_ECC_CFG_REECTXTL_MASK);
2072	}
2073	return 0;
2074
2075err_disableclks:
2076	pm_runtime_put(priv->dev);
2077	pm_runtime_disable(&pdev->dev);
2078err_reset:
2079	reset_control_assert(priv->rstc);
2080err_free:
2081	free_candev(ndev);
2082err:
2083	return ret;
2084}
2085
2086/**
2087 * xcan_remove - Unregister the device after releasing the resources
2088 * @pdev:	Handle to the platform device structure
2089 *
2090 * This function frees all the resources allocated to the device.
2091 * Return: 0 always
2092 */
2093static void xcan_remove(struct platform_device *pdev)
2094{
2095	struct net_device *ndev = platform_get_drvdata(pdev);
2096	struct xcan_priv *priv = netdev_priv(ndev);
2097
2098	unregister_candev(ndev);
2099	pm_runtime_disable(&pdev->dev);
2100	reset_control_assert(priv->rstc);
2101	free_candev(ndev);
 
 
2102}
2103
2104static struct platform_driver xcan_driver = {
2105	.probe = xcan_probe,
2106	.remove = xcan_remove,
2107	.driver	= {
2108		.name = DRIVER_NAME,
2109		.pm = &xcan_dev_pm_ops,
2110		.of_match_table	= xcan_of_match,
2111	},
2112};
2113
2114module_platform_driver(xcan_driver);
2115
2116MODULE_LICENSE("GPL");
2117MODULE_AUTHOR("Xilinx Inc");
2118MODULE_DESCRIPTION("Xilinx CAN interface");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Xilinx CAN device driver
   3 *
   4 * Copyright (C) 2012 - 2022 Xilinx, Inc.
   5 * Copyright (C) 2009 PetaLogix. All rights reserved.
   6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
   7 *
   8 * Description:
   9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/ethtool.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/netdevice.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/platform_device.h>
 
  25#include <linux/skbuff.h>
  26#include <linux/spinlock.h>
  27#include <linux/string.h>
  28#include <linux/types.h>
  29#include <linux/can/dev.h>
  30#include <linux/can/error.h>
 
  31#include <linux/pm_runtime.h>
 
 
  32
  33#define DRIVER_NAME	"xilinx_can"
  34
  35/* CAN registers set */
  36enum xcan_reg {
  37	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
  38	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
  39	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
  40	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
  41	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
  42	XCAN_ESR_OFFSET		= 0x14, /* Error status */
  43	XCAN_SR_OFFSET		= 0x18, /* Status */
  44	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
  45	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
  46	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
  47
  48	/* not on CAN FD cores */
  49	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
  50	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
  51	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
  52
  53	/* only on CAN FD cores */
  54	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
  55					  * Prescaler
  56					  */
  57	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
  58	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
 
 
 
 
 
 
 
  59	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
  60	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
  61	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
  62	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
  63	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
  64	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
  65	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
  66};
  67
  68#define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
  69#define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
  70#define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
  71#define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
  72#define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
  73
  74#define XCAN_CANFD_FRAME_SIZE		0x48
  75#define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
  76					 XCAN_CANFD_FRAME_SIZE * (n))
  77#define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
  78					 XCAN_CANFD_FRAME_SIZE * (n))
  79#define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
  80					 XCAN_CANFD_FRAME_SIZE * (n))
  81
  82/* the single TX mailbox used by this driver on CAN FD HW */
  83#define XCAN_TX_MAILBOX_IDX		0
  84
  85/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  86#define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
  87#define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
  88#define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
  89#define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
  90#define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
  91#define XCAN_BRPR_TDCO_MASK		GENMASK(12, 8)  /* TDCO */
  92#define XCAN_2_BRPR_TDCO_MASK		GENMASK(13, 8)  /* TDCO for CANFD 2.0 */
  93#define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
  94#define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
  95#define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
  96#define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
  97#define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
  98#define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
  99#define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
 100#define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
 101#define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
 102#define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
 103#define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
 104#define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
 105#define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
 106#define XCAN_SR_TDCV_MASK		GENMASK(22, 16) /* TDCV Value */
 107#define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
 108#define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
 109#define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
 110#define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
 111#define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
 112#define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
 113#define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
 114#define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
 115#define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
 116#define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
 117#define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
 118#define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
 119#define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
 120#define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
 121#define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
 122#define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
 123#define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
 124#define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
 
 
 
 
 
 
 
 
 
 
 
 
 125#define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
 126#define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
 127#define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
 128#define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
 129#define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
 130#define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
 131#define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
 132#define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
 133#define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
 134#define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
 135#define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
 136#define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
 137#define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
 
 
 
 
 
 138
 139/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 140#define XCAN_BRPR_TDC_ENABLE		BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
 141#define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
 142#define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
 143#define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
 144#define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
 145#define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
 146#define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
 147#define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
 148#define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
 149
 150/* CAN frame length constants */
 151#define XCAN_FRAME_MAX_DATA_LEN		8
 152#define XCANFD_DW_BYTES			4
 153#define XCAN_TIMEOUT			(1 * HZ)
 154
 155/* TX-FIFO-empty interrupt available */
 156#define XCAN_FLAG_TXFEMP	0x0001
 157/* RX Match Not Finished interrupt available */
 158#define XCAN_FLAG_RXMNF		0x0002
 159/* Extended acceptance filters with control at 0xE0 */
 160#define XCAN_FLAG_EXT_FILTERS	0x0004
 161/* TX mailboxes instead of TX FIFO */
 162#define XCAN_FLAG_TX_MAILBOXES	0x0008
 163/* RX FIFO with each buffer in separate registers at 0x1100
 164 * instead of the regular FIFO at 0x50
 165 */
 166#define XCAN_FLAG_RX_FIFO_MULTI	0x0010
 167#define XCAN_FLAG_CANFD_2	0x0020
 168
 169enum xcan_ip_type {
 170	XAXI_CAN = 0,
 171	XZYNQ_CANPS,
 172	XAXI_CANFD,
 173	XAXI_CANFD_2_0,
 174};
 175
 176struct xcan_devtype_data {
 177	enum xcan_ip_type cantype;
 178	unsigned int flags;
 179	const struct can_bittiming_const *bittiming_const;
 180	const char *bus_clk_name;
 181	unsigned int btr_ts2_shift;
 182	unsigned int btr_sjw_shift;
 183};
 184
 185/**
 186 * struct xcan_priv - This definition define CAN driver instance
 187 * @can:			CAN private data structure.
 188 * @tx_lock:			Lock for synchronizing TX interrupt handling
 189 * @tx_head:			Tx CAN packets ready to send on the queue
 190 * @tx_tail:			Tx CAN packets successfully sended on the queue
 191 * @tx_max:			Maximum number packets the driver can send
 192 * @napi:			NAPI structure
 193 * @read_reg:			For reading data from CAN registers
 194 * @write_reg:			For writing data to CAN registers
 195 * @dev:			Network device data structure
 196 * @reg_base:			Ioremapped address to registers
 197 * @irq_flags:			For request_irq()
 198 * @bus_clk:			Pointer to struct clk
 199 * @can_clk:			Pointer to struct clk
 200 * @devtype:			Device type specific constants
 
 
 
 
 
 
 
 
 
 
 201 */
 202struct xcan_priv {
 203	struct can_priv can;
 204	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
 205	unsigned int tx_head;
 206	unsigned int tx_tail;
 207	unsigned int tx_max;
 208	struct napi_struct napi;
 209	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 210	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 211			  u32 val);
 212	struct device *dev;
 213	void __iomem *reg_base;
 214	unsigned long irq_flags;
 215	struct clk *bus_clk;
 216	struct clk *can_clk;
 217	struct xcan_devtype_data devtype;
 
 
 
 
 
 
 
 
 
 
 218};
 219
 220/* CAN Bittiming constants as per Xilinx CAN specs */
 221static const struct can_bittiming_const xcan_bittiming_const = {
 222	.name = DRIVER_NAME,
 223	.tseg1_min = 1,
 224	.tseg1_max = 16,
 225	.tseg2_min = 1,
 226	.tseg2_max = 8,
 227	.sjw_max = 4,
 228	.brp_min = 1,
 229	.brp_max = 256,
 230	.brp_inc = 1,
 231};
 232
 233/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
 234static const struct can_bittiming_const xcan_bittiming_const_canfd = {
 235	.name = DRIVER_NAME,
 236	.tseg1_min = 1,
 237	.tseg1_max = 64,
 238	.tseg2_min = 1,
 239	.tseg2_max = 16,
 240	.sjw_max = 16,
 241	.brp_min = 1,
 242	.brp_max = 256,
 243	.brp_inc = 1,
 244};
 245
 246/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
 247static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
 248	.name = DRIVER_NAME,
 249	.tseg1_min = 1,
 250	.tseg1_max = 16,
 251	.tseg2_min = 1,
 252	.tseg2_max = 8,
 253	.sjw_max = 8,
 254	.brp_min = 1,
 255	.brp_max = 256,
 256	.brp_inc = 1,
 257};
 258
 259/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
 260static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
 261	.name = DRIVER_NAME,
 262	.tseg1_min = 1,
 263	.tseg1_max = 256,
 264	.tseg2_min = 1,
 265	.tseg2_max = 128,
 266	.sjw_max = 128,
 267	.brp_min = 1,
 268	.brp_max = 256,
 269	.brp_inc = 1,
 270};
 271
 272/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
 273static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
 274	.name = DRIVER_NAME,
 275	.tseg1_min = 1,
 276	.tseg1_max = 32,
 277	.tseg2_min = 1,
 278	.tseg2_max = 16,
 279	.sjw_max = 16,
 280	.brp_min = 1,
 281	.brp_max = 256,
 282	.brp_inc = 1,
 283};
 284
 285/* Transmission Delay Compensation constants for CANFD 1.0 */
 286static const struct can_tdc_const xcan_tdc_const_canfd = {
 287	.tdcv_min = 0,
 288	.tdcv_max = 0, /* Manual mode not supported. */
 289	.tdco_min = 0,
 290	.tdco_max = 32,
 291	.tdcf_min = 0, /* Filter window not supported */
 292	.tdcf_max = 0,
 293};
 294
 295/* Transmission Delay Compensation constants for CANFD 2.0 */
 296static const struct can_tdc_const xcan_tdc_const_canfd2 = {
 297	.tdcv_min = 0,
 298	.tdcv_max = 0, /* Manual mode not supported. */
 299	.tdco_min = 0,
 300	.tdco_max = 64,
 301	.tdcf_min = 0, /* Filter window not supported */
 302	.tdcf_max = 0,
 303};
 304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305/**
 306 * xcan_write_reg_le - Write a value to the device register little endian
 307 * @priv:	Driver private data structure
 308 * @reg:	Register offset
 309 * @val:	Value to write at the Register offset
 310 *
 311 * Write data to the paricular CAN register
 312 */
 313static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 314			      u32 val)
 315{
 316	iowrite32(val, priv->reg_base + reg);
 317}
 318
 319/**
 320 * xcan_read_reg_le - Read a value from the device register little endian
 321 * @priv:	Driver private data structure
 322 * @reg:	Register offset
 323 *
 324 * Read data from the particular CAN register
 325 * Return: value read from the CAN register
 326 */
 327static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 328{
 329	return ioread32(priv->reg_base + reg);
 330}
 331
 332/**
 333 * xcan_write_reg_be - Write a value to the device register big endian
 334 * @priv:	Driver private data structure
 335 * @reg:	Register offset
 336 * @val:	Value to write at the Register offset
 337 *
 338 * Write data to the paricular CAN register
 339 */
 340static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 341			      u32 val)
 342{
 343	iowrite32be(val, priv->reg_base + reg);
 344}
 345
 346/**
 347 * xcan_read_reg_be - Read a value from the device register big endian
 348 * @priv:	Driver private data structure
 349 * @reg:	Register offset
 350 *
 351 * Read data from the particular CAN register
 352 * Return: value read from the CAN register
 353 */
 354static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 355{
 356	return ioread32be(priv->reg_base + reg);
 357}
 358
 359/**
 360 * xcan_rx_int_mask - Get the mask for the receive interrupt
 361 * @priv:	Driver private data structure
 362 *
 363 * Return: The receive interrupt mask used by the driver on this HW
 364 */
 365static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
 366{
 367	/* RXNEMP is better suited for our use case as it cannot be cleared
 368	 * while the FIFO is non-empty, but CAN FD HW does not have it
 369	 */
 370	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
 371		return XCAN_IXR_RXOK_MASK;
 372	else
 373		return XCAN_IXR_RXNEMP_MASK;
 374}
 375
 376/**
 377 * set_reset_mode - Resets the CAN device mode
 378 * @ndev:	Pointer to net_device structure
 379 *
 380 * This is the driver reset mode routine.The driver
 381 * enters into configuration mode.
 382 *
 383 * Return: 0 on success and failure value on error
 384 */
 385static int set_reset_mode(struct net_device *ndev)
 386{
 387	struct xcan_priv *priv = netdev_priv(ndev);
 388	unsigned long timeout;
 389
 390	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 391
 392	timeout = jiffies + XCAN_TIMEOUT;
 393	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 394		if (time_after(jiffies, timeout)) {
 395			netdev_warn(ndev, "timed out for config mode\n");
 396			return -ETIMEDOUT;
 397		}
 398		usleep_range(500, 10000);
 399	}
 400
 401	/* reset clears FIFOs */
 402	priv->tx_head = 0;
 403	priv->tx_tail = 0;
 404
 405	return 0;
 406}
 407
 408/**
 409 * xcan_set_bittiming - CAN set bit timing routine
 410 * @ndev:	Pointer to net_device structure
 411 *
 412 * This is the driver set bittiming  routine.
 413 * Return: 0 on success and failure value on error
 414 */
 415static int xcan_set_bittiming(struct net_device *ndev)
 416{
 417	struct xcan_priv *priv = netdev_priv(ndev);
 418	struct can_bittiming *bt = &priv->can.bittiming;
 419	struct can_bittiming *dbt = &priv->can.data_bittiming;
 420	u32 btr0, btr1;
 421	u32 is_config_mode;
 422
 423	/* Check whether Xilinx CAN is in configuration mode.
 424	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 425	 */
 426	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 427				XCAN_SR_CONFIG_MASK;
 428	if (!is_config_mode) {
 429		netdev_alert(ndev,
 430			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
 431		return -EPERM;
 432	}
 433
 434	/* Setting Baud Rate prescaler value in BRPR Register */
 435	btr0 = (bt->brp - 1);
 436
 437	/* Setting Time Segment 1 in BTR Register */
 438	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 439
 440	/* Setting Time Segment 2 in BTR Register */
 441	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 442
 443	/* Setting Synchronous jump width in BTR Register */
 444	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
 445
 446	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 447	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 448
 449	if (priv->devtype.cantype == XAXI_CANFD ||
 450	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 451		/* Setting Baud Rate prescaler value in F_BRPR Register */
 452		btr0 = dbt->brp - 1;
 453		if (can_tdc_is_enabled(&priv->can)) {
 454			if (priv->devtype.cantype == XAXI_CANFD)
 455				btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 456					XCAN_BRPR_TDC_ENABLE;
 457			else
 458				btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 459					XCAN_BRPR_TDC_ENABLE;
 460		}
 461
 462		/* Setting Time Segment 1 in BTR Register */
 463		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
 464
 465		/* Setting Time Segment 2 in BTR Register */
 466		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 467
 468		/* Setting Synchronous jump width in BTR Register */
 469		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
 470
 471		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
 472		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
 473	}
 474
 475	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 476		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
 477		   priv->read_reg(priv, XCAN_BTR_OFFSET));
 478
 479	return 0;
 480}
 481
 482/**
 483 * xcan_chip_start - This the drivers start routine
 484 * @ndev:	Pointer to net_device structure
 485 *
 486 * This is the drivers start routine.
 487 * Based on the State of the CAN device it puts
 488 * the CAN device into a proper mode.
 489 *
 490 * Return: 0 on success and failure value on error
 491 */
 492static int xcan_chip_start(struct net_device *ndev)
 493{
 494	struct xcan_priv *priv = netdev_priv(ndev);
 495	u32 reg_msr;
 496	int err;
 497	u32 ier;
 498
 499	/* Check if it is in reset mode */
 500	err = set_reset_mode(ndev);
 501	if (err < 0)
 502		return err;
 503
 504	err = xcan_set_bittiming(ndev);
 505	if (err < 0)
 506		return err;
 507
 508	/* Enable interrupts
 509	 *
 510	 * We enable the ERROR interrupt even with
 511	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
 512	 * dedicated interrupt for a state change to
 513	 * ERROR_WARNING/ERROR_PASSIVE.
 514	 */
 515	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
 516		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
 517		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 518		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
 519
 
 
 
 520	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
 521		ier |= XCAN_IXR_RXMNF_MASK;
 522
 523	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 524
 525	/* Check whether it is loopback mode or normal mode  */
 526	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
 527		reg_msr = XCAN_MSR_LBACK_MASK;
 528	else
 529		reg_msr = 0x0;
 530
 531	/* enable the first extended filter, if any, as cores with extended
 532	 * filtering default to non-receipt if all filters are disabled
 533	 */
 534	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
 535		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
 536
 537	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 538	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 539
 540	netdev_dbg(ndev, "status:#x%08x\n",
 541		   priv->read_reg(priv, XCAN_SR_OFFSET));
 542
 543	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 544	return 0;
 545}
 546
 547/**
 548 * xcan_do_set_mode - This sets the mode of the driver
 549 * @ndev:	Pointer to net_device structure
 550 * @mode:	Tells the mode of the driver
 551 *
 552 * This check the drivers state and calls the corresponding modes to set.
 553 *
 554 * Return: 0 on success and failure value on error
 555 */
 556static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 557{
 558	int ret;
 559
 560	switch (mode) {
 561	case CAN_MODE_START:
 562		ret = xcan_chip_start(ndev);
 563		if (ret < 0) {
 564			netdev_err(ndev, "xcan_chip_start failed!\n");
 565			return ret;
 566		}
 567		netif_wake_queue(ndev);
 568		break;
 569	default:
 570		ret = -EOPNOTSUPP;
 571		break;
 572	}
 573
 574	return ret;
 575}
 576
 577/**
 578 * xcan_write_frame - Write a frame to HW
 579 * @ndev:		Pointer to net_device structure
 580 * @skb:		sk_buff pointer that contains data to be Txed
 581 * @frame_offset:	Register offset to write the frame to
 582 */
 583static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
 584			     int frame_offset)
 585{
 586	u32 id, dlc, data[2] = {0, 0};
 587	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 588	u32 ramoff, dwindex = 0, i;
 589	struct xcan_priv *priv = netdev_priv(ndev);
 590
 591	/* Watch carefully on the bit sequence */
 592	if (cf->can_id & CAN_EFF_FLAG) {
 593		/* Extended CAN ID format */
 594		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 595			XCAN_IDR_ID2_MASK;
 596		id |= (((cf->can_id & CAN_EFF_MASK) >>
 597			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
 598			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 599
 600		/* The substibute remote TX request bit should be "1"
 601		 * for extended frames as in the Xilinx CAN datasheet
 602		 */
 603		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 604
 605		if (cf->can_id & CAN_RTR_FLAG)
 606			/* Extended frames remote TX request */
 607			id |= XCAN_IDR_RTR_MASK;
 608	} else {
 609		/* Standard CAN ID format */
 610		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 611			XCAN_IDR_ID1_MASK;
 612
 613		if (cf->can_id & CAN_RTR_FLAG)
 614			/* Standard frames remote TX request */
 615			id |= XCAN_IDR_SRR_MASK;
 616	}
 617
 618	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
 619	if (can_is_canfd_skb(skb)) {
 620		if (cf->flags & CANFD_BRS)
 621			dlc |= XCAN_DLCR_BRS_MASK;
 622		dlc |= XCAN_DLCR_EDL_MASK;
 623	}
 624
 625	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
 626	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
 627		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
 628	else
 629		can_put_echo_skb(skb, ndev, 0, 0);
 630
 631	priv->tx_head++;
 632
 633	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
 634	/* If the CAN frame is RTR frame this write triggers transmission
 635	 * (not on CAN FD)
 636	 */
 637	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
 638	if (priv->devtype.cantype == XAXI_CANFD ||
 639	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 640		for (i = 0; i < cf->len; i += 4) {
 641			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
 642					(dwindex * XCANFD_DW_BYTES);
 643			priv->write_reg(priv, ramoff,
 644					be32_to_cpup((__be32 *)(cf->data + i)));
 645			dwindex++;
 646		}
 647	} else {
 648		if (cf->len > 0)
 649			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 650		if (cf->len > 4)
 651			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 652
 653		if (!(cf->can_id & CAN_RTR_FLAG)) {
 654			priv->write_reg(priv,
 655					XCAN_FRAME_DW1_OFFSET(frame_offset),
 656					data[0]);
 657			/* If the CAN frame is Standard/Extended frame this
 658			 * write triggers transmission (not on CAN FD)
 659			 */
 660			priv->write_reg(priv,
 661					XCAN_FRAME_DW2_OFFSET(frame_offset),
 662					data[1]);
 663		}
 664	}
 665}
 666
 667/**
 668 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
 669 * @skb:	sk_buff pointer that contains data to be Txed
 670 * @ndev:	Pointer to net_device structure
 671 *
 672 * Return: 0 on success, -ENOSPC if FIFO is full.
 673 */
 674static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
 675{
 676	struct xcan_priv *priv = netdev_priv(ndev);
 677	unsigned long flags;
 678
 679	/* Check if the TX buffer is full */
 680	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 681			XCAN_SR_TXFLL_MASK))
 682		return -ENOSPC;
 683
 684	spin_lock_irqsave(&priv->tx_lock, flags);
 685
 686	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
 687
 688	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
 689	if (priv->tx_max > 1)
 690		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
 691
 692	/* Check if the TX buffer is full */
 693	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 694		netif_stop_queue(ndev);
 695
 696	spin_unlock_irqrestore(&priv->tx_lock, flags);
 697
 698	return 0;
 699}
 700
 701/**
 702 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
 703 * @skb:	sk_buff pointer that contains data to be Txed
 704 * @ndev:	Pointer to net_device structure
 705 *
 706 * Return: 0 on success, -ENOSPC if there is no space
 707 */
 708static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
 709{
 710	struct xcan_priv *priv = netdev_priv(ndev);
 711	unsigned long flags;
 712
 713	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
 714		     BIT(XCAN_TX_MAILBOX_IDX)))
 715		return -ENOSPC;
 716
 717	spin_lock_irqsave(&priv->tx_lock, flags);
 718
 719	xcan_write_frame(ndev, skb,
 720			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
 721
 722	/* Mark buffer as ready for transmit */
 723	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
 724
 725	netif_stop_queue(ndev);
 726
 727	spin_unlock_irqrestore(&priv->tx_lock, flags);
 728
 729	return 0;
 730}
 731
 732/**
 733 * xcan_start_xmit - Starts the transmission
 734 * @skb:	sk_buff pointer that contains data to be Txed
 735 * @ndev:	Pointer to net_device structure
 736 *
 737 * This function is invoked from upper layers to initiate transmission.
 738 *
 739 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
 740 */
 741static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 742{
 743	struct xcan_priv *priv = netdev_priv(ndev);
 744	int ret;
 745
 746	if (can_dev_dropped_skb(ndev, skb))
 747		return NETDEV_TX_OK;
 748
 749	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
 750		ret = xcan_start_xmit_mailbox(skb, ndev);
 751	else
 752		ret = xcan_start_xmit_fifo(skb, ndev);
 753
 754	if (ret < 0) {
 755		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
 756		netif_stop_queue(ndev);
 757		return NETDEV_TX_BUSY;
 758	}
 759
 760	return NETDEV_TX_OK;
 761}
 762
 763/**
 764 * xcan_rx -  Is called from CAN isr to complete the received
 765 *		frame  processing
 766 * @ndev:	Pointer to net_device structure
 767 * @frame_base:	Register offset to the frame to be read
 768 *
 769 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 770 * does minimal processing and invokes "netif_receive_skb" to complete further
 771 * processing.
 772 * Return: 1 on success and 0 on failure.
 773 */
 774static int xcan_rx(struct net_device *ndev, int frame_base)
 775{
 776	struct xcan_priv *priv = netdev_priv(ndev);
 777	struct net_device_stats *stats = &ndev->stats;
 778	struct can_frame *cf;
 779	struct sk_buff *skb;
 780	u32 id_xcan, dlc, data[2] = {0, 0};
 781
 782	skb = alloc_can_skb(ndev, &cf);
 783	if (unlikely(!skb)) {
 784		stats->rx_dropped++;
 785		return 0;
 786	}
 787
 788	/* Read a frame from Xilinx zynq CANPS */
 789	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 790	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
 791				   XCAN_DLCR_DLC_SHIFT;
 792
 793	/* Change Xilinx CAN data length format to socketCAN data format */
 794	cf->len = can_cc_dlc2len(dlc);
 795
 796	/* Change Xilinx CAN ID format to socketCAN ID format */
 797	if (id_xcan & XCAN_IDR_IDE_MASK) {
 798		/* The received frame is an Extended format frame */
 799		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 800		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 801				XCAN_IDR_ID2_SHIFT;
 802		cf->can_id |= CAN_EFF_FLAG;
 803		if (id_xcan & XCAN_IDR_RTR_MASK)
 804			cf->can_id |= CAN_RTR_FLAG;
 805	} else {
 806		/* The received frame is a standard format frame */
 807		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 808				XCAN_IDR_ID1_SHIFT;
 809		if (id_xcan & XCAN_IDR_SRR_MASK)
 810			cf->can_id |= CAN_RTR_FLAG;
 811	}
 812
 813	/* DW1/DW2 must always be read to remove message from RXFIFO */
 814	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
 815	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
 816
 817	if (!(cf->can_id & CAN_RTR_FLAG)) {
 818		/* Change Xilinx CAN data format to socketCAN data format */
 819		if (cf->len > 0)
 820			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 821		if (cf->len > 4)
 822			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 823
 824		stats->rx_bytes += cf->len;
 825	}
 826	stats->rx_packets++;
 827
 828	netif_receive_skb(skb);
 829
 830	return 1;
 831}
 832
 833/**
 834 * xcanfd_rx -  Is called from CAN isr to complete the received
 835 *		frame  processing
 836 * @ndev:	Pointer to net_device structure
 837 * @frame_base:	Register offset to the frame to be read
 838 *
 839 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 840 * does minimal processing and invokes "netif_receive_skb" to complete further
 841 * processing.
 842 * Return: 1 on success and 0 on failure.
 843 */
 844static int xcanfd_rx(struct net_device *ndev, int frame_base)
 845{
 846	struct xcan_priv *priv = netdev_priv(ndev);
 847	struct net_device_stats *stats = &ndev->stats;
 848	struct canfd_frame *cf;
 849	struct sk_buff *skb;
 850	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
 851
 852	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 853	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
 854	if (dlc & XCAN_DLCR_EDL_MASK)
 855		skb = alloc_canfd_skb(ndev, &cf);
 856	else
 857		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
 858
 859	if (unlikely(!skb)) {
 860		stats->rx_dropped++;
 861		return 0;
 862	}
 863
 864	/* Change Xilinx CANFD data length format to socketCAN data
 865	 * format
 866	 */
 867	if (dlc & XCAN_DLCR_EDL_MASK)
 868		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 869				  XCAN_DLCR_DLC_SHIFT);
 870	else
 871		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 872					  XCAN_DLCR_DLC_SHIFT);
 873
 874	/* Change Xilinx CAN ID format to socketCAN ID format */
 875	if (id_xcan & XCAN_IDR_IDE_MASK) {
 876		/* The received frame is an Extended format frame */
 877		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 878		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 879				XCAN_IDR_ID2_SHIFT;
 880		cf->can_id |= CAN_EFF_FLAG;
 881		if (id_xcan & XCAN_IDR_RTR_MASK)
 882			cf->can_id |= CAN_RTR_FLAG;
 883	} else {
 884		/* The received frame is a standard format frame */
 885		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 886				XCAN_IDR_ID1_SHIFT;
 887		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
 888					XCAN_IDR_SRR_MASK))
 889			cf->can_id |= CAN_RTR_FLAG;
 890	}
 891
 892	/* Check the frame received is FD or not*/
 893	if (dlc & XCAN_DLCR_EDL_MASK) {
 894		for (i = 0; i < cf->len; i += 4) {
 895			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
 896					(dwindex * XCANFD_DW_BYTES);
 897			data[0] = priv->read_reg(priv, dw_offset);
 898			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 899			dwindex++;
 900		}
 901	} else {
 902		for (i = 0; i < cf->len; i += 4) {
 903			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
 904			data[0] = priv->read_reg(priv, dw_offset + i);
 905			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 906		}
 907	}
 908
 909	if (!(cf->can_id & CAN_RTR_FLAG))
 910		stats->rx_bytes += cf->len;
 911	stats->rx_packets++;
 912
 913	netif_receive_skb(skb);
 914
 915	return 1;
 916}
 917
 918/**
 919 * xcan_current_error_state - Get current error state from HW
 920 * @ndev:	Pointer to net_device structure
 921 *
 922 * Checks the current CAN error state from the HW. Note that this
 923 * only checks for ERROR_PASSIVE and ERROR_WARNING.
 924 *
 925 * Return:
 926 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
 927 * otherwise.
 928 */
 929static enum can_state xcan_current_error_state(struct net_device *ndev)
 930{
 931	struct xcan_priv *priv = netdev_priv(ndev);
 932	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
 933
 934	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
 935		return CAN_STATE_ERROR_PASSIVE;
 936	else if (status & XCAN_SR_ERRWRN_MASK)
 937		return CAN_STATE_ERROR_WARNING;
 938	else
 939		return CAN_STATE_ERROR_ACTIVE;
 940}
 941
 942/**
 943 * xcan_set_error_state - Set new CAN error state
 944 * @ndev:	Pointer to net_device structure
 945 * @new_state:	The new CAN state to be set
 946 * @cf:		Error frame to be populated or NULL
 947 *
 948 * Set new CAN error state for the device, updating statistics and
 949 * populating the error frame if given.
 950 */
 951static void xcan_set_error_state(struct net_device *ndev,
 952				 enum can_state new_state,
 953				 struct can_frame *cf)
 954{
 955	struct xcan_priv *priv = netdev_priv(ndev);
 956	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
 957	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
 958	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
 959	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
 960	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
 961
 962	/* non-ERROR states are handled elsewhere */
 963	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
 964		return;
 965
 966	can_change_state(ndev, cf, tx_state, rx_state);
 967
 968	if (cf) {
 969		cf->can_id |= CAN_ERR_CNT;
 970		cf->data[6] = txerr;
 971		cf->data[7] = rxerr;
 972	}
 973}
 974
 975/**
 976 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
 977 * @ndev:	Pointer to net_device structure
 978 *
 979 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
 980 * the performed RX/TX has caused it to drop to a lesser state and set
 981 * the interface state accordingly.
 982 */
 983static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
 984{
 985	struct xcan_priv *priv = netdev_priv(ndev);
 986	enum can_state old_state = priv->can.state;
 987	enum can_state new_state;
 988
 989	/* changing error state due to successful frame RX/TX can only
 990	 * occur from these states
 991	 */
 992	if (old_state != CAN_STATE_ERROR_WARNING &&
 993	    old_state != CAN_STATE_ERROR_PASSIVE)
 994		return;
 995
 996	new_state = xcan_current_error_state(ndev);
 997
 998	if (new_state != old_state) {
 999		struct sk_buff *skb;
1000		struct can_frame *cf;
1001
1002		skb = alloc_can_err_skb(ndev, &cf);
1003
1004		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1005
1006		if (skb)
1007			netif_rx(skb);
1008	}
1009}
1010
1011/**
1012 * xcan_err_interrupt - error frame Isr
1013 * @ndev:	net_device pointer
1014 * @isr:	interrupt status register value
1015 *
1016 * This is the CAN error interrupt and it will
1017 * check the type of error and forward the error
1018 * frame to upper layers.
1019 */
1020static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1021{
1022	struct xcan_priv *priv = netdev_priv(ndev);
1023	struct net_device_stats *stats = &ndev->stats;
1024	struct can_frame cf = { };
1025	u32 err_status;
1026
1027	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1028	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1029
1030	if (isr & XCAN_IXR_BSOFF_MASK) {
1031		priv->can.state = CAN_STATE_BUS_OFF;
1032		priv->can.can_stats.bus_off++;
1033		/* Leave device in Config Mode in bus-off state */
1034		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1035		can_bus_off(ndev);
1036		cf.can_id |= CAN_ERR_BUSOFF;
1037	} else {
1038		enum can_state new_state = xcan_current_error_state(ndev);
1039
1040		if (new_state != priv->can.state)
1041			xcan_set_error_state(ndev, new_state, &cf);
1042	}
1043
1044	/* Check for Arbitration lost interrupt */
1045	if (isr & XCAN_IXR_ARBLST_MASK) {
1046		priv->can.can_stats.arbitration_lost++;
1047		cf.can_id |= CAN_ERR_LOSTARB;
1048		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1049	}
1050
1051	/* Check for RX FIFO Overflow interrupt */
1052	if (isr & XCAN_IXR_RXOFLW_MASK) {
1053		stats->rx_over_errors++;
1054		stats->rx_errors++;
1055		cf.can_id |= CAN_ERR_CRTL;
1056		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1057	}
1058
1059	/* Check for RX Match Not Finished interrupt */
1060	if (isr & XCAN_IXR_RXMNF_MASK) {
1061		stats->rx_dropped++;
1062		stats->rx_errors++;
1063		netdev_err(ndev, "RX match not finished, frame discarded\n");
1064		cf.can_id |= CAN_ERR_CRTL;
1065		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1066	}
1067
1068	/* Check for error interrupt */
1069	if (isr & XCAN_IXR_ERROR_MASK) {
1070		bool berr_reporting = false;
1071
1072		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1073			berr_reporting = true;
1074			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1075		}
1076
1077		/* Check for Ack error interrupt */
1078		if (err_status & XCAN_ESR_ACKER_MASK) {
1079			stats->tx_errors++;
1080			if (berr_reporting) {
1081				cf.can_id |= CAN_ERR_ACK;
1082				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1083			}
1084		}
1085
1086		/* Check for Bit error interrupt */
1087		if (err_status & XCAN_ESR_BERR_MASK) {
1088			stats->tx_errors++;
1089			if (berr_reporting) {
1090				cf.can_id |= CAN_ERR_PROT;
1091				cf.data[2] = CAN_ERR_PROT_BIT;
1092			}
1093		}
1094
1095		/* Check for Stuff error interrupt */
1096		if (err_status & XCAN_ESR_STER_MASK) {
1097			stats->rx_errors++;
1098			if (berr_reporting) {
1099				cf.can_id |= CAN_ERR_PROT;
1100				cf.data[2] = CAN_ERR_PROT_STUFF;
1101			}
1102		}
1103
1104		/* Check for Form error interrupt */
1105		if (err_status & XCAN_ESR_FMER_MASK) {
1106			stats->rx_errors++;
1107			if (berr_reporting) {
1108				cf.can_id |= CAN_ERR_PROT;
1109				cf.data[2] = CAN_ERR_PROT_FORM;
1110			}
1111		}
1112
1113		/* Check for CRC error interrupt */
1114		if (err_status & XCAN_ESR_CRCER_MASK) {
1115			stats->rx_errors++;
1116			if (berr_reporting) {
1117				cf.can_id |= CAN_ERR_PROT;
1118				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1119			}
1120		}
1121		priv->can.can_stats.bus_error++;
1122	}
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124	if (cf.can_id) {
1125		struct can_frame *skb_cf;
1126		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1127
1128		if (skb) {
1129			skb_cf->can_id |= cf.can_id;
1130			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1131			netif_rx(skb);
1132		}
1133	}
1134
1135	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1136		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1137}
1138
1139/**
1140 * xcan_state_interrupt - It will check the state of the CAN device
1141 * @ndev:	net_device pointer
1142 * @isr:	interrupt status register value
1143 *
1144 * This will checks the state of the CAN device
1145 * and puts the device into appropriate state.
1146 */
1147static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1148{
1149	struct xcan_priv *priv = netdev_priv(ndev);
1150
1151	/* Check for Sleep interrupt if set put CAN device in sleep state */
1152	if (isr & XCAN_IXR_SLP_MASK)
1153		priv->can.state = CAN_STATE_SLEEPING;
1154
1155	/* Check for Wake up interrupt if set put CAN device in Active state */
1156	if (isr & XCAN_IXR_WKUP_MASK)
1157		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1158}
1159
1160/**
1161 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1162 * @priv:	Driver private data structure
1163 *
1164 * Return: Register offset of the next frame in RX FIFO.
1165 */
1166static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1167{
1168	int offset;
1169
1170	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1171		u32 fsr, mask;
1172
1173		/* clear RXOK before the is-empty check so that any newly
1174		 * received frame will reassert it without a race
1175		 */
1176		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1177
1178		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1179
1180		/* check if RX FIFO is empty */
1181		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1182			mask = XCAN_2_FSR_FL_MASK;
1183		else
1184			mask = XCAN_FSR_FL_MASK;
1185
1186		if (!(fsr & mask))
1187			return -ENOENT;
1188
1189		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1190			offset =
1191			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1192		else
1193			offset =
1194			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1195
1196	} else {
1197		/* check if RX FIFO is empty */
1198		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1199		      XCAN_IXR_RXNEMP_MASK))
1200			return -ENOENT;
1201
1202		/* frames are read from a static offset */
1203		offset = XCAN_RXFIFO_OFFSET;
1204	}
1205
1206	return offset;
1207}
1208
1209/**
1210 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1211 * @napi:	napi structure pointer
1212 * @quota:	Max number of rx packets to be processed.
1213 *
1214 * This is the poll routine for rx part.
1215 * It will process the packets maximux quota value.
1216 *
1217 * Return: number of packets received
1218 */
1219static int xcan_rx_poll(struct napi_struct *napi, int quota)
1220{
1221	struct net_device *ndev = napi->dev;
1222	struct xcan_priv *priv = netdev_priv(ndev);
1223	u32 ier;
1224	int work_done = 0;
1225	int frame_offset;
1226
1227	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1228	       (work_done < quota)) {
1229		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1230			work_done += xcanfd_rx(ndev, frame_offset);
1231		else
1232			work_done += xcan_rx(ndev, frame_offset);
1233
1234		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1235			/* increment read index */
1236			priv->write_reg(priv, XCAN_FSR_OFFSET,
1237					XCAN_FSR_IRI_MASK);
1238		else
1239			/* clear rx-not-empty (will actually clear only if
1240			 * empty)
1241			 */
1242			priv->write_reg(priv, XCAN_ICR_OFFSET,
1243					XCAN_IXR_RXNEMP_MASK);
1244	}
1245
1246	if (work_done)
1247		xcan_update_error_state_after_rxtx(ndev);
1248
1249	if (work_done < quota) {
1250		if (napi_complete_done(napi, work_done)) {
1251			ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1252			ier |= xcan_rx_int_mask(priv);
1253			priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1254		}
1255	}
1256	return work_done;
1257}
1258
1259/**
1260 * xcan_tx_interrupt - Tx Done Isr
1261 * @ndev:	net_device pointer
1262 * @isr:	Interrupt status register value
1263 */
1264static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1265{
1266	struct xcan_priv *priv = netdev_priv(ndev);
1267	struct net_device_stats *stats = &ndev->stats;
1268	unsigned int frames_in_fifo;
1269	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1270	unsigned long flags;
1271	int retries = 0;
1272
1273	/* Synchronize with xmit as we need to know the exact number
1274	 * of frames in the FIFO to stay in sync due to the TXFEMP
1275	 * handling.
1276	 * This also prevents a race between netif_wake_queue() and
1277	 * netif_stop_queue().
1278	 */
1279	spin_lock_irqsave(&priv->tx_lock, flags);
1280
1281	frames_in_fifo = priv->tx_head - priv->tx_tail;
1282
1283	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1284		/* clear TXOK anyway to avoid getting back here */
1285		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1286		spin_unlock_irqrestore(&priv->tx_lock, flags);
1287		return;
1288	}
1289
1290	/* Check if 2 frames were sent (TXOK only means that at least 1
1291	 * frame was sent).
1292	 */
1293	if (frames_in_fifo > 1) {
1294		WARN_ON(frames_in_fifo > priv->tx_max);
1295
1296		/* Synchronize TXOK and isr so that after the loop:
1297		 * (1) isr variable is up-to-date at least up to TXOK clear
1298		 *     time. This avoids us clearing a TXOK of a second frame
1299		 *     but not noticing that the FIFO is now empty and thus
1300		 *     marking only a single frame as sent.
1301		 * (2) No TXOK is left. Having one could mean leaving a
1302		 *     stray TXOK as we might process the associated frame
1303		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1304		 *     clear to satisfy (1).
1305		 */
1306		while ((isr & XCAN_IXR_TXOK_MASK) &&
1307		       !WARN_ON(++retries == 100)) {
1308			priv->write_reg(priv, XCAN_ICR_OFFSET,
1309					XCAN_IXR_TXOK_MASK);
1310			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1311		}
1312
1313		if (isr & XCAN_IXR_TXFEMP_MASK) {
1314			/* nothing in FIFO anymore */
1315			frames_sent = frames_in_fifo;
1316		}
1317	} else {
1318		/* single frame in fifo, just clear TXOK */
1319		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1320	}
1321
1322	while (frames_sent--) {
1323		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1324						    priv->tx_max, NULL);
1325		priv->tx_tail++;
1326		stats->tx_packets++;
1327	}
1328
1329	netif_wake_queue(ndev);
1330
1331	spin_unlock_irqrestore(&priv->tx_lock, flags);
1332
1333	xcan_update_error_state_after_rxtx(ndev);
1334}
1335
1336/**
1337 * xcan_interrupt - CAN Isr
1338 * @irq:	irq number
1339 * @dev_id:	device id pointer
1340 *
1341 * This is the xilinx CAN Isr. It checks for the type of interrupt
1342 * and invokes the corresponding ISR.
1343 *
1344 * Return:
1345 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1346 */
1347static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1348{
1349	struct net_device *ndev = (struct net_device *)dev_id;
1350	struct xcan_priv *priv = netdev_priv(ndev);
 
1351	u32 isr, ier;
1352	u32 isr_errors;
1353	u32 rx_int_mask = xcan_rx_int_mask(priv);
1354
1355	/* Get the interrupt status from Xilinx CAN */
1356	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1357	if (!isr)
1358		return IRQ_NONE;
1359
1360	/* Check for the type of interrupt and Processing it */
1361	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1362		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1363				XCAN_IXR_WKUP_MASK));
1364		xcan_state_interrupt(ndev, isr);
1365	}
1366
1367	/* Check for Tx interrupt and Processing it */
1368	if (isr & XCAN_IXR_TXOK_MASK)
1369		xcan_tx_interrupt(ndev, isr);
1370
 
 
 
 
 
 
 
1371	/* Check for the type of error interrupt and Processing it */
1372	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1373			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1374			    XCAN_IXR_RXMNF_MASK);
1375	if (isr_errors) {
1376		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1377		xcan_err_interrupt(ndev, isr);
1378	}
1379
1380	/* Check for the type of receive interrupt and Processing it */
1381	if (isr & rx_int_mask) {
1382		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1383		ier &= ~rx_int_mask;
1384		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1385		napi_schedule(&priv->napi);
1386	}
1387	return IRQ_HANDLED;
1388}
1389
1390/**
1391 * xcan_chip_stop - Driver stop routine
1392 * @ndev:	Pointer to net_device structure
1393 *
1394 * This is the drivers stop routine. It will disable the
1395 * interrupts and put the device into configuration mode.
1396 */
1397static void xcan_chip_stop(struct net_device *ndev)
1398{
1399	struct xcan_priv *priv = netdev_priv(ndev);
1400	int ret;
1401
1402	/* Disable interrupts and leave the can in configuration mode */
1403	ret = set_reset_mode(ndev);
1404	if (ret < 0)
1405		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1406
1407	priv->can.state = CAN_STATE_STOPPED;
1408}
1409
1410/**
1411 * xcan_open - Driver open routine
1412 * @ndev:	Pointer to net_device structure
1413 *
1414 * This is the driver open routine.
1415 * Return: 0 on success and failure value on error
1416 */
1417static int xcan_open(struct net_device *ndev)
1418{
1419	struct xcan_priv *priv = netdev_priv(ndev);
1420	int ret;
1421
 
 
 
 
1422	ret = pm_runtime_get_sync(priv->dev);
1423	if (ret < 0) {
1424		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1425			   __func__, ret);
1426		goto err;
1427	}
1428
1429	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1430			  ndev->name, ndev);
1431	if (ret < 0) {
1432		netdev_err(ndev, "irq allocation for CAN failed\n");
1433		goto err;
1434	}
1435
1436	/* Set chip into reset mode */
1437	ret = set_reset_mode(ndev);
1438	if (ret < 0) {
1439		netdev_err(ndev, "mode resetting failed!\n");
1440		goto err_irq;
1441	}
1442
1443	/* Common open */
1444	ret = open_candev(ndev);
1445	if (ret)
1446		goto err_irq;
1447
1448	ret = xcan_chip_start(ndev);
1449	if (ret < 0) {
1450		netdev_err(ndev, "xcan_chip_start failed!\n");
1451		goto err_candev;
1452	}
1453
1454	napi_enable(&priv->napi);
1455	netif_start_queue(ndev);
1456
1457	return 0;
1458
1459err_candev:
1460	close_candev(ndev);
1461err_irq:
1462	free_irq(ndev->irq, ndev);
1463err:
1464	pm_runtime_put(priv->dev);
 
1465
1466	return ret;
1467}
1468
1469/**
1470 * xcan_close - Driver close routine
1471 * @ndev:	Pointer to net_device structure
1472 *
1473 * Return: 0 always
1474 */
1475static int xcan_close(struct net_device *ndev)
1476{
1477	struct xcan_priv *priv = netdev_priv(ndev);
1478
1479	netif_stop_queue(ndev);
1480	napi_disable(&priv->napi);
1481	xcan_chip_stop(ndev);
1482	free_irq(ndev->irq, ndev);
1483	close_candev(ndev);
1484
1485	pm_runtime_put(priv->dev);
 
1486
1487	return 0;
1488}
1489
1490/**
1491 * xcan_get_berr_counter - error counter routine
1492 * @ndev:	Pointer to net_device structure
1493 * @bec:	Pointer to can_berr_counter structure
1494 *
1495 * This is the driver error counter routine.
1496 * Return: 0 on success and failure value on error
1497 */
1498static int xcan_get_berr_counter(const struct net_device *ndev,
1499				 struct can_berr_counter *bec)
1500{
1501	struct xcan_priv *priv = netdev_priv(ndev);
1502	int ret;
1503
1504	ret = pm_runtime_get_sync(priv->dev);
1505	if (ret < 0) {
1506		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1507			   __func__, ret);
1508		pm_runtime_put(priv->dev);
1509		return ret;
1510	}
1511
1512	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1513	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1514			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1515
1516	pm_runtime_put(priv->dev);
1517
1518	return 0;
1519}
1520
1521/**
1522 * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1523 * @ndev:	Pointer to net_device structure
1524 * @tdcv:	Pointer to TDCV value
1525 *
1526 * Return: 0 on success
1527 */
1528static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1529{
1530	struct xcan_priv *priv = netdev_priv(ndev);
1531
1532	*tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1533
1534	return 0;
1535}
1536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537static const struct net_device_ops xcan_netdev_ops = {
1538	.ndo_open	= xcan_open,
1539	.ndo_stop	= xcan_close,
1540	.ndo_start_xmit	= xcan_start_xmit,
1541	.ndo_change_mtu	= can_change_mtu,
1542};
1543
1544static const struct ethtool_ops xcan_ethtool_ops = {
1545	.get_ts_info = ethtool_op_get_ts_info,
 
 
 
1546};
1547
1548/**
1549 * xcan_suspend - Suspend method for the driver
1550 * @dev:	Address of the device structure
1551 *
1552 * Put the driver into low power mode.
1553 * Return: 0 on success and failure value on error
1554 */
1555static int __maybe_unused xcan_suspend(struct device *dev)
1556{
1557	struct net_device *ndev = dev_get_drvdata(dev);
1558
1559	if (netif_running(ndev)) {
1560		netif_stop_queue(ndev);
1561		netif_device_detach(ndev);
1562		xcan_chip_stop(ndev);
1563	}
1564
1565	return pm_runtime_force_suspend(dev);
1566}
1567
1568/**
1569 * xcan_resume - Resume from suspend
1570 * @dev:	Address of the device structure
1571 *
1572 * Resume operation after suspend.
1573 * Return: 0 on success and failure value on error
1574 */
1575static int __maybe_unused xcan_resume(struct device *dev)
1576{
1577	struct net_device *ndev = dev_get_drvdata(dev);
1578	int ret;
1579
1580	ret = pm_runtime_force_resume(dev);
1581	if (ret) {
1582		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1583		return ret;
1584	}
1585
1586	if (netif_running(ndev)) {
1587		ret = xcan_chip_start(ndev);
1588		if (ret) {
1589			dev_err(dev, "xcan_chip_start failed on resume\n");
1590			return ret;
1591		}
1592
1593		netif_device_attach(ndev);
1594		netif_start_queue(ndev);
1595	}
1596
1597	return 0;
1598}
1599
1600/**
1601 * xcan_runtime_suspend - Runtime suspend method for the driver
1602 * @dev:	Address of the device structure
1603 *
1604 * Put the driver into low power mode.
1605 * Return: 0 always
1606 */
1607static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1608{
1609	struct net_device *ndev = dev_get_drvdata(dev);
1610	struct xcan_priv *priv = netdev_priv(ndev);
1611
1612	clk_disable_unprepare(priv->bus_clk);
1613	clk_disable_unprepare(priv->can_clk);
1614
1615	return 0;
1616}
1617
1618/**
1619 * xcan_runtime_resume - Runtime resume from suspend
1620 * @dev:	Address of the device structure
1621 *
1622 * Resume operation after suspend.
1623 * Return: 0 on success and failure value on error
1624 */
1625static int __maybe_unused xcan_runtime_resume(struct device *dev)
1626{
1627	struct net_device *ndev = dev_get_drvdata(dev);
1628	struct xcan_priv *priv = netdev_priv(ndev);
1629	int ret;
1630
1631	ret = clk_prepare_enable(priv->bus_clk);
1632	if (ret) {
1633		dev_err(dev, "Cannot enable clock.\n");
1634		return ret;
1635	}
1636	ret = clk_prepare_enable(priv->can_clk);
1637	if (ret) {
1638		dev_err(dev, "Cannot enable clock.\n");
1639		clk_disable_unprepare(priv->bus_clk);
1640		return ret;
1641	}
1642
1643	return 0;
1644}
1645
1646static const struct dev_pm_ops xcan_dev_pm_ops = {
1647	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1648	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1649};
1650
1651static const struct xcan_devtype_data xcan_zynq_data = {
1652	.cantype = XZYNQ_CANPS,
1653	.flags = XCAN_FLAG_TXFEMP,
1654	.bittiming_const = &xcan_bittiming_const,
1655	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1656	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1657	.bus_clk_name = "pclk",
1658};
1659
1660static const struct xcan_devtype_data xcan_axi_data = {
1661	.cantype = XAXI_CAN,
1662	.bittiming_const = &xcan_bittiming_const,
1663	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1664	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1665	.bus_clk_name = "s_axi_aclk",
1666};
1667
1668static const struct xcan_devtype_data xcan_canfd_data = {
1669	.cantype = XAXI_CANFD,
1670	.flags = XCAN_FLAG_EXT_FILTERS |
1671		 XCAN_FLAG_RXMNF |
1672		 XCAN_FLAG_TX_MAILBOXES |
1673		 XCAN_FLAG_RX_FIFO_MULTI,
1674	.bittiming_const = &xcan_bittiming_const_canfd,
1675	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1676	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1677	.bus_clk_name = "s_axi_aclk",
1678};
1679
1680static const struct xcan_devtype_data xcan_canfd2_data = {
1681	.cantype = XAXI_CANFD_2_0,
1682	.flags = XCAN_FLAG_EXT_FILTERS |
1683		 XCAN_FLAG_RXMNF |
1684		 XCAN_FLAG_TX_MAILBOXES |
1685		 XCAN_FLAG_CANFD_2 |
1686		 XCAN_FLAG_RX_FIFO_MULTI,
1687	.bittiming_const = &xcan_bittiming_const_canfd2,
1688	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1689	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1690	.bus_clk_name = "s_axi_aclk",
1691};
1692
1693/* Match table for OF platform binding */
1694static const struct of_device_id xcan_of_match[] = {
1695	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1696	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1697	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1698	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1699	{ /* end of list */ },
1700};
1701MODULE_DEVICE_TABLE(of, xcan_of_match);
1702
1703/**
1704 * xcan_probe - Platform registration call
1705 * @pdev:	Handle to the platform device structure
1706 *
1707 * This function does all the memory allocation and registration for the CAN
1708 * device.
1709 *
1710 * Return: 0 on success and failure value on error
1711 */
1712static int xcan_probe(struct platform_device *pdev)
1713{
1714	struct net_device *ndev;
1715	struct xcan_priv *priv;
1716	const struct of_device_id *of_id;
1717	const struct xcan_devtype_data *devtype = &xcan_axi_data;
1718	void __iomem *addr;
1719	int ret;
1720	int rx_max, tx_max;
1721	u32 hw_tx_max = 0, hw_rx_max = 0;
1722	const char *hw_tx_max_property;
1723
1724	/* Get the virtual base address for the device */
1725	addr = devm_platform_ioremap_resource(pdev, 0);
1726	if (IS_ERR(addr)) {
1727		ret = PTR_ERR(addr);
1728		goto err;
1729	}
1730
1731	of_id = of_match_device(xcan_of_match, &pdev->dev);
1732	if (of_id && of_id->data)
1733		devtype = of_id->data;
1734
1735	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1736			     "tx-mailbox-count" : "tx-fifo-depth";
1737
1738	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1739				   &hw_tx_max);
1740	if (ret < 0) {
1741		dev_err(&pdev->dev, "missing %s property\n",
1742			hw_tx_max_property);
1743		goto err;
1744	}
1745
1746	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1747				   &hw_rx_max);
1748	if (ret < 0) {
1749		dev_err(&pdev->dev,
1750			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1751		goto err;
1752	}
1753
1754	/* With TX FIFO:
1755	 *
1756	 * There is no way to directly figure out how many frames have been
1757	 * sent when the TXOK interrupt is processed. If TXFEMP
1758	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1759	 * to determine if 1 or 2 frames have been sent.
1760	 * Theoretically we should be able to use TXFWMEMP to determine up
1761	 * to 3 frames, but it seems that after putting a second frame in the
1762	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1763	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1764	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1765	 * completely synchronized with the rest of the bits?
1766	 *
1767	 * With TX mailboxes:
1768	 *
1769	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1770	 * we submit frames one at a time.
1771	 */
1772	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1773	    (devtype->flags & XCAN_FLAG_TXFEMP))
1774		tx_max = min(hw_tx_max, 2U);
1775	else
1776		tx_max = 1;
1777
1778	rx_max = hw_rx_max;
1779
1780	/* Create a CAN device instance */
1781	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1782	if (!ndev)
1783		return -ENOMEM;
1784
1785	priv = netdev_priv(ndev);
 
1786	priv->dev = &pdev->dev;
1787	priv->can.bittiming_const = devtype->bittiming_const;
1788	priv->can.do_set_mode = xcan_do_set_mode;
1789	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1790	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1791					CAN_CTRLMODE_BERR_REPORTING;
 
 
 
 
 
 
 
 
 
 
1792
1793	if (devtype->cantype == XAXI_CANFD) {
1794		priv->can.data_bittiming_const =
1795			&xcan_data_bittiming_const_canfd;
1796		priv->can.tdc_const = &xcan_tdc_const_canfd;
1797	}
1798
1799	if (devtype->cantype == XAXI_CANFD_2_0) {
1800		priv->can.data_bittiming_const =
1801			&xcan_data_bittiming_const_canfd2;
1802		priv->can.tdc_const = &xcan_tdc_const_canfd2;
1803	}
1804
1805	if (devtype->cantype == XAXI_CANFD ||
1806	    devtype->cantype == XAXI_CANFD_2_0) {
1807		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1808						CAN_CTRLMODE_TDC_AUTO;
1809		priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1810	}
1811
1812	priv->reg_base = addr;
1813	priv->tx_max = tx_max;
1814	priv->devtype = *devtype;
1815	spin_lock_init(&priv->tx_lock);
1816
1817	/* Get IRQ for the device */
1818	ret = platform_get_irq(pdev, 0);
1819	if (ret < 0)
1820		goto err_free;
1821
1822	ndev->irq = ret;
1823
1824	ndev->flags |= IFF_ECHO;	/* We support local echo */
1825
1826	platform_set_drvdata(pdev, ndev);
1827	SET_NETDEV_DEV(ndev, &pdev->dev);
1828	ndev->netdev_ops = &xcan_netdev_ops;
1829	ndev->ethtool_ops = &xcan_ethtool_ops;
1830
1831	/* Getting the CAN can_clk info */
1832	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1833	if (IS_ERR(priv->can_clk)) {
1834		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1835				    "device clock not found\n");
1836		goto err_free;
1837	}
1838
1839	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1840	if (IS_ERR(priv->bus_clk)) {
1841		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1842				    "bus clock not found\n");
1843		goto err_free;
 
 
 
 
 
 
 
1844	}
 
1845
1846	priv->write_reg = xcan_write_reg_le;
1847	priv->read_reg = xcan_read_reg_le;
1848
1849	pm_runtime_enable(&pdev->dev);
1850	ret = pm_runtime_get_sync(&pdev->dev);
1851	if (ret < 0) {
1852		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1853			   __func__, ret);
1854		goto err_disableclks;
1855	}
1856
1857	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1858		priv->write_reg = xcan_write_reg_be;
1859		priv->read_reg = xcan_read_reg_be;
1860	}
1861
1862	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1863
1864	netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
1865
1866	ret = register_candev(ndev);
1867	if (ret) {
1868		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1869		goto err_disableclks;
1870	}
1871
 
1872	pm_runtime_put(&pdev->dev);
1873
1874	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1875		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1876		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1877	}
1878
1879	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1880		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1881		   hw_tx_max, priv->tx_max);
1882
 
 
 
 
 
1883	return 0;
1884
1885err_disableclks:
1886	pm_runtime_put(priv->dev);
1887	pm_runtime_disable(&pdev->dev);
 
 
1888err_free:
1889	free_candev(ndev);
1890err:
1891	return ret;
1892}
1893
1894/**
1895 * xcan_remove - Unregister the device after releasing the resources
1896 * @pdev:	Handle to the platform device structure
1897 *
1898 * This function frees all the resources allocated to the device.
1899 * Return: 0 always
1900 */
1901static int xcan_remove(struct platform_device *pdev)
1902{
1903	struct net_device *ndev = platform_get_drvdata(pdev);
 
1904
1905	unregister_candev(ndev);
1906	pm_runtime_disable(&pdev->dev);
 
1907	free_candev(ndev);
1908
1909	return 0;
1910}
1911
1912static struct platform_driver xcan_driver = {
1913	.probe = xcan_probe,
1914	.remove	= xcan_remove,
1915	.driver	= {
1916		.name = DRIVER_NAME,
1917		.pm = &xcan_dev_pm_ops,
1918		.of_match_table	= xcan_of_match,
1919	},
1920};
1921
1922module_platform_driver(xcan_driver);
1923
1924MODULE_LICENSE("GPL");
1925MODULE_AUTHOR("Xilinx Inc");
1926MODULE_DESCRIPTION("Xilinx CAN interface");